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Abstract

Genetic regulatory networks (GRNs) regulate the flow of genetic information from the genome

to expressed messenger RNAs (mRNAs) and thus are critical to controlling the phenotypic

characteristics of cells. Numerous methods exist for profiling mRNA transcript levels and iden-

tifying protein-DNA binding interactions at the genome-wide scale. These enable researchers

to determine the structure and output of transcriptional regulatory networks, but uncovering

the complete structure and regulatory logic of GRNs remains a challenge. The field of GRN

inference aims to meet this challenge using computational modeling to derive the structure

and logic of GRNs from experimental data and to encode this knowledge in Boolean net-

works, Bayesian networks, ordinary differential equation (ODE) models, or other modeling

frameworks. However, most existing models do not incorporate dynamic transcriptional data

since it has historically been less widely available in comparison to “static” transcriptional

data. We report the development of an evolutionary algorithm-based ODE modeling

approach (named EA) that integrates kinetic transcription data and the theory of attractor

matching to infer GRN architecture and regulatory logic. Our method outperformed six leading

GRN inference methods, none of which incorporate kinetic transcriptional data, in predicting

regulatory connections among TFs when applied to a small-scale engineered synthetic GRN

in Saccharomyces cerevisiae. Moreover, we demonstrate the potential of our method to pre-

dict unknown transcriptional profiles that would be produced upon genetic perturbation of the

GRN governing a two-state cellular phenotypic switch in Candida albicans. We established

an iterative refinement strategy to facilitate candidate selection for experimentation; the

experimental results in turn provide validation or improvement for the model. In this way, our

GRN inference approach can expedite the development of a sophisticated mathematical

model that can accurately describe the structure and dynamics of the in vivo GRN.
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Author summary

The establishment of distinct transcriptional programs, where specific sets of genes are

activated or repressed, is fundamental to all forms of life. Sequence-specific DNA-binding

proteins, often referred to as regulatory transcription factors, form interconnected gene

regulatory networks (GRNs) which underlie the establishment and maintenance of spe-

cific transcriptional programs. Since their discovery, many modeling approaches have

sought to understand the structure and regulatory behaviors of these GRNs. The field of

GRN inference uses experimental measurements of transcript abundance to predict how

regulatory transcription factors interact with their downstream target genes to establish

specific transcriptional programs. However, most prior approaches have been limited by

the exclusive use of “static” or steady-state measurements. We have developed a unique

approach which incorporates dynamic transcriptional data into a sophisticated ordinary

differential equation model to infer GRN structures that give rise to distinct transcrip-

tional programs. Our model not only outperforms six other leading models, it also is capa-

ble of accurately predicting how changes in GRN structure will impact the resulting

transcriptional programs. These notable features of our model, in conjunction with exper-

imental validation of our predictions in real-world scenarios, contribute to an advance-

ment in the field of gene regulatory network inference.

Introduction

Gene regulatory networks (GRNs) are comprised of interactions between sequence-specific

DNA-binding proteins, or transcription factors (TFs), and their respective regulatory target

genes [1]. The characteristics of GRN stability and adaptability underlie the ability of cells to

maintain homeostasis [2], respond to environmental variables [3], develop into multicellular

organisms [4], and make cell fate decisions [5]. Inferring the architecture of GRNs based on

experimental datasets, also known as the “inverse problem” [6], is important to understanding

these cellular processes (see [7, 8] for examples). The advent of high-throughput “omics” tech-

niques [9] has dramatically accelerated the pace by which researchers can obtain these experi-

mental data sets for GRN reverse engineering [10]. A commonly used high-throughput

technique is RNA sequencing, which effectively identifies and counts the number of tran-

scripts present for each RNA species, and thus generates a transcriptional profile of the cell or

tissue being assayed. With multiple bulk or single-cell transcriptional profiles measured at dif-

ferent time points, or in different cell types, the genes that are upregulated and downregulated

can be determined and be used to further infer the logic of the GRNs that underlie those regu-

latory changes [11]. Although transcriptional profiles are informative and have been widely

used to study biological processes of interest, they do not directly reflect the regulatory status

of genes (i.e., whether a gene is activated or repressed) [12], since some mRNAs are highly sta-

ble and can accumulate in cells, while others are degraded.

In the past twenty years, many modeling approaches have been developed to infer GRN

architectures using “omics” data [9, 13–15]. GRN inference models can be broadly categorized

into three distinct categories, based on the algorithms and hypotheses they employ (see

reviews: [16–24]): (i) data-driven static models, which do not simulate the biological processes

such as transcription or translation, but hypothesize that interacting genes have correlated

expression and use the correlations to infer GRN architecture [25, 26]; (ii) discrete models,

which simulate the time evolution of discrete variables that qualitatively describe the activity of
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genes [27, 28]; and (iii) continuous dynamical models which simulate the dynamics of gene

expression processes in a quantitative manner based a set of linear [29] or non-linear [30, 31]

ordinary differential equations (ODEs).

Dynamical models suffer from the “curse of dimensionality”, i.e., the problem of a state

space or parameter space growing exponentially with the number of genes considered. One

approach to dealing with this challenge when building dynamical models is to focus on

dynamics near attractors [32–34], the states toward which a kinetic system tends to evolve and

converge. This approach has been successfully applied in Boolean network inference of GRNs

[34–38], in which binary variables, 1 and 0, define the state of a gene as “on” or “off”, respec-

tively. Here, we focus on extending the attractor matching approach from Boolean models to

ODE models, which can simulate continuous gene expression levels. Specifically, we infer an

ODE model of a GRN whose attractors match the experimentally measured attractor states.

The primary challenge for implementing the attractor matching approach in network infer-

ence lies in the absence of experimentally determined kinetic data for the GRN [23, 39]. This

includes crucial information such as transcription rates and mRNA degradation rates, which,

unlike time-series transcriptional profiles that represent a trajectory, play pivotal roles in shap-

ing the overall dynamics of the GRN system, specifically the global vector field, and are instru-

mental in determining the positions and basins of the attractors [12]. As a result, most ODE

models must rely on fitting procedures to estimate kinetic parameters [40–44]. This strategy

differs significantly from the application of attractor dynamics, where measured kinetic

parameters are already known and are used to find and match the attractors. Thus, there are

few GRN inference techniques available that can effectively leverage kinetic data when it is

available. Although the attractor matching approach has not been applied to ODE-based mod-

els for the purpose of GRN inference, previous work has explored the potential of attractor-

matching strategies in ODEs [45, 46], and several software tools have been developed in this

area. For instance, FOS-GRN [47] and Netland [48] can reconstruct multi-attractor kinetic

landscapes with ODEs and user-defined parameters. In addition, there are several studies [49–

55] exploring how ODE models of GRNs can be steered from one attractor to another; many

of these techniques have Boolean analogues, which led us to more closely examine attractor

matching inference strategies for ODEs.

In this work, we have developed a GRN inference approach that extends the application of

the attractor matching strategy from a Boolean model to an ODE-based model by incorporat-

ing measurements of mRNA synthesis and degradation. Our model can simulate genetic regu-

latory processes with a novel parameterization framework that is built using combinatorial

logic operators and Hill functions and can reveal the correlation between a GRN architecture

and its dynamics in terms of fixed-point attractors. While precise estimation of the Hill coeffi-

cient is challenging due to the fact that similar dynamics are obtained for a wide range of val-

ues, our procedure effectively captures the overall regulatory structure without relying on

definitive values. Additional measurements can enhance parameter estimation, and our frame-

work allows for the integration of more advanced techniques if desired. The inferred input

parameter estimates are decoupled from the evolutionary algorithm, providing users with the

freedom to substitute parameters obtained through alternative and more sophisticated meth-

ods. We have tested our model using both in silico data and experimental data generated from

a real-life GRN constructed using synthetic biology [56]. Our results show that the use of

kinetic parameters and the application of attractor dynamics can significantly improve the

inference performance of ODE-based GRN models. Furthermore, since the model simulates

GRN dynamic systems in a quantitative manner, it can also predict stable-state transcriptional

profiles when given a GRN architecture and kinetic parameters. Using this model, we are able

to estimate, for the first time, the similarities between an unknown real-world GRN of an
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organism and the inferred GRN model based on predictions of the steady state transcriptional

profiles that result under perturbations that were not incorporated into the inference process.

Methods

GRN model architecture

Drawing on the conventions of early work, we depict the GRN architecture as a directed graph

consisting of nodes representing both TF proteins and their respective coding genes, and

edges representing interactions among these nodes. Non-TF coding genes are not considered

in our model. For example, in a simple three gene GRN architecture (Fig 1), the nodes A, B,

and C represent three distinct TF proteins and the genes that encode them, while the connect-

ing lines indicate physical interactions between the TF protein(s) and their respective regula-

tory target genes. In our framework, two types of interactions exist between TFs and genes:

activating or inhibitory, represented by pointed or blunt arrows, respectively. As shown in Fig

1B and 1C, we denote these TF-gene relationships by an adjacency matrix (named AM), which

uses 1 or -1 to indicate the activating or inhibitory interactions, and 0 to indicate the absence

of an interaction between a given TF and target gene. In addition to the TF-gene interactions,

TF-TF interactions may also exist, and are represented by the logic operators AND, OR, or

NOT, which qualitatively indicate how multiple TFs are aggregated to affect a common target

gene. The qualitative logic of these TF-TF interactions is organized in a protein coordination

matrix, or a set of logic gates (denoted by LG), whose Boolean values are assigned to decide

Fig 1. Depiction of a hypothetical GRN architecture. (A) Schematic of a simple GRN in which A and B cooperatively

activate B, C activates A and itself, and B represses C in a manner that can override the self-activation of C. (B) The

network topology table represents the direct activating, inhibiting, and null connections by 1, -1, and 0, respectively.

(C) The protein coordination parameters are assigned to each gene in the genome and qualitatively describe the

coordination between each gene’s regulatory TFs. ‘ActivatorNmer’ decides whether the activators of a gene work

independently (0) or cooperatively (1); ‘RepressorNmer’ decides whether the repressors of a gene work independently

(0) or cooperatively (1). f0 determines the basal expression level of a gene and whether its activators or repressors

outcompete the other.

https://doi.org/10.1371/journal.pcbi.1010991.g001
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whether the activators or repressors of a gene work synergistically or independently. If a gene

in the model has fewer than two TFs, its protein coordination parameters do not affect the

GRN dynamics. In this case, we fix the protein coordination parameters to 0. We use f0, which

is bounded between 0 and 1, to represent the basal expression level of a gene when no TF acts

upon it. The overall GRN architecture, or Anet, can be expressed by AMn×n, with LG2×n and f0
as the features of the network kinetics, where n denotes the number of genes in the GRN. In

this simplified GRN architecture, the activators or repressors of a gene work either synergisti-

cally or independently (Fig 1C). This approach greatly reduces the complexity compared to

fully general network logic gates (2N binary degrees of freedom per node), but leaves many

degrees of freedom (N2 trinary degrees of freedom) in the GRN topology. For example, a GRN

consisting of 3 genes has 39 possible configurations in AM and 26 in LG, and therefore 39 � 26 =

1,259,712 possible Anet. Also, the f0, bounded between 0 and 1, can vary independently of the

Anet, creating a larger inverse problem. The qualitative character of the GRN architecture will

systematically be made quantitative, as we describe in subsequent sections.

Overview of the GRN dynamic system

A list of symbols and parameters used in the GRN dynamic system is given in Table 1. We

assume that the diffusion and binding processes of TFs, which happen much faster than tran-

scription and translation, are instantaneous. We assign a Vmax and a Vmin to each gene, which

represent the potential highest and lowest production rates of mRNA transcripts, respectively.

We assume linear decay of the proteins and mRNA, and linear translation. These assumptions

give rise to Eqs 1 and 2:

d½R�i
dt

¼ Vi;min þ ðVi;max � Vi;minÞ � fAnet ð½P�∗;i;YÞ � DmRNA � ½R�i

Y ¼ ff0;T; kg

Anet ¼ fAM; LGg;

ð1Þ

Table 1. Parameter table for the GRN dynamic system.

Symbol Description Unit

[R]i number of mRNA transcripts for each gene dimensionless

[P]i number of protein copies encoded by each gene dimensionless

Vi,max maximal rate of transcription for each promoter nucleotides/

second

Vi,min minimal rate of transcription for each promoter nucleotides/

second

f0,i basal transcription rate for each promoter: a percentage of the Vi,max percentage

Vi,trl rate of translation for each protein amino acids/

second

Ti,j also known as KA, the protein abundance producing half occupation dimensionless

ki Hill coefficient dimensionless

Anet the architecture of a GRN, including the adjacency matrix and the protein

coordination matrix

dimensionless

AM the adjacency matrix of a GRN dimensionless

LG the protein coordination matrix of a GRN dimensionless

Di,mRNA rate of degradation for each mRNA 1/second

Di,protein rate of degradation for each protein 1/second

In×m the input matrix that contains m steady-state transcription profiles in the length of n
genes

dimensionless

https://doi.org/10.1371/journal.pcbi.1010991.t001
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d½P�i
dt
¼ Vtrl � ½R�i � Dprotein � ½P�i: ð2Þ

In these equations, [P]*,i represents the concentrations of the TFs that regulate the ith gene

in the GRN, and fAnet is the regulation function, which describes how TFs regulate a gene. Anet
embodies the structure of a GRN, encompassing the adjacency matrix (AM) and the protein

coordination matrix (LG) that govern its behavior. Other symbols in Eqs 1 and 2 are defined

in Table 1. The regulation function fAnet is a continuous function given in Eq 9. Typically, Hill

functions [57–59] and sigmoid functions [60, 61] form the building blocks of the regulation

function. We use Hill functions (Eqs 3 and 4) to formulate the regulation function fAnet :

Sact;ið½P�iÞ ¼
½P�kii

½P�kii þ T
ki
i

; ð3Þ

Srep;ið½P�iÞ ¼ 1 � Sact;ið½P�iÞ: ð4Þ

In Eqs 3 and 4, T is the protein abundance producing half occupation (disassociation con-

stant of the TF binding) and ki is the Hill coefficient (effective cooperativity). Eq 3 describes

the regulatory contribution of an activator, and Eq 4 serves the same role for a repressor. The

effect of multiple TFs on the transcription rate, as shown in Fig 2A and 2B, is determined by

the choice of LG according to the combinatorial Hill functions equations below (Eqs 5–8):

CIA;ið½P�iÞ ¼ 1 �
YnumTF

i¼1

ð1 � Sact;ið½P�iÞÞ; ð5Þ

CIR;ið½P�iÞ ¼
YnumTF

i¼1

ð1 � Sact;ið½P�iÞÞ; ð6Þ

CSA;ið½P�iÞ ¼
YnumTF

i¼1

Sact;ið½P�iÞ; ð7Þ

CSR;ið½P�iÞ ¼ 1 �
YnumTF

i¼1

Sact;ið½P�iÞ: ð8Þ

CIA,i, CIR,i, CSA,i, and CSR,i denote the combinatorial Hill functions for independent activators,

independent repressors, synergistic activators, and synergistic repressors, respectively.

With the Anet and the abundances of the TFs, we define the regulation function fAnet by Eq 9,

which applies combinatorial Hill function formulas and f0 to represent the gene regulations:

fAnetð½P�∗;i;YÞ ¼ f0 þ f0 � ðCA � 1Þ � ð1 � CRÞ þ ð1 � f0Þ � CA � CR: ð9Þ

Here, [P]*,i denotes the effective abundance of the TFs regulating the ith gene. For notational

convenience, we define CA,i = CSA,i if activators are synergistic and CA,i = CIA,i if they are inde-

pendent, and similarly for CR,i. How the parameters affect the shape of fAnet is shown in Fig 2C

and 2D. The shapes of the regulation function fAnet for two activators/repressors in the depen-

dent versus independent cases are shown in Fig A in S1 Text.
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GRN architecture inference

With the deterministic GRN dynamic model constructed above, we propose to infer the Anet
using experimentally-derived transcriptional profiles and mRNA production rates. Specifi-

cally, we consider transcriptional profiles of cells in the exponential growth phase under

defined and mixed culture conditions. We therefore assume that the resulting transcriptional

profiles represent a steady-state transcriptional output of the GRN. By incorporating experi-

mentally determined transcription, translation, and degradation rates, we simulate the GRN

dynamics and determine whether a given Anet can accurately reproduce the observed attrac-

tors. To search for the optimal Anet for a particular GRN, we utilize a modified evolutionary

algorithm [62, 63] to iteratively refine the Anet parameters until the predicted network attrac-

tors converge upon the experimentally measured ones. The main step-by-step processes of our

iterative computational and experimental strategy are presented in Fig 3.

Since Anet and the values of some system parameters are often unknown in practice, we will

make use of the measurable kinetic parameters (including Vmax, Vtrl, DmRNA, and Dprotein) and

the steady-state transcriptional profiles to estimate the unknown parameters (Vmin, T, k, and

f0) for a given network architecture (See Table 1). First, the Vmin value for a gene is estimated

by the minimal expression level of the gene across all the samples. Second, without other prior

knowledge, we must assume that when the genes are under TF regulation, they have the same

Fig 2. Demonstration of the combinatorial Hill functions (A and B), and the regulation function fAnet
(C and D)

under the regulation of an activator and a repressor. In the top two panels (A and B), two combinatorial Hill

functions are plotted; in (A) two activators work independently to activate a target gene, while in (B), two repressors

work synergistically. In the bottom two panels (C and D), the dependence of the regulatory function fAnet on the

activating and repressing combinatorial Hill functions is plotted for two example cases. In (C), fAnet achieves the basal

transcription rate fraction of 0.5 when there is a lack of both activator and repressor, or when both are present.

Activation (resp. inhibition) occurs when the activator (resp. repressor) is abundant, and the repressor (resp. activator)

is scarce. In (D), The Hill coefficient, k, determines the steepness of the regulation function; The basal expression level,

f0, controls the position of the middle plane and can slide between 0 and 1. The threshold T decides the TF abundance

that will trigger the activation or repression.

https://doi.org/10.1371/journal.pcbi.1010991.g002
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Fig 3. A flowchart illustrating the step-by-step processes of our iterative computational and experimental strategy

to infer GRNs and predict novel attractors.

https://doi.org/10.1371/journal.pcbi.1010991.g003
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chance to be activated or inhibited. Hence, the T of the TFs is calculated by their average

expression levels using Eq 2. Third, we assume that the input transcription profiles include

fully activated genes, and estimate k by invoking the steady state assumption for transcriptional

profiles that include maximal expression. The last unknown parameter, f0, is obtained by solv-

ing Eq 1, assuming the inputs are at steady state and averaging across inputs. The equations for

solving these parameters can be found in Eqs A-G in S1 Text. Our framework can incorporate

more advanced parameter estimates if they exist, but in the absence of direct measurements,

we rely on the available data to assign reasonable values to unknown parameters. The assump-

tions made are designed to prevent bias and select values that are unlikely to produce qualita-

tively different dynamics. Therefore, these parameters should be interpreted as qualitatively

reasonable rather than quantitatively definitive.

The modified evolutionary algorithm that we developed to efficiently search the GRN archi-

tecture space is illustrated in Algorithm 1. First, we randomly create a population of Anet, each

of which has the same initial fitness score. Second, we update the estimates of the unmeasured

parameters for each Anet. If an Anet has a f0 less than 0 or greater than 1, a penalty will be added

to the fitness score for Anet. Third, we examine each independent self-activating edge in an

Anet. If any input with the self-activating gene does not have a companion input state with that

gene active, we construct such a state for use as an initial condition to test whether such a state

will converge into a measured attractor. When the system is initiated in such a state, the input

transcriptional profile suggests that the self-activating gene should eventually be inactivated by

other TFs. By including these additional initial conditions, we penalize networks that are

highly stable for all or nearly all initial states. Next, we add a mild perturbation to each of the

initial states and numerically integrate the deterministic GRN dynamical system using the

Runge-Kutta 4th order method [64, 65] to find the final steady states. Since we assume that the

measured transcriptional profiles represent attractors, these initial states should converge to

the corresponding attractor states. If the system state ends up far away from the attractors, the

current Anet cannot generate the anticipated attractors. Although oscillations are possible in

the GRN dynamic system, we cannot assess them because the input transcriptional profiles are

at steady states. As a result, a fixed and exceedingly high penalty is imposed on each Anet that

generates oscillatory behavior. We use a normalized Manhattan distance between the attrac-

tors and the final states as a metric:

AttractorDistancej ¼
1

n
�
Xn

i¼1

jstatei;j � Ii;jj
maxðIi;∗Þ

; ð10Þ

where statei,j is the ith gene expression level of the jth final state obtained by running the GRN

dynamic system, Ii,j is the ith value of the jth input state,m is the total number of attractors, and

n is the total number of genes.

Autoregulation tends to produce excessive attractors not belonging to the input. We com-

pensate for this by considering additional initial states. If one of these additional initial states

belongs to the input, the final state will be compared against the initial state. Otherwise, the

final state will be compared against the closest attractor in the input. If the initial condition

does not converge to a steady state, we apply a penalty to the fitness of the network. We define

the fitness of each Anet in the current population by the reciprocal of the minimal average

“AttractorDistance” for all initial conditions, subtracting off the penalties for steady state con-

vergence failure and for unrealistic estimation of f0.

After the attractor distance is calculated, we create the next generation population by

randomly mutating each Anet by a certain Hamming distance, and numerically solve the

new ODEs constructed by the mutated Anet to obtain the new minimal average
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“AttractorDistance”. If the new minimal average “AttractorDistance” is less, we keep the

mutated population. Otherwise, the mutated population will be abandoned, and we will

return to the former population. Finally, we update the fitness of each Anet according to

their “AttractorDistance”. We sort the population by fitness in descending order and then

eliminate the last 20% of individuals and duplicate the fittest 20% to restore the population

number. By iteratively running the algorithm, we can obtain the fittest Anet in the last gener-

ation as the output. Alternative distance metrics such as Euclidean distance and Jaccard dis-

tance exist, but we chose Hamming distance due to its simplicity, intuitive interpretation,

and efficiency for equally sized strings. Moreover, the Hamming distance is less sensitive to

outliers than the Euclidean distance, ensuring that a single poorly fit attractor does not

unduly influence the algorithm. In this study, unless explicitly specified, the default setting

for the population size of Anet in the evolutionary algorithm was 100, and the algorithm was

run for 800 generations. The probability distribution used to mutate the Anet was a uniform

distribution (i.e. the probabilities for an edge to be mutated into 0, 1, and -1 were equal).

The population size and the number of generations were excessively high for the in silico
and in vivo tests, and therefore the results were not sensitive to these parameters unless

they were set too low (� 50 for the population size and � 400 for the number of

generations).

Because the sampling and mutating steps in the algorithm are stochastic, the output Anet
can be different each time. We draw a consensus GRN architecture using Eq H in S1 Text

with the assumption that a particular regulatory connection (i.e., an entry in Anet) occurring

at a higher frequency among a group of inferred GRN architectures is more significant than

one occurring at a lower frequency. In all results presented here, unless otherwise specified,

we conducted 30 independent and identical GRN inference processes and obtained a con-

sensus GRN architecture by averaging the fittest Anet architectures, weighting each by its

fitness.

In addition to regular transcriptional profiles, EA can also incorporate data from genetically

engineered strains. For instance, if the input transcriptional profiles are from knockout or

overexpression strains, we can set the mRNA abundance of the inoperative genes to zero or

maximal expression level during the numerical integration. If a regulatory connection is

removed by genetic engineering (e.g., by disrupting a TF binding site in a promoter), we can

fix the corresponding entry in Anet as zero to eliminate the effect of the disrupted regulatory

connection. Furthermore, we can use genome-wide binding data, such as chromatin immuno-

precipitation (ChIP) data, to guide the mutation of Anet during inference; if a physical binding

interaction exists between a TF and a gene, it is likely to represent a regulatory connection.

Therefore, we can lower the probability of the corresponding entry being mutated to zero.

Conversely, if the ChIP data indicates that a network of interest is sparse, we can incorporate a

mutation step with an 80% probability of the selected edges being mutated to 0. The accommo-

dation of different data types allows the model to integrate more available data and perform

better. Although EA can enforce network sparsity in the network initiation and mutation

steps, we do not use any sparsity regularization in this study because we are not focusing on

general sparse biological networks but instead on regulatory networks among a small group of

closely related TFs. Such networks can be much denser than large GRNs among less closely

related TFs.

Algorithm 1 Evolutionary Algorithm
1: Randomly initiate a population A0

net : fA1
net; A

2
net; . . . ; AN

netg;

2: Each individual has an initial fitness : 1

N

3: Calculate f0 for each Anet
4: for i in 1: m do
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5: initial system state  In,i
6: update f0 for each Anet and add penalty when f0 =2 [0, 1]
7: if Anet has an independent self activating edge and the initial

system state in which the self activating gene has been set to its
maximal expression =2 In,m then

8: append the modified state described above to In,m
9: end if
10: initial system state  initial system state + mild random

perturbation
11: for each Ajnet do
12: integrate GRN ODEs with Ajnet : fAMj; LGj; f0jg

13: end for
14: record last_statesi,j
15: end for
16: Calculate minðAttractorDistanceA0

net
Þ

17: for generation from 1 to x do
18: for each Ajnet in A0

net do
19: AMt

j  mutate AMj by x Hamming distance
20: LGt

j  mutate LGj by x Hamming distance
21: end for
22: for i in 1: m do
23: initial system state  In,i
24: update f0 for each Anet and add penalty when f0 =2 [0, 1]
25: if Anet has an independent self activating edge and the initial

system state in which the self activating gene has been set to
its maximal expression =2 In,m then

26: append the modified state described above to In,m
27: end if
28: initial system state  initial system state + mild random

perturbation
29: for each Aj

net in At
net do

30: integrate GRN ODEs with Aj
net : fAMt

j ; LG
t
j; f

t
ojg

31: end for
32: record last_statesi,j
33: if last_statesi,j is a fixed point attractor then
34: record Attractori,j
35: else
36: add a penalty to Aj

net

37: end if
38: end for
39: Calculate minðAttractorDistanceAtnetÞ

40: if minðAttractorDistanceAtnetÞ < minðAttractorDistanceA0
net
Þ then

41: A0
net  Atnet

42: else
43: A0

net remains
44: end if
45: for each Ajnet in A0

net do
46: fitnessAjnet

¼ fitnessAjnet
þ 1

AttractorDistance
Ajnet

47: end for
48: Sort A0

net by fitness in descending order : fAð1Þnet; A
ð2Þ
net; . . . ; AðNÞnetg

49: A0
net  fAð1Þnet; A

ð2Þ
net; . . . ; Að0:8NÞnet ; Að1Þnet; . . . ; Að1Þnetg

50: end for
51: Return the Að1Þnet in A0

net
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Model networks for validation

It is extremely challenging to directly determine the complete and comprehensive composition

and structure of “real-world” GRNs in living organisms [18, 66]. Therefore, the use of experi-

mental data in GRN inference can be problematic when it comes to validating the outcome of

GRN model predictions, since one can rarely, if ever, be certain that the experimental data pro-

vides a complete picture of the real-world GRN structure. For this reason, it has become com-

mon practice in the field of GRN inference to utilize in silico (i.e., computer generated)

datasets for method validation, which can provide gene expression data that is directly pre-

dicted based on a hypothetical “source” GRN model [57–59, 67].

We used both in silico and biologically observed GRN instances to evaluate EA. The in silico
instance consists of five arbitrarily generated toy GRN ODEs (Fig 4A), each of which has at

least 9 different fixed-point attractors and no oscillations. We believe this selection for multiple

fixed-point attractors and no oscillations led to the emergence of a large number of autoregula-

tory interactions. The Anet architectures for these systems are regarded as the reference GRN

architectures, which will be used as answer keys against which the inferred GRN architectures

will be compared. The in silico fixed-point attractors for each Anet are generated by SynTReN,

a commonly used benchmark generator for GRN inference [57]. SynTReN employs an alter-

native ODE modeling framework, distinct from the one we utilize, to generate gene expression

Fig 4. (A) Five GRN architectures were arbitrarily generated as references in the in silico test. They have 5–9 genes and

at least 9 different fixed-point attractors and no oscillations. The pointed and blunt arrows represent activating and

repressing regulatory interactions, respectively. (B) GRN dynamics when initiated near a fixed-point attractor of a

reference GRN. The consensus GRN was inferred by the attractors of the 5-gene in silico reference GRN. The initial

states were obtained by the attractor position plus a uniform distributed random variable by Eq K in S1 Text. The

perturbation power was set to 0.1. The dynamics showed similarly good agreement in other reference GRNs. (C)

Positive correlation between Anet similarity (Hamming distance on the horizontal axis) and attractor profiles similarity

(attractor distance on the vertical axis). Each column in the box plot contains 1000 random Amut
net mutated from the Aref

net

consisting of 5 genes. Similar strong correlation has been observed in all other reference GRNs (see Fig C in S1 Text).

(D) in silico attractors prediction result summary. Two attractors considered matched have an attractor distance less

than 0.16 (a cutoff below which a simple null model has a less than 5% chance of producing matched attractors; see

Table C in S1 Text). Overall, the single-knockout reference GRNs produced 384 fixed-point attractors and the single-

knockout inferred GRNs produced 385. Of these attractors, 273 were matched. No attractors were matched in a

random GRN.

https://doi.org/10.1371/journal.pcbi.1010991.g004
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data using the network structure and initial conditions (Eq J in S1 Text). This is done so that

the results (Fig 5) are not biased by generating state data using the ODE framework we aim to

evaluate. Considering that noise generally exists in the experimentally derived transcriptional

profiles, we added a Gaussian distributed noise with a standard deviation of 0.2 to the in silico
input transcription profiles. The signal to noise ratio was approximately 14 dB. The kinetic

parameters used for the in silico tests were identical to the parameters used to generate the sim-

ulated data, and they were assigned by the values experimentally measured in Escherichia coli
[68–71] (See Table A in S1 Text).

To test our model against an in vivo GRN instance, we used experimental data derived

from a synthetic GRN engineered in Saccharomyces cerevisiae by Cantone et al. [56]. Consist-

ing of 5 genes and a variety of regulatory interactions (Fig 6A and Table 2), the GRN can

switch amongst 10 distinct stable states in response to the overexpression of each individual

gene in two different carbon sources, galactose and glucose. These stable states were measured

by quantitative PCR (qPCR) and converted to absolute expression levels. The promoter

strengths, which indicate the rates of transcription initiation for each gene in the GRN, have

been estimated by a stochastic optimization algorithm from steady-state gene expression data

measured by qPCR [56]. Other kinetic parameters used in the in vivo test are provided by

Table A in S1 Text. The Anet, transcription profiles, and kinetic parameters for the in silico and

in vivo tests can be found in S1 and S2 Data, and Table A in S1 Text.

We also tested our model using transcriptional profiles derived from a set of 12 wild-type

and targeted TF deletion strains of Candida albicans. All strains used in this study are

described in Table B in S1 Text and are derived from SN156, which is a commonly used deriv-

ative of the SC5314 strain that is used widely in C. albicans studies [72, 73]. All of the C.

Fig 5. The in silico test comparison result in F1 score (upper panel), AUROC (middle panel), and AUPRC

(bottom panel). The F1 scores are calculated using a threshold cutoff of 0.5 for all models. Best performances are

marked by asterisks for symmetric and asymmetric methods.

https://doi.org/10.1371/journal.pcbi.1010991.g005
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albicans single TF deletion strains used in this study were reported previously [73]. TF double

deletion strains were generated using CRISPR-mediated genome editing to delete the WOR1
coding sequence as described by Nguyen et al [74]. Steady-state transcript levels were deter-

mined using the 3’ quant seq RNA sequencing methodology as described by Moll et al [75].

Briefly, C. albicans cells were harvested from mid to late-log cultures and total RNA was iso-

lated using the RiboPure RNA Purification kit. cDNA libraries were prepared using the Quant-

Seq 3’ mRNA-Seq Library Prep kit from Lexogen and multiplexed in pools of 96 libraries.

Single-end 100bp reads were obtained using an Illumina HiSeq4000 instrument. The resulting

de-multiplexed sequencing reads were trimmed and aligned using STAR Aligner [76] to

Fig 6. (A) The schematic diagram of the S. cerevisiae synthetic circuit. Solid lines represent direct transcriptional regulation and

dotted lines indicate indirect transcriptional regulation mediated by a protein-level activation or inhibition of a transcription factor.

Edges accurately inferred by EA are labeled in green, otherwise in black. Gal80 protein can inhibit SWI5 transcription by preventing

Gal4-mediated activation of target genes in the absence of galactose. Modified from the original paper [56]. (B) The schematic

diagram of the inferred circuit. Additional inferred edges that are not present in the original design but are supported by previously

published literature are labeled in orange. Inferred inhibitory edges indicated in red represent putative mechanisms for indirect

repression of SWI5 by Gal80, but are not supported by known mechanisms of Gal80 function as discussed in the text.

https://doi.org/10.1371/journal.pcbi.1010991.g006

Table 2. Experimental evidence for regulatory associations in the synthetic circuit.

Cbf1 Ash1 Gal4 Gal80 Swi5

pHO_CBF1 Inhibition [83] Inhibition [84, 85] Activation [86, 87]

pGAL10_SWI5 Activation [83] [82] Activation [88, 89] Inhibition [90]

pMET16_GAL4 Activation [83, 91] [82]

pASH1_GAL80 Activation [83] [82] Activation [84]

pASH1_ASH1 Activation [83] [82] Activation [84]

Column names are the TF proteins and row names are the promoters followed by their open reading frames. Orange shaded boxes indicate potential regulatory

associations found in YEASTRACT+; blue shaded boxes are experimental evidence found by microarray and/or Northern blot experiments; pink shaded boxes are

experimental evidence found by both microarray/Northern blot and ChIP/EMSA experiments.

https://doi.org/10.1371/journal.pcbi.1010991.t002
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obtain raw read counts for each transcript genome-wide. The promoter strengths of each gene

in the network were determined using capped small RNA (csRNA) sequencing [77]. This

method enables the isolation of short nascent mRNA transcripts, rather than full-length

mRNAs, and thus provides an instantaneous snapshot of the level of transcriptional activity at

each transcriptional start site, genome-wide. Briefly, we enriched for nascent small, capped,

RNA molecules from total RNA extracted from mid-log phase C. albicans cultures and pre-

pared sequencing ready libraries using the small RNA library preparation kit from New

England Biolabs. The resulting libraries were multiplexed and 16 indexed libraries were pooled

prior to sequencing on an Illumina HiSeq4000 instrument. Sequencing data were analyzed

using HOMER [77]. The mRNA and csRNA sequencing data can be accessed on GEO

(GSE217461 and GSE217383). Our evolutionary algorithm, the datasets used in this study, and

the results are available on a GitHub repository at https://github.com/UCM-RuihaoLi/

GeneRegulatoryNetworkInference. We have also used Zenodo to assign a DOI to the reposi-

tory: https://zenodo.org/record/7553611.

To account for noise in the experimentally derived transcriptional profiles we measured the

“average replicate distance” which describes the average pairwise attractor distance between

each of the three biological replicates for each genotypic/phenotypic combination. This metric

was then used to determine whether a given GRN model prediction was considered successful,

with the basic premise that a successful GRN prediction should yield a transcriptional profile

that lies within the average noise range of 60% (Table 3) in the experimentally derived

Table 3. C. albicans strains transcriptional profiles prediction results.

Genotypes Phenotype Prediction trial 1 Prediction trial 2 Average replicate distance (noise range) Control

Wildtype and single TF deletion strains

wildtype White 0.087 0.084 0.130 (42%) 0.329(57%)

wildtype Opaque − 0.506 0.231 (107%) 0.352(59%)

Δ/Δwor1 White 0.119 0.131 0.156 (58%) 0.281(50%)

Δ/Δwor2 White 0.114 0.093 0.252 (89%) 0.295(60%)

Δ/Δwor3 White 0.146 0.144 0.152 (49%) 0.310(47%)

Δ/Δwor3 Opaque − 0.319 0.463 (144%) 0.286(54%)

Δ/Δwor4 White 0.128 0.120 0.107 (42%) 0.310(53%)

Δ/Δefg1 White 0.198 0.182 0.227 (78%) 0.314(56%)

Δ/Δefg1 Opaque − − 0.120 (42%) 0.303(57%)

Δ/Δahr1 White 0.153 0.164 0.229 (72%) 0.319(62%)

Δ/Δahr1 Opaque 0.269 0.254 0.204 (94%) 0.279(55%)

Δ/Δczf1 White 0.150 0.166 0.237 (81%) 0.340(45%)

Δ/Δczf1 Opaque 0.327 0.353 0.282 (100%) 0.287(60%)

Δ/Δssn6 Opaque 0.254 0.366 0.182 (89%) 0.314(98%)

Δ/Δrbf1 Opaque 0.136 0.139 0.334 (168%) 0.295(46%)

Double TF deletion strains

Δ/Δssn6
Δ/Δwor1

White 0.094 0.097 0.051 (20%) 0.263(99%)

Δ/Δrbf1
Δ/Δwor1

White 0.154 0.155 0.118 (49%) 0.282(54%)

The transcriptional profile(s) of a specific genotype was left out in each prediction. Predictions whose attractor distances are no greater than 0.16 or the average

replicates distance of the experimental data are indicated by green shaded boxes. The average replicate distance for the biological replicate samples is indicated by the

decimal values while the corresponding noise range is indicated in parentheses as percentages. Predictions that show no attractor (represented by dashes) or attractors

exceeding the cutoff are indicated by unshaded boxes. Highly variable samples are indicated by gray shaded boxes. For the control, the average attractor distances of

random GRNs that produced fixed-point attractors are indicated by the decimal values, while the percentage of random GRNs that produced fixed-point attractors is

indicated in parentheses.

https://doi.org/10.1371/journal.pcbi.1010991.t003
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transcriptional profiles. Since some of the experimental replicates had high variance, we also

included an attractor distance threshold of 0.16. This threshold was selected based on the per-

formance of a null model, which samples from a uniform distribution with the upper and

lower limits as the maximal and minimal expression levels for each gene. For transcriptional

profiles with five genes or more, the null model has a 5% chance or less to generate a profile

below this cutoff of 0.16 (See Table C in S1 Text).

Results

Consensus GRNs converge upon attractors of reference GRNs

We propose that a successfully inferred GRN should accurately reproduce the experimentally

derived attractor states from which it was derived. Therefore, we initiated dynamic simulations

using the inferred consensus GRN and the reference GRN at random initial states around

their attractor positions. Specifically, a uniformly-distributed perturbation was added to the

initial states by Eq K in S1 Text. The magnitude of perturbation was determined by a user-

adjustable parameter known as “perturbation power”. Without prior knowledge of the range

of the actual basin of attraction, the estimation for the perturbation power should be conserva-

tive. In our implementation, the default value for the perturbation power was set to 0.1. As

anticipated, the results showed that their expression levels converged upon the same attractor

(Fig 4B).

GRN architectures and attractor profiles are strongly coupled

One key hypothesis of EA is that a GRN’s architecture can be revealed by its attractors. To

test this hypothesis under normal circumstances, we arbitrarily generated five in silico GRN

architectures as test subjects (Fig 4A) and examined the correlation between their Anet and

attractor profiles. Specifically, we randomly mutated the Anet of the reference GRN architec-

tures and observed how their attractor profiles change accordingly. The difference between

the mutant GRN architectures (Amut
net = {AMmut, LGmut}) and the reference architectures (Aref

net

= {AMref, LGref}) is measured by the Hamming distance, and the difference between their

attractor profiles is measured by the attractor distance given by Eq 10. As shown in Fig 4C,

when the Amut
net becomes more different from Aref

net , its attractor profiles tend to be further away

from the reference. This general trend between Anet and attractor profiles justifies the search

strategy of our algorithm, whereby the Aref
net is inferred by gradually mutating Anet and

improving the distance between the population’s attractor profiles and those of the reference

GRN. Based on our observations, network mutations tend to be more efficient when consid-

ering the slopes between the Hamming distance and the attractor distance of these five in sil-
ico GRNs, whereas crossover operations appear to be more suitable for cases with smaller

slopes. The significant fluctuation in the y-axis (attractor distance) was anticipated to have a

minimal effect on the inference process as the evolutionary algorithm gives precedence to

identifying networks with smaller attractor distances. We performed sensitivity tests on key

kinetic parameters and perturbed them by 50% to evaluate their impact on the correspon-

dence between network structure and attractors. The results, depicted in Fig B in S1 Text,

showed that perturbations in Vmax and DmRNA had a more significant effect compared to Vtrl
and Dprotein, potentially due to violations of the steady-state assumption. Consequently, we

identified Vmax and the attractors as essential inputs for the model, while other parameters

can be estimated based on the steady-state assumption. In addition, Fig 4C shows that the

attractor distance can reach zero before the Hamming distance goes to zero, indicating that

identical attractors can be generated by distinct GRNs. Therefore, even though the reference
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GRN can be approached by our searching strategy following the trend, it is unlikely to be

eventually obtained by an individual architecture in the output, thereby motivating the

examination of a consensus GRN.

Our algorithm correctly infers the GRN architecture in the in silico test and

outperforms other models

We tested the ability of our model, and several other existing models, to infer GRN architec-

tures using the attractor profiles generated by the five in silico reference GRNs depicted in

Fig 4A. To avoid biasing the results in favor of our algorithm, we generated ODEs for these

five topologies using SynTReN [57]. We generated simulated transcriptional profiles from

the attractors of these ODEs using a global search strategy and utilized them as the input for

the in silico test. For each instance, we used the attractors as input and ran 600 iterations in

algorithm 1. We performed 30 independent and identical inference processes and obtained a

consensus Anet by weighted averaging of edge frequencies. We compared the inferred con-

sensus Anet to reference Anet using common machine learning metrics, including the F1

score, area under Receiver Operating Characteristic (ROC) and Precision and Recall (PR)

curves. We compared our evolutionary algorithm method, to six widely used benchmark

methods, namely ARACNE [25], CLR [26], GENIE3 [78], MRNET [79], MRNETB [80] and

SIMONE [81]). These methods had fixed hyperparameters and did not depend on initializa-

tion. They exhibited significantly shorter runtimes compared to EA. The key factors that

affect the runtime of EA include the size of the network (i.e. the number of genes), the num-

ber of input transcriptional profiles, the population size, and the ODE integration step size.

The evolutionary algorithm allowed us to apply a parallel computing technique to shorten

the time. While these methods only took minutes, EA took approximately 150 core-hours to

infer the 5-gene network and 300 core-hours to infer the 9-gene network. This discrepancy

in runtime can be attributed to EA’s need to solve ODEs for each individual Anet in every

iteration of the evolutionary algorithm to achieve stable states. Amongst these methods, only

EA and GENIE3 can infer directed networks with asymmetric adjacency matrices, which can

differentiate the regulating gene and the target gene (Table D in S1 Text). Therefore, we sym-

metrized the inferred networks of EA and GENIE3 as EA_SYM and GENIE3_SYM by mak-

ing all edges undirected. Furthermore, all the examined methods, except for EA, were unable

to infer self-regulatory edges. As a result, the diagonal elements in their inferred adjacency

matrices were set to zero. In this evaluation, we only considered true/false positives/negatives

for edges between different nodes, which ensures that the self-loops did not provide any

advantage or disadvantage to any of the methods in this test. As presented by Fig 5, EA per-

formed generally better than the other algorithms. Moreover, the protein coordination

parameters and basal transcription rate parameters of EA converged well to the ground truth

(see S2 Data). To account for the variation in self-regulations among different methods, we

conducted an additional comparison using a set of reference GRNs that specifically excluded

self-regulatory edges. (Fig D in S1 Text). This set of reference GRNs puts our algorithm at a

disadvantage because other methods cannot generate false positives for autoregulation, lead-

ing to automatic correctness for the diagonal predictions. GENIE3 performed the best out of

all methods we considered. Nevertheless, despite the penalty this test imposes on our EA

method, it was still among the most competent ones (Fig E in S1 Text). Additionally, we

observed that when the scale of the in silico GRN increases from five to nine genes, it

becomes more difficult to infer the AM. We believe that additional attractor profiles are

needed to reveal additional stable states of large-scale GRNs and to compensate the curse of

dimensionality brought by its bigger state space volume.
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Our algorithm can predict novel attractors produced by genetically

engineered GRNs

Because the in silico inferred and reference GRNs are similar in both structure and associated

attractor profiles, we anticipated that attractors predicted by a mutated form of the inferred

GRN should closely resemble the attractors produced by an identical mutation in the true GRN.

To test this hypothesis, we systematically “deleted” each of the individual genes in the five in sil-
ico reference GRNs and found their new attractors by searching through the state space. These

new attractors are unknown to the inferred GRNs because they had not been used in the GRN

inference process. We performed the same gene deletions in the inferred GRNs to see if they

could accurately predict the new attractors of the mutated reference GRNs. The attractors of the

mutated reference GRNs were generated by SynTReN, while the attractors of the mutated

inferred GRNs were predicted by our algorithm. We applied a systematic global search to find

attractors and used a random GRN as a control. We found that the single knockout reference

GRNs had altogether 384 attractors (combining attractors from all knockouts across all five ref-

erence GRNs) and the single knockout inferred GRNs had a combined total of 385 attractors.

Of these attractors, 273 (71.1% of the reference GRN attractors and 70.9% of the inferred GRN

attractors) were matched. The random GRN showed 32 attractors, none of which were matched.

See Fig 4D for a summary of these results and Tables H-M in S1 Data for the complete results.

Our algorithm revealed unintended edges in an engineered S. cerevisiae
GRN

To examine how well the GRN dynamic model produced by our algorithm simulates experi-

mentally derived gene expression and to what extent it is robust to measurement noise, we

tested EA using experimental data derived from an engineered synthetic GRN in S. cerevisiae
[56]. This engineered GRN consists of seven activating or inhibitory edges and five genes,

some of which are under control of non-native promoters (Fig 6A). Using the experimentally

measured promoter strengths and ten distinct steady state gene expression profiles, derived

from strains which individually overexpress each of the five genes in galactose and glucose,

our model inferred the GRN shown in Fig 6B. In glucose, Gal80 blocks Gal4 from activating

SWI5, while galactose can inactivate Gal80 and Gal4 is free to activate SWI5.

Our algorithm correctly identified five of the six transcriptional regulatory edges present in

the original design of the engineered GRN (see comparison result in Table N in S1 Data). In

addition, our algorithm predicted two additional edges related to protein-protein interactions

and four that were not intended in the original design of the engineered GRN, but for which

there is experimental evidence in the literature (see Table 2). We believe the missing transcrip-

tional regulation of SWI5 by Gal4 can be explained as follows. First, as shown in Fig 4C, the

same set of attractors can be produced by different GRNs. In this case, the activation of SWI5
by a feedback loop via CBF1 and GAL4 is replaced by a more direct activation by CBF1 only.

Second, the difference in the regulatory effects of Gal80 is related to how protein-protein inter-

actions are encoded in our ODE framework. Special care must be taken in interpreting pro-

tein-protein interactions in the context of the inferred network produced by our algorithm.

Our algorithm does not incorporate explicit protein-protein interactions, such as the interac-

tion between Gal80 and Gal4, which leads to the downregulation of SWI5 and furthermore

ASH1 and CBF1. Thus, in our inferred network, the inhibitory edge from GAL80 to SWI5 is

not present. Instead, this protein inhibition is incorporated into the regulatory function for the

targets of Swi5. Specifically, the Swi5 protein activates CBF1 and ASH1 transcription, but the

protein Gal80 interferes with this activation. Therefore, at the mRNA level, increased GAL80
transcription does not directly decrease SWI5mRNA production; rather it decreases ASH1
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and CBF1 transcription. Thus, the inhibitory effect of Gal80 on the Swi5 protein is represented

as the two inhibitory edges from GAL80 to ASH1 and CBF1. With this consideration in mind,

only the self-activation of ASH1, the inhibition of GAL4 by ASH1, the activation of SWI5 by

CBF1, and the inhibition of GAL80 by CBF1 represent regulatory effects that are not present in

the intended synthetic system. We found previous experimental evidence for all these interac-

tions in the literature (see Table 2).

Furthermore, while investigating the source of these additional edges, we observed that cer-

tain elements of the experimentally derived transcriptional profiles did not appear to be consis-

tent with the intended design of the engineered GRN as described by Cantone et al. [56].

Specifically, Cbf1 was intended to serve as the sole activator of GAL4, which in turn was meant

to serve as the sole activator of SWI5. This would imply that, at steady state, SWI5 should be

expressed if and only if Cbf1 is elevated and GAL4 is expressed. The experimentally derived tran-

scriptional profiles contradict this. They indicated that at steady state, SWI5was activated even

when GAL4was not expressed. Cantone et al. [56] argued that GAL4 is transiently expressed

during an early phase of the experimental protocol, and that the Gal4 protein could persist to

activate SWI5 even after GAL4mRNA levels drop. However, this argument contradicts the

steady state assumption of the transcriptional data and furthermore does not explain why GAL4
mRNA levels were low when CBF1, which was intended to activate GAL4, was overexpressed.

We speculate that these discrepancies between the intended engineered GRN and the

experimentally derived data may be explained by unintended regulatory interactions that

modify the GRN structure and dynamics. By performing a systematic search on each TF-pro-

moter pair in the intended engineered GRN using YEASTRACT+ [82], we uncovered support

for this hypothesis. Specifically, we found experimental evidence from microarray, Northern

blot, ChIP, and electrophoretic mobility shift assay (EMSA) experiments, supporting the idea

that Cbf1 and Ash1 proteins regulate more than their intended target genes in the circuit. In

fact, all four promoters within the circuit can be responsive to Cbf1 and Ash1 (Table 2).

Our inferred GRN predicted additional regulatory interactions beyond those that were

intended in the synthetic regulatory network [56], and we identified experimental support for

these putative regulatory interactions (Table 2). We conclude that the inferred GRN may have

identified actual regulatory associations that impacted the experimentally derived transcriptional

profiles, thus allowing our inferred GRN to accurately reproduce the experimentally measured

attractor states and resolve the conflict between the intended GRN and the experimentally

derived transcriptional profiles. This conclusion is supported by the observation that the attrac-

tors reproduced by our inferred GRN have 25.8% of the attractor distance of the mathematical

model built by Cantone et al. [56] (Table O in S1 Data). Furthermore, the experimental tran-

scriptional profiles showed that SWI5was repressed during overexpression of GAL80 in both

galactose and glucose, which was inconsistent with the intended GRN. The attractors produced

by our model showed a consistent result: SWI5 was suppressed when GAL80 was overexpressed

in glucose media, and it was expressed when galactose inactivated Gal80. Our model also

explains the low expression of GAL4 under CBF1 overexpression: when CBF1 was overex-

pressed, ASH1 was activated by Cbf1 by two feed-forward loops (one via SWI5 and the other via

GAL80), and Ash1 in turn inhibited GAL4, lowering its expression. Together these results

strongly suggest that our evolutionary algorithm approach to model construction can provide

significant insight into the structure and regulatory dynamics of “real world” in vivoGRNs.

Modeling the white-opaque switch GRN in C. albicans
To expand beyond our model testing using data derived from “known” in silico and engi-

neered in vivo GRNs, we next applied our algorithm to infer and simulate the dynamics of a
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naturally occurring GRN which controls reversible differentiation between two distinct cell

types—white and opaque—in the human fungal pathogen C. albicans. The white and opaque

cell types are heritably maintained for hundreds of generations and the frequency of stochastic

switching between these two cell types is controlled by a complex, highly interwoven series of

transcriptional regulatory interactions [72]. The white and opaque cell types differ in the

expression of approximately 18% of all genes in the C. albicans genome, thus providing two

very distinct attractor states for the underlying GRN. To model the white-opaque GRN, we uti-

lized transcriptional profiles derived from wildtype white and opaque cells, along with a series

of strains that lack one or more of the TFs controling the switch (See Table B in S1 Text).

These additional TF deletion strains serve to provide additional steady-state attractors to fur-

ther constrain the GRN structures. The majority of these strains can switch reversibly between

the white and opaque cell types, thus providing two distinct attractor states per strain, with the

exception of those TF deletion strains that are “locked” in one cell type or the other. In total,

we obtained RNAseq data for seventeen distinct genotypic/phenotypic combinations includ-

ing two wildtype strains, thirteen single TF deletion strains, and two double TF deletion

strains. Each of the deleted TFs is known to impact the frequency of switching between the

white and opaque cell types, and is known or predicted to impact the transcriptional profile of

the resulting white and/or opaque cell types.

We first tested the ability of our evolutionary algorithm to predict the “unknown” tran-

scriptional profiles produced by the GRNs of the wildtype and single TF deletion strains by

omitting the transcriptional profile(s) of a specific genotype from the training dataset and

allowing the model to predict the omitted transcriptional profile(s). Transcriptional profiles

from the two double TF deletion strains were excluded from all training sets and were reserved

as final test subjects for a “fully trained” version of the model developed using the full comple-

ment of fifteen wildtype and single TF deletion strain transcriptional profiles as the training

dataset. If the attractor distance between the predicted and omitted transcriptional profile(s)

was below the average replicate distance, or a cutoff of 0.16, the prediction would be consid-

ered successful. The cutoff of 0.16 was selected by the null model, which has less than a 2%

chance of generating a result below this cutoff for eight and nine gene networks (See Table C

in S1 Text). Since the null model produces transcriptional profiles by simply picking a value

between the maximal and minimal expression levels, while the GRN dynamic system generates

transcriptional profiles by numerically solving the differential equations, potential discrepan-

cies may exist between the two. To rule out potential discrepancies due to the GRN dynamic

system, we also generated 10,000 random GRNs as a control group and performed the same

predictions on the omitted transcriptional profiles. Generally, half of the random GRNs pro-

duced fixed-point attractors, while the other half did not reach a steady state. Both the null

model and the control GRNs showed similar distribution on their attractor distances and had

an average of approximately 0.3.

Overall, nine out of the fifteen omitted wildtype and single TF deletion strain transcrip-

tional profiles were successfully predicted by our model (Table 3). Of these nine successful pre-

dictions, eight had an average attractor distance of less than 0.16, and the last one (Δ/Δefg1;

Table 3) had an attractor distance above 0.16 but below the average replicate distance, meaning

that the predicted transcriptional profiles were within the range of noise in the experimentally

derived transcriptional profiles for the EFG1 deletion strain. The six remaining prediction

results showed either attractors exceeding the cutoff, or no attractor at all (indicated by

dashes). We note that several of the experimentally derived transcriptional profiles had unusu-

ally high variability, as indicated by high average replicate distance values (Δ/Δwor3 opaque,

Δ/Δczf1 opaque, and Δ/Δrbf1 opaque; Table 3). This high variability suggests excessive noise in

the RNAseq libraries, or multiple states/oscillations existing in these specific cell types, either
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of which would violate the model assumption of a single stable-state transcriptional profile

and make it challenging to evaluate the prediction. If we exclude these highly variable samples,

the success rate of the model predictions increases to 66.7%. These highly variable transcrip-

tional profiles also indicate that overfitting is likely mitigated in EA due to the limited experi-

mentally derived attractors and the incredibly large search space. In practice, EA was often

underfitted and failed to find a network that can perfectly reproduce all input attractors. If

there is excessive noise in one of the attractors in the input set, EA may struggle to fit it accu-

rately. This is because accurately fitting the majority of the other attractors yields a much

higher fitness score than fitting this noisy attractor.

Next, we applied all fifteen of the wildtype and single TF deletion strain transcriptional pro-

files as training data to infer a consensus “fully trained” GRN. This consensus fully trained

GRN was derived from thirty inferred GRN architectures and then used to predict the tran-

scriptional profiles for two distinct double TF deletion strains. Since more attractors were used

in the input, we anticipated that this consensus fully trained GRN should have a higher predic-

tive power than the partially trained model. Both double TF deletion predictions were success-

ful (Table 3), indicating that the transcriptional profiles produced by the consensus fully

trained GRN closely mirror the experimentally derived transcriptional profiles for these two

strains. In addition, we observed a range of 0.16 to 0.40 (in terms of attractor distance) in the

differences between the single knockout samples (Δ/Δwor1, Δ/Δrbf1, and Δ/Δssn6) and the

double knockout samples. In Table 3, we observe that the model predictions for the double-

knockout samples were closer to the ground truth (0.097 and 0.155 in terms of attractor dis-

tance) compared to any of the single knockout samples. This suggests that some collective

information, beyond what was solely present in the single knockout samples, played an impor-

tant role in the double TF deletion predictions. Given the predictive accuracy of the consensus

fully trained GRN, we next asked whether the underlying architecture, or adjacency matrix, of

the inferred GRN also closely resembled the experimentally determined binding interactions

between these regulators and their respective coding genes, as previously reported [72, 92, 93].

The GRN architectures inferred by the fully trained model are relatively diverse, with an aver-

age success rate of approximately 50% in predicting the experimentally determined TF-gene

binding interactions observed in the ChIP data (Fig F in S1 Text). This discrepancy is not

entirely unexpected given that our in silico testing demonstrated that multiple distinct GRN

structures, covering a wide range of hamming distances, are capable of producing virtually

identical transcriptional profiles, or attractor distances (Fig 4C).

Given the enormous number of potential GRN architectures in the search space, and the

fact that distinct GRNs, which produce identical attractors cannot be differentiated based

purely on transcriptional profiles, we asked whether incorporating TF binding constraints

could enable the model to converge upon an architecture that more closely resembles the

experimental ChIP data while simultaneously reproducing accurate transcriptional profiles.

To bias the model toward the GRN architecture observed in the experimental data, we

included a TF binding probability function in our evolutionary algorithm. Briefly, this func-

tion alters the probability of an edge being created or removed in the adjacency matrix, thus

biasing the inferred GRNs towards the experimentally determined architecture. However, if

the resulting GRNs fail to converge upon the experimental attractors, the evolutionary algo-

rithm would ultimately converge upon a distinct GRN structure if needed to fit the transcrip-

tional profiling data. We applied all seventeen of the transcriptional profiles used above, plus

the previously published in vivo TF-DNA binding data, to infer “directed” GRNs. On average,

the individual directed GRNs retained approximately 90% of the experimentally determined

TF binding interactions while also reproducing most of the experimentally derived transcrip-

tional profiles (Fig F in S1 Text). The consensus directed GRN, constructed by the high-
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frequency edges of the individual directed GRNs, accurately reproduced thirteen out of the

seventeen experimentally observed transcriptional profiles and eighty out of the eighty-one

physical binding interactions between each of the regulatory TFs and their respective coding

genes. The transcriptional profiles that the consensus directed GRN failed to incorporate were

wildtype opaque, Δ/Δwor3 opaque, Δ/Δahr1 opaque, and Δ/Δssn6 opaque, most of which had

relatively high variability in their biological replicates (see full report for both in silico and in
vivo prediction tests and inferred GRNs in S1 Data). Together these results indicate that it is

indeed possible to converge upon a GRN structure that closely mirrors the experimentally

determined TF-DNA binding data for the white-opaque switch, while accurately producing

many of the same attractor states observed via RNAseq. However, this data also suggests a

high degree of redundancy or potential for plasticity within the white-opaque GRN, thus

compromising the ability of our model to infer the observed GRN structure based solely on

transcriptional profiling data.

Discussion

In this work, we extended the attractor-matching strategy from a Boolean model to an ODE-

based model by incorporating transcriptional kinetic parameters. We consider transcriptional

profiles of stable cell types as fixed-point attractors [94] in the mRNA state space, and search

for the GRN architecture that produces these attractors. We found in the in silico simulation

that GRN architectures are significantly correlated with the attractors they produce. This cor-

relation supports the logic of applying the attractor-matching approach to GRN inference. The

ability of EA to infer “unknown” GRNs has been validated using both simulated datasets

derived from “known” in silicoGRNs and in vivo test datasets from an engineered GRN in S.
cerevisiae. EA outperformed six other leading GRN inference methods when applied to the in
silico attractors generated by SynTReN ODEs. In the in vivo test, EA not only successfully iden-

tified five of the six intended transcriptional edges, but also revealed some unintended edges

that might account for the inconsistency between the designed GRN and experimentally

derived transcriptional profiles. In addition to inferring GRN architecture based on transcrip-

tional profiles, EA can also predict the effects of genetic perturbation on the inferred GRN. As

a proof of principle, we used the inferred GRNs generated during our in silicomodel testing to

then predict the unknown attractors that would be produced upon genetic perturbation of the

original reference GRN (i.e., by deletion of each TF). The inferred in silicoGRNs successfully

predicted 71.1% of the attractors produced by the reference GRNs using the identical knockout

strains (Fig 4D), indicating that EA can effectively capture GRN behavior based on transcrip-

tional profiles. This result further suggests that EA can be used to generate testable predictions

on the behavior of in vivo GRNs. Specifically, we envision the application of this approach to a

hybrid computational and in vivo experimental process whereby GRNs are inferred based on

in vivo transcriptional profiles, the inferred GRNs are perturbed in silico to generate “mutant”

transcriptional profiles, and the accuracy of inferred GRNs are ultimately assessed by compar-

ing predicted versus observed transcriptional profiles generated using in silico versus in vivo
mutant strains. The accuracy of the inferred GRN could thus be supported if the predicted and

experimentally measured transcriptional profiles converge. If not, the in vivo mutant strain

and the resulting experimentally derived attractors could reveal a new pattern of GRN dynam-

ics that had not been covered by the initial input attractors, and would thus complement the

original wildtype attractors to further refine the inferred GRN. In this manner, it should be

possible to iteratively refine predicted GRNs until they approximate the in vivo results.

As a proof of principle, we applied this iterative computational and experimental strategy to

infer the GRN governing the white-opaque switch in C. albicans. We first used a dropout
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strategy to infer GRNs based on a subset of available data and tested the ability of the inferred

GRNs to predict the transcriptional profiles that were omitted from the training data. This

approach led to an overall success rate of 66.7%, which approaches the 71.1% success rate

observed in our in silico testing. Next, we demonstrated that a “fully trained” GRN inferred

from all fifteen of the wildtype and single gene deletion strain profiles was successful in pre-

dicting the transcriptional profiles of two distinct “unknown” double TF knockout strains that

were omitted from our training data. This result demonstrates that the inference of a GRN

using a set of known attractors can bring insight into attractors that exist biologically but have

not yet been measured in the lab. Although the inferred white-opaque GRNs accurately pre-

dicted most if not all of the dropped-out transcriptional profiles, they did not fully converge

upon the TF localization patterns that we have observed in in vivo genome-wide TF localiza-

tion experiments. To further constrain the white-opaque GRN, we inferred the “directed”

GRNs with all seventeen available experimentally measured transcriptional profiles and

included ChIP data that biases the GRN architecture towards the TF localization pattern

observed in vivo. This consensus directed GRN accurately reproduced 76% of the RNAseq-

derived transcriptional profiles and converged upon 99% of the ChIP-derived TF binding

interactions.

There are potential pitfalls that can impact our approach. First, regulatory elements other

than TFs, such as non-coding RNA molecules, post-translational modifications, and chroma-

tin modifiers/remodelers, can also influence the behavior of a GRN of interest. Their regula-

tory effects can lead to false compensatory TF regulations and make the inferred network

converge less often. Second, as observed in our C. albicansGRN modeling, noise in the experi-

mental data can lead to a “fuzzy” target for prediction and compromise the ability of the

approach to fit the transcriptional profiles into a GRN. Furthermore, while RNAseq data

derived from a particular genotypic/phenotypic state is assumed to represent a fixed-point

attractor, this is not necessarily the case. Multiple stable states or oscillatory transcriptional

outputs could exist within a population of cells that appear to be phenotypically homogeneous,

thus bulk RNA sequencing could average out single-cell heterogeneity and underlying GRN

dynamics. These limitations could lead to inferred GRNs that simulate biased or non-existent

targets. In future research, there is potential to extend our framework to accommodate time-

series transcriptional profiles. In the case of non-periodic systems, we can assess the fitness of

the network by measuring the distance between the model-derived trajectory and the curve

formed by connecting the experimental data points in the time series. However, for oscil-

latory/periodic systems, a major challenge arises in accurately identifying limit cycles, a type of

closed trajectory in phase space, from time-series data, particularly when the data are noisy. To

accurately capture the dynamics of these systems, it may be necessary to employ nonparamet-

ric regression, nonlinear time-series analysis, or machine learning algorithms, which can be

computationally demanding. Overcoming this challenge would significantly advance the

application of EA to periodic biological systems. Third, EA assumes that the highest expression

levels for each gene have been observed in the input transcriptional profiles and utilizes them

to estimate the unknown parameters. Potential bias in parameter estimation can occur if this

assumption is not satisfied. Fourth, as the scale of the network increases, more attractors are

required to accurately infer the underlying network structure. However, due to the limited

availability of attractors and the escalating computational costs, EA is only practical for small-

scale networks comprising several dozen genes. We propose that EA is better suited for infer-

ring regulatory networks of TFs. By focusing solely on the TFs, we can considerably reduce the

size of the network that needs to be inferred using EA. We can then extend the network’s size

by treating the TFs as hub genes that are significantly correlated with other non-TF genes in a

biologically important module. By expressing the non-TF genes’ expression patterns through a
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linear combination of the TFs, we can construct a TF-TF regulatory network that identifies

interactions among the biological modules and includes the regulation of downstream target

genes in the network using a much faster algorithm, such as LASSO ([95]). Alternatively, we

intend to utilize evolutionary algorithms, similar to the one described in this study, to enhance

existing “base-line” regulatory networks within a discrete dynamics framework. This approach

enables the handling of much larger networks by employing a multi-pronged strategy where

more scalable methods are initially employed, and more computationally intensive methods,

like the algorithm presented in this research, are utilized to achieve higher fidelity in large net-

works. Moreover, EA has simplified the way that multiple activators or inhibitors regulate a

target gene, either independently as monomers or cooperatively as a polymer, but in vivo TFs

could have more complex and sophisticated forms of incorporation than modeled in EA.

These and likely other confounding factors have the potential to adversely impact the process

of GRN inference and can cause reduced accuracy in predicting unknown transcriptional

profiles.

The most significant challenge in GRN inference is perhaps the inherent functional redun-

dancy and plasticity of real-world GRNs. This was apparent in our in silico testing where we

observed that GRNs differing in as many as ten regulatory interactions can produce qualita-

tively similar transcriptional profiles (Fig 4C). Similarly, we observed that most of the attrac-

tors produced by the C. albicans white-opaque GRN could be reproduced, and “unknown”

attractors predicted, even when the inferred GRN does not closely match the experimentally

determined GRN architecture (Fig F in S1 Text). These results are consistent with the idea that

GRN structures can evolve while maintaining the same overall output, which is also supported

by experimental evidence [96]. For example, Tsong et al. [97] identified a set of sexual differen-

tiation genes that are negatively regulated in S. cerevisiae, but are believed to have been posi-

tively regulated in an ancestral fungal species. In this example, the overall output of the

transcriptional circuit remains the same, despite significant changes in GRN architecture. Our

work provides a mathematical foundation for the idea that GRN architecture has plasticity and

evolves [98–100] under selective pressure [101]. Thus, experiments performed under a specific

set of experimental conditions may fail to reveal some of the evolutionary pressures that have

constrained the behavior of real-world GRNs under distinct environmental conditions. While

the impact of these unobserved evolutionary pressures on GRN architecture and logic could

be revealed by extensive measurements of GRN output in an array of different environmental

conditions, we hypothesize that the iterative model refinement strategy that we propose here

may represent an efficient alternative strategy.

Despite these potential limitations and challenges, we have shown that EA outperforms

competing GRN inference tools when applied to in silico datasets and has a unique set of

capabilities that can provide insights into the inner workings of in vivo GRNs. In future itera-

tions of our GRN inference approach, we can incorporate other types of interactions between

TFs that are not independent as assumed by default. For instance, to consider the fact that

Gal80 can only perform gene regulation by binding to Gal4, we can add the following rule to

the algorithm: if a target gene is regulated by Gal80 but not by Gal4, the regulation of Gal80

on this gene will be voided. Interactions between metabolites and TFs, such as IPTG deacti-

vating the lac repressor, can also be incorporated into the approach by adding similar rules.

In this manner, EA can flexibly integrate more detailed biological information beyond

sequencing data and better simulate complex biological systems. We have demonstrated that

our GRN inference approach can successfully narrow down the number of potential GRN

structures for a given transcriptional program using only a relatively small number of tran-

scriptional profiles. For example, there are 381 potential adjacency matrices and 218 protein

coordination matrices for a GRN with nine genes in our framework, not to mention the
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number of possible values of f0s bounded between 0 and 1. In total this creates a GRN search

space in excess of 1.2 × 1044 distinct configuration options. In the in silico test of a nine-gene

network, the GRN inferred by EA was at the 5.6 × 10−13th percentile in a network quantity

distribution based on the Hamming distance to the reference GRN, whereby most of the

incorrect networks were eliminated. Therefore, EA can effectively select candidate GRNs

that can be further examined by experimentation. Based on these results, we believe that this

model is a valuable companion to experimental approaches for deciphering the structure

and logic of in vivo GRNs.

Supporting information

S1 Text. Contains additional details regarding the parameter estimation and methods

employed in this study. Fig A. Positive correlation between Anet similarity (Hamming dis-

tance on the horizontal axis) and attractor profiles similarity (attractor distance on the vertical

axis). Each column in the box plots (A-E) contains 1000 random Amut
net mutated from the 5 Aref

net

consisting of 5–9 genes. Fig B. Demonstration of multiple-TF regulation. The x-axis and y-

axis are the protein concentration of two activators or repressors, and the z-axis shows the out-

come of the regulation function. (A) Two independent activators. (B) Two independent

repressors. (C) Two synergistic activators. (D) Two synergistic repressors. Fig C. Sensitivity

tests for the kinetic parameters, (A) rates of transcription, (B) mRNA degradation, (C) transla-

tion, and (D) protein degradation. Each of these parameters was perturbed by 50% of their

original values and used to generate the correlation between Anet similarity (Hamming dis-

tance on the horizontal axis) and attractor profiles similarity (attractor distance on the vertical

axis). Fig D. Five GRN architectures were arbitrarily generated as references in the in silico
test. They have five-nine (A-E) genes and no self-regulatory edges. The pointed arrows repre-

sent activating and the blunt arrows represent repressing regulatory interactions. Fig E. The

non-autoregulation in silico test comparison results in F1 score (upper panel), AUROC (mid-

dle panel), and AUPRC (bottom panel). The F1 scores are calculated using a threshold cutoff

of 0.5 for all models. Best performances are marked by asterisks for symmetric and asymmetric

methods. Fig F. Accuracy distributions of the fully trained and directed GRNs determined by

the ChIP data in C. albicans. Each distribution contains 30 GRN samples. The fully trained

GRNs were solely inferred by the transcriptional profiles while the directed GRNs were also

constrained by the ChIP data. Performing equally well on reproducing the transcriptional pro-

files, the direct GRNs showed a significant increase compared to the fully trained GRNs. Fig

G. A stacked histogram displays the distribution of edge variances across 30 independent

inference runs, showing the number of edges for each variance category. Prediction of drop-

out transcriptional profiles in C. albicans. Fig H. A dropout strategy was utilized to infer

GRNs based on a subset of available data and assessed the predictive capability of the inferred

GRNs for transcriptional profiles that were deliberately excluded from the training dataset.

The initial states were configured to correspond to the omitted transcriptional profiles.

Table A. Kinetic parameters used for in silico and real-life tests. Table B. C. albicans strains

used in this study. Table C. Probabilities of cumulative attractor distance by the null model.

Table C in S1 Text shows the probabilities of cumulative attractor distances produced by a null

model. For each gene, the null model randomly picks a value in a continuous uniform distri-

bution U([R]i,min, [R]i,max), where [R]i,min and [R]i,max are the minimal and maximal expres-

sion levels of the ith gene. Table D. Comparison of inference software features. Table E. The in
silico test result for protein coordination matrix. Table F. The in silico test result for f0.

Table G. Variance of the outcome networks in the in silico test.
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S1 Data. Table A. Ground truth for the 5-gene in silico network. Table B. Ground truth for

the 6-gene in silico network. Table C. Ground truth for the 7-gene in silico network. Table D.

Ground truth for the 8-gene in silico network. Table E. Ground truth for the 9-gene in silico
network. Table F. Model comparison results for the in silicoGRNs comprising autoregulation.

Table G. Model comparison results for the in silico GRNs comprising no autoregulation.

Table H. Overall Summary of Predicting Unkown in silico Attractors. Table I. Knockout

attractors prediction results of the 5-gene networks. Table J. Knockout attractors prediction

results of the 6-gene networks. Table K. Knockout attractors prediction results of the 7-gene

networks. Table L. Knockout attractors prediction results of the 8-gene networks. Table M.

Knockout attractors prediction results of the 9-gene networks. Table N. Model comparison

results for the synthetic GRN built in S. cerevisiae. Table O. Comparison of attractors between

our model and Cantone et al.’s model [56] for the synthetic GRN constructed in S. cerevisiae.
Table P. The consensus “directed” C. albicansGRN inferred by our model using all 17 attrac-

tors. Table Q. Comparison between C. albicans experimental transcriptional profiles and

attractors inferred by the consensus “directed” GRN.

(XLSX)

S2 Data. Contains the in silico and in vivo datasets used to perform GRN inference, includ-

ing transcriptional profiles, gene lengths, promoter strengths, and TF-DNA binding data,

and the detailed results of each individual inferred GRNs in this study.

(XLSX)
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