
UC San Diego
UC San Diego Previously Published Works

Title
Single-trial neural dynamics are dominated by richly varied movements

Permalink
https://escholarship.org/uc/item/1v23n1j7

Journal
Nature Neuroscience, 22(10)

ISSN
1097-6256

Authors
Musall, Simon
Kaufman, Matthew T
Juavinett, Ashley L
et al.

Publication Date
2019-10-01

DOI
10.1038/s41593-019-0502-4
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1v23n1j7
https://escholarship.org/uc/item/1v23n1j7#author
https://escholarship.org
http://www.cdlib.org/


Articles
https://doi.org/10.1038/s41593-019-0502-4

1Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, NY, USA. 2Department of Organismal Biology and Anatomy, The University of Chicago, 
Chicago, IL, USA. 3The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA. 4Division 
of Biological Sciences, University of California, San Diego, San Diego, CA, USA. 5These authors contributed equally: Simon Musall, Matthew T. Kaufman. 
*e-mail: churchland@cshl.edu

Cognitive functions, such as perception, attention and deci-
sion-making, are often studied in the context of movements. 
This is because most cognitive processes will naturally lead 

to action: pondering where to go or with whom to interact both ulti-
mately lead to movement. Laboratory studies of cognition therefore 
often rely on the careful quantification of instructed movements 
(for example, key press, saccade or spout lick) to track outcomes of 
cognitive computations. However, studying cognition in the context 
of movements leads to a well-known challenge: untangling neural 
activity that is specific to cognition from neural activity related to 
the instructed reporting movements.

To address this problem, researchers often isolate the time of 
decision from the time of movement using a delay period1,2, or pre-
vent the subject from knowing which movement to use until late in 
the trial3,4. A second strategy is to account for the extent to which 
putative cognitive activity is modulated by metrics of the instructed 
movement: for instance, assessing how decision-related activ-
ity co-varies with saccade parameters5,6 or orienting movements7. 
However, instructed movements are only a subset of possible move-
ments that may modulate neural activity.

In the absence of a behavioral task, uninstructed movements, 
such as running on a wheel, can drive considerable neural activ-
ity even in sensory areas8,9. Despite this, other uninstructed move-
ments, such as hindlimb flexions during a lick task, are usually not 
considered when analyzing neural data. This exposes two implicit 
assumptions (Fig. 1a). The first assumption is that uninstructed 
movements have a negligible impact on neural activity compared 
with task-related activity or instructed movements. The second 
assumption is that uninstructed movements occur infrequently 
and at random times, while instructed movements are task-aligned, 
occurring at stereotyped moments on each trial. In this case, unin-
structed movements would increase neural variability trial-by-trial 
but their effects could be removed by trial averaging. Both assump-
tions are largely untested, however, in part due to the difficulty in 

accurately measuring multiple movement types and systematically 
relating them to neural activity.

Revealing the impact of uninstructed movements on neural 
activity is critical for behavioral experiments: movements may 
account for considerable trial-by-trial variance and also mimic or 
overshadow the cognitive processes that are commonly studied in 
trial-averaged data. It is also unclear whether movements may drive 
substantial activity in specific brain areas but have negligible effects 
in others. We therefore leveraged multiple sensors and dual video 
recordings to track a wide array of movements and measure their 
impact on neural activity across the dorsal cortex as well as subcor-
tical structures. A linear encoding model demonstrated that neural 
variability was dominated by movements, with uninstructed move-
ments outpacing the predictive power of instructed movements and 
task variables. This movement dominance persisted throughout 
task learning. Both instructed and uninstructed movements also 
accounted for a large degree of task-aligned activity that was still 
present after trial averaging. We then separated out movement-
related activity, thereby recovering task-related dynamics that were 
otherwise obscured. Taken together, these results argue that during 
cognition, animals engage in a diverse array of uninstructed move-
ments, with profound consequences for neural activity.

Results
Cortex-wide imaging during auditory and visual decision-mak-
ing. We trained head-fixed mice to report the spatial position of 
0.6-s-long sequences of auditory click sounds or visual light-emit-
ting diode (LED) stimuli. Animals grabbed handles to initiate trials, 
then stimuli were presented at randomized times after the handle 
grab (Fig. 1b). Each stimulus was presented twice and, after a 1 s 
delay, animals reported a decision and received a water reward for 
licking the spout corresponding to the stimulus presentation side 
(Fig. 1c). Animals were trained to expert performance on either 
auditory or visual stimuli (Fig. 1d).
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When experts are immersed in a task, do their brains prioritize task-related activity? Most efforts to understand neural activ-
ity during well-learned tasks focus on cognitive computations and task-related movements. We wondered whether task-per-
forming animals explore a broader movement landscape and how this impacts neural activity. We characterized movements 
using video and other sensors and measured neural activity using widefield and two-photon imaging. Cortex-wide activity was 
dominated by movements, especially uninstructed movements not required for the task. Some uninstructed movements were 
aligned to trial events. Accounting for them revealed that neurons with similar trial-averaged activity often reflected utterly 
different combinations of cognitive and movement variables. Other movements occurred idiosyncratically, accounting for trial-
by-trial fluctuations that are often considered ‘noise’. This held true throughout task-learning and for extracellular Neuropixels 
recordings that included subcortical areas. Our observations argue that animals execute expert decisions while performing 
richly varied, uninstructed movements that profoundly shape neural activity.
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We measured cortex-wide neural dynamics using widefield cal-
cium imaging10. Mice were transgenic, expressing the Ca2+ indica-
tor GCaMP6f in excitatory neurons. Fluorescence was measured 
through the cleared, intact skull11 (Fig. 1e). Imaging data were then 
aligned to the Allen Mouse Common Coordinate Framework v3 
(CCF; Supplementary Figs. 1 and 2)12.

Baseline-corrected fluorescence (∆F/F) revealed clear modula-
tion of neural activity across dorsal cortex (Fig. 1f and Supplementary 
Video 1; average response to visual trials, 22 sessions from 11 mice). 
During trial initiation (handle grab), cortical activity was stron-
gest in sensorimotor areas for hind- and forepaw (‘Hold’). The first 
visual stimulus caused robust activation of visual areas and weaker 
responses in medial secondary motor cortex (M2) (‘Stim 1’). Activity 
in anterior cortex increased during the second stimulus presentation 
(‘Stim 2’) and the delay (‘Delay’). During the response period, neu-
ral activity strongly increased throughout dorsal cortex (‘Response’). 
A comparison of neural activity across conditions confirmed that 
neural activity was modulated by whether the stimulus was visual 
or auditory (Fig. 1g) and presented on the left or the right (Fig. 1h). 
Differences across conditions were mainly restricted to primary and 
secondary visual areas and the posteromedial part of M2.

Movements dominate cortical activity. To assess the impact of 
movements, we built a linear encoding model13,14 that could take 

into account a large array of instructed and uninstructed move-
ments alongside task variables to predict changes in single-trial 
cortex-wide activity. To reduce computational cost and prevent 
overfitting, we used singular value decomposition (SVD) on the 
imaging data and ridge regression to fit the model to data compo-
nents. The model’s design matrix included two types of variables: 
discrete behavioral events and continuous (analog) variables. 
Discrete behavioral events included task-related features, such as 
the animal’s choice and the time of sensory stimulus onset (Fig. 2a). 
Other events were movement-related, either instructed (for exam-
ple, licking) or uninstructed (for example, whisking; Fig. 2b,c). For 
each event, ridge regression produced a time-varying event kernel, 
relating that variable to neural activity (Fig. 2c). Event kernels flex-
ibly captured delayed or multiphasic responses (Fig. 2d). Similar 
approaches are often used for motion correction in neuroimag-
ing15 or fitting complex neural responses to sensory or motor events 
during cognitive tasks13,14. The model included analog variables for 
continuous signals such as pupil diameter (Fig. 2b) and the 200 
highest-variance dimensions of video data from the animal’s face 
and body16. For each analog variable, ridge regression produced a 
single scaling weight, making these variables useful in capturing 
neural responses that scale linearly with a given variable (Fig. 2e, 
line 1). However, analog variables cannot account for delayed or 
multiphasic responses (Fig. 2e, lines 2–4).
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Fig. 1 | Widefield calcium imaging during auditory and visual decision-making. a, Schematic for the two main questions addressed in this work. 
Uninstructed movements are exemplified as ‘hindlimb’, but numerous movements are considered throughout this work. b, Bottom view of a mouse in  
the behavioral setup. c, Single-trial timing of behavior. Mice held the handles for 1 s (±0.25 s) to trigger the stimulus sequence. At 1 s after stimulus 
end, water spouts moved towards the mouse so that they could report a choice. d, Visual experts (blue) had high performance with visual but chance 
performance with auditory stimuli. Auditory experts (green) showed the converse. Thin lines, animals; thick lines, mean. Error bars, mean ± s.e.m.;  
n = 11 mice. e, Example image of cortical surface after skull clearing. Overlaid white lines show Allen CCF borders. f, Cortical activity during different task 
episodes. Shown are responses when holding the handles (‘Hold’), visual stimulus presentation (‘Stim 1’ and ‘Stim 2’), the subsequent delay (‘Delay’) 
and the response period (‘Response’). In each trial, stimulus onset was pseudorandomized within a 0.25-s-long time window (inset). g, Left: traces show 
average responses in V1, hindlimb somatosensory cortex (HL) and M2 of the right hemisphere during visual (black) or auditory (red) stimulation. Trial 
averages are aligned to both the time of trial initiation (left dashed line) and stimulus onset (gray bars). Right dashed line indicates response period; 
shading indicates s.e.m. Right, d′ between visual and auditory trials during first visual stimulus and the subsequent delay period. h, As in g but for correct 
visual trials on the left versus right side. f–h, n = 22 sessions. d′, sensitivity index.
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To evaluate how well the model captured neural activity at dif-
ferent cortical locations, we computed the tenfold cross-validated 
R2 (cvR2). Cross-validation ensures that no variance is predicted 
by chance, regardless of the number of model variables (shuffled 
control: cvR2 < 10–6% in all recordings). The upper bound for the 
cvR2 is 100%, because SVD effectively removed single-pixel noise 
from the imaging data. This ceiling was confirmed in each record-
ing by peer-prediction for 500 randomly selected pixels, predict-
ing ~100% of the variance in the remaining pixels. While some 
areas were particularly well predicted in specific trial epochs (for 
example, primary visual cortex (V1) during stimulus presentation), 
there was high predictive power throughout the cortex during all 
epochs of the trial (Fig. 3a). For all data (‘Whole trial’), the model 
predicted 41.2 ± 0.9% (mean ± s.e.m., n = 22 sessions) of all variance 
across cortex. Explained variance was even higher at lower sampling 
rates, indicating that the model mostly predicted slower fluctua-
tions in neural activity instead of frame-to-frame changes at 30 Hz 
(Supplementary Fig. 3).

Spatiotemporal dynamics of the event kernels sensibly matched 
known roles of sensory and motor cortices. For example, pixels 
in left V1 were highly positive in response to a rightward visual 
stimulus (Fig. 3b) with temporal dynamics that matched stimulus 
responses when averaging over visual trials (Fig. 1h). Left somato-
sensory and primary motor forelimb areas were activated during 
right handle grabs (Fig. 3c) and bi-phasic responses in the olfactory 
bulb were associated with nose movements (Fig. 3d). In contrast, 
changes in pupil size were associated with changes in numerous 
cortical areas, resembling previously observed effects of arousal17  
(Fig. 3e). To assess the contribution of video data, we performed 
principal component analysis (PCA) on the model’s weights for all 

video variables (Fig. 3f). In many sessions, video weights were at 
least eight-dimensional, indicating that the video contained different 
movement patterns that accounted for separate neural responses. To 
reveal the diverse relationship between neural responses and video, 
the first six dimensions of the cortical response weights are shown 
for an example session, after sparsening (Fig. 3g). When project-
ing model weights onto video pixels (Fig. 3h), several specific areas 
of the animal’s face were particularly important, especially around 
the animal’s nose, eye and jaw. This indicates that video dimensions 
contributed additional information to the model that was not con-
tained in other movement variables.

We next sought to address which variables were most important 
for the model’s success. The simplest way to gauge importance is 
to fit a single-variable model and ask how well it predicts the data 
compared with the full model (Fig. 4a). However, the lack of spatial 
precision in cvR2 maps for different single-variable models (Fig. 4b) 
suggested that there might be overlap in the explanatory power of 
some model variables that contain related information (Fig. 4a). For 
instance, right visual stimulation also predicted neural activity in 
the somatosensory mouth area and parts of anterior cortex, likely 
because visual stimulation is followed by animal movements in the 
response period. Similarly, cvR2 maps for the right handle and nose 
were almost identical, indicating that both are associated with other 
movements (Fig. 4b). Single-variable models are therefore an upper 
bound for the linear information within a given variable. However, 
the same variable may contribute little to the full model’s overall 
predictive power if it is largely redundant with other model vari-
ables. To measure each variable’s unique contribution to the model, 
we created reduced models in which we temporally shuffled a par-
ticular model variable. The resulting loss of predictive power (∆R2) 
relative to the full model provides a lower bound for the amount of 
unique information (nonredundant to other model variables) that 
the given variable contributed to the model (Fig. 4a). In contrast to 
single-variable cvR2, ∆R2 maps (Fig. 4b) were highly spatially local-
ized and matched brain areas that were also most modulated in their 
corresponding event kernels (Fig. 3). This was consistent in both 
visual and auditory experts (Supplementary Fig. 4). Control record-
ings, from animals expressing GFP instead of a GCaMP indicator, 
confirmed that this was not explained by hemodynamic signals or 
potential motion artifacts (Supplementary Fig. 5).

We then compared cvR2 and ∆R2 values (averaged over all pix-
els) for all model variables. Many variables individually predicted a 
large amount of neural variance, and movement variables contained 
particularly high predictive power compared with task variables 
(Fig. 4c). Video (‘Video’) and video motion energy (‘Video ME’) 
variables had the most predictive power, each explaining ~23% of 
all variance. Differences were even more striking for ∆R2 values, 
which were particularly low for task variables (Fig. 4c). Consider the 
‘time’ variable, which captures activity at consistent times in each 
trial (similar to an average over all trials). A ‘time’-only model cap-
tured considerable variance (light green), but eliminating this vari-
able had a negligible effect on the model’s predictive power. This is 
because other task variables could capture time-varying modulation 
equally well. In contrast, movement variables made much larger 
unique contributions.

To compare the importance of all instructed or uninstructed 
movements (Fig. 1a) relative to task variables, we repeated the 
analysis above on groups of variables (Fig. 4d). Both task and 
instructed movement groups contained similar predictive power 
(cvR2

Task = 17.6 ± 0.6%; cvR2
Instructed = 17.3 ± 0.6%) and unique contri-

butions (∆R2
Task = 2.9 ± 0.2%; ∆R2

Instructed = 3.6 ± 0.2%). Uninstructed 
movements, however, were more than twice as predictive  
(cvR2

Uninstructed = 38.3 ± 0.9%), with a fivefold higher unique contribu-
tion (∆R2

Uninstructed = 17.8 ± 0.6%). To assess the spatial extent of this 
large difference, we created pixel-wise ∆R2 maps for every group 
(Fig. 4e). Throughout cortex, unique contributions of uninstructed 
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Fig. 2 | A linear model to reveal behavioral correlates of cortical activity. 
a, Two example trials, illustrating different classes of behavioral events. 
b, Image of facial video data with three movement variables used in the 
model. c, Absolute averaged motion energy in the whisker pad over two 
trials, showing individual bouts of movement (top). Whisking events 
were inferred by thresholding (dashed line) and a time-shifted design 
matrix (XWhisk) was used to compute an event kernel (βWhisk). λ, scalar 
regularization parameter; I, identity matrix. d, Average βWhisk maps −0.3, 
0.1 and 0.3 s relative to whisk onset (n = 22 sessions). Whisking caused 
different responses across cortex, with retrosplenial (RS) being most active 
0.1 s after whisk onset (red trace) and barrel cortex (BC) after 0.3 s (black 
trace). e, A schematic analog variable (black) fitted to cortical activity 
(gray). Analog variables are linearly scaled to fit neural data instead of 
assuming a fixed event response structure (1). In contrast to the event 
kernel traces in d, analog variables cannot account for neural responses 
that are shifted in time (2) or include additional response features (3–4).
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movements were much higher than either instructed movements or 
the task group. The contribution of uninstructed movements was 
particularly prominent in anterior somatosensory and motor corti-
ces, but also clearly evident in posterior areas such as retrosplenial 
cortex and even V1.

Controls for the importance of uninstructed movements. These 
results strongly suggest that uninstructed movements are critical for 
predicting cortical activity. We considered four possible confounds. 
First, the task might be too simple to engage cortex. We therefore 
tested animals in a more challenging auditory rate discrimination 
task, known to require parietal and frontal cortices18,19. Results 
were very similar, arguing that our results were not due to insuf-
ficient task complexity (Supplementary Fig. 6). Second, including 
many analog variables may have bolstered the predictive power of 
uninstructed movements; indeed, the high ∆R2 for video shows that 
analog variables are particularly effective in unsupervised move-
ment detection. However, in a model that excluded all analog vari-
ables the most predictive group remained uninstructed movements, 
demonstrating that their importance does not hinge on using analog 
variables (Supplementary Fig. 7). Third, we ensured that our results 
were not affected by potential epileptiform activity that has been 

observed in the transgenic mouse line used here20 (Supplementary 
Fig. 8 and Methods).

Lastly, uninstructed movements might be important because 
they simply provide additional information about instructed move-
ments (for example, a preparatory body movement before licking) 
instead of independent, self-generated actions. We therefore com-
puted ∆R2 for each group at every time point in the trial (Fig. 4f 
and Supplementary Video 2). Here, ∆R2

Uninstructed was highest in the 
baseline period when ∆R2

Instructed was low (black and blue traces). 
Conversely, ∆R2

Uninstructed was reduced at times when ∆R2
Instructed was 

high, arguing against a tight relation between instructed and unin-
structed movements. However, some uninstructed movements may 
still be related to instructed behavior, such as facial movements dur-
ing licking or changes in posture when grabbing the handles.

The impact of movements on single-trial and trial-averaged 
neural activity. We next asked whether movements were aligned 
to specific times in the task (Fig. 1a). The task model captures all 
consistent neural responses to task-related events, similar to linearly 
combining all possible peri-event time histograms (PETHs) for dif-
ferent task events. All variance that is not captured by the task-only 
model (~83% across all recordings; Fig. 4d) must therefore be due 
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to trial-by-trial variability (Fig. 5a). Accordingly, the task model 
predicted trial-averaged data almost perfectly (Fig. 5b) but not vari-
ability in overall single-trial activity relative to the average (Fig. 5c). 
Results for instructed movements were largely similar, confirming 
that they are mostly aligned with the task. In contrast, the unin-
structed movement model predicted not only a large amount of 
trial-by-trial variability, but also trial-averaged data, indicating that 
it contained a high degree of task-aligned as well as task-indepen-
dent information.

To determine the task-aligned and task-independent contri-
butions for each movement variable (Fig. 1a), we computed the 
increase in explained variance of the task-only model when a 
given movement variable was added (Fig. 5d). This is concep-
tually similar to computing unique contributions as described 
above but here indicates the task-independent contribution  
(dark blue portion) of a given movement variable. Subtracting 

this task-independent component from the overall explained vari-
ance of each single-movement-variable model (Figs. 4c and 5d) 
yields the task-aligned contribution (light blue fill). As expected, 
instructed movements had a considerable task-aligned contri-
bution, especially the lick variable (Fig. 5e). Most uninstructed 
movement variables also made considerable task-aligned contribu-
tions, but in addition made large task-independent contributions  
(Fig. 5e). This was even clearer after pooling variables into groups  
(Fig. 5f). Here, uninstructed movements contained more task-aligned  
(cvR2

Instructed = 11.0 ± 0.5%; cvR2
Uninstructed = 14.5 ± 0.5%) and task-

independent (∆R2
Instructed = 6.3 ± 0.3%; ∆R2

Uninstructed = 23.8 ± 0.7%) 
explained variance than instructed movements. For both movement 
groups, the amount of task-aligned information was substantial: 
instructed and uninstructed movements captured ~63% and ~83% 
of all information in the task model, respectively.

These results have important implications for interpreting both 
trial-averaged and single-trial data (Fig. 5g). First, although a task-
only model accurately predicted the PETH, it cannot account for 
most single-trial fluctuations (Fig. 5g). Instructed movements also 
predicted parts of the PETH, in particular at times when instructed 
movements were required. As with the task model, the instructed 
movement model failed to predict most single-trial fluctuations. 
In contrast, an uninstructed movement model also predicted the 
PETH with good accuracy and was the only one to also accurately 
predict neural activity on single trials. This demonstrates that 
much of the single-trial activity that is often assumed to be noise 
or to reflect random network fluctuations is instead related to unin-
structed movements.

Importantly, because many movements are task-aligned, some 
apparent task features could also be explained by uninstructed move-
ments (Fig. 5g). We therefore developed an approach to ‘partition’ 
the PETH into respective contributions from the task, instructed 
and uninstructed movements, based on how much variance each 
group accounted for (Fig. 5h). First, we fitted the full model to the 
imaging data (gray trace), then split the full model prediction (red 
trace) into three components based on the weights for each group, 
without re-fitting. This provides the best estimate of the relative 
contributions of the task (green traces), instructed movements (blue 
traces) and uninstructed movements (black traces) to the PETH 
while explaining the most neural variance. In M2, PETH partition-
ing revealed that diverse trial-averaged dynamics, for example, dur-
ing the delay (bottom right, red dashed arrow), are best accounted 
for by uninstructed movements. Conversely, PETH partitioning in 
V1 showed that most features were reassuringly well explained by 
the task as they are most likely due to visual responses (Fig. 5i). This 
analysis therefore allows a better interpretation of trial-averaged 
PETHs by using trial-by-trial data to separate task-related activity 
from the impact of task-aligned movements.

Taken together, these results highlight that most of the activity 
without trial averaging is explained by uninstructed movements, 
which is critical to interpret trial-by-trial variability. Furthermore, 
uninstructed movements can also occur at predictable time points 
and strongly affect the shape of a PETH, sometimes masquerad-
ing as activity related to instructed movements or cognitive vari-
ables. This reveals a conundrum that initially seemed difficult to 
resolve: many PETH features can be explained by either task or 
movement variables alone (Fig. 5g). Our approach offers insight 
into this issue: exploiting trial-by-trial variability to partition the 
PETH into multiple components that jointly recreate the complete 
shape (Fig. 5h,i).

Changes in task and movement contributions during task learn-
ing. To assess how the relationship between task and movement 
variables develops over learning, we analyzed behavioral and neural 
data from the 10-week training period from novice to fully trained 
auditory experts. The cvR2 of both the instructed movement model 
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(Fig. 6a, blue) and the task model (green) strongly increased over 
the first 20 training days, indicating that neural activity became 
increasingly aligned with the temporal structure of the task. In con-
trast, the cvR2 of an uninstructed movement model decreased mod-
estly with training and eventually reached a stable level (black lines).

While task and instructed movement models were increasingly 
predictive of neural activity in anterior regions, uninstructed move-
ments lost predictive power in posterior regions (Fig. 6b,c). This 
reduction was not explained by reduced neural responsiveness to 
movements: model weights for uninstructed movements were con-
stant over the entire training duration (Fig. 6d), regardless of corti-
cal location (Fig. 6e). Instead, the decrease in predictive power was 
explained by two specific changes in uninstructed movements. First, 
the rate of uninstructed movements decreased over time (Fig. 6f),  
which was reflected in reduced trial-by-trial variability of the 
neural data (Fig. 6g). Second, uninstructed movements became 
increasingly task-aligned and less variable across trials (Fig. 6h,i). 
Task-aligned cvR2 of uninstructed movements mostly increased in 
anterior cortex while task-independent cvR2 was reduced through-
out the cortex (Fig. 6j). Importantly, uninstructed movements were 
consistently the strongest predictor of neural activity and task-inde-
pendent contributions plateaued at high levels even after up to 50 d 
of training. These results suggest that animals express a richly varied 
array of movements during all training stages, but their movement 
landscape evolves as they transition from novice to expert status.

The impact of movements on single-neuron activity. Widefield 
imaging reflects the pooled activity over many neurons, especially 
those in superficial layers12, and is affected by dendritic and axonal 
projections21. Although we observed substantial area-level specific-
ity (Figs. 3 and 4b), we further extended our approach to single neu-
rons. Using two-photon imaging, we measured the activity of over 
13,000 single neurons in ten animals expressing either GCaMP6f 
(seven mice) or GCaMP6s (three mice) at depths spanning 150–
450 µm. We recorded in five functionally identified areas, covering 
large parts of the dorsal cortex. In anterior cortex, we targeted M2 
and functionally identified the anterior lateral motor cortex (ALM) 
and medial motor cortex based on stereotactic coordinates and 
their averaged neural responses to licking22 (Fig. 7a, top). In pos-
terior cortex we targeted V1 (identified by retinotopic mapping23), 
retrosplenial cortex and primary somatosensory cortex (Fig. 7a, 
bottom). In each area, average population activity was modulated as 
expected for sensory, motor and association areas (Fig. 7b).

We then applied our linear model to the two-photon data, now 
aiming to predict single-cell activity. In the single-cell data, as 
in the widefield data, the model had high predictive power, cap-
turing 37.0 ± 1.7% (mean ± s.e.m., n = 10 mice) of the variance 
across all animals. Again, individual movement variables out-
performed task variables (Fig. 7c) and made larger unique con-
tributions. Given the known causal role of ALM for licking24–26, 
one might expect that the licking variable would be particularly 
important for predicting single-cell activity. Instead, in agree-
ment with our widefield results, almost all movement variables 
made large contributions. Video variables were again far more 
powerful than other model variables. The same was true when 
analyzing cortical areas separately (Supplementary Fig. 9). When 
grouping variables, we again found that uninstructed move-
ments had much higher predictive power (cvR2

Task = 12.3 ± 1.0%;  
cvR2

Instructed = 10.7 ± 0.9%; cvR2
Uninstructed = 32.6 ± 1.8%) and 

made larger unique contributions (∆R2
Task = 1.8 ± 0.1%; 

∆R2
Instructed = 1.2 ± 0.3%; ∆R2

Uninstructed = 21.2 ± 1.2%) (Fig. 7d, left). 
Across areas, full model performance varied from cvR2 = 43.7 ± 1.4% 
in ALM to cvR2 = 31.1 ± 2.0% in V1, potentially due to differences in 
signal-to-noise ratio across mice. Despite this, the relative predictive 
power of variable groups was highly consistent (Fig. 7d, right). These 
differences were found in almost every recorded neuron (Fig. 7e).  

Uninstructed movements were consistently the strongest predictors 
of single-neuron activity (Fig. 7e, top black trace) and had the great-
est unique contribution to the model (Fig. 7e, bottom black trace). 
The above results also held true in aggressive controls for poten-
tial imaging plane motion artifacts, performed by excluding frames 
with xy motion (Supplementary Fig. 10).
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We again leveraged PETH partitioning to gain deeper insight 
into the functional tuning of single neurons. As with widefield data, 
PETH partitioning into different components revealed individual 
contributions from task, instructed and uninstructed movement 
variables at different trial times. This is exemplified using data aver-
aged over all ALM neurons (Fig. 7f). Average population activity 
rose consistently over the trial (gray trace), which could be inter-
preted as a progressively increasing cognitive process. However, 
PETH partitioning revealed that this rise reflected the combination 
of several components, each with its own dynamics. Task-related 
contributions explained the rise during stimulus presentation, 
which plateaued during the delay (green trace). Uninstructed 
movement contributions increased during the delay (black trace) 
and plateaued before the response period. Lastly, instructed move-
ment contributions increased ~350 ms before and throughout the 
response period. The contributions by each group were distinct in 
time and together created average neural activity that smoothly rose 
over the entire second half of the trial.

We then examined the PETHs of individual cells. To identify cells 
that were mostly modulated by one variable group versus another, we 
computed three modulation indices (MIs), specifying the extent to 
which each cell’s PETH was best explained by the task, instructed or 
uninstructed movements (Fig. 7g). Each MI ranges from 0 to 1, with 
high MI values indicating stronger PETH modulation due to the 
variable group of interest. Individual cells at the extremes of the MI 
distributions exemplify strong modulation by task (Fig. 7h, cell 1),  
uninstructed movements (cell 2) or instructed movements (cell 3).  
Importantly, the impact of uninstructed movements could not 
have been inferred from the shape of the PETH alone: while cell 3 
was clearly modulated by an instructed movement (licking in the 
response period), the PETHs of cell 1 and cell 2 exhibited similar 
temporal dynamics. However, PETH partitioning revealed that 
the activity of these cells reflected different processes. Notably, this 
distinction would not have been possible without measuring and 
analyzing uninstructed movements. PETH partitioning therefore 
provides additional insight for interpreting the trial average and 
improves isolation of neurons of interest. Aside from identifying 
neurons that were purely modulated by a single variable group, we 
also found many cells where PETH partitioning could isolate task-
related dynamics that were otherwise overshadowed by the impact 
of movements (cell 4). As in studies of mixed selectivity, most cells 
were affected by a combination of different variables27. Nonetheless, 
PETH partitioning could also be used to identify cells that were most 
modulated by a single variable of interest (Supplementary Fig. 11).

Finally, we tested whether our results were similar when con-
sidering electrophysiological recordings in subcortical areas. This 
was critical because calcium imaging only approximates spiking 
activity and includes slow indicator-related dynamics that may dis-
tort the contribution of particular movement variables. Moreover, 
many subcortical targets such as the superior colliculus also con-
tain cognitive and movement-related activity28, raising the ques-
tion of whether they are modulated by uninstructed movements 
as in cortical areas. We therefore recorded brain activity using 
Neuropixels probes29 in visual cortex and superior colliculus. 
Because Neuropixels probes span almost the entire depth of the 
mouse brain, we were also able to simultaneously record from the 
midbrain reticular nucleus (Fig. 8a).

We presented visual stimuli to two head-fixed mice. As before, 
we used PETH partitioning to separate trial-averaged data into 
stimulus and movement components (Fig. 8b). Consistent with our 
widefield calcium imaging results from V1 (Fig. 5i), trial-averaged 
neural responses were well explained by stimulus variables with 
minimal movement contributions. In contrast, across all neurons, 
trial-by-trial cvR2 was far higher for movement variables than for 
visual stimuli, demonstrating that moment-by-moment neural 
activity was mostly related to movements (Fig. 8c). This can be seen 
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in an example neuron that exhibited slow fluctuations in firing rate 
during the recording session (~40 min, Fig. 8d), which were not 
explained by visual stimuli but were highly predictable with move-
ment variables. The same was also true when comparing cvR2 and 
ΔR2 for stimuli and movements in different cortical and subcorti-
cal areas (Fig. 8e). In all recorded brain areas, movements were far 
more important for predicting neural activity, indicating that the 
dominance of movements in driving neural activity is not limited to 
cortex but potentially a brain-wide phenomenon.

Discussion
Our results demonstrate that cortex-wide neural activity is domi-
nated by movements. By including a wide array of uninstructed 
movements, our model predicted single-trial neural activity with 
high accuracy. This was true for thousands of individual neurons, 
recorded with three different methods, spanning multiple cortical 
areas and depths. Both instructed and uninstructed movements 
also had large task-aligned contributions, affecting trial-averaged 
neural activity. By partitioning PETHs, we separated movement-
related from task-related contributions, providing a tool to unmask 
truly task-related dynamics and isolate the impact of movements on  
cortical computations.

Movement-related modulations of neural activity can either 
reflect the movement itself (due to movement generation, efference 

copy or sensory feedback), or changes in internal state that correlate 
with movements30,31. Here, we found that movement kernels were 
highly specific in terms of both cortical areas and temporal dynam-
ics (Fig. 3), indicating that they were not predominately reflective 
of internal state changes. State changes (for example, arousal) might 
instead be best captured by analog variables such as the pupil32, as 
indicated by its broad effects across cortex. Video variables could, in 
principle, also provide significant internal state information, which 
may partially explain their high model contributions. However, 
video weights were at least eight-dimensional, indicating that they 
reflected more than a one-dimensional state such as arousal (Fig. 3).  
The combined importance of internal states and specific movements 
highlights the need for tracking multiple movements when assess-
ing their combined impact on neural activity. Using video record-
ings to track animal movements is a relatively easy way to achieve 
this goal, especially with new tools that are available for interpreting 
video data33,34, and should therefore become standard practice for 
physiological recordings.

The vast majority of single-neuron activity was best predicted by 
uninstructed movements. Remarkably, this was true across cortical 
areas and depths as well as subcortical regions (Figs. 7d and 8e and 
Supplementary Fig. 10). Moreover, the amount of explained neural 
variance by uninstructed movements was highly similar between 
two-photon and electrophysiological data, demonstrating that our 
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results are largely independent of recording technique. However, 
our Neuropixels recordings were done in passive mice and included 
only visual stimuli as task variables. Further studies with brain-
wide recordings in task-performing animals are therefore needed 
to assess whether stronger contributions of task variables on neural 
activity might be present in task-relevant subcortical areas.

The prevalence of movement modulation may also explain why 
apparent task-related activity has been observed in a variety of 
areas12,35 and highlights the importance of additional controls, such 
as neural inactivation, to establish involvement in a given behavior36. 
However, in areas with established causal relevance, movements 
must still be considered. For instance, in ALM, which is known to 
play a causal role in similar tasks to the one studied here11,25, many 
neurons were well explained by uninstructed movement variables 
(Fig. 7d,h). Our partitioning method can help to better interpret 
such neural activity by identifying neurons that are best explained 
by task variables. Moreover, for neurons with mixed selectivity for 
task and movement variables27, the model can separate their respec-
tive contributions and reveal obscured task-related neural dynamics 
(Supplementary Fig. 11).

Virtually all recorded cortical neurons exhibited mixed selectivity 
and were strongly modulated by movements regardless of whether 
or not they were task-modulated (Fig. 7e). Importantly, this does 
not indicate that task-related dynamics are absent from cortical cir-
cuits but rather that movements account for a much larger amount 
of neural variance. Therefore, even for neurons that are strongly 

tuned to task variables, cognitive computations are often embedded 
within a broader context of movement-related information.

A recent paper on movement-related activity in large neu-
ral populations likewise observed that facial movements domi-
nate neural activity16. Our approach confirms and extends this 
important work in several ways. First, we show that including 
additional movement variables (for example, hindlimb) further 
improves model performance, and we provide a tool to separate 
task- and movement-related activity through PETH partitioning. 
Most importantly, we demonstrate the importance of uninstructed 
movements during a cognitive decision-making task. This shows 
that the impact of movements remains large during task perfor-
mance, even in well-trained expert animals. Moreover, by studying 
the task and movement contributions during learning, we found 
that uninstructed movements increasingly overlapped with the 
task as performance improved (Fig. 6a,f). This indicates that the 
animals consistently performed rich movement sequences that 
become more stereotyped during learning. This may be because 
movements such as whisking indicate reward anticipation dur-
ing the delay period and reflect task-related knowledge (Fig. 6i). 
Another intriguing possibility is that additional movements persist 
to aid cognitive function. For example, the animal might perform 
a stereotyped movement sequence following the stimulus that then 
spans the delay period and ‘outsources’ working memory demands 
into a sequence of motor commands37. This resembles earlier 
results from rats learning a complex motor task38 and highlights 
that responses to movement can be tightly tied up with the reward 
signals required for learning39, and ultimately become embedded 
in cognitive processes.

The profound impact of uninstructed movements on neural 
activity suggests that movement signals play a critical role in corti-
cal information processing. Widespread integration of movement 
signals might be advantageous for sensory processing9,40, canceling 
of self-motion41, gating of inputs42 or permitting distributed asso-
ciational learning43,44. All of these functions build on the idea that 
the brain creates internal models of the world that are based on 
the integration of sensory and motor information to predict future 
events. The creation of such models requires detailed movement 
information. Our results thus highlight the notion that such predic-
tive coding is not limited to sensory areas but might be a common 
theme across cortex: while sensory areas integrate motion signals 
to predict expected future stimuli45, motor areas equally integrate 
sensory signals to detect deviations between intended and actual 
motor state46–48. The principles of comparing current and predicted 
feedback also extend to other brain areas such as the ventral teg-
mental area49 or the cerebellum50. This suggests that robust move-
ment representations may be found throughout the brain.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41593-019-0502-4.

Received: 17 April 2019; Accepted: 20 August 2019;  
Published online: 24 September 2019

References
	1.	 Shadlen, M. N. & Newsome, W. T. Motion perception: seeing and deciding. 

Proc. Natl Acad. Sci. USA 93, 628–633 (1996).
	2.	 Maimon, G. & Assad, J. A. A cognitive signal for the proactive timing of 

action in macaque LIP. Nat. Neurosci. 9, 948–955 (2006).
	3.	 Horwitz, G. D., Batista, A. P. & Newsome, W. T. Representation of an abstract 

perceptual decision in macaque superior colliculus. J. Neurophysiol. 91, 
2281–2296 (2004).

	4.	 Gold, J. I. & Shadlen, M. N. The influence of behavioral context on the 
representation of a perceptual decision in developing oculomotor commands. 
J. Neurosci. 23, 632–651 (2003).

ba c

Movement

Movement
Stimulus

Stimulus

Full model

Single-cell example

Full model

Raw data

Model

0.1 Hz

0.1 Hz

0.5 s

5 min

0.5 s

0 100 200
Neurons

VC SC MRN

0

0.2

0.4

0.6

ed
Group model Unique contribution

M
ov

em
en

t

Stim
ulu

s

M
ov

em
en

t

Stim
ulu

s

M
ov

em
en

t

Stim
ulu

s

cv
R

2

5 Hz

Stimulus onset Stimulus onset

0.1
0.2
0.3

0

0.2
0.1

0.3

cv
R

2
∆

R
2

SC

MRN

V1
RS

Neuropixels
probe

PM

1 mm

Fig. 8 | Uninstructed movements predict single-neuron activity in cortical 
and subcortical areas. a, Coronal slice, −3.8 mm from bregma, showing the 
location of the Neuropixels probe in an example recording. We recorded 
activity in visual cortex (VC), superior colliculus (SC) and the midbrain 
reticular nucleus (MRN). b, Population PETH averaged over all neurons and 
visual stimuli, n = 232 neurons. Gray traces show recorded data. Top: red 
trace shows model reconstruction. Bottom: PETH partitioning of modeled 
data into stimulus (left, green trace) and movement (right, black trace) 
components. c, Explained variance for all recorded neurons using either the 
full model (gray) or a movement- (black) or stimulus-only model (green). 
d, Activity of a single example neuron over the entire session (~40 min). 
Gray trace is recorded activity; black is the cross-validated model 
reconstruction. e, Explained variance for stimulus or movement variables in 
different brain areas. Shown is either all explained variance (light green) or 
unique model contribution (dark green). Bars represent the mean from two 
mice for VC, SC and MRN, respectively. Dots indicate the mean for each 
animal (on average 38.7 neurons per mouse and area). Error bars show 
s.e.m. PM, posteriomedial area.

Nature Neuroscience | VOL 22 | OCTOBER 2019 | 1677–1686 | www.nature.com/natureneuroscience 1685

https://doi.org/10.1038/s41593-019-0502-4
https://doi.org/10.1038/s41593-019-0502-4
http://www.nature.com/natureneuroscience


Articles NATure NeurOSCienCe

	5.	 Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral 
intraparietal area during a combined visual discrimination reaction time task. 
J. Neurosci. 22, 9475–9489 (2002).

	6.	 Churchland, A. K., Kiani, R. & Shadlen, M. N. Decision-making with 
multiple alternatives. Nat. Neurosci. 11, 693–702 (2008).

	7.	 Erlich, J. C., Bialek, M. & Brody, C. D. A cortical substrate for memory-
guided orienting in the rat. Neuron 72, 330–343 (2011).

	8.	 Niell, C. M. & Stryker, M. P. Modulation of visual responses by behavioral 
state in mouse visual cortex. Neuron 65, 472–479 (2010).

	9.	 Saleem, A. B., Ayaz, A., Jeffery, K. J., Harris, K. D. & Carandini, M. 
Integration of visual motion and locomotion in mouse visual cortex.  
Nat. Neurosci. 16, 1864–1869 (2013).

	10.	Wekselblatt, J. B., Flister, E. D., Piscopo, D. M. & Niell, C. M. Large-scale 
imaging of cortical dynamics during sensory perception and behavior.  
J. Neurophysiol. 115, 2852–2866 (2016).

	11.	Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. 
Neuron 81, 179–194 (2014).

	12.	Allen, W. E. et al. Global representations of goal-directed behavior in distinct 
cell types of mouse neocortex. Neuron 94, 891–907.e6 (2017).

	13.	Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of 
population coding across cortex. Nature 548, 92–96 (2017).

	14.	Scott, B. B. et al. Fronto-parietal cortical circuits encode accumulated 
evidence with a diversity of timescales. Neuron 95, 385–398.e5 (2017).

	15.	Caballero-Gaudes, C. & Reynolds, R. C. Methods for cleaning the BOLD 
fMRI signal. NeuroImage 154, 128–149 (2017).

	16.	Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide 
activity. Science 364, eaav7893 (2019).

	17.	Shimaoka, D., Harris, K. D. & Carandini, M. Effects of arousal on mouse 
sensory cortex depend on modality. Cell Rep. 22, 3160–3167 (2018).

	18.	Hanks, T. D. et al. Distinct relationships of parietal and prefrontal cortices to 
evidence accumulation. Nature 520, 220–223 (2015).

	19.	Erlich, J. C., Brunton, B. W., Duan, C. A., Hanks, T. D. & Brody, C. D. 
Distinct effects of prefrontal and parietal cortex inactivations on an 
accumulation of evidence task in the rat. eLife Sci. 4, e05457 (2015).

	20.	Steinmetz, N. A. et al. Aberrant cortical activity in multiple GCaMP6-
expressing transgenic mouse lines. eNeuro 4, ENEURO.0207-17.2017 (2017).

	21.	Zhuang, J. et al. An extended retinotopic map of mouse cortex. eLife 6, 
e18372 (2017).

	22.	Chen, T.-W., Li, N., Daie, K. & Svoboda, K. A map of anticipatory activity in 
mouse motor cortex. Neuron 94, 866–879.e4 (2017).

	23.	Garrett, M. E., Nauhaus, I., Marshel, J. H. & Callaway, E. M. Topography 
and areal organization of mouse visual cortex. J. Neurosci. 34,  
12587–12600 (2014).

	24.	Guo, Z. V. et al. Maintenance of persistent activity in a frontal 
thalamocortical loop. Nature 545, 181–186 (2017).

	25.	Li, N., Chen, T.-W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex 
circuit for motor planning and movement. Nature 519, 51–56 (2015).

	26.	Salkoff, D. B., Zagha, E., McCarthy, E., McCormick, D.A. Movement and 
performance predict widespread cortical activity in a visual detection task. 
Cereb. Cortex (in the press).

	27.	Raposo, D., Kaufman, M. T. & Churchland, A. K. A category-free neural 
population supports evolving demands during decision-making.  
Nat. Neurosci. 17, 1784–1792 (2014).

	28.	Horwitz, G. D. & Newsome, W. T. Separate signals for target selection  
and movement specification in the superior colliculus. Science 284, 
1158–1161 (1999).

	29.	Jun, J. J. et al. Fully integrated silicon probes for high-density recording of 
neural activity. Nature 551, 232–236 (2017).

	30.	Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal and 
locomotion make distinct contributions to cortical activity patterns and visual 
encoding. Neuron 86, 740–754 (2015).

	31.	Polack, P.-O., Friedman, J. & Golshani, P. Cellular mechanisms of brain-
state-dependent gain modulation in visual cortex. Nat. Neurosci. 16, 
1331–1339 (2013).

	32.	Reimer, J. et al. Pupil fluctuations track fast switching of cortical states during 
quiet wakefulness. Neuron 84, 355–362 (2014).

	33.	Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. 
Nat. Methods 16, 117 (2019).

	34.	Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined 
body parts with deep learning. Nat. Neurosci. 21, 1281 (2018).

	35.	Le Merre, P. et al. Reward-based learning drives rapid sensory signals in 
medial prefrontal cortex and dorsal hippocampus necessary for goal-directed 
behavior. Neuron 97, 83–91.e5 (2018).

	36.	Gilad, A., Gallero-Salas, Y., Groos, D. & Helmchen, F. Behavioral strategy 
determines frontal or posterior location of short-term memory in neocortex. 
Neuron 99, 814–828.e7 (2018).

	37.	Euston, D. R. & McNaughton, B. L. Apparent encoding of sequential context 
in rat medial prefrontal cortex is accounted for by behavioral variability.  
J. Neurosci. 26, 13143–13155 (2006).

	38.	Kawai, R. et al. Motor cortex is required for learning but not for executing a 
motor skill. Neuron 86, 800–812 (2015).

	39.	Coddington, L. T. & Dudman, J. T. The timing of action determines reward 
prediction signals in identified midbrain dopamine neurons. Nat. Neurosci. 
21, 1563 (2018).

	40.	 Ayaz, A., Saleem, A. B., Schölvinck, M. L. & Carandini, M. Locomotion controls 
spatial integration in mouse visual cortex. Curr. Biol. 23, 890–894 (2013).

	41.	Sommer, M. A. & Wurtz, R. H. Brain circuits for the internal monitoring of 
movements. Annu. Rev. Neurosci. 31, 317 (2008).

	42.	Schmitt, L. I. et al. Thalamic amplification of cortical connectivity sustains 
attentional control. Nature 545, 219–223 (2017).

	43.	Wang, L., Rangarajan, K. V., Gerfen, C. R. & Krauzlis, R. J. Activation of 
striatal neurons causes a perceptual decision bias during visual change 
detection in mice. Neuron 97, 1369–1381.e5 (2018).

	44.	Engel, T. A., Chaisangmongkon, W., Freedman, D. J. & Wang, X.-J. 
Choice-correlated activity fluctuations underlie learning of neuronal category 
representation. Nat. Commun. 6, 6454 (2015).

	45.	Keller, G. B., Bonhoeffer, T. & Hübener, M. Sensorimotor mismatch signals in 
primary visual cortex of the behaving mouse. Neuron 74, 809–815 (2012).

	46.	Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for 
sensorimotor integration. Science 269, 1880–1882 (1995).

	47.	Wolpert, D. M. & Miall, R. C. Forward models for physiological motor 
control. Neural Netw. 9, 1265–1279 (1996).

	48.	Wolpert, D. M. & Kawato, M. Multiple paired forward and inverse models for 
motor control. Neural Netw. 11, 1317–1329 (1998).

	49.	Schultz, W. Dopamine neurons and their role in reward mechanisms.  
Curr. Opin. Neurobiol. 7, 191–197 (1997).

	50.	Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. 
Trends Cogn. Sci. (Regul. Ed.) 2, 338–347 (1998).

Acknowledgements
We thank O. Odoemene, S. Pisupati and H. Nguyen for technical assistance and scientific 
discussions; H. Zeng for providing Ai93 mice; J. Tucciarone and F. Marbach for breeding 
assistance; A. Mills and P. Shrestha for providing GFP mice; T. Harris, S. Caddick and  
the Allen Institute for Brain Sciences for assistance with the Neuropixels probes; and  
N. Steinmetz, M. Pachitariu and K. Harris for widefield analysis code. Financial 
support was received from the Swiss National Science foundation (S.M., grant no. 
P2ZHP3_161770), the Pew Charitable Trusts (A.K.C.), the Simons Collaboration on 
the Global Brain (A.K.C., M.T.K.), the NIH (grant no. EY R01EY022979) and the Army 
Research Office under contract no. W911NF-16-1-0368 as part of the collaboration 
between the US DOD, the UK MOD and the UK Engineering and Physical Research 
Council under the Multidisciplinary University Research Initiative (A.K.C.).

Author contributions
S.M., M.T.K. and A.K.C. designed the experiments. S.M. and S.G. trained animals and 
recorded widefield data. S.M. performed surgeries. M.T.K. and S.M. acquired two-
photon data, designed the linear model and performed data analysis. A.L.J. recorded and 
spike-sorted Neuropixels data. A.K.C., M.T.K. and S.M. wrote the paper with assistance 
from S.G. and A.L.J. S.M. and M.T.K. contributed equally.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41593-019-0502-4.

Correspondence and requests for materials should be addressed to A.K.C.

Peer review information Nature Neuroscience thanks Mackenzie Mathis, Mala Murthy 
and the other, anonymous, reviewer(s) for their contribution to the peer review of this 
work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

Nature Neuroscience | VOL 22 | OCTOBER 2019 | 1677–1686 | www.nature.com/natureneuroscience1686

https://doi.org/10.1038/s41593-019-0502-4
https://doi.org/10.1038/s41593-019-0502-4
http://www.nature.com/reprints
http://www.nature.com/natureneuroscience


ArticlesNATure NeurOSCienCe

Methods
Animal subjects. All surgical and behavioral procedures conformed to the 
guidelines established by the National Institutes of Health and were approved 
by the Institutional Animal Care and Use Committee of Cold Spring Harbor 
Laboratory. Experiments were conducted with male mice from the ages of 
8–25 weeks. No statistical methods were used to predetermine sample sizes but our 
sample sizes are similar to those reported in previous publications10,12. All mouse 
strains were of C57BL/6J background and purchased from the Jackson Laboratory. 
Six transgenic strains were used to create the transgenic mice used for imaging: 
Emx-Cre (JAX 005628), LSL-tTA (JAX 008600), CaMK2α-tTA (JAX 003010), 
Ai93 (JAX 024103), G6s2 (JAX 024742) and H2B-eGFP (JAX 006069). Ai93 mice 
as described below were Ai93; Emx-Cre; LSL-tTA; CaMK2α-tTA. G6s2 mice as 
described below were CaMK2α-tTA; tetO GCaMP6s.

For widefield imaging we used 11 Ai93 mice (four mice were negative for 
CaMK2α-tTA). Two G6s2 and H2B-eGFP mice were used for widefield control 
experiments. For two-photon imaging, we recorded from seven Ai93 mice (six 
mice were negative for CaMK2α -tTA) and three G6s2 mice. All trained mice were 
housed in groups of two or more under an inverted 12:12-h light/dark regime and 
trained during their active dark cycle.

Data collection and analysis were not performed blind to the conditions of 
the experiments. Animals were randomly assigned to cohorts that were trained 
with auditory stimuli versus visual stimuli. Auditory and visual trials were then 
randomly interleaved in both groups.

Surgical procedures. All surgeries were performed under 1–2% isoflurane in 
oxygen anesthesia. After induction of anesthesia, 1.2 mg kg−1 meloxicam was 
injected subcutaneously and lidocaine ointment was topically applied to the skin. 
After making a medial incision, the skin was pushed to the side and fixed in 
position with tissue adhesive (Vetbond, 3M). We then created an outer wall using 
dental cement (C&B Metabond, Parkell; Ortho-Jet, Lang Dental) while leaving 
as much of the skull exposed as possible. A circular headbar was attached to the 
dental cement. For widefield imaging, after carefully cleaning the exposed skull we 
applied a layer of cyanoacrylate (Zap-A-Gap CA+, Pacer Technology) to clear the 
bone. After the cyanoacrylate was cured, cortical blood vessels were clearly visible.

For two-photon imaging, instead of clearing the skull, we performed a circular 
craniotomy using a biopsy punch. For imaging anterior cortex, a 3-mm-wide 
craniotomy was centered 1.5 mm lateral and 1.5 mm anterior to bregma. For 
imaging posterior cortex, a 4-mm-wide craniotomy was centered 1.7 mm lateral 
and 2 mm posterior to bregma. We then positioned a circular coverslip of similar 
size over the cortex and sealed the remaining gap between the bone and glass 
with tissue adhesive. The coverslip window was then secured to the skull using 
C&B Metabond and the remaining exposed skull was sealed using dental cement. 
After surgery, animals were kept on a heating mat for recovery and daily doses of 
analgesia (1.2 mg kg−1 meloxicam) and antibiotics (2.3 mg kg−1 enrofloxacin) were 
administered subcutaneously for 3 d or longer.

For electrophysiology experiments, we used 13–17-week-old male mice. Mice 
were given medicated food cups (MediGel CPF, Clear H20 74-05-5022) 1–2 d 
before surgery. We performed a small circular craniotomy over visual cortex 
using a dental drill. Rather than a circular headbar, a boomerang-shaped custom 
titanium headbar was cemented to the skull, just posterior to the eyes, near the 
bregma. In addition, a small ground screw was drilled into the skull over the 
cerebellum. The probe was mounted onto a three-dimensional-printed piece 
within an external casing, affixed to a custom stereotaxic adapter and lowered into 
the brain as previously described51. Recordings were performed after the mouse 
had fully recovered from surgery (3–4 d).

Behavior. The behavioral setup was based on an Arduino-controlled finite state 
machine (Bpod r0.5, Sanworks) and custom MATLAB code (2015b, MathWorks) 
running on a Linux PC. Servo motors (Turnigy TGY-306G-HV), touch sensors 
and visual stimuli were controlled by microcontrollers (Teensy 3.2, PJRC) running 
custom code. Twenty-five mice were trained on a delayed, two-alternative, forced-
choice spatial discrimination task. Mice initiated trials by touching either of two 
handles with their forepaws. Handles were mounted on servo motors and were 
moved out of reach between trials. After 1 s of holding a handle, sensory stimuli 
were presented. Sensory stimuli consisted of either a sequence of auditory clicks 
or repeated presentation of a visual moving bar (three repetitions, 200 ms each). 
Auditory stimuli were presented from either a left or right speaker, and visual 
stimuli were presented on one of two small LED displays on the left or right side. 
The sensory stimulus was presented for 600 ms, there was a 500 ms pause with no 
stimulus and then the stimulus was repeated for another 600 ms. After the second 
stimulus, a 1,000 ms delay was imposed, then servo motors moved two lick spouts 
into close proximity of the animal’s mouth. If the animal licked twice to the spout 
on the same side as the stimulus, he was rewarded with a drop of water. After one 
spout was contacted twice, the other spout was moved out of reach to force the 
animal to commit to its decision.

Animals were trained over the course of approximately 30 d. After 2–3 d of 
restricted water access, animals were head-fixed and received water in the setup. 
Water was given by presenting a sensory stimulus, subsequently moving only  
the correct spout close to the animal, then dispensing water automatically.  

After several habituation sessions, animals had to touch the handles to trigger the 
stimulus presentation. Once animals reliably reached for the handles, the required 
touch duration was gradually increased up to 1 s. Lastly, the probability for fully 
self-performed trials, in which both spouts were moved towards the animal 
after stimulus presentation, was gradually increased until animals reached stable 
detection performance of 80% or higher.

Each animal was trained exclusively on a single modality (six visual animals, 
five auditory for widefield imaging; five visual animals, five auditory animals for 
two-photon imaging). Only during imaging sessions were trials of the untrained 
modality presented as well. This allowed us to compare neural activity on trials 
where animals performed stimulus-guided sensorimotor transformations versus 
trials where animal decisions were random. To ensure that detection performance 
was not overly affected by presentation of the untrained modality, the trained 
modality was presented in 75% and the untrained modality in 25% of all trials. 
Additionally, four auditory animals (two GFP, two G6s2 mice) were used to control 
for hemodynamic corrections in the widefield data (Supplementary Fig. 5). Since 
animal performance was not important for these controls, all recordings were done 
with 50% visual and 50% auditory stimuli.

Behavioral sensors. We used information from several sensors in the behavioral 
setup to measure different aspects of animal movement. The handles detected 
contact with the animal’s forepaws, and the lick spouts detected contact with the 
tongue using a grounding circuit. An additional piezo sensor (1740, Adafruit) 
below the animal’s trunk was used to detect hindlimb movements. Sensor data 
were normalized and thresholded at 2 s.d. to extract hindlimb movements. Based 
on hindlimb events, we created an event-kernel design matrix that was also 
included in the linear model (see “Linear model” section below).

Video monitoring. Two webcams (C920 and B920, Logitech) were used to 
monitor animal movements. Cameras were positioned to capture the animal’s 
face (side view) and body (bottom view). To target particular behavioral variables 
of interest, we defined subregions of the video which were then examined in 
more detail. These included a region surrounding the eye, the whisker pad and 
the nose. From the eye region we extracted changes in pupil diameter using 
custom MATLAB code. To analyze whisker movements, we computed the 
absolute temporal derivative averaged over the entire whisker pad. The resulting 
one-dimensional trace was then normalized and thresholded at 2 s.d. to extract 
whisking events. Based on whisking events, we created an event-kernel design 
matrix that was also included in the linear model (see “Linear model” section 
below). The same approach was used for the nose and pupil diameter, as well as the 
bottom camera to capture whole-body movements.

Widefield imaging. Widefield imaging was done using an inverted tandem-
lens macroscope52 in combination with a scientific complementary metal-oxide 
semiconductor (sCMOS) camera (Edge 5.5, PCO) running at 60 frames per second 
(fps). The top lens had a focal length of 105 mm (DC-Nikkor, Nikon) and the 
bottom lens 85 mm (85M-S, Rokinon), resulting in a magnification of ×1.24. The 
total field of view was 12.5 × 10.5 mm2 and the image resolution was 640 × 540 
pixels after 4x spatial binning (spatial resolution: ~20 μm per pixel). To capture 
GCaMP fluorescence, a 525 nm band-pass filter (no. 86–963, Edmund optics) was 
placed in front of the camera. Using excitation light at two different wavelengths, 
we isolated Ca2+-dependent fluorescence and corrected for intrinsic signals (for 
example, hemodynamic responses)10,12. Excitation light was projected on the cortical 
surface using a 495 nm long-pass dichroic mirror (T495lpxr, Chroma) placed 
between the two macro lenses. The excitation light was generated by a collimated 
blue LED (470 nm, M470L3, Thorlabs) and a collimated violet LED (405 nm, 
M405L3, Thorlabs) that were coupled into the same excitation path using a dichroic 
mirror (no. 87–063, Edmund optics). We alternated illumination between the 
two LEDs from frame to frame, resulting in one set of frames with blue and the 
other with violet excitation at 30 fps each. Excitation of GCaMP at 405 nm results 
in non-calcium-dependent fluorescence53, allowing us to isolate the true calcium-
dependent signal by rescaling and subtracting frames with violet illumination from 
the preceding frames with blue illumination. All subsequent analysis was based on 
this differential signal at 30 fps. To confirm accurate CCF alignment, we performed 
retinotopic visual mapping23 in each animal and found high correspondence 
between functionally identified visual areas and the CCF (Supplementary Fig. 2).

To ensure that our correction approach effectively removed non-calcium-
dependent fluorescence, we performed control experiments with two GFP-
expressing animals (CAG-H2B-eGFP). Here, the hemodynamic correction 
removed ~90% of variance in the data and the model lost most of its predictive 
power and spatial specificity (Supplementary Fig. 5). We also imaged two G6s2 
mice expressing GCaMP6s (ref. 10). These animals were expected to exhibit 
stronger calcium-dependent fluorescence due to the large signal-to-noise ratio of 
the GCaMP6s indicator. Accordingly, the remaining variance after hemodynamic 
correction was much higher (Supplementary Fig. 5a,b) and the model predicted 
even more variance than in Ai93 mice (Supplementary Fig. 5c,d). The β-weights in 
modulated areas were also strongest with GCaMP6s-expressing mice and close to 
zero in GFP controls (Supplementary Fig. 5f,h). Together, these controls therefore 
provide strong evidence that our widefield results were not due to potential 
contributions from uncorrected hemodynamic signals.
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Two-photon imaging. Two-photon imaging was performed with a resonant-
scanning two-photon microscope (Sutter Instruments, Movable Objective 
Microscope, configured with the ‘Janelia’ option for collection optics), a 
Ti:Sapphire femtosecond pulsed laser (Ultra II, Coherent) and a 16× 0.8 numerical 
aperture objective (Nikon Instruments). Images were acquired at 30.9 Hz with 
an excitation wavelength of 930 nm. All focal planes were 150–450 µm below the 
pial surface. To label blood vessels, we subcutaneously injected 50 μl 1.25% Texas 
Red (D3328, Thermo Fisher) 15 min before imaging. During recording, the red-
labeled vasculature was used as a reference to correct for slow z-drift of the focal 
plane. The objective height was manually adjusted during the recording in 1–2 µm 
increments as often as necessary to maintain the same focal plane. This was done 
every 5–10 min in each session.

Preprocessing of neural data. To analyze widefield data, we used SVD to compute 
the 200 highest-variance dimensions. These dimensions accounted for at least 
90% of the total variance in the data. Using 500 dimensions accounted for little 
additional variance (~0.15%), indicating that additional dimensions were mostly 
capturing recording noise. SVD returns ‘spatial components’ U (of size pixels 
by components), ‘temporal components’ VT (of size components by frames) and 
singular values S (of size components by components) to scale components to 
match the original data. To reduce computational cost, all subsequent analysis was 
performed on the product SVT. SVT was high-pass filtered above 0.1 Hz using a 
zero-phase, second-order Butterworth filter. Results of analyses on SVT were later 
multiplied with U, to recover results for the original pixel space. All widefield data 
were rigidly aligned to the Allen CCF, using four anatomical landmarks: the left, 
center and right points where anterior cortex meets the olfactory bulbs, and the 
medial point at the base of retrosplenial cortex.

To analyze two-photon data we used Suite2P (ref. 54) with model-based 
background subtraction. The algorithm was used to perform rigid motion 
correction on the image stack, identify neurons, extract their fluorescence and 
correct for neuropil contamination. ΔF/F traces were produced using the method 
of Jia et al.55, skipping the final filtering step. Using these traces, we produced a 
matrix of size neurons by time, and treated this similarly to SVT above. Finally, 
we confirmed imaging stability by examining the average firing rate of neurons 
over trials. If all neurons varied substantially at the beginning or end of a session, 
trials containing the unstable portion were discarded. Recording sessions yielded 
188.63 ± 19.28 neurons and contained 378.56 ± 9 performed trials (mean ± s.e.m.).

As an image motion control, we also used the xy-translation values from 
the initial motion correction to ask whether motion of the imaging plane 
(due to imperfect registration or z-motion) could contribute to our two-
photon results. To account for this possibility, we removed all frames that were 
translated by more than two pixels in the x or y direction and repeated the 
analysis (Supplementary Figure 10). In 4,983 neurons, we observed negative 
unique contributions from the task-group, indicative of model overfitting when 
removing too many data frames. We therefore rejected these neurons from 
further analysis. For the remaining 8,787 neurons, explained variance was highly 
similar as in our original findings, demonstrating that our results could not be 
explained by motion of the imaging plane.

To compute trial averages, imaging data were double-aligned to the time when 
animals initiated a trial and to the stimulus onset. After alignment, single trials 
consisted of 1.8 s of baseline, 0.83 s of handle touch and 3.3 s following stimulus 
onset. The randomized additional interval between initiation and stimulus onset 
(0–0.25 s) was discarded in each trial and the resulting trials of equal length were 
averaged together.

Neuropixels recordings. To investigate single-neuron responses, a set of linearly 
expanding (looming) or contracting (receding) dots (40 cm s−1) were presented 
20 cm (dots were 2–20 ° of visual space) above the mouse’s head while the mouse 
was head-restrained but free to move on a wheel. Stimuli were high- or low-
contrast, and either visual only or with an additional auditory looming stimulus—
white noise of increasing volume (80 dB at maximum volume). Eight different 
types of stimuli were presented: high- and low-contrast visual looming, high- and 
low-contrast visual receding, high- and low-contrast audiovisual looming, and 
high- and low-contrast audiovisual receding. Stimuli (20 repeats of each type) were 
0.5 s long and randomly presented, with randomized gaps (more than 4 s) between 
stimuli. Results in Fig. 8b were obtained by averaging over all stimulus conditions. 
A video camera (Basler AG) in combination with infrared lights was used to record 
the pupil and face during visual stimulation. These videos were synchronized with 
the electrophysiology data for subsequent analysis.

Electrophysiology data were collected with SpikeGLX (Bill Karsh, https://
github.com/billkarsh/SpikeGLX). We recorded from 384 channels spanning 
~4 mm of the brain29. The data were first median-subtracted across channels and 
time, sorted with Kilosort spike sorting software56 and manually curated using 
phy (https://github.com/kwikteam/phy). Sorted data were analyzed using custom 
MATLAB code.

Linear model. The linear model was constructed by combining multiple sets of 
variables into a design matrix, to capture signal modulation by different task or 
motor events (Fig. 2c). Each variable (except for analog variables) was structured to 

capture a time-varying event kernel. Each variable therefore consisted of a binary 
vector containing a pulse at the time of the relevant event, and numerous copies of 
this vector, each shifted in time by one frame relative to the original. For sensory 
stimuli, the time-shifted copies spanned all frames from stimulus onset until the 
end of the trial. For motor events such as licking or whisking, the time-shifted 
copies spanned the frames from 0.5 s before until 2 s after each event. Lastly, for 
some variables, the time-shifted copies spanned the whole trial. These whole-
trial variables were aligned to stimulus onset and contained information about 
decision variables, such as animal choice or whether a given trial was rewarded. 
The model also contained several analog variables, such as the pupil diameter. 
These analog variables provided additional information on movements that we 
had not previously considered16,57. To capture animal movements, we used SVD to 
compute the 200 highest dimensions of video information in both cameras. SVD 
was performed either on the raw video data (‘Video’) or the absolute temporal 
derivative (motion energy; ‘Video ME’). SVD analysis of behavioral video was 
the same as for the widefield data, and we used the product SVT of temporal 
components and singular values as analog variables in the linear model. This 
is conceptually similar to the methods available with the FaceMap toolbox by 
Stringer et al.16. Importantly, we did not use any lagged versions of analog variables. 
Supplementary Table 1 provides an overview of all model variables and how they 
were generated.

To use video variables, it was important to ensure that their explanatory power 
did not overlap with other model variables such as licking and whisking that can 
also be inferred from video data. To accomplish this, we first created a reduced 
design matrix Xr, containing all movement variables as well as times when spouts 
or handles were moving or visual stimuli were presented. Xr was ordered so that 
the motion energy and video columns were at the end. We then performed a QR 
decomposition of Xr (ref. 58). The QR decomposition of a matrix A is A = QR, 
where Q is an orthonormal matrix and R is upper triangular. Columns 1 to j of Q 
therefore span the same space as columns 1 to j of A for all j, but all the columns 
are orthogonal to one another. Finally, we replaced the motion and video columns 
of the full design matrix X with the corresponding columns of Q. This allowed the 
model to improve the fit to the data using any unique contributions of the motion 
and video variables, while ensuring that the weights given to other variables 
were not altered. Note that the QR decomposition is limited to the original space 
spanned by X, and therefore cannot enhance the explanatory power of the video 
variables—it can only reduce it.

Subsequently, we used the same approach to orthogonalize all uninstructed 
movement variables against instructed movements. This was done to ensure 
that all information that could be explained by instructed movements could not 
be accounted for by correlated, uninstructed movement variables. As described 
above, this can only reduce the explanatory power of the uninstructed  
movement variables.

To ensure that model variables were sufficiently decorrelated, we introduced an 
additional randomized delay (0–0.25 s) between the animal grabbing the handles 
and stimulus onset. Movement and task variables were also decorrelated due to the 
natural variability in response times and the number of actions.

When a design matrix has columns that are close to linearly dependent 
(multicollinear), model fits are not reliable. To test for this, we devised a method 
we call cumulative subspace angles. The idea is that for each column of the design 
matrix, we wish to know how far it lies from the space spanned by the previous 
columns (note that pairwise angles do not suffice to determine multicollinearity). 
Our method works as follows: (1) the columns of the matrix X were normalized 
to unit magnitude, (2) a QR decomposition of X was performed and (3) the 
absolute value of the elements along the diagonal of R were examined. Each of 
these values is the absolute dot product of the original vector with the same vector 
orthogonalized relative to all previous vectors. The values range from zero to one, 
where zero indicates complete degeneracy and one indicates no multicollinearity 
at all. Over all experiments, the most collinear variable received a 0.26, indicating 
that it was 15° from the space of all other variables. The average value was 0.84, 
corresponding to a mean angle of 57°.

To avoid overfitting, the model was fit using ridge regression. The regularization 
penalty was estimated separately for each column of the widefield data using 
marginal maximum likelihood estimation59 with minor modifications that reduced 
numerical instability for large regularization parameters. Ridge regression was 
chosen over other regularization methods such as a sparseness prior (using 
LASSO or elastic net) to allow for similar contributions from different correlated 
variables. This was important, because a sparseness prior would have isolated the 
contribution of the best model variables while completely rejecting correlated but 
slightly less informative variables. Instead, we sought to include contributions from 
all model variables that were related to the imaging data. This was particularly 
important for the interpretation of the model event kernels and PETH partitioning. 
To quantify upper and lower bounds on the explanatory power of each model 
variable we computed the overall explained variance (cvR2) and unique predictive 
power (ΔR2) for each variable (see “Variance analysis” section below).

Variance analysis. Explained variance (cvR2) was obtained using tenfold cross-
validation. To compute all explained variance by individual model variables, 
we created reduced models where all variables apart from the specified one 
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were shuffled in time. The explained variance by each reduced model revealed 
the maximum potential predictive power of the corresponding model variable. 
The sensitivity index d′ was computed as the difference between two averaged 
responses (vision–audition or left–right), divided by their standard deviation.

To assess unique explained variance by individual variables, we created 
reduced models in which all of the time points for only the specified variable were 
shuffled. The difference in explained variance between the full and the reduced 
model yielded the unique contribution ΔR2 of that model variable. The same 
approach was used to compute unique contributions for groups of variables, that is, 
‘instructed movements’, ‘uninstructed movements’ or ‘task’. Here, all variables that 
corresponded to a given group were shuffled at once.

To compute the ‘task-aligned’ or ‘task-independent’ explained variance 
for each movement variable, we created a reduced ‘task-only’ model where 
all movement variables were shuffled in time. This task-only model was then 
compared with other reduced models where all movement variables but one were 
shuffled. The difference between the task-only model and this model yielded 
the task-independent contribution of that movement variable. The task-aligned 
contribution was computed as the difference between the total variance explained 
by a given variable (its cvR2) and its task-independent contribution.

PETH partitioning. Reconstructed trial averages (Figs. 5 and 7) were produced by 
fitting the full model and averaging the reconstructed data over all trials. To split 
the model into the respective contributions of instructed movements, uninstructed 
movements and task variables, we reconstructed the data based on that variable 
group alone (using the weights from the full model, without re-fitting) and 
averaging over all trials. To evaluate the relative impact of each group variable on 
the PETH, we computed an MI, defined as

MIGroup ¼
1þ ΔGroup�ΔnonGroup

ΔGroupþΔnonGroup

� �

2

where ΔGroup and ΔnonGroup denote the sum of the absolute deviation from 
zero when reconstructing the PETH either based on all variables of a given group 
(ΔGroup) or all other variables (ΔnonGroup). The MI ranges from 0 (variable 
group has no impact on PETH) to 1 (PETH is fully explained by variable group). 
Intermediate values denote a mixed contribution to the PETH from different group 
variables (Supplementary Fig. 11).

Model-based video reconstruction. To better understand how the video related to 
the neural data, we analyzed the portion of the β-weight matrix that corresponded 
to the video variables. This portion of the matrix was projected back up into the 
original video space. The result was of size p by d, where p is the number of video 
pixels (153,600) and d is the number of dimensions of the widefield data (200). We 
performed PCA on this matrix, reducing the number of rows. The top few ‘scores’ 
(projections onto the principal components) are low-dimensional representations 
of the widefield maps that were most strongly influenced by the video. To choose 
the dimensionality, we used the number of dimensions required to account for 
>90% of the variance (Fig. 3f). To obtain the widefield maps showing how the 
video was related to neural activity (Fig. 3g), we projected the scores back into 
widefield data pixel space and sparsened them using the varimax rotation. To 
determine the influence of each video pixel on the widefield (Fig. 3h), we projected 
the low-dimensional β-weights into video pixel space, took the magnitude of the 
β-weights for each pixel and multiplied by the original standard deviation for that 
pixel (to reverse the Z-scoring step of PCA).

Aberrant cortical activity in Ai93 transgenic animals. Mice with both Emx-Cre 
and Ai93 transgenes can exhibit aberrant, epileptiform cortical activity patterns, 
especially when expressing GCaMP6 during development20. To avoid this issue, we 
raised most of the 11 mice in our widefield data set (six mice) on a doxycycline-
containing diet (DOX), preventing GCaMP6 expression until they were 6 weeks 
or older. This was also true for all Ai93 mice in our two-photon data set. However, 

five mice were raised on standard diet, raising the concern that aberrant activity 
may have affected our widefield results.

To test for the presence of epileptiform activity, we used the same comparison 
as Steinmetz et al.20 on the cortex-wide average. A peak in cortical activity 
was flagged as a potential interictal event if it had a width of 60–235 ms and a 
prominence of 0.03 or higher. These parameters flagged nearly all cases of apparent 
interictal events (Supplementary Fig. 8a) and identified 4 of the 11 mice in the 
widefield data set to exhibit potential epileptiform activity (Supplementary Fig. 8b). 
None of the identified mice were raised on DOX.

To ensure that epileptiform activity would not bias our results, we removed 
flagged events and interpolated over the resulting gaps (in SVT low-D) with 
MATLAB’s built-in autoregressive modeling (fillgaps.m) and a 20-frame prediction 
window. The result did not show any perturbations around the former interictal 
events (Supplementary Fig. 8c). When comparing modeling results between DOX- 
and non-DOX-raised mice analyzed separately, predicted variance was highly 
similar in all cases (Supplementary Fig. 8d–g). This shows that our results were not 
due to epileptiform activity and indicated that it was safe to include all mice in the 
dataset with this data-processing step.

This was further supported by our additional experiments with GCaMP6s-
expressing animals. Consistent with previous observations20, we found no 
epileptiform activity in these mice. Nevertheless, our model predicted an even 
larger amount of variance than in Ai93 mice and produced highly specific maps of 
unique contributions from single variables (Supplementary Fig. 5).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data from this study will be stored on a dedicated, backed-up repository 
maintained by Cold Spring Harbor Laboratory. A link to the repository can be 
found at http://churchlandlab.labsites.cshl.edu/code/.

Code availability
The MATLAB code used for the data analysis in this study is available online at 
http://churchlandlab.labsites.cshl.edu/code/.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Behavioral data was collected using Bpod r0.5, a commercially available data acquisition system (https://www.sanworks.io/shop/
products.php?productFamily=bpod). Imaging data was collected using custom Matlab (2015b) software (for widefield data) and MScan 
2.3 (commercially available through Sutter Instruments and used to acquire 2-photon data). Neuropixels data was collected with 
SpikeGLX (https://github.com/billkarsh/SpikeGLX, phase3A release). Subsequent spike sorting was done using Kilosort v1 and Phy v2.  
This information is stated in the Methods. 

Data analysis Data were analyzed using custom Matlab (2018b) code. As in previous papers, we will make all code available for public use via GitHub 
and the lab website (http://churchlandlab.labsites.cshl.edu/code/).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

We will make all data from this paper freely available, as we have done with previous papers (http://churchlandlab.labsites.cshl.edu/code/). The data will be stored 
on a dedicated, backed-up repository maintained by Cold Spring Harbor Laboratory and linked from the website above.  
Figure 1F and Supplementary Video 1 are very lightly processed: panels reflect average, baseline-corrected fluorescence responses.  
Figure 7A contains an example field of view in which identified cells are color-coded. 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were selected based on our extensive knowledge of mouse-to-mouse variability in behavior. This led us to include 21 animals (11 
for widefield and 10 for 2-photon imaging) in our main cohort. Smaller cohort sizes (n=2) were selected for the control cohorts of GFP and 
GCaMP6s mice (Supplementary Fig. 5). Smaller sample sizes were selected for these controls because we did not need to perform nearly as 
many analyses as on the main cohort. This was because the control animals were used to help interpret results from the main, larger cohort. 
Smaller cohort sizes (n=2) were selected for Neuropixels recordings because animals did not need to perform a behavioral task and a large 
amount of neural recordings (>100 units) were acquired in each animal.

Data exclusions All animals tested were included in the study. We investigated neural activity very carefully for evidence of epileptiform events in Ai93-mice, 
based on other reports in the literature. Occasional, brief epileptiform "interictal spikes" were detected in a small number of animals and 
excluded from further analysis. Our method for identifying and removing epileptiform activity is documented in Methods and Supplementary 
Figure 8.

Replication We aimed to replicate the results in a smaller cohort of animals expressing a different calcium indicator (GCaMP6s) and performing a different 
behavioral paradigm (rate discrimination). We successfully replicated our results in both cohorts Supplementary Fig. 5,6), demonstrating that 
our findings were not due to use of a particular genetic strain or behavioral task. 

Randomization Animals were randomly assigned to cohorts that learned auditory stimuli first vs. learning visual stimuli first. Auditory and visual trials were 
then randomly interleaved in both groups. 

Blinding Experimenters were not blinded to whether subjects were first trained on auditory or visual stimuli. However, the data collection process is 
entirely computer controlled and automatic so that experimenter's knowledge of the animal's training history was not able to influence 
stimulus presentation, stimulus difficulty, or any other experimental parameters. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Experiments were conducted with male mice from the ages of 8-25 weeks. All mouse strains were of C57BL/6J background and 
purchased from Jackson Laboratory. Six transgenic strains were used to create the transgenic mice used for imaging. Emx-Cre 
(JAX 005628), LSL-tTA (JAX 008600), CaMK2α-tTA (JAX 003010), Ai93 (JAX 024103), G6s2 (JAX 024742) and H2B-eGFP (JAX 
006069). All this information is stated in the Methods. 

Wild animals The study did not involve wild animals. 

Field-collected samples The study did not involve samples collected from the field. 

Ethics oversight The Cold Spring Harbor Laboratory Animal Care and Use Committee approved all animal procedures and experiments.  All 
surgical and behavioral procedures conformed to the guidelines, established by the National Institutes of Health.
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