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Abstract

Current rule induction systems (e.g. CN2) typically rely on a "separate
and conquer" strategy: they induce one rule at a time, removing the newly
covered examples from the training set after each step. This results in a dwin
dling number of examples being available for learning successive rules, which
in turn causes several problems that adversely affect the accuracy of the re
sulting rules. The research reported here investigates the alternative: learning
all rules simultaneously using the entire training set for each. A viable ap
proach using this strategy is proposed and implemented in the Rise 1 system.
Empirical comparison of the new system with CN2 suggests that "conquering
without separating" performs similarly to its counterpart in simple domains,
but achieves increasingly substantial gains in accuracy as the domain difficulty
grows, without sacrificing speed.





1 Introduction and motivation

Current machine learning approaches to the induction of concept definitions from
examples fall mainly into two categories: "divide and conquer" and "separate and
conquer." "Divide and conquer" methods [11, 14] recursively partition the instance
space until regions of roughly constant class membership are obtained. This approach
has often worked well in practice, but is plagued by the splintering of the sample that
it causes, resulting in decisions being made with less and less statistical support as
induction progresses. "Separate and conquer" methods [7, 4, 10] alleviate this problem
somewhat by inducing instead a set of rules that covers all or most positive examples,
while covering no or few negative examples. This way, as long as the tests/conditions
used are multiway (i.e. not just binary), the induction of each rule starts with a
larger fraction of the training set than the corresponding decision tree branch. Rules,
however, are induced sequentially, and when learning a new rule only the positive
examples not covered by previous rules are used. The availability of fewer examples
to learn from means that statistical anomalies are harder to weed out and sensitivity
to noise is greater. As a result, it may not be possible to reliably induce some rules
to their full length, causing either overly general or incorrect rules to be produced,
negatively affecting accuracy.

A related problem, first identified by Holte and coworkers [6, 13], is that of small
disjuncts. While covering relatively few examples, small disjuncts tend to be responsi
ble for a disproportionate share of the classification errors committed. Many of these
disjuncts undoubtedly represent actual small disjuncts in the domain. The small size
of others, however, may be an artifact of the "separate and conquer" strategy: since
each such disjunct only attempts to cover a subset of the examples comprising the
corresponding target disjunct (the rest having been removed because they were also
covered by previously induced disjuncts), it may come out smaller than it should
actually be.

All of these problems are alleviated if each rule is learned taking into consideration
the entire training set, i.e. if the induction algorithm "conquers without separating."
Other problems arise in this case, however. One is that the obvious advantage of
"separate and conquer" is forgone: each disjunct now has a confusing influence on
the induction of all others, since the positive examples covered only by it will appear
as "noise" (false positives) when trying to induce them. Whether this noxious effect
prevails over the benefits accrued by conquering without separating is a matter for
investigation; conceivably one or the other case may occur, depending on the charac
teristics of the domain. The aim of the research described in this report is to begin
elucidating this question.

Another problem is that a typical rule induction system (e.g. CN2 [4], or FOIL
[12] in relational domains) would keep producing the same rule if each cycle started
with the whole training set. One way to avoid this is to invert the direction of search:
instead of general-to-specific search, use specific-to-general, starting one search from



each example. This is the solution adopted in the algorithm proposed here, RISE
(Rule Induction from a Set of Examples). Another question that arises is whether
the new procedure, using more searches and more examples in each search, is still
acceptably efficient; analysis and experimentation show that it is.

The remainder of this report is organized as follows. The next section describes
the representation, control structure, heuristics and classification procedure used by
Rise, and its extension to numeric and missing attributes. The time complexity of
the algorithm is then analyzed. RiSE is then tested in several natural and artificial
domains, and its performance compared to CN2's. Finally the results obtained are
discussed and some directions for future work are proposed.

2 The RISE algorithm

2.1 Representation

The Rise 1 system induces a set of rules (the hypothesis) from a set of examples
(the training set). Rules and examples have a similar representation. Each rule or
example has a left-hand side and a right-hand side. The left-hand side is a conjunction
of attribute values, the antecedents. Attributes are identified implicitly by the order in
which they appear. Each attribute may be nominal or numeric. Nominal attributes
take on values which are symbols from some alphabet. Numeric antecedents are
ranges represented by their limits; in the case of an example the upper and lower
limits coincide. Antecedents of both types can take on the special value *, which
stands for "any," i.e. for a disjunction of all possible values in the case of a nominal
attribute, or the range [—oo, oo] in the case of a numeric one. Setting an attribute's
value to * is equivalent to dropping it. The right-hand side (or consequent) of each
rule or example is a single attribute value, the class, which must be nominal, and
cannot be *.

2.2 Control structure

Rise conducts a batch, hill-climbing search through the space of rule sets, i.e. (1)
it uses all the training examples at once, and (2) it maintains at each step only
the best rule set found so far. The initial rule set is simply the training set. A
heuristic value is associated with each possible rule set (the computation of this value
is the subject of the next subsection). At each step RISE attempts to improve the
heuristic value of the current rule set by tentatively generalizing each rule, i.e. it
performs specific-to-general search. A rule is generalized by generalizing one of its
antecedents. A nominal antecedent is generalized by assigning it the value *. The
generalization of numeric attributes is described in a later section. For each rule, RISE
tentatively generalizes each antecedent, and selects the generalization that results in
the greatest heuristic value for the rule set. This generalization is then adopted if the



Input: ES is the training set.

Procedure RISE (ES)

Let RS be ES.

Compute H(RS).
Repeat

For each rule in RS,

Let R be the current version of the rule.

For each attribute-value pair AV in R's antecedent.

Try generalizing AV, and
Compute the resulting H'(RS).

Select the AV whose generalization
results in the greatest H'(RS).

If this H'(RS) >= H(RS),

Then Generalize AV,

If R' is identical to another rule in RS,

Then delete R' from RS,

Replace H(RS) with the maximum H'(RS),
Until no increase in H is obtained.

Return RS.

Table 1: The RiSE algorithm.

corresponding heuristic value is greater than or equal to the current one. Generalizing
in the case of equal heuristic values corresponds to a preference for shorter rules, i.e.
to a direct application of Occam's razor. If the new rule is identical to an existing one,
it is deleted. Search terminates when no generalization yields further improvement.
This procedure can be summarized in the pseudo-code presented in Table 1, where
H(.) is the heuristic evaluation function.

2.3 Heuristics

Rise currently considers the heuristic value of a rule set to be the sum of the heuristic
values of the rules that comprise it, and the heuristic value of an individual rule to
be of the form:

h{r) = p{r) —(1 —7/) 5 n(r)



where r is the rule, p{r) is the number of examples covered by the rule whose con
sequents are identical to the rule's ("positive" examples) , n(r) is the number of
examples covered by the rule whose consequents are different from the rule's ("neg
ative" ones), S is the sample (training set) size, and rj G [0,1] is a noise tolerance
coefficient.

The idea behind rj is that in noisier domains rules should be allowed to cover a
greater proportion of negative examples; in noiseless domains this proportion should
be 0. The ideal "coarseness" of the rules is domain-dependent and there is no univer
sally good level for it; hence the use of a parameter. If 7/ = 0, the S factor in h ensures
that no number of positive examples will make up for covering even a single negative
example, and RISE is thus completely noise intolerant, i.e. any generalization that
covers one or more negative examples will necessarily be rejected. If 77 = 1 Rise is
completely noise tolerant, i.e. all rules will be generalized to a null left-hand side and
the most frequent class will always be selected by the classification procedure below.
In practice, depending on domain characteristics, the useful range for 77 will be more
restricted. A notable point is 77 = 1 — for this value the heuristic becomes simply
h(r) = p{r) —n{r).

Note that in two-class (single-concept) domains RiSE forms rules for both classes,
and so increasing the value of 77 does not necessarily increase the fraction of the
instance space covered by the concept.

2.4 Classification

To classify a test example RiSE matches it with every rule in the induced rule set.
Since more than one rule may match the example, a policy is needed to resolve
conflicts. Rise uses weighted voting among the successful rules. Currently each
rule's weight is simply its heuristic value, on the assumption that rules with higher
heuristic values will be better classifiers. With the heuristic described above, this
results in a preference for rules that (1) cover many examples, i.e. have substantial
statistical support, and (2) cover few examples that are not of the predicted class, i.e.
are accurate classifiers. The test example is assigned to the most voted class.

When no rule matches, RiSE defaults to a best-match policy, instead of the usual
policy of selecting the most frequent class. The number of attributes along which
each rule matches the example is counted, with *-valued attributes always producing
a match, and numeric attributes producing a match when the example's value falls
in the specified range. If there is a tie for the highest match score the corresponding
rules are selected as the voting set, otherwise the single best rule wins. Perfect match
is the special case where the highest match score is equal to the number of attributes.
This is ea.sily implemented and may improve accuracy, as well as forming a bridge
to instance-ba^ed (IBL) algorithms [1]: with appropriate match metrics and voting
weights. Rise will act like an IBL algorithm when the voting rules are ungeneralized
examples.



With the current version of RiSE and the domains used so far, however, no-match
situations are extremely rare, so this feature has little or no impact on the results
presented in this report.

2.5 Handling of numeric and missing values

Most real-world domains have a mixture of nominal and numeric values; extending
Rise to handle the latter is therefore necessary to make it useful. The approach
taken is the following. Initially, for each numeric attribute, all occurring values are
collected and sorted into ascending order. The midpoint of each pair of consecutive
values is then computed, and an ordered list of these midpoints stored, as done in C4.5
[14]. At each generalization step, two generalizations of the attribute are considered:
replacing its upper limit by the next higher point on the list (or cx3 if there is none),
and replacing its lower limit by the next lower point (or —oo) . The results of each
are then treated in the same way as symbolic generalizations.

Missing values also occur frequently in real domains. RiSE currently handles
them simply by taking them to be *, i.e. RISE considers missing attributes to be
pre-generalized. This means that a rule generalized from an example with missing
attributes will match all values of those attributes, and therefore will match each
value with the frequency with which it appears in the testing set. Similarly, a test
example with a missing value for one attribute is considered to match all rules along
that attribute. This is a good "first-order" approximation, but more sophisticated
strategies are possible.

3 Time complexity of RISE

In this section, an upper bound for the time complexity of RiSE is derived, i.e. RiSE
is guaranteed to find a local optimum of the evaluation function in this time. This
will be done first for the purely nominal version of the algorithm, and then extended
to the numeric case. Let E represent the number of examples in the training set, and
A the number of attributes used to describe each example. The initialization phase
of the algorithm consists simply in copying the examples to the rules, which takes
0{EA) time, and computing the initial value of the heuristic, which takes 0{E) time
because it is known to be 1 for each rule (assuming a consistent dataset).

The heart of the algorithm is computing the heuristic evaluation of a tentatively
generalized rule, and this takes 0{EA) time because it involves comparing the rule
with each example along each attribute (at worst) to determine if it matches. In
each repeat cycle generalization is attempted for each attribute of each rule, i.e.
0{EA) times, and the cycle repeats at worst until all attributes have been removed.
Since each rule is generalized independently of the others, i.e. the decision whether
to generalize a rule depends only on the examples covered by its pre-generalized and
post-generalized versions, each repeat cycle is guaranteed to remove one attribute



from each rule, excepting those rules for which generalization has stopped completely
because there are no more useful removals to be made. Thus the cycle will be re
peated at most 0{A) times. Another way to look at this is to consider that all rules
are generalized in parallel, with each repeat cycle performing 0{E) generalizations.
Unless this process is stopped earlier for some rules, after 0(A) cycles all antecedents
of all rules will have been removed.

The time needed to find and delete duplicates of a rule is 0{EA), and this is done
at worst only 0{E) times in each of the 0(A) cycles. The total complexity is therefore
0{EA + EA X EA x A -f EA x E x A) —0{E^A^). This is competitive with e.g.
CN2. (Note that the computations in [4] are only for the basic step of the algorithm,
which is embedded in loops that may run 0{EA) in the worst case.) In particular,
Rise is quadratic in the number of examples, meaning it can be applied directly to all
but very large databases. Average-case time is also likely to be substantially smaller
than the worst case, due to the unlikelihood of some of the assumptions above.

Let V be the average number of observed values per attribute. The introduction
of numeric attributes causes the initialization phase to become 0{EA -(- AVXogV)
due to scanning the examples, sorting values (assumed 0{V log V) for each attribute)
and computing midpoints. The search phase becomes 0{E^A^V), since each numeric
attribute may now take at worst 0{V) steps to generalize instead of a single one. The
latter term will always dominate, since by definition V < E, and so worst-case time
will simply increase by a factor of V. The practical effect of this will depend on the
domain.

4 Empirical evaluation

With the goal of empirically evaluating the usefulness of the "conquering without
separating" strategy, RiSE was compared with a current "separate-and-conquer" rule
induction algorithm on a number of natural and artificial domains. CN2 [4] was chosen
for this purpose because it is probably the most extensively evaluated noise-tolerant
algorithm of this type. A recent, enhanced version was used [3]. All options were set
so as to maximize similarity to RiSE: unordered rules, star size 1, and 0 significance
threshold. Results in [3] indicate that induction and use of unordered rules tend to
significantly increase performance over decision lists. Star size 1 implements a hill-
climbing search, losing some power relative to a beam one, but in practice this seldom
decreases accuracy significantly; in fact, in some domains the results reported here for
CN2 are the best ever. In the new version of CN2 a significance threshold of 0 tends
to produce the highest accuracies. Laplacian accuracy was chosen as the heuristic,
since it is the one that yields the best results [3]. All options save the star size are
the defaults.
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Figure 1: Performance on the task Concept = >1 V BC V DBF V GHIJ.

4.1 Artificial domains

Rise and CN2 were initially tested on two boolean functions of 10 attributes, one
thought to be easier for current rule induction algorithms {Concept = A V BC V
DBF V GHIJ) and one harder [Concept = ABC V BCD V CDA V DAB, with 6
irrelevant attributes). Learning was carried out on sets of 16, 32, 64, 128, 256 and 512
examples, randomly chosen with uniform probability from the 1024 possible, and the
induced rules were tested on the remaining examples. This procedure was repeated
20 times for each domain. The averaged results are presented graphically in Figs. 1
and 2. All nonzero differences in performance between RISE and CN2 are statistically
significant at the 5% level, using a one-tailed paired t test.^

Overall RISE and CN2 seem to perform similarly in the simpler case, with RiSE
faring better when there are fewer examples and conversely when there are many,
but Rise achieves consistently higher accuracy in the harder concept, and by a wider
margin. In order to verify this an even harder domain was tried. Concept = ABCDy
BCDB V CDBA V DBAB V BABC with 5 irrelevant attributes (notice that all
attributes have zero information gain). The results, averages of 20 runs as before

^Right tail if the difference was positive, left one if negative.
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Figure 2: Performance on the task Concept = ABC V BCD V CDA V DAB, with 6
irrelevant attributes.

and significant everywhere at the 5% level, are shown in Fig. 3. The difference in
performance between RiSE and CN2 has again increased substantially, leading to
the hypothesis that conquering without separating becomes more advantageous as
domain difficulty increases.

4.2 Natural domains

Tests were conducted in 16 domains from the UCI repository [9] to determine if
this behavior is observable in practical situations. Selection of domains obeyed the
following criteria: prefer widely used domains, provide a selection of symbolic, nu
meric and mixed domains, and provide a spectrum of difficulty. The domains chosen
were: breast cancer recurrence, credit screening, congressional voting records, con
tact lens fitting, hepatitis, iris flower classification, king-rook-versus-king-pawn chess
endgames, labor negotiations (as supplied by Quinlan with C4.5), lung cancer, lym-
phography, Pima Indians diabetes, primary tumor detection, shuttle landing control,
soybean diseases (the small dataset), and wine classification. The voting domain was
tried in two forms: with and without the "physician fee freeze" attribute. Remov-
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Figure 3: Performance on the task Concept = ABCDy BCDE\/ CDEA\/ DEABW
EABC, with 5 irrelevant attributes.

ing this attribute causes the difficulty of the domain to increase substantially [2, 5],
making possible an evaluation of performance variation with difficulty while holding
other factors constant.

Ten-fold cross-validation was performed for RiSE and CN2, using the same training
and test sets for the two at each step. The following policy was used to set Rise's
noise tolerance parameter r]: in domains with inconsistent examples, i.e. domains
that are guaranteed a priori to be noisy, it was set to 1 —|r, yielding h = p —n as
explained in a previous section; otherwise it was set to 0.^ The results obtained are
summarized in Table 2, where an asterisk indicates that the difference between RiSE
and CN2 was significant at the 5% level using a one-tailed paired t test.^

The results here are not as clear; in most cases, there is no significant difference
between RISE and CN2. Two observations, however, support the hypothesis above
that Rise improves relative to CN2 as the complexity of the domain increases. One
comes from the voting domain, where CN2 performs significantly better in the "easy"

^Several other variations of Rise have been tested, often with superior results, but they are not
reported here.

®See the footnote on the t test in the previous subsection.



Domain RISE CN2

Breast cancer 69.9 71.6

Chess endgames 99.1 95.4

Credit screening 80.6 80.2

Voting records 90.8 96.1

Voting records modif. 89.2 90.6

Contact lenses 68.3 65.0

Hepatitis 79.4 80.7

Iris 94.0 19.4

Labor negotiations 80.0 74.7

Lung cancer 40.8 39.2

Lymphography 77.0 81.6

Pima diabetes 59.0 65.1

Primary tumor 42.5 37.2

Shuttle landing 30.0 40.0

Soybean 98.0 98.0

Wine 82.1 39.9

Table 2: Results in domains from the UCI repository.

version, but suffers a more pronounced drop when the "hard" one is tried, resulting
in no significant difference in this case. The other observation comes from the trio of
medical domains (lymphography, breast cancer, and primary tumor) where CN2 was
originally tested [4] and that is probably the most widely used in the machinelearning
literature: there is no significant difference in the "easier" domain (lymphography) or
the intermediate one (breast cancer), but Rise is significantly better in the "harder"
one (primary tumor). Overall Rise does better than CN2, both on average and in
number of significant wins; this remains true even if the iris domain, where CN2's
performance was anomalously low (only the default rule was induced), is omitted.

5 Discussion and future work

The preliminary results in artificial domains presented here suggest that "conquering
without separating" and "separate-and-conquer" may perform similarly in simple
domains, but the former may be substantially better in harder ones. Observations in
natural domains do not yet unambiguously confirm this, however. This could be due
to several reasons: the domains studied may in fact all be at the easier end of the
spectrum, or further effects may be at work in them that are absent from the idealized
domains. Also, the type of specific-to-general search used in the current version of
Rise may be disadvantageous, because for each single rule the effective sample size



(i.e. the number of examples covered by it and its immediate generalizations) is
initially small, and this may cause early bad decisions to lock the system out of
better arecis of the search space, even if good decisions are made later on.

Performance may be improvable by using more sophisticated heuristics, by gener
alizing more than one attribute at a time, or by a combination of both. This would
overcome the current problem that generalization decisions are "blind" if there are
no examples in the immediate vicinity of the rule (i.e. differing from it by at most
one attribute). This problem is especially acute at the beginning.

Another direction is to implement and test a general-to-specific version of RiSE,
while maintaining the "conquering without separating" strategy. With the goal of
discriminating between the two strategies, it would also be interesting to minimally
modify an existing system like CN2 so as to make it "conquer without separating,"
and compare the results with the original's.

It will also be interesting to measure the size and accuracy of the individual
disjuncts produced, and to relate performance to quantitative measures of concept
difficulty, as done in e.g. [15].

The current, far from optimized version of RISE is somewhat slower than the
C implementation of CN2, but still quite competitive. After eliminating the more
obvious sources of inefficiency in the code, speed may still be improvable without
compromising accuracy by the use of sampling techniques, eg. as done by GOLEM

In any case, if accuracy and speed are comparable, then conquering without sep
arating is probably the strategy of choice, since it yields simpler algorithms. It also
lends itself better to parallelization, because the search for each rule is independent
of the others, and can therefore be carried out on a separate processor, deferring the
deletion of duplicates until the end of the search.
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