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Spatial concordance of DNA methylation classification 
in diffuse glioma

  

Niels Verburg,† Floris P. Barthel,† Kevin J. Anderson, Kevin C. Johnson, Thomas Koopman, 
Maqsood M. Yaqub, Otto S. Hoekstra, Adriaan A. Lammertsma, Frederik Barkhof, 
Petra J. W. Pouwels, Jaap C. Reijneveld, Annemieke J. M. Rozemuller, Jeroen A. M. Beliën, 
Ronald Boellaard, Michael D. Taylor, Sunit Das , Joseph F. Costello, William Peter Vandertop, 
Pieter Wesseling, Philip C. de Witt Hamer,‡ and Roel G. W. Verhaak‡

Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit, and Brain Tumor Centre, Cancer Center 
Amsterdam, Amsterdam, the Netherlands (N.V., W.P.V., P.C.W.H., R.G.W.V.); Cambridge Brain Tumor Imaging 
Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, 
Addenbrooke’s Hospital, Cambridge, UK (N.V.); The Jackson Laboratory for Genomic Medicine, Farmington, 
Connecticut, USA (F.P.B., K.J.A., K.C.J., R.G.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam 
UMC, location VUmc, Amsterdam, the Netherlands (T.K., M.M.Y., O.S.H., A.A.L., F.B., P.J.W.P.); UCL Institutes of 
Neurology and Healthcare Engineering, London, UK (F.B.); Department of Neurology, Amsterdam UMC, location 
VUmc, Amsterdam, the Netherlands (J.C.R.); Department of Neurology, Stichting Epilepsie Instellingen Nederland, 
Heemstede, the Netherlands (J.C.R.); Department of Pathology, Amsterdam UMC, location VUmc, Amsterdam, the 
Netherlands (A.J.M.R., J.A.M.B., P.W.); Department of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, 
Canada (M.D.T.); Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Kids, Toronto, Ontario, 
Canada (M.D.T., S.D.); Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University 
of Toronto, Toronto, Ontario, Canada (S.D.); Department of Neurological Surgery, UCSF, San Francisco, California, 
USA (J.F.C.); Princess Máxima Centre for Paediatric Oncology, Utrecht, the Netherlands (P.W.) 

†These authors contributed equally to this work.

‡These authors are co-senior authors.

Corresponding Author: Roel G. W. Verhaak, PhD, The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 
06107, USA (roel.verhaak@jax.org).

Abstract
Background. Intratumoral heterogeneity is a hallmark of diffuse gliomas. DNA methylation profiling is an 
emerging approach in the clinical classification of brain tumors. The goal of this study is to investigate the effects 
of intratumoral heterogeneity on classification confidence.
Methods. We used neuronavigation to acquire 133 image-guided and spatially separated stereotactic biopsy 
samples from 16 adult patients with a diffuse glioma (7 IDH-wildtype and 2 IDH-mutant glioblastoma, 6 diffuse 
astrocytoma, IDH-mutant and 1 oligodendroglioma, IDH-mutant and 1p19q codeleted), which we characterized 
using DNA methylation arrays. Samples were obtained from regions with and without abnormalities on contrast-
enhanced T1-weighted and fluid-attenuated inversion recovery MRI. Methylation profiles were analyzed to devise 
a 3-dimensional reconstruction of (epi)genetic heterogeneity. Tumor purity was assessed from clonal methylation 
sites.
Results. Molecular aberrations indicated that tumor was found outside imaging abnormalities, underlining the 
infiltrative nature of this tumor and the limitations of current routine imaging modalities. We demonstrate that 
tumor purity is highly variable between samples and explains a substantial part of apparent epigenetic spatial 
heterogeneity. We observed that DNA methylation subtypes are often, but not always, conserved in space taking 
tumor purity and prediction accuracy into account.
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Conclusion. Our results underscore the infiltrative nature of diffuse gliomas and suggest that DNA methyl-
ation subtypes are relatively concordant in this tumor type, although some heterogeneity exists.

Key Points

• DNA methylation subtype is stable across glioma specimens from the same tumor

• Tumor purity is an important consideration for DNA methylation-based glioma 
classification.

Diffuse gliomas are the most common malignant brain tu-
mors in adults.1 Patients with a diffuse glioma have a poor 
prognosis and eventually succumb to treatment failure.2 
The diagnosis, treatment, and follow-up of diffuse gliomas 
rely heavily on imaging,2 with magnetic resonance imaging 
(MRI) as the current standard. Using contrast-enhanced 
T1-weighted (T1c) MRI, diffuse gliomas can be divided 
into enhancing tumors, predominantly glioblastoma, or 
non-enhancing tumors, predominantly low-grade gliomas 
(LGG). T1c MRI is used for enhancing and T2/fluid-attenuated 
inversion recovery (FLAIR) MRI for non-enhancing gliomas.3 
However, diffuse glioma infiltration extends beyond the ab-
normalities detected on standard MRI.4,5 Also, the majority 
of diffuse gliomas recur directly adjacent to the standard 
MRI-guided surgical cavity.6 Heterogeneity of tumor cells 
is a salient feature of diffuse gliomas and thought to be a 
driver of treatment failure. Treatment exposure may drive 
the clonal evolution of heterogeneous tumor cell popu-
lations, leading to the selection and survival of resistant 
subpopulations in some gliomas, whereas refractory dis-
ease in others may be driven by other factors.7

Numerous studies have looked at genetic and 
transcriptomic heterogeneity in diffuse glioma. Recent 
single-cell transcriptome studies have elucidated tran-
scriptional heterogeneity in regulatory programs that con-
verge on the cell cycle or distinct cellular states8,9 while 
bulk tissue analysis has demonstrated extensive heteroge-
neity in somatic drivers such as EGFR and PDGFRA10,11 as 
well as in general somatic alteration burden.12–14

DNA methylation is an epigenetic modification where 
a methyl group is added to cytosine, most commonly 

measured in the CpG dinucleotide context. These modifica-
tions are of interest to the neuro-oncology field as genome-
wide patterns in DNA methylation profiles provide a robust 
method for disease classification and a viable supplement 
to traditional histopathology.15,16 Nevertheless, the extent 
of intratumoral heterogeneity in DNA methylation remains 
unclear.

To improve our understanding of the epigenetic hetero-
geneity of diffuse gliomas, we present a comprehensive 
analysis of DNA methylation of a large number of spatially 
separated samples taken from regions with and without 
imaging abnormalities. We devised a 3-dimensional re-
construction of the DNA methylation landscape for each 
tumor, with particular consideration to the variable ratios of 
tumor and nonmalignant cells in each sample. These ratios 
are quantified as tumor purity using a methylation-based 
metric that, although not being the perfect test due to non-
zero levels of tumor purity in nonmalignant samples,17 has 
proven to be a major confounder in genomic analyses.18 
Our analysis underlines the infiltrative nature of gliomas be-
yond visible tumor boundaries and demonstrates a rather 
homogeneous DNA methylation landscape across space.

Methods

Sample Acquisition and Study Design

A schematic overview of the study design is given in 
Figure 1. The exploration cohort consisted of 16 patients 

Importance of the Study

Genetic and transcriptional intratumoral heterogeneity 
is a key feature of diffuse gliomas and thought to drive 
treatment failure. Epigenetic profiling is an emerging 
approach used for clinical classification of brain tu-
mors that results in improved alignment of patients and 
treatments. However, how epigenetic intratumoral het-
erogeneity may impact the robustness of classification 
remains unclear. Through DNA methylation profiling of 
multiple spatially mapped biopsies from diffuse gliomas 
in 16 adult patients and 11 patients in a validation cohort, 
our study shows that epigenetic spatial heterogeneity 

is confounded by the presence of non-tumor cells and 
the prediction accuracy of the classifier. Taking these 
confounders into account, DNA methylation-based 
classification is conserved in space in most patients, 
including tumor presence outside standard imaging ab-
normalities. These findings emphasize the importance 
of tumor purity assessment in DNA methylation studies. 
The uniformity of DNA methylation-based classifica-
tion within tumors demonstrates the robustness of this 
method for classification, corroborating its value for 
clinical studies and practice.
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with an untreated initial diffuse glioma, treated at the 
Amsterdam UMC, location VU medical center (VUmc), 
Amsterdam, the Netherlands. Patients’ characteristics 
are given in Supplementary Table 1. All patients were 
participants of the FRONTIER study of which the protocol 
has been published.19 This protocol was approved by the 
Medical Ethics Committee of the VUmc and registered in 
the Dutch National Trial Register (www.trialregister.nl, 
unique identifier NTR5354). Sampling was performed, 
using a stereotactic biopsy procedure preceding the cra-
niotomy, to obtain 2 samples of each biopsy location for, 
respectively, Formalin-Fixed Paraffin-Embedded (FFPE) 

and Molfix© (patients 1-8) or snap-frozen (patients 9-16) 
fixation. Samples were obtained from regions with and 
without abnormalities on T1c and FLAIR MRI in accord-
ance with the study protocol. All procedures were car-
ried out in accordance with the Declaration of Helsinki.20 
Written informed consent was obtained from all patients.

The validation cohort comprised 11 patients with 61 
FFPE samples from multi-sector sampling of an untreated 
diffuse glioma treated at the Toronto Western Hospital, 
Toronto, Canada or UCSF Brain Tumor Center, San 
Francisco, CA, USA. In addition, 64 FFPE samples from 
64 patients without a glioma from the German Cancer 
Network served as controls.

DNA Isolation

DNA isolation was performed by adding proteinase K 
and incubating at 56°C using the QIAamp DNA Mini Kit 
(Qiagen). DNA was quantified using a Qubit Fluorometer 
(Thermo Fisher). Genomic DNA was bisulfite converted 
using the QIAamp DNA FFPE Tissue Kit (Qiagen).

DNA Methylation Profiling by Microarray

Data were processed using the minfi packages in R (R 
Foundation for Statistical Computing, Vienna, Austria). 
Data from the 450k (IlluminaHumanMethylation450k.
ilmn12.hg19) and EPIC platforms (IlluminaHumanMethyl
ationEPICanno.ilm10b2.hg19) were processed separately. 
Detection P values were calculated for each probe and 
sample, and samples with an average detection P value 
>.01 were removed from follow-up analysis. Data were 
normalized using BMIQ from the wateRmelon package in 
R. Probes on sex chromosomes and known cross-reactive 
probes were removed, as were probes mapping to known 
SNPs and probes with a detection P value >.01. Finally, 
data from different platforms were merged.

DNA Methylation-Based Classification

Glioma methylation subtype classification was performed 
using L2-regularized logistic regression using the R 
package LiblineaR. Classifiers were trained and evaluated 
on a set of common probes from TCGA glioma samples 
with known methylation subtypes. The classes LGm6-GBM 
and PA-like were merged into a single class LGm6-PA as 
the separation between these classes was based on pheno-
type. To improve the classification accuracy of samples with 
low tumor purity, DKFZ controls were added to the classi-
fier as separate classes. DKFZ DNA methylation classifica-
tion was performed using the molecular neuropathology 
classification tool (version 11b4).16 Briefly, the software 
preprocesses, normalizes, and performs batch adjustment 
on raw DNA methylation data to generate probabilistic es-
timates for each defined tumor subtype. The tumor subtype 
with the highest probability was selected as the classifica-
tion. Samples with a subclassification accuracy lower than 
0.5 were assigned to the main DKFZ class in accordance 
with the Molecular Neuropathology guideline.

  
Stereotactic multi-region
image guided biopsies

Sampling in different imaging regions

Histology Molecular Imaging

Qualitative Methylation

Cell density
and MIB1-index

CNV

Data collection per sample:

No abnormalities
on imaging

FLAIR abnormalities

Contrast
enhancement

A

B

C D E

Fig. 1 Graphical overview of the methods. A. Multiple preopera-
tively planned stereotactic biopsies were taken from each patient 
tumor. B. Biopsies were acquired in regions in and outside imaging 
abnormalities. C. Acquired tissue was subject to comprehensive 
histological (C), molecular (D), and imaging (E) analysis. 
  

Methylation Purity Estimation and 
Simplicity Score

DNA methylation measurements of tumor purity included 
the PAMES (Purity Assessment from clonal MEthylation 
Sites) algorithm and simplicity score.17,21 For the PAMES 
nonmalignant central nervous system, samples from the 
German Cancer Research Center (DKFZ) were used as a 
control. PAMES operates in 3 steps. First, area under the 
curves are calculated for each probe discriminating be-
tween tumor and normal. Second, a selection of the most 
informative probes is made. Third, tumor purity is calcu-
lated on input samples using these probes.

DNA Copy Number Aberrations Inferred From 
EPIC Microarray

Using the R/Conumee package, copy number aberrations 
were inferred from the 450k and EPIC array data. Merged 
data from the control samples were used as a baseline 
control for all analyses. Genomic data were used to calcu-
late aneuploidy.

Immunohistochemistry and Qualitative 
Assessment

FFPE samples from the exploration cohort were stained 
using hematoxylin and eosin (HE) and MIB-1. Two expert 
neuropathologists independently, blinded for imaging re-
sults, assessed the presence or absence of tumor in each 
sample. Consensus was obtained in case of disagreement. 
The patient’s histopathological diagnosis was made based 
on resection material using routine procedures and ac-
cording to the WHO 2016 criteria.22

Histopathological Analysis of Whole-Slide Scans

Using a Hamamatsu Nanozoomer XR, FFPE slides stained 
with HE and MIB-1 of each sample were digitalized. The ×40 
magnification images were converted to multiple mosaic 
images using NDPITools software. Cellularity, defined as 
the number of cells per square millimeter, was calculated 
with Cellprofiler. Proliferation index, defined as percentage 
of Ki-67-positive nuclei of all nuclei, was calculated using 
locally developed software.

Radiologic Evaluation of Sample Locations

Standard imaging sequences from the patients in the ex-
ploration cohort included T1-, T2-, T2/FLAIR, and T1c MRI. 
For each sample location, the presence of an abnormal 
signal for each imaging sequence was independently as-
sessed by a neurosurgeon and neurosurgical resident 
with ample experience in glioma imaging. Consensus was 
obtained in case of disagreement.

Sample-to-Tumor Surface Distance

Tumors were segmented on FLAIR and, in case of contrast 
enhancement, also on T1c MRI, using Brainlab Software, by 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab134#supplementary-data


2057Verburg et al. Spatial concordance of epigenetic glioma classification
N

eu
ro-

O
n

colog
y

and Molfix© (patients 1-8) or snap-frozen (patients 9-16) 
fixation. Samples were obtained from regions with and 
without abnormalities on T1c and FLAIR MRI in accord-
ance with the study protocol. All procedures were car-
ried out in accordance with the Declaration of Helsinki.20 
Written informed consent was obtained from all patients.

The validation cohort comprised 11 patients with 61 
FFPE samples from multi-sector sampling of an untreated 
diffuse glioma treated at the Toronto Western Hospital, 
Toronto, Canada or UCSF Brain Tumor Center, San 
Francisco, CA, USA. In addition, 64 FFPE samples from 
64 patients without a glioma from the German Cancer 
Network served as controls.

DNA Isolation

DNA isolation was performed by adding proteinase K 
and incubating at 56°C using the QIAamp DNA Mini Kit 
(Qiagen). DNA was quantified using a Qubit Fluorometer 
(Thermo Fisher). Genomic DNA was bisulfite converted 
using the QIAamp DNA FFPE Tissue Kit (Qiagen).

DNA Methylation Profiling by Microarray

Data were processed using the minfi packages in R (R 
Foundation for Statistical Computing, Vienna, Austria). 
Data from the 450k (IlluminaHumanMethylation450k.
ilmn12.hg19) and EPIC platforms (IlluminaHumanMethyl
ationEPICanno.ilm10b2.hg19) were processed separately. 
Detection P values were calculated for each probe and 
sample, and samples with an average detection P value 
>.01 were removed from follow-up analysis. Data were 
normalized using BMIQ from the wateRmelon package in 
R. Probes on sex chromosomes and known cross-reactive 
probes were removed, as were probes mapping to known 
SNPs and probes with a detection P value >.01. Finally, 
data from different platforms were merged.

DNA Methylation-Based Classification

Glioma methylation subtype classification was performed 
using L2-regularized logistic regression using the R 
package LiblineaR. Classifiers were trained and evaluated 
on a set of common probes from TCGA glioma samples 
with known methylation subtypes. The classes LGm6-GBM 
and PA-like were merged into a single class LGm6-PA as 
the separation between these classes was based on pheno-
type. To improve the classification accuracy of samples with 
low tumor purity, DKFZ controls were added to the classi-
fier as separate classes. DKFZ DNA methylation classifica-
tion was performed using the molecular neuropathology 
classification tool (version 11b4).16 Briefly, the software 
preprocesses, normalizes, and performs batch adjustment 
on raw DNA methylation data to generate probabilistic es-
timates for each defined tumor subtype. The tumor subtype 
with the highest probability was selected as the classifica-
tion. Samples with a subclassification accuracy lower than 
0.5 were assigned to the main DKFZ class in accordance 
with the Molecular Neuropathology guideline.

Methylation Purity Estimation and 
Simplicity Score

DNA methylation measurements of tumor purity included 
the PAMES (Purity Assessment from clonal MEthylation 
Sites) algorithm and simplicity score.17,21 For the PAMES 
nonmalignant central nervous system, samples from the 
German Cancer Research Center (DKFZ) were used as a 
control. PAMES operates in 3 steps. First, area under the 
curves are calculated for each probe discriminating be-
tween tumor and normal. Second, a selection of the most 
informative probes is made. Third, tumor purity is calcu-
lated on input samples using these probes.

DNA Copy Number Aberrations Inferred From 
EPIC Microarray

Using the R/Conumee package, copy number aberrations 
were inferred from the 450k and EPIC array data. Merged 
data from the control samples were used as a baseline 
control for all analyses. Genomic data were used to calcu-
late aneuploidy.

Immunohistochemistry and Qualitative 
Assessment

FFPE samples from the exploration cohort were stained 
using hematoxylin and eosin (HE) and MIB-1. Two expert 
neuropathologists independently, blinded for imaging re-
sults, assessed the presence or absence of tumor in each 
sample. Consensus was obtained in case of disagreement. 
The patient’s histopathological diagnosis was made based 
on resection material using routine procedures and ac-
cording to the WHO 2016 criteria.22

Histopathological Analysis of Whole-Slide Scans

Using a Hamamatsu Nanozoomer XR, FFPE slides stained 
with HE and MIB-1 of each sample were digitalized. The ×40 
magnification images were converted to multiple mosaic 
images using NDPITools software. Cellularity, defined as 
the number of cells per square millimeter, was calculated 
with Cellprofiler. Proliferation index, defined as percentage 
of Ki-67-positive nuclei of all nuclei, was calculated using 
locally developed software.

Radiologic Evaluation of Sample Locations

Standard imaging sequences from the patients in the ex-
ploration cohort included T1-, T2-, T2/FLAIR, and T1c MRI. 
For each sample location, the presence of an abnormal 
signal for each imaging sequence was independently as-
sessed by a neurosurgeon and neurosurgical resident 
with ample experience in glioma imaging. Consensus was 
obtained in case of disagreement.

Sample-to-Tumor Surface Distance

Tumors were segmented on FLAIR and, in case of contrast 
enhancement, also on T1c MRI, using Brainlab Software, by 

a neurosurgical resident with ample experience in glioma 
imaging. The segmentations and sample coordinates were 
exported in 3D T1c MRI space. Sample-to-tumor surface 
distances were obtained, using Matlab, by calculating the 
distance between the sample coordinate and the nearest 
surface coordinate of the tumor segmentation, using 
FLAIR for non-enhancing and both FLAIR and T1c MRI for 
enhancing tumors.

Statistical Analysis

Median values with interquartile range were used to de-
scribe non-normally distribute data. Mann-Whitney U 
test was used to compare distributions between sub-
groups. Correlations were calculated with the Spearman or 
Pearson correlation and compared using Fisher z transfor-
mation. Comparison of percentages between subgroups 
was performed using Fisher test normalization and scaling 
of purity measurement modalities was performed by sub-
tracting the mean and dividing by the standard deviation. 
To compare absolute purity estimates, the normalized 
and scaled purity measurements were rescaled using the 
PAMES mean and SD. P values <.05 were considered sta-
tistically significant. R (version 3.5.3) was used for all sta-
tistical analyses.

Heterogeneity Analysis

Each probe per patient was classified as methylated (B > 
0.3) or unmethylated (B < 0.3). A table of all possible pair-
wise combinations of samples was generated. Each pair of 
samples was evaluated for heterogeneity by counting the 
number of identical (homogeneous) probes, the number 
of differing (heterogeneous) probes, and percentages 
were subsequently calculated. Each pair was annotated ac-
cording to the metadata for each sample in the comparison.

For each patient and sample type, we tabulated all pos-
sible combinations of any number of samples, iteratively 
including between 1 and the total number of possible sam-
ples. The proportion of heterogeneous and homogeneous 
probes was calculated when considering each sample 
in a given set. For each patient/sample type and sample 
number, we then calculated the mean and standard devia-
tion of the proportion heterogeneous across all sets.

Results

We obtained 133 multi-region image-guided samples from 
8 patients (6 glioblastoma, IDH-wildtype, 2 glioblastoma, 
IDH-mutant) with an enhancing tumor (76 samples) and 
8 patients (6 diffuse astrocytoma, IDH-mutant, 1 glioblas-
toma, IDH-wildtype and 1 oligodendroglioma, IDH-mutant 
and 1p19q codeleted) with a non-enhancing tumor (47 
samples) (Figures 1 and 2). In enhancing gliomas, 12 sam-
ples were taken outside both T1c and FLAIR abnormalities 
(T1c−/FLAIR−), 44 samples outside (T1c−/FLAIR+), and 20 
inside T1c abnormalities (T1c+/FLAIR+). In non-enhancing 
gliomas, 16 samples were taken outside (FLAIR−) and 
41 inside FLAIR abnormalities (FLAIR+). The maximum 
sample-to-tumor surface distance in enhancing tumors 
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was 36.5 mm and 25.6 mm, respectively, assessed with T1c 
and FLAIR MRI. In non-enhancing tumors, the maximum 
sample-to-tumor surface distance was 22.5 mm assessed 
with FLAIR MRI.

Tumor Purity Accounts for a Considerable 
Amount of Variation in DNA Methylation Profiles

Since nonmalignant cells in a sample influence molec-
ular tumor assessment,21 we sought to quantify tumor 
purity, defined as the ratio of tumor to nonmalignant 
cells. We evaluated and compared several methods of 
tumor purity estimation based on histology, MRI, DNA 
methylation, and DNA copy number (Supplementary 
Figure 1A and B). DNA methylation-based purity esti-
mates, PAMES provided the strongest correlations with 
all other features.17 There was no difference in tumor pu-
rity between samples from IDH-mutant and IDH-wildtype 
tumors (Supplementary Figure 1C). WHO subtype was 
associated with tumor purity (Kruskal-Wallis P < .001), 
with the highest tumor purities in oligodendroglioma, 

IDH-mutant and 1p/19q codeleted and the lowest for glio-
blastoma, IDH-mutant (Supplementary Figure 1D), most 
likely due to the known admixture of nonmalignant cells 
in grade IV diffuse glioma.23 This association between 
grade and tumor purity is in line with a recent compre-
hensive analysis of TCGA samples.18

We performed a principal component analysis of the 
DNA methylation data to elucidate drivers of differ-
ences in methylation (194 samples, Figure 3A). Included 
in the analysis were samples from a second cohort con-
sisting of 61 multi-sector tumor samples from 11 gliomas 
(5 diffuse astrocytoma, IDH-mutant, 4 glioblastoma, IDH-
wildtype, 1 anaplastic astrocytoma, IDH-mutant, and 1 
anaplastic oligodendroglioma, IDH-mutant and 1p19q 
codeleted).16,24,25 The first principal component (percentage 
of variance 71.2%) separated samples based on IDH status 
(Figure 3A). The second principal component (percentage 
of variance 5.8%) was associated with tumor purity, as 
evidenced by the linear increase in tumor purity and the 
samples from the control cohort (Figure 3B). These find-
ings indicate that tumor purity accounts for a considerable 
amount of variation in DNA methylation profiles.
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Fig. 2 Overview of 133 samples in 16 patients with initial diffuse glioma. Samples are numbered in order of tumor purity for each patient. First 
row = IDH status with + representing a mutation, 1p/19q status with + representing a codeletion, and contrast enhancement with + representing 
the presence of contrast on T1c MRI. Second row = tumor purity assessed with PAMES. Third row = 3D reconstruction of FLAIR (yellow), T1c 
MRI (red) abnormalities, and sample locations. Due to the 2D representation of 3D object samples behind and outside the abnormalities might 
appear to be within the abnormalities. Fourth row = Euclidean distance (mm) between sample coordinate and tumor surface assessed with FLAIR 
(yellow) and T1c MRI (red). Negative values indicate samples obtained within the tumor volume. Fifth row = the presence of abnormalities on 
FLAIR (top) and T1c MRI (bottom) at the sample location. Sixth row = median cellularity and percentage of MIB1-positive cells of the sample, and 
final row = consensus assessment of tumor presence by 2 neuropathologists. Abbreviations: FLAIR, fluid-attenuated inversion recovery; IDH, 
isocitrate dehydrogenase; MRI, magnetic resonance imaging; PAMES, Purity Assessment from clonal MEthylation Sites; T1c, contrast-enhanced 
T1-weighted.
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DNA Methylation Heterogeneity Is a Function 
of Space

To precisely quantify DNA methylation heterogeneity, we 
performed pairwise comparisons of binarized methyla-
tion values between samples. The vast majority of probes 
were homogeneously methylated (mean 0.93, range 
0.83-1.0) between samples, suggesting that only a small 
fraction of probes is responsible for all intratumor heter-
ogeneity. Similar trends have been observed in compari-
sons of nonmalignant samples from the same lineage.26 
Unsurprisingly, any 2 samples from different unrelated 
tumors showed less probes with identical methylation 
(mean 0.93 ± 0.02) compared to any 2 samples from the 
same tumor (mean 0.96 ± 0.03). However, this difference 
was subgroup-dependent. For example, any 2 samples 
from 2 unrelated IDH-mutant tumors show more simi-
larity on average than any 2 samples from 2 unrelated 
IDH-wildtype tumors (Figure 4A), likely related to the 
propensity of (G-CIMP-positive) IDH-mutant tumors to 
uniformly methylate. As expected, a higher degree of het-
erogeneity can be observed when comparing samples 
classified as nonmalignant to samples classified as tumor, 
based on DNA methylation classification, within the same 
patient. Any 2 IDH-wildtype tumor samples from the same 
patient show a comparable degree of heterogeneity when 
compared to 2 nonmalignant samples from the same pa-
tient (Kolmogorov-Smirnov P = 1.0, pink and green dashed 
lines). In comparison, any 2 IDH-mutant tumor samples 
from the same patient demonstrate less heterogeneity 
compared to any 2 nonmalignant samples from the same 
patient (Kolmogorov-Smirnov P < .001). These findings 
may reflect the clonal nature and shared ancestry of IDH-
mutant tumor cells, whereas specimens are classified as 
nonmalignant harbor cells from a mixture of lineages.

To assess the impact of additional samples on tumor 
heterogeneity, we calculated the percentage of identical 
probes pooling any number of samples per patient, sep-
arating samples classified as tumor and nonmalignant 
(Figure 4B). The majority of heterogeneity was captured 
by the first 2 samples per patient. Although additional 
samples further contributed to overall heterogeneity, 
the change in heterogeneity decreased with each addi-
tional sample. Next, we investigated the relation between 
sample-to-sample distance and heterogeneity. These were 
positively correlated for both nonmalignant and tumor 
samples (Figure 4C). These results suggest that heteroge-
neity is a function of space and that increased physical sep-
aration between cells increases cell-to-cell heterogeneity.

DNA Methylation-Based Classification Is Highly 
Conserved in Space After Adjusting for Tumor 
Purity and Classification Ambiguity

To establish the relationship between DNA methylation-
based classification and tumor purity, we inferred sample 
subtypes based on 2 previous published classifiers 
(Supplementary Figure 2A),15,16 which showed a large 
conformity for classification families (4.6% discordance, 
Supplementary Figure 2B) and slightly lower conformity 

for family subtypes (12.4% discordance, Supplementary 
Figure 2C). As expected, samples with a low tumor pu-
rity were assigned a control subtype whereas high tumor 
purity samples were assigned a tumor subtype when as-
sessed by the TCGA classifier (Supplementary Figure 2D). 
The differences in subtype assignment and its relation to 
tumor purity were clearly captured by the principal com-
ponent analysis (Figure 3A). There were no significant dif-
ferences between the tumor purity of the different tumor 
subtypes in the exploration dataset (Supplementary Figure 
2E) while in the validation dataset (Supplementary Figure 
2F), the tumor purity was lower in the Classical-like com-
pared to Mesenchymal-like subtype, which are methylation 
subtypes based on unsupervised hierarchical clustering 
with a majority of, respectively, Classical and Mesenchymal 
expression subtypes as described by Verhaak et al.27 To ex-
plore the heterogeneity of tumor subtypes within a tumor, 
we analyzed which tumor subtypes were recognized 
within each patient across the core and validation dataset. 
The majority of patients (24 of 27)  did not show hetero-
geneity in tumor subtype as assessed by the TCGA clas-
sifier (Figure 5). In 3 patients (Toronto-02, VUmc-05, and 
VUmc-17) with TCGA tumor subtype heterogeneity, the 1 
(VUmc-05, VUmc-17) or 2 (Toronto-02) discordant samples 
were the lowest purity tumor sample identifying tumor pu-
rity as the confounding factor for the found heterogeneity 
(Supplementary Figure 3A). Also, the prediction accuracy 
of tumor samples was lower in patients with subtype het-
erogeneity (mean prediction accuracy 71.0%) than without 
(mean 94.9%, P < .001).

When we classified samples according to the DKFZ clas-
sifier, no heterogeneity was found for the main classes 
(Supplementary Figure 3B and C). Heterogeneity of main 
class subtypes, so-called family members, was found in 8 
patients (VUmc-02, VUmc-04, VUmc-07, VUmc-14, VUmc-17, 
Toronto-03, UCSF-01, and UCSF-18). Both tumor purity and 
prediction accuracy were lower in tumor samples of these 
8 patients with subtype heterogeneity (mean tumor purity 
75.9 ± 0.09 and mean prediction accuracy 73.4 ± 14.9) com-
pared to tumor samples of patients without heterogeneity 
(mean 78.1 ± 10.9, P = .046 and 87.8 ± 18.0, P < .001, respec-
tively), suggesting tumor purity and prediction accuracy 
as potential confounding factors for the observed hetero-
geneity in these patients (Supplementary Figure 3D). In 2 
patients (VUmc-02 and VUmc-17), the discordant samples 
were the lowest tumor purity, although the absolute differ-
ence in tumor purity was small. In 3 patients (Toronto-03, 
UCSF-01, and UCSF-18), the discordant samples were the 
lowest prediction accuracy, although the absolute differ-
ence in prediction accuracy was small except for patient 
UCSF-01. Three patients (VUmc-04, VUmc-07, and VUmc-14) 
showed variable tumor purity and prediction accuracy of 
the tumor samples suggesting true heterogeneity. To vali-
date the possible heterogeneity in these patients, we evalu-
ated the histological and imaging data that was available 
for the exploration cohort. The only difference we found be-
tween subtypes was higher cellularity (P = .016) and more 
frequent contrast enhancement on T1c (P < .001) in A IDH, 
HG samples compared to A IDH samples (Figure 6A). This 
confirmed the true heterogeneity in patient VUmc-04, with 
both A IDH, HG samples having the highest cellularity and 
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for family subtypes (12.4% discordance, Supplementary 
Figure 2C). As expected, samples with a low tumor pu-
rity were assigned a control subtype whereas high tumor 
purity samples were assigned a tumor subtype when as-
sessed by the TCGA classifier (Supplementary Figure 2D). 
The differences in subtype assignment and its relation to 
tumor purity were clearly captured by the principal com-
ponent analysis (Figure 3A). There were no significant dif-
ferences between the tumor purity of the different tumor 
subtypes in the exploration dataset (Supplementary Figure 
2E) while in the validation dataset (Supplementary Figure 
2F), the tumor purity was lower in the Classical-like com-
pared to Mesenchymal-like subtype, which are methylation 
subtypes based on unsupervised hierarchical clustering 
with a majority of, respectively, Classical and Mesenchymal 
expression subtypes as described by Verhaak et al.27 To ex-
plore the heterogeneity of tumor subtypes within a tumor, 
we analyzed which tumor subtypes were recognized 
within each patient across the core and validation dataset. 
The majority of patients (24 of 27)  did not show hetero-
geneity in tumor subtype as assessed by the TCGA clas-
sifier (Figure 5). In 3 patients (Toronto-02, VUmc-05, and 
VUmc-17) with TCGA tumor subtype heterogeneity, the 1 
(VUmc-05, VUmc-17) or 2 (Toronto-02) discordant samples 
were the lowest purity tumor sample identifying tumor pu-
rity as the confounding factor for the found heterogeneity 
(Supplementary Figure 3A). Also, the prediction accuracy 
of tumor samples was lower in patients with subtype het-
erogeneity (mean prediction accuracy 71.0%) than without 
(mean 94.9%, P < .001).

When we classified samples according to the DKFZ clas-
sifier, no heterogeneity was found for the main classes 
(Supplementary Figure 3B and C). Heterogeneity of main 
class subtypes, so-called family members, was found in 8 
patients (VUmc-02, VUmc-04, VUmc-07, VUmc-14, VUmc-17, 
Toronto-03, UCSF-01, and UCSF-18). Both tumor purity and 
prediction accuracy were lower in tumor samples of these 
8 patients with subtype heterogeneity (mean tumor purity 
75.9 ± 0.09 and mean prediction accuracy 73.4 ± 14.9) com-
pared to tumor samples of patients without heterogeneity 
(mean 78.1 ± 10.9, P = .046 and 87.8 ± 18.0, P < .001, respec-
tively), suggesting tumor purity and prediction accuracy 
as potential confounding factors for the observed hetero-
geneity in these patients (Supplementary Figure 3D). In 2 
patients (VUmc-02 and VUmc-17), the discordant samples 
were the lowest tumor purity, although the absolute differ-
ence in tumor purity was small. In 3 patients (Toronto-03, 
UCSF-01, and UCSF-18), the discordant samples were the 
lowest prediction accuracy, although the absolute differ-
ence in prediction accuracy was small except for patient 
UCSF-01. Three patients (VUmc-04, VUmc-07, and VUmc-14) 
showed variable tumor purity and prediction accuracy of 
the tumor samples suggesting true heterogeneity. To vali-
date the possible heterogeneity in these patients, we evalu-
ated the histological and imaging data that was available 
for the exploration cohort. The only difference we found be-
tween subtypes was higher cellularity (P = .016) and more 
frequent contrast enhancement on T1c (P < .001) in A IDH, 
HG samples compared to A IDH samples (Figure 6A). This 
confirmed the true heterogeneity in patient VUmc-04, with 
both A IDH, HG samples having the highest cellularity and 
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showing contrast enhancement on T1c (Figure 6B). In the 4 
glioblastoma patients with multiple subtypes, neither his-
tology nor imaging could confirm or reject the subtype het-
erogeneity (Figure 6C). Therefore, we conclude there is true 
DNA methylation subtype heterogeneity in patient VUmc-
04, based on DNA methylation, histology, and imaging 
data, and patients VUmc-07 and VUmc-14, based on DNA 
methylation data. Based on all available data, it remains 
unclear if there is true heterogeneity in the remaining 
5 patients. Although not statistically significant, all true 
heterogeneous patients had a glioblastoma (chi-squared 
P  =  .17), yet heterogeneity was not related to IDH status 
(chi-squared P = .73). Overall in our cohort, a low frequency 
of true spatial heterogeneity of DNA methylation-based 
subtypes was observed (14%, 3 of the 22 patients), when 
taking tumor purity and prediction accuracy into account, 
yet possible heterogeneity cannot be ruled out in another 
5 (19%) patients.

Since O6-methylguanine-DNA methyl-transferase (MGMT) 
promoter methylation status is an important prognostic 
and predictive marker we assessed its spatial distribution. 
Heterogeneity was found in 30% of patients and was not re-
lated to tumor purity (Pearson correlation P = .19), IDH status, 
histology or DNA methylation classification heterogeneity 
(chi-squared P = 1.0, P = .76, and P = .78, respectively).

DNA Methylation Abnormalities Extend Beyond 
Standard MRI Boundaries

To understand the spatial distribution of glioma infiltra-
tion, we analyzed the correlation of tumor purity and sub-
types with the distance to the tumor surface assessed with 
T1c for enhancing and FLAIR MRI for non-enhancing tu-
mors. As expected, the distance of samples to the tumor 
surface showed a linear relationship with tumor purity 
(Supplementary Figure 4A). In non-enhancing tumor, sam-
ples classified as Cortex were found further away from 
the radiological tumor boundaries than all the other sub-
types (Supplementary Figure 4B). Yet, in enhancing tumor, 
this difference was not found, possibly indicating a more 
diffuse infiltration pattern of enhancing tumors. When 
evaluating the infiltration pattern in the histological sub-
groups, no difference was found except that distance to 
tumor surface in 1 oligodendroglioma (median −7.9 mm, 
IQR −14.5 to −3.9 mm) was lower than in IDH-mutant dif-
fuse astrocytoma (−3.2  mm, −6.3 to 3.6  mm, P  =  .047) 
(Supplementary Figure 4C).

As anticipated, in enhancing tumors the T1c+/FLAIR+ 
region showed the highest tumor purity, followed by the 
T1c−/FLAIR+ and T1c−/FLAIR− (Supplementary Figure 5A). 
In non-enhancing tumors, tumor purity was higher in the 
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FLAIR+ than the FLAIR− region. Interestingly, samples 
taken from regions outside standard imaging abnormal-
ities (FLAIR− in non-enhancing and T1c−/FLAIR− and T1c−/
FLAIR+ in enhancing tumors) showed a tumor subtype in 
36% and 17% of enhancing and non-enhancing gliomas, 
respectively (Supplementary Figure 5B). Conversely, sam-
ples taken from within the standard imaging abnormalities 
showed a nonmalignant subtype in 35% of enhancing tu-
mors, which is most likely due to necrosis in these samples. 
In non-enhancing tumors, 15% of samples within the FLAIR+ 
region showed a nonmalignant subtype. Tumor presence, 
assessed as the ratio of tumor and nonmalignant TCGA sub-
types, in the different imaging regions was comparable be-
tween histological subgroups (all chi-squared tests P > .05) 
(Supplementary Figure 5C). Samples with tumor subtypes 
were found up to 24  mm outside imaging abnormalities. 
These findings support the diffusely infiltrative nature of 
these tumors and corroborate the notion that standard MRI 
does not capture the true extent of diffuse glioma infiltration.

Discussion

This study represents a comprehensive analysis of spa-
tially separated samples in diffuse glioma. The combination 

of histological, radiological, and DNA methylation data en-
abled us to explore the spatial contexts of tumor purity, 
epigenetic molecular subtypes, and tumor heterogeneity. 
Our study demonstrates that in most tumors, molecular 
subtypes are stable and homogeneous after considering 
tumor purity. Moreover, gliomas are diffusely infiltrative 
tumors, and our data clearly show that they indeed ex-
tend beyond the tumor boundaries found on MRI. Finally, 
in our study, the extent of heterogeneity in tumor samples 
was predominantly equal to or less than in nonmalignant 
samples.

Information on the spatial heterogeneity of epigenetic 
molecular subtypes in the literature is limited. A  recent 
study reported intratumor DNA methylation-based sub-
type heterogeneity in 5 of the 12 glioblastomas in their 
cohort.28 We were unable to confirm this extent of heter-
ogeneity in our study. The differences may be explained 
by our approach to account for tumor purity prior to de-
termining intratumoral epigenetic subtype classification. 
The non-purity–related heterogeneity that was found 
could be explained by focal malignant progression in 
patients with an IDH-mutant astrocytoma, while cellular 
state plasticity, as described by Neftel et al,8 might be an 
explanation for the coexistence of both mesenchymal and 
RTK II subtypes in one of the IDH-wildtype glioblastoma 
patients. Although technically difficult,29 future single-cell 
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of the histological and radiological images of the patient VUmc-04: HE-stained histology slide of a sample classified as A IDH (S3) and A IDH, HG 
(S9) showing the higher cellularity in the A IDH, HG sample. Sagittal T1c MRI images of the same samples showing contrast enhancement in 
the A IDH, HG, but not in the A, IDH sample. C. Barplot of cellularity (upper), proliferation index (middle), and contrast enhancement on T1c MRI 
(lower) of the tumor samples of glioblastoma patients of the exploration cohort with subtype heterogeneity. Abbreviations: HE, hematoxylin and 
eosin; MRI, magnetic resonance imaging; T1c, contrast-enhanced T1-weighted.
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DNA methylation profiling can be expected to drastically 
increase our understanding of DNA methylation classifi-
cation heterogeneity. MGMT promoter methylation status 
proved to be more heterogeneous than DNA methylation 
subtypes, which is most likely due to the use of 2 probes 
for the MGMT status compared to ~1000 probes for the 
DNA methylation subtype.

We observed that samples obtained outside standard 
imaging abnormalities, on FLAIR in non-enhancing and 
on T1c MRI in enhancing gliomas, displayed similar ep-
igenetic molecular subtypes as the samples from the 
tumor core. The fraction of tumor cells per specimen 
varied between the different MRI regions, with lower 
fractions in regions outside of imaging abnormalities. 
The presence of tumor tissue outside standard imaging 
abnormalities is well known.4,5 Our results suggest that 
spatial imaging heterogeneity in glioma is associated 
with tumor purity and not with epigenetic heterogeneity, 
although heterogeneity at the genomic and mutational 
level as cause cannot be excluded and has recently been 
reported for progressive IDH-mutant astrocytoma.30 This 
was confirmed by the strong correlation between tumor 
purity and the imaging score. Our observations imply 
that a viable part of the tumor, especially in IDH-wildtype 
glioblastomas, is left behind after resection of standard 
imaging abnormalities.

A limitation of this study is the difficulty of assessing the 
true tumor purity since there is no gold standard. Still, we 
have compared many tumor purity metrics and choose 
the most representative of those. Another limitation is 
the evaluation of tumor heterogeneity by bulk DNA meth-
ylation analysis instead of single-cell analysis, although 
correlating imaging data with single-cell analysis might 
prove difficult due to the different levels of detail. Finally, 
the use of T1c and FLAIR MRI for the assessment of tumor 
to sample distance is a limitation, since these modalities 
are known to be less accurate for the detection of diffuse 
glioma infiltration.31 However, they are still the current 
standard imaging and therefore represent the daily prac-
tice of glioma treatment.

In conclusion, we demonstrate that DNA methylation 
subtypes in diffuse glioma show little intratumoral het-
erogeneity and are uniform across the different imaging 
regions, underscoring the diffuse infiltrative nature of 
this disease and the robustness of DNA methylation 
subtypes.
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Supplementary material is available at Neuro-Oncology 
online.
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