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Abstract

We construct a physically parameterized probabilistic autoencoder (PAE) to learn the intrinsic diversity of Type Ia
supernovae (SNe Ia) from a sparse set of spectral time series. The PAE is a two-stage generative model, composed
of an autoencoder that is interpreted probabilistically after training using a normalizing flow. We demonstrate that
the PAE learns a low-dimensional latent space that captures the nonlinear range of features that exists within the
population and can accurately model the spectral evolution of SNe Ia across the full range of wavelength and
observation times directly from the data. By introducing a correlation penalty term and multistage training setup
alongside our physically parameterized network, we show that intrinsic and extrinsic modes of variability can be
separated during training, removing the need for the additional models to perform magnitude standardization. We
then use our PAE in a number of downstream tasks on SNe Ia for increasingly precise cosmological analyses,
including the automatic detection of SN outliers, the generation of samples consistent with the data distribution,
and solving the inverse problem in the presence of noisy and incomplete data to constrain cosmological distance
measurements. We find that the optimal number of intrinsic model parameters appears to be three, in line with
previous studies, and show that we can standardize our test sample of SNe Ia with an rms of 0.091± 0.010 mag,
which corresponds to 0.074± 0.010 mag if peculiar velocity contributions are removed. Trained models and codes
are released at https://github.com/georgestein/suPAErnova.

Unified Astronomy Thesaurus concepts: Type Ia supernovae (1728); Standard candles (1563); Observational
cosmology (1146)

1. Introduction

Type Ia supernovae (SNe Ia) are excellent probes of cosmic
history, leading to the discovery of the accelerating expansion
of the universe (Riess et al. 1998; Perlmutter et al. 1999). Their

cosmological utility emerges from the high degree of similarity
between each SN Ia, and differences in their luminosity have
been shown to strongly correlate with observed spectro-
temporal features. As such, they can be used as “standardizable
candles” to infer the relative distances to them through a
measurement of their fluxes, which alongside a measurement of
their redshift allows for the expansion history of the universe to
be inferred (Riess et al. 1998; Perlmutter et al. 1999; Betoule
et al. 2014; Scolnic et al. 2018).
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The limiting factor in using SNe Ia for increasingly precise
cosmological analyses is a detailed understanding of their
spectral diversity and evolution, which cannot be modeled from
first principles to high enough accuracy. Thus, the field relies
on data-driven models, which have uncovered a number of
well-known relations between SN Ia features and luminosity,
including the correlation between the peak luminosity of an
SN Ia and the light-curve decrease time (brighter-slower effect;
Phillips 1993) and the dependence of the peak luminosity on
color (the brighter-bluer effect Riess et al. 1996; Tripp 1998).
These behaviors are captured in conventional light-curve-fitting
routines such as SALT2 (Guy et al. 2007), MLCS2k2 (Jha et al.
2007), and SNooPy (Burns et al. 2011), and their associated
standardization parameters.

While these effects correlate with a high degree of spectral
variation, they are insufficient to fully account for the detailed
differences between spectral and temporal features of different
SNe Ia. To try to understand spectral behavior in more detail,
collections of SN Ia spectra (e.g., Matheson et al. 2008; Bailey
et al. 2009; Silverman et al. 2012b; Folatelli et al. 2013; Stahl
et al. 2020b) have been used to examine the strengths, ratios,
and velocities of specific spectral features (e.g., Nugent et al.
1995; Folatelli 2004; Folatelli et al. 2010, 2013; Branch et al.
2006; Arsenijevic et al. 2008; Bailey et al. 2009; Foley et al.
2011; Silverman et al. 2012a; Blondin et al. 2012; Wang et al.
2013) and correlate these with SN Ia brightness, color, and
decline rate.

With the advent of full SN Ia spectral time series (Aldering
et al. 2020) or their virtually constructed analogs (Siebert et al.
2019; Stahl et al. 2020b), it has become possible to study the
full spectro-temporal behavior of SNe Ia. Examples include the
first construction of a spectral metric space (Sasdelli et al.
2015), Gaussian Process (GP) twinning (Fakhouri et al. 2015),
expectation maximization factor analysis (Saunders et al.
2018), spectral feature factor analysis (Léget et al. 2020), an
SN Ia autoencoder (Sasdelli et al. 2016) hierarchical Bayesian
spectro-temporal modeling (Mandel et al. 2022), deep learning
(Stahl et al. 2020a), and the nonlinear Twins Embedding space
of Boone et al. (2021a, 2021b).

Such models must be able to account for both extrinsic and
intrinsic modes of spectral diversity. Intrinsic effects result
from object-to-object differences between SN explosions,
while extrinsic effects are differences caused by physical
processes external to the SN system. Examples of extrinsic
effects include the amount of Galactic and extragalactic dust
along the sight line to the object (and hence extinction), and the
peculiar velocity of the SN with respect to our observational
rest frame, which should therefore be uncorrelated with the
intrinsic properties of the SN Ia. Depending on the specific
empirical model, they can be used for applications including
magnitude standardization, anomaly detection, and uncertainty
estimates.

1.1. Empirical Modeling of SNe Ia

After the initial explosion, an SN continues to brighten until
it reaches a peak and begins to fade, with the observable
lifecycle (for the purpose of this work) taking on the order of
∼50 days. Accurately modeling this SN luminosity as a
function of time is challenging due to both the small number of
spectroscopically observed SNe Ia and the highly irregular time
sampling of spectra from each object, where for most SNe we
observe only ∼10 spectra spread over the range. This sparse

time sampling can prove difficult for numerical techniques that
require more uniform observations, so fitting an empirical
model of SN flux as a function of time and wavelength often
has two steps. The first is to interpolate the observations from
each SN onto a more regularly spaced time grid, generally
achieved through spline interpolations or Gaussian processes.
The second is to then model the spectrum at each temporal
location and wavelength bin on this time grid. The most
commonly used models are based on variations of a principal
component analysis (PCA) and schematically take a form that
separates intrinsic and extrinsic physical effects into unique
terms:

( )
[ ( ) ( ) ]

( ) ( )

l
l l

l

=
´ + * +
´ *

p

F p x F p

c

Flux , Amplitude

, , ...
Extinction , 1

SN SN

0 1,SN 1

SN

where p is the time from peak brightness and λ is the rest-frame
wavelength. The average spectral sequence is described by
F0(t, λ), the components that describe additional PCA
variability are Fn(t, λ), where n> 0, and the color term
representing both extinction and intrinsic color variations of the
global model. The parameters indicated with an SN subscript
are fit to each SN and correspond to PCA amplitudes x1,SN and
the extinction cSN. The terms of the model are split this way for
a few key reasons:
Amplitude: For each SN, the observed redshift zobs is

generally well known, such that the wavelength and time-
scales can be accurately de-redshifted. The observed redshift
has contributions from the peculiar velocity of the SN, which
are extrinsic to the SN explosion. A leading amplitude term
then ensures that the peculiar velocity component is not
correlated with the model parameters and that it is the only
coefficient dependent on the flux normalization. This ampl-
itude can interchangeably be written as 10−0.4ΔM when
working in magnitudes.
Color law: The color law attempts to account for dust along

the line of sight to the SNe. The optical depth to each SN
involves a number of factors, including corrections from the
local environment of the SNe and its host galaxy, and line-of-
sight variations along the intergalactic medium and within our
own galaxy. The Milky Way extinction can be determined
independently and removed from the observed spectrum. Any
optical depth variations along the line of sight should be slowly
varying with respect to the ∼50 day observation window of an
SN (Huang et al. 2017), and therefore should be dependent
only on the wavelength of observation. This color law is
generally an input to the model (Guy et al. 2007; Saunders et al.
2018; Mandel et al. 2022; Boone et al. 2021a), and any time-
dependent color variation should be captured by the variations
in the global model.
To use such an empirical model for magnitude standardiza-

tion then requires an additional third step, in which the
(possible) correlations between model parameters and intrinsic
luminosity are uncovered. This requires an additional model to
be fit to “explain” the magnitude residual as a function of the
model parameters from previous steps.
In this work, we propose an alternative to this three-step

workflow—a probabilistic autoencoder (PAE) to model SNe
spectra as a function of observation time. As introduced by
Böhm & Seljak (2020), a PAE combines the advantages of an
autoencoder (i.e., it is fast and easy to train) with the desired
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properties of a generative model, which makes a PAE a
powerful tool for probabilistic data reconstruction and outlier
detection of SNe Ia. We physically parameterize our PAE and
introduce a multistage training setup and correlation penalty
term in order to separate and decorrelate intrinsic and extrinsic
effects during training, which removes the need for an
additional model to perform magnitude standardization.

Our method has a number of advantages over PCA-based
models. First, the autoencoder has the ability to learn
complicated nonlinear mappings between the best-fit latent
representations (parameters), while a PCA analysis is limited to
linear transformations. This allows for increased spectral
diversity to be expressed over linear models for a given latent
dimensionality. Second, the probabilistic nature of the PAE
allows for a straightforward determination of outlying spectra
and calculation of the errors on the best-fit model parameters
within the observational errors. A conditional autoencoder
(AE) can account for time-evolution by simply feeding in the
observation times as a conditional parameter, and does not need
to first pre-process the data to interpolate it onto a regular grid,
which allows the model to work directly on the data. Finally, a
PAE model can be used to generate artificial SNe Ia samples
consistent with the data distribution, and to create a faithful
simulation of SNe Ia spectro-temporal series.

The outline of this paper is as follows. We first describe the
data set and reference baselines in Section 2, followed by a
detailed description of probabilistic autoencoders in Section 3.
We then outline our architecture and training setup in
Section 4. Section 5 showcases the PAE results, where we
demonstrate that the PAE provides better fits to the observa-
tions than the most commonly used model in the literature, it
automatically detects outliers, and provides an accurate fit on
SNe parameters and their errors. A discussion follows in
Section 6.

2. Data Set and Reference Baselines

Our data set consists of spectral time series data of 228
unique SNe Ia, obtained by the Nearby Supernova Factory
(SNfactory; Aldering et al. 2002, 2020) using the SuperNova
Integral Field Spectrograph (SNIFS; Lantz et al. 2004). The
original spectra span the range 3200–10000Å simultaneously.
The spectra from SNIFS were reduced using the SNfactory data
reduction pipeline (Bacon et al. 2001; Aldering et al. 2006;
Scalzo et al. 2010), flux calibrated following Buton et al.
(2013), Rubin et al. (2022), and host-galaxy subtracted as in
Bongard et al. (2011). The spectra were corrected for dust in
our Galaxy using the dust map from Schlegel et al. (1998) and
the extinction–color relation from Cardelli et al. (1989).

Following our past procedure for similar analyses (Fakhouri
et al. 2015; Saunders et al. 2018; Aldering et al. 2020; Léget
et al. 2020; Boone et al. 2021a, 2021b), the wavelength and
phases have been transformed to the rest frame, and the fluxes
have been transformed to a reference redshift of z = 0.05 using
the appropriate factors of z and 1+ z using redshifts from
Childress et al. (2013) and Rigault et al. (2020). Because SN Ia
spectral features are broad, the spectra are rebinned to a
common rest-frame wavelength binning of 1000 km s−1

between 3300 and 8600Å, resulting in Nλ= 288 rest frame
wavelength bins. Each spectrum is accompanied by an
uncertainty spectrum, ( )s lSN . A small number of spectra do
not cover all wavelength bins, therefore, for each spectrum, we

construct a mask array ( ) lSN to flag any missing
wavelength bins.
Each SN has between 5 and 64 observations at different

times, for a total of 3034 spectra. The time gaps between each
observation are typically in the range of 2–3 days at early
phases and longer at later phases, but with exceptions due to,
e.g., bad weather. The given observation time p is the phase
relative to the peak luminosity of the SNe in the B band as fit
by the SALT2 model (Guy et al. 2007), in days. The SALT2
fits also report an uncertainty on the time on peak luminosity.
We cut data outside of (−10 days, +40 days), resulting in 2696
final spectra for a minimum of 4 observations of an SN, to a
maximum of 32. The amplitudes of the spectra, initially in the
z = 0.05 reference frame, are multiplied by a constant to scale
the range of values to ∼(0,1).
At a given observation time, spectra from different SNe have

a high degree of similarity, and it is easy to imagine each
unique spectra being described by a set of modifications to
some mean spectral envelope as a function of time. It has been
shown before that the leading few components in a PCA
analysis capture a significant amount of the SN-to-SN variation
(Guy et al. 2007; Saunders et al. 2018), so we expect the data to
be able to be represented by an autoencoder with some small
set of latent variables.

2.1. Reference Baselines

Throughout this work we compare our spectral reconstruc-
tions to the SALT2 model (Guy et al. 2007), and compare our
cosmological distance measurements to both the SALT2 model
and the Twins Embedding (Boone et al. 2021a, 2021b).

2.1.1. SALT2

SALT2 (Guy et al. 2007) models the time-evolving spectral
energy distribution as

( ) [ ( ) ( ) ]
[ ( )] ( )

l l l
l

= + +
´

F p x M p x M p

c

, , , ...
exp CL , 2

SN 0,SN 0 1,SN 1

SN

where p is the rest-frame time since the date of maximum
luminosity in the B band and λ is the rest-frame wavelength.
The M0 component is the average spectral sequence, Mi for
i> 0 are additional components that describe further object-to-
object variability, and CL(λ) is a generic color term that mixes
dust extinction and intrinsic color variations left over after
decorrelating x1 and c. Each individual SN is then parameter-
ized by a combination of these components multiplied by
leading amplitude terms describing the strength of each: xi,SN,
and cSN. x0,SN is the flux normalization and is a function of
both the intrinsic luminosity and the luminosity distance of the
SN. The best-fit SALT2 parameters x0,SN, x1,SN, and cSN were
fit for each light curve in the data set, and we used sncosmo
(Barbary et al. 2016) to generate the best-fit rest frame SALT2
spectra for each SN at each observation time.
The SALT2 light-curve fits are used to determine the peak

brightness of each SN Ia, and then a linear correction for the
light-curve width and color is applied to “explain” the
magnitude residual to each object as a function of the other
model parameters:

( )a b= - + -M M M x c . 3res B,SN ,SN ref 1,SN SN
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The arbitrary reference magnitude Mref and standardization
parameters α and β are fit in order to minimize the magnitude
residual º DM Mires,

SALT2.

2.1.2. Twins Embedding

The Twins Embedding (Boone et al. 2021a, 2021b) does not
model temporal evolution and instead aims to explain the
spectral variability of SNe Ia at maximum light. There are four
separate components to the model:

1. A differential time-evolution model to estimate a
spectrum at maximum light for each SN Ia.

2. A second “Reading Between the Lines” (RBTL) model to
fit for a mean spectrum at maximum light, fmean(λ), and
explain the SN-to-SN variability at maximum light as a
function of two parameters ΔMi and ΔAV,i,

( ) ( ) ( )( ( ))l l= ´ l- D +Df f 10 . 4i
M A CL

model, mean
0.4 i V i,

ΔMi is the difference in intrinsic brightness compared to
the mean spectrum in magnitudes, and ΔAV,i represents
the coefficient of the extinction–color relation that best
matches the SN’s spectrum to the mean function. The
RBTL model is used to deredden each spectrum at
maximum light to remove extrinsic contributions from
distance uncertainties and interstellar dust.

3. A third nonlinear “Twins Embedding” model is trained on
the dereddened spectra from the RBTL model in order to
further explain any variability of SN Ia spectra at maximum
light. The Twins Embedding uses the Isomap algorithm
(Tenenbaum et al. 2000) to embed the spectral distance

( ) ( )
( )

( )åg
l l

l
=

-f f

f
5i j

k

i k j k

k
,

dered, dered,

mean

2

⎜ ⎟
⎛
⎝

⎞
⎠

between two SNe Ia labeled i and j into a low-dimensional
(3D) space ξ while preserving the distances between nearby
points in the high-dimensional space.

4. GP regression is then used to infer the magnitude
residuals (ΔMi from step 2) of SNe Ia over the 3D Twins
Embedding space ξ and to reconstruct spectra from a
given embedding vector. The inferred value of the
magnitude residual can be subtracted from the measured
value, and the remainder represents the “unexplained
residual.”

Dixon et al. (in preparation) extend this Twins Embedding to
the full time series using a neural network.

3. Physically Parameterized Probabilistic Autoencoder

Our probabilistic autoencoder is constructed in two separate
stages. First, we train a conditional autoencoder to learn a low-
dimensional latent representation of each SN that is indepen-
dent of the observation time(s). After the autoencoder is trained
we construct a normalizing flow to map from the unconstrained
autoencoder latent space to a Gaussian latent space. For clarity,
our data notation is as follows, where for each SN, arrays are
filled sequentially using the observed spectra:

1. ´ ´ lxN N NSN obs : observed SNe Ia spectral time series.
2. ˆ ´ ´ lxN N NSN obs : reconstructed SNe Ia spectral time series.
3. s ´ ´ lN N NSN obs : observational uncertainty.
4.  ´ ´ lN N NSN obs : observational mask, equal to 1 where

spectra are valid.

5. ´pN NSN obs
: observation time of each spectrum relative to

the peak brightness of the SNe.
6. ´zN NSN latent: Autoencoder latent space (Δp, ΔM, ΔAV,

z1,...,zn).
(a) Δ p: Difference in time of peak brightness relative to

the SALT2 fits (any float value).
(b) ΔM: magnitude residual.
(c) ΔAV: relative extrinsic extinction.

7. ´ -uN NSN latent 2: normalizing flow latent space. Nlatent−2

results from the removal of Δp and ΔM.

For purely practical purposes, when the number of observations
of an SN is less than the maximum in the data set, Nobs = 32,
the end of the data arrays are zero-padded and masked
appropriately to fill any remaining empty observation vectors.
This has no effect on the model beyond simplifying the training
procedure.

3.1. Conditional Autoencoder

An autoencoder consists of an encoder that maps the input data
to a lower-dimensional latent representation and a decoder that
reconstructs the data from the latent representation. Both of these
components are commonly parameterized as deep neural networks,
with weights and biases trained through back-propagation to
minimize a loss function. Autoencoders are commonly used for
dimensionality reduction or feature learning from an arbitrary
dimensional data space, but here we introduce a number of
modifications from a general architecture to describe the physical
nature of the data set and separate external and internal information
of the SNe.
The encoder f maps the spectral time series to a latent space

(Δp, ΔM, ΔAV, z)= f(x, p) through a series of fully connected
layers of a neural network. Operations are performed along the
wavelength axis only, and each spectrum from an SN is treated
independently until the final network layer. The final layer reduces
to the mean latent representation of an SN along the time axis for
all observations of the SN Ia, such that the coordinates of each SN
are forced to represent a compression of the SN as an object and
not a compression of each individual spectra. In this way, the
entire spectral time series of a SN is reduced to a few latent
variables that together represent a nonlinear combination of
components describing object-to-object variability, such as the
luminosity, spectral tilt, or absorption lines.
Given a latent representation and observation times the

decoder g learns to reconstruct the spectral time series
ˆ ( ( ) )=x g f x p p, , . The decoder first duplicates and concate-
nates the latent representation z with the observation phases p,
then passes this through a number of fully connected layers.
Again, the latent and time-variable concatenation operations
are performed along the wavelength axis only, and each
spectrum from an SN is treated independently. We parameter-
ize the decoder similar to Equation (2) by not passing some
latent parameters through the fully connected layers of the
decoder, and instead separating them out to represent an overall
amplitude and a phase-independent color law term, which are
multiplied with the output of the final layer. The encoder and
decoder are both fully connected deep neural networks, trained
to maximize the agreement of the reconstruction with the data,
determined through a loss function ( ˆ) x x,AE .
While separating out certain latent parameters to represent

physical variables is uncommon in autoencoder literature, it is
desirable here due to the physical nature of the problem we are
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attempting to solve. The time-independent color law term is
separated out as we expect that a portion of the color is from
the reddening of the spectrum as it propagates through dust in
the intragalactic medium. This effect is independent of the
intrinsic SN Ia explosion and so should not propagate through
to all the latent variables of the model. The amplitude is
separated out as a number of physical effects unrelated to the
true cosmological distance can shift the spectra in a way
uncorrelated with any spectral features. Peculiar velocity
contributions to the redshifts result in an amplitude shift of
less than ∼10% for higher-redshift SNe (z> 0.02). Addition-
ally, the spectra have instrumental “gray” offsets of a few
percent (e.g., Rubin et al. 2022) that also look like an
amplitude. These are unique to each spectrum individually and
are typically around ∼2%, but the distribution is very non-
Gaussian. Without allowing for an explicit amplitude term in
the model, any amplitude that is by definition uncorrelated with
the spectral features will propagate through to uncertainty in
the inferred cosmological distance. Our model thus takes the
form of

( ) ([ ] )
( )[ ( ) ]

l =

´ l
-

- D +D

p g pF z z, ,..., ,

10 , 6
n

A M

SN 1 2

0.4 CL V

where CL(λ) can be fit during training by using a single dense
layer or can be adopted from physical measurements (e.g.,
Fitzpatrick 1999; we set RV = 2.8). We refer to both the
10−0.4ΔM component and the ΔM parameter as the extrinsic
amplitude of the model throughout this work, but we note that
an extrinsic interpretation of ΔM is degenerate with an intrinsic
component that does not vary with wavelength or phase.

We have found that separating out the amplitude and color
law, achieved by the physically parameterized decoder
architecture shown in Figure 1, does not decrease reconstruc-
tion quality compared to a nonphysically parameterized
autoencoder. In order to match common convention in the
literature, we rewrite the first three latent parameters as Δp,
ΔM, and ΔAV, respectively, and will refer to them as their
physical parameter counterparts henceforth. Δp represents the
difference in the time of peak brightness relative to the SALT2
fits, and while we use the SALT2 time values as an initial guess
at the true time of peak brightness, the encoder is free to learn
any corrections. As we explain further in the training section,
we normalize the average Δp over the SNe to be zero.

This physical parameterization works to isolate color-like
effects into the relative extinction parameterΔAV, but there still
remains a degeneracy between the relative extinction and
output of the decoder determined by the intrinsic latent
parameters z1,..., zn. It is possible that a change in ΔAV can
be counteracted by changing the latent parameters, and thus
ΔAV is not a direct measurement of the extinction, but rather a
measure of the relative extinction between any two SNe with
the same intrinsic latent coordinates.
We chose to use a conditional autoencoder architecture over

other time-sequence embedding methods due to the nonunifor-
mity of the time step between each observation for each SN. Long
short-term memory networks (LSTMs) (Hochreiter & Schmidhu-
ber 1997) are common for sequence-to-sequence predictions, and
LSTM Autoencoders are a class used to encode sequence data for
a number of applications (Srivastava et al. 2015; Malhotra et al.
2016), but rely on either time-independent sequential inputs (such
as words in a sentence, where one word follows the next with no
specified time in between) or on constant time steps between each
item of the sequence (such as frames in a video or daily stock
prices), and also do not account for missing data. For the purpose
of SN spectral time series embeddings, we have both missing
data, such as some SNe missing observations near peak
brightness, and nonuniform time sampling. Some SNe have a
large number of observations spanning the entire (−10, +40) day
time period, each separated by ∼1–2 days, while others have a
small number of observations at more irregular times. For
example, our data set has one SN with only four observations at
(−5.25, −5.24, +4.65, +14.69) days. A number of extensions to
recurrent models have attempted to deal with missing time steps
through masking (Che et al. 2018) by incorporating the passing of
time in between observations in a “time-aware LSTM” through
weighting the short-term memory by the elapsed time (Baytas
et al. 2017), or a “Phased LSTM” (Neil et al. 2016), which adds a
new oscillating time gate that only updates the network weights
during a small percentage of the cycle. While these have the
potential to work for our application, the small amount of training
data available (relative to standard benchmark data sets) and
nonuniform sampling, coupled with the desire for a physically
parameterized interpretable network for posterior analysis, led us
to stick with a more standard autoencoder setup, although initial
investigations using an LSTM autoencoder did not perform
poorly.

Figure 1. Probabilistic autoencoder architecture. The encoder receives as input the observed spectra x and corresponding observation times p and extracts a set of
time-independent latent parameters z for each SN. The decoder combines the latent parameters with the desired observation times to reconstruct the data. Both are fully
connected neural networks, consisting of a chain of linear layers each followed by a ReLU activation. By separating out the flow of certain latent parameters through
the decoder, along with the addition of a correlation penalty during training, we explicitly inform the model to learn physically motivated latent parameters expressing
extrinsic (Δp, ΔAV) and intrinsic (z1,..., zn) modes of variability. After the encoder–decoder is trained, a normalizing flow learns a bijective mapping between the
unconstrained z space and a Gaussian latent space u, which allows for the determination of the SN density in comparison to others in the data set.
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3.1.1. Normalizing Flow

Once the autoencoder is trained, its parameters are fixed and
we determine the prior P(z) probabilistically by constructing a
bijective mapping b from the latent space z to a Gaussian latent
space u= b(z). A forward pass of the bijective mapping
(z→ u) allows for rapid density estimation of a point in z space,
while an inverse pass (u→ z) allows for sampling of the z
space. We determine this mapping through a normalizing flow
(NF), popularized by Dinh et al. (2016) and Papamakarios et al.
(2017) and comprehensively reviewed in Kobyzev et al.
(2019). The NF is parameterized by a fully connected deep
neural network and trained to minimize the negative log
likelihood of the encoded samples, where the NF prior is a unit
Gaussian, ( ) ( )=p u 0, 1 . To ensure the model is not
dependent on cosmological parameters, peculiar velocities, or
gray offsets, we do not include the amplitude term ΔM in the
normalizing flow. In this fashion we do not impose any prior
for the amplitude.

With both a trained autoencoder and normalizing flow we
have a fully probabilistic and generative model capable of
generating new samples ¢x from the data distribution p(x) as
follows (illustrated in Figure 1):

1. Draw a sample u from ( ) 0 1,
2. Pass the sample through the normalizing flow to get

zu= b−1(u)
3. Concatenate zu with the desired amplitude offset ΔM to

get z.
4. Pass z and the desired observation times p through the

decoder, ( )¢ =x g z p, . Empty observation time slots are
automatically masked appropriately.

3.2. Posterior Analysis for Uncertainty Quantification

After training is completed, the PAE can be used to provide
uncertainty quantification on the best-fit latent parameters of
the model of Equation (6) (Δp, ΔM, ΔAV, z1, ..., zn). The log
posterior of a data point under the PAE is (Böhm et al. 2019)

( ∣ ) ( ∣ )
( )

( )

s=
+
+

u x p x u p

u

P P N

P

ln , ln , ,

ln
const, 7

SNnoise spectra,

where the prior is ( ) ( )=uP 0, 1 , and the implicit likelihood
is given by ( ∣ ) ( ( ( ) ) ( ) )s s s= +-x u p g b u p pP , , , ,noise

1 2
recon

2 .
Note that we replace the data x by its generative process
g(b−1(u), p), which brings the inference problem to the low-
dimensional latent space of the PAE, making the posterior
analysis much more computationally tractable.

The covariance of the Gaussian likelihood has two terms: the
PAE reconstruction error σrecon(p) and the noise level in the
data σ. We measure the PAE reconstruction error as a function
of observation time by binning the test data in 5 day intervals
and linearly interpolating when performing the posterior
analysis. The model uncertainty is calculated as a fraction of
the observed flux rather than the standard deviation.

For each SN, we perform posterior analysis in order to find
the best-fit data reconstruction under the PAE model. In
addition to the intrinsic latent parameters included in the
normalizing flow, we have a free time-shift parameter Δp to
allow for a different time-origin p= 0 than the SALT2 fits used
for initial model training and the extrinsic magnitude residual

ΔM. Therefore, the posterior analysis takes the form of

ˆ ([ ( )] ) ( )= D ¢ + D-x g b u pM p, , , 8recon
1

where we simultaneously fit for the ΔM, ¢u , and Δp values that
best reconstruct the spectral time series for each SN. A
Gaussian prior on the time shift can be added, as the
uncertainty on the time of the peak luminosity is generally
half a day (Saunders et al. 2018), but we found that
unnecessary here.
To find the maximum of the posterior (MAP), we begin

optimization from the best-fit encoded value of the data, as well as
24 additional initialized points in the (ΔM, u, Δp) parameter
space. Optimization is performed using the Limited-memory
BFGS (LBFGS) algorithm. To ensure that we converge to the
global minimum and not some local minimum near ΔM= 0, we
sample these 24 initialization points from a much larger region
than the prior distribution u and thus the variations of any
parameter are not artificially small due to any limitations of the
encoder. We initialize 10 points with a magnitude residual linearly
spaced between ΔM= (−1.0, 1.0) and 10 points linearly spaced
between ΔAv= (−0.5, 3.0). Sampling these large magnitude
residual and extinction values ensures that SNe with high
velocities or levels of dust will still have an initialization value
nearby and that we will probe the true minimum of the posterior.
We find minimal spread of the minima found from the 25
initialization points for the majority of SNe, except for the most
nearby SNe Ia, whose peculiar velocities can be a large fraction of
the total redshift, for which the large spread in initializations is
required to converge to the best-fit value.
We denote the MAP latent variables as the best-fit parameters

that maximize the posterior from these 25 minima. From the MAP
value we then run Hamiltonian Monte Carlo (HMC) (Neal 2011)
—a Markov Chain Monte Carlo (MCMC) algorithm that takes a
series of gradient-informed steps to produce a Metropolis proposal
—to marginalize over (ΔM, u, Δp) to obtain the final best-fit
model parameters and their uncertainty. While this procedure
provides best-fit parameters nearly equivalent to the MAP values,
it provides a more robust estimation of their uncertainty. HMC is
run for 25,000 iterations following a 10,000 step burn-in in which
the step size is allowed to vary to target an acceptance rate of
0.651 (Beskos et al. 2010).

4. Architecture and Training

The unique PAE architecture coupled with the physical
nature of the data required a number of modifications compared
to the training of a standard autoencoder, including a multistage
training setup and significant data augmentations. Models are
trained in Tensorflow (Abadi et al. 2015), utilizing Tensorflow
Probability (Dillon et al. 2017).

4.1. Limited Data Set

A severe limitation of training deep neural network architec-
tures on an SN Ia data set, compared to typical data sets, is the
very limited number of data samples (only 228 SNe in this work).
Therefore, to prevent overfitting, we implemented a number of
techniques throughout training, including early stopping, dropout,
data augmentation, and weight regularization.

1. Dropout: As each SN provides a time series, we
experimented with two types of dropout. The first is as
usual, dropping out neurons in the encoder with a dropout
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rate = 0.2, ensuring that the dropout mask is the same for
all time steps. The second is dropping out a random
sample of 10% of the spectra for each SN at each training
epoch. This was chosen to negate the small number of
spectra that seem to have higher measurement error, and/
or do not follow a time-series evolution as consistent with
neighboring observations. This spectral dropout helped
training the most, while standard dropout had limited
success, likely due to the small size of the training data
available.

2. L2 regularization: We implemented L2 regularization. L1
kernel regularization was not appropriate for this
problem, as we do not want to encourage sparsity in
our model.

3. Data Augmentation: At each epoch, a random Gaussian
noise draw consistent with the observational error was
added to each spectrum, ( ) s= +x x 0,epoch noise . At
each epoch, we also vary the SALT2 phase given for each
SN by a random Gaussian draw from ( ) s0, t,SN , where
st,SN is the measured value from the SALT2 light-curve
fits and is unique for each SN.

4. Early stopping: We experimented with evaluating
model performance on a validation set every 100
epochs and during early trials experimented with
keeping the model that achieved the lowest reconstruc-
tion loss. We found this had a negligible effect on
keeping the final epoch, as the amount of regularization
employed and the small latent space were sufficient to
prevent the model from overfitting. Therefore, we do
not employ early stopping and do not use a validation
set in addition to the training set, and the test data are
unseen until model evaluation.

4.2. Loss Function

The loss function we used has two terms. The first is a
standard reconstruction error, while the second is a correlation
penalty term to discourage correlations between any desired
terms of the model.

For the reconstruction error term, we investigated a number
of loss functions. Unlike many data sets that only include data
samples, we also have the measurement uncertainty for each
wavelength bin of each sample. A bad reconstruction of a
sample with small measurement errors should be discouraged
more than on a sample with large measurement errors, which a
standard, e.g., mean squared error, loss term does not account
for. We investigated a number of loss functions including mean
absolute error, mean square error, Huber loss, and the error-
weighted counterparts of these, the negative Gaussian log
likelihood, and the square root of each of the previous. We
found the best reconstructions when using a weighted Huber
loss for the reconstruction error term with δ= 25:
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where σ is the measurement uncertainty of the observed spectra
and  is the mask specifying valid wavelength bins. The
Huber loss scales as the mean squared error when the noise-

weighted error is smaller than δ and as the mean absolute error
when the noise-weighted error is greater than δ. This loss helps
with the few measurements that are very large outliers to the
expected spectral envelope.
Each SN has a different number of observations, and thus the

arrays were zero-padded. Therefore, we only compute the loss
over the existing number of observations for each Nobs

SN. This
results in SNe with more observations being given a larger
weight in the training process and is equivalent to weighting
the loss by the number of observations per SNe.
A key use of the PAE will be to constrain the most likely

latent parameters and their uncertainty for each SN Ia.
Specifically, the amplitude 10−0.4ΔM is key to constraining
the intrinsic luminosity of the SN and therefore can be used to
estimate the distance and distance uncertainty to the object.
When unconstrained during training, this parameter will learn
both the intrinsic diversity that affects the spectrum in a similar
manner to a brightness difference and the extrinsic diversity
from peculiar velocities and gray offsets. We expect that the
intrinsic diversity, although similar to an amplitude offset, is
correlated with features of the spectra, while the extrinsic
diversity is by definition uncorrelated. Both the SALT2 and
Twins Embedding models let the amplitude contain both
intrinsic and extrinsic luminosity components and then
implement an additional step to “standardize” the magnitude
residuals in an attempt to explain the intrinsic luminosity
contribution as a linear or nonlinear function of the remaining
model parameters.
During training, instead of letting the amplitude freely vary

to explain both the intrinsic and extrinsic luminosity and then
fitting additional models to explain the two terms, we
encourage the latent space to learn latent features that are
uncorrelated with the amplitude. This ensures that the
amplitude term of the PAE directly models only the extrinsic
amplitude component, and the intrinsic luminosity is described
by a nonlinear combination of the remaining latent parameters.
To achieve this, we added a loss term proportional to the

correlation between the amplitude and the other latent
parameters. This is a similar idea to Pham et al. (2020), who
additionally went further to learn an organized latent space with
their “PCA Autoencoder,” which learns each latent dimension
using a separate autoencoder in a series of encoder–decoder
pairs. Here we include a correlation coefficient penalty,

( )
( ) ( )
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z z

z z
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where the mask can allow for correlations between intrinsic
latent parameters (= 0 on the diagonal and block of z1,..., zn
terms and= 1 otherwise), or can discourage correlations
between any parameters (= 0 on the diagonal and= 1
otherwise).
The total loss function that the autoencoder is trained on then

becomes

( )  l= + , 11AE recon corr corr

where λcorr is a free parameter whose value we chose to return
similar values from the reconstruction and correlation loss
terms in the early stages of model training. We found that this
correlation penalty helped to uncorrelate the latent parameters
with nearly no reduction of reconstruction accuracy.

7

The Astrophysical Journal, 935:5 (17pp), 2022 August 10 Stein et al.



4.3. Training

A number of architectures and training methods have been
investigated for the autoencoder. We found that a fully
connected architecture performed better than a convolutional
one and found the lowest reconstruction error when using three
encoding and decoding hidden layers with (256, 128, 32) and
(32, 128, 256) neurons in each layer, respectively. We found
the best performance when using rectified linear activations
(ReLU) (Fukushima 2004; Nair & Hinton 2010) for each
hidden layer and no activation on the final output of the
encoder or decoder. This results in a large amount of trainable
parameters—nearly 112,000 in each of the encoder and
decoder models. Compared to the number of spectra used
(2696) with 288 spectral bins each (for a total of 776,448
degrees of freedom), the number of model parameters is
sizeable, but in practice, it has been shown that heavily
parameterized neural networks empirically improve both
optimization and generalization (Zhang et al. 2016; Allen-Zhu
et al. 2018), while allowing the model to represent much more
complicated functions than ones with fewer parameters. During
model training, we employ a number of regularization methods
(discussed in Section 4.1) and find no evidence for overfitting.

We trained the autoencoder in four separate stages using the
ADAMW learning rate optimization (Loshchilov & Hutter
2017). In the first stage, we set the extrinsic magnitude
dispersion ΔM, the time difference relative to the SALT2 fits
Δp, and the nonphysical latent parameters zi to zero while
letting the relative extinction ΔAV vary over 1000 training
epochs. In the second stage, we initialize the encoder and
decoder weights and biases with the values learned from the
first stage, randomly reinitialize the weights of the final layer
corresponding to the non-ΔAV parameters (using TensorFlow’s
GlorotUniform initializer, and scaling the weights down by a
factor of 100), and again train both the encoder and decoder
while now also allowing the nonphysical latent parameters to
freely vary, for 1000 epochs. The third step is analogous, now
also allowing ΔM to vary, and we train for 5000 epochs. The
final stage lowers the learning rate from the 0.005 used in the
previous steps to 0.001 and also allows Δp to vary. Each
training stage employs weight decay regularization with an
initial value of 0.0001, and both the learning rate and weight
decay factor follow an exponential decay scheduler with a
decay rate of 0.95 over 300 steps.

We found that this multistage learning procedure helped to
utilize the physical parameters of the model, specifically the
relative extinction ΔAv, which otherwise often got stuck in
local minima near its initialized value. Separating the first two
training stages significantly decreased the level of intrinsic
amplitude that remained in ΔM, even when utilizing the
correlation penalty. We also found that learning Δp in a
separate final stage improved reconstruction accuracy over
introducing it at the beginning of model training, as by this
point the PAE had already learned an accurate description of
SNe Ia evolution and the introduction of Δp simply decouples
from the initial estimate of the SALT2 model. During training,
we enforce D =p 0, D =M 0 (i.e., mean amplitude= 1), and
D =A 0V by a custom layer similar to a batch normalization,
but only standardizing the mean to zero and not the variance.
This is achieved by subtracting the mean (Δp, ΔM, ΔAv) of
each batch during training from the output of the encoder
before feeding the latent parameters to the decoder. When
training is complete, we calculate the mean over the entire

training set and hardcode the encoder to subtract this mean.
These modifications have no effect on the data reconstruction
quality but ensure that the parameters represents the difference
from the average SN. Ensuring D =p 0 produces a phase that
is in sync with the SALT2 fit (on average), but for individual
SN it can decouple the PAE phase from the maximum
luminosity in the B band.
We use 75% of the SNe for training and reserve 25% for

testing for a total of 171 training and 57 testing samples. The
correlation penalty motivates a large batch size in order to
properly evaluate the correlations between SNe, so we utilize a
batch size of 57. As we do not employ early stopping, our model
has not learned using any information from the test set, although
when examining the test at a later time we do not find evidence
of overfitting—the reconstruction error on the test set continues
to decrease, or flattens, throughout training and does not then
begin to increase. While training we impose a minimum redshift
cut of z> 0.02 to negate the significant peculiar velocity
contribution to the low-redshift samples, such that only 145 of
the 171 training samples are used for learning. Spectral
amplitudes as given in reference frame units are already scaled
to∼ (0–1) so we do not further scale the spectra. We minmax
scale the times of observation to range between (0, 1) instead of
(−10, +40) days. Spectra with any masked wavelength bins are
not used in the encoder as spurious values will propagate
through to the latent variables, but the nonmasked portions of the
reconstructed spectra are used in the calculation of the loss.
Our normalizing flow to transform from latent variables z to

latent Gaussian variables u is implemented as a Masked
Autoregressive Flow (MAF) (Papamakarios et al. 2017). As
stated previously, we do not include the ΔM parameter in the
normalizing flow in order to ensure that there is no prior on the
extrinsic amplitude. The normalizing flow is not conditional, as
the z variables do not depend on the observation time. We use 12
layers with 8 units per layer and train for 500 epochs on the
training data using the ADAM optimizer (Kingma & Ba 2014),
splitting 33% off as a validation sample, and stopping when the
log probability on the validation sample does not decrease for 30
epochs. This early stopping was required for the flow, as we
found it has the potential to overfit. The small size of the flow
relative to the decoder means that its computational cost is a
negligible fraction of the posterior analysis. As such, we did not
perform an architecture search to minimize the size of the flow.

5. Results

First, in Sections 5.1 and 5.2 we look at the spectral features
captured by the PAE parameters and the reconstruction
accuracy of our PAE model in comparison to the SALT2
model. In Section 5.3 we discuss the straightforward generation
of simulated SN observations consistent with the data
distribution, followed by a search for any outlying SNe in
Section 5.4, and the determination of cosmological distance
accuracy in Section 5.5.

5.1. Latent Parameters to Spectral Variations

The SN spectral time series we are attempting to reconstruct
have an overall consistent shape at a given rest-frame time,
with small variations from object to object. Therefore, the
observation time fed to the decoder will determine the time
evolution of the SNe, and variations in each latent parameter
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describe the object-to-object spectral variability encoded by a
combination of those dimensions.

In Figure 2 we demonstrate how separately varying each
latent parameter from their mean values in a three nonlinear
latent dimensional model affects the reconstructed spectra. We
find that the latent parameters have each encoded unique
spectral information. The first and second dimensions by
design were restricted to learning physical components of the
model, where the former dimension encodes the extrinsic
amplitude ΔM, and the latter is the time-independent color law
relative extinction coefficient ΔAV. The remaining dimensions
are free to learn any spectral variations that exist in the SN Ia
population used for training. For the specific model shown
here, we find that the z1 dimension seemingly resembles a
combination of an amplitude multiplication correlated with
certain absorption/emission features and a brighter-slower
effect. The z2 and z3 intrinsic latent dimensions focus more on
details of the absorption/emission features and spectral tilt. We
note that unlike a PCA decomposition where components are
ranked by the variance they explain, our autoencoder has no
such constraint, and the intrinsic latent parameters are free to
learn any modes of spectral diversity. The fact that the first
intrinsic latent parameter happened to result in the most
apparent modifications to the reconstructed spectra is a
coincidence.

The key difference between our nonlinear PAE model and a
linear PCA analysis is that the latent dimensions of the PAE are
both non-independent and nonsymmetric around the mean. We
can see clearly from Figure 2 that the effects of a latent value
smaller than the mean (blue) are not simply the inverse of a
latent value larger than the mean (red) but describes
independent information. This allows for more information to
be encoded within a single dimension in comparison to PCA,
where each dimension is simply a multiplier in front of a
tempo-spectral component (i.e., x1M1(t, λ) in the SALT2
model). Additionally, as the latent parameters are passed
through a number of nonlinear layers of the decoder, their
effects on the reconstructed spectra are not limited to the
spectral variations of the independent z1 and z2 dimensions but
can interact in highly nonlinear ways to produce more complex
spectral features than those shown here. We show a model with
three nonlinear parameters for visualization purposes, but the
method can be increased to any dimensionality.

5.2. Accuracy of PAE Data Reconstructions

While we demonstrated that varying latent parameters of the
PAE captures a number of complex spectral and temporal
features, the key to using the model is its accuracy in modeling
the SN Ia observations in the training and test sets. In Figure 3
we compare the SALT2 and PAE reconstructions of the data
for two SNe from the test set. We chose to display an SN with
many observed spectra and a low level of observational noise
(left) and an SN with only a few observations, with none before
peak brightness, and an increased observational noise level
(right). These two examples demonstrate the diversity of
objects in the data set and are a representative display of the
performance of both the SALT2 and PAE models.

We find that the PAE reconstructions are highly accurate
over the entire observation range from −10 to +40 days, even
for samples that have highly nonuniform time sampling. In
comparison to the SALT2 best-fit spectra, we see a better fit
overall, both on the amplitude offset and on the matching of

absorption and emission features on the spectra, particularly the
Ca II H&K, Si II, and OI features at ∼3950Å, ∼6150Å, and
∼7800Å, respectively. For SNe Ia with abnormally large
luminosity at early times (e.g., Nordin et al. 2018), we find that
the PAE reconstruction still matches the observations to high
accuracy, while the SALT2 model fails to capture the spectral
diversity of these types.
The accuracy of the reconstructions of the PAE model

depends on the number of latent dimensions used. Too few
dimensions do not allow for the full spectral variability of the
SNe time series to be expressed, while too many dimensions
can allow the model to improve the fit on the training data, with
no improvement of the test data. By training multiple
autoencoders, each with a different number of intrinsic
nonlinear latent parameters, we studied the optimal latent
dimensionality for reconstruction quality. Using the same AE
architecture and multistage training procedure described in
Section 4 we varied the dimensionality of the latent space from
two to eight. When referring to the dimensionality of the latent
space, we count only the model parameters that capture
intrinsic and extrinsic effects and do not include the time shift
relative to the SALT2 fits, Δp.
To quantify the quality of the model reconstructions, we

report the level of unmodeled dispersion—the additional
dispersion beyond the observational uncertainty required to
explain the variance of the reconstructions and the data. This is
determined by modeling the observed flux fobs as

( ) ( ) s s= +f f , , 12iobs model obs
2 2

and fitting for the maximum likelihood of the unmodeled
dispersion σi. We report this value in magnitudes for each
wavelength, binned in 5 day intervals, and show the results as a
function of dimensionality in Figure 4.
We find that our PAE outperforms the standard SALT2

model at all wavelengths and observation times and that
increasing the latent dimensionality continues to decrease the
unmodeled dispersion across the time and wavelength range up
until three nonlinear latent parameters (z1, z2, z3), after which it
flattens to show no additional improvement in the test set. The
dispersion near the Ca II H&K and Si II lines (∼3950Å,
∼6150Å) and near the Ca NIR triplet at ∼8100Å shows the
most significant improvement when increasing the nonlinear
latent dimensionality. This clearly demonstrates that additional
components describing the intrinsic variations of the SN Ia
population can learn increasingly complex spectral and
temporal features. The dispersion between ∼6500 and
∼7750Å remains at ∼0.05 mag, as this region has little to
no spectral features that vary between SNe. We find that the
unmodeled magnitude dispersion near peak brightness is on
average the lowest and increases at later times. Between 30 and
40 days after peak brightness we find that the dispersion is
larger than that near the peak. The dispersion is higher even in
spectral regions not associated with strong spectral features,
suggesting that the uncertainty is somewhat underestimated for
these very faint spectra. Integrating the test set over a B-band
bandpass, we find that the SALT unmodeled dispersion near
peak brightness is 0.128 mag, compared to a PAE value of
0.056 mag—a factor of 2.28 larger.
We select the three nonlinear latent dimension model as

optimal for modeling the data, and as we will show below, it
also returns the lowest magnitude residuals. We examine
the best-fit model parameters in Figure 5. We note that the
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Figure 2. Generative sampling of SN Ia spectra as a function of phase, individually varying each latent dimension of a PAE model with two extrinsic (ΔM, ΔAV) and
three intrinsic nonlinear (z1, z2, z3) parameters, while keeping the other latent variables fixed at their mean values. The top panels of each set show the spectra with a
constant offset in luminosity, while the bottom shows the ratio from the mean. For the nonlinear parameters, we also display the resulting synthetic photometry. Blue
lines are values lower than the mean, transitioning through red for values higher than the mean.
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parameter values shown are those found by finding the
minimum of the log posterior through HMC and not simply
the encoded values of each SN. This ensures that the full
parameter space has been explored and thus the variations of
any parameter are not artificially small due to any limitations of

the encoder. From visual inspection, we find that the magnitude
residual contains no noticeable correlations with the other
model parameters, confirming that our multistage training setup
and correlation penalty have ensured that the intrinsic model
parameters have learned clear correlations between the intrinsic

Figure 3. Top: PAE reconstruction (red) and best-fit SALT2 model (blue) of two SNe from the test set (black). For visualization purposes, the spectra in the top panels
have been shifted vertically by a constant factor of the observation time. Bottom: corresponding best-fit PAE model parameters and their errors determined from HMC.
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luminosity and spectral and/or temporal features of SNe Ia.
Given that the dimensionality of the non-ΔM parameters is
large, it is possible that small correlations between these
parameters and the magnitude residual remain. If so, these
correlations could be uncovered with an additional nonlinear
model, which could then be used to explain and reduce the
extrinsic magnitude such as in the SALT2 or the Twins

Embedding analysis. Initial investigations with a fully
connected neural network trained on the latent parameters of
the training set did not reduce the extrinsic magnitude
dispersion when applied to the test set. We also find that the
average time shift relative to the SALT2 fit, Δp, is within
approximately half a day and is consistent with the uncertainty
of the SALT2 fits and that the standard deviation of ΔAv is

Figure 4. Unmodeled dispersion—the additional dispersion beyond the observational uncertainty required to explain the variance of the reconstructions and the data
(Equation (12))—of SALT2 and our PAE model with increasing dimensionality. The dispersion is measured in five-day intervals for the training data (top) and on the
unseen test data (bottom). Beyond three nonlinear dimensions (z1, z2, z3), plus extinction (ΔAV) and a free amplitude scaling parameter (ΔM), we found no
improvement in the test sample and thus do not display the additional panels here.

Figure 5. Best-fit PAE parameters for all SNe with a redshift greater than 0.02. The Pearson correlation coefficient r is shown in the top right of each panel.
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0.132. A small number of SNe have time shifts of a few days
relative to the SALT2 best fits. These are mostly SNe with no
observations near or before peak brightness.

Figure 6 compares the best-fit PAE parameters to the SALT2
and the Twins Embedding models described in Section 2. As
expected, we find a high degree of correlation between the
magnitude residuals (ΔMSALT2, ΔMTwins, ΔMPAE) and the
color ( D Dc A A, ,V V

SALT2 RBTL PAE) between the three models,
although there is a nonzero scatter. We find that the magnitude
residuals cover a similar range of values, while the relative
extinction inferred by the Twins Embedding covers a larger
range of values than that of our PAE. This larger range is likely
due to the multiple steps required to perform the Twins
Embedding. Rather than train all parameters simultaneously as
for the PAE, the Twins Embedding magnitude and extinction
are fit first in the two-parameter RBTL step, and thus,DAV

RBTL

is forced to simultaneously explain both the extinction and any
intrinsic color-like effects. Alternatively, the PAE simulta-
neously learns all intrinsic and extrinsic parameters, and the
intrinsic latent parameters (z1, z2, z3) can learn any color-like
features that happen to be correlated with spectral or temporal
features. If we instead allow the PAE to learn only a magnitude
and extinction, we find that the best-fit extinction values are
nearly equivalent to those reported by the Twins Embedding.

We find a clear correlation between our z1 parameter and the
x1 parameter of SALT2 and various correlations between our
latent space and the latent Twins Embedding parameters
(z1→ ξ2, z2→ ξ1, z3→ ξ3).

5.3. Simulating New SNe Ia

The generation of new SN samples consistent with the data
is straightforward with a probabilistic autoencoder. We simply

sample a random latent vector u from a unit Gaussian, pass this
through the normalizing flow to get the sample in autoencoder
latent space z, append the desired observation times and
magnitude offset ΔM, and pass this through the decoder to
yield a new spectral time series. By the probabilistic nature of
the normalizing flow Gaussian latent space u, the distribution
of generated samples corresponds to the density of similar
samples in the training data set—significant outliers will be
rare, while “average” spectra will have a higher probability of
being generated.

5.4. Detecting Outlying SNe

The PAE framework allows for an effortless determination
of data density in both z and u space, which are simply related
through the Jacobian determinant of the normalizing flow.
Samples residing in low-density regions of the latent space are
less similar to other SNe, while those in high-density regions
are more similar to others. Therefore, by selecting SNe by the
density of their latent representations, p(z), we can pull out
outliers or common samples for further inspection. Low density
does not mean that these SNe are more poorly fit by the PAE—
we do not find that either the reconstruction error or magnitude
residual depends on density—only that the latent parameters
and hence corresponding spectral characteristics are more
unique.
Figure 7 shows the density as a function of redshift for all

SNe (left), calculated from their best-fit latent parameters. We
find no distributional shifts between SNe in the training and test
sets, so we include all 228 SNe here. It is clear that there are a
few SNe residing in low-density regions of the latent space—
i.e., with the smallest values of log p(z). ΔAV is included, and
because strongly reddened SNe Ia can easily become isolated in

Figure 6. PAE parameters compared to SALT2 and the Twins Embedding/RBTL for overlapping SNe with a redshift greater than 0.02. The Pearson correlation
coefficient r is shown in the top right of each panel.
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that dimension, low values for log p(z) can result. This explains
all the cases with log p(z)< 10−8. A number of these are at low
redshifts, but as we have excluded the amplitude parameter
ΔM from the density calculation as described in Section 3.2,
the density estimation should be immune to the effects of
peculiar velocities on amplitudes.

For a small number of SNe in our data set, we have external
labels specifying peculiar subtypes, including 91T-like, 91bg-
like, and 09dc-like, which we highlight with different colored
markers. We find that the best-fit PAE model parameters for
these SNe are in regions of lower than average density, which
is expected given that they belong to rare subpopulations. As
the number of SNe of a certain subtype grows, their region of
the latent space becomes well populated, and thus a low
likelihood is more effective at finding individual rare SNe, such
as the 91bg-like example, rather than whole subpopulations
such as the 91T-like. For subpopulations, it is better to examine
clusters in various regions of the latent space.

A closer inspection of individual dimensions of the latent space
(right panel) shows that low-density SNe are not necessarily
peculiar among all dimensions; rather, their peculiar features are
often isolated in a specific dimension, such as large values ofΔAV,
as noted above, or low values of z2 or z3. We annotate the 14
lowest-density examples in order to enable comparisons between
the left and right panels. We find that five of the six lowest-density
examples are SNe with high extinction and are mostly at low
redshifts. The large extinction results in a relatively small
transmitted flux, so perhaps similar SNe Ia at high redshift are
simply below the flux detection threshold. We also find a clear
cluster of 91T-like SNe with low values of both z2 and z3,
demonstrating that the PAE is a valuable tool for population studies
of SNe. Beyond the five low-redshift SNe with high extinction, we
find no clear population shifts as a function of redshift.

5.5. Cosmological Distance Measurements

The application with perhaps the most scientific utility is the
determination of the magnitude residual for each SN, which is
the key factor for determining the distance accuracy. As
explained in Section 4 the three-stage training and correlation

penalty term encouraged our PAE model to separate the
extrinsic magnitude component, which is uncorrelated with
features of the spectral time series, from any amplitude-like
modification that is correlated with intrinsic spectral features or
temporal evolution. Thus, the extrinsic magnitude residual ΔM
is directly fit for during the posterior analysis phase of our
analysis, and we do not require any additional steps to uncover
correlations between model parameters and magnitude resi-
duals in order to perform magnitude standardization. This
differs from the methodology employed in the SALT2 and
Twins Embedding models that we compare to, which employ
an additional linear (SALT2) or nonlinear (Twins) model to
predict the magnitude given the model parameters, and remove
this predicted value to obtain a final magnitude residual.
Although the PAE model parameters may end up having some
small remaining correlations with ΔM that can be exploited to
explain the magnitude residuals, we do not perform any
magnitude standardization for the results shown here. Whether
magnitude standardization benefits from learning correlations
during model training, rather than determining them after
model training is completed, is not obvious a priori but is
nevertheless an interesting topic for future investigation.
As outlined in Section 3.2 we marginalize over (ΔM, u, Δp)

for each SN Ia to obtain the final best-fit model parameters and
their uncertainty through HMC starting from the best-fit MAP
parameter, using the mean and percentiles of the posterior
samples as the mean and error on the best-fit parameters. To
enhance the predictive performance and error estimation on the
physical SN parameters inferred by a single PAE model, we use
the weighted mean and variance calculated from the results of 10
separate models. Each model is trained in an identical fashion on
the training set with the procedure described above but using a
different random seed to initialize network weights. On the ΔM
parameter for all models, we include a peculiar velocity error
component, assuming a velocity of vpec= 300 km s−1.23

We first studied the magnitude residuals as a function of the
latent dimensionality of the model, finding a clear decrease in

Figure 7. Best-fit PAE latent parameters with peculiar SNe Ia displayed as colored markers. The left panel shows the density of each SN as a function of the redshift,
while the right panel displays where the SN resides in each latent dimension. We annotate the 14 lowest-density examples in order to enable comparisons between the
left and right panels.

23 This is the prediction from linear perturbation theory (see, e.g., Hui &
Greene 2006).
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the magnitude residual for both the training and test sets as we
increase the latent dimensionality from zero to three nonlinear
intrinsic parameters. Similar to the intrinsic dispersion results
of Figure 4, we find no statistically significant improvement
when increasing beyond a model with three nonlinear
parameters (i.e., (z1, z2, z3) plus extinction and an amplitude
scaling). This is in agreement with Boone et al. (2021a, 2021b),
who find quickly diminishing returns when expanding beyond
three nonlinear intrinsic model parameters. From this invest-
igation, we determined that this model is optimal for explaining
the diversity of SNe Ia given our data set and again restrict to
this model for the following results.

In Figure 8 we compare the PAE magnitude residuals to
those derived by SALT2 and Twins Embedding analyses for
SNe Ia in common—137 SNe in the training set and 44 in the
test set. Of this overlapping fraction, 96 of the training and 32
of the test were part of the final Twins cosmological distance
analysis. We display both the (unweighted) rms (denoted σ)
and the normalized median absolute deviation (NMAD) of the
magnitude residuals. While both statistics are similar, the
NMAD is less susceptible to large outliers. We show the rms
and NMAD for SALT2, Twins, and PAE over the subset of
SNe that overlap with the ones used in the final Twins
Embedding cosmological distance analysis.

It is important to note that each analysis had somewhat
different subsets of SNe Ia available for development and
training, especially given the small number of data samples
available, which theoretically could cause a small number of
outlying SNe that exist in one data set but not another to
considerably alter model training. Thus although this analysis
facilitates a comparison of the magnitude standardization
capabilities of the three models, the magnitude residuals we
report inevitably reflect a combination of the strength of the
method at explaining the diversity of SNe Ia coupled with
signatures of the specific data used for model training—it is
impossible to disentangle model implementations from subtle

effects introduced by the different training data. However, by
focusing only on the SNe that do overlap between the different
analyses, we attempt to mitigate any such differences.
For individual SNe Ia, we see consistent results across all

models, specifically the low-redshift objects with large
magnitude residuals resulting from significant peculiar velo-
cities, which helps to validate the fitting procedure employed in
our analysis. Our model was trained using a minimum redshift
cut of 0.02 and thus was not trained using any objects with
significant redshift contribution due to peculiar velocity, but by
excluding the ΔM parameter from the normalizing flow we
have included no prior on the extrinsic amplitude and it is
allowed to freely vary to any value that best fits the data.
We find that our PAE obtains significantly smaller

magnitude residuals than the SALT2 model and shows a
magnitude residual similar to that of the Twins Embedding
analysis. None of the SNe in our data set were used for training
the SALT2 model, such that the test set illustrates an unseen
sample and thus a true test sample performance for both
SALT2 and our PAE. The samples we display for Twins will
include both samples used for training and those used for
testing. For the PAE we find a smaller magnitude residual for
the training set in comparison to the test set, which is
commonly found in the generalization of deep neural networks
to unseen samples, but the difference is not statistically
significant. This does not equate to model overfitting, in which
continuing to improve the fit on the training data comes at a
cost of decreasing performance on unseen test data. As
discussed in Section 4.3 we find no evidence for this, and the
test error continues to decrease until flattening. Had we had a
larger training sample, we would have separated out a
validation set and stopped training when the error on this set
stopped decreasing, but we did not want to further reduce the
number of available training samples by separating out a
validation set in addition to the test set. This choice of not

Figure 8. Magnitude residuals of SNe from the training (top) and test (bottom) sets, including the component from peculiar velocities. Both the SALT2 and Twins
Embedding results are obtained from a linear (SALT2) or nonlinear (Twins) magnitude standardization procedure, while our probabilistic autoencoder has been
trained to explicitly separate the extrinsic magnitude from the intrinsic SNe luminosity and thus requires no standardization. Solid data points are those used in the final
Twins Embedding cosmological distance analysis, while data points with some transparency are the remaining overlap between our data and the full Twins
Embedding data set.
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performing early stopping during training was made to ensure
that the model remained blind to the test set.

We tabulate the final magnitude residuals for all methods in
Table 1. While we do not have the same SNe in our data set
that were used in Boone et al. (2021b), we find that the
statistics we report for their results are similar to those quoted
in their paper of NMAD= 0.83± 0.010 and σ= 0.101±
0.070 over the full sample of 134 SNe that passed their data
cuts. To approximate removing the component of the mag-
nitude residual stemming from peculiar velocities, we assume a
300 km s−1 velocity for each SN, which contributes an added
dispersion of 0.053 mag. We subtract this from the rms in
quadrature. The uncertainty reported on the rms and NMAD is
determined by bootstrap resampling (Efron 1979) of the
magnitude residuals.

The agreement between the Twins Embedding analysis and our
PAE is interesting given that the data products used to perform the
analysis are quite different. The Twins Embedding models the
diversity of SNe Ia only at maximum light, interpolating a max
light spectra using observations from within (−5 days, +5 days)
from peak brightness. Therefore, any information from observa-
tions outside of this window is not included in the Twins
Embedding analysis, while the PAE is allowed to learn the full
temporal evolution in addition to the diversity at maximum light.
Nevertheless, the magnitude residuals between the two methods
are similar, seemingly pointing toward observations near peak
brightness being the most important for standardization, similar to
that noted by Fakhouri et al. (2015) and Léget et al. (2020). To
investigate the PAEs reliance on observations near peak, we
perform an equivalent posterior analysis while masking any
spectra within a (−5 day, +5 day) range from maximum
brightness. We find that when only using spectra outside of this
range the NMAD and rms increase to 0.080± 0.014 and
0.112± 0.011 on the training set, and 0.092± 0.032 and
0.135± 0.017 on the test set. This magnitude residual when only
using observations away from peak brightness, while still an
increase over using the full time series, demonstrates that the PAE
does not require any observations near peak brightness to still
obtain relatively small magnitude residuals and implies that the
intrinsic brightness of the SNe can be determined from spectra at
any date from −10 to +40 days relative to peak brightness.

6. Discussion and Conclusions

The goal of this paper is to develop a single framework for
SN Ia data analysis, developing a data-driven model that can be
used for all of the downstream tasks, including posterior

analysis of all of its parameters including the distance modulus,
anomaly detection, and realistic SN Ia spectro-temporal
simulations. Our approach is a physically parameterized
probabilistic autoencoder (PAE) to model Type Ia SN spectral
evolution. We showed that the model, trained directly on the
data without any data cuts, separately learns both intrinsic
variation and extrinsic variation (dust and distance modulus) of
SN variability and can model the data to very high accuracy.
We introduced a multistage training procedure, which, with the
addition of a correlation penalty term between the model
parameters, disentangles extrinsic magnitude changes due to
peculiar velocities from the portion of the intrinsic luminosity
of the SNe that correlated with optical spectral and/or temporal
features.
The disentanglement of intrinsic and extrinsic effects during

training is novel to this work. Usually, the discovery of
correlations between model parameters and magnitude disper-
sion composes an additional “magnitude standardization” step
after the model is trained, which requires another linear or
nonlinear model and thus introduces another set of errors that
need to be propagated through to the final constraints. In
contrast, in our approach, all of the training is done once. We
demonstrate that the intrinsic scatter, even when inflated by the
peculiar velocity dispersion, can be as low as 0.1 mag, which
bodes well for peculiar velocity measurements with local SNe.
Both our analysis and that of Boone et al. (2021b) show that

SNe Ia inhabit a three-dimensional parameter space (see
Rubin 2020 for a more complete discussion of this concept).
Physical modeling of SN Ia explosions involves many more
parameters (Hillebrandt & Niemeyer 2000), e.g., so our results
imply the presence of strong correlations among these parameters.
The z1,2,3 space presented here offers an efficient means of
comparing SN Ia model results with real SNe Ia. Significant
challenges remain in producing high-fidelity spectral models of
SN Ia explosions (see Röpke et al. 2012), as even small changes
in the modeling of radiative transfer produce strong effects on
model spectra. More mature physical models can eventually be
efficiently compared in our z1,2,3 space.
We release all codes, and the trained models, at https://

github.com/georgestein/suPAErnova.
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