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Abstract: Magnetic properties of molecules such as magnetizabilities represent second order derivatives

of the energy with respect to external perturbations. To avoid the need for analytic second derivatives

and thereby permit evaluation of the performance of methods where they are not available, a new

implementation of quantum chemistry calculations in finite applied magnetic fields is reported. This

implementation is employed for a collection of small molecules with the aug-cc-pVTZ basis set to assess
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orbital optimized (OO) MP2 and a recently proposed regularized variant of OOMP2, called κ-OOMP2.

κ-OOMP2 performs significantly better than conventional second order Møller-Plesset (MP2) theory, by

reducing MP2’s exaggeration of electron correlation effects. As a chemical application, we revisit an old

aromaticity criterion called magnetizability exaltation. In lieu of empirical tables or increment systems to

generate references, we instead use straight chain molecules with the same formal bond structure as the

target cyclic planar conjugated molecules. This procedure is found to be useful for qualitative analysis,

yielding exaltations that are typically negative for aromatic species and positive for antiaromatic molecules.

One interesting species, N2S2, shows a positive exaltation despite having aromatic characteristics.
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1 Introduction

The magnetizability, ξ of a molecule is the magnetic analog of the electric polarizability. ξ is a second

order property that describes the temperature-independent quadratic change of the energy of a molecule,

δE(B) = −1
2
B†ξB + . . . , in response to the presence of a magnetic induction, B. Thus ξ is a 3× 3 matrix

(or symmetric rank-2 tensor). For molecules with non-zero total angular momentum (most commonly,

unpaired electron spins), there is an additional temperature-dependent contribution that depends directly

on the total spin, and, when present, it is typically the largest contribution. ξ also yields the temperature-

independent magnetic moment, m(B) of a molecule induced by B, as m(B) = ξB + . . . . For more

background material on magnetostatics and the magnetizability, we refer the reader to several excellent

textbooks.1–3

The calculation of magnetic properties is based on the pioneering work by Ramsay in the early

1950s.4–11 Owing to these efforts, the calculation of Nuclear Magnetic Resonance (NMR) chemical

shielding tensors and indirect spin-spin coupling tensors (both second order properties) nowadays belongs

to the standard repertoire of the computational chemist and complements the experimental interpretation

of NMR spectra.12,13 While magnetizabilities are not amongst the most commonly calculated molecular

properties, they have some established roles in chemistry. The main role is molecular magnetism in

inorganic chemistry, where unpaired spins and orbital angular momentum are routinely characterized.14

That is not our focus, so we turn next to applications that do not depend on such contributions. In general,

the magnetizability tensor is far more difficult to obtain experimentally than chemical shieldings and spin-

spin couplings due to the large experimental error bars,15 so the need for accurate calculations that serve

as benchmarks for the experiments is particularly high. At the level of fundamental molecular properties,

the magnetizability tensor connects directly to several spectroscopic observables including the molecular
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Zeeman effect, the Cotton-Mouton effect, and the interpretation of microwave spectra.1–3 Separately, in a

broader chemical context, it has long been recognized16 that the magnetizability of aromatic molecules

may be enhanced or “exalted” relative to non-aromatic analogs because of the presence of a closed path

(or paths) where electrons may move freely in the aromatic case, versus the absence of such a path in the

non-aromatic case. Accordingly, calculations of magnetizability exaltations17,18 represent perhaps the

main chemical application of this molecular property in closed shell, stable molecules. Interestingly, it

has also been reported that the level of agreement between mean-field Hartree-Fock magnetizabilities of

aromatic molecules and experimentally derived values is significantly poorer for aromatic molecules than

for non-aromatic organic molecules.15

Magnetizabilities have been calculated fairly early19,20 and a plethora of electronic structure methods

are available for this task: Magnetizabilities at the levels of Hartree-Fock (HF),15,21 density fitted HF,22

Density Functional Theory (DFT),23 Current-Density Functional Theory (CDFT),24 Magnetic-Field Den-

sity Functional Theory (BDFT),25 the Second-Order Polarization Propagator Approximation (SOPPA),26

various Coupled-Cluster Polarization Propagator Approximations (CCDPPA, CCSDPPA),26 Linearized

Coupled-Cluster Doubles (L-CCD),27,28 Coupled-Cluster Singles and Doubles (CCSD),29 Multiconfigura-

tional Self-Consistent Field (MCSCF),30,31 Second- and Third-Order Møller-Plesset Perturbation Theory

(MP2 and MP3),27,28,32,33 as well as Resolution-of-the-Identity MP2 (RI-MP2)34 have been reported.

Relativistic effects have been included in the calculation of magnetizabilities at the MP2 level as well.35

The “gold-standard” for the calculation of magnetizabilities is CCSD with a perturbative triples

correction (CCSD(T))36 at the complete basis set limit, which has been used to generate the reference

data in one of the few benchmark studies for magnetizabilities.37,38 However, due to the steep scaling

of CCSD(T) and the resulting rapid increase of computational cost with increasing system size, such

calculations are prohibitive for larger molecules. Hence, more cost-efficient methods for the accurate
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calculation of magnetizabilities are desirable.

MP2 is a technique that scales with the fifth power of the number of basis functions (O(N5)) and has

been used successfully in a multitude of applications. While NMR shielding constants calculated with

MP2 are typically of satisfying accuracy,12 the results for magnetizabilities are generally disappointing

and often worse than the HF results.34 This observation has been attributed to the subtle influence of

electron correlation on magnetizabilities and the propensity of MP2 to overestimate this effect.

The challenges of MP2 for accurately describing electron correlation have at least two origins. First, it

is well-known that HF orbitals yield charge distributions that are too ionic; this limitation can be addressed

by optimizing orbitals in the presence of MP2 correlation.39–42 Second, the form of MP2 correlation means

that the total energy is not bounded from below and can become non-variational (i.e. over-correlated)

when energy gaps become small. This can be addressed by intelligent denominator regularization schemes

(the simplest being just a level shift43,44), or, possibly other formalisms.45 Recently, some of us have

presented a new approach to regularized Orbital-Optimized MP2 (κ-OOMP2),46–48, which scales as the

fifth power of the number of basis functions, albeit with a larger prefactor than canonical MP2. κ-OOMP2

attenuates the overestimation of electron correlation by canonical MP2 for small-gaps, while leaving

large-gap contributions unaltered. The κ-OOMP2 orbitals have also been used to greatly improve the

numerical performance of MP3 relative to HF orbitals.49 Considering these encouraging results, we think

it is useful to explore the performance of κ-OOMP2 for magnetizabilities, particularly given the poor

performance of MP2 for this property.

In this paper, the implementation and calculation of magnetizability tensors with κ-OOMP2 is presented

using a fully numerical approach. This entails evaluating the energy in the presence of specific applied

values of magnetic induction, followed by a finite difference evaluation of the magnetizability. Approaches

of this type have been employed previously to characterize the electronic structure of molecules in
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nonuniform magnetic fields.50 To address the gauge origin problem inherent in the calculation of magnetic

properties,12 we use Gauge-Including Atomic Orbitals (GIAOs),51 also known as London orbitals. Our

results demonstrate that the errors of the numerical derivative as compared to the analytical approach

are acceptable, and also suggest that κ-OOMP2 performs significantly better for magnetizabilities than

standard MP2.

The rest of the paper is structured as follows: After an in-depth discussion of the theoretical background

of the calculation of magnetizability tensors with κ-OOMP2 and evaluating the accuracy of the numerical

procedure (Section 2), the performance of the new computational method as compared to CCSD(T)

reference data, taken from the test set by Lutnæs and co-workers,37 is assessed (Section 3). After

some additional benchmark tests on conjugated cyclic molecules, we then consider a chemical example:

magnetizability exaltations, which were historically used to evaluate aromaticity of ring molecules. We

present a straightforward approach to evaluating the exaltations without the need for empirical reference

data. Conclusions are given in Section 4.

2 Theoretical Background

An in-depth treatment of the quantum chemical calculation of magnetic properties is beyond the scope of

this paper. The interested reader is kindly referred to existing reviews on the subject.12,13,52 Instead, here

the general design idea of our code (Section 2.1), the matrix elements that are required for the calculation

of magnetizabilities (Section 2.2), the particularities of κ-OOMP2 in the calculation of the magnetizability

tensor (Section 2.3), details on the implementation and verification of our code (Section 2.4) as well as the

performance of the numerical implementation compared to analytical results (Section 2.5) are discussed.
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2.1 General Approach

The magnetizability ξ is a 3x3 tensor and can be calculated as the second derivative of the energy E w.r.t.

the magnetic field B,12 with elements

ξij = −d2E ({RN},B)

dBidBj

∣∣∣∣
B=0

. (1)

Here, {RN} is the nuclear configuration. The isotropic magnetizability is ξiso = 1
3
tr(ξ). We use Gauge-

Including Atomic Orbitals (GIAOs),51 also known as London orbitals, in the calculation of magnetizabili-

ties to address the gauge-origin problem.12 A GIAO ωµ, centered on nucleus N , is given as

ωµ(r; AN) = exp (−iAN · r) · χ(r), (2)

where r is the electron coordinate and χ(r) is a regular Gaussian-type orbital and the vector potential AN

is

AN =
1

2
B× RNO. (3)

RNO is the vector from the nucleus N to an arbitrarily chosen gauge-origin O, the latter of which we

choose to be the zero vector for convenience.

We use a fully numerical implementation for the calculation of the magnetizability tensor (eq. 1). In

particular, focusing on the isotropic part of the magnetizability tensor and omitting the electronic and

nuclear coordinates in the energy for clarity, we calculate the second derivative of the energy w.r.t. the

magnetic field to second order via53

ξii = −2
E(∆Bi)− E(B = 0)

∆B2
i

(4)
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Off-diagonal elements of the tensor can be evaluated to second order via the following expression:

ξij = −E(∆Bi) + E(−∆Bi) + E(∆Bj) + E(−∆Bj)− 4E(B = 0)

2∆Bi∆Bj

(5)

There are also corresponding expressions that are accurate to fourth order,via53 which is as follows for the

diagonal elements:

ξii = −
−1

6
E(2∆Bi) + 8

3
E(∆Bi)− 5

2
E(B = 0)

∆B2
i

, (6)

∆Bi is the step in the Cartesian component i of the magnetic field. The choice of this parameter determines

the accuracy of the numerical results. An assessment of ∆Bi and its relation to the numerical error is

given in Section 2.5. The calculation of the magnetizability via eqs. 4 and 6 necessitates the calculation

of several energies at different values of the magnetic field, which has been achieved before.54,55 Due to

the use of GIAOs, we use a fully complex-valued code throughout our calculations.

Although analytical derivatives are generally to be preferred over their numerical counterparts due to

some clear advantages (e.g. typically shorter calculation times, significantly reduced numerical noise, real-

valued code, and no need to calibrate/validate a choice of the finite difference step size), we chose a fully

numerical scheme here to calculate the magnetizability for the following reasons: Firstly, once the energy

expressions in an external magnetic field (cf. Section 2.2) are implemented, it is fairly straightforward

to add and rapidly test new computational methods for the calculation of magnetic properties, since

the cumbersome implementation of the analytical expressions, which needs to be carried out for each

level of theory separately, is avoided. Secondly, the implementation of the explicit energy expressions

in the presence of an external magnetic field allows the rapid adaption to other properties involving the

magnetic field (e.g. chemical shieldings, circular dichroism), since only a handful of new terms needs
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to be implemented. This is much more cumbersome in the case of analytical calculations. Thirdly, the

calculation of magnetic properties like chemical shieldings or spin-spin couplings for only specific nuclei

or pairs of nuclei, respectively, can be trivially achieved with numerical derivatives, although analytical

calculations of magnetic properties of subsets of atoms have been reported.56 Finally, parallelization of

the code is a trivial task, since the calculations of the perturbed energies can be conducted independently

on different computer nodes, with no need of communication between the processors. This is especially

valuable considering today’s highly parallel computer infrastructure. In principle, given enough processors,

the calculation of the magnetizability is roughly as computationally costly as the calculation of an energy

in the presence of a finite magnetic field. Hence, in order to test the viability of the κ-OOMP2 method for

the calculation of magnetizabilities, we chose a fully numerical approach.

2.2 Required Matrix Elements

The Hamiltonian in an external magnetic field is discussed in detail in ref. 57 and an excellent overview

on the calculation of matrix elements involving GIAOs can be found in ref. 58. For the sake of brevity, we

will in the following only discuss those matrix elements that we have implemented for the calculation of

magnetizabilities.

Focusing on the one-electron terms first, the kinetic energy matrix elements are defined as

hkin
µν =

〈
ωµ

∣∣∣∣− 1

2
∇2

∣∣∣∣ων〉 . (7)

Using well-known relations,59 eq. 7 can be reduced to linear combinations of overlap integrals 〈ωµ|ων〉

between GIAOs.
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One-electron matrix elements associated with electron-nuclear attraction (NA) are defined as

hNA
µν = −

〈
ωµ

∣∣∣∣∑
α

Zα
rα

∣∣∣∣ων
〉
, (8)

where rα is the distance between the electron and the nucleus α. The calculation of such matrix elements

requires the use of the Boys function with a complex argument. The interested reader is referred to ref. 58

for details.

For the calculation of the magnetizability tensor, two more one-electron terms need to be taken into

account. The first one involves the diamagnetic magnetizability (DM) operator,57

ĥDM =
1

8

[
B2 · r2 − (B · r)2

]
. (9)

The second one involves the paramagnetic shielding (PS) operator,

ĥPS = − i
2

B · (r×∇) . (10)

After some straightforward yet somewhat cumbersome algebra, both operators lead to energy expressions

that involve only overlap integrals with increased or decreased angular momentum on GIAO ων (see

Appendix).

Turning to the two-electron integrals, many schemes for the calculation of the crucial electron

repulsion are available. Some of the most prominent ones are known as Taketa-Huzinaga-O-ohata

(THO66),60 McMurchie-Davidson,61 Rys-quadrature,62,63 Gill-Johnson-Pople (GJP),64 and Head-Gordon-

Pople (HGP88).65 For an efficient calculation of the electron repulsion integrals it is well-known that the

optimal choice of algorithm depends on the orbital angular momentum.58 Initially, we implemented the
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inefficient but rather straightforward THO66 algorithm to generate reference numbers (cf. Section 2.4),

but later switched to the much more efficient HGP88 algorithm for production calculations for both

2-electron-4-center integrals for the regular electron repulsion and 2-electron-3-center integrals for the

Resolution-of-the-Identity approximation (for which efficient evaluation has recently been described66).

All values reported in this paper have been generated with the HGP88 algorithm.

Hence, we have only implemented three basic types of integrals, i.e. overlap, nuclear attraction and

electron repulsion. All other integrals (kinetic energy, diamagnetic magnetizability and paramagnetic

shielding) could be reduced to linear combinations of overlap integrals.

2.3 Magnetizabilities with κ-OOMP2

The regularized orbital-optimized MP2 approach (κ-OOMP2) has been presented recently by some of

us.46–48 In the following only a brief overview of the approach that is necessary to understand the gist of

the method is given. The interested reader is kindly referred to the original publication for details.

In canonical MP2, the Hylleraas functional L is minimized with respect to the amplitudes t, which

yields the MP2 energy,

EMP2 = min
t
L[t, θ]. (11)

where the Hylleraas functional is

L[t, θ] = 〈Ψ1

∣∣Ĥ∣∣Ψ0〉+ 〈Ψ0

∣∣Ĥ∣∣Ψ1〉+ 〈Ψ1

∣∣Ĥ0 − E0

∣∣Ψ1〉 (12)

In OOMP2, the Hylleraas functional is furthermore optimized with respect to orbital rotation parameters θ,
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∂L[t, θ]

∂θ
= 0 (13)

This approach yields a set of orbitals that are no longer the Hartree-Fock orbitals, but approximations

to Brueckner orbitals.39,67–69 As GIAOs are used in the calculation of magnetic properties, the resulting

orbitals are still gauge-including. Hence, the results are independent of the (arbitrary) choice of gauge

origin. OOMP2 scales as O(N5), albeit with a larger prefactor than canonical MP2, due to the requirement

to optimize the orbitals iteratively.

In κ-OOMP2, one modifies the Hylleraas functional by damping the two-electron integrals via

〈ab||ij〉 ←− 〈ab||ij〉
(
1− exp (−κ∆ab

ij )
)

such that the MP2 amplitudes t are modified as

tabij =
〈ab||ij〉

∆ab
ij

(
1− exp (−κ∆ab

ij )
)
, (14)

Here ∆ab
ij = εa + εb − εi − εj in terms of orbital energies, ε, of virtual levels, a, b and occupied levels, i, j.

These regularized amplitudes lead to the regularized MP2 (κ-MP2) energy expression

Eκ-MP2 = −1

4

∑
ijab

| 〈ab||ij〉 |2

∆ab
ij

(
1− exp (−κ∆ab

ij )
)2
, (15)

If ∆ab
ij → 0, tabij → κ 〈ab||ij〉 instead of∞, and the corresponding correlation energy contribution tends

to zero. This has the obvious advantage that systems with near-degenerate energy levels can be treated,

which is problematic with unregularized MP2.46 The removal of divergence can, in fact, be achieved by

a rather simple linear shift as well.43,44 The particular form in Eq. 14 was chosen not only to regularize

the offending energy denominator but also to maintain the well-behaved correlation energy contribution

coming from large denominators. When combined with orbital optimization, such an energy-dependent
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regularizer was found to be essential to outperform unregularized MP2 and OOMP2 over a handful of

benchmark sets while restoring the Coulson-Fischer point.46,49 Since κ-OOMP2 has displayed a propensity

of attenuating the overestimation of electron correlation that canonical MP2 exhibits, κ-OOMP2 is a

promising approach to improve the performance of MP2 in the calculation of magnetizability tensors.

Our κ-OOMP2 code uses the resolution-of-the-identity (RI) approximation throughout.46 In this

approach, the fitting basis is a regular Gaussian-type basis and not a GIAO basis, because otherwise the

crucial requirement of gauge-independence cannot be met.22 The Resolution-of-the-Identity approximation

has been used before in combination with MP2 for the calculation of NMR shielding tensors22,70 and

magnetizabilities.34 The errors of the RI approximation have been shown to be negligible throughout.

The energy before the first orbital-optimization cycle is the RI-MP2 energy, which allows us to calculate

magnetizabilities at the RI-MP2 level of theory as well.

2.4 Implementation and Code Verification

We have implemented all one- and two-electron integrals given in Section 2.2 and κ-OOMP2 using

GIAOs in the integral library libqints in a developer’s version of Q-Chem 571,72 Our code is able to

run complex-restricted48,73 and complex-general47,74 SCF procedures as implemented in libgscf and

libgmbpt, the latter of which is important for the calculation of indirect spin-spin coupling constants

(to be presented in a future publication).

In a first step, the matrix elements were tested in order to verify our code. The overlap matrix elements

were tested against reference results obtained via Mathematica.75 The Mathematica code for the overlap

integrals was taken from ref. 76 and adapted for GIAOs. Although the kinetic energy integrals can be

decomposed to the already verified overlap integrals, the former were tested separately against Mathematica

references77 that were again adjusted for GIAOs. A similar procedure was carried out for nuclear attraction
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integrals, for which numerical Mathematica references78 with GIAOs were generated. The diamagnetic

magnetizability and the paramagnetic shielding integrals, which are needed in the calculation of the

magnetizability tensor, were also implemented in Mathematica to verify our implementation of the

relations given in the Appendix. To test the electron repulsion integrals, we implemented both the

THO6660 and the HGP8865 algorithms in Q-Chem, both for 2-electron-4-center and 2-electron-3-center

integrals. Both codes give matching values for any applied magnetic field.

As another (weak) test of the implementation we verified that the overlap, nuclear attraction, kinetic

energy and electron repulsion integrals reduce to the results of regular Gaussian type orbitals at zero

magnetic field. In the case of the diamagnetic magnetizability and paramagnetic shielding integrals the

results are trivially zero if no magnetic field is applied.

In the second verification step, magnetizabilities at the Hartree-Fock level were tested against the

Dalton program package.79 Magnetizabilities at the RI-MP2 level with very large auxiliary basis sets were

tested against MP2 results obtained via CFOUR.80 CFOUR was also employed to generate CCSD and

CCSD(T) results against which the various MP2 methods can be assessed.

In the third verification step, magnetizabilities at the κ-OOMP2 level were tested at its two limits:

κ = 0 against those at the Hartree-Fock level and κ =∞ against those at the OOMP2 level.

2.5 Numerical Accuracy of Finite Differences Magnetizability

To evaluate the numerical accuracy of the finite difference scheme, we tested the finite difference HF and

RI-MP2 magnetizabilities of various small molecules against analytical HF and MP2 magnetizabilities

obtained via CFOUR. The general issue in choosing an acceptable step size is avoiding numerical noise

from limited precision in the energy (step size not too small) whilst also avoiding contamination from

higher derivatives in the target second order property (step size not too big). We chose C2H4 as an example
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of molecules with small HOMO-LUMO gaps that might be prone to contamination from higher order

terms with larger step sizes; H4C2O as the largest molecule in the test set that should accentuate numerical

error with smaller step sizes; and lastly LiH as an in-between molecule with moderate gap and small size.

The cc-pVDZ, aug-cc-pVDZ, and cc-pVTZ basis sets were tested in this manner. The SCF convergence

criteria was 10−11 a.u., and the cutoff threshold for two electron integrals was 10−14 a.u.

In Table 1 we present the % error for HF magnetizabilities for the three aforementioned molecules.

With the second order finite difference scheme, the optimal step size 10−3 a.u. for C2H4 and H4C2O leads

to errors on the order of 10−4% or less for all three basis sets tested; whereas the optimal step size 10−4

a.u. for LiH leads to % errors on the order of 10−5% for the cc-pVDZ and cc-pVTZ basis sets, and we

observe a shift in aug-cc-pVDZ: the optimal step size 10−5 a.u. leads to % error on the order of 10−4%.

Overall these results are encouraging because a step size of either 10−3 or 10−4 is acceptable for all three

molecules in all three basis sets.

The assessment of the numerical accuracy of our finite difference RI-MP2 implementation of the

magnetizability is more complicated, since the RI approximation constitutes an additional error source

(CFOUR is using exact integrals). To disentangle the RI error from the error of the numerical procedure,

we tested two different auxiliary basis sets (rimp2-cc-pVDZ and rimp2-aug-cc-pVTZ) for the C2H4 and

H4C2O molecules (Tables 2 and 3). The smaller rimp2-cc-pVDZ basis reveals error limits associated with

the RI approximation. With the larger aug-cc-pVDZ and cc-pVTZ basis sets, applying the rimp2-aug-

cc-pVTZ auxiliary basis leads to at least an order of magnitude of error improvement. For all three AO

basis sets, using rimp2-aug-cc-pVTZ and either 2nd or 4th order finite difference, at least two orders of

magnitude in the B field can be identified that deliver errors better than 10−2%. Encouragingly, the optimal

range of fields does not appear to depend strongly on the AO basis set for the choices we will use in this

work.

15



Table 1: Numerical performance of the 2nd order finite difference scheme for the magnetizability of three
molecules with varying step size. Values shown as percentage error for Hartree-Fock in 3 basis sets.
Reference values were calculated analytically at the same level of theory.

Molecule B field step size (log10 a.u.)

-6 -5 -4 -3 -2 -1 0

cc-pVDZ

C2H4 -16.17 -0.0215 0.0015 0.0001 0.0102 0.8680 -40.29

H4C2O 21.94 -0.0671 -0.0002 -0.0001 -0.0147 -2.4506 -6.89

LiH 0.2805 0.0037 0.00003 -0.0001 -0.0110 -1.0189 -11.6254

aug-cc-pVDZ

C2H4 -0.0910 -0.1765 0.0027 -0.00002 -0.0011 0.3695 -44.6909

H4C2O -20.8518 -0.1618 -0.0002 -0.0002 -0.0232 -1.7756 -75.7206

LiH -3.0791 0.0002 0.0048 0.0043 -0.0342 -3.1063 -1.3800

cc-pVTZ

C2H4 -5.5078 -0.1462 0.0017 0.0001 0.0084 0.7034 9.7808

H4C2O 16.0834 0.0573 -0.0005 -0.0002 -0.0158 -1.6033 -3.1721

LiH -3.0657 0.0127 -0.00004 -0.0003 -0.0363 -3.2028 1.8863

Overall we recommend using the step size of 10−3 a.u. and the 2nd order finite difference scheme, since

this combination delivers a satisfying compromise between accuracy and computational cost throughout.

Perhaps surprisingly, the relatively small rimp2-cc-pVDZ auxiliary basis set when paired with either

of the three AO basis sets (cc-pVDZ, aug-cc-pVDZ, cc-pVTZ) appears to be accurate enough for most

applications from a numerical point of view. In our applications below we will nevertheless always use the

auxiliary basis set that corresponds to the chosen AO basis.
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Table 2: Numerical performance of the finite difference scheme of 2nd or 4th order (FD order) for the
magnetizability of C2H4 with varying step size. Values shown are percentage errors (%) of RI-MP2 with
three AO basis sets (cc-pVDZ, aug-cc-pVDZ, and cc-pVTZ), using two different auxiliary basis sets
(rimp2-cc-pVDZ and rimp2-aug-cc-pVTZ) for each one. Reference values were calculated analytically at
the MP2 level of theory with the respective basis sets.

Auxiliary basis set FD order
B field step size (log10 a.u.)

-6 -5 -4 -3 -2 -1 0
cc-pVDZ

rimp2-cc-pVDZ
2 -12.60 -0.0923 -0.0516 -0.0520 -0.0398 1.0116 -38.98
4 15.75 -0.0837 -0.0464 -0.0521 -0.0521 0.4620 -35.74

rimp2-aug-cc-pVTZ
2 0.9320 -0.3822 -0.0040 -0.0006 -0.0116 1.0567 -40.30
4 5.871 0.3780 -0.0016 -0.0007 -0.0006 0.5108 -35.16

aug-cc-pVDZ

rimp2-cc-pVDZ
2 29.35 -0.3405 -0.0835 -0.0825 -0.0830 0.5057 -43.59
4 30.39 -0.4837 -0.0804 -0.0825 -0.0839 0.1920 -22.78

rimp2-aug-cc-pVTZ
2 21.46 0.5108 -0.00004 -0.0017 -0.0027 0.5677 -18.82
4 220.16 0.0478 -0.0029 -0.0017 -0.0031 0.2606 -163.75

cc-pVTZ

rimp2-cc-pVDZ
2 50.08 -0.4886 -0.1200 -0.1186 -0.1080 0.8054 16.90
4 -54.40 -0.4137 -0.1140 -0.1188 -0.1186 0.3506 44.95

rimp2-aug-cc-pVTZ
2 46.44 -0.1503 -0.0066 -0.0060 0.0044 0.9000 1.91
4 -42.84 0.0659 -0.0080 -0.0061 -0.0061 0.4562 0.20

3 Results and Discussion

3.1 Accuracy of κ-OOMP2 Magnetizabilities for the Lutnæs Set

As a first assessment, we utilized the test set of 28 molecules curated by Lutnæs et al.37 to assess the

accuracy of κ-OOMP2 for isotropic magnetizabilities. In Table 4 we present various statistics for Hartree-

Fock (HF), RI-MP2, OOMP2, and κ-OOMP2 in comparison to CCSD(T) in the aug-cc-pVTZ basis. When

calculating the RMSE, MSE and the maximum error for each method, we exclude O3, which exhibits by

far the largest correlation effects because of its multireference character. This procedure is in accordance

with previous benchmarking studies.37,38

In terms of magnitudes, mean-field HF theory performs quite well, with nearly zero mean signed error
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Table 3: Numerical performance of the finite difference scheme of 2nd or 4th order (FD order) for the
magnetizability of H4C2O with varying step size. Values shown are percentage errors (%) of RI-MP2
with three AO basis sets (cc-pVDZ, aug-cc-pVDZ, and cc-pVTZ), using two different auxiliary basis sets
(rimp2-cc-pVDZ and rimp2-aug-cc-pVTZ) for each one. Reference values were calculated analytically at
the MP2 level of theory with the respective basis sets.

Auxiliary basis set FD order
B field step size (log10 a.u.)

-6 -5 -4 -3 -2 -1 0
cc-pVDZ

rimp2-cc-pVDZ
2 22.69 -0.0868 -0.0242 -0.0241 -0.0372 -1.4077 -7.84
4 6.87 -0.0202 -0.0214 -0.0240 -0.0240 0.1199 -27.83

rimp2-aug-cc-pVTZ
2 -40.04 0.0881 -0.0027 -0.0007 -0.0139 -1.3868 -25.89
4 12.98 0.2546 -0.0001 -0.0006 -0.0006 0.1421 39.07

aug-cc-pVDZ

rimp2-cc-pVDZ
2 27.00 0.0308 -0.0343 -0.0300 -0.0512 -1.7195 -73.74
4 264.99 0.3917 -0.0284 -0.0299 -0.0306 -0.0700 12.35

rimp2-aug-cc-pVTZ
2 56.31 -0.3953 0.0015 -0.0013 -0.0227 -1.6985 -72.59
4 304.88 0.4405 -0.0089 -0.0012 -0.0020 -0.0467 76.66

cc-pVTZ

rimp2-cc-pVDZ
2 17.16 0.0794 -0.0136 -0.0136 -0.0280 -1.5149 -5.61
4 8.27 -0.1538 -0.0121 -0.0134 -0.0134 0.0875 -16.71

rimp2-aug-cc-pVTZ
2 -2.55 -0.0372 -0.0013 -0.0018 -0.0162 -1.5077 0.50
4 8.55 -0.1455 -0.0025 -0.0017 -0.0016 0.0974 -2.83

(MSE), indicating no systematic over or under-estimation. Comparing HF with CCSD(T), it is evident that

correlation effects are relatively small, on the order of a few percent (with the conspicuous exception of

ozone). The performance of MP2, as noted previously,34 is disappointing. The MSE increases by a factor

of 5 relative to HF, and the RMS error is reduced by only 28 %. Ten cases show significant overcorrection,

and disturbingly, there are four cases where MP2 corrects in the wrong direction.

Orbital optimization with MP2 significantly improves the results for magnetizabilities. Whilst OOMP2

is a method that typically exaggerates electron correlation effects,43,46 OOMP2 magnetizabilities neverthe-

less show improvements in both MSE and RMSE relative to MP2 itself. κ-OOMP2 reduces over-correlation

effects in OOMP2 via the use of energy-dependent regularization (Eq. 15). As seen in Table 4, using the

recommended parameter46 (κ = 1.45) provides significant further improvement relative to OOMP2. At
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Table 4: Results and statistics for HF, RI-MP2, OOMP2 and κ-OOMP2 calculations of magnetizability
compared to the CCSD(T) reference with the aug-cc-pVTZ basis set, for the Lutnæs data set37 (10−30

JT−2). Note that ozone is excluded from the statistics, because it is a dramatic outlier for HF and MP2.

Molecule HF MP2 κ-MP2 OOMP2 κ-OOMP2 CCSD(T)

AlF -401.02 -406.01 -403.43 -407.81 -404.59 -400.20
C2H4 -355.07 -350.16 -348.32 -349.59 -348.29 -345.94
C3H4 -478.33 -487.29 -484.23 -485.92 -483.39 -481.68
CH2O -139.72 -131.80 -135.15 -128.04 -132.96 -129.14
CH3F -318.60 -318.31 -318.19 -316.57 -316.94 -317.36
CH4 -314.11 -322.03 -319.68 -322.17 -319.66 -318.40
CO -204.95 -218.34 -215.40 -218.07 -215.12 -213.48
FCCH -452.94 -448.91 -448.26 -448.53 -448.25 -446.61
FCN -378.65 -376.50 -376.84 -376.11 -376.78 -374.17
H2C2O -433.22 -440.90 -440.05 -440.17 -439.74 -430.82
H2O -231.45 -238.75 -237.05 -239.57 -237.43 -236.21
H2S -456.51 -468.40 -463.05 -467.91 -462.61 -461.97
H4C2O -545.26 -542.17 -541.97 -538.21 -539.36 -536.25
HCN -280.51 -278.44 -277.31 -277.32 -276.86 -275.30
HCP -512.49 -505.57 -500.33 -504.54 -500.73 -498.39
HF -172.89 -178.76 -177.97 -179.51 -178.48 -177.43
HFCO -312.12 -315.12 -315.43 -315.78 -315.85 -310.64
HOF -244.91 -242.51 -244.11 -238.35 -241.43 -237.34
LiF -191.32 -198.57 -197.02 -199.71 -197.6 -197.01
LiH -125.72 -127.04 -122.59 -127.22 -122.71 -129.30
N2 -203.10 -210.57 -208.46 -209.82 -207.93 -206.15
N2O -343.15 -345.39 -345.64 -342.05 -344.05 -340.67
NH3 -287.56 -294.80 -292.39 -295.23 -292.46 -291.19
O3 581.49 -637.00 -360.72 -34.59 73.76 112.39
OCS -598.87 -597.22 -597.26 -592.65 -595.38 -591.09
OF2 -271.88 -252.39 -258.43 -237.10 -250.43 -249.58
PN -302.34 -333.65 -324.46 -324.05 -319.92 -314.90
SO2 -304.00 -336.73 -334.44 -339.45 -334.6 -324.38

RMSE 8.63 6.22 4.93 4.92 3.89
MSE -0.93 -4.84 -3.40 -3.18 -2.52
MaxE 22.30 18.75 10.01 15.07 10.22
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the κ-OOMP2 level, the maximum and RMS errors are both reduced by more than a factor of 2 relative to

HF. Relative to MP2 the main improvement is in the ten cases that showed significant overcorrection; the

four cases that MP2 corrects in the wrong direction remain.

Finally, it is useful to assess the role of regularization using the unmodified HF orbitals (i.e. the κ-MP2

column of Table 4, again using κ = 1.45). The improvement of κ-MP2 relative to MP2 is on par with

the improvement of κ-OOMP2 relative to OOMP2. At κ = 1.45, κ-MP2 has similar RMSE and slightly

larger MSE than OOMP2, while the max error is significantly reduced, even more so than for κ-OOMP2.

Of course κ-MP2 has the benefit of shedding the iterative cost of OOMP2, but it is interesting that the

improvements from regularization (κ-MP2) and orbital optimization (OOMP2) are synergistic: κ-OOMP2

is clearly the best-performer of the 4 MP2-based approaches.

It is encouraging that κ-OOMP2 significantly improves upon MP2 for magnetizabilities using the

regularization parameter (κ = 1.45) chosen without reference to this property. To explore the extent to

which further improvement is possible, Figure 1 displays how the κ-OOMP2 errors on this 27-molecule

dataset vary as a function of κ. Note that κ = 0 (left edge) is HF, and κ → ∞ is OOMP2, so strong

regularization is to the left of the figure, whilst weak is to the right. It is evident that modest improvements

in magnetizabilities beyond the κ = 1.45 results are obtained by decreasing κ to about 1.2, which

corresponds to somewhat stronger damping of electron correlation effects. However, the κ dependence

is sufficiently weak that we recommend using the existing parameter. κ-MP2 has qualitatively similar

behaviour as κ-OOMP2, but with slightly worse performance for all 3 statistical measures.

3.2 Accuracy of κ-OOMP2 Magnetizabilities for Conjugated Cyclic Molecules

As one additional assessment of the performance of this set of quantum chemical methods, we revisit

the magnetizability anisotropies of a set of aromatic molecules that were previously examined at the HF
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Figure 1: Variation of the κ value in κ-MP2 and κ-OOMP2 and its effect on performance on the 27-
molecule test set

level.15 These species exhibit greater electron delocalization than the small molecules discussed above,

and therefore have larger magnetizabilities. For planar molecules (in the xy plane), the magnetizability

anisotropy is defined as

ξaniso = ξzz −
1

2
(ξxx + ξyy) (16)

As shown in Table 5, HF anisotropies with the relatively small aug-cc-pVDZ basis set perform quite

well relative to experiment, presumably due to fortuitous cancellation between basis set incompleteness

effects and neglect of electron correlation. Nevertheless, at least for aromatic species like these, the
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aug-cc-pVDZ basis set appears to be quite useful for calculations at the HF level. Basis set incompleteness

effects are clearly evident by comparing HF against CCSD(T) relative to experiment: the HF result agrees

better in 4 of the 6 cases.

Table 5: Calculated magnetizability anisotropies for various conjugated molecules using the aug-cc-pVDZ
basis, and and experimental values (10−30 JT−2). Deviations are evaluated with respect to the CCSD(T)
results.

Molecule HF MP2 OOMP2 κ-OOMP2 CCSD CCSD(T) exp.

benzene -1061.26 -939.85 -922.15 -951.55 -905.92 -878.79 -1036±4081

pyridine -1079.05 -1033.0 -1007.04 -1037.1 -1012.67 -993.19 -953±1282

furan -644.59 -702.74 -702.31 -691.76 -654.65 -660.30 -643±883

thiophene -854.57 -927.42 -930.06 -907.08 -863.56 -871.27 -832±1883

1,3-dioxol-2-one -242.01 -253.65 -249.35 -250.39 -241.54 -244.136 -240±2020

cyclopentadiene -558.40 -601.50 -609.76 -593.32 -554.20 -561.91 -570±520

RMSE 82.88 44.58 40.02 41.87 14.57

MSE 38.38 41.43 35.18 36.93 3.82

On the other hand, with the larger cc-pVTZ basis set, CCSD(T) compares quite favorably to experiment

in most cases (Table 6), except for pyridine and to a lesser extent cyclopentadiene. Due to the often

unreliable error bars and inaccuracies associated with these historical experimental data15,31, as well as

possible remaining basis set limitations, we shall instead compare the various wavefunction-based methods

relative to CCSD(T) for the remainder of this section. The mean and RMS errors for these magnetizability

anisotropies relative to CCSD(T) are presented in Table 6. Additionally, the corresponding statistics for

isotropic magnetizabilities are presented in Table 7.

Comparing the magnetizability anisotropies at the HF vs MP2 vs CCSD(T) levels shows that in 4

of the 6 cases, MP2 and OOMP2 overcorrect for correlation effects. These 4 cases (furan, thiophene,

1,3-dioxol-2-one, and cyclopentadiene) are therefore improved by regularization via κ-OOMP2. These 4

cases also shows strikingly small correlation at this level of basis. In the two remaining cases (benzene
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Table 6: Calculated and experimental magnetizability anisotropies for various conjugated molecules.
cc-pVTZ unless otherwise noted. Statistics calculated against CCSD(T) (10−30 JT−2)

Molecule HF MP2 OOMP2 κ-OOMP2 CCSD CCSD(T) exp.

benzene -1125.54 -1069.91 -1056.94 -1081.22 -1047.36 -1027.63 -1036±4081

pyridine -1077.14 -1029.05 -1003.57 -1032.58 -1011.74 -990.68 -953±1282

furan -633.38 -681.06 -677.95 -669.79 -634.07 -639.10 -643±883

thiophene -841.75 -900.07 -899.71 -880.66 -837.80 -844.39 -832±1883

1,3-dioxol-2-one -239.20 -248.32 -244.00 -244.33 -234.89 -237.40 -234±2020

cyclopentadiene -553.19 -593.19 -598.75 -584.89 -547.30 -554.69 -570±520

RMSE 53.40 40.25 35.54 36.16 12.67

MSE 29.39 37.95 31.17 33.26 3.21

and pyridine) MP2 and OOMP2 undercorrect relative to CCSD(T), with orbital optimization significantly

improving upon the MP2 result. This undercorrection is quite significant. Regularization, which attenuates

correlation effects associated with the smallest orbital gaps, therefore worsens the benzene and pyridine

results. Interestingly, OOMP2 closely approaches CCSD for the benzene and pyridine cases, in contrast to

overcorrelating for the other 4 cases.

Isotropic magnetizabilities show slightly different trends. Benzene and pyridine displays smaller

correlation effects, around half that of the anisotropic magnetizabilities, whereas the other three molecules

(furan, thiophene, 1,3-dioxol-2-one) shows slightly larger correlation effects. Cyclopentadiene shows

strikingly small correlation, similar to the anisotropic case. Comparing the isotropic magnetizability at the

HF vs MP2 vs CCSD(T) levels, instead of two distinct groups, we observe several distinct behaviours. For

benzene and pyridine, MP2 again undercorrects relative to CCSD(T); orbital optimization via OOMP2

significantly improves upon the MP2 result, and even closely approaches CCSD(T). Regularization

degrades the MP2 and OOMP2 results. For furan, MP2 overcorrects slightly relative to CCSD(T), while

orbital optimization tempers the correlation contribution. For 1,3-dioxol-2-one, MP2 undercorrects relative
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Table 7: Calculated isotropic magnetizability for various conjugated molecules evaluated in the cc-pVTZ
basis (10−30 JT−2). Error statistics are given relative to the CCSD(T) results.

Molecule HF MP2 κ-MP2 OOMP2 κ-OOMP2 CCSD CCSD(T)

benzene -999.36 -964.01 -972.68 -959.99 -971.39 -966.65 -954.09

pyridine -880.70 -854.52 -862.74 -846.68 -859.40 -858.10 -845.74

furan -747.79 -759.08 -757.69 -757.09 -756.52 -749.01 -756.54

thiophene -993.86 -1004.85 -1000.94 -1001.93 -999.46 -987.78 -984.79

1,3-dioxol-2-one -690.34 -685.18 -687.34 -680.15 -684.81 -682.78 -679.08

cyclopentadiene -782.81 -794.88 -791.57 -793.97 -791.01 -783.26 -781.37

RMSE 24.36 11.58 13.35 9.03 11.74 8.10

MSE 15.54 10.15 11.89 6.37 10.16 4.33

to CCSD(T), while orbital optimization increases the correlation contribution. In these four molecules,

OOMP2 performs surprisingly well relative to CCSD(T). Except for furan, regularization worsens the

results for the other three molecules. In contrast, for thiophene, the MP2 correlation contribution has the

wrong sign relative to CCSD(T); orbital optimization decreases the correlation contribution but retains the

wrong sign.

Given the considerations mentioned above, it is clear that regularization of either the MP2 results

for these conjugated species cannot give significant overall improvements since the two largest outliers

are cases where correlation effects are underestimated with MP2 and OOMP2. Overall, the statistics

suggest that MP2 moderately improves upon HF, reducing the RMSE for the magnetizability anisotropy by

roughly 20%; and the isotropic magnetizability by roughly 50%. We also observe that all 4 MP2 methods

give higher MSE than HF for anisotropy, similar to the results in Figure 1; whereas for the isotropic

results, all 4 MP2 methods give lower MSE than HF, particularly OOMP2, which had more than half the

MSE of HF’s. Relative to MP2, there is a slight overall improvement with OOMP2 and an even smaller

improvement with κ-OOMP2 (Table 6).
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3.3 Evaluation of magnetizability exaltations in cyclic conjugated molecules

Other than energetic stabilization and geometric symmetry breaking, magnetizability exaltations have been

suggested as a gauge for aromaticity and anti-aromaticity.16–18 Qualitatively, with electron delocalization

around a ring, the magnetizability perpendicular to the ring, and hence the isotropic magnetizability as

well, should be enhanced relative to expected values due to the associated ring current. This exaltation

provides a measure of aromaticity that is complementary to the susceptibility anisotropy discussed in

the previous subsection. Of course, to define the exaltation of the magnetizability, it is also essential

to have a reference. Traditionally, this reference is a theoretical molecule with the same bond structure

but without conjugation. For example, benzene’s reference would be the theoretical cyclo-hexatriene.

Two conventions for calculating the magnetizability for these theoretical molecules have been employed.

One is the Pascal system of atomic constants84, and the other is the Haberditzl semiempirical increment

system85. The Pascal and Haberditzl systems suffer from accuracy issues related to heteroatoms, small

rings, non-cylindrical molecules, and charge86; missing constants or bond types also exclude novel

systems from consideration, while the bond increment systems focuses on a single Lewis structure of the

hypothetical non-aromatic ring system. Partly for these reasons, magnetizability exaltation has fallen out

of favor as a criterion for aromaticity over the past 25 years. Indeed a recent review87 commented that

“due to the difficulty in quantifying aromaticity using this method and the need for an empirical reference,

together with the development of computational methods that allow a more detailed and direct study of

the magnetic properties, in a qualitative and quantitative fashion, this method is rarely used.”

Modern alternative computational methods include those based on nucleus-independent chemical

shifts18 and those based on visualizing the current density.88 While indeed these are valuable approaches,

it is worth pointing out that magnetizability exaltations need not rely on empirical references. Here we will
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define the out-of-plane magnetizability exaltation as the difference between the out-of-plane component

of the magnetizability tensor (ξzz) of the aromatic molecule and that of a suitably chosen open chain

analog with the same number of formal double bonds and lone pairs. Experimental comparison remains a

possibility when susceptibility data for both ring and chain molecules is available. As a simple example,

the open chain reference for benzene is hexatriene, H2C CH CH CH CH CH2. Of course such

references are typically not unique – even hexatriene has multiple conformations, though the all-trans

form is a natural choice. Other molecules present more interesting alternative open chain references;

for instance, we shall later examine N2S2 for which HNSNSH and H2NSNS are both possible. The

out-of-plane exaltation aims to single out the ring current effect by accounting for similar Lewis structures

in both the aromatic rings and their open chain counterparts.

Aromatic, non-aromatic, and anti-aromatic molecules are expected to display large negative, around

zero, and large positive exaltations respectively. Here we investigate small ring molecules with 2, 4, and

6 π electrons. All structures were optimized with ωB97M-V89/def2-TZVPDD.90 In Table 8 we present

out-of-plane magnetizability exaltations calculated with HF, MP2, κ-OOMP2, as well as CCSD and

CCSD(T). Where different possible open chain references exist, our choice is specified (in some cases

we will explore two alternative choices to assess the sensitivity of the exaltations to different reasonable

choices of reference). Since our objective here is qualitative, the small cc-pVDZ basis was used for these

calculations.

Starting with 6 π electrons, in addition to benzene, thiophene (C4H4S), cyclopentadiene anion (C5H
–

5 ),

and pyridine (C5H5N) all display the expected large negative magnetizability exaltations, associated

with ring currents. In contrast, disulfur dinitride (N2S2) behaves as weakly anti-aromatic under the

exaltation criteria, relative to the open-chain reference, HNSNSH. Interestingly, the results are virtually

unchanged when using the alternative open-chain reference, H2NSNS. It appears that the two straight
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Table 8: Magnetizability exaltations for various molecules with 0, 2, or 6 π electrons calculated in the
cc-pVDZ basis (10−30 J T−2).

Molecule Straight chain analog HF RI-MP2 κ-OOMP2 CCSD CCSD(T)

2 π electrons
C2H2N

+ H2CC(H)NH -54.90 -69.94 -68.42 -65.75 -67.16
H2CNCH2 -234.69 -228.11 -228.74 -221.42 -220.76

C3H
+

3 H3CCCH +
2 -228.39 -221.02 -221.55 -221.07 -218.99

H2CC(H)CH +
2 -47.89 -53.64 -53.10 -51.43 -52.24

CN2H
+ HNNCH2 -209.93 -205.27 -206.20 -200.96 -200.32

N +
3 -213.45 -179.99 -189.82 -190.88 -188.09

4 π electrons
C2H2O H2COCH2 -81.83 -37.54 -24.46 -42.24 -34.71

H2CC(H)OH 44.27 72.04 86.43 68.48 72.20
C4H4 s-trans 743.50 734.72 748.73 640.29 648.11
C5H

+
5 s-cis 1209.29 1961.63 2027.48 1472.01 1598.06

trans 1323.18 2100.45 2157.77 1596.96 1727.93
C5H6 trans 1,3 pentadiene -175.40 -214.97 -207.72 -181.69 -186.87

planar s-cis 1,3 pentadiene -238.96 -296.12 -284.92 -256.29 -265.05
6 π electrons

S2N2 SNSNH2 152.35 382.44 326.57 261.66 303.17
HSNSNH 148.76 395.43 340.31 271.87 318.70

C5H
–

5 cis -718.63 -727.35 -729.51 -708.17 -704.59
trans -605.72 -606.83 -606.66 -592.97 -589.94

C5H5N NCCCC -521.11 -487.88 -491.27 -475.28 -456.70
CCNCC -511.46 -463.03 -468.09 -453.73 -432.74

C6H6 trans -601.10 -546.79 -558.10 -534.88 -514.56
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chain isomers display similar if not more delocalization than the N2S2 ring itself. In addition, calculated at

the CCSD(T)/cc-pVTZ level, N2S2 has a magnetizability anisotropy of 67.0 10−30 JT−2, which is much

different from the normally large anisotropy that aromatic molecules possess. N2S2 has been previously

characterized as weakly aromatic,91,92 based on structural, energetic and chemical shift criteria. In simple

terms, N2S2 is closer to 2-electron aromaticity than 6-electron aromaticity, because the two highest

orbitals are essentially in and out of phase linear combinations of π-type lone pair orbitals on the two S

atoms, giving bond order 1.25 for the N S bonds. By contrast, other researchers had argued that N2S2

has diradicaloid character, for instance based on classical valence bond analysis93. On magnetizability

grounds, N2S2 appears to continue to be an unconventional molecule.

Moving on to 4 π electron systems, cyclobutadiene, being the classic anti-aromatic molecule, displays a

large positive exaltation as expected. Likewise, C5H
+

5 also displays a very large positive exaltation. In con-

trast C2H2O, when considering the 70 kcal/mol more stable and electronically more similar H2CC(H)OH

isomer, is predicted to be non-aromatic. For the group of molecules with 2 π electrons, all 4 molecules are

predicted to be aromatic, with exaltations comparable to benzene and pyradine if normalized by π electron

count.

We also consider cyclopentadiene C5H6, which was presented as an illustration against using out-

of-plane magnetizability exaltation as an aromaticity criteria94. With our method, against both planar

s-cis and trans isomers of 1,3-pentadiene, cyclopentadiene displays moderate negative exaltation, around

35 to 50% of benzene’s. This suggests that not all of the exaltation results from the ring current effect,

as the aforementioned authors stated94; nonetheless, given the difference in magnitude, out-of-plane

magnetizability exaltation remains to appear to be a useful gauge of aromaticity.

Finally, it is interesting to briefly examine the effect of electron correlation on the magnetizability

exaltations. Overall most of the studied molecules with strong magnetizability exaltations display small
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correlation contributions, of most around 10%, with the striking exception of C5H
+

5 . For C5H
+

5 , MP2 and

κ-OOMP2 provide relatively consistent exaltations, and the correlation contribution from both methods is

around half of the exaltation from HF. The cause of this difference is in the magnetizability calculation of

the ring molecule, where the χzz computed from CCSD(T) is more than twice that of HF. The exaltation

calculated from CCSD(T) for C5H
+

5 is qualitatively consistent with both RI-MP2 and κ-OOMP2.

4 Conclusions

In this work we have reported a new finite field implementation of magnetic properties, using gauge-

including atomic orbitals, and applied it to the evaluation of magnetizabilities. This required development

of software to implement the complex matrix elements, and to enable evaluation of energies using

complex orbitals and amplitudes, as a consequence of the matrix elements. In return for overcoming those

challenges, analytic derivatives are not required, and thus it is possible to assess the performance of new

or uncommon electronic structure methods more readily.

As an illustration, we have reported tests of orbital optimized MP2 (OOMP2), and a recently proposed

regularized OOMP2 method (κ-OOMP2) for magnetizabilities. These results for small molecules in

the aug-cc-pVTZ basis show that κ-OOMP2 generally provides a significant improvement over MP2

itself, as well as over OOMP2, for magnetizabilities. However, it does not approach the accuracy of

high-quality coupled cluster methods, such as CCSD(T). Results for isotropic magnetizabilities and

magnetizability anisotropies for a set of 6 conjugated cyclic species in the smaller cc-pVTZ basis show

smaller improvements with regularization for κ-OOMP2 over MP2, and no overall improvement relative

to OOMP2.

Additionally we reexamined an old aromaticity criteria: the out-of-plane magnetizability exaltation.
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Using a single straight chain molecule as reference instead of increment systems or empirical tables allows

one to consider the difference in electronic structure and its underlying effects. We then applied this

new regime on a set of aromatic and anti-aromatic molecules. These calculations proved interesting in

several respects. First, while large negative exaltations are associated with aromaticity, we found one

nominally aromatic species, N2S2, which displays a positive exaltation. This may rekindle debate about

its aromaticity. Second, we found that errors in HF, MP2, and κ-OOMP2 magnetizability exaltations are

significantly larger for anti-aromatic species, for the most part, consistent with the presence of stronger

correlation effects.

In terms of future work, it will be interesting to see if significant improvements in the magnetizabilities

predictions can be obtained by using orbitals from either κ-OOMP2 or density functional theory together

with energy evaluation at the MP3 or scaled MP3 levels. Such models have been used with very promising

results for relative energies.49,95,96 and the effort to adapt an efficient MP3 code work with the complex

orbitals and amplitudes associated with finite applied magnetic fields should be far less than implementing

analytical second derivatives. Hopefully the framework built here will be helpful for exploring this

and other unconventional possibilities for accurate and reasonably efficient evaluation of molecular

magnetizabilities. We also intend to complete the extensions of our implementation necessary to evaluate

chemical shifts, and in due course, scalar couplings.
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Appendix A: GIAO Matrix Elements of the Diamagnetic Magnetiz-

ability

To arrive at a convenient expression for matrix elements of the diamagnetic magnetizability operator, Eq.

9, in the complex GIAO basis associated with a finite applied B-field, we use the following shorthand

notation for the overlap:

Sµν(l
′ + 1) = 〈ωµ|ων(l′ + 1)〉 (17)

Here, l′ is the polynomial power associated with the x-component of the Gaussian orbital that is a part of

the GIAO ων . Similarly, m′ and n′ are used for the y- and z-components, respectively. Hence, Sµν(l′ + 1)

is the overlap between GIAOs ωµ and ων with increased orbital angular momentum (x-component) of

ων . After some straightforward but cumbersome algebra we arrive at the following expression for matrix

elements of the diamagnetic magnetizability operator given in Eq. 9:

hDM
µν =

1

8

[
(B2

y +B2
z )
(
Sµν(l

′ + 2) + 2Rν,xSµν(l
′ + 1) +R2

ν,xSµν
)

+ (B2
x +B2

z )
(
Sµν(m

′ + 2) + 2Rν,ySµν(m
′ + 1) +R2

ν,ySµν
)

+ (B2
x +B2

y)
(
Sµν(n

′ + 2) + 2Rν,zSµν(n
′ + 1) +R2

ν,zSµν
)

− 2BxBy (Sµν(l
′ + 1,m′ + 1) +Rν,ySµν(l

′ + 1) +Rν,xSµν(m
′ + 1) +Rν,xRν,ySµν)

− 2BxBz (Sµν(l
′ + 1, n′ + 1) +Rν,zSµν(l

′ + 1) +Rν,xSµν(n
′ + 1) +Rν,xRν,zSµν)

− 2ByBz (Sµν(m
′ + 1, n′ + 1) +Rν,zSµν(m

′ + 1) +Rν,ySµν(n
′ + 1) +Rν,yRν,zSµν)

]
(18)

Rν,x, Rν,y and Rν,z denote the x, y and z-coordinates of the nucleus on which the GIAO ων is centered.
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Appendix B: GIAO Matrix Elements of the Paramagnetic Shielding

The matrix elements of the 3 spatial components of the paramagnetic shielding operator, Eq. 10 are given

separately for clarity (though for instance the y component can be obtained as a cyclic permutation of the

coordinates and the quantum numbers from the x component, and z can be obtained similarly from y).

hPS,x
µν = − i

2
Bx

[
Rν,z (BySµν(n

′ − 1) + Sµν(m
′ + 1, n′ − 1))

− 2β (BySµν(n
′ + 1) + Sµν(m

′ + 1, n′ + 1))

− i

2
χν,z (BySµν + Sµν(m

′ + 1))

−
[
Rν,y (BzSµν(m

′ − 1) + Sµν(m
′ − 1, n′ + 1))

+ 2β (BzSµν(m
′ + 1) + Sµν(m

′ + 1, n′ + 1))

+
i

2
χν,y (BzSµν + Sµν(n

′ + 1))
]

(19)

hPS,y
µν = − i

2
By

[
Rν,x (BzSµν(l

′ − 1) + Sµν(l
′ − 1, n′ + 1))

− 2β (BzSµν(l
′ + 1) + Sµν(l

′ + 1, n′ + 1))

− i

2
χν,x (BzSµν + Sµν(n

′ + 1))

−
[
Rν,z (BxSµν(n

′ − 1) + Sµν(l
′ + 1, n′ − 1))

+ 2β (BxSµν(n
′ + 1) + Sµν(l

′ + 1, n′ + 1))

+
i

2
χν,z (BxSµν + Sµν(l

′ + 1))
]

(20)
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hPS,z
µν = − i

2
Bz

[
Rν,y (BxSµν(m

′ − 1) + Sµν(l
′ + 1,m′ − 1))

− 2β (BxSµν(m
′ + 1) + Sµν(l

′ + 1,m′ + 1))

− i

2
χν,y (BxSµν + Sµν(l

′ + 1))

−
[
Rν,x (BySµν(l

′ − 1) + Sµν(l
′ − 1,m′ + 1))

+ 2β (BySµν(l
′ + 1) + Sµν(l

′ + 1,m′ + 1))

+
i

2
χν,x (BySµν + Sµν(m

′ + 1))
]

(21)

In the above expressions, β is the gaussian exponent of the primitive GIAO ν and χν is the vector

χν = B× Rν (22)
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