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This paper describes a mechanism design methodology that draws
plane curves which have finite Fourier series parameterizations,
known as trigonometric curves. We present three ways to use the
coefficients of this parameterization to construct a mechanical
system that draws the curve. One uses Scotch yoke mechanisms
for each of the terms in the coordinate trigonometric functions,
which are then added using a belt or cable drive. The second
approach uses two-coupled serial chains obtained from the coor-
dinate trigonometric functions. The third approach combines the
coordinate trigonometric functions to define a single-coupled
serial chain that draws the plane curve. This work is a version of
Kempe’s universality theorem that demonstrates that every
plane trigonometric curve has a linkage which draws the
curve. Several examples illustrate the method including the use of
boundary points and the discrete Fourier transform to define the
trigonometric curve. [DOI: 10.1115/1.4035882]

1 Introduction

The design of mechanisms to draw plane curves has found
recent application in the construction of mechanical characters
[1,2]. Nolle [3,4] and Koetsier [5,6] described the history of mech-
anism design to draw curves. An important result was Kempe’s
proof of the existence of a mechanism to trace any plane algebraic
curves [7,8], which was verified by Jordan and Steiner [9] and
Kapovich and Millson [10]. Demonstrations of Kempe’s univer-
sality theorem have been presented by Kobel [11] and Saxena
[12]. Also, see Liu and McCarthy [13].

In this paper, we show how to obtain a mechanical system that
draws curves which have x and y coordinates defined by finite
Fourier series, known as trigonometric curves. The class of trigo-
nometric curves includes well-known curves, such as the limacon
of Pascal, the cardioid, trifolium, hypocycloid, and Lissajous
figures, as well as many other examples [14]. Artobolevskii [15]
presented specialized linkages for drawing curves including the
linkage in Fig. 1 to draw the trifolium. Our results can be viewed
as a version of Kempe’s universality theorem [7,9,10], which
shows that linkages exist to draw a particular class of plane
curves.

We present three ways to draw these curves. First, we use the
mechanical Fourier synthesis system described by Miller [16].

Next, we follow Nie and Krovi [17] and obtain coupled serial
chains defined by the coordinate Fourier series. Finally, we pres-
ent a way to define a single-coupled serial chain that draws a
given trigonometric plane curve. The methodology is illustrated
with several examples, which include the use of boundary points
and the discrete Fourier transform [18] to define the trigonometric
curve.

2 Trigonometric Curves

A trigonometric plane curve, P ¼ ðxðhÞ; yðhÞÞ, is a parameter-
ized curve with coordinate functions that are finite Fourier series,
that is,

P ¼ xðhÞ
yðhÞ

� �
¼

Xm

k¼0

ak cos khþ bk sin kh

Xm

k¼0

ck cos khþ dk sin kh

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(1)

where ak, bk, ck, and dk, k ¼ 0;…;m, are the real coefficients and
h 2 ½0; 2p�. In what follows, we present three ways to obtain
mechanical systems that draw curves given by equations of this
form. Since the equations in Eq. (1) both have finite Fourier series,
so the mechanism we designed can draw the trigonometric curve
exactly. The movement simulation of the mechanical systems is
conducted under SolidWorks Motion Analysis.

2.1 Component Scotch Yoke Mechanisms. Consider the x
component of Eq. (1) and rewrite the equation in the form

xðhÞ ¼
Xm

k¼0

Lk cosðkh� wkÞ (2)

where

Lk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

k þ b2
k

q
; wk ¼ arctan

bk

ak
(3)

This equation can be viewed as the sum of the output of m Scotch
yoke mechanisms each with an input crank length of Lk and initial

Fig. 1 Artobolevskii [15] designed this mechanism to draw the
trifolium (three-petal) curve
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angle wk. Figure 2 shows the construction of one unit of Scotch
yoke mechanism. The system is driven such that the angle of the
crank k is given by

/k ¼ kh� wk (4)

The output of the set of m Scotch yoke linkages is added by acting
on a belt or cable drive to generate the xðhÞ component of the
curve P. The initial configuration of the system is defined by the
phase angles wk.

The y component of the curve P yields a similar relationship

yðhÞ ¼
Xm

k¼0

Mk cosðkh� gkÞ (5)

where

Mk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

k þ d2
k

q
; gk ¼ arctan

dk

ck
(6)

This equation defines a set of Scotch yoke mechanisms that gener-
ate the y component of the curve P.

All of the Scotch yoke mechanisms are connected to a single
input, thus the whole mechanical system has a single input. Use
the output of the two sets of Scotch yoke mechanisms to drive in
the x and y of a cursor to draw the desired curve. Figure 3 shows
the system of a set of Scotch yoke mechanisms that can draw a
hypocycloid curve.

2.2 Component-Coupled Serial Chains. The Scotch yoke
mechanisms of Sec. 2.1 can be replaced by the projection of serial
chains that have their joints driven by belt or cable drives coupled
to a single input joint angle.

Let the x component in Eq. (2) be the x projection of
the end-point of a serial chain formed from m links of length Lk

that are each positioned at an angle ak relative to the x-axis,
given by

ak ¼ kh� wk (7)

These angles are driven by a single input angle h through a cable
drive that has a decreasing pulley diameters at each link in order
to increase the rotation angle required by kh. The input angles of
the kth link and ðk � 1Þth link are related by the ratio of the pulley
diameters Dk=Dk�1 ¼ ðk � 1Þ=k.

In the same way, the y component of P can be generated by a
serial chain constructed from m links of length Mk that are each
positioned at an angle bk relative to the y-axis, given by

bk ¼ kh� gk (8)

The coupled serial chains for the x and y components have the
same inputs, thus this mechanical system has degree-of-freedom
one. The two serial chains can be coupled so they move a cursor
along the x and y coordinates to draw the curve P. The system
of coupled serial chains that draw a hypocycloid is shown in
Fig. 4.

2.3 Single-Coupled Serial Chain. In this section, we show
how to obtain a single-coupled serial chain that draws trigonomet-
ric curves (1). Introduce the complex form of this curve as

PðhÞ ¼ xðhÞ þ iyðhÞ ¼
Xm

k¼0

ðak cos khþ bk sin khÞ

þ
Xm

k¼0

iðck cos khþ dk sin khÞ (9)

Introduce the identities

cos / ¼ 1

2
ei/ þ e�i/ð Þ; sin / ¼ 1

2i
ei/ � e�i/ð Þ (10)

Fig. 2 A Scotch yoke mechanism that transforms the rotation
of a crank into a cosine curve

Fig. 3 One set of Scotch yoke mechanisms drives the
x-component and another set drives the y-component of a
cursor to draw a plane curve

Fig. 4 A coupled serial chain drives the x-component and a
separate coupled serial chain drives the y-component of a
cursor to draw a plane curve

024503-2 / Vol. 9, APRIL 2017 Transactions of the ASME



to obtain

P hð Þ ¼ 1

2

Xm

k¼0

ak þ dkð Þ þ i ck � bkð Þð Þeikh

þ ak � dkð Þ þ i ck þ bkð Þð Þe�ikh (11)

Next, we convert the complex coefficients to exponential form.
Here, we use the same notation as in Sec. 2.1, though now the

terms are defined differently. The magnitudes Lk and Mk are given
by

Lk ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak þ dkð Þ2 þ ck � bkð Þ2

q

Mk ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak � dkð Þ2 þ ck þ bkð Þ2

q (12)

and the associated phase angles are

wk ¼ arctan
ck � bk

ak þ dk

� �
; gk ¼ arctan

ck þ bk

ak � dk

� �
(13)

Thus, the equation of the curve P becomes

P hð Þ ¼ 1

2

Xm

k¼0

Lkei kh�wkð Þ þMke�i khþgkð Þ (14)

Separate the x and y components of this equation to obtain

PðhÞ ¼

Xm

k¼0

Lk cosðkh� wkÞ þMk cosð�kh� gkÞ

Xm

k¼0

Lk sinðkh� wkÞ þMk sinð�kh� gkÞ

8>>>><
>>>>:

9>>>>=
>>>>;

(15)

This is the equation of set of links in a serial chain, where those
denoted Lk rotate counterclockwise and those denoted Mk rotate
clockwise. This is because the links denoted Lk have inputs kh,
while the links denoted Mk have inputs �kh.

All of the links are connected to the same input angle h and
are driven by cable or belt drives at increasing speeds by pulleys
of decreasing radius. The phase angles wk and gk define the
initial configuration of the system. Figure 5 shows that the

single-coupled serial chain which has two links can draw a hypo-
cycloid curve.

3 Mechanisms That Draw the Trifolium

In this section, we demonstrate the use of the equations in Sec. 2
to design mechanisms to draw the trifolium curve. Figure 6 shows
the trifolium curve defined by Eq. (16) with a equal to 2.

3.1 Trifolium Using Scotch Yoke Mechanisms. The trifo-
lium is often defined in radial coordinates by the formula [19,20]

P : q ¼ �a cos 3h (16)

where a point P is defined by the length qðhÞ of a radius vector at
the angle h to the x-axis. The constant a defines the size of the
petals of the trifolium.

The coordinate functions for this curve are given by

PT ¼
q cos h

q sin h

( )
¼

xðhÞ
yðhÞ

( )
¼

�a cos 3h cos h

�a cos 3h sin h

( )
(17)

Set the size of the petals to a¼ 2 and expand the products of sine
and cosine functions to obtain the trigonometric form of this curve

PT ¼
�cos 2h� cos 4h

sin 2h� sin 4h

( )
(18)

Fig. 5 The end-point of a single-coupled serial chain draws a
plane curve

Fig. 6 Trifolium with the size of the petal set to a 5 2

Table 1 Coefficients of the component trigonometric functions
for the trifolium curve

k ak bk ck dk

0 0 0 0 0
1 0 0 0 0
2 �1 0 0 1
3 0 0 0 0
4 �1 0 0 �1

Journal of Mechanisms and Robotics APRIL 2017, Vol. 9 / 024503-3



The coefficients of the component trigonometric equations listed
in Table 1 can be used to determine the dimensions of a set of
component Scotch yoke mechanisms, using Eqs. (3) and (6).
These dimensions are listed in Table 2. The mechanical system
that draws this trifolium curve is shown in Fig. 7.

3.2 Trifolium Using Component-Coupled Serial Chains.
The analysis provided in Sec. 2 shows that the same dimensions
used to construct the Scotch yoke mechanisms can be used to
define a pair of component serial chains that position a cursor to
draw a trigonometric curve like the trifolium. Figure 8 shows the
mechanical system of coupled serial chains that draw the trifolium
curve.

3.3 Trifolium Using a Single-Coupled Serial Chain. In
order to define the single-coupled serial chain that draws the
trifolium curve, we use the coefficients of the trigonometric form
of the equation, Table 1, and compute the dimensions, Lk and Mk,
and initial angles, wk and gk, using Eqs. (12) and (13). These
dimensions are listed in Table 3. Recall that for a single-coupled
serial chain, those links denoted Lk rotate counterclockwise,
while those links denoted Mk rotate clockwise and the angles wk

and gk denote the initial configurations of the system. Figure 9
shows the single-coupled serial chain that draws the trifolium
curve.

This drawing linkage for the trifolium curve consists of
two links, as compared to the exceedingly complex drawing link-
age obtained by Kobel [11] using Kempe’s method. This is
also simpler than Artobolevskii’s eight-bar linkage [15] shown in
Fig. 1.

4 Mechanisms That Draw the Butterfly Curve

A version of the butterfly curve [21] can be generated by the
formula

PB : qðhÞ ¼ 7� sin hþ 2:3 sin 3hþ 2:5 sin 5h� 2 sin 7h

�0:4 sin 9hþ 4 cos 2h� 2:5 cos 4h (19)

where radius vector q lies at the angle h relative to the x-axis.
Figure 10 shows this butterfly curve.

The trigonometric form of the butterfly curve is obtained by
expanding the coordinates, PB ¼ ðq cos h; q sin hÞ ¼ ðpBx; pByÞ, to
obtain

Table 2 Component dimensions for component Scotch yoke
mechanisms and coupled serial chains to draw the trifolium

k Lk wk Mk gk

1 0 0 0 0
2 1 p 1 p=2
3 0 0 0 0
4 1 p 1 �p=2

Fig. 7 A system of Scotch yoke mechanisms driven by a single
input that draws the trifolium

Fig. 8 A system of two-coupled serial chains driven by a single
input that draws the trifolium

Table 3 Dimensions of the single-coupled serial chain to draw
the trifolium

k Lk wk Mk gk

1 0 0 0 0
2 0 0 1 p
3 0 0 0 0
4 1 p 0 0

Fig. 9 A single constrained coupled serial chain with one input
that draws the trifolium

024503-4 / Vol. 9, APRIL 2017 Transactions of the ASME



pBx ¼ 9 cos hþ 0:65 sin 2hþ 0:75 cos 3hþ 2:4 sin 4h

�1:25 cos 5hþ 0:25 sin 6h� 1:2 sin 8h� 0:2 sin 10h

pBy ¼ �0:5þ 5 sin hþ 1:65 cos 2hþ 3:25 sin 3hþ 0:1 cos 4h

�1:25 sin 5h� 2:25 cos 6hþ 0:8 cos 8hþ 0:2 cos 10h

(20)

The coefficients of these equations are listed in Table 4.

4.1 Butterfly Using Scotch Yoke Mechanisms. The coeffi-
cients of the component trigonometric equations listed in Table 4
are used to calculate the dimensions of the component Scotch
yoke mechanisms, using Eqs. (3) and (6). These dimensions are
listed in Table 5. These dimensions can also be used to construct
the component-coupled serial chains that draw this curve.

4.2 Butterfly Using a Single-Coupled Serial Chain. In
order to define the single-coupled serial chain that draws the but-
terfly curve, we use the coefficients of the trigonometric form of
the equation, Table 4, and compute the dimensions, Lk and Mk,
and initial angles, wk and gk, using Eqs. (12) and (13). These
dimensions are listed in Table 6. The constant terms k¼ 0 define
the location of the first ground pivot ð�0:5; 0Þ. There are 14
links in this coupled serial chain driven by a single input. The
single-coupled serial chain that draws the butterfly curve is shown
in Fig. 11.

5 Mechanisms That Draw the Batman Logo

In this example, we use the software MATHEMATICA to extract
3235 points to define the boundary curve of the Batman logo
shown in Fig. 12. Twenty terms of the discrete Fourier transform
of these points yield the curve P ¼ ðxðhÞ; yðhÞÞ in the trigonomet-
ric form that approximates this Batman logo curve, see Table 7.
The formulas obtained above yield mechanisms that draw our
approximation to the Batman logo. Figure 13 shows the Batman
logo curve achieved by 20 terms of Fourier series.

Fig. 10 The plot of a butterfly curve from its polar equation

Table 4 Coefficients of the component trigonometric functions
for the butterfly curve

k ak bk ck dk

0 0 0 �0.5 0
1 9 0 0 5
2 0 0.65 1.65 0
3 0.75 0 0 3.25
4 0 2.4 0.1 0
5 �1.25 0 0 �1.25
6 0 0.25 �2.25 0
7 0 0 0 0
8 0 �1.2 0.8 0
9 0 0 0 0
10 0 �0.2 0.2 0

Table 5 Dimensions for the component Scotch yoke mecha-
nisms to draw the butterfly curve

k Lk wk Mk gk

0 0 0 0.5 p
1 9 0 5 p=2
2 0.65 p=2 1.65 0
3 0.75 0 3.25 p=2
4 2.4 p=2 0.1 0
5 1.25 p 1.25 �p=2
6 0.25 p=2 2.25 p
7 0 0 0 0
8 1.2 �p=2 0.8 0
9 0 0 0 0
10 0.2 �p=2 0.2 0

Table 6 Dimensions of the single-coupled serial chain to draw
the butterfly curve

k Lk wk Mk gk

0 0.25 �p=2 0.25 �p=2
1 7 0 2 0
2 0.5 p=2 1.15 p=2
3 2 0 1.25 p
4 1.15 �p=2 1.25 p=2
5 1.25 p 0 0
6 1.25 �p=2 1 �p=2
7 0 0 0 0
8 1 p=2 0.2 �p=2
9 0 0 0 0
10 0.2 p=2 0 0

Fig. 11 The constraint coupled serial chain to draw this butter-
fly curve consists of 14 terms

Fig. 12 The shape of the Batman logo

Journal of Mechanisms and Robotics APRIL 2017, Vol. 9 / 024503-5



5.1 Batman Logo Using Scotch Yoke Mechanisms. The
coefficients of the component trigonometric equations listed in
Table 7 can be used to determine the dimensions of a set of
component Scotch yoke mechanisms, using Eqs. (3) and (6).

These dimensions are listed in Table 8. Figure 14 shows the sys-
tem of Scotch yoke mechanisms that draw this curve.

5.2 Batman Logo Using a Single-Coupled Serial Chain. By
using the coefficients of the component trigonometric equations
listed in Table 7, Eqs. (12) and (13) yield the dimensions, Lk

and Mk, and the initial angles, wk and gk, of the serial chain
that draws the Batman logo. These dimensions are listed in
Table 9. The k¼ 0 terms identify the ground pivot coordinates
ð480:22; 317:57Þ. This system is a serial chain consisting of 38
links with one input that draws our approximation of the Batman
logo. Figure 15 shows the single-coupled serial chain that can
draw this Batman logo.

6 Physical Prototype for the Trifolium

We used the Stratasys Fortus additive manufacturing system to
build components for the trifolium linkage using acrylonitrile
butadiene styrene plastic. Figure 16 shows the individual compo-
nents. Figure 17 is the assembled trifolium drawing mechanism.

In order to show the curve generated by the mechanism, we
attached a blue light emitting diode (LED) to the drawing tip and
used a DC motor to drive the base at 100 rpm. A photograph of
the trace of the LED is shown in Fig. 18.

Table 7 Coefficients of the component trigonometric functions
for the Batman logo

k ak bk ck dk

0 480.22 0 317.57 0
1 11.36 �175.47 �80.64 �14.59
2 2.08 �18.25 �2.05 �0.60
3 �8.80 19.26 21.64 12.16
4 �2.80 2.14 5.38 3.28
5 5.49 �5.70 �22.26 �10.47
6 1.48 0.92 3.54 �1.62
7 �6.68 5.58 �11.81 �1.03
8 �2.53 0.84 �0.64 1.85
9 1.00 0.59 4.17 1.90
10 �1.04 2.64 �3.47 �1.05
11 3.59 �5.21 0.99 1.19
12 �1.65 0.79 �5.35 �3.42
13 �0.19 �0.20 �2.64 �1.41
14 �1.93 0.18 �3.03 �2.42
15 �2.44 1.36 �0.41 0.35
16 0.35 �0.17 �1.95 �0.42
17 0.44 �0.30 1.77 2.25
18 1.03 0.30 �1.05 0.59
19 1.58 �0.28 0.75 1.25

Fig. 13 Batman logo curve obtained using 20 terms of the
discrete Fourier transform of boundary points

Table 8 Dimensions for the component Scotch yoke mecha-
nisms to draw the Batman logo

k Lk wk Mk gk

0 480.22 0 317.57 0
1 175.84 �1.50 81.95 �2.96
2 18.37 �1.45 2.14 �2.85
3 21.18 1.99 24.83 0.51
4 3.52 2.48 6.30 0.54
5 7.92 �0.80 24.60 �2.70
6 1.75 0.55 3.90 �0.42
7 8.71 2.44 11.85 �3.05
8 2.66 2.82 1.95 1.90
9 1.16 0.53 4.58 0.42
10 2.84 1.94 3.63 �2.84
11 6.33 �0.96 1.55 0.87
12 1.83 2.69 6.35 �2.57
13 0.28 �2.34 3.00 �2.65
14 1.94 3.04 3.88 �2.46
15 2.80 2.63 0.54 2.42
16 0.40 �0.46 2.00 �2.92
17 0.53 �0.61 2.87 0.90
18 1.08 0.28 1.21 2.62
19 1.61 �0.17 1.46 1.03

Fig. 14 The system of component Scotch yoke mechanisms
that draw the Batman logo consists of two sets of 19
mechanisms

024503-6 / Vol. 9, APRIL 2017 Transactions of the ASME



7 Conclusion

This paper shows how to determine the dimensions of mechani-
cal systems that draw plane curves which have coordinate func-
tions given by finite Fourier series, called trigonometric curves.
We show how to use the coefficients of these components

functions to determine the dimensions of individual Scotch yoke
mechanisms that act on a belt or cable drive to move a cursor to
draw the curve and how those dimensions yield two-coupled serial
chains that draw the curve. Finally, we show how to determine the
dimensions of a single-coupled serial chain that draws the curve
with its end-point. In each case, the mechanical system has one
degree-of-freedom and draws the curve exactly.

This methodology is demonstrated on three increasingly
complicated curves, the trifolium, the butterfly curve, and the
Batman logo curve. The single-coupled serial chain for these
cases requires 2, 14, and 38 links, respectively. We present a
physical prototype for the trifolium. These results contribute to
our understanding of the connection between plane curves
and mechanical systems illustrated by Kempe’s universality
theorem.
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