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Abstract 

Leveraging Clinical Data and Knowledge Networks to Derive Insights into Alzheimer’s Disease 

Alice Tang 

 

Alzheimer’s Disease (AD) is a devastating neurodegenerative disorder that is difficult to 

study and treat despite decades of progress. This is due to disease heterogeneity, lack of precise 

phenotyping, and limited understanding of molecular mechanisms underlying clinical 

manifestations. Electronic medical records (EMR) are emerging as a real-world dataset with 

abundance of longitudinal human data across diagnoses, medications, and measurements with 

opportunity to derive insights without predefined selection criteria or limitations in scope. Recent 

developments of integrative heterogeneous graph databases that combine knowledge across omics 

relationships provide a means to further identify molecular hypotheses underlying complex clinical 

phenotypes. We performed deep phenotyping to characterize AD and sex differences in the EMR 

against a control cohort, and identified sex and AD associated comorbidities, medication use, and 

lab values. Extending this work to apply machine learning, we utilize clinical information to 

predict AD onset and identify prioritized genes via knowledge networks (e.g., APOE, ACTB, IL6) 

and genetic colocalization analysis (e.g., MS4A6A with osteoporosis). Our findings suggest that 

AD onset risk can be predicted based on clinical data and that there are sex-specific relationships 

in AD including musculoskeletal disorders among females with AD and neurological or sensory 

disorders among males with AD. Extensions to knowledge networks and molecular datasets further 

prioritize genes depending on an individual’s comorbid conditions. By leveraging clinical data to 

identify hypotheses for complex disease, we can further make steps towards better understanding 

molecular mechanisms and advance personalized treatment approaches in AD.  
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Chapter 1: Opportunities from Bioinformatics to Clinical 

Informatics for Understanding and Managing Disease  

In the 21th century, the proliferation of electronics, digital tools, sequencing technologies, 

data storage capabilities, and methodological advancements paved the way for an abundance of 

diverse and large datasets that can be either utilized or repurposed for research or translational 

goals. These datasets range across the multi-omics spectrum: from genetics databases like dbGAP 

(database of Genotypes and Phenotypes, ncbi.nlm.nih.gov/gap) and The Cancer Genome Atlas 

(portal.gdc.cancer.gov), to realms of epigenetics, gene and protein expression, clinical records, 

sensor outputs, imaging, disease epidemiology, and more. Some repositories of datasets, like the 

ADNI (Alzheimer’s Disease Neuroimaging Initiative, adni.loni.usc.edu) and NACC (National 

Alzheimer’s Coordinating Center, naccdata.org) databases for neurodegeneration or March of 

Dimes (MOD) Preterm Birth Database (pretermbirthdb.org) for pregnancy outcomes, provide 

focal points for the investigation of specific research questions and topics. The digital 

transformation has amplified data collection in health maintenance and care delivery, as evidenced 

by extensive electronic medical records and novel utilization of data collection sources like 

smartwatches or cellphone apps. 

Such wealth of data provide opportunity in exploring potential untapped research questions 

and development of tools for translational applications. In this chapter, a general review of 

translational informatics across multimodal data domains will be provided, with emphasis on data 

representation and equity. Then a commentary on machine learning based personalized lab result 

insights will be provided. These will serve as the basis that leads to EMR-based insights for 

http://www.ncbi.nlm.nih.gov/gap
http://portal.gdc.cancer.gov/
http://adni.loni.usc.edu/
http://naccdata.org/
http://pretermbirthdb.org/
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Alzheimer’s Disease in following chapters, and finally an overview of methods and considerations 

for expanding EMR informatics into other disease areas. 
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1.1 Translational Informatics Across Multimodal Data Domains for 

Equitable Precision Medicine  

 
1.1.1 Abstract 

Challenges from the COVID-19 pandemic led to collaborative efforts among researchers 

in the realms of data sharing and algorithmic development efforts across molecular, clinical, and 

digital health domains for goals of prevention and treatment. We performed a literature assessment 

of trends and approaches in clinical and translational bioinformatics to characterize and describe 

recent advanced computational approaches since 2020. This includes applications of phenotyping, 

disease subtype characterization, predictive modelling, biomarker discovery, treatment selection, 

and artificial intelligence model utilization for advancement of human health. To pursue the goals 

of equity and inclusion in scientific advancements and translational applications, data 

representation and bias mitigation should be considered at every step including project design, data 

collection, model creation, clinical implementation, and evaluation. Data representativeness along 

with breakthroughs in big data and artificial intelligence will guide the future in precision medicine 

applications for health. 

 
1.1.2 Introduction  

With the increasing acquisition of multimodal data (e.g., measurements or records that span 

across multiple sources, such as genetic and imaging data), recent terms such as ‘translational 

bioinformatics’ are evolving to encompass the discipline of the use of computational approaches 

and tools across life sciences and clinical data for the purpose of advancing human health or 

medicine1. Bioinformatics computational approaches have aided in the advancement for scientific 
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understanding of biological and disease phenomenon, often from genetics, gene expression, and 

proteomics datasets. Recent increasing availability of molecular testing in the clinic and 

opportunity to combine these datasets with clinical data has enabled applications for translational 

applications for improved disease understanding or treatment. 

Computational tools in bioinformatics have evolved along with technical advances in 

genomic and single-cell sequencing, microbiome sequencing, proteomics, imaging technologies, 

and other technologies to capture biological data at a cellular level2-4. Tools to analyze these large 

datasets span across traditional statistical analyses to machine learning and unsupervised clustering 

to better identify patterns and associations with minimal human intervention. Models that learn 

upon biological phenomenon, as well as integrate across clinically observed diseases and 

phenotypes, are increasingly being trained and applied for precision medicine approaches such as 

disease risk prediction, diagnostic reasoning and classification, and prognostic modelling. In the 

years following 2020, particularly due to challenges brought on by the COVID-19 pandemic, there 

has also been unprecedented efforts in collaboration and data or model sharing across academia 

and industry to tackle the challenges caused by the changing nature of SARS-CoV-2, the virus that 

caused COVID-195,6. Systemic challenges due to shelter-in-place orders have also shifted 

paradigms in healthcare delivery to increasingly rely on the role of technology for remote patient-

centric healthcare monitoring and delivery, leading to sustained efforts for convenient local health 

management. This includes utilization of nearby lab facilities, imaging facilities, and digital health 

devices to help with timely data collection and data sharing. Mobile clinics and healthcare teams 

are also increasingly able to visit patient homes to deliver relevant devices, sensors, and even 

medications. Telehealth visits are increasingly utilized for appointments that do not require 

extensive physical exams, including psychiatric appointments and follow-up appointments from a 
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procedure. These changes lead to efforts to overcome challenges in data sharing and data 

processing efforts across molecular omics, clinical data, and digital health for the advancement of 

algorithmic approaches in healthcare and precision medicine in the future7.   

 Despite the rising opportunities available for leveraging multimodal datasets to understand 

and tackle disease, it is important to evaluate how inequities can arise across the computational 

pipeline. Inequities in the dataset and modelling approaches can lead to societally biased scientific 

insight or biased algorithms, which can be further propagated when applied to translation. These 

biases can arise from the beginning, with data collection and representation, to algorithmic bias in 

model design, behavioral biases in data availability, as well as bias propagation due to algorithm 

utilization despite data shifts or drift. Scientific advances should therefore be considered with a 

framework of equity and inclusion to prevent transmission of healthcare disparities in translational 

applications and ensure algorithmic advances can benefit all communities and populations. 

 For example, studies leveraging data from the All of Us database have explored differences 

in disease prevalence across diverse populations, such as eczema and cardiovascular disease8,9, 

which provides a starting point to characterize disease epidemiology in a heterogenous patient 

sample and motivate further research into understanding and addressing causes. The All of Us 

population includes diverse racialized individuals, those over the age of 75, people with 

disabilities, people with lower income, and people with less formal education. The All of Us 

dataset has also been utilized to study disparities in family health history knowledge and the ability 

to afford medications for diseases such as glaucoma10,11. These types of studies are useful to inform 

current understanding of disease characteristics and phenotypes across society, with the benefit of 

inclusion of minority populations and allowing for informed changes across domains of health 
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policy, clinical decision making, and design of research studies to ensure proper representation in 

the study of disease biology12.  

 In this section, a brief review will be provided on recent advances across the fields of 

bioinformatics, translational informatics, and clinical or medical informatics, and across omics 

domains including molecular, microbiome, clinical, and digital health.  

 
1.1.3 Approach 

A literature search was performed on PubMed, Google Scholar, and within specific 

journals for publications past 2019, including Nature, Nature Digital Medicine, Nature 

Bioengineering, Lancet, the Journal of American Medical Association, Journal of Medical Internet 

Research, the New England Journal of Medicine, and Bioinformatics. Keyword searches were also 

performed to identify relevant publications, with keywords chosen by both broad and specific 

translational informatics topics (Table 1.1.1). References were also acquired from citations in 

papers identified from reviewed journals and keyword searches. After surveying identified papers, 

chosen papers were determined by their breadth, novelty, impact, or relevance, with a particular 

focus on papers that touch upon equity or inclusivity in the informatics fields. 

 
1.1.4 Survey of Translational Bioinformatics  

 Translational bioinformatics applications include various goals, such as disease 

phenotyping, disease characterization, predictive modelling, trajectory modelling, 

subphenotyping, and drug discovery. Among these applications and pathway, we mention how 

equity and inclusion which should be considered at every step of the process including population 

identification, data collection, methodology, and algorithmic applications (Figure 1.1.1). 
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Informatics with Molecular Data 

There are many recent exciting advances in the utilization of omics data to gain insights 

into complex diseases, discover biomarkers, therapeutic targets, and perform drug discovery 

through computational approaches across machine learning disciplines. Molecular datasets include 

diverse data modalities measuring the genome and polymorphisms, cancer gene mutations, 

epigenetics, gene expression, proteomics, microbiome, and others. These measurements have also 

advanced to acquisition with high temporal and spatial resolution, including data at the single cell 

and/or single organism level. As technologies are becoming more advanced, not only has 

molecular measurements become more easily attainable in the clinic, but advances in both 

molecular measurements and algorithmic development have allowed for improved clinical care to 

include cancer phenotyping, infectious disease identification, and disease risk identification. As 

technologies become increasingly advanced, there is also the need to revisit goals of equitable 

representation and conclusions across molecular studies and clinical implementation.  

The rise in available measurements across omics modalities across the same samples and 

patients have paved the way for research in understanding associations among the intricacies of 

disease and health. Microbial compositions and host transcriptome have been utilized for 

applications including understanding crosstalk that influencing disease risk in inflammatory bowel 

disease (IBD) and irritable bowel syndrome (IBS)13,14, as well as prediction of preterm birth via a 

crowdsourced DREAM challenge15. Datasets provided in AMP-AD (Accelerating Medicines 

Partnership - Alzheimer’s Disease) for Alzheimer’s Disease also allow for investigations across 

both mice and human for understanding of shared disease mechanisms. Multi-omics datasets are 

also being utilized to help identify disease biomarkers. For example, the CCGA (Circulating Cell-

free Genome Atlas) consortium employed an ML method to detect cancer and its origin by 

analyzing the DNA methylation patterns of participants as a means for potential usage in early 
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cancer detection and treatment16. Some studies have also employed similar methods in the 

identification of infectious disease based on cell-free DNA (cfDNA), particularly among infectious 

diseases such as COVID-1917. Furthermore, there exists great interest in identifying biomarkers 

for aging and AD, with many potentially identified markers in the blood and cerebrospinal fluid, 

and full-scale clinical integration still pending. 

Beyond disease detection, there is notable progress in identifying new indications for 

existing FDA-approved medicines, called drug repurposing, which offers hope in treating a greater 

variety of disease18,19. Some initiatives, like the OCTAD (Open Cancer TheraApeutic Discovery) 

website, are dedicated to assisting researchers in cancer drug discovery by comparing compound-

induced gene expression signatures with gene expression data from patients20. The urgency 

brought on by the COVID-19 crisis has also sparked efforts to find repurposed medicines, with 

some prior approaches identifying statins and antipsychotics, as well as remdesivir, as potential 

treatments in the early stages of the crisis21,22. Overall, repurposing existing drugs can 

revolutionize treatment methods for various diseases in the foreseeable future, and methods 

spanning across omics domains are evolving for that purpose. 

Considering Equity: It is crucial that all advancements in multiomics informatics methods 

and applications cater to everyone equitably. The NHGRI (National Human Genome Research 

Institute) emphasizes a diverse workforce in genomics and inclusive research participant to 

advance understanding of diseases among diverse patient populations23. A current challenge is the 

overrepresentation of European individuals in genome studies (>80%), leading to potential health 

disparities due to decreased predictive power from polygenic risk scores in non-European 

individuals24. However, recent endeavors aim to address this imbalance. For example, the PAGE 

(Population Architecture using Genomics and Epidemiology) study incorporated a diverse non-
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European participant pool and unearthed various novel findings and ancestry-specific 

polymorphisms26. The All of Us research initiative also emphasizes diverse participant 

involvement and combines various data types, aiming for a holistic understanding of human health 

by integrating data across molecular data, electronic health records, survey data, and other social 

determinants of health26,27. For the goal of equitable benefit of precision medicine to be applied in 

clinical translation, research inclusivity should be prioritized to ensure 28,29. 

 
 

Informatics with Clinical Data 

Clinical information includes data extracted from electronic health databases, clinical 

trials, imaging, and notes. Only recently has the potential of clinical data been utilized for 

bioinformatics studies. Within electronic medical records (EMRs), patient information across 

diagnoses, lab results, drug prescriptions, and outcomes can be linked and investigated, and 

potentially include information about a patient’s economic and social backgrounds30.  For 

example, a study in the UK on pediatric diabetes identified differences in treatment regimen due 

to racism exposures31. Clinical informatics have led to advancements in patient profiling, disease 

prediction, treatment decisions, and subtyping. Based on a patient’s health profile, algorithms can 

be employed that span from basic association analyses and diagnostic groupings to machine 

learning models that intelligently embed and cluster patients. This has been applied to several 

diseases such as type 2 diabetes, Alzheimer’s Disease, and depression32-34. These phenotyping 

approaches highlight the heterogenous nature of disease and provide opportunity for treatment, but 

this heterogeneity also highlights the necessity to include diverse cohorts for fair representation 

across these heterogenous presentations and potential variations in treatment approaches.  

There have also been a surge in further applications of clinical data for forecasting and 

predicting clinical outcomes, triaging disease severity, and assessing treatment efficacy or adverse 
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effects35-45. Emphasis is particularly placed on interpretable models as opposed to ‘black box’ 

models, as well as models that can be validated across medical centers to account for heterogeneity 

in treatment and patient differences. Since clinical records also contain extensive records of patient 

treatment history and diagnoses, drug repurposing applications are investigated through virtual or 

in silico trials to understand treatment patterns and gain insight into drug associations and 

outcomes46-49. Ultimately, the aim of many clinical informatics studies is the integration into 

clinical routines and treatment decision making. Example successes of translational applications 

include stories of prediction of patients undergoing radiation therapy52, identifying adults at risk 

for clinical deterioration53, guiding ultrasound and procedures 54, and managing COVID-19 

outbreaks55.  

Considering Equity: As clinical bioinformatics increasingly plays a role in medical care 

and insight, it is crucial that algorithms developed are beneficial to everyone, especially groups 

that have been historically marginalized or understudied. If models are trained on data that lack 

representation from diverse individuals, such as racial exposures and gender identity groups, 

machine learning algorithms will learn from the bias themselves57-67. Therefore, it is essential that 

research and algorithmic development takes into account equity along the pipeline of data 

collection and model development. 

 
Informatics with Digital Data 

In the past two years, the COVID-19 pandemic has created many challenges and 

opportunities in utilizing technology to aid in healthcare when direct face-to-face meetings are less 

feasible, including video visits (telehealth) and sensor use via phones or wearables68. This led to 

maturation in digital health, informatics, and machine learning as a way to combat the pandemic 

https://www.zotero.org/google-docs/?XGedVZ
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from both a public health perspective on prevention and control, as well as with providing 

individualized healthcare4. 

Mobile phones and wearables help provide a source of data that can be analyzed for health 

outcomes. As an example, population level information has been utilized to help with contact 

tracing at the start of the pandemic69, and modeling infectious spread throughout numerous 

countries70,71. Sensor data have also been utilized learning to detect COVID-19 infection72 via 

tracking of vital signs, sleep, activity, and even speech73,74. These ‘digital biomarkers’ provide an 

alternative proxy to invasive blood tests or molecular biomarkers, with applications including 

screening for depression75, prediction of Parkinson’s disease severity77, and evaluating frailty in 

older people79. These applications provide recommendations in consumer applications or are 

slowly integrating into medical care as evident in the use of digital biomarkers for onsite patient 

triage and evaluation. 

There has also been much work from the translational perspective in applying modeling 

and analysis approaches to aid in the advancement of medical care. One application includes aiding 

in physician monitoring of disease progression to inform clinical decision-making and 

management for complex diseases. For example, there are efforts to improve inpatient and at-home 

monitoring of vital signs80–82, and obtain non-invasive proxies for metrics such as glucose83 and 

inflammation status84. There are also increasing efforts to utilize digital biomarkers for precision 

medicine applications, such as in cancer and autoimmune diseases85,86, to optimize therapies that 

account for disease complexity and heterogeneity. Furthermore, computational approaches are in 

development to manage the large data complexity of information acquired to derive scientific or 

medical insights via phenotyping87 and predicting clinical or behavioral states88,89.  

https://www.zotero.org/google-docs/?hDF9aw
https://www.zotero.org/google-docs/?0vXXCH
https://www.zotero.org/google-docs/?41IlL0
https://www.zotero.org/google-docs/?smAC6O
https://www.zotero.org/google-docs/?AEXwSt
https://www.zotero.org/google-docs/?Igiloe
https://www.zotero.org/google-docs/?Z2tAS5
https://www.zotero.org/google-docs/?OrPMb6
https://www.zotero.org/google-docs/?foNiiW
https://www.zotero.org/google-docs/?2oH10U
https://www.zotero.org/google-docs/?BIv3fy
https://www.zotero.org/google-docs/?VN9CfQ
https://www.zotero.org/google-docs/?pzIjHA
https://www.zotero.org/google-docs/?z6FI4K
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Some digital health applications explored include incorporation of interactivity and 

feedback through patient-facing mobile applications. Mobile applications can aid in patient-centric 

care via patient education and treatment support, which is of particular importance for healthcare 

affordability and access. There has been an increase in the availability of apps for a variety of 

diseases, such as for vital sign monitoring, glucose monitoring for diabetes, weight management90, 

mental health91, and even for managing postpartum maternal health92. Informatics and artificial 

intelligence techniques can also be used to guide patients in management of their own care93, such 

as determining optimal drug dosage or timing94,95, or predicting risk and providing 

recommendations from surveys and inputted data points96,97. These translational applications have 

great opportunities for improving equity and inclusion in disease care, such as in aiding health 

management for those with disabilities98, complex diseases99,100, or in under-resourced 

locations101.  

Considering Equity: With the impetus that comes from the COVID-19 pandemic, 

technology and digital health are expected to continually become integrated into clinical care and 

utilized for scientific and clinical research68. This spans a wide range of data types and 

applications, ranging from public health analysis of mobile phones, networks, the internet, and 

GPS to individualized applications from both the clinical perspective (EMR, telehealth, medical 

devices) and from the patient perspective (wearables, mobile applications). There is therefore not 

a better time than now to talk about opportunities in equity. These opportunities include access, 

affordability, decreased time in the hospital, as well as early detection and prevention for public 

health goals98. With the maturation of digital health approaches, beyond issues regarding privacy 

and regulations, applications should account for technological literacy102; accessibility for 

culturally diverse populations103–105, older people106,107, and people with disabilities98,103; 

https://www.zotero.org/google-docs/?soYve6
https://www.zotero.org/google-docs/?zF6ulC
https://www.zotero.org/google-docs/?M8xQU0
https://www.zotero.org/google-docs/?7wUNPT
https://www.zotero.org/google-docs/?dl8tkX
https://www.zotero.org/google-docs/?P6D9jc
https://www.zotero.org/google-docs/?7iCkxD
https://www.zotero.org/google-docs/?HBnS0w
https://www.zotero.org/google-docs/?Gr6ofx
https://www.zotero.org/google-docs/?xOF0T6
https://www.zotero.org/google-docs/?KOpWLA
https://www.zotero.org/google-docs/?zAivn0
https://www.zotero.org/google-docs/?d8HhME
https://www.zotero.org/google-docs/?PEYwMV
https://www.zotero.org/google-docs/?BMZbEc
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adaptability to rural environments108; various levels of health literacy109,110; and even access to 

fundamental tools and technology111-114. With these considerations in place, digital health can 

become an essential way to bring informatics into accessible and equitable translational 

applications.  

 
1.1.5 Discussion 

This review of the field highlighted innovative research post COVID-19 pandemic, 

blending computational progress with equity. The growing literature focuses on equity throughout 

the bioinformatics process, from data collection to interpretation. Recognizing bioethicists like 

Sandra Soo-Jin Lee's viewpoint, we acknowledged the ethical responsibilities when using 

biomedical data, including nurturing trust with underrepresented communities and individuals28,29. 

In the current era, we can acquire vast amounts of data, driving the surge of informatics and 

machine learning. These methods advance scientific knowledge, pinpoint therapeutic targets, 

support medical decisions, and foster patient-centric care. With evolving technology, there are 

opportunities to improve accessibility and health literacy. However, challenges persist in 

translational informatics. Data representation is a hurdle; more needs to be done to ensure equity 

in data collection. Technological literacy is also a barrier for many, impacting the efficacy of 

translational tools. Access to institutions and technology is foundational for inclusivity in all areas, 

from data to healthcare delivery115-129.  

The upcoming decade demands a focus on equity in data collection, analysis, model 

implementation, and application development. In summary, with the vast amounts of genomic, 

clinical, and digital health data available, computational methods offer immense potential to 

advance human health. Machine learning's transformative power is evident, especially in 

https://www.zotero.org/google-docs/?6GD5TN
https://www.zotero.org/google-docs/?v2Re51
https://www.zotero.org/google-docs/?JxDyFc
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predictive modeling. Integrating diverse data and prioritizing equity throughout research can pave 

the way for universal precision medicine. 
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Table 1.1.1 Keywords in the Search for Publications or Related Publications in Translational 
Bioinformatics 
 
These terms were utilized in identifying relevant publications within informatics and health 
translation. 
 

Informatics 
terms 

Broad AI or 
algorithmic 

terms 

Disease or data 
related terms 

Clinical or digital 
health relevant 

terms 

• Precision medicine 
• Translational 

bioinformatics 
• Translational 

informatics 
• Bioinformatics 
• Bias informatics 
• Multiomics 
• Omics 
• Drug repurposing 

• Machine learning 
• Machine learning 

bias 
• Artificial 

intelligence 
• Predictive 

modelling  
• Clustering 
• Disease subtyping 
• Subphenotyping  
 

• Biomarker 
discovery 
• Phenotyping  
• Microbiome 
• All of us research 

program 
• Digital biomarkers 
• Disease trajectories 

• Electronic medical 
records 
• Electronic health 

records 
• Clinical trials 
• Clinical informatics 
• Digital health 
• Mobile health 
• Telehealth  
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Figure 1.1.1 Translational Bioinformatics in the Era of Precision Medicine 

Here we present recent translational bioinformatics approaches that leverage molecular, clinical, 
and digital data to advance precision medicine. We discuss specific applications such as 
phenotyping, outcome prediction, and therapeutics, as well as methods including informatics, 
statistics, and machine learning, all within the context of equity and inclusion.  
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1.2 Personalizing routine laboratory measurements from electronic health 

records with machine learning 

 
1.2.1 Abstract 

Machine learning applied to electronic medical records can be used to create personalized 

lab test reference ranges and to quantify disease risk, paving the way for precision medicine in 

clinical care. 

 

1.2.2 News and Views 

Precision Medicine is “an emerging integrative approach for disease prevention, early 

detection and treatment that takes into account individual variability in genes, environment, and 

lifestyle.”1 For instance, testing for genetic variants in a person’s tumor sample is being 

increasingly performed as a part of diagnosing malignancies and determining therapeutic options, 

and is becoming the standard of care for some cancers2,3. This targeted approach to clinical care is 

enabled in part by basic research discoveries and is fueled by a growing volume of molecular, 

clinical, and epidemiological data. Electronic medical records (EMRs) provide an invaluable 

source of data for biomedical research and opportunity for precision medicine strategies, including 

the use of EMRs for personalized lab test modeling4 (Figure 1.2.1).  

EMRs capture clinical data on the population of patients, including demographics, 

diagnosis codes, medication orders and laboratory tests, which results in billions of data points on 

millions of patients. Even though EMR data are collected for individual patient-care purposes, 

there is an opportunity for de-identifying the data and, together with advanced computational 

approaches, leveraging it for clinical and translational research. 

https://www.zotero.org/google-docs/?toZmKJ
https://www.zotero.org/google-docs/?03cuMm
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Integrative computational methods have become a valuable tool for turning various types 

of biomedical data into clinically actionable information. Machine learning is a branch of artificial 

intelligence based on the idea that systems can learn from data, identify patterns, and make 

decisions with minimal human intervention. These predictive modeling approaches have been 

successful in many fields, including computer vision and natural language processing, and have 

been extensively applied in the biomedical domain 5,6. Bringing together rich clinical phenotyping 

in the EMR with advanced machine-learning techniques provides an incredible opportunity for 

advancing precision medicine in the clinic. 

Currently, since clinicians rely on ‘hard-coded’ reference ranges for laboratory results, 

automated ways to use machine learning to identify personalized reference ranges are desired4, 

especially since ranges can differ by age, sex, ethnicity, disease status and other relevant 

characteristics. A recent study has provided support for this rationale by demonstrating that the 

distributions of over 50% of laboratory tests with currently fixed reference intervals differ among 

healthy people, according to self-identified racial and ethnic groups7. Although computational 

analysis has been applied extensively to diagnosis codes8,9 and medications in the EMR10,11, 

relatively few studies have analyzed laboratory values. In Cohen et al., the authors made use of 

the rich EMR dataset from Israel’s Clalit healthcare system to model 2.1 billion lab measurements 

in 2.8 million healthy adults and modeled the trajectories of 92 different lab tests4. They 

demonstrated the use of these models for personalized clinical applications, such as the creation 

of patient-specific reference lab-value ranges and showed impressive performance in the 

prediction of future test results and risks. This approach demonstrates the potential of using 

artificial intelligence on EMR data to personalize the interpretation of clinical results, to better 

quantify patient risk and to support clinical decision-making. Interpreting and acting upon lab data 



 33 

has been an art form practiced by healthcare providers, but now precision-medicine approaches 

can help to increase the accuracy and reliability of that process.  

To identify lab-test results that corresponded to healthy states, an unsupervised approach 

was utilized to filter out those associated with 131 chronic and acute conditions and 5,223 drug–

test pairs that showed significant correlation. This generated a list of ~0.5 billion lab measurements 

from 2.8 million people and sufficient data for multivariate modeling across an age range of 20–

90 years. These models were shown to better represent lab-test ranges for healthy people, 

performing better than the absolute normal ranges now used in clinical practice. They were able 

to consider variation due to sex-specific trends (e.g., changes in values for red-blood-cell 

distribution width due to menopause) or transient age-linked trends (e.g., peaks in alanine 

aminotransferase for males in their 30s) that absolute ranges fail to capture. These models can be 

applied in the clinic to generate a personalized quantitative reference range, similar to the 

utilization of the body-mass-index scale and percentile charts that pediatricians use to assess 

growth progress in children.  

Looking at median lab-test values among healthy patients, age and sex were also 

contributors to less than 10% of within-norm variance in most tests, whereas personalized histories 

explained over 45% of variance in over half of the tests4. Predictive modeling was performed to 

account for this variance and these trained models could be used for personalized medicine, such 

as stratifying patients based on 2- to 3-year prediction of future lab abnormalities, mortality risk 

or disease risk. To demonstrate model utility, personalized risk stratification was performed on 

people who had normal lab-test values, with the goal of predicting future lab-test abnormalities or 

mortality. When used in a real-world setting, this type of modeling will allow healthcare systems 

to interpret tests and stratify patients by risk, years before a potential disease may manifest. In 
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another demonstration, temporal modeling of sparse patient histories allowed for quantification of 

the risk for developing diabetes, renal failure or colorectal cancer4. These models can be extended 

to any severe or insidious disease, which will allow more-precise early preventative measures in 

the clinic based on the risk of future disease.  

Although there is considerable potential for EMR analysis, there are also limitations that 

need to be overcome, such as missing data, sampling bias, provider bias, reporting errors and 

unreported factors, including over-the-counter medication use. Nevertheless, approaches such as 

semi-automated strategy via unsupervised filtering has been utilized to model and replace the 

missing values, which has been shown to not negatively affect model performance4. Trained 

models could be extended in many potential future directions, some of which address the 

limitations mentioned above. Models should be further tested and applied to other EMR systems 

across a more diverse patient population to model ‘normal’ lab-test trajectories, which might also 

help alleviate the limitations related to bias. Inclusion of additional covariates can also help to 

further personalize the interpretation of lab values, even those within normal range. In addition, 

there is enormous potential for extension of this methodology beyond laboratory tests, to inclusion 

of medications, diagnoses, and longitudinal analysis. Finally, applications of this approach beyond 

the ‘healthy’ population will allow immense potential for interpreting laboratory ranges in diseased 

populations, which will potentially allow more-personalized interpretation and monitoring of 

patients’ lab tests in this context. 

Given the extensive clinical databases that exist across many countries and institutions, 

there is an incredible opportunity for paving the way forward in making best use of big health data. 

Applying modeling approaches to large-scale health data not only allows scientific progress 

through interpretability and observation, but also can bring actionable insights into the clinic to 
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improve personalized healthcare around the world. A stratified analysis according to personal 

covariates (e.g., age, sex, race, and other characteristics) can allow for better modeling of the 

complex extensive data within EMRs. Then, through the application of computational modeling 

and machine learning, results such as personalized lab test ranges, disease risk scores, and targeted 

therapeutics can be determined for each patient based on patient-specific covariates and medical 

history.  
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Figure 1.2.1 General workflow for modeling patient EMR data for personalized medicine 
 
Information such as lab test results, diagnostic codes, medications, and other relevant demographic 
information or covariates can be extracted from electronic medical records. By stratifying lab 
results as outcomes to models and including demographic and relevant diagnostic or medication 
covariates in machine learning models, personalized lab ranges can be determined based on a 
patient’s individual characteristics and health profile. These personal ranges can be utilized to 
identify potential diagnostic risks and therapeutic approaches.  
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Chapter 2: Clinical Informatics Enables Deep Phenotyping and 

Discovery of Sex-Specific Differences in Alzheimer’s Disease 

 
2.1 Abstract 

Alzheimer’s Disease (AD) is a devastating disorder that is still not fully understood. Sex 

modifies AD vulnerability, but the reasons for this are largely unknown. We utilize two 

independent electronic medical record (EMR) systems across 44,288 patients to perform deep 

clinical phenotyping and network analysis to gain insight into clinical characteristics and sex-

specific clinical associations in AD. Embeddings and network representation of patient diagnoses 

demonstrate greater comorbidity interactions in AD in comparison to matched controls. 

Enrichment analysis identified multiple known and new diagnostic, medication, and lab result 

associations across the whole cohort and in a sex-stratified analysis. With this data-driven method 

of phenotyping, we can represent AD complexity and generate hypotheses of clinical factors that 

can be followed-up for further diagnostic and predictive analyses, mechanistic understanding, or 

drug repurposing and therapeutic approaches.  
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2.2 Introduction 

Alzheimer’s Disease (AD) is the most common cause of dementia, making up 60-80% of 

cases, with a devastating and increasing burden on patients, caregivers, and society1. AD is 

characterized by brain atrophy and accumulation of beta-amyloid plaques and tau tangles seen on 

brain pathology after death. The disease erodes memory and cognitive functions, causing 

interference with daily activities and contributing to great emotional, social, and economic burden 

on patients and their families. AD is incurable and challenging to understand and diagnose. One 

reason AD is difficult to study is because it is a complex, heterogeneous, and multifactorial disease 

that takes many years to manifest2. This complexity, along with the slow insidious progression of 

the disease, makes it difficult to fully characterize disease phenotypes and associations. 

Sex is one factor that has been shown to be important in AD, with higher prevalence in 

women afflicted by the disease at a 2:1 ratio compared to men1. While women have an increased 

estimated lifetime risk of AD, there is mixed evidence of risk between men and women of the 

same age3,4. Recent findings show that sex contributes to differing vulnerabilities or resilience to 

AD, as men with AD progress to death quicker5,6 while women with this disease show higher 

cognitive resilience despite increased tau pathology5,7,8. How sex contributes to these differences 

in prevalence and vulnerability is a question of fervent interest among researchers in the AD field9. 

Recent studies in mice demonstrate that a second X chromosome may contribute to AD resilience6. 

Further sex-specific human studies in Alzheimer’s Disease also show sex modification of AD 

risk10, progression11, and molecular phenotype11–15. As such, sex is a crucial factor to consider in 

studying and phenotyping AD. 

While many efforts have evaluated the association of individual risk factors with AD, 

unbiased approaches to these associations are limited. Prior work, largely hypothesis-driven, 
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focused on select comorbidities associated with AD, such as hypertension16, vascular disorders17, 

diabetes18, obesity19, and others20–22. However, how sex modulates AD complexity and 

heterogeneity has still not been fully explored. Prior big data approaches to AD have examined 

genotype-phenotype associations23,24 and molecular analyses14,25–27 to characterize AD and sex 

differences12,13. Other work on phenotyping AD patients using clinical data has examined 

neuroimaging28, neuropsychiatric phenotype29, chart reviews30, and billing records independently. 

Thus, an unbiased comprehensive approach to phenotype AD and identify sex associations using 

full clinical records is needed.  

With the rise in electronic medical record (EMR) use over the past decade31, there is 

abundant underutilized clinical data on patients covering comorbidities, medications, and lab 

values. This type of dataset provides a great opportunity to deeply investigate diseases and identify 

associations to facilitate understanding disease prevention and progression. Recently, EMR has 

been utilized for other diseases for creating comorbidity networks32, identifying disease subtypes33 

and predicting disease outcomes34,35 highlighting the potential of utilizing EMR data to extract 

insight and utility for complex and heterogeneous diseases36, but a big data integrative analysis 

with EMR data has not yet been applied to characterize AD.  

Deep phenotyping is a data-driven approach that has been used to provide more detailed 

stratification and representation of a disease in the era of precision medicine37,38. Here, we take an 

integrative approach through deep clinical phenotyping and network analysis to provide insight 

into AD clinical characteristics with a focus on sex differences. For the first time to our awareness, 

integrative phenotyping and association analysis is used to identify, in an unbiased manner, unique 

clinical features associated with AD itself - and reveals potential previously unknown sex-specific 

associations in the context of diagnoses, medications and lab test results.  
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2.3 Results 

From the UCSF EMR database (~5 million patients), we identified 8,804 AD patients 

(5,558 female, 86.5 mean age (6.4 standard deviation)) and 17,608 propensity score (PS)-matched 

control patients (11,117 females, 86.5 mean age (6.4 standard deviation)). From the Mount Sinai 

EMR (~4 million patients), 5,958 AD patients (4,138 females, 88.3 mean age (8.7 standard 

deviation)) and 11,916 PS-matched controls (8,446 females, 88.7 mean age (11.4 standard 

deviation)) were identified. Post-matching analysis demonstrated adequate balance in covariates 

with standardized mean differences in age and categorical distributions below 0.1 (or below 0.2 

between matched sex groups). Demographic characteristics of AD and matched control patients 

are shown in Table 2.1 and Supplementary Table 2.1.  

 
2.3.1 Embedding with Diagnosis Shows Separation Between AD and Controls 

Due to the size of our cohort, we first performed low-dimensional visualizations using 

diagnoses as features to visualize patient separation. Low-dimensional UMAP visualizations of 

non-AD diagnoses (47,439 features, ICD-10-CM codes) show that distributions for AD and 

control patients are significantly different among the first two UMAP components (Mann-Whitney 

U-Test, p-value < 1e-5, Figure 2.2A,B) at both UCSF and Mount Sinai, with a progressive 

separation between groups. For the UCSF data, sex and death status show significant correlations 

with the first component, while age is significantly correlated with both components (Mann-

Whitney U-Test p-value < 0.01, Figure 2.2A, Supplementary Figure 2.1). Sex, death status, and 

age are significantly correlated with both components at Mount Sinai (Mann-Whitney U-Test p-

value < 0.01, Figure 2.2B, Supplementary Figure 2.1). 
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2.3.2 Alzheimer vs. Control Association Analysis Identifies Previously Known and Novel 

Associated Comorbidities in AD 

Among each diagnostic hierarchical level (Level 2 categories, Level 3 categories, and full 

diagnosis names), AD disease networks contain more nodes and edges compared with control 

networks (Supplementary Table 2.3). In UCSF Level 3 diagnosis networks, more nodes and 

edges occur in AD vs control networks. As shown in Figure 3A, when thresholding Level 3 

diagnosis categories by >5% of patients, there are 243 diagnosis pairs among AD patients 

compared to one pair in controls. When comparing node-level network metrics between groups, 

thresholded by >1% of patients within a group, AD and control networks are significantly different 

(Mann-Whitney U-Test, p-value < 0.01) when compared on average shortest path length, closeness 

centrality, neighborhood connectivity, and stress centrality, indicating a higher degree of 

connectivity among AD networks across all levels (Figure 2.3C). In Mount Sinai Level 3 

diagnostic networks, more nodes and edges occur in AD networks compared to control networks, 

with significantly different distributions across AD and control networks on degree, eccentricity, 

neighborhood connectivity, and topological coefficient (Mann-Whitney U-Test, p-value < 0.01, 

Supplementary Table 2.3). Across the board, network metrics normalized by the metric are 

significantly correlated between UCSF and Mount Sinai (Spearman ρ = 0.55, p-value < 1e-4, 

Figure 2.3E) 

Within Level 2 diagnosis categories, there were 166 significant diagnosis categories 

(Fisher’s exact test, Bonferroni-corrected p-value < 0.05), with 120 diagnosis categories 

significantly enriched (OR > 2) uniquely in the AD group and no significantly enriched diagnosis 

categories uniquely in the control group (Figure 2.4A top). Within Level 3 diagnosis categories, 

there are 501 significant categories, with 391 and 4 categories significantly enriched in AD and 
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control groups, respectively (Fisher Exact test, Bonferroni-corrected p-value < 0.05, 

Supplementary Data 2.1). Within full diagnosis names, there are 1,627 significant diagnoses, 

with 1,491 and 7 diagnoses enriched uniquely in AD and control groups, respectively. Top 

significant diagnoses in AD include vascular dementia, hypertension, hyperlipidemia, urinary tract 

infection, syncope, hypothyroidism, and osteoporosis, while top significant diagnoses in controls 

include neoplasms of liver and brain (Fisher Exact test, Bonferroni-corrected p-value < 0.05, 

Figure 2.4A bottom, Supplementary Data 2.1). Top ICD diagnostic blocks in AD include mental 

health and behavioral diseases, genitourinary diseases, endocrine and metabolic diseases, and 

circulatory system diseases (Figure 2.4B). In the validation cohort, 1,495 of 1,627 significant 

UCSF diagnoses mapped to Mount Sinai EMR codes, of which 889 (60.13%) are significant 

(Fisher’s exact test, Bonferroni p-value < 0.05). Overall comorbidity odds ratios at UCSF are 

significantly correlated with those of the validation cohort at Mount Sinai (Spearman ρ = 0.65, p-

value < 1e-5, Figure 2.4C).  

 
2.3.3 Sex-Stratified AD vs. Control Association Analysis Identifies Vascular and 

Musculoskeletal Disorders in Female AD & Behavioral/Neurological Disorders in Male AD 

When stratifying diagnoses by sex (see Methods), AD disease networks are significantly 

different on metrics of betweenness centrality and neighborhood connectivity in both males and 

females compared to their respective controls among all diagnostic hierarchical levels (p-value < 

0.001). Networks were significantly different in stress centrality among all diagnostic hierarchical 

levels when comparing AD males to AD females, but not when comparing control males to control 

females. Comparison of sex-specific network for diagnosis name show significantly greater 

closeness centrality, greater neighborhood connectivity, and lower eccentricity in female networks 

(Mann-Whitney U-Test, p-value<0.01 all three metrics, Figure 3D, Supplementary Table 2.4). 
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Within the validation cohort, similarly, female AD networks show significantly greater 

neighborhood connectivity compared to male AD networks (Mann-Whitney U-Test, p-value<0.01, 

Supplementary Table 2.4). When thresholding full diagnosis names by >5% of patients within a 

sex group, female AD patients have 45 shared co-diagnosis pairs compared to 14 in male AD 

patients (Figure 2.3B), and no pairs were identified for either control sex group.  

For both males and females, there are 136, 338, and 714 shared significant diagnostic 

categories or diagnoses for Level 2, Level 3, and full diagnosis names, respectively. In a sex-

stratified analysis, there were 29, 164, and 699 female-only significant hits and 5, 18, and 91 male-

only significant hits for Level 2, Level 3, and full diagnosis names (Fisher Exact test, Bonferroni-

corrected p-value < 0.05, Figure 2.5A, Supplementary Data 2.1). Compared to males among 

Level 2 diagnostic categories, females have a greater percent of significant diagnoses in blood-

related disorders (e.g., nutritional anemia, coagulation defects) and congenital disorders and also 

have greater enrichment of pervasive and specific developmental disorders, musculoskeletal 

disorders (e.g. chondropathies, other osteopathies), injuries (e.g. injuries to the hip and thigh, 

injuries to the ankle and foot), infections with a predominantly sexual mode of transmission, and 

metabolic disorders (Supplementary Data 2.1). When comparing Level 2 categories in the 

validation cohort, among females, 153 out of 165 mapped with 60 (30.22%) significant, and among 

males, 133 out of 141 mapped with 64 (48.12%) significant (Fisher Exact test, Bonferroni-

corrected p-value < 0.05 based on number of significant UCSF diagnoses). In general, Level 2 

category sex-specific odds ratios are correlated between institutions (Females: Spearman ρ =  0.77, 

p-value < 1e-5; Males: Spearman ρ = 0.83, p-value < 1e-5). In the validation cohort, females have 

similar enrichment of blood-related disorders (e.g., nutritional anemia) and injuries (e.g., injuries 

to the hip and thigh), while males have enrichment of behavioral/emotional disorders.  
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Within full diagnosis names, unique significant diagnoses of female AD patients include 

asthma, atrial fibrillation, arthritis, fractures, and accidents while unique significant diagnoses of 

male AD patients include parkinsonism, sleep apnea, hypersomnia, neuropathy, irritability, and 

imbalance (Fisher Exact test, Bonferroni-corrected p-value < 0.05, Figure 5A, Figure 5B, 

Supplementary Table 2.4). Among full diagnosis names significant in both males and females, 

female AD patients have greater association in depression, hypertension, hyperlipidemia, urinary 

tract infections, upper respiratory infections, anemia, osteoporosis, and pneumonia, while male 

AD patients have greater effect size with behavioral phenotypes, hearing loss, and agitation 

(Supplementary Data 2.1). Among the full diagnosis names in the validation cohort, for females, 

1,149 out of 1,383 significant diagnoses mapped, of which 240 (20.89%) were significant, and for 

males, 702 out of 805 significant diagnoses mapped, of which 216 (30.77%) were significant. In 

general, sex-specific diagnosis odds ratios were correlated for both females (Spearman ρ= 0.77, p-

value < 1e-4) and males (Spearman ρ=0.83, p-value < 1e-4, Figure 2.5C). In the validation cohort, 

similarly, female AD patients have greater association in depression, hypertension, and 

osteoporosis while male AD patients have greater association in hearing loss and agitation 

(Supplementary Data 2.1). 

 
2.3.4 Few Comorbidities Change with Sensitivity Analysis Taking Encounters Into Account  

For our sensitivity analysis that included only patients with ≥ 10 encounters and records in 

EMR spanning > 1 year, there were 6,612 AD patients (2,382 males, 4,223 females) and 13,224 

control patients (4,674 males, 8,539 females) identified by PS-matching on the number and 

timespan of encounters in addition to demographic characteristics and death status. A summary of 

the demographic characteristics of these cohorts are shown in Supplementary Table 2.1. We 

identified 100, 222, and 561 significant level 2, level 3, and full diagnosis names respectively 
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(Fisher Exact test, Bonferroni-corrected p-value threshold of 0.05), and an increase in odds ratio 

for chromosomal abnormalities and cerebrovascular disorders in AD patients (Supplementary 

Table 5). With sex-stratified enrichment analysis, encounter controlling increased enrichment of 

cerebrovascular disease in females, and increased significant enrichment of behavioral disorders, 

vision problems, and vascular dementia in males (Supplementary Data 2.2).   

 
2.3.5 Visualization of Enriched Comorbidities via Rshiny App 

An interactive visualization of Figure 2.3 and Figure 2.4 are made available in an RShiny 

app  vizad.org.  

 

2.3.6 Medication Association Analysis Identifies Dexamethasone as Enriched in Controls 

In addition to comorbidities, we performed medication enrichment analysis in order to 

phenotype patients and investigate drugs enriched in AD patients and controls. Medications found 

enriched (Fisher Exact test, Bonferroni-corrected p-value < 0.05, OR >2 or < .5) in AD patients 

include current treatments like donepezil and memantine, but also vitamin B12, antidepressants 

(escitalopram, citalopram, sertraline, mirtazapine, trazodone), antipsychotics (quetiapine, 

risperidone, olanzapine), carbidopa/levodopa, vitamin D3, and melatonin. Medications found 

enriched in control patients include dexamethasone, ondansetron, and alteplase. Significant 

medications in controls with lesser effect size (Fisher Exact test, Bonferroni-corrected p-value < 

0.05, 0.5 < OR < 1) include midazolam, propofol, opioids (oxycodone, fentanyl citrate), and 

furosemide (Figure 2.6A). From the validation cohort, 116 out of 121 medications mapped, of 

which 66 (56.90%) were significant (Fisher Exact test, Bonferroni-corrected p-value < 0.05 based 

upon significant medications at UCSF). In general, odds ratios of medications are significantly 

correlated (Spearman ρ = 0.85, p-value < 1e-4, Figure 2.6C). Dexamethasone is significant among 

https://vizad.org/
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controls in both institutions, and multiple medications including vitamin B12, antidepressants, and 

antipsychotics are significant in AD patients among both institutions.  

In a sex-stratified analysis, medications enriched in AD males include Tdap vaccine, 

melatonin, and carbidopa/levodopa while methylprednisolone and phenylephrine are enriched in 

control males. Female AD patients have enrichments in diazepam, antipsychotics (risperidone, 

aripiprazole), buspirone, antidepressants (sertraline, mirtazapine, trazodone, bupropion), vitamin 

D2, and levothyroxine while control females are enriched in norepinephrine bitartrate and fentanyl 

citrate (Figure 2.6B). In the validation EMR, 18 of 23 (78.25%) significant medications found at 

UCSF are significant in females at Mount Sinai, and 13 of 16 (81.25%) in males (Fisher Exact 

test, Bonferroni-corrected p-value < 0.05 based upon significant medications at UCSF within a 

group). Overall, there is significant correlation of sex-specific medication odds ratios in females 

(Spearman ρ = 0.7, p-value = .001) and males (Spearman ρ = 0.62, p-value = .001, Figure 2.6C). 

Among both institutions, carbidopa/levodopa is significant in AD males only.  

 
2.3.7 Comparing Labs Between Sex-Specific AD and Control Groups Identifies Clusters of 

Lab Value Differences 

We also performed an unbiased analysis of laboratory test result differences between AD 

patients and controls to phenotype patient groups. Among significantly different median lab values 

in both UCSF and Mount Sinai, AD patients have higher levels of hematocrit, serum calcium, RBC 

count, serum albumin, and cholesterol and lower levels of glucose, activated partial thromboplastin 

time (aPTT), alanine transaminase (ALT), and aspartate transaminase (AST) compared to controls 

(Mann-Whitney U-test, Bonferroni-corrected p-value threshold of 0.05, Figure 2.6D, 

Supplementary Figure 2.4A). 

Average significant median lab values across sex-stratified groups (AD females, AD males, 
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control females, control males) and across institutions were clustered into 7 significant clusters 

(Family-wise Error Rate (FWER) corrected p-value 0.05 cutoff, Figure 2.6D). Clusters 1, 4, and 

7 show discordant results between UCSF and Mount Sinai. Clusters 2 represent groups of 

significant median lab values lowest in control males, and highest either in all AD patients (e.g. 

albumin, sodium and carbon dioxide) or highest in AD females (e.g. HDL cholesterol, 

lymphocytes, calcium). Cluster 3 represents significant labs with greater median values in females 

and in controls (e.g. Free T4, sedimentation rate). Cluster 5 represents labs with lower significant 

median values in AD patients than controls for either the whole group (e.g. B-Type Natriuretic 

Peptide, AST) or in a sex-specific way where significant median lab values for males are greater 

than for females (e.g. aPTT, ALT, ferritin). Cluster 6 shows labs greater in AD compared to 

controls in a sex-specific way where overall males have greater significant median lab values than 

females (e.g. hemoglobin, RBC count). Across the board, the normalized lab values are correlated 

between the institutions (Female control: Spearman ρ = 0.45, p-value < 0.001; Male control: 0.46, 

p-value < 0.001; Female AD: 0.59, p-value < 1e-5; Male AD: 0.64, p-value < 1e-5; 

Supplementary Figure 2.4B).  

 
2.4 Discussion 

In this work, we demonstrate the capability of utilizing data from EMRs in order to perform 

deep phenotyping of a complex and heterogeneous disease, Alzheimer’s Disease, and derive 

insights into associations with AD in a combined and sex-stratified analysis.  

First, we performed low-dimensional topographical embedding of patients using diagnoses 

as features in order to visualize patients spatially. We see that AD status is significantly correlated 

with the first two UMAP components at both institutions, suggesting that phenotypic 

representation of patients using diagnosis data can demonstrate separation of AD and control 
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patients. The UMAP representation demonstrates a progressive spectrum between controls and 

AD, as well as representing variance and heterogeneity at individual patient resolution. 

Furthermore, with the UMAP representation, we can visualize topographically the distribution of 

age, sex, and other variables among patients.  

We then generated comorbidity networks between AD and controls which provide a 

phenotypic representation of disease interactions among patient groups and a difference in 

connectivity between diseases in AD and controls. AD networks contain a greater number of edges 

and network metrics that point to higher rates of comorbid conditions among AD patients at both 

institutions, particularly with stronger links of hypertension (HTN)-hyperlipidemia, HTN-urinary 

tract infection (UTI), and HTN-anemia. Indeed, other studies have found multimorbidities (such 

as neuropsychiatric and cardiovascular patterns) to increase risk for dementia39, and to contribute 

to AD pathological heterogeneity40,41 displaying the larger complexity and heterogeneous nature 

of AD.  

With enrichment analysis, we applied an integrative, unbiased, big data approach to EMR 

and identified previously known associations and possible novel connections with AD. Some 

diagnoses found enriched in AD patients compared to control patients from our analysis at both 

institutions that have been previously identified as linked with AD include midlife 

hypertension16,42, diabetes mellitus18,43, anemia44,45, vascular pathology17,46, osteoporosis47,48, and 

urinary tract infections49. Enrichment of hypertension and vascular risk factors supports many 

current hypotheses of potential vascular pathologies and inflammatory factors that may lead to 

AD17,50–52 or ‘unmask’ the symptoms of AD by decreasing cognitive reserve by causing vascular 

brain disease. Enrichment of diabetes and dyslipidemia supports existing literature that found links 

with diabetes mellitus and dyslipidemia53, with proposed hypotheses involving energy 
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metabolism54–56, inflammation57–59, or the integrity of the blood brain barrier60–62. Enrichment of 

degenerative diseases of age, such as osteoporosis, osteoarthritis, urinary issues, and sensory issues 

may align with theories of AD as being a disease linked with frailty63–65. This analysis therefore 

provides an unbiased integrative way to identify multifactorial associations with AD. Our 

enrichment analysis also identified neoplasms as enriched in controls at UCSF, especially cancer 

of brain and liver. While this is an associative finding, this supports ideas that cancer and AD co-

occur less frequently than the general population66,67. Some theories propose that AD and cancer 

have similar mechanisms and molecular pathways, but are dysregulated in different directions68,69.  

Next, we generated sex-specific comorbidity networks to provide insight into sex 

differences in the complexity of the disease. In both EMRs, female AD networks contain more 

nodes with network metrics suggesting greater connectivity than female controls or male AD 

networks. This may support association with greater combined diagnoses and multimorbidity in 

female AD patients compared to males70. These associations would be consistent with theories of 

greater risk of dementia in females as a result of multiple diseases or the theory of greater cognitive 

and pathological resilience to AD in females due to taking on a greater burden of more 

comorbidities. Furthermore, sex-stratified networks show secondary interactions between 

comorbidities and AD, such as links of HTN-UTI and HTN-chest pain among female AD 

populations, but not in male AD patients. These findings give higher order comorbidity 

interactions associated with AD that have not been examined previously.  

When performing enrichment analysis, we identify sex-specific enrichments that may be 

linked to AD that have not been previously explored in depth. Male AD patients show enrichment 

of neurological and sensory disorders (sleep disorder, parkinsonism, and irritability), and among 

diagnoses significant in both sexes, male AD patients have stronger effect size with behavioral 
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diagnoses, agitation, and hearing loss. These disorders are also mostly shown to be significant and 

associated with greater effect size compared to females in our validation cohort. Prior studies have 

found hearing loss to increase risk of dementia diagnosis71,72 or cognitive decline73,74 in men. The 

enrichment of behavioral and neurological disorders found in male AD patients may indicate 

lessened resilience or higher occurrence of co-pathology. Furthermore, this analysis found the 

psychiatric phenotype associated with AD to be related to behavioral phenotypes in males 

compared to females, which is consistent with prior studies75,76. 

Female AD patients have enrichment of unique significant diagnoses in musculoskeletal 

categories (arthritis, fractures), atrial fibrillation, and accidents, and among diagnoses significant 

in both sexes, female AD patients show stronger effect size with depression, hypertension, urinary 

tract infections, and osteoporosis. Some of these disorders are similarly significant and associated 

with greater effect sizes compared to males in our validation cohort. The diagnoses of hypertension 

and atrial fibrillation would be in line with the hypothesis of potential cardiovascular risk factors 

and pathology that may affect females more. Indeed, there is evidence supporting cardiovascular 

fitness to be protective or vascular risk factors to be harmful towards cognitive decline and 

dementia in women42,77–79. Furthermore, these diagnoses suggest a phenotype for female AD 

patients along with other degenerative diseases of aging and frailty. In particular, the increase in 

musculoskeletal and bone disorders in female AD patients, as well as high calcium and vitamin D 

deficiency, may point to a potential bone metabolism pathology or aberrant calcium metabolism 

in female AD patients. From a psychiatric standpoint, the female AD phenotype is more associated 

with depression compared to males as supported by studies that found depression associated with 

greater hippocampal volume loss in women80, and is more likely to be a manifestation of mild 

cognitive impairment or AD in females81,82.   
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We performed sensitivity analysis by taking the number of encounters for each group into 

account. In general, we see a decrease in statistical significance in our enrichment analysis 

consistently across all diagnoses. This is likely due to decreased power from a lower sample size, 

and a bias towards selection of patients with more severe disease due to encounter thresholding. 

Overall, enriched diagnoses are relatively similar, with an increase in cerebrovascular disorders 

observed in AD, and particularly female AD patients. Neuroimaging studies have identified 

differences in AD phenotypes and brain networks depending on presence of cerebrovascular 

disease83,84, which may support cerebrovascular events as an associated phenotype for a different 

or severe phenotype of AD.  

Medication enrichments show expected associations with AD, as the top medication hits 

are current therapies used to modify symptoms of AD (e.g. memantine, donepezil), or are 

associated with diagnoses found in comorbidity analysis (e.g. antidepressants for depression).  

These medications are also identified as AD-enriched in our validation cohort, although many of 

these medications are expected as they are associated with conditions of aging. Medications 

enriched in controls provide a more interesting story, as they not only suggest an ‘opposite AD’ 

phenotype, but control-enriched hits may provide a way to hypothesize potential targets for further 

exploration of protective drug effects or drug repurposing. From our medication analysis, we see 

control enrichments of opioids, sedatives, dexamethasone, and furosemide, with dexamethasone 

also found significant in our validation cohort. The negative association with opioids is 

inconsistent with prior studies that found associations between prescription opioid use and AD 

risk85, although control enrichment of opioids could possibly be due in part to decreased ability to 

communicate pain and decreased opioid prescriptions after AD86. Nevertheless, studies have 

implicated the role of opioid system dysregulation in tau hyperphosphorylation and AD87. 
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Dexamethasone is a corticosteroid that has been suggested to help reduce inflammation in AD88,89, 

although the data on efficacy is still uncertain and may depend upon the need for combination 

therapy90 or control of other factors that complicate the relationship between hormonal levels and 

the brain91,92. Furosemide is a diuretic drug used to treat hypertension and may confer a protective 

effect through the control of comorbid conditions that contribute to cardiovascular risk factors. 

Furosemide also reduces the production of CSF by inhibiting carbonic anhydrase, which may 

impact CSF dynamics and help decrease the risk of AD93. Prior studies have shown possible 

protective effects from diuretic drugs and AD94–97, and one study identified furosemide as a 

potential probe molecule for reducing neuroinflammation98.   

Characterizing patients by lab values provides another way to phenotype patient groups. 

Through our analysis, greater calcium levels were identified, especially in AD females. A small 

observational study found calcium supplementation to increase risk of dementia in women with 

cerebrovascular disease99. Calcium dysregulation and homeostasis have been implicated in AD 

neuronal signaling pathology, and identified as a target for drug development99,100. Control-

enriched labs may also be related to gastrointestinal cancers or liver/pancreatic dysfunction, as we 

observe increased AST, ALT, and glucose levels in controls and particularly among males. This 

result is not consistent with a study observing greater glucose levels to increase dementia risk101, 

although one study did find low ALT102 to be associated with AD, and some publications implicate 

altered glucose metabolism103,104 and liver dysfunction in AD pathology102,105,106. Furthermore, 

since our control cohort has been matched on age and death status, control patients may encompass 

a population with terminal disease. Lab clusters also demonstrate phenotypes specific to a sex 

group. A lower clotting time (aPTT, PT) and greater platelet count, prealbumin, lymphocytes, and 

cholesterol levels in female AD patients may provide a multivariate way to identify potential AD 
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phenotype in females. Prior studies have shown high thrombin107,108, abnormalities of 

hemostasis109,110, and abnormal platelet activation111–113 in AD patients that may contribute to a 

pro-thrombotic state in AD114, leading to microinfarcts and cerebrovascular dysfunction115,116, 

although sex-specific associations have not been studied previously. Furthermore, control sex 

phenotype may demonstrate protective labs or biomarkers that decrease risk of AD. We see lower 

free T3 in control males, and greater free T4 in control females. Indeed, studies on AD populations 

have shown high TSH and low free T4 to be associated with the disease117–119, although sex-

specific associations have not been explored in depth.  

Some limitations do exist in our study. First, AD is an insidious and heterogeneous 

disorder, and is frequently misdiagnosed even in specialized dementia centers. Clinically, 

Alzheimer’s Dementia is suspected when disease biomarker status is unknown, whereas 

Alzheimer’s Disease is diagnosed when biomarker status is confirmed. Our current study did not 

rely on biomarker-positive cases of Alzheimer’s Disease, and we did not exclude patients with 

other pathologies that can also impact brain health through different pathways, such as Parkinson’s 

Disease. Nevertheless, Alzheimer’s Disease often co-occurs with other dementias120,121. Second, 

EMRs, while a rich data source, is a very sparse dataset with a lot of missing data, such as 

sociological factors (e.g., income, education, etc). Nevertheless, the number of patients represented 

in the EMR is exceptionally large and provides robust opportunities for deriving meaningful 

insights or hypotheses. This limitation also applies to our validation EMR. Additionally, some 

associations may be different across the two systems due to differences in the underlying patient 

populations or standards of care. Therefore, it is possible that the UCSF EMR does not capture an 

association that may be more prevalent in a different population in New York, and vice versa. How 

other covariates including socioeconomic factors modify specific AD associations is a question 
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that can be followed-up in future work. Third, our definition of controls comes with limitations, 

as it is difficult to identify ‘healthy’ controls in the EMR. The institutions represented in our data 

includes both primary and tertiary care, which includes patients that seek hospital care for a variety 

of reasons. As such, there may be bias in the underlying patient population who chooses to seek 

medical care at a metropolitan medical center. Regardless, the power in utilizing EMR allows us 

to generate hypotheses with a large number of patients and versatility in choice of controls 

compared to many current AD studies.  Lastly, our analysis only identifies associations with AD 

and does not take temporal factors into consideration, therefore causal relationships cannot be 

concluded. This will be the main focus of future work, as the temporal association can categorize 

an association as a risk/protective factor (if early in age), a diagnostic clue (if during AD 

diagnosis), or as a manifestation of AD progression or severity (if after AD diagnosis). 

Nevertheless, given AD is an insidious disorder, there can be brain perturbations a decade or more 

before a diagnosis is determined and documented in clinical records. While we made the 

assumption of independence in our statistical methods to identify significant associations, this 

method can be further extended to alternative statistical models that take covariates into account. 

Our current work allows the unbiased identification of associations and phenotyping, which can 

then be used to generate hypotheses for guiding follow-up studies. 

Overall, our analyses leveraged an extensive clinical dataset to (1) phenotype and represent 

AD and (2) perform enrichment analysis to identify known or suggested novel associations with 

AD, as well as elicit sex-specific differences. We were therefore able to apply an integrative, 

unbiased, big data approach to identify associations with AD and provide phenotypic 

representations of an otherwise complex disease. With this approach, we can generate many new 

hypotheses to better motivate future work to understand AD complexity and develop diagnostic 
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strategies and therapeutic interventions. Future work will include temporal analysis in order to 

identify longitudinal relationships and predictive modeling for AD risk, diagnosis, or progression. 

More extensive analysis of medication and lab values, especially among opposite phenotypes in 

controls, may lead to better strategies for prevention or treatment of AD. Besides elucidating sex 

differences, next steps for phenotyping can include investigating race/ethnicity differences or 

differences based upon other covariates to better characterize Alzheimer’s Disease heterogeneity. 

Furthermore, incorporation of molecular or genetic data with clinical data can help better elucidate 

potential mechanisms underlying identified associations. 
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2.5 Methods 

We performed deep phenotyping and association analysis of AD and control patients. First, 

AD and control cohorts were identified from the UCSF EMR and topographically visualized via a 

low-dimensional projection of comorbidities. Comorbidity networks were created, and association 

and enrichment analysis were performed on all diagnoses, medications, and lab values. These 

analyses were further performed in a sex-stratified manner to identify sex-specific associations, 

and validation was performed on the Mount Sinai EMR. An overview of the workflow is shown 

in Figure 2.1. 

 
2.5.1 Patient Cohort Identification 

Patient cohorts were identified from over five million patients in the UCSF EMR database, 

which includes clinical data from 1982-2020. Due to the de-identification process, dates are shifted 

by at most a year (with relative dates preserved) and all birth dates before 1930 (= estimated age 

90) are shifted to be no earlier than 1930. AD patients were identified by inclusion criteria of 

estimated age >64 years, and ICD-10-CM codes G30.1, G30.8, or G30.9, where estimated age is 

determined from the birth date. To identify a control group, we used propensity score (PS) 

matching method (matchit R package115) by a logistic regression model to match controls to AD 

patients. The control group was selected from patients >64 years old without AD diagnosis, 

matched on sex, estimated age, race, and death status at a 1:2 AD:control ratio using a nearest 

neighbors method. The demographic properties of the UCSF and Mount Sinai cohorts are shown 

in Table 2.1.  

 
2.5.2 Dimensionality Reduction Patient Visualization 

All identified patients were represented using one-hot encoding of diagnoses, excluding 

https://www.zotero.org/google-docs/?broken=KHdTpC
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encoding of diagnoses with Alzheimer’s in the name (list in Supplementary Table 2.2, Figure 

2.2). Patients were then visualized in a lower dimension using Uniform Manifold Approximation 

and Projection122 (UMAP) with the umap-learn package from Python. Correlations between 

variables and UMAP coordinates were analyzed using Mann-Whitney U-Test for categorical 

variables, and Pearson’s Correlation Coefficient for continuous variables. 

 
2.5.3 AD vs. Control Enrichment Analysis of Comorbidities 

To evaluate comorbidities, all diagnoses recorded from patient cohorts were identified with 

the earliest entry of every diagnosis. Comparisons were made at different ICD-10 hierarchical 

levels, specifically Level 2 categories (e.g. G30-G32: Other degenerative diseases of the nervous 

system), Level 3 categories (e.g. G30: Alzheimer’s Disease), or full diagnosis names (e.g. G30.9 

Alzheimer’s Disease, unspecified). Level 2, Level 3, and full diagnosis names are also grouped by 

ICD-10 blocks (e.g. G00-G99: Diseases of the Nervous System. More information on ICD-10-CM 

codes can be found at the following website: www.cms.gov/Medicare/Coding/ICD10/ICD-

10Resources.  

Diagnosis networks were created based upon a diagnosis category or diagnosis shared by 

>1% patients in a group (node) or pair of diagnosis categories or diagnoses shared by >1% of 

patients in a group (edge). Network metrics were computed using Cytoscape app Network 

Analyzer123. Metrics were then compared between AD and control networks using Mann-Whitney 

U-test, with and without singleton nodes removed. Nodes and edges were thresholded by 5% of 

patients in a group for visualization purposes. 

Enrichment analysis of diagnosis was compared between AD and control cohorts. For each 

diagnosis, the proportions of patients in each group were compared using Fisher Exact (if <5 

patients in a category) or Chi-Squared test. Significant diagnoses were determined by a 

http://www.cms.gov/Medicare/Coding/ICD10/ICD-10Resources
http://www.cms.gov/Medicare/Coding/ICD10/ICD-10Resources


 60 

Bonferroni-corrected threshold of p-value < 0.05, and directionality determined with Odds Ratio 

(OR). With inspiration from genetic and molecular approaches, the results were visualized using 

Manhattan plots by categorizing diagnoses in ICD-10 blocks. 

 
2.5.4 Sex-Stratified AD vs. Control Enrichment Analysis of Comorbidities 

Diagnostic networks were created for each sex, with diagnosis categories or diagnoses 

shared by >1% of patients in a group (node), and diagnosis category/diagnosis pair shared by >1% 

of patients in a group (edge). Network metrics were then computed using Cytoscape Network 

Analyzer app, and compared between sex-stratified AD patients and controls, and between males 

and females for both AD and controls separately with a Mann-Whitney U-test. Nodes and edges 

were thresholded by 5% of patients in a group for visualization. 

Sex-specific enrichment analysis of diagnoses between AD and control cohorts were 

compared with a subset of equal numbers of AD and control patients for each sex. For each 

diagnosis, the proportions of patients in each group were compared using the Fisher Exact (if <5 

patients in a category) or Chi-Squared test. Significance was determined by applying a threshold 

of 0.05 for Bonferroni-corrected p-values. Log-log plots were generated from odds ratios between 

Female and Male AD patients and controls, and Miami plots created by categorizing diagnoses in 

ICD-10 blocks. 

 
2.5.5 Sensitivity Analysis Taking Encounters into Account 

Sensitivity analysis of diagnosis enrichment analysis was performed with a subgroup of 

AD patients and a second control cohort to account for variability in the number of visits for each 

patient. AD cohorts were subgrouped by identifying patients with over 10 encounters in the EMR 

and records spanning over a year. The encounter-filtered control cohort was identified by 
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additionally matching on the number of encounters and years between the first and last record in 

the EMR. Diagnosis enrichment analysis was carried out as described above for general 

comorbidities and sex-specific analysis. 

 
2.5.6 AD vs. Control Enrichment Analysis of Medications 

All medications ordered for AD and control patients were extracted and grouped based 

upon the generic medication name, with route and dosage information removed. The proportions 

of AD and control patients prescribed each medication were compared using Fisher Exact (if <5 

patients in a category) or Chi-Squared tests. Significantly enriched medications were identified by 

a Bonferroni-corrected threshold of p-value 0.05, and directionality was determined with an Odds 

Ratio. Sex-specific medication comparisons were also performed within a subset of equal numbers 

of AD and control patients for each sex and plotted with cutoffs based upon a Bonferroni-corrected 

p-value threshold of 0.05 and odds ratios (OR) threshold of <0.5 or >2.  

 
2.5.7 AD vs. Control Comparisons of Lab Values 

For laboratory values, median values for all numerical lab test results for each patient were 

identified. Lab tests missing data among 95% or more patients were removed. Lab value 

distributions were compared using Mann-Whitney U-test across three comparisons (AD vs. 

controls, Female AD vs. Female controls, and Male AD vs. Male controls) in order to identify 

significantly different lab values.  

For clustering analysis, significant lab tests above a threshold of 0.05 for Bonferroni-

corrected p-value were isolated, and mean values were then identified for each group (AD Females, 

AD Males, control Females, control Males) and normalized across groups as a Z-score. Clustering 

was then performed using the sigclust2 R package124 to determine significance of each cluster 
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break using permutations (Euclidean distance metric and average linkage).   

 
2.5.8 Validation in External EMR 

AD and PS-matched control patients were identified in the Mount Sinai EMR in the same 

fashion as described in [Patient Identification] in the UCSF EMR. All aforementioned analysis 

with dimensionality reduction, comorbidity networks, diagnosis/medication enrichments, sex-

specific enrichments, and lab value comparisons were performed in the Mount Sinai dataset as 

they have been in the UCSF EMR dataset.  

For network comparisons, network metrics were standard normalized across the 12 

networks (6 at UCSF, 6 at Mount Sinai) by the metric and Spearman rank correlation coefficient 

and significance determined. For diagnosis comparison, Level 2, Level 3, and full diagnosis names 

were mapped and compared by the sub-chapter, three-digit codes, and full ICD-10-CM code of 

the ICD-10 hierarchy, respectively. Significant diagnosis in the validation cohort was determined 

by a Bonferroni-corrected threshold of 0.05 based upon the number of mapped UCSF-significant 

diagnoses. Correlations between odds ratios were determined by a Spearman rank correlation 

coefficient and significance. Medications were mapped based upon the generic name, and 

correlations between odds ratios determined with Spearman rank correlation coefficient.  

For comparison of labs, the normalized lab values for each institution were combined, and 

clustering performed using Euclidean distance and average linkage to identify groups of labs with 

similar trends between AD/sex/institution stratified patient groups. The R package sigclust2 was 

used to determine significant clusters of labs. 

 
2.5.9 Data Visualization Using RShiny 

An interactive visualization of comorbidity enrichments and networks between AD and 
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control groups and with sex stratification was implemented in an Rshiny125 app: vizad.org.  

 

  

https://vizad.org/
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2.6 Tables 

Table 2.1 Patient Demographics 

Summary table of sex, estimated age, death status, and first race among Alzheimer’s and control 
cohorts at UCSF and Mount Sinai. Patients are propensity-score matched at a 1:2 Alzheimer to 
control ratio with the demographics shown in the table. SD: standard deviation. SMD: standardized 
mean difference. NHPI: Native Hawaiian/ Pacific Islander  
 

  UCSF Mount Sinai 
   Overall        AD            Control        SMD  Overall       AD Control  SMD 
 n 26412 8804 17608                      17874 5958 11916   
Sex, n (%)                 

 Female                                     
 16675 
(63.1)  

 5558 
(63.1)  

 11117 
(63.1)  <0.001              

 12584 
(70.4)  

 4138 
(69.5)  

 8446 
(70.9)  0.031 

 Male                                        9659 
(36.6)   

 3220 
(36.6)  

 6439 
(36.6)                        

 5290 
(29.6)   

 1820 
(30.5)  

 3470 
(29.1)    

 Unknown                                     78 (0.3)      
 26 
(0.3)      52 (0.3)                                   

Estimated Age, 
mean (SD)  

 86.5 
(6.4)    

 86.5 
(6.4)   

 86.5 
(6.4)    <0.001              

 88.6 
(10.6)   

 88.3 
(8.7)   

 88.7 
(11.4)  

-
0.039 

Race, n (%)                 
American Native  27 (0.1)       9 (0.1)       18 (0.1)      <0.001      20 (0.1)       8 (0.1)       12 (0.1)     0.129 

Asian                                       2638 
(10.3)   

 879 
(10.3)   

 1759 
(10.3)                        

 177 
(1.0)     

 78 
(1.3)      99 (0.8)       

Black/African 
American                  

 1758 
(6.9)    

 586 
(6.9)    

 1172 
(6.9)                         

 3732 
(20.9)   

 1214 
(20.4)  

 2518 
(21.1)    

Native Hawaiian/ 
Pacific Islander  

 1356 
(5.3)    

 452 
(5.3)    

 904 
(5.3)                           9 (0.1)        5 (0.1)       4 (0.0)        

Other                                       2230 
(8.7)    

 743 
(8.7)    

 1487 
(8.7)                         

 3922 
(21.9)   

 1496 
(25.1)  

 2426 
(20.4)    

Unknown  2017 
(7.6)    

 673 
(7.6)    

 1344 
(7.6)                        

 786 
(4.4)     

 253 
(4.2)    

 533 
(4.5)      

White/Caucasian                          16386 
(64.0)  

 5462 
(64.0)  

 10924 
(64.0)                       

 9228 
(51.6)   

 2904 
(48.7)  

 6324 
(53.1)    

Death Status, n (%)                 

 Alive                                      
 20146 
(76.3)  

 6714 
(76.3)  

 13432 
(76.3)  0.001 

 9371 
(52.4)   

 3264 
(54.8)  

 6107 
(51.3)  0.078 

 Deceased                                    6266 
(23.7)   

 2090 
(23.7)  

 4176 
(23.7)                

 882 
(4.9)     

 306 
(5.1)    

 576 
(4.8)      

Unknown         
 7621 
(42.6)   

 2388 
(40.1)  

 5233 
(43.9)    
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2.7 Figures 

 
 
Figure 2.1 Overview of the workflow 
 
Visualization of patient cohort identification from the UCSF EMR and methods for deep 
phenotyping and enrichment analysis. Validation analysis is done with Mount Sinai EMR to assess 
correlations. 
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Figure 2.3 Comorbidity Networks Show Greater Co-Diagnosis in AD vs. Controls, and in Female 
AD vs Male AD patients 
(Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.)  
a,b: Network Diagrams: For each network, the node size, text size, edge size, and edge color 
represent the number of patients sharing a diagnosis or diagnosis pair. Node colors are based on 
ICD-10 category. A threshold of 5% sharing was applied. 
a. Network for Level 3 diagnosis categories in AD vs. control patients. Nodes and edges represent 
>5% of diagnosis or diagnosis pairs shared in each cohort, respectively. 
b. Left: Female network of full diagnosis names. Each node and edge represent diagnosis or 
diagnosis pairs shared by >5% of AD females. No analogous comorbidity network was generated 
from control females.  
Right: Male network of full diagnosis names. Each node and edge represent diagnosis or diagnosis 
pairs shared by >5% of AD males. No analogous comorbidity network was generated on control 
males. 
c. Comparison of network metrics between AD and control Level 3 Diagnosis Category Networks. 
Statistical Tests are performed with Mann-Whitney U-Test. 
d. Comparison of network metrics between Male and Female Alzheimer’s Disease Full Diagnostic 
Name Networks. Statistical Tests are performed with Mann-Whitney U-Test. 
e. Correlation of network metrics compared with validation EMR network metrics, normalized by 
the metric. Colors represent comparison type (left) or the specific network metric (right), Spearman 
ρ = 0.55, p-value < 1e-4.  
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Figure 2.4 Comorbidity Enrichment Analysis identifies enriched diagnosis in AD vs. Controls 
(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) 
a. Volcano plot for Level 2 categories (top) and full diagnosis names (bottom) compared between 

AD and control cohorts using Fisher Exact or Chi-Squared test. P-value cutoff is Bonferroni 
corrected (p-value < 2e-8 and 1e-6) with log 2 odds ratio cutoff of 1 for AD-enriched (pink) or 
log 2 odds ratio cutoff of -1 for control-enriched (green) and remaining significant diagnoses 
in blue. Some of the top significant diagnoses are labelled.  

b. Top, a Manhattan plot with full diagnosis names colored by ICD-10 categories with 
Bonferroni-corrected p-value cutoff. Some of the top diagnoses in each category are labelled. 
Bottom, percentage of diagnosis in each ICD-10 category that is significant.  

c. Diagnosis AD vs. Control odds ratio correlation plots between UCSF and Mount Sinai for 
Level 2 diagnosis categories and full diagnosis names that are significant at UCSF. Each dot 
represents a category or diagnosis, and dots in orange are significant at Mount Sinai with 
Bonferroni-corrected p-value threshold of 0.05.  
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Figure 2.5 Comorbidity Enrichment Analysis identifies sex-specific enriched diagnoses in AD vs. 
Controls 
(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) 
a. Full diagnosis names compared between AD and controls within each sex. The log2 of the 

odds ratio is plotted on the axis, and points are colored by significance (Bonferroni -corrected, 
p-val cutoff > 3e-6). 

b. Miami plot of the diagnosis names grouped by sex and ICD-10 categories. Select top diagnoses 
are labelled, with diagnosis names colored by significance as female only (red), male only 
(blue), or significant in both sexes (black). 

c. Correlation plots of AD vs. control odds ratios between UCSF and Mount Sinai for diagnoses 
that are significant at UCSF. Each dot represents a diagnosis, and dots in orange are significant 
at Mount Sinai with Bonferroni-corrected p-value threshold of 0.05.  
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Figure 2.6 Medication and Lab Analysis shows Medication Enrichments and Median Lab Value 
Differences between AD and Controls 
 
a. Volcano plot for generic medication names compared between AD and controls using Fisher 

Exact or Chi-Squared Test. P-value cutoff is Bonferroni corrected (p-value < 2e-5) with odds 
ratio cutoff at 2 for AD-enriched (pink) or 1/2 for control-enriched (green). Remaining 
significant diagnoses are in blue. 

b. Log-log plot of generic medication names compared between AD and controls within each  
(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) 
sex. The log of the odds ratio for each sex is plotted on the axis, with points colored by  
Bonferroni-corrected significance (p-value cutoff < 4e-5) if female only (red), male only 
(blue), or both (black). 

c. AD vs control (top) and sex-specific (bottom) odds ratio correlation plots between UCSF and 
Mount Sinai for medications significant at UCSF. Each dot represents a medication, and dots 
in orange are significant at Mount Sinai with Bonferroni-corrected p-value threshold of 0.05.  

d. Heatmap of lab values filtered on significance at UCSF in AD vs control comparison across 
sex-specific groups at UCSF and Mount Sinai. Labs are clustered with light blue lines 
representing significant cluster breaks (family-wise error rate (FWER) corrected p-value 0.05). 
Text color represents significant labs at both institutions (purple), significant among females 
only at UCSF (red), or significant between AD vs controls at UCSF only (black). Heatmap 
colors represent z-score of the average median value across the 4 groups at each institution.  
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2.8 Supplementary Tables 

Supplementary Table 2.1 Patient Demographics with Encounter Thresholds and Controlling 
 
Distribution of sex, estimated age, death status, and first race among Alzheimer’s and control 
cohorts. These cohorts are thresholded on more than 10 encounters, and over a year representation 
in the EMR. Patients are matched at a 1:2 Alzheimer to control ratio with the demographics shown 
in the table. Estimated age shows mean and median (25%ile - 75%ile). 

 

 

  

Count Age Death Status Race
Alzheimer's 
Cohort

6,612 86.4
90 (83-91)

Alive: 6714 (76.3%)
Deceased: 2090 (23.7%)

White/Caucasian: 5462 (64.0%)
Asian: 879 (10.3%)
Black/African American: 586 (6.9%)
Hawaiian/Pacific Islander: 452 (5.3%)

American Native: 9 (.1%)
Other: 743 (8.7%)
Unknown/Declined: 802 (4.7%)

Males 2,382 (36.0%) 85.7
90 (84-91)

Alive: 1778 (74.6%)
Deceased: 604 (25.4%)

White/Caucasian: 1570 (66.8%)
Asian: 254 (10.8%)
Black/African American: 128 (5.4%)
Hawaiian/Pacific Islander: 117 (5.0%)

Other: 209 (8.9%)
Unknown/Declined: 72 (3.1%)

Females 4,223 (63.9%) 86.8
90 (82-91)

Alive: 3084 (73%)
Deceased: 1139 (27%)

White/Caucasian: 2525 (60.5%)
Asian: 497 (11.9%)
Black/African American: 393 (9.4%)
Hawaiian/Pacific Islander: 217 (5.2%)

American Native: 8 (0.2%)
Other: 404 (9.7%)
Unknown/Declined: 130 (3.1%)

Other or Unknown 7 (0.10%) 90.7
91 (90.5-91)

Alive: 7 (100%) White/Caucasian: 6 (85.7%)
Unknown/Declined: 1 (14.3%)

Control 
Cohort

13,224 86.2
90 (83 – 91)

Alive: 13432 (76.3%)
Deceased: 4176 (23.7%)

White/Caucasian: 10924 (64.0%)
Asian: 1759 (10.3%)
Black/African American: 1172 (6.9%)
Hawaiian/Pacific Islander: 904 (5.3%)

American Native: 18 (.1%)
Other: 1487 (8.7%)
Unknown/Declined: 802 (4.7%)

Males 4,674 (35.3%) 85.8
90 (82-91)

Alive: 3248 (69.5%)
Deceased: 1426 (30.5%)

White/Caucasian: 3076 (66.8%)
Asian: 490 (10.7%)
Black/African American: 277 (6.0%)
Hawaiian/Pacific Islander: 222 (4.8%)

American Native: 5 (.1%)
Other: 384 (8.3%)
Unknown/Declined: 247 (3.2%)

Females 8,539 (64.6%) 86.5
90 (84-91)

Alive: 6253 (73.2%)
Deceased: 2286 (26.8%)

White/Caucasian: 5225 (61.9%)
Asian: 1024 (12.1%)
Black/African American: 768 (9.1%)
Hawaiian/Pacific Islander: 387 (4.6%)

American Native: 11 (.1%)
Other: 783 (9.3%)
Unknown/Declined: 246 (2.9%)

Other or Unknown 11 (0.10%) 90.2
90 (90-91)

Alive: 10 (90.9%)
Deceased: 1 (9.1%)

White/Caucasian: 1 (11.1%)
Other: 3 (33.3%)

Unknown/Declined: 5 (55.6%)
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Supplementary Table 2.2 UMAP Exclusion Terms 
 
Table of diagnosis excluded in UMAP embedding. These terms contain the word ‘Alzheimer’. 
 

AD (Alzheimer's disease) (HCC) 

Alzheimer disease (HCC) 

Alzheimer disease type 3 (HCC) 

Alzheimer's dementia (HCC) 

Alzheimer's dementia with behavioral 
disturbance (HCC) 

Alzheimer's dementia with behavioral 
disturbance, unspecified timing of dementia 
onset (HCC) 

Alzheimer's dementia without behavioral 
disturbance (HCC) 

Alzheimer's dementia without behavioral 
disturbance, unspecified timing of dementia 
onset (HCC) 

Alzheimer's dementia, late onset (HCC) 

Alzheimer's dementia, late onset, with 
behavioral disturbance (HCC) 

Alzheimer's disease (HCC) 

Alzheimer's disease of other onset 

Alzheimer's disease of other onset with 
behavioral disturbance (HCC) 

Alzheimer's disease of other onset without 
behavioral disturbance (HCC) 

Alzheimer's disease with delirium (HCC) 

Alzheimer's disease with early onset (CODE) 
(HCC) 

Alzheimer's disease with early onset (HCC) 

Alzheimer's disease with late onset (CODE) 
(HCC) 

Alzheimer's disease with late onset (HCC) 

Alzheimer's disease with presenile onset (HCC) 

Alzheimer's disease, early onset (HCC) 

Alzheimer's disease, familial (HCC) 

Alzheimer's disease, focal onset (HCC) 

Alzheimer's disease, unspecified (CODE) (HCC) 

Alzheimer's disease, unspecified (HCC) 

Alzheimer's type dementia (HCC) 

Alzheimer's type dementia with late onset with 
behavioral disturbance (HCC) 

Alzheimer's type dementia with late onset 
without behavioral disturbance (HCC) 

Alzheimers disease (HCC) 

DAT (dementia Alzheimer type) 

DAT (dementia of Alzheimer type) (HCC) 

Dementia due to Alzheimer's disease (HCC) 

Dementia in Alzheimer's disease (HCC) 

Dementia in Alzheimer's disease with delusions 
(HCC) 

Dementia in Alzheimer's disease with 
depression (HCC) 

Dementia in Alzheimer's disease with early 
onset (HCC) 

Dementia in Alzheimer's disease with early 
onset with behavioral disturbance (HCC) 

Dementia in Alzheimer's disease with early 
onset without behavioral disturbance (HCC) 

Dementia in Alzheimer's disease with early 
onset, with behavioral disturbance 

Dementia in Alzheimer's disease with early 
onset, without behavioral disturbance 

Dementia in Alzheimer's disease with late onset 

Dementia of Alzheimer's type with behavioral 
disturbance (HCC) 

Dementia of Alzheimer's type, with early onset, 
with depressed mood (HCC) 

Dementia of the Alzheimer's type (HCC) 

Dementia of the Alzheimer's type with early 
onset with behavioral disturbance (HCC) 

Dementia of the Alzheimer's type with late onset 
without behavioral disturbance (HCC) 

Dementia of the Alzheimer's type without 
behavioral disturbance (HCC) 

Dementia of the Alzheimer's type, with late 
onset, uncomplicated (HCC) 
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Dementia of the Alzheimer's type, with late 
onset, with delirium (HCC) 

Dementia of the Alzheimer's type, with late 
onset, with delusions (HCC) 

Dementia of the Alzheimer's type, with late 
onset, with depressed mood (HCC) 

Dementia of the Alzheimer's type, with late 
onset, with depressive mood (HCC) 

Dementia, Alzheimer's, with behavior 
disturbance (HCC) 

Early onset Alzheimer disease 

Early onset Alzheimer's dementia without 
behavioral disturbance (HCC) 

Early onset Alzheimer's disease with behavioral 
disturbance (HCC) 

Family history of Alzheimer's disease 

Focal Alzheimer's disease (HCC) 'Late onset 
Alzheimer disease (HCC) 

Late onset Alzheimer's disease with behavioral 
disturbance (HCC) 

Late onset Alzheimer's disease without 
behavioral disturbance (HCC) 

Major neurocognitive disorder due to 
Alzheimer's disease (HCC) 

Major neurocognitive disorder due to 
Alzheimer's disease, possible (HCC) 

Major neurocognitive disorder due to 
Alzheimer's disease, probable, with behavioral 
disturbance (HCC) 

Major neurocognitive disorder due to 
Alzheimer's disease, probable, without 
behavioral disturbance (HCC) 

Major neurocognitive disorder due to 
Alzheimer's disease, with behavioral 
disturbance (HCC) 

Major neurocognitive disorder due to possible 
Alzheimer's disease (HCC) 

Major neurocognitive disorder, due to 
Alzheimer's disease, with behavioral 
disturbance, mild (HCC) 

Major neurocognitive disorder, due to 
Alzheimer's disease, without behavioral 
disturbance, mild (HCC) 

Major neurocognitive disorder, due to 
Alzheimer's disease, without behavioral 
disturbance, moderate (HCC) 

Major neurocognitive disorder, due to 
Alzheimer's disease, without behavioral 
disturbance, severe (HCC) 

Mild major neurocognitive disorder due to 
Alzheimer's disease with behavioral disturbance 
(HCC) 

Mild major neurocognitive disorder due to 
Alzheimer's disease without behavioral 
disturbance (HCC) 

Mild neurocognitive disorder due to Alzheimer's 
disease (HCC) 

Mild possible major neurocognitive disorder due 
to Alzheimer's disease (HCC) 

Mixed Alzheimer's and vascular dementia 
(HCC) 

Mixed Alzheimer's and vascular dementia with 
behavior disturbances (HCC) 

Moderate major neurocognitive disorder due to 
Alzheimer's disease without behavioral 
disturbance (HCC) 

Moderate probable major neurocognitive 
disorder due to Alzheimer's disease with 
behavioral disturbance 

Other Alzheimer's disease (HCC) 

Possible major neurocognitive disorder due to 
Alzheimer's disease 

Primary degenerative dementia of Alzheimer 
type (HCC) 

Primary degenerative dementia of the Alzheimer 
type, senile onset (HCC) 

Primary degenerative dementia of the Alzheimer 
type, senile onset, uncomplicated (HCC) 

Primary degenerative dementia of the Alzheimer 
type, senile onset, with depression (HCC) 

Probable major neurocognitive disorder due to 
Alzheimer's disease with behavioral disturbance 

Probable major neurocognitive disorder due to 
Alzheimer's disease without behavioral 
disturbance 

Progressive aphasia in Alzheimer's disease 
(HCC) 
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SDAT (senile dementia of Alzheimer's type) 
(HCC) 

Senile dementia of Alzheimer's type (HCC) 

Sporadic Alzheimer's disease (HCC) 
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Supplementary Table 2.3 All Diagnosis Network Metrics 
 
Diagnosis Networks are created with nodes representing a diagnostic category or diagnosis shared among >1% of patients in a group, 
and edges representing >1% of co-diagnosis in a group.   
 

  

UCSF: Graph (>1%)
Number 
Nodes

Number 
Edges

Avg Number 
Neighbors

Network 
Diameter

Network 
Radius

Characteristic 
Path Length

Clustering 
Coefficient

Network 
density

Network 
heterogeneity

Network 
Centralization

Connected 
Components Singletons

ADDiagnosisNameAll 1056 27504 62.15 4 2 2.043 0.830 0.070 1.626 0.763 171 169
ADDiagnosisNameFemale 962 25459 61.64 4 2 2.038 0.832 0.075 1.586 0.761 137 136
ADDiagnosisNameMale 924 20102 52.90 4 2 2.057 0.823 0.070 1.633 0.739 164 162
ADL3NameALL 483 23505 97.33 2 1 1.798 0.899 0.202 1.054 0.801 1 0
ADL3NameFemale 452 21958 97.16 2 1 1.785 0.899 0.215 1.021 0.788 1 0
ADL3NameMale 445 20099 90.33 2 1 1.797 0.899 0.203 1.046 0.800 1 0
ADL2NameALL 165 7960 96.48 2 1 1.412 0.896 0.588 0.479 0.417 1 0
ADL2NameFemale 160 7531 94.73 2 1 1.400 0.897 0.600 0.469 0.406 2 1
ADL2NameMale 158 7257 91.86 2 1 1.415 0.892 0.585 0.481 0.420 1 0
ConDiagnosisNameAll 421 2445 18.04 4 2 2.048 0.738 0.067 1.671 0.843 151 150
ConDiagnosisNameFemale 167 2109 25.72 3 2 1.892 0.848 0.158 1.156 0.797 4 3
ConDiagnosisNameMale 321 1417 13.43 4 2 2.078 0.681 0.064 1.717 0.815 111 110
ConL3NameALL 318 5772 43.89 2 1 1.832 0.760 0.168 1.135 0.839 56 55
ConL3NameFemale 190 5434 57.20 2 1 1.697 0.830 0.303 0.829 0.705 1 0
ConL3NameMale 282 4195 37.46 3 2 1.837 0.750 0.168 1.125 0.835 59 58
ConL2NameALL 150 3990 55.80 2 1 1.607 0.854 0.393 0.697 0.616 8 7
ConL2NameFemale 122 3760 61.64 2 1 1.491 0.866 0.509 0.552 0.499 1 0
ConL2NameMale 137 3200 48.48 2 1 1.630 0.862 0.370 0.726 0.640 6 5

Mount Sinai: Graph (>1%)
Number 
Nodes

Number 
Edges

Avg Number 
Neighbors

Network 
Diameter

Network 
Radius

Characteristic 
Path Length

Clustering 
Coefficient

Network 
density

Network 
heterogeneity

Network 
Centralization

Connected 
Components Singletons

ADDiagnosisNameAll 483 1788 15.96 4 2 2.030 0.782 0.072 1.696 0.756 260 259
ADDiagnosisNameFemale 482 1753 15.72 4 2 2.035 0.769 0.071 1.700 0.751 260 259
ADDiagnosisNameMale 446 1034 12.16 4 2 2.084 0.722 0.072 1.674 0.700 277 276
ADL3NameALL 348 10434 59.97 2 1 1.827 0.910 0.173 1.152 0.832 1 0
ADL3NameFemale 352 10145 59.68 2 1 1.824 0.909 0.176 1.142 0.829 13 12
ADL3NameMale 332 8162 52.32 2 1 1.832 0.905 0.168 1.166 0.837 21 20
ADL2NameALL 141 4625 65.60 2 1 1.531 0.875 0.469 0.608 0.539 1 0
ADL2NameFemale 141 4480 64.93 2 1 1.526 0.876 0.474 0.602 0.534 4 3
ADL2NameMale 139 4037 59.37 2 1 1.560 0.878 0.440 0.642 0.569 4 3
ConDiagnosisNameAll 461 13 3.25 3 2 1.607 0.558 0.464 0.527 0.524 454 453
ConDiagnosisNameFemale 461 13 3.25 3 2 1.607 0.558 0.464 0.527 0.524 454 453
ConDiagnosisNameMale 423 13 3.25 3 2 1.607 0.558 0.464 0.527 0.524 416 415
ConL3NameALL 347 1038 17.16 2 1 1.857 0.788 0.143 1.267 0.871 227 226
ConL3NameFemale 351 1038 17.16 2 1 1.857 0.788 0.143 1.267 0.871 231 230
ConL3NameMale 331 980 16.47 3 2 1.863 0.780 0.140 1.280 0.867 213 212
ConL2NameALL 141 1323 32.67 3 2 1.594 0.877 0.408 0.677 0.568 61 60
ConL2NameFemale 141 1323 32.67 3 2 1.594 0.877 0.408 0.677 0.568 61 60
ConL2NameMale 139 1290 31.85 3 2 1.606 0.865 0.398 0.690 0.566 59 58
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Supplementary Table 2.4 All Diagnosis Network Comparisons 
 
Network metrics are computed for nodes in each network at UCSF and at Mount Sinai, and the distribution of metrics are compared 
between networks. Comparisons are performed with and without the removal of singletons (single nodes with no neighbors). A Mann-
Whitney U-test is performed to compare the distribution of each network metric, with colors based upon p-value cutoff. The mean 
difference in metric between comparison groups is also shown. 
 

Comparison Nodes Mann 
Whitney 

U Test 

Avg 
Shortest 

Path Length 

Betweeness 
Centrality 

Closeness 
Centrality 

Clustering 
Coefficient 

Degree Eccentricity Neighbor-
hood 

Connecti-
vity 

Number 
Undirected 

Edges 

Stress 
Centrality 

Topological 
Coefficient 

UCSF AD  vs 
Control: 

Diagnosis 
Name 

All Nodes Stat 2.68E+05 2.46E+05 2.63E+05 2.73E+05 3.07E+05 3.22E+05 3.73E+05 3.07E+05 2.56E+05 2.81E+05 

pval 3.75E-10 9.15E-05 2.31E-08 1.07E-12 1.02E-30 6.87E-48 1.58E-93 1.02E-30 2.48E-08 6.20E-16 

Δmean 3.96E-01 -1.52E-03 9.88E-02 2.20E-01 4.05E+01 1.01E+00 2.57E+02 4.05E+01 1.17E+04 1.35E-01 

Singletons 
Removed 

Stat 1.23E+05 8.88E+03 1.18E+05 8.99E+04 1.61E+05 1.76E+05 2.28E+05 1.61E+05 1.89E+04 9.85E+04 
pval 6.05E-01 4.64E-11 6.05E-01 7.51E-01 1.22E-17 3.06E-42 4.30E-110 1.22E-17 1.31E-02 5.76E-02 

Δmean -7.26E-03 -9.16E-03 2.03E-03 1.81E-02 4.40E+01 4.97E-01 2.76E+02 4.40E+01 3.19E+04 3.63E-02 

UCSF AD  vs 
Control: L3 

Name 

All Nodes Stat 8.30E+04 8.19E+04 9.71E+04 1.02E+05 1.10E+05 9.02E+04 1.39E+05 1.10E+05 8.70E+04 1.13E+05 

pval 5.19E-02 7.44E-02 2.16E-10 3.00E-17 2.15E-25 6.25E-21 2.69E-85 2.15E-25 3.50E-04 4.21E-29 

Δmean 2.83E-01 -9.79E-04 1.08E-01 2.70E-01 6.10E+01 3.47E-01 1.76E+02 6.10E+01 6.20E+03 2.50E-01 

Singletons 
Removed 

Stat 5.65E+04 1.03E+04 7.06E+04 5.77E+04 8.36E+04 6.36E+04 1.13E+05 8.36E+04 1.55E+04 6.79E+04 
pval 0.0121 0.0274 1.21E-02 1.03E-01 9.42E-13 6.64E-01 4.02E-69 9.42E-13 4.96E-05 2.53E-08 

Δmean -3.44E-02 -3.70E-03 1.27E-02 1.80E-02 5.34E+01 1.73E-03 1.49E+02 5.34E+01 1.31E+04 1.00E-01 

UCSF AD  vs 
Control: L2 

Name 

All Nodes Stat 8.40E+03 1.39E+04 1.75E+04 1.26E+04 1.88E+04 1.29E+04 2.06E+04 1.88E+04 1.50E+04 1.72E+04 

pval 8.40E-07 5.70E-02 2.06E-10 7.73E-01 1.51E-15 3.52E-02 3.65E-24 1.51E-15 9.45E-04 2.48E-09 
Δmean -1.20E-01 -1.58E-03 1.23E-01 8.24E-02 4.33E+01 8.79E-02 3.31E+01 4.33E+01 7.29E+02 1.39E-01 

Singletons 
Removed 

Stat 7.24E+03 3.93E+03 1.64E+04 1.08E+04 1.77E+04 1.17E+04 1.94E+04 1.77E+04 5.03E+03 1.54E+04 

pval 5.14E-09 0.11 5.14E-09 0.362 5.46E-14 6.51E-01 1.64E-22 5.46E-14 2.07E-01 3.12E-07 
Δmean -1.95E-01 -4.17E-03 9.26E-02 1.80E-02 4.07E+01 -5.13E-03 2.85E+01 4.07E+01 4.30E+02 8.91E-02 
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Comparison Nodes Mann 
Whitney 

U Test 

Avg 
Shortest 

Path Length 

Betweeness 
Centrality 

Closeness 
Centrality 

Clustering 
Coefficient 

Degree Eccentricity Neighbor-
hood 

Connecti-
vity 

Number 
Undirected 

Edges 

Stress 
Centrality 

Topological 
Coefficient 

UCSF Female 
AD vs Male 

AD: Diagnosis 
Name 

All Nodes Stat 4.57E+05 4.69E+05 4.88E+05 4.73E+05 4.85E+05 3.41E+05 5.22E+05 4.85E+05 4.72E+05 4.78E+05 

pval 5.15E-01 7.16E-01 6.35E-02 4.96E-01 9.92E-02 3.39E-31 2.96E-06 9.92E-02 4.90E-01 2.93E-01 

Δmean 1.98E-02 -8.89E-05 1.02E-02 1.69E-02 8.26E+00 -2.87E-01 4.19E+01 8.26E+00 2.75E+03 1.39E-02 

Singletons 
Removed 

Stat 3.09E+05 5.33E+04 3.39E+05 2.68E+05 3.37E+05 1.92E+05 3.74E+05 3.37E+05 5.67E+04 2.73E+05 
pval 1.01E-01 4.56E-01 1.01E-01 9.79E-01 1.71E-01 1.10E-73 9.98E-08 1.71E-01 5.32E-01 5.68E-01 

Δmean -1.50E-02 -3.69E-04 2.79E-03 1.27E-03 8.82E+00 -4.06E-01 4.32E+01 8.82E+00 6.85E+03 6.75E-03 

UCSF Female 
AD vs Male 

AD: L3 Name 

All Nodes Stat 1.05E+05 1.04E+05 1.04E+05 1.05E+05 1.07E+05 1.04E+05 1.13E+05 1.07E+05 1.05E+05 1.06E+05 

pval 9.12E-01 9.13E-01 9.12E-01 9.61E-01 5.28E-01 9.74E-01 3.08E-02 5.28E-01 9.59E-01 7.47E-01 
Δmean 2.59E-03 -7.91E-05 -7.28E-04 -8.94E-04 3.28E+00 1.05E-04 1.36E+01 3.28E+00 9.47E+02 -2.65E-04 

Singletons 
Removed 

Stat 1.05E+05 2.01E+04 1.04E+05 1.03E+05 1.07E+05 1.04E+05 1.13E+05 1.07E+05 2.07E+04 1.04E+05 

pval 0.912 0.461 9.12E-01 9.70E-01 5.28E-01 9.74E-01 3.08E-02 5.28E-01 8.03E-01 7.53E-01 
Δmean 2.59E-03 -2.17E-04 -7.28E-04 -1.29E-03 3.28E+00 1.05E-04 1.36E+01 3.28E+00 1.95E+03 -5.36E-04 

UCSF Female 
AD vs Male 

AD: L2 Name 

All Nodes Stat 1.24E+04 1.27E+04 1.29E+04 1.27E+04 1.31E+04 1.26E+04 1.36E+04 1.31E+04 1.28E+04 1.29E+04 

pval 7.59E-01 9.08E-01 7.59E-01 9.74E-01 5.62E-01 9.92E-01 2.61E-01 5.62E-01 8.70E-01 7.35E-01 

Δmean -7.12E-03 -7.87E-05 3.60E-03 5.89E-03 2.30E+00 1.58E-04 2.10E+00 2.30E+00 -6.22E+01 3.46E-03 
Singletons 
Removed 

Stat 1.24E+04 5.31E+03 1.29E+04 1.27E+04 1.31E+04 1.26E+04 1.36E+04 1.31E+04 5.35E+03 1.29E+04 

pval 7.59E-01 0.429 7.59E-01 0.974 5.62E-01 0.992 2.61E-01 5.62E-01 0.48 7.35E-01 

Δmean -7.12E-03 -3.26E-04 3.60E-03 5.89E-03 2.30E+00 1.58E-04 2.10E+00 2.30E+00 -2.47E+02 3.46E-03 
UCSF Female: 
AD vs Control: 

Diagnosis 
Name 

All Nodes Stat 2.47E+05 2.23E+05 2.34E+05 2.47E+05 2.78E+05 2.49E+05 3.40E+05 2.78E+05 2.33E+05 2.55E+05 

pval 3.15E-11 1.16E-04 1.98E-06 6.28E-12 8.80E-29 3.89E-18 5.56E-91 8.80E-29 4.00E-08 3.53E-15 

Δmean 3.93E-01 -1.55E-03 9.58E-02 2.18E-01 3.99E+01 6.46E-01 2.45E+02 3.99E+01 1.14E+04 1.36E-01 
Singletons 
Removed 

Stat 1.17E+05 8.17E+03 1.04E+05 8.21E+04 1.47E+05 1.19E+05 2.10E+05 1.47E+05 1.74E+04 9.03E+04 

pval 1.53E-01 1.32E-10 1.53E-01 7.09E-01 1.68E-16 2.64E-04 1.15E-107 1.68E-16 1.43E-02 5.98E-02 

Δmean -1.64E-03 -9.37E-03 1.03E-04 1.76E-02 4.33E+01 8.01E-02 2.62E+02 4.33E+01 3.09E+04 3.67E-02 

All Nodes Stat 7.79E+04 7.70E+04 9.01E+04 9.57E+04 1.02E+05 8.41E+04 1.30E+05 1.02E+05 8.16E+04 1.05E+05 
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Comparison Nodes Mann 
Whitney 

U Test 

Avg 
Shortest 

Path Length 

Betweeness 
Centrality 

Closeness 
Centrality 

Clustering 
Coefficient 

Degree Eccentricity Neighbor-
hood 

Connecti-
vity 

Number 
Undirected 

Edges 

Stress 
Centrality 

Topological 
Coefficient 

UCSF Female: 
AD vs Control: 

L3 Name 

pval 5.75E-02 7.26E-02 3.32E-09 3.11E-16 3.67E-23 1.91E-19 1.25E-80 3.67E-23 4.57E-04 2.62E-27 

Δmean 2.72E-01 -1.00E-03 1.03E-01 2.67E-01 5.77E+01 3.32E-01 1.67E+02 5.77E+01 5.77E+03 2.46E-01 

Singletons 
Removed 

Stat 5.40E+04 9.75E+03 6.63E+04 5.42E+04 7.85E+04 6.02E+04 1.06E+05 7.85E+04 1.44E+04 6.36E+04 
pval 0.023 0.019 2.30E-02 1.23E-01 1.05E-11 6.68E-01 1.26E-65 1.05E-11 3.64E-04 9.73E-08 

Δmean -3.09E-02 -3.80E-03 1.15E-02 1.81E-02 5.04E+01 1.75E-03 1.42E+02 5.04E+01 1.19E+04 9.75E-02 

UCSF Female: 
AD vs Control: 

L2 Name 

All Nodes Stat 7.93E+03 1.29E+04 1.64E+04 1.22E+04 1.76E+04 1.21E+04 1.92E+04 1.76E+04 1.39E+04 1.64E+04 
pval 1.25E-06 1.10E-01 1.13E-09 5.29E-01 1.39E-14 6.37E-02 3.75E-22 1.39E-14 2.95E-03 8.95E-10 

Δmean -1.25E-01 -1.58E-03 1.18E-01 8.53E-02 4.07E+01 7.65E-02 3.05E+01 4.07E+01 6.27E+02 1.42E-01 

Singletons 
Removed 

Stat 6.97E+03 3.97E+03 1.54E+04 1.04E+04 1.67E+04 1.11E+04 1.82E+04 1.67E+04 5.00E+03 1.47E+04 
pval 1.70E-08 0.253 1.70E-08 0.573 2.92E-13 0.645 9.58E-21 2.92E-13 0.106 1.27E-07 

Δmean -1.91E-01 -3.84E-03 9.11E-02 1.91E-02 3.84E+01 -5.36E-03 2.65E+01 3.84E+01 4.35E+02 9.01E-02 

                          
UCSF Males: 

AD vs Control: 
Diagnosis 

Name 

All Nodes Stat 1.76E+05 1.67E+05 1.81E+05 1.91E+05 2.11E+05 2.16E+05 2.52E+05 2.11E+05 1.74E+05 1.94E+05 

pval 1.84E-05 1.18E-03 2.82E-07 5.34E-13 3.46E-26 3.29E-34 1.28E-71 3.46E-26 9.63E-07 2.09E-14 

Δmean 3.44E-01 -2.21E-03 8.95E-02 2.38E-01 3.47E+01 9.30E-01 2.19E+02 3.47E+01 9.11E+03 1.42E-01 
Singletons 
Removed 

Stat 7.94E+04 6.72E+03 8.42E+04 5.83E+04 1.15E+05 1.19E+05 1.56E+05 1.15E+05 1.43E+04 6.18E+04 

pval 5.14E-01 5.87E-07 5.14E-01 6.58E-01 2.12E-19 8.54E-33 8.81E-91 2.12E-19 4.09E-05 1.02E-01 

Δmean -2.25E-02 -1.24E-02 5.42E-03 2.49E-02 3.92E+01 4.96E-01 2.43E+02 3.92E+01 2.60E+04 3.46E-02 

UCSF Males: 
AD vs Control: 

L3 Name 

All Nodes Stat 6.90E+04 6.68E+04 8.31E+04 8.75E+04 9.24E+04 5.06E+04 1.18E+05 9.24E+04 7.20E+04 9.50E+04 
pval 3.34E-02 1.31E-01 5.52E-13 1.91E-20 4.43E-26 1.11E-09 8.58E-88 4.43E-26 3.40E-04 9.71E-31 

Δmean 3.35E-01 -1.19E-03 1.28E-01 3.03E-01 6.11E+01 4.82E-03 1.77E+02 6.11E+01 5.27E+03 2.74E-01 

Singletons 
Removed 

Stat 4.31E+04 8.47E+03 5.72E+04 4.67E+04 6.65E+04 2.47E+04 9.23E+04 6.65E+04 1.36E+04 5.42E+04 
pval 0.00297 0.0189 2.97E-03 2.26E-02 5.72E-12 6.79E-61 1.56E-70 5.72E-12 1.35E-06 1.52E-08 

Δmean -4.15E-02 -4.27E-03 1.46E-02 2.35E-02 5.34E+01 -5.09E-01 1.50E+02 5.34E+01 1.12E+04 1.11E-01 

All Nodes Stat 6.83E+03 1.17E+04 1.56E+04 1.11E+04 1.69E+04 1.12E+04 1.88E+04 1.69E+04 1.29E+04 1.49E+04 
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Comparison Nodes Mann 
Whitney 

U Test 

Avg 
Shortest 

Path Length 

Betweeness 
Centrality 

Closeness 
Centrality 

Clustering 
Coefficient 

Degree Eccentricity Neighbor-
hood 

Connecti-
vity 

Number 
Undirected 

Edges 

Stress 
Centrality 

Topological 
Coefficient 

UCSF Males: 
AD vs Control: 

L2 Name 

pval 4.73E-08 2.10E-01 6.05E-11 7.50E-01 1.41E-16 9.67E-02 1.55E-27 1.41E-16 3.31E-03 2.52E-08 

Δmean -1.56E-01 -2.01E-03 1.24E-01 6.13E-02 4.51E+01 6.76E-02 3.51E+01 4.51E+01 8.48E+02 1.29E-01 

Singleton 
Removed 

Stat 6.04E+03 3.88E+03 1.48E+04 9.94E+03 1.61E+04 1.04E+04 1.80E+04 1.61E+04 5.08E+03 1.38E+04 
pval 6.97E-10 0.808 6.97E-10 0.635 2.09E-15 0.674 2.50E-26 2.09E-15 0.00134 5.65E-07 

Δmean -2.15E-01 -4.23E-03 1.01E-01 1.66E-02 4.34E+01 -5.08E-03 3.19E+01 4.34E+01 1.02E+03 9.47E-02 

                          
UCSF Male vs 

Female 
Controls: 
Diagnosis 

Name 

All Nodes Stat 6.07E+04 6.58E+04 7.05E+04 6.87E+04 6.88E+04 6.59E+04 7.18E+04 6.88E+04 6.63E+04 6.85E+04 

pval 6.60E-02 9.93E-01 8.92E-02 2.69E-01 2.80E-01 9.75E-01 3.14E-02 2.80E-01 8.26E-01 3.22E-01 

Δmean -2.94E-02 -7.56E-04 3.84E-03 3.70E-02 3.02E+00 -2.01E-03 1.58E+01 3.02E+00 4.12E+02 1.96E-02 
Singletons 
Removed 

Stat 2.30E+04 3.08E+03 3.28E+04 1.83E+04 3.11E+04 2.81E+04 3.40E+04 3.11E+04 3.54E+03 1.80E+04 

pval 9.78E-04 6.06E-01 9.78E-04 6.06E-01 3.14E-02 7.59E-01 3.46E-05 3.14E-02 2.82E-02 8.31E-01 

Δmean -3.59E-02 -3.42E-03 8.11E-03 8.57E-03 4.71E+00 1.03E-02 2.48E+01 4.71E+00 1.99E+03 4.64E-03 

UCSF Male vs 
Female 

Controls: L3 
Name 

All Nodes Stat 4.40E+04 4.32E+04 4.66E+04 4.59E+04 4.67E+04 3.06E+04 5.20E+04 4.67E+04 4.39E+04 4.62E+04 

pval 8.32E-01 8.45E-01 1.48E-01 2.39E-01 1.30E-01 4.27E-13 4.51E-05 1.30E-01 8.74E-01 1.97E-01 

Δmean 6.56E-02 -2.72E-04 2.37E-02 3.49E-02 6.69E+00 -3.27E-01 2.38E+01 6.69E+00 4.43E+02 2.81E-02 
Singletons 
Removed 

Stat 2.76E+04 5.40E+03 3.02E+04 2.17E+04 3.03E+04 1.42E+04 3.56E+04 3.03E+04 6.04E+03 2.20E+04 

pval 0.403 0.645 4.03E-01 4.86E-01 3.55E-01 6.24E-39 1.06E-05 3.55E-01 3.41E-01 3.75E-01 

Δmean -8.03E-03 -6.85E-04 2.41E-03 4.14E-03 6.26E+00 -5.11E-01 2.23E+01 6.26E+00 1.27E+03 1.31E-02 

UCSF Male vs 
Female 

Controls: L2 
Name 

All Nodes Stat 9.32E+03 9.95E+03 1.06E+04 9.74E+03 1.09E+04 9.96E+03 1.16E+04 1.09E+04 1.02E+04 9.95E+03 
pval 3.26E-01 9.35E-01 3.96E-01 6.97E-01 1.73E-01 8.68E-01 2.06E-02 1.73E-01 8.08E-01 9.43E-01 

Δmean -3.71E-02 -5.06E-04 9.92E-03 -1.81E-02 6.74E+00 -8.75E-03 6.73E+00 6.74E+00 1.59E+02 -9.02E-03 

Singleton 
Removed 

Stat 8.61E+03 3.17E+03 9.87E+03 8.76E+03 1.02E+04 9.24E+03 1.09E+04 1.02E+04 3.38E+03 8.97E+03 
pval 3.31E-01 0.761 3.31E-01 0.976 1.30E-01 0.971 1.15E-02 1.30E-01 0.291 0.758 

Δmean -3.09E-02 -7.11E-04 1.34E-02 3.35E-03 7.26E+00 4.33E-04 7.45E+00 7.26E+00 3.42E+02 8.03E-03 
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Comparison Nodes Mann 
Whitney 

U Test 

Avg 
Shortest 

Path Length 

Betweeness 
Centrality 

Closeness 
Centrality 

Clustering 
Coefficient 

Degree Eccentricity Neighbor-
hood 

Connect-
ivity 

Number 
Undirected 

Edges 

Stress 
Centrality 

Topological 
Coefficient 

Mount Sinai  
AD vs Control: 

Diagnosis 
Name 

All Nodes Stat 1.62E+05 1.28E+05 1.60E+05 1.55E+05 1.61E+05 1.62E+05 1.62E+05 1.61E+05 1.29E+05 1.55E+05 

pval 6.92E-57 9.38E-17 2.49E-54 1.21E-48 1.91E-56 6.59E-58 1.48E-57 1.91E-56 3.27E-17 1.27E-47 

Δmean 9.13E-01 3.95E-04 2.20E-01 3.53E-01 7.35E+00 1.37E+00 5.33E+01 7.35E+00 4.23E+02 2.08E-01 

Singletons 
Removed 

Stat 1.49E+03 1.20E+01 3.06E+02 7.93E+02 1.28E+03 1.47E+03 1.79E+03 1.28E+03 2.68E+02 3.96E+02 
pval 1.55E-03 1.98E-03 1.55E-03 1.04E-01 3.82E-02 3.72E-09 1.56E-06 3.82E-02 2.04E-02 1.74E-01 

Δmean 4.23E-01 -1.89E-01 -1.49E-01 1.49E-01 1.27E+01 6.79E-01 1.10E+02 1.27E+01 2.57E+03 -1.13E-01 

Mount Sinai  
AD vs Control: 

L3 Name 

All Nodes Stat 9.83E+04 7.77E+04 1.01E+05 1.02E+05 1.09E+05 9.98E+04 1.19E+05 1.09E+05 7.97E+04 1.05E+05 

pval 4.40E-48 4.50E-17 2.23E-55 6.00E-62 4.78E-78 1.82E-74 1.90E-113 4.78E-78 9.06E-21 4.25E-66 

Δmean 1.18E+00 -1.21E-04 3.65E-01 6.35E-01 5.40E+01 1.30E+00 1.95E+02 5.40E+01 3.59E+03 4.59E-01 

Singletons 
Removed 

Stat 1.96E+04 1.87E+03 2.25E+04 1.82E+04 3.04E+04 2.11E+04 4.06E+04 3.04E+04 3.82E+03 2.10E+04 
pval 0.263 0.000503 2.63E-01 8.41E-01 4.24E-13 7.67E-01 2.67E-52 4.24E-13 2.76E-03 3.08E-02 

Δmean -2.98E-02 -1.61E-02 1.02E-02 1.04E-02 4.28E+01 2.52E-03 1.45E+02 4.28E+01 7.72E+03 5.50E-02 

Mount Sinai  
AD vs Control: 

L2 Name 

All Nodes Stat 1.34E+04 1.20E+04 1.49E+04 1.41E+04 1.69E+04 1.35E+04 1.96E+04 1.69E+04 1.28E+04 1.49E+04 

pval 2.63E-07 6.47E-04 3.71E-13 3.72E-10 1.79E-24 3.02E-12 1.69E-45 1.79E-24 1.92E-06 4.61E-13 
Δmean 6.15E-01 -5.00E-04 3.05E-01 3.71E-01 4.68E+01 7.80E-01 7.09E+01 4.68E+01 1.43E+03 3.33E-01 

Singletons 
Removed 

Stat 4.99E+03 1.27E+03 6.43E+03 5.63E+03 8.44E+03 5.07E+03 1.11E+04 8.44E+03 2.09E+03 6.41E+03 

pval 1.18E-01 0.15 1.18E-01 0.856 3.22E-09 0.00012 6.39E-32 3.22E-09 0.00077 0.128 
Δmean -6.30E-02 -7.58E-03 2.93E-02 -1.83E-03 3.29E+01 -1.13E-01 4.71E+01 3.29E+01 2.31E+03 3.40E-02 

                          

Mount Sinai  
Female AD vs 

Male AD: 
Diagnosis 

Name 

All Nodes Stat 1.14E+05 1.09E+05 1.19E+05 1.17E+05 1.18E+05 1.15E+05 1.24E+05 1.18E+05 1.09E+05 1.16E+05 

pval 8.97E-02 5.42E-01 2.08E-03 5.16E-03 4.75E-03 3.29E-02 8.66E-06 4.75E-03 4.39E-01 1.02E-02 
Δmean 1.47E-01 -2.93E-04 4.45E-02 8.06E-02 2.64E+00 2.25E-01 2.12E+01 2.64E+00 1.52E+02 4.46E-02 

Singletons 
Removed 

Stat 1.64E+04 1.99E+03 2.15E+04 1.44E+04 2.05E+04 1.78E+04 2.65E+04 2.05E+04 2.40E+03 1.37E+04 

pval 2.31E-02 6.72E-02 2.31E-02 2.50E-01 1.52E-01 4.96E-02 1.26E-11 1.52E-01 9.25E-01 8.51E-01 

Δmean -4.90E-02 -3.85E-03 1.03E-02 2.26E-02 3.56E+00 -6.38E-02 3.12E+01 3.56E+00 7.35E+02 3.32E-03 
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Comparison Nodes Mann 
Whitney 

U Test 

Avg 
Shortest 

Path Length 

Betweeness 
Centrality 

Closeness 
Centrality 

Clustering 
Coefficient 

Degree Eccentricity Neighbor-
hood 

Connect-
ivity 

Number 
Undirected 

Edges 

Stress 
Centrality 

Topological 
Coefficient 

Mount Sinai  
Female AD vs 
Male AD: L3 

Name 

All Nodes Stat 5.94E+04 5.86E+04 6.06E+04 6.06E+04 6.26E+04 5.98E+04 6.77E+04 6.26E+04 5.93E+04 6.14E+04 

pval 7.17E-01 9.39E-01 4.12E-01 3.51E-01 1.03E-01 1.60E-01 3.56E-04 1.03E-01 7.02E-01 2.43E-01 

Δmean 4.04E-02 -1.67E-04 1.72E-02 2.79E-02 8.47E+00 4.96E-02 2.42E+01 8.47E+00 7.39E+02 2.51E-02 

Singletons 
Removed 

Stat 5.24E+04 9.11E+03 5.36E+04 5.34E+04 5.57E+04 5.29E+04 6.07E+04 5.57E+04 9.81E+03 5.42E+04 
pval 8.06E-01 6.18E-01 8.06E-01 8.18E-01 2.63E-01 6.15E-01 1.36E-03 2.63E-01 5.75E-01 5.84E-01 

Δmean -7.80E-03 -5.46E-04 2.77E-03 1.46E-03 7.36E+00 -2.68E-03 1.97E+01 7.36E+00 1.67E+03 6.90E-03 

Mount Sinai  
Female AD vs 
Male AD: L2 

Name 

All Nodes Stat 9.16E+03 9.68E+03 1.04E+04 9.94E+03 1.06E+04 9.80E+03 1.07E+04 1.06E+04 9.79E+03 1.03E+04 

pval 0.348 0.853 0.344 0.824 0.251 0.984 0.206 0.251 0.991 0.446 
Δmean -0.033 -0.000305 0.016 -0.00158 5.46 0.000816 3.44 5.46 1.58E+02 0.0148 

Singletons 
Removed 

Stat 8.74E+03 2.79E+03 1.00E+04 9.52E+03 1.02E+04 9.39E+03 1.02E+04 1.02E+04 2.90E+03 9.90E+03 

pval 0.33 0.518 0.33 0.821 0.238 0.991 0.193 0.238 0.278 0.434 
Δmean -0.0342 -0.000165 0.0161 -0.00189 5.56 0.000213 3.49 5.56 4.69E+02 0.0149 

                          

Mount Sinai  
Female: AD vs 

Control: 
Diagnosis 

Name 

All Nodes Stat 1.61E+05 1.28E+05 1.60E+05 1.54E+05 1.61E+05 1.61E+05 1.61E+05 1.61E+05 1.28E+05 1.54E+05 
pval 1.05E-56 2.60E-16 4.01E-54 1.67E-47 3.26E-56 1.07E-57 2.35E-57 3.26E-56 9.41E-17 1.74E-46 

Δmean 9.14E-01 4.12E-04 2.19E-01 3.46E-01 7.22E+00 1.37E+00 5.27E+01 7.22E+00 4.13E+02 2.03E-01 

Singletons 
Removed 

Stat 1.49E+03 1.20E+01 2.96E+02 7.81E+02 1.26E+03 1.46E+03 1.78E+03 1.26E+03 2.59E+02 3.80E+02 
pval 1.35E-03 2.04E-03 1.35E-03 9.68E-02 4.74E-02 3.99E-09 1.58E-06 4.74E-02 2.27E-02 1.57E-01 

Δmean 4.28E-01 -1.89E-01 -1.51E-01 1.49E-01 1.25E+01 6.79E-01 1.10E+02 1.25E+01 2.57E+03 -1.17E-01 

Mount Sinai  
Female: AD vs 

Control: L3 
Name 

All Nodes Stat 9.85E+04 7.88E+04 1.02E+05 1.03E+05 1.09E+05 1.00E+05 1.19E+05 1.09E+05 8.07E+04 1.05E+05 
pval 3.74E-44 2.28E-16 5.53E-52 1.98E-57 1.26E-72 7.58E-67 7.20E-105 1.26E-72 8.06E-20 6.21E-62 

Δmean 1.12E+00 -1.28E-04 3.50E-01 6.07E-01 5.17E+01 1.24E+00 1.83E+02 5.17E+01 3.40E+03 4.42E-01 

Singletons 
Removed 

Stat 1.89E+04 1.85E+03 2.22E+04 1.78E+04 2.97E+04 2.06E+04 3.95E+04 2.97E+04 3.73E+03 2.06E+04 
pval 0.197 0.000661 1.97E-01 8.13E-01 3.61E-13 7.82E-01 2.38E-51 3.61E-13 3.23E-03 2.55E-02 

Δmean -3.31E-02 -1.60E-02 1.14E-02 9.48E-03 4.25E+01 2.38E-03 1.41E+02 4.25E+01 7.53E+03 5.71E-02 



 86 

Comparison Nodes Mann 
Whitney 

U Test 

Avg 
Shortest 

Path Length 

Betweeness 
Centrality 

Closeness 
Centrality 

Clustering 
Coefficient 

Degree Eccentricity Neighbor-
hood 

Connect-
ivity 

Number 
Undirected 

Edges 

Stress 
Centrality 

Topological 
Coefficient 

Mount Sinai  
Female: AD vs 

Control: L2 
Name 

All Nodes Stat 1.32E+04 1.19E+04 1.47E+04 1.39E+04 1.66E+04 1.33E+04 1.92E+04 1.66E+04 1.27E+04 1.47E+04 

pval 1.65E-06 1.52E-03 2.38E-12 1.99E-09 7.39E-23 8.21E-11 2.70E-42 7.39E-23 7.09E-06 3.44E-12 

Δmean 5.78E-01 -5.37E-04 2.94E-01 3.53E-01 4.48E+01 7.38E-01 6.69E+01 4.48E+01 1.34E+03 3.19E-01 
Singletons 
Removed 

Stat 4.83E+03 1.26E+03 6.34E+03 5.54E+03 8.27E+03 4.96E+03 1.09E+04 8.27E+03 2.06E+03 6.31E+03 

pval 9.56E-02 0.239 9.56E-02 0.911 3.08E-09 0.000136 3.16E-31 3.08E-09 0.000274 0.112 

Δmean -6.84E-02 -7.35E-03 3.19E-02 -1.29E-03 3.23E+01 -1.13E-01 4.52E+01 3.23E+01 2.26E+03 3.65E-02 
                          

Mount Sinai  
Male: AD vs 

Control: 
Diagnosis 

Name 

All Nodes Stat 1.29E+05 1.07E+05 1.28E+05 1.23E+05 1.29E+05 1.29E+05 1.29E+05 1.29E+05 1.07E+05 1.23E+05 

pval 2.85E-40 6.02E-13 3.40E-38 1.97E-32 1.05E-39 1.36E-40 9.84E-41 1.05E-39 2.27E-13 8.08E-32 

Δmean 7.64E-01 5.47E-04 1.74E-01 2.65E-01 4.58E+00 1.14E+00 3.15E+01 4.58E+00 2.61E+02 1.57E-01 
Singletons 
Removed 

Stat 1.15E+03 1.00E+01 2.07E+02 5.52E+02 8.94E+02 1.13E+03 1.36E+03 8.94E+02 2.36E+02 2.91E+02 

pval 9.02E-04 2.24E-03 9.02E-04 1.70E-01 1.32E-01 1.93E-06 1.82E-06 1.32E-01 3.76E-03 1.98E-01 

Δmean 4.77E-01 -1.85E-01 -1.61E-01 1.26E-01 8.91E+00 7.43E-01 7.83E+01 8.91E+00 1.84E+03 -1.20E-01 

Mount Sinai  
Male: AD vs 
Control: L3 

Name 

All Nodes Stat 1.29E+05 1.07E+05 1.28E+05 1.23E+05 1.29E+05 1.29E+05 1.29E+05 1.29E+05 1.07E+05 1.23E+05 

pval 2.85E-40 6.02E-13 3.40E-38 1.97E-32 1.05E-39 1.36E-40 9.84E-41 1.05E-39 2.27E-13 8.08E-32 

Δmean 7.64E-01 5.47E-04 1.74E-01 2.65E-01 4.58E+00 1.14E+00 3.15E+01 4.58E+00 2.61E+02 1.57E-01 
Singletons 
Removed 

Stat 1.15E+03 1.00E+01 2.07E+02 5.52E+02 8.94E+02 1.13E+03 1.36E+03 8.94E+02 2.36E+02 2.91E+02 

pval 0.000902 0.00224 9.02E-04 1.70E-01 1.32E-01 1.93E-06 1.82E-06 1.32E-01 3.76E-03 1.98E-01 

Δmean 4.77E-01 -1.85E-01 -1.61E-01 1.26E-01 8.91E+00 7.43E-01 7.83E+01 8.91E+00 1.84E+03 -1.20E-01 

Mount Sinai  
Male: AD vs 
Control: L2 

Name 

All Nodes Stat 1.30E+04 1.17E+04 1.40E+04 1.35E+04 1.58E+04 1.28E+04 1.85E+04 1.58E+04 1.24E+04 1.41E+04 

pval 6.41E-07 8.24E-04 8.73E-11 4.08E-09 4.30E-20 8.55E-10 5.46E-40 4.30E-20 4.95E-06 3.24E-11 

Δmean 5.91E-01 -3.78E-04 2.75E-01 3.55E-01 3.95E+01 7.12E-01 6.31E+01 3.95E+01 1.18E+03 3.08E-01 
Singleton 
Removed 

Stat 5.00E+03 1.23E+03 6.01E+03 5.37E+03 7.81E+03 4.82E+03 1.05E+04 7.81E+03 1.96E+03 5.97E+03 

pval 2.61E-01 0.0909 2.61E-01 0.872 2.80E-07 5.81E-05 5.09E-29 2.80E-07 0.00993 0.232 

Δmean -4.56E-02 -7.47E-03 2.05E-02 2.06E-03 2.75E+01 -1.26E-01 4.20E+01 2.75E+01 1.80E+03 2.81E-02 
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Comparison Nodes Mann 
Whitney 

U Test 

Avg 
Shortest 

Path Length 

Betweeness 
Centrality 

Closeness 
Centrality 

Clustering 
Coefficient 

Degree Eccentricity Neighbor-
hood 

Connect-
ivity 

Number 
Undirected 

Edges 

Stress 
Centrality 

Topological 
Coefficient 

Mount Sinai  
Male vs 
Female 

Controls: 
Diagnosis 

Name 

All Nodes Stat 9.73E+04 9.74E+04 9.73E+04 9.74E+04 9.73E+04 9.73E+04 9.73E+04 9.73E+04 9.74E+04 9.74E+04 

pval 0.863 0.903 0.863 0.881 0.863 0.863 0.863 0.863 0.903 0.881 

Δmean -0.00251 -0.000158 -0.00101 -0.00087 -0.00507 -0.0037 -0.00716 -0.00507 -0.00974 -0.000757 
Singletons 
Removed 

Stat 3.20E+01 7.50E+00 3.20E+01 18 3.20E+01 3.20E+01 3.20E+01 3.20E+01 8.00E+00 18 

pval 0.957 1 0.957 0.933 0.957 0.95 0.958 0.957 0.876 0.935 

Δmean 0 -2.78E-17 0 0 0 0 0 0 0 0 

Mount Sinai  
Male vs 
Female 

Controls: L3 
Name 

All Nodes Stat 5.71E+04 5.80E+04 5.73E+04 5.75E+04 5.74E+04 5.59E+04 5.76E+04 5.74E+04 5.80E+04 5.77E+04 

pval 0.661 0.958 0.731 0.789 0.76 0.297 0.824 0.76 0.973 0.84 

Δmean -0.0298 -0.00017 -0.00736 -0.00852 -0.00692 -0.0989 -0.551 -0.00692 3.69 -0.00383 
Singletons 
Removed 

Stat 7.10E+03 7.34E+02 7.30E+03 5.43E+03 7.39E+03 5.82E+03 7.57E+03 7.39E+03 7.60E+02 5.57E+03 

pval 0.847 0.799 0.847 0.946 0.727 4.94E-07 0.492 0.727 0.996 0.802 

Δmean -0.00638 -0.00132 0.00195 -0.00083 0.686 -0.193 1.6 0.686 40.6 0.00488 

Male vs 
Female 

Controls: L2 
Name 

All Nodes Stat 9.63E+03 9.77E+03 9.80E+03 9.81E+03 9.80E+03 9.68E+03 9.82E+03 9.80E+03 9.77E+03 9.91E+03 
pval 0.798 0.955 0.994 0.984 0.998 0.84 0.98 0.998 0.958 0.868 

Δmean -0.0198 -0.000146 -0.00259 -9.77E-05 0.205 -0.0245 -0.274 0.205 -0.956 0.00301 

Singleton 
Removed 

Stat 3.19E+03 8.50E+02 3.37E+03 3.26E+03 3.36E+03 3.24E+03 3.38E+03 3.36E+03 8.52E+02 3.36E+03 
pval 0.775 0.93 0.775 0.933 0.794 0.801 0.744 0.794 0.915 0.687 

Δmean -0.0114 -0.000286 0.00475 0.00146 0.815 -0.0123 0.323 0.815 10 0.00653 

 
Color Legend 

pval < .05 
pval < .01 

pval < .001 
pval < .0001 

posiRve Δmean 
negaRve Δmean 
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2.9 Supplementary Data 

Supplementary Data 2.1 Thresholded Full Tables of Diagnosis Enrichment Analysis 
 
An excel sheet with 3 levels of diagnosis categories and sex-specific analysis (6 tabs) for each 
institution (12 tabs total). Lists include diagnosis enriched between AD and control cohorts, and 
sex-specific enrichments. Diagnoses are thresholded to represent > 10 patients, with uncorrected 
p-values (from two-sided Fisher Exact or Chi Square test) and odds ratios. The data from UCSF 
can be visualized and explored in the Rshiny app: vizad.org.  
Data can be downloaded at this link:  
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-28273-
0/MediaObjects/41467_2022_28273_MOESM4_ESM.xlsx 
 
 
Supplementary Data 2.2 Encounter Controlled Diagnosis Enrichment Analysis 
 
An excel sheets with 3 levels of diagnosis categories on encounter-controlled control cohorts 
(described in Methods) and sex-specific analysis at UCSF (6 tabs). Lists include diagnoses 
enriched between AD and control cohorts, and sex-specific enrichments. Diagnoses are 
thresholded to represent > 10 patients, with un-corrected p-values (from two-sided Fisher Exact or 
Chi Square test) and odds-ratios. The data can be visualized and explored in the Rshiny app: 
vizad.org. 
Data can be downloaded at this link:  
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-28273-
0/MediaObjects/41467_2022_28273_MOESM5_ESM.xlsx 
  

http://vizad.org/
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-28273-0/MediaObjects/41467_2022_28273_MOESM4_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-28273-0/MediaObjects/41467_2022_28273_MOESM4_ESM.xlsx
http://vizad.org/
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-28273-0/MediaObjects/41467_2022_28273_MOESM5_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-28273-0/MediaObjects/41467_2022_28273_MOESM5_ESM.xlsx
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2.10 Supplementary Figures 

 

Supplementary Figure 2.1 Demographic correlation across UMAP principal components 
 
a. The top two graphs show the UMAP of AD and controls at UCSF, colored by deceased status 

(left) and estimated age (right). The middle graphs show distribution of deceased status among 
the two UMAP components, which are compared with a Mann-Whitney U-Test. The bottom 
graphs show estimated age across the two UMAP components, with marginal distributions 
shown on the sides. A regression line is plotted, and a Pearson’s R correlation test is performed. 

b. The same UMAP plots are shown as in a, but for Mount Sinai.  
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Supplementary Figure 2.2 Comorbidity Enrichment Analysis identifies diagnosis in AD vs. 
Controls and Sex-Specific Enrichments at Mount Sinai 
 
a. Volcano plot for Level 2 categories (top) and full diagnosis names (bottom) compared between 

AD and control cohorts using Fisher Exact or Chi-Squared test. P-value cutoff is Bonferroni 
corrected at 0.05 with log2 odds ratio cutoff at 1 for AD enriched (pink) and remaining 
significant diagnoses in blue. 

b. Above, a Manhattan plot with full diagnosis names colored by ICD-10 categories with 
Bonferroni-corrected p-value cutoff of 0.05. Bottom, percentage of diagnosis in each ICD-10 
category that is significant.  

c. Full diagnosis names compared between AD and controls within each sex. The log of the  
(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) 
odds ratio is plotted on the axis, and points are colored by significance (Bonferroni-corrected, 
p-val cutoff > 3e-6). 

d. Miami plot of the diagnosis names grouped by sex and ICD-10 categories. 
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Supplementary Figure 2.3 Medication Enrichment Analysis identifies Enriched Medications 
between AD and Controls 
 
a. Volcano plot for generic medication names compared between AD and controls using Fisher 

Exact or Chi-Squared Test. P-value cutoff is Bonferroni-corrected at 0.05 with odds ratio cutoff 
at 2 for AD enriched (pink) or 1/2 for controlled enriched (green). Remaining significant 
diagnoses are in blue. 

b. Log-log plot of generic medication names compared between AD and controls within each 
sex. The log of the odds ratio for each sex is plotted on the axis, with points colored by 
significance (Bonferroni-corrected p-value of 0.05) if female only (red), male only (blue), or 
both (black). 



 93 

 

Supplementary Figure 2.4 Stratifying by AD status and sex allows identification of lab trends 
between groups  
 
a. Heatmap of lab values filtered on significance at UCSF in AD vs control comparison across  
(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) 
sex-specific groups. Labs are clustered with light blue lines representing significant cluster 
breaks (FWER corrected p-value 0.05). Text color represents significant labs among females 
only (pink), or significant between AD vs controls (black). Heatmap colors represent z-score 
of the average median value across the 4 groups. 

b. Heatmap of lab values filtered on significance at Mount Sinai in AD vs control comparison 
across sex-specific groups. Labs are clustered with light blue lines representing significant 
cluster breaks (FWER corrected p-value 0.05). Text color represents significant labs among 
males only (green), or significant between AD vs controls (black). Heatmap colors represent 
z-score of the average median value across the 4 groups. 

c. Comparison of z-scored lab values between UCSF and Mount Sinai showing significant 
correlations within each AD/sex-stratified groups. Female control: Spearman ρ = 0.45, p-value 
< 0.001; Male control: 0.46, p-value < 0.001; Female AD: 0.59, p-value < 1e-5; Male AD: 
0.64, p-value < 1e-5.  
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Chapter 3: Leveraging Electronic Medical Records and Knowledge 

Networks to Predict Disease Onset and Gain Biological Insight Into 

Alzheimer’s Disease 

 
3.1 Abstract 

Early identification of Alzheimer’s Disease (AD) risk can aid in interventions before 

disease progression. We demonstrate that electronic health records (EHRs) combined with 

heterogeneous knowledge networks (e.g., SPOKE) allow for (1) prediction of AD onset and (2) 

generation of biological hypotheses linking phenotypes with AD. We trained random forest models 

that predict AD onset with mean AUROC of 0.72 (-7 years) to .81 (-1 day). Top identified 

conditions from matched cohort trained models include phenotypes with importance across time, 

early in time, or closer to AD onset. SPOKE networks highlight shared genes between top 

predictors and AD (e.g., APOE, IL6, TNF, and INS). Survival analysis of top predictors 

(hyperlipidemia and osteoporosis) in external EHRs validates an increased risk of AD. Genetic 

colocalization confirms hyperlipidemia and AD association at the APOE locus, and AD with 

osteoporosis colocalize at a locus close to MS4A6A with a stronger female association.   
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3.2 Introduction 

Neurodegenerative disorders are devastating, heterogeneous, and challenging to diagnose, 

and their burden in an aging population is expected to continue to grow1. Among these, 

Alzheimer’s Disease (AD) is the most common form of dementia after age 65, and its hallmark 

memory loss and other cognitive symptoms are costly and onerous to both patients and caregivers. 

Approaches to curb this impact are moving increasingly to targeting interventions in at-risk 

individuals prior to the onset of irreversible decline2–4. To this end, advancements in AD 

biomarkers, diagnostic tests, and neuroimaging have improved the detection and classification of 

AD, and disease-modifying treatments have been approved, but there is still no cure and much 

remains unknown about its pathogenesis5,6. This is in part due to limited availability of longitudinal 

data or data linking molecular and clinical domains.  

In the past few decades, electronic health records (EHRs) have become a source of rich 

longitudinal data that can be leveraged to understand and predict complex diseases, particularly 

AD. Prior applications of EHRs for studying AD include deep phenotyping of AD7, identification 

of AD-related associations and hypotheses8, and models classifying or predicting a dementia 

diagnosis from clinical data modalities9. Data available in clinical records can also better represent 

a clinician’s knowledge of a patient’s clinical history at a point in time prior to further diagnostic 

studies or imaging, allowing a prediction model to be low cost to implement as a first line 

application in primary care or for initial risk stratification10. While machine learning (ML) has 

been previously applied to EHRs for general dementia classification and prediction11–13, these 

approaches are limited in their specificity for the AD phenotype, lack of biological interpretability, 

or rely on data modalities that may not be readily available in the EHR to facilitate early prediction 

(e.g. neuroimaging14–16 or special biomarkers17,18). Sex as a biological variable is an important 
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covariate for AD heterogeneity with potential contributions to differing risks and resilience, but 

sex-specific contributions have often been omitted from prior AD machine learning models19,20. 

To our knowledge, there have not yet been approaches that utilize vast EHR data for predicting 

future risk of AD with consideration of applicability and explainability of models.  

 With recent advances in informatics and curation of multi-omics knowledge, there is 

increasing interest in integrative approaches to derive insights into disease. Heterogeneous 

biological knowledge networks bring in the ability to synthesize decades of research and combine 

human understanding of multi-level biological relationships across genes, pathways, drugs, and 

phenotypes, with vast potential for deriving biological meaning from clinical data21. There has 

been much AD-research leveraging specific data modalities or combining a few modalities 

(transcriptomics22,23, genetics24, neuroimaging25), but there is still a need for meaningful 

integration that allows for the understanding of the relationship between pathogenesis and clinical 

manifestations. Heterogeneous knowledge networks provide an opportunity to derive biological 

hypotheses from clinical data by synthesizing knowledge across multiple data modalities to 

explain potential relationships between many shared clinical associations26,27.  

Here, we utilize EHR data from the University of California, San Francisco (UCSF) 

medical center to develop ML models for AD onset prediction and generate hypotheses of high-

level biological relationships between top predictors and AD. We carry out clinical model 

construction for prediction and proceed with interpretation of matched patient models, controlling 

for demographics and visit-related confounding, to identify biologically relevant clinical 

predictors. We further demonstrate interpretability using heterogeneous knowledge networks 

(SPOKE knowledge graph)28 and validate predictors with supporting evidence in external EHR 

datasets and through genetic colocalization analysis. Our work not only has implications for 
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determining clinical risk of AD based on EHRs, but also can lead to further research in identifying 

hypothesized early phenotypes and pathways to help further the field of neurodegeneration.  
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3.3 Results 

From the UCSF EHR database of over 5 million patients from 1980-2021, 2,996 AD 

patients who had undergone dementia evaluation at the Memory and Aging Center and thus had 

expert-level clinical diagnoses were identified and mapped to the UCSF Observational Medical 

Outcomes Partnership (OMOP) EHR database. From the remaining patients, 823,671 control 

patients were extracted with over a year of visits and no dementia diagnosis. After identifying an 

index time representing AD onset (mean onset age (SD) 74 (5.6), see Methods) and filtering for 

availability of at least 7 years of longitudinal data, 749 AD patients and 250,545 control patients 

were identified (demographics shown in Table 3.1). From that, 30% was held-out for model 

evaluation and 70% utilized for model training (Figure 3.1B, Supplementary Figure 3.1). For 

each time point and within sex strata, ML models were either trained for AD onset prediction or 

trained on the AD cohort and a subset of propensity-score matched controls for hypothesis 

generation, where balancing was performed on demographics (sex, race & ethnicity, birth year, 

age) and visit-related factors (years in EHR, first EHR visit age, number of visits, number of EHR 

concepts, and days since first EHR record, Supplementary Table 3.4, matched example in Table 

3.1). 

 
3.3.1 ML models based on clinical data can accurately predict Alzheimer’s 

Disease onset up to 7 years in advance  

Random forest (RF) models trained on only clinical features from time points between -7 

years to -1 day to AD onset were evaluated on the held-out dataset with average bootstrapped Area 

Under the Receiver Operating Characteristic (AUROC) curve between 0.72 (median 0.75) for the 

-7 year time model to 0.81 (median 0.85) for the -1 day model. The RF models performed with 
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Area Under the Precision Recall Curve (AUPRC) greater than the reference held-out evaluation 

set AD prevalence of 0.003 (average/median of 0.05/0.01 for -7 year model and 0.10/0.06 for -1 

day model, Figure 3.1C). With addition of demographics and visit-related features, RF model 

performance improved with average bootstrapped AUROC between 0.86 (median 0.89) to 0.90 

(median 0.94) and AUPRC between mean 0.06 (median 0.04) and 0.27 (median 0.14) for the -7 

year to -1 day model, respectively (Figure 3.1C).  

Top decision features across each time point model (see Methods) included features across 

clinical data domains, including vaccines, abnormal feces content, hypertension, hyperlipidemia 

(HLD), and cataracts (Supplementary Figure 3.2A, Supplementary Data 3.1). Demographic 

and visit-related features became predictive for AD diagnosis when added to the model, which is 

not unexpected since these features may contribute to confounding that influence the identified 

features and predicted risk of AD diagnosis (Supplementary Figure 3.2A). EHR diagnoses 

mapped to phecode categories29 (see Methods) identified sense organs, circulatory, and 

musculoskeletal phecode categories for early models, and mental disorder category for late models 

(Supplementary Figure 3.2B). Among the clusters of top 50 ranked phecodes, one cluster 

identified phecode features that maintain high relative importance throughout the time models 

(HLD, hypertension, dizziness, abnormal stool contents), and other clusters contain features with 

relative importance at specific time points (Supplementary Figure 3.2C). While some of these 

features support prior identified AD risk factors, the lack of adjustment may lead to feature 

identification as proxies for age in risk determination but not directly relevant to disease 

pathogenesis. Therefore, we proceed to identify disease relevant features by training models on 

patients matched on demographics and hospital utilization for the goal of hypothesis generation.  
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3.3.2 Models trained on matched cohorts can identify hypotheses for 

biologically relevant AD predictors 

To train models that are robust for AD prediction for identifying predictors without 

demographic and visit-related confounding, we train time point models on a matched set of 

participants at a 1:8 ratio between AD and controls. Sufficient balance was achieved on numerical 

covariates that were highly important in unmatched demographic models (Supplementary Figure 

3.3, Supplementary Table 3.3).  

RF models trained on only clinical features from -7 years to -1 day performed with average 

bootstrapped held-out evaluation set AUROC between .58 (median 0.57) for the -7 year time 

model to .77 (median 0.77) for the -1 day time model. The models performed with AUPRC greater 

than the held-out evaluation set AD prevalence of 0.003 with improvement closer to time 0 

(mean/median of 0.02/0.008 for -7 year time model and 0.08/0.03 for -1 day model, Figure 3.2A). 

When demographics and visit-related information were added as features, the models performed 

with minimal improvement, with average bootstrapped test set AUROC between 0.61 (median 

0.61) to 0.71 (median 0.72) and similar AUPRC (mean/median of 0.02/0.009 for -7 year time 

model and 0.05/0.03 for -1 day model, Figure 3.2A). For both the full and matched cohort models, 

the relative performances are consistent for balanced accuracy measures on the held-out 

evaluation, and an example permutation test demonstrates significance for the -1 day matched 

cohort model (Supplementary Figure 3.7). 

Among top features sorted by average importance across time models, top features include 

amnesia and cognitive concerns, HLD, dizziness, cataract, congestive heart failure, osteoarthritis, 

and others (Figure 3.2B). These top features are consistently important even when demographics 

and visit information was added to the model, although demographic and visit features still had 
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minimal influence on prediction (Figure 3.2B). Compared to models trained on all patients, the 

models trained on matched cohorts have increased importance assigned to features like 

hyperlipidemia and amnesia, while decreasing importance of features like pain intensity rating 

scale and essential hypertension (Supplementary Figure 3.6).  

Since matching allows for the control of the influence of visit and demographic-related on 

AD prediction, the remaining diagnoses features can be identified for hypothesis generation with 

greater specificity for AD predictive risk. Top phecode categories include mental disorders, sense 

organs, and endocrine/metabolic categories (Figure 3.2C). Among clusters of specific phecodes, 

one cluster included features with maintained predictive importance throughout time models (HLD 

and congestive heart failure), while other clusters include phecodes that are relatively predictive 

several years prior to AD onset (osteoarthritis, allergic rhinitis). A cluster of features emerges as 

important around -3 years (osteoporosis, dizziness, back pain, hemorrhoids, palpitations), and 

some features only emerge as important closer to the time of AD onset (memory loss, vitamin D 

deficiency, Figure 3.2C). Together, this shows that the model can identify a combination of 

conditions that can lead to AD risk identification for a patient of a given age and hospital utilization 

burden.  

 
3.3.3 Stratification by sex allows identification of features that are predictive 

within a subgroup 

Since sex plays a role in AD risk, models were trained within male or female-identified sex 

groups to perform sex-specific prediction and identify sex-specific predictive features, without and 

with matching on demographics and hospital utilization (demographics in Supplementary Table 

3.4). Models trained on clinical features performed with average held-out evaluation set AUROC 

between 0.75 (median 0.76) and 0.71 (median 0.71) for -7 year female and male models to 0.84 
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(median 0.86) and 0.82 (0.89) for -1 day female and male models. For AUPRC, the models 

performed greater than the held-out evaluation set prevalence (0.0036 for females, 0.0023 for 

males) with performance of 0.056-0.11(median 0.022-0.061) and 0.041-0.15(median 0.015-0.056) 

for females and male -7 years to -1 day time models, respectively. With addition of demographics 

and visit-related features, AUROC/AUPRC improved considerably (Supplementary Figure 

3.4A). Top features include sense organs and musculoskeletal phecode categories in female-only 

models, and circulatory system and digestive phecode categories as important among male-only 

models (Supplementary Figure 3.4B).  

To identify sex-specific biologically relevant clinical predictors for hypothesis generation, 

models were also trained by matching on demographic and visit-related factors within each 

subgroup (matching results in Supplementary Table 3.4). Time point models trained only on 

clinical features performed with mean held-out evaluation set AUROC between 0.60-0.68 (median 

0.58-0.74) and 0.41-0.75 (median 0.43-0.84) for female and male models respectively (Figure 

3.2D). For AUPRC, models performed greater than held-out evaluation set prevalence with 

performance ranging from 0.031-0.095 (median 0.0076-0.046) and 0.0040-0.125 (0.0033-0.022) 

for female and male models, respectively. Slight improvement in performance was observed with 

the addition of demographics and visit-related information (Figure 3.2D). 

Top phecode categories in the female models include respiratory/circulatory system 

features earlier on, to musculoskeletal features in the -5 year model, to sense organs and mental 

disorders in the -1 year and -1 day model. Top categories in male models include endocrine/ 

metabolic/circulatory disorders earlier, to digestive and genitourinary in -5 and -3 models, to 

mental disorders in -1 day model (Supplementary Figure 3.4B). When comparing specific 

phecodes, some are general across the subgroups such as HLD, congestive heart failure (early 
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models), and memory/cognitive symptoms (later models) (Figure 3.2E, Supplementary Figure 

3.4C). Female-driven features across time models included osteoporosis, palpitations, allergic 

rhinitis, myocardial infarction, major depressive disorder, and abnormal stool contents. Male-

driven features included chest pain, hypovolemia, sexual disorder, tobacco use disorder, and 

neoplasms (Figure 3.2E).  

For all formulations of the prediction task, logistic regressions (LR) models performed 

comparably to random forests, and identify features with linear relationships with AD including 

some overlap with features identified from random forest models (Supplementary Figure 3.5). 

Nevertheless, for matched cohort models random forest performs better than logistic regression at 

the same time points (Supplementary Table 3.5) and can identify decision features with nonlinear 

relationships with AD (e.g., RF identifies osteoporosis). Balanced accuracy measures for all of the 

random forest models support trends in performance between models, including lower overall 

performance for matched cohort models, and improvement in model performance closer to onset 

of AD (Supplementary Figure 3.7A, Supplementary Table 3.6). As an example to evaluate the 

extent that clinical features meaningfully predict AD, random forest models were retrained on 

permutations of the ground truth label for the -1 day matched cohort (40 permutations) and the 

trained model distribution was significant compared to the null distribution (p=0.024, 

Supplementary Figure 3.7B). 

 
3.3.4 Use of a knowledge graph allowed prioritization of known biological 

explanations underlying predictive features 

Next, we utilized the SPOKE knowledge graph28 in order to utilize existing knowledge to 

explain and prioritize biological relationships between groups of top clinical model features and 
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AD. We mapped biological features (genes, proteins, compounds, etc.) between top 25 clinical 

predictors (mapped to disease nodes) and AD node for each model (see Methods). 

Genes that appear in shortest path networks among matched models across multiple time 

include APOE, AKT1, INS, ALB, IL1B, INF, ALB, IL6, SOD1, etc. and compounds include 

atorvastatin, simvastatin, ergocalciferol, progesterone, estrogen, cyanocobalamin, and folic acid 

(Figure 3.3). These genes and compounds also share relationships to multiple occurring model 

input nodes, particularly familial hyperlipidemia and osteoporosis among all time point models 

(Figure 3.3). Notable nodes that appear over at least 2 models include C9orf72, TREM2, APP, 

MAPT with relationships to input nodes of musculoskeletal and joint disorders, deafness, and 

depression (Figure 3.3).  

 
3.3.5 Hyperlipidemia validates as a top predictor of AD in external EHRs and 

a genetic link confirmed in APOE locus 

In order to further validate the utility of models to identify predictive disease associations, 

we followed up on HLD as a top feature that was a consistent predictor across all models. Utilizing 

a retrospective cohort study design in an EHR on five hospitals across the University of California 

system (University of California Data Discovery Platform (UCDDP)) with exclusion of UCSF, 

HLD-diagnosed patients (exposed group, n = 364,289) had a faster progression to AD event 

compared to matched unexposed patients (n = 364,289, matched demographics in Supplementary 

Table 3.7) (Figure 3.4A, Supplementary Figure 3.8A, log-rank test p-value<0.005). This was 

further confirmed with a Cox proportional hazards analysis (hazard ratio (HR) 1.52 (95% 

Confidence Interval (CI) 1.46-1.57), visit/demographic adjusted HR (aHR) 1.26 (1.21-1.31), p-

value <0.005, Supplementary Figure 3.8C).  
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In order to investigate potential relationships between HLD and AD, the HLD-specific 

knowledge network demonstrated shared gene associations with LSS, APOE, INS, SMAD3, ALB, 

and GFPT1 (Figure 3.4B). Locus intersections between high LDL cholesterol and AD across two 

independent GWAS studies across 408,942 AD patients from Schwartzentruber et al.30 and 94,595 

LDL Cholesterol patients from Willer et al.31 respectively identified multiple shared variants, 

including ch19:44,892,362(hg38):A>G (rs2075650) and ch19:44,905,579(hg38):T>G (rs405509) 

(https://genetics.opentargets.org/study-comparison/GCST002222?studyIds=GCST90012878). 

PheWAS for rs2075650 on the UK Biobank verified significant associations with cholesterol 

levels, HLD, AD, and family history of AD (Figure 3.4C). Colocalization H4 probability, a 

measure that determines the probability two traits are associated at a locus based on prior genetic 

studies, supports a causal link with locus variants for APOE protein QTL and both HLD traits and 

AD traits (Figure 3.4D). 

 
3.3.6 Female-specific predictor of osteoporosis validates in an external EHR 

with potential explanations given in SPOKE and genetic colocalization analysis 

Osteoporosis was identified as an important feature in the matched models as a female-

specific clinical predictor of AD. In the UCDDP, osteoporosis-exposed patients (n=68,940) 

showed a quicker progression to AD compared to matched unexposed patients (n=68,940, matched 

demographics in Supplementary Table 3.8) (Figure 3.5A, Supplementary Figure 3.8B, log-

rank test p-value<0.005). When stratified by sex, this progression is significant when comparing 

between female osteoporosis (n=57,486) vs female controls (n=58,636). Cox hazard analysis 

further supported osteoporosis as a general risk feature for AD (HR 1.81 (95% CI 1.70-1.92), aHR 

1.59 (1.45-1.70), p<.005 Supplementary Figure 3.8D).  

https://genetics.opentargets.org/study-comparison/GCST002222?studyIds=GCST90012878
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Osteoporosis-specific SPOKE network demonstrated shared gene associations with IL6, 

SMAD3, TNF, HSPG2, GATA1, GFPT1, HFE, INS, and ALB (Figure 3.5B). Based on previous 

GWAS studies across 472,868 AD patients from Schwartzentruber et al.30 and 426,824 heel bone 

mineral density (HBMD) patients from Morris et al.32, a shared risk locus was found in 

Chromosome 11 between HBMD and AD among the MS4A gene family 

(https://genetics.opentargets.org/study-comparison/GCST006979?studyIds=GCST90012877), 

with the closest gene as MS4A6A. A comparison of prior GWAS of up to 71,880 AD patients 

from Jansen et al.33 and sex-stratified heel bone mineral density (HBMD) GWAS (111,152 

Female, 166,988 Male) of UK Biobank patients from Neale Labs (www.nealelab.is/uk-biobank/) 

supports a female-specific association at the shared locus (Figure 3.5C). Colocalization analysis 

supports a link between MS4A6A and AD (H4 = 0.987), female-specific HBMD with AD, and 

phenotypes with MS4A6A expression (Figure 3.5D, AD vs Female HBMD H4 = 0.998, MS4A6A 

vs Female HBMD H4 = 0.997). This statistical significance is not replicated for male specific 

HBMD GWAS (Figure 3.5D, AD vs Male HBMD H4 = 0.00263, MS4A6A vs Male HBMD H4 

= 0.00266). MS4A6A weighted associations with other phenotypes from Open Targets Genetics 

found locus associations with many inflammatory phenotypes including c-reactive protein, 

lymphocyte percentage, and neutrophil count (Figure 3.5E).  

 
3.4 Discussion 

While there is enormous potential in ML on clinical data, balancing clinical utility and 

biological interpretability can be challenging. To address this, we used thousands of EHR concepts 

to develop prediction models for expert-identified AD diagnosis, and selected an index time 

suggesting AD onset. Cohort selection and data preprocessing is a crucial first step to identify 

available clinical measures and optimal ground truth AD onset that is as close to biological AD 

https://genetics.opentargets.org/study-comparison/GCST006979?studyIds=GCST90012877
http://www.nealelab.is/uk-biobank/
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and avoid overly optimistic model performance due to nonspecific groundtruth or improper data 

preprocessing34. Our prediction model shows predictive power up to -7 years before the defined 

index time of AD onset with AUROC of 0.72 (and up to AUROC 0.86 with additional 

demographic and care utilization features), which is comparable with other models in literature 

that utilize clinical data to predict less specific dementia or AD diagnosis11,35. An application of 

the model trained on all patients includes determining early disease risk in primary care settings 

before time-consuming and costly detailed neuropsychological, biomarker, or neuroimaging 

assessments (after which imaging or biomarker classification models can be utilized13). The model 

may also identify at-risk patients for follow-up or inclusion in early intervention or clinical trials, 

with the -1 day model as suggesting possible AD onset to be considered at that visit to prevent 

underdiagnosis of AD. Furthermore, interpretable models, such as random forest models, can 

identify common decision point features and allow clinicians to understand what clinical features 

were used in determining prediction probability and assess the model output with greater trust 

compared to “black box” models. 

In order to identify early clinical predictors that may be biologically relevant for AD 

diagnosis, we trained models on patients matched by pre-identified confounding variables such as 

demographics and visit-related features so that these features have less influence in AD prediction. 

Machine learning models still retain the ability to predict AD diagnosis with mean AUROC over 

.70 after the -3 year time model for random forests. Inclusion of demographic and visit-related 

features minimally improved model performance, which is expected since matching increased the 

specificity of the task to predict AD onset controlled on demographics and visit-related features. 

In terms of clinical utility, the models trained on matched patients provide predictive power for a 

given clinical scenario between two patients with similar pre-test probability of AD risk (e.g., same 
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age and disease burden), with application of this model as a tool for determining post-test 

probability of future AD risk. Furthermore, by balancing on pre-identified confounders such as 

demographics and visits, top features may be interpreted with more biological relevance for AD 

risk. For example, while we identified essential hypertension as an important feature in the models 

trained on the full cohort, this diagnosis became less important in the models trained on matched 

cohorts, suggesting hypertension may be nonspecific for AD and may instead be more related to 

aging or disease burden.  

Our time models trained on matched cohorts identify or strengthen known or suggested 

hypotheses for early clinical predictors of AD, such as hyperlipidemia as a feature for all time 

point models. We also identify relative importance of features years in advance, such as allergic 

rhinitis and atrial fibrillation as early predictors, osteoporosis and major depressive disorder as 

non-neurological predictors, and cognitive impairment and vitamin D deficiency as late predictors 

of AD. Some of these prior predictors, such as depression and vitamin D deficiency, have been 

previously implicated in AD risk36–38. These findings potentially support hypotheses suggesting 

AD can be associated with general aging or frailty, which might present in non-neurologic body 

systems either prior to or concurrent with AD 39–43. Furthermore, interpretation of these models 

allows for the identification of high order groups of predictors that may contribute to disease 

heterogeneity or together, contribute to AD risk. Nevertheless, while these models can identify 

hypotheses of predictive features, EHR data can still capture clinical biases or misdiagnoses, and 

further studies can investigate the influence of behavioral bias vs biological relevance.  

We further trained models on sex-stratified subgroups (female vs male), with and without 

matching on demographics and visit-related covariates, in order to identify sex-specific drivers of 

clinical predictors. Given evidence that sex may influence different pathways to AD 
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diagnosis22,44,45, it is important to consider how patient heterogeneity may impact the training, 

utility, and interpretation of a prediction model. From the matched cohort models, we identified 

clinical features in each subgroup that were consistent with the general models, such as 

hyperlipidemia as important in every model and memory loss as important in late models. 

Furthermore, we identified features that were sex-specific, such as osteoporosis, major depressive 

disorder, allergic rhinitis, and abnormal stool contents as predictors enriched among women, and 

chest pain, hypovolemia, prostate hyperplasia, and sensorineural hearing loss as predictive among 

men. Further work can seek to disentangle the biological meaning of these sex-specific predictive 

features: whether they reflect sex-specific non-neurological manifestation of prodromal states, 

contributing risk factors, or even sex biases in clinician evaluation and treatment (e.g., bone density 

evaluation may arise more often after a fall). These models also demonstrate that for a 

heterogeneous disorder like AD, subgroup composition, like sex ratio of a cohort, can influence 

the performance and the features that are identified as important. Differences in subgroup size and 

prevalence of AD contribute to greater predictive performance among female strata models, and 

differences observed in AUPRC are impacted by AD prevalence which can influence 

interpretation of the positive predictive value of models within each sex strata. In terms of 

identified features, the higher preponderance of females lead to sex-specific predictive factor, 

osteoporosis, being identified as a general predictive variable in the general group. This further 

indicates that both generalizable models and subgroup-specific models can provide valuable 

insight, both general and personalized, for a complex disease. Furthermore, in the context of ML 

fairness, the performance and identified features of general models may be influenced by the 

demographic make-up of the training population, just like how greater number and AD prevalence 
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among females influence greater female-strata performance and identification of osteoporosis in 

our general models.  

We utilized a heterogeneous knowledge networks (SPOKE) to identify shared biological 

hypotheses underlying model-identified top clinical predictors and AD. By combining shortest 

paths in SPOKE between top predictors and AD, we can prioritize nodes (e.g., genes) that are 

consistently relevant for the high order combination of human data derived top clinical predictors 

and AD, and give novel insight via prioritization and combination of relationships. First of all, we 

were able to identify known genetic associations with dementia based upon top diagnoses, such as 

through identification of known autosomal dominant early AD genes such as APP and PSEN 1/246. 

Other genes identified with known associations with AD include APOE, HFE, and HSPG2 variants 

that impact AD risk47–51. An example of novel insight gained through SPOKE integration includes 

ACTB relating to AD52,53, sensorineural hearing loss54, arthropathy, and arthritis55. The prediction 

model allows for the prioritization of ACTB for patients with the common comorbidities of 

sensorineural hearing loss and arthropathy/arthritis with risk of AD (where the connection through 

linking sensorineural hearing loss, arthropathy, arthritis, and AD all together through ACTB has 

not been previously implicated in literature).  

The SPOKE network can also be leveraged to propose biological explanations based on 

common nodes and shared associations between clinical predictors identified from human data 

and AD. For example, ALB is identified through SPOKE as a shared genetic association between 

congestive heart failure, malnutrition, hyperlipidemia, and AD. While prior relationships have 

been identified between ALB and many individual diseases, each of those diseases also have many 

implicated genetic relationships. Leveraging human data through the predictive models allows for 

the prioritization of abundant gene connection with multiple disease predictors. Given ALB roles 
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in pathways such as heme biosynthesis (Reactome R-HSA-189445), HDL remodeling (Reactome 

R-HSA-8964058), and insulin-growth like factor regulation (Reactome R-HSA-8964058), 

prioritization of mechanistic hypotheses linking ALB related pathways with the pathophysiology 

of EHR-derived predictors (congestive heart failure, malnutrition, hyperlipidemia) can be explored 

in future studies. Another example insight includes INS as a shared association between 

osteoporosis56, hypertension57, hyperlipidemia58, and AD59,60. Prior studies have identified 

potential mechanisms underlying the relationship between energy utilization, lipid levels, 

nutrition, and neurodegeneration (e.g., Reactome R-HSA-1266738, R-HSA-16368)61–63, and this 

analysis allows for prioritization of mechanistic hypotheses to be further explored. While these 

associations are included in the SPOKE network due to evidence in literature, the association of 

these genes with specific early clinical predictors is less established, and thus this analysis allowed 

us to identify novel constellation of phenotypes and underlying genetic relationships observable 

in a clinical setting that, together, can lead a clinician to suspect future AD risk, prioritize 

molecular pathways for testing or personalized treatment, and guide biological hypotheses 

generation in AD pathogenesis for future studies. 

To validate a few top clinical predictors, we utilized a hypothesis-driven approach to 

support the relationship between two identified features (hyperlipidemia and osteoporosis) and 

progress to AD diagnosis in an external database across the University of California EHR system. 

For both phenotypes, the UC-wide EHR database supports a potential increased AD diagnosis risk 

due to evidence of decreased time to AD and increased hazard of AD diagnosis in patients exposed 

to the predictor of interest. The association between hyperlipidemia and AD has been identified in 

prior clinical studies and systematic reviews64–67. In particular, APOE is a well-established 

associated genetic locus68, and APOE polymorphism is known to modify AD risk, particularly in 
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individuals carrying the ε4 allele69. Many studies have also shown APOE association with elevated 

lipid levels and cardiovascular risk factors70,71. The validation of these well-known associations 

not only show that our ML models on clinical data can pick up hyperlipidemia as a risk factor, but 

also by utilizing the SPOKE network we can integrate known relationships in literature to 

potentially explain the association between hyperlipidemia and AD and identify the APOE locus 

as a potential shared causal mechanism as demonstrated in the colocalization results. Beyond the 

ability to identify known relationships, the SPOKE network also proposes biological explanations 

of higher-order shared associations between clinical predictors, such as ALB as a shared genetic 

association between congestive heart failure, malnutrition, hyperlipidemia, and AD, or INS as a 

shared association between osteoporosis, hypertension, hyperlipidemia, and AD. Prior studies 

have identified potential mechanisms underlying the relationship between energy utilization, lipid 

levels, nutrition, and neurodegeneration59,60,72, although specific hypotheses of mechanistic 

relationships are an area for exploration in future studies. 

The association between osteoporosis and AD is also validated to a lesser extent in clinical 

studies and meta-analysis73,74, with unclear but possible sex-modification of this effect. Our study 

identifies osteoporosis as a predictor for AD among females prior to AD, but shows less of a 

relative predictive effect for males compared to other clinical features. Nevertheless, it is still 

possible that shared relationships between osteoporosis and AD exist in males. A bone mineral 

density GWAS analysis of female patients shows p-value association with AD GWAS around the 

MS4A family locus, and this is further supported by MS4A6A eQTL colocalization with both 

Alzheimer and female HBMD. These findings of osteoporosis as a potential sex-specific predictor 

of AD, with shared relationships through MS4A6A, is a potential new and unexpected results 

identified from single hypothesis-driven follow-up from our prediction models. Prior studies have 
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established the MS4A gene cluster as a risk for AD, with one study identifying the cluster based 

on mendelian randomization75, and another that identifies a stronger female-specific effect size for 

MS4A6A76. Some studies investigating the role of the MS4A family suggest mechanisms that 

involve immune function, particularly among microglia77. While this gene may not have been 

identified in SPOKE, SPOKE did capture direct pathways through known markers of inflammation 

such as IL6 and TNF, and we also see MS4A6A as highly associated with measurements of 

immune cells in the blood. Further studies will be needed to validate the exact associative 

mechanism between osteoporosis and AD, although some prior hypotheses suggest the potential 

impact of genetic variants on osteoclast function, amyloid clearance, or oxidative stress 

response78,79. While we utilized knowledge networks to leverage knowledge to explain 

relationships between groups of predictors, we performed hypothesis-driven analysis on 

independent EHRs and genetics to further explore and validate a few chosen predictors 

(hyperlipidemia, osteoporosis) with AD. Hypothesis-driven approaches can be applied to any other 

selected predictor or phenotype identified by the models to understand their relationships with AD 

onset that may not yet be represented by the knowledge graphs. 

This study has several limitations. First, EHR data complexity and quality can affect 

prediction models, and it is challenging to distinguish the influence of clinician/patient behavior, 

sociological factors, or underlying biology on identification of features. Matching can improve 

interpretability by removing influence of non-biological covariates, but follow-up validation of 

hypotheses across omics data types is needed. Due to changing patient demographics and societal 

factors, prediction models should be continuously trained, updated, and evaluated if implemented 

in the clinical setting to ensure effective utilization and account for biases that may have been 

learned from the data. Model utilization should investigate the impact of cohort selection biases 
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and matching methods on model generalizability, and model retraining and calibration should be 

a continual aspect of model application to account for possible data drifts and changing clinical 

practice approaches that would arise in the future. Second, clinical EHR data is sometimes sparse 

and provides a superficial interval snapshot of a patient’s health, so the absence of a record may 

not necessarily reflect the absence of a condition and prior health information may not be available 

in the EHR. Therefore, the EHR provides a representation of an interval of a patient’s health history 

and is more likely to pick up diagnosis of chronic or common conditions, as well as common drugs 

or measurements. Future work can investigate the impact of variations in data representation that 

can account for data sparsity, continuous lab result outcomes, and best temporal assignment of 

diagnosis onset beyond binary representation or considering drug prescriptions for assignment of 

diagnoses. Third, survival models have extensive right censorship and do not take into account 

competing risks. Fourth, since AD is heterogeneous and differential diagnosis is nuanced and 

subjective even in expert hands, predictive performance can be limited by label quality and the 

signal from clinical features can be noisy, limiting performance and generalizability. Future work 

investigating heterogeneity may identify subgroup-specific features where subgroups can be 

divided based on biotype, dementia syndromes, racialization, and so on. Future applications with 

hierarchical models, transfer learning, or fine-tuning on a subpopulation can increase 

personalization of models. Fifth, our sex-stratified analysis was restricted to patients that identified 

as female or male. Future studies could explore AD patterns among intersex individuals. Lastly, 

predictive features identified are relevant prior to AD onset, and future work is needed to identify 

diagnostic-relevant AD comorbidities, or conditions that can occur after AD progression. Since 

predictive features are identified as hypotheses, the direct mechanism and causal pathway relating 
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a phenotype to AD is not known. Future work can investigate causality with mendelian 

randomization or mechanistic studies.  

In this study, we demonstrate how formulation of prediction models can influence utility 

for predictive application or biological interpretation. We show how models can be utilized to 

identify early predictors, and utilize SPOKE to explain relationships via shared biological 

associations. Lastly, we show that our models can pick up known associations with HLD through 

APOE, and identify a lesser known association with osteoporosis through MS4A6A that may be 

female-specific. This study contributes to the field of EHR integrative research that can inform 

future directions in both AD care and research.  
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3.5 Methods 

3.5.1 Patient Identification 

Alzheimer’s Disease (AD) patients were identified based on UCSF Memory and Aging 

Center database containing over 9000 patients mapped to the UCSF Observational Medical 

Outcomes Partnership (OMOP)-format EHR. These patients have undergone dementia evaluation 

at the Memory and Aging Center and thus had expert-level clinical diagnoses. In clinical settings, 

since AD is often a syndromic diagnosis indicating general dementia for memory or cognitive 

concerns80–82, we aimed to identify a highly accurate cohort diagnosed by neurodegeneration 

specialists to obtain AD diagnosis that is closer to the biological ground truth83. The remaining 

control patients were obtained from the rest of the UCSF EHR, with over 1 year of records and no 

existing records of dementia diagnosis among the G[123]* ICD-10 categories (Supplementary 

Table 3.1). These controls include patients seen at the UCSF Memory and Aging Center with EHR 

data, but without a dementia diagnosis given. 

In order to best build models for prediction of AD onset, an index time was determined to 

identify input model features prior to first clinical indication of dementia. This was defined among 

the AD cohort as the first time of any AD diagnosis, dementia diagnosis, or prescription of 

cognitive drug (ATC codes N06D, Supplementary Table 3.2) to be the first time point of possible 

biological AD manifestation. This approach was utilized since AD patients may be prescribed an 

anticholinesterase inhibitor or given an alternative dementia diagnosis before a formal 

confirmation of an AD diagnosis. For controls, the index time was defined as 1 year before the last 

recorded her visit date, with no dementia diagnosis given within that year. In order to maintain a 

consistent patient population for training and evaluation of machine learning models, the final AD 

and control cohort was identified by filtering to patients who are at least 55 years of age at the 
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index time and have existing clinical visits and concepts 7 years prior to the index time. These 

patients were then split into 70% for model training and tuning, while the remaining 30% was 

held-out for model evaluation (Supplementary Figure 3.1).   

 
3.5.2 Data Extraction and Preparation 

Demographics (birth year, gender, race & ethnicity), clinical concepts (conditions, drug 

exposures, abnormal measures), and visit-related features (age at prediction, first visit age, years 

in UCSF EHR) were extracted before the index time for the AD and control cohort from the UCSF 

OMOP EHR database. Race & ethnicity is a single variable derived from an algorithm developed 

by the UCSF Data Equity Taskforce to codify aggregated sociopolitical categorizations based on 

EHR reported identifiers84. To train models in advance of the index time, clinical information was 

extracted for each patient including all clinical data up to a time point X before the index time, 

where X includes -7 years, -5 years, -3 years, -1 years, and -1 day. These time points represent the 

knowledge of a patient’s clinical history leading up to time X before time. All existing clinical 

features (conditions, drug exposures, abnormal measurements) were one-hot encoded. Abnormal 

measures were extracted from the OMOP measurement table based on the numeric value falling 

either above range_high or below range_low. and abnormal measures were binary encoded based 

on abnormal flagging, following the approach from Nelson et al.27. If a clinical feature did not 

exist or if the clinical measure was within normal range, the encoding is represented as a 0 and 

therefore assumed to be normal. Since the UCSF database only captures an interval of a patient’s 

interaction with the healthcare system, prior non-chronic conditions may not be captured within 

the EHR.  

Demographic and visit-related features (prediction age, first visit age, years in UCSF EHR, 

log(number prior visits), log(number prior concepts), log(days since first clinical event)) were 
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scaled between 0-1 on the training data, where log indicates natural logarithm and feature scaling 

allows for multiple ML model approaches. Age at prediction is defined at the age of patient at 

which the model is applied (e.g., if a patient index time is at age 70, then the age of prediction for 

the -5 year model is 65). All features with no variance were removed for each model, with total 

number of features ranging from 5,211 features (-7 year model on matched cohorts) to 23,760 

features (-1 day models on unmatched cohorts). Information about input features and specific 

OMOP concepts can be found in Supplementary Data 3.1. Some top feature prevalences are also 

included in Supplementary Data.   

 
3.5.3 Machine Learning Preparation and Training 

Binary classification time point models for AD were trained using the patient 

representation at each time point before the index time. We divided the data into two sets, 70% for 

model creation and 30% for evaluation. Training and optimal model selection (with 

hyperparameter tuning) was performed on the 70% split with cross-validation, and 30% was held-

out for evaluation and not seen during model training and selection in any way. Final selected 

model evaluation was performed on the 30% held-out evaluation set as the common dataset to 

obtain and compare the performance of all final models (diagram in Supplementary Figure 3.1). 

Models were trained with clinical features only (clinical model) and with clinical features + 

demographics and visit-related information (clinical + demo/visits model). Models were also 

trained on samples matched by demographics and hospital utilization to account for biases and 

confounding in prediction. In these models, control patients were matched to AD patients at a 1:8 

ratio on demographics (birth year, race & ethnicity, sex) and visit-related features (age, first visit 

age, years in EHR, log(# prior visits), log(# prior concepts), log(days since first clinical event)) 

utilizing propensity score matching85 (propensity score estimated based upon a logistic regression 
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model, nearest neighbor matching without replacement). While propensity score is often utilized 

to balance treatment probabilities in cohort studies, it has also been utilized for sample 

selection86,87, exposure likelihood88, or for outcome-based case-control studies7,89.  

Random forest models were primarily utilized for both predictive performance and 

interpretability that takes into account the high collinearity between clinical variables. Random 

forests were trained using scikit-learn package90, with balanced class weight parameter. Hyper-

parameters were tuned (grid search) based on cross-validation performance (5 folds) of AUROC 

on the 70% model training set to determine parameters of n_estimators (n_features, n_features*2, 

n_features*3), max_depth (3, 5, 7, 9), and max_features (sqrt, log2). The number of estimators and 

max depth were tuned to balance between performance and overfitting, while a subset of features 

(max_features) was utilized per tree to help account for high correlation between features91,92. 

Models were evaluated on bootstrapped subsamples (50-200 iterations, 1000 samples) of the 30% 

held-out evaluation set to determine AUROC (area under the receiver operating curve) and 

AUPRC (area under the precision-recall curve) for model comparability. Balanced accuracy scores 

were also computed on the 30% held-out evaluation set. An elastic net logistic regression model 

was also trained on both the full and matched cohorts for comparison. We performed a permutation 

test on the -1 day matched cohort model to determine the significance of AUROC compared to a 

null distribution of AUROC scores of models trained from permuted ground truth labels (40 

permutations) to determine to the extent clinical features can be predictive of AD. 

Stratification: Both models for full patient cohorts and matched cohorts were re-performed 

in sex strata in the same fashion based upon sex reported the UCSF EHR to augment the OMOP 

database. Models were trained on two sex subgroups: female and male, due to lack of other 

subgroups labelled in the EHR. For each strata, AD patients were re-matched to controls within 
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each strata for the matched patient trained models. Models were evaluated similarly based on 

AUROC/AUPRC on the same bootstrapped held-out evaluation set, stratified by sex.  

 
3.5.4 Top Feature Interpretation 

Random forest models were investigated for feature interpretation due to the combined 

interpretable nature of the models (compared to neural networks) and the ability to capture 

nonlinear relationships (compared to logistic regression models)83. Average gini impurity decrease 

for each feature was utilized to evaluate the importance of each feature in the random forest models 

(feature importance). The average importance for each feature was taken across each time point 

models (-7yr, -5yr, -3yr, -1yr, -1day) to obtain an across-model importance for each model type, 

and normalized by the maximum importance value across all time point models within each model 

type (e.g., random forest) and group (e.g., female strata). Feature importances are then ranked 

within each model to obtain relative importance within each of the time points.   

Since a patient’s exposure to a medication or a laboratory test is often a result of a 

diagnosis, we pursued interpretability based on diagnostic features that have been mapped to 

phecodes, which is a semi-manual hierarchical aggregation of meaningful EHR phenotypes29. This 

allows for a lossy categorization of detailed OMOP features (OMOP IDs) to phecodes (OMOP ID 

→ SNOMED → ICD10 → phecode) and phecode category. SNOMED IDs were mapped to ICD10 

based upon recommended rule-based mappings from the National Library of Medicine (NLM) 

September 2022 release (www.nlm.nih.gov/healthit/snomedct/us_edition.html). ICD10 codes 

were then mapped to phecodes based on the release from Wu et al.84 To obtain the importance 

within each phecode or phecode category, the average importance for the top 5 detailed OMOP 

features per phecode or phecode category was computed, and ranked between phecodes or 

http://www.nlm.nih.gov/healthit/snomedct/us_edition.html
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categories. For phecodes across all models and sex-stratified models, the ranking of importance of 

phecodes across each time model was hierarchically clustered with Ward linkage. 

To compare top phecodes between sex-stratified models to identify sex-specific features, 

top random forest features over an average importance threshold of 1e-6 were identified per time 

model trained on matched participants. Upset plots were then generated for each time point based 

upon this overlap. Female-driven features are defined as features that exist in both the full model 

and female models, or only female models, and male-driven features defined analogously.   

 
3.5.5 UC-wide validation analysis with hypothesis-driven retrospective cohort 

analysis  

Two top clinical features were selected from the matched all patient model 

(hyperlipidemia) and matched sex-specific models (osteoporosis) and further followed up on an 

external EHR database to validate the feature as predictive and conferring risk for AD diagnosis. 

With these features defined as exposures, hypothesis-driven analysis was performed with a 

retrospective cohort study design on the University of California hospital EHR database 

(University of California Data Discovery Platform (UCDDP)) with exclusion of any patients seen 

at UCSF, so with included institutions consisting of UC Davis, UC Los Angeles, UC Riverside, 

UC San Diego, and UC Irvine. Exposed patients were identified with the exposure (hyperlipidemia 

or osteoporosis), which were identified by string-matching and mapping to all descendants or 

related concepts based on the OMOP relationship tables, and final SNOMED codes are shown in 

Supplementary Table 3.6 and 3.7. Controls were identified among the remaining patients. 

Recruitment age was defined as the age of exposure diagnosis (for exposed cohort) or the first visit 

age in the visit_occurrence table (for unexposed or control cohort), which was then matched to 
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represent the start of the cohort study timeline. All patients are then filtered to have at least 2 years 

of records in the EHR, and last visit age was utilized for right censorship. 

The outcome of interest was AD diagnosis, which was identified based on SNOMED codes 

26929004, 416780008, 416975007 (Supplementary Table 3.5). Exposed and control 

(unexposed) groups were then matched based on demographics (gender, race & ethnicity), birth 

year, and recruitment age (propensity score estimated based upon a logistic regression model, 

nearest neighbor matching without replacement). We utilized the gender_id column to identify 

sex, as the standard documentation intend for this column to represent biological sex (see 

www.ohdsi.org/web/wiki/doku.php?id=documentation:vocabulary:gender). Note that only two 

options exist (female concept_id=8532 and male concept_id=8507), and that accurate sex and 

gender information may be limited depending on the institution or EHR collection of sex 

information.  

Analysis of time to AD diagnosis includes utilization Kaplan Meier survival curves fitted 

with 95% confidence interval and two-sided log-rank test to compare survival curves between 

groups. Sex-stratified curves were also fitted. Cox proportional hazard models were utilized to 

obtain unadjusted hazard ratios (HR) and adjusted hazard ratios by demographics and/or visit 

information (aHR), with and without stratification by recruitment age or birth year, and with 95% 

confidence intervals.   

 
3.5.6 Heterogeneous Network Analysis 

Heterogeneous knowledge networks, such as SPOKE, integrate known relationships across 

biological and phenotypic data realms in databases and literature. Such a network could provide 

hypotheses to explain relationships between groups of phenotypes that may not be immediately 

known21,26. We proceed with interpretation on the matched models, with the top 25 model features 

http://www.ohdsi.org/web/wiki/doku.php?id=documentation:vocabulary:gender
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taken per time point and mapped to SPOKE nodes based on Nelson et al.27 Note that mappings 

may not be 1 to 1. All shortest paths were then computed from each input node to the Alzheimer’s 

Disease node (DOID: 10652), and shortest paths were filtered to exclude certain node types 

(Anatomy, SideEffect, AnatomyCellType,Nutrient) and edges (CONTRAINDICATES_CcD, 

CAUSES_CcSE, LOCALIZES_DlA, ISA_AiA, PARTOF_ApA, RESEMBLES_DrD). Edges 

were also filtered based on the following criteria: TREATS_CtD at least phase 3 clinical trial, 

UPREGULATES_KGuG/ DOWNREGULATES_KGdG p-value at most 1E-4, PRESENTS DpS 

enrichment at least 5 and fisher p-value at most 1E-4.  

If multiple detailed OMOP features map to the same node, the importance of the node was 

obtained by the average of OMOP feature importances. Networks for all time models were 

combined into a single network (union of nodes and edges), and total node importance was 

determined by the maximum across time. Network metrics were then computed with Cytoscape 

‘Network Analyzer’ function85. The combined time model networks were then sorted by 

eccentricity metric on the x-axis (representing maximum distance to all other nodes, with lower 

number representing higher importance) and number of individual time model network 

occurrences in the y-axis (showing node importance persistence across time). With this layout, 

highly traversed nodes in the shortest paths between multiple EHR informed top model features 

and AD can be identified and prioritized for hypothesis generation and further investigation. Note 

that due to heterogeneous nature of edges and lack of edge weighting, distance in the figure is not 

meaningful.  

To focus on two selected features for the full matched model (hyperlipidemia (HLD)) and 

the female-specific matched model (osteoporosis), the combined network was filtered based on 

first and second degree neighbors of the starting feature of interest. This allows for visualization 
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of associated genes and AD, as well as relationships with other top model features found from the 

clinical models.   

 
3.5.7 Validation with Genetic Datasets 

We further explored the association between clinical predictors and AD by identifying 

shared genetic loci between top model phenotypes and AD, based on colocalization probability 

and weighted evidence association scores computed from Open Targets Genetics96,97 

(genetics.opentargets.org). Colocalization analysis is a method that determines if two independent 

signals at a locus share a causal variant, which helps increase the evidence that the two traits (e.g., 

hyperlipidemia and AD, or protein expression and AD) also share a causal mechanism. It is a 

Bayesian method which, for two traits, integrates evidence over all variants at a single locus to 

evaluate the following hypothesis that two associated traits share a causal variant. This is the H4 

probability.  

We first identified shared loci between the selected phenotypes (HLD or osteoporosis) and 

AD by identifying the genetic intersection between AD and related phenotypes in Open Targets 

Genetics.  

For HLD and AD, we utilized the Open Targets Genetics platform to identify overlapping 

variants and shared locus between LDL Cholesterol and Family History of AD or AD. PheWAS 

between a shared SNP and UK Biobank phenotypes were plotted and extracted from the Open 

Targets Genetics platform. Coloc analysis tables between the gene, molecular QTLs, and 

phenotypes were extracted, with protein QTLs for APOE specifically identified based on blood 

plasma data from Sun et al.98  and Suhre et al.99   

Similarly for osteoporosis and AD, we utilized the Open Genetics platform to identify 

shared locus between heel bone mineral density (proxy for osteoporosis) and Family History of 
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AD or AD. To further investigate the locus, we extracted GWAS summary statistics from Jansen 

et al.48 for AD and sex-stratified GWAS summary statistics for heel bone mineral density (HBMD) 

from Neale’s Lab GWAS round 2, Phenotype Code:3148, based on data from the UK Biobank 

(www.nealelab.is/uk-biobank/)100. We then conducted colocalization analysis using the coloc 

method described in Giambartolomei et al.101, from R package coloc 5.1.0. Summary statistics for 

MS4A6A cis eQTLs in blood were extracted from eQTLGen102, and colocalization analysis was 

performed between AD, sex-stratified HBMD, and MS4A6A eQTLs on the Locus Region 

60050000-60200000 of Chromosome 11. To investigate further associations with the locus, 

MS4A6A associations with all other phenotypes was extracted from Open Targets Genetics 

platform with inclusion of a weighted literature evidence association scores.  

 
3.5.8 Ethical Approval 

This study was approved by the Institutional Review Board of University of California San 

Francisco (IRB #20-32422). 

 
3.6 Code and Data Availability 

EHR concepts and identification approaches are described in Methods, and concepts are provided 

in Supplementary Tables 3.1 and 3.2. Phecodes can be downloaded at 

phewascatalog.org/phecodes_icd10 or phewascatalog.org/phecodes, and mappings between ICD-

10 codes and SNOMED can be accessed at www.nlm.nih.gov/healthit/snomedct/us_edition.html. 

Code for EHR prediction models, model feature interpretation, matching, external EHR survival 

analysis, and querying Open Targets API (genetics.opentargets.org/api) for P-P and eQTL plots 

can be found at github.com/al1563/ADprediction_code. Data for UK Biobank phenotype GWAS 

can be found at www.nealelab.is/uk-biobank/, and eQTL data can be downloaded from 

http://www.nealelab.is/uk-biobank/
https://phewascatalog.org/phecodes_icd10
https://phewascatalog.org/phecodes
https://www.nlm.nih.gov/healthit/snomedct/us_edition.html
https://genetics.opentargets.org/api
https://github.com/al1563/ADprediction_code
http://www.nealelab.is/uk-biobank/
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www.eqtlgen.org/. Access to EHR databases are controlled due to the sensitive nature of the data. 

The UCSF EHR database can be accessed to UCSF-affiliated individuals by contacting UCSF 

Clinical and Translational Science Institute (ctsi@ucsf.edu) or UCSF’s Information Commons 

team (Info.Commons@ucsf.edu). If the reader is unaffiliated with UCSF, they can set up an 

official collaboration with a UCSF-affiliated investigator by contacting the PI, Marina Sirota 

(marina.sirota@ucsf.edu). Requests should be processed within a couple of weeks. UCDDP is only 

available to UC researchers who have completed analyses in their respective UC first and have 

provided justification for scaling their analyses across UC health centers (more details at 

www.ucop.edu/uc-health/functions/center-for-data-driven-insights-and-innovations-cdi2.html or 

by contacting healthdata@ucop.edu). The SPOKE knowledge network can be accessed at 

spoke.rbvi.ucsf.edu/, and more details about the network can be found in Morris et al.28 and 

mappings to EHR concepts can be found in Nelson et al.27 

  

https://www.eqtlgen.org/
mailto:ctsi@ucsf.edu
mailto:Info.Commons@ucsf.edu
https://www.ucop.edu/uc-health/functions/center-for-data-driven-insights-and-innovations-cdi2.html
mailto:healthdata@ucop.edu
https://spoke.rbvi.ucsf.edu/
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3.7 Tables 

Table 3.1 Demographics of patients used in models, and an example matched cohort for the -1 
year model 
 
The top table shows characteristics of patients in the UCSF EHR with visits and concepts over 7 
years prior to index time. Care utilization information can be found in Supplementary Table 3. The 
bottom table shows an example of training data where AD and controls are matched by the listed 
characteristics. Race & ethnicity (R&E) is a single variable derived from an algorithm developed 
by the UCSF Data Equity Taskforce74. NHPI: Native Hawaiian or Pacific Islander 

 
 

 
  

All Filtered Patients (pre-test/train split)     

   Control AD  
n   250545 749  
Age of AD onset (SD)   74.0 (5.6)  
Birth year, mean (SD)  1945.5 (10.2) 1933.9 (5.3)  
First visit age, mean (SD)  51.2 (11.4) 57.0 (10.4)  
Sex, n (%) Female  139548 (55.7) 468 (62.5)  
 Male  110829 (44.2) 281 (37.5)  
 Nonbinary/Unknown  168 (0.1)   
R&E, n (%) Asian/NHPI  32427 (12.9) 151 (20.2)  
 Black  17111 (6.8) 62 (8.3)  
 Latinx  15036 (6.0) 53 (7.1)  
 Other/Unknown  28177 (11.2) 45 (6.0)  
 White  157794 (63.0) 438 (58.5)  
Matched Patients for -1 year model        Control AD SMD n   4184 523  Year of birth, mean (SD)  1934.2 (5.6) 1934.0 (5.3) -0.042 Matched Train Patients for -1 year model    
  Control AD SMD 
n  4184 523  
Birth year, mean (SD)  1934.2 (5.6) 1934.0 (5.3) -0.042 
First visit age, mean (SD)  57.2 (9.4) 56.9 (10.5) -0.028 
AD onset / index time age, mean (SD)  74.1 (5.8) 74.1 (5.8) -0.002 
Years in EHR, mean (SD)  15.9 (7.8) 15.9 (7.9) -0.004 
Log(n prev visits), mean (SD)  3.6 (1.5) 3.7 (1.6) 0.065 
Log(n concepts), mean (SD)  3.1 (1.3) 3.3 (1.4) 0.108 
Log(days since first event), mean (SD)  8.5 (0.4) 8.5 (0.4) 0.043 
Sex, n (%) Female  2343 (56.0) 317 (60.6) 0.094 
 Male  1841 (44.0) 206 (39.4)  
R&E, n (%) Asian/NHPI  705 (16.8) 112 (21.4) 0.219 
 Black  520 (12.4) 35 (6.7)  
 Latinx  280 (6.7) 39 (7.5)  
 Other/Unknown  223 (5.3) 32 (6.1)  
 White  2456 (58.7) 305 (58.3)  
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3.8 Figures 

 
 
Figure 3.1 Overview of Patient Selection and Random Forest Model Performance 
 

A. From the UCSF electronic health records and the UCSF Memory and Aging center 
database, patients and clinical information was extracted, filtered, and prepared for time 
points before the index time. All clinical features extracted were one hot encoded and 
trained on random forest models to predict future risk of Alzheimer’s Disease diagnosis. 
Models were evaluated on a 30% held-out evaluation set to compute AUROC/AUPRC, 
and interpreted based on feature importances and using a heterogeneous knowledge 
network (SPOKE). Top features were then further validated in external databases. 

(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) 
B. Filtering of a consistent set of AD and Control patients from the UCSF EHR for model 

training and testing. Filtered patient cohorts are shown in Table 1, and split with 30% held-
out set for testing.  

C. Bootstrapped performance of random forest models on the full held-out evaluation set 
(prevalence of AD on held-out set = 0.003). Bootstrapped AUROC performance for models 
trained and tested on female strata and male strata are also shown.  
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Figure 3.2 Models trained on matched cohorts allows for identification of hypotheses for AD 
predictors 
(Figure caption continued on the next page.)  



 143 

(Figure caption continued from the previous page.) 
A. Bootstrapped performance of models trained on cohorts matched by demographics and 

visit-related factors on the full held-out evaluation set (prevalence of AD on held-out set = 
0.003).  

B. Top clinical phecode categories for matched models ranked by the average of the top 5 
importance for each phecode category. Sorting is based on this average across time models.  

C. Top 50 phecodes (detailed features) across time models, with features clustered based on 
ward distance of rankings.  

D. Bootstrapped performances of sex-stratified matched models on the held-out evaluation set 
(reference AUPRC = .0036 female, .0022 male). 

E. Overlap of top matched model features for models trained on all patients, female stratified 
patients, and male stratified patients, with model cutoff importance (RF average impurity 
decrease) greater than 1E-6. Specific features are listed, with bold features indicating top 
features across all 5 time models, and non-bolded features indicating top features across 4 
time models.   
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Figure 3.3 SPOKE prioritizes known biological hypotheses associated with shared clinical 
phenotypes 
(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) 
Combined SPOKE network of all shortest paths to Alzheimer’s Disease node (DOID:10652) for 
top 25 input features (bolded) from matched AD model at every time point. Network is organized 
based on the number of time point occurrences (y-axis) and eccentricity of a node in the 
subnetwork (x-axis). Specific time point occurrences are colored by the pie chart within each node.   



 146 

 
Figure 3.4 The hyperlipidemia and AD association is validated externally with APOE as a shared 
causal genetic link 
 

A. Kaplan Meyer curve on UC-wide EHR for hyperlipidemia (HLD) as the exposure. Log 
rank test is significant for all HLD vs controls (p=2.36e-85), female HLD vs female 
controls (p=3.64e-69), and male HLD vs male controls (p=8.39e-22). 

B. 1st and 2nd degree neighbor of hyperlipidemia on the full network representing all shortest 
paths from the top 25 features per time model.  

C. PheWAS for variant rs2075650 on a shared loci associated with both hyperlipidemia and 
AD, plotted based on associations with phenotypes in the UK Biobank.  

D. Plot of APOE protein expression colocalization with H4 (probability two associated traits 
share a causal variant) from Open Targets Genetics. Each dot represents a specific 
phenotype categorized based on trait (x-axis). Each color represents an APOE molecular 
trait measured from blood plasma from Sun et al. and Suhre et al.  
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Figure 3.5 The association between osteoporosis and AD is validated externally with MS4A6A as 
a potential female-specific shared genetic link 
 

A.  Kaplan Meyer curve on UC-wide EHR for osteoporosis as the exposure. Log rank test is  
(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) 
B. significant for all osteoporosis vs controls and similarly for female strata, * p<0.005. 
C. 1st and 2nd degree neighbors of osteoporosis node on the network representing all shortest 

paths from top 25 feature per time model. 
D. P-P plots between Alzheimer’s Disease GWAS (Jensen et al. 2018, n= 455,258) and sex-

stratified heel bone mineral density GWAS (Female n = 111,152, Male HBMD n = 
166,988, UK Biobank / Neale’s Lab GWAS) around the MS4A locus (left and middle 
plots) at region 60050000-60200000 of Chromosome 11 (locus plot on right).  

E. MS4A6A cis eQTL association with AD, and association with sex-stratified heel bone 
mineral density, from eQTLGen. 

F. Open Targets associated phenotype graph for MS4A6A with association score computed 
based on a weighted harmonic sum across evidence (described in platform-
docs.opentargets.org/associations#association-scores). Purple words indicate diseases, 
while black words indicate measurements. Circles are phenotypes colored by the 
association score, and boxes represent the most general categories.  

https://platform-docs.opentargets.org/associations#association-scores
https://platform-docs.opentargets.org/associations#association-scores
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3.9 Supplementary Figures 

 
 
Supplementary Figure 3.1 Approach to Cross-Validation 
 
The full dataset was split into 70% for training and chosing the best model, and 30% was set aside 
as the held-out evaluation set. Model selection and optimization was performed with cross-
validation on the 70% training set. All final models are then evaluated on the 30% held-out 
evaluation set. 
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Supplementary Figure 3.2 Top detailed features and phecodes from the random forest model 
 

A. Top detailed OMOP clinical features utilized in models for clinical feature only models 
(top), or clinical features + demographic + visit information models (bottom). Features 
within the drug/measurement categories are marked with a triangle, while 
demographic/visit features are marked with a circle. 

B. Top phecode categories utilized in models, where importance is determined by the top 5 
detailed features within each phecode mapping. The vertical order is based upon the 
average importance across time models. 

C. Top 50 phecodes utilized in time models, clustered based on relative importance across 
time models. 
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Supplementary Figure 3.3 Comparison of age and visit-related factors between AD, controls, 
and matched controls 
 
The plots demonstrate the distribution of continuous variables utilized in matching with standard 
deviation. Orange represents AD patients at each time point. Dark blue represents all controls, 
while light blue represents controls that have been matched at each time point.  
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Supplementary Figure 3.4 Sex stratified models elucidate performance differences and sex 
predictive features that drive the total cohort models 
 

A. The full performance of sex-stratified models are shown. The bootstrapped 
AUROC/AUPRC is determined by the male or female strata of the initial 30% held-out 

(Figure caption continued on the next page.)  



 153 

(Figure caption continued from the previous page.) 
B. evaluation set. Horizontal lines represent median and quartiles for the bootstrapped 

performance.  
C. Top phecode categories are listed by importance for all models, with inclusion of 

comparison with the general non-stratified model. Vertical ordering is determined by the 
average importance across time models. 

D. Top 50 important phecodes clustered by relative importance across time models and across 
strata.   



 154 

 

Supplementary Figure 3.5 Logistic regression models identifies some similar predictive features 
 

A. The full performance of logistic regression models. The bootstrapped AUROC/AUPRC is 
determined the 30% held-out evaluation set.  

B. Top detailed OMOP feature logistic regression coefficients are listed by importance for all 
model formulations. Top row shows coefficients from the model trained on all  

(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) 
patients, while the bottom row shows coefficients from the model trained on matched 
cohorts. 

C. The full performance of sex-stratified logistic regression models are shown. The 
bootstrapped AUROC/AUPRC is determined by the male or female strata of the initial 
30% held-out evaluation set.  

D. Top phecode categories across time models and across strata, determined by the top 10 
logistic regression coefficient magnitudes within each category.  

E. Top 50 important phecodes clustered by average logistic regression coefficient across time 
models and across strata, where the average logistic regression coefficient is determined 
by the top 10 logistic regression coefficient magnitudes within each category.  
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Supplementary Figure 3.7 Balanced Accuracy and Example Permutation Test 
 

A. Balanced accuracy on the 30% held-out evaluation set was computed for all random forest 
models.  

B. A null distribution for AUROC was computed based on retrained random forest models 
with permutations on the ground truth label (40 permutations) 
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Supplementary Figure 3.8 UCDDP hyperlipidemia and osteoporosis survival curve numbers and 
cox proportional hazard model results 
 

A. Hyperlipidemia sex-stratified combined Kaplan-Meyer survival curves with counts. 95% 
confidence interval are shown. Log rank test comparison results are below. 

B. Osteoporosis sex-stratified combined Kaplan-Meyer survival curves with counts. 95% 
confidence interval are shown. Log rank test comparison results are below. 

(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) 
C. Hyperlipidemia exposure cox proportional hazard models for AD as the outcome, shown 

are the hazard ratios and 95% confidence intervals obtained from the exposure coefficient 
for unadjusted, demographic adjusted (gender, age, race, ethnicity), visit adjusted (first 
visit age, log(number of visits)), and demographic/visit adjusted. Right group shows 
computed hazard ratios with stratification by recruitment or starting age (age strata: <55, 
55-60, 60-65, 65-70, 70-75, 75-80, >80). 

D. Osteoporosis exposure cox proportional hazard models for AD as the outcome, shown are 
the hazard ratios and 95% confidence intervals obtained from the exposure coefficient for 
unadjusted, demographic adjusted, visit adjusted, and demographic/visit adjusted. Right 
group shows computed hazard ratios with stratification by recruitment or starting age (age 
strata: <60, 60-65, 65-70, 70-75, 75-80, >80).  
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3.10 Supplementary Tables 

Supplementary Table 3.1 Control exclusion codes 
 
List of mappings from ICD-10 codes G[123]* to OMOP codes for determining exclusion of 
Controls. The mapping was generated and manually reviewed to white-list certain codes and 
approve exclusion of dementia-related codes. 
Download at this link: 
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC2/embed/
media-2.xlsx?download=true 
 
 
Supplementary Table 3.2 Dementia codes 
 
List of mappings from Dementia/FTD related condition concepts to SNOMED OMOP mappings 
and N06D ATC code to RxNorm OMOP mappings for identifying index time 0 for AD patients. 
Download at this link:  
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC3/embed/
media-3.xlsx?download=true 
 
 
Supplementary Table 3.3 Matching results for time point models on matched cohorts 
 
Demographics of matched cohorts (propensity-score matched by demographics and visit-related 
factors, see Methods) on the training set for hypothesis generation models. 
Download at this link:  
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC4/embed/
media-4.xlsx?download=true 
 
 
Supplementary Table 3.4 Male and female demographics and matching result  
 
Demographics of male and female cohorts (combined train and test set). The same patients for 
train/test set split in the general model are utilized for the sex-stratified models. Matched cohorts 
on the sex-strata training sets are also shown for hypothesis generation models.  
Download at this link:  
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC5/embed/
media-5.xlsx?download=true 
  

https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC2/embed/media-2.xlsx?download=true
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC2/embed/media-2.xlsx?download=true
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC3/embed/media-3.xlsx?download=true
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC3/embed/media-3.xlsx?download=true
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC4/embed/media-4.xlsx?download=true
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC4/embed/media-4.xlsx?download=true
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC5/embed/media-5.xlsx?download=true
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC5/embed/media-5.xlsx?download=true
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Supplementary Table 3.5 Matched cohort trained model comparison between logistic regression 
and random forest 
 
Mean and standard deviations AUROC was computed for bootstrapped samples of the held-out 
evaluation set for both the random forest and logistic regression models for comparability.  
 

Model Time 
Bootstrapped 
mean AUROC 

Bootstrapped std 
AUROC  Model Type Features 

-1 day 0.771667 0.139762 random forest clinical 
-1 yr 0.738797 0.16183 random forest clinical 
-1 day 0.70313 0.20803 logistic regression clinical 
-3 yr 0.695912 0.183331 random forest clinical 
-1 yr 0.674981 0.189248 logistic regression clinical 
-3 yr 0.637145 0.187386 logistic regression clinical 
-5 yr 0.598022 0.207104 random forest clinical 
-5 yr 0.589743 0.197771 logistic regression clinical 
-7 yr 0.583837 0.206874 random forest clinical 
-7 yr 0.549061 0.192763 logistic regression clinical 
 

Model Time 
Bootstrapped 
mean AUROC 

Bootstrapped std 
AUROC  Model Type Features 

-1 day 0.738133 0.170242 random forest clinical + demo/visits 
-1 day 0.728514 0.182411 logistic regression clinical + demo/visits 
-1 yr 0.710432 0.183543 random forest clinical + demo/visits 
-3 yr 0.700636 0.175239 random forest clinical + demo/visits 
-1 yr 0.663312 0.187115 logistic regression clinical + demo/visits 
-3 yr 0.657146 0.198652 logistic regression clinical + demo/visits 
-5 yr 0.619819 0.201044 logistic regression clinical + demo/visits 
-7 yr 0.60619 0.181737 random forest clinical + demo/visits 
-5 yr 0.599069 0.199292 random forest clinical + demo/visits 
-7 yr 0.59507 0.199938 logistic regression clinical + demo/visits 
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Supplementary Table 3.6 Balanced accuracy performance of models 
 
Balanced accuracy (defined as average recall for both the positive and negative class) performance 
on the held-out evaluation set for both the full model and the matched cohort trained model.  
 

Model Time 
Full or matched 
cohort model 

Held-out evaluation set 
balanced accuracy Features 

-7 yr full 0.66333567 clinical 
-5 yr full 0.68713887 clinical 
-3 yr full 0.70504803 clinical 
-1 yr full 0.72020014 clinical 
-1 day full 0.73342356 clinical 
    
-7 yr matched 0.56751959 clinical 
-5 yr matched 0.59464602 clinical 
-3 yr matched 0.64351437 clinical 
-1 yr matched 0.65277962 clinical 
-1 day matched 0.67079665 clinical 
 

Model Time 
Full or matched 
cohort model 

Held-out evaluation set 
balanced accuracy Features 

-7 yr full 0.79420735 clinical + demo/visits 
-5 yr full 0.79553055 clinical + demo/visits 
-3 yr full 0.80227966 clinical + demo/visits 
-1 yr full 0.79940679 clinical + demo/visits 
-1 day full 0.81155760 clinical + demo/visits 
    
-7 yr matched 0.56836172 clinical + demo/visits 
-5 yr matched 0.58730455 clinical + demo/visits 
-3 yr matched 0.64186021 clinical + demo/visits 
-1 yr matched 0.65705140 clinical + demo/visits 
-1 day matched 0.67644997 clinical + demo/visits 
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Supplementary Table 3.7 UCDDP AD patient concepts and demographics 
 
Top table shows the specific concepts utilized to identify Alzheimer’s Disease as the outcome in 
the UCDDP database, with breakdown by number of patients per concept. Due to deidentification, 
only a patient’s birth year is known for age estimation. 
 
Term # patients 
Alzheimer's disease 20562 
Primary degenerative dementia of the Alzheimer type, senile onset 9327 
Primary degenerative dementia of the Alzheimer type, presenile onset 2530 
 
  Overall 
n  24389 
estimated_age, mean (SD)  45.6 (23.5) 
gender, n (%) FEMALE 12915 (53.0) 
 MALE 11391 (46.7) 
 UNKNOWN 83 (0.3) 
race, n (%) Native 78 (0.3) 
 Asian 2069 (8.5) 
 Black 1079 (4.4) 
 Multirace 494 (2.0) 
 NHPI 108 (0.4) 
 Other Race 3413 (14.0) 
 Unknown 6535 (26.8) 
 White 10613 (43.5) 
ethnicity, n (%) Hispanic or Latino 3815 (15.6) 
 Not Hispanic or Latino 13869 (56.9) 
 Unknown 6705 (27.5) 
# visits, mean (SD) missing = 3092 21.1 (51.8) 
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Supplementary Table 3.8 Hyperlipidemia UCDDP concepts and demographics 
 
Top table shows the specific concepts utilized to identify HLD as the exposure in the UCDDP 
database, with breakdown by number of patients per concept. Due to deidentification, only a 
patient’s birth year is known for age estimation. Recruitment age is utilized as the starting age for 
survival analysis, with HLD group as the age of HLD diagnosis, and unexposed group as the age 
of first EHR visit. H/L: Hispanic/latino. 
 
Term # patients 
Hyperlipidemia 702142 
Mixed hyperlipidemia 169316 
 
    Overall No HLD HLD SMD  
n   728578 364289 364289  
gender, n (%) FEMALE 371050 (50.9) 186259 (51.1) 184791 (50.7) 0.037 

MALE 357255 (49.0) 177768 (48.8) 179487 (49.3)  
UNKNOWN 273 (0.0) 262 (0.1) 11 (0.0)  

race, n (%) Native 3278 (0.4) 1762 (0.5) 1516 (0.4) 0.113 
Asian 69432 (9.5) 32466 (8.9) 36966 (10.1)  
Black 35072 (4.8) 16512 (4.5) 18560 (5.1)  
Multirace 17486 (2.4) 7635 (2.1) 9851 (2.7)  
NHPI 2972 (0.4) 1270 (0.3) 1702 (0.5)  
Other Race 81646 (11.2) 44093 (12.1) 37553 (10.3)  
Unknown 81062 (11.1) 44889 (12.3) 36173 (9.9)  
White 437630 (60.1) 215662 (59.2) 221968 (60.9)  

ethnicity, n (%) H/L 102163 (14.0) 53581 (14.7) 48582 (13.3) 0.126 
Not H/L 560067 (76.9) 271574 (74.5) 288493 (79.2)  
Unknown 66348 (9.1) 39134 (10.7) 27214 (7.5)  

estimated_age, mean (SD) 69.7 (10.8) 69.6 (11.0) 69.8 (10.7) 0.012 
recruitment_age, mean (SD) 63.9 (10.5) 63.4 (10.5) 64.3 (10.5) 0.087 
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Supplementary Table 3.9 Osteoporosis UCDDP concepts and demographics 
 
Top table shows the specific concepts utilized to identify osteoporosis as the exposure in the 
UCDDP database with inclusion of children concepts, and breakdown by number of patients per 
concept. Due to deidentification, only a patient’s birth year is known for age estimation. 
Recruitment age is utilized as the starting age for survival analysis, with osteoporosis group as the 
age of osteoporosis diagnosis, and unexposed group as the age of first EHR visit 
 
Term # patients 
Osteoporosis 145608 
Senile osteoporosis 30611 
Osteoporotic fracture 7772 
Osteoporotic fracture of vertebra 3987 
Localized osteoporosis - Lequesne 3126 
Osteoporotic fracture of femur 2971 
Idiopathic osteoporosis 1231 
Disuse osteoporosis 309 
Osteoporotic fracture of humerus 186 
Osteoporotic fracture of hand 39 
 
    Overall No osteo osteo SMD  
n   137880 68940 68940  
gender, n (%) FEMALE 119637 (86.8) 60386 (87.6) 59251 (85.9) 0.049 
 MALE 18241 (13.2) 8554 (12.4) 9687 (14.1)  
 UNKNOWN 2 (0.0)  2 (0.0)  
race, n (%) Native 496 (0.4) 272 (0.4) 224 (0.3) 0.134 
 Asian 15784 (11.4) 7364 (10.7) 8420 (12.2)  
 Black 4611 (3.3) 2546 (3.7) 2065 (3.0)  
 Multirace 3564 (2.6) 1737 (2.5) 1827 (2.7)  
 NHPI 419 (0.3) 198 (0.3) 221 (0.3)  
 Other Race 13032 (9.5) 7427 (10.8) 5605 (8.1)  
 Unknown 13670 (9.9) 7552 (11.0) 6118 (8.9)  
 White 86304 (62.6) 41844 (60.7) 44460 (64.5)  
ethnicity, n (%) H/L 15530 (11.3) 8509 (12.3) 7021 (10.2) 0.133 
 Not H/L 112474 (81.6) 54548 (79.1) 57926 (84.0)  
 Unknown 9876 (7.2) 5883 (8.5) 3993 (5.8)  
estimated_age, mean (SD) 74.8 (9.2) 75.2 (9.1) 74.5 (9.3) -0.074 
recruitment_age, mean (SD) 68.7 (8.9) 68.2 (8.7) 69.2 (9.1) 0.12 
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3.11 Supplementary Data 

Supplementary Data 3.1 Model Inputs and Model Importances 
 
Excel sheet with a list of the number of model inputs and tabs with input OMOP concept for each 
model. ‘Model Inputs’ tabs lists the number of input features per model, and a description of 
demographic or visit-related features. ‘Model Importance’ tab lists all trained random forest model 
importance, full and matched, and sex-stratified models, and the mapped phecodes. ‘Top Feature 
Prevalences’ tab shows the prevalence of some of the top conditions utilized in prediction. The 
rest of the excel sheets lists all model inputs and associated OMOP concept_ids. 
The data can be downloaded at www.synapse.org/AD_EHR_Prediction or Synapse repository ID 
syn52816091. 
 
 
  

https://www.synapse.org/AD_EHR_Prediction
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Chapter 4: Learnings and Considerations in Designing, 

Implementing and Interpreting Electronic Medical Record-based 

Informatics Studies 

 
 4.1 Abstract 

With the increasing availability of rich longitudinal real world clinical data across millions 

of patients recorded in electronic medical records (EMR), there is a growing interest in leveraging 

these records for scientific questions and applications to improve understanding and treatment of 

human health and disease. While EMR datasets provide great opportunity for deriving insights 

into disease and treatments, there is also a need to carefully consider limitations due to biases from 

clinical diagnostic or treatment behaviors and missing information from data collection. These 

limitations can pose great challenges in EMR-based informatics studies that can lead to confusing 

or incorrect conclusions. Here, we discuss the potential applications of EMR datasets as well as 

considerations in the design, implementation, and interpretation of EMR-based informatics studies 

and draw from examples in the literature across hypothesis generation and hypothesis-driven 

studies. This paper aims to provide a perspective and starting point for researchers and engineers 

tackling EMR-based clinical informatics studies. 
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4.2 Introduction 

Since the beginning of the practice of medicine, record-keeping has been an important 

aspect of clinical care1. These records include relevant health history of a patient, such as 

diagnoses, procedures, treatments, and monetary exchanges, across multiple care delivery sites. 

The FDA now defines these clinical records as part of real world data (RWD)2, which spans across 

sources like health records from hospitals and clinics, databases of medications sold at pharmacies, 

registry and public health databases, insurance claims, and data acquired from sensors and mobile 

devices that may inform health status for an individual or a population. With the advancements of 

computer technologies, databases and records have transitioned from manual physical 

documentation to electronic and automated forms, including the use of electronic medical records 

(EMR) in care site settings. In 2009 President Obama prioritized and financially incentivized the 

transition to digital records and implementation of software for EMRs in hospitals3,4. This adoption 

has been useful to the medicine workflow by decreasing medication errors and improving billing, 

with various impacts on healthcare delivery quality and cost effectiveness5–7.  

EMRs are now mainstream in the healthcare setting, with over 75% of office-based 

practices and over 90% of hospitals with EMRs adopted and utilized8. With longitudinal health 

data on millions of patients collected, and billions of invested dollars over a decade of this big data 

collection and data storage effort, there is much recent rising interest in leveraging real world 

datasets, especially EMRs, for research applications within biological and healthcare spaces9,10. 

These datasets are now available at many institutions and healthcare systems within the US and 

worldwide11,12, and some are publicly accessible for research, such as MIMIC13, AllofUs14, and 

UK Biobank15.  

https://www.zotero.org/google-docs/?99Ca04
https://www.zotero.org/google-docs/?aBwHkc
https://www.zotero.org/google-docs/?EelvIW
https://www.zotero.org/google-docs/?vjABZg
https://www.zotero.org/google-docs/?kQXnsQ
https://www.zotero.org/google-docs/?5d3h1R
https://www.zotero.org/google-docs/?Lbq2CK
https://www.zotero.org/google-docs/?t0PadU
https://www.zotero.org/google-docs/?Ka6vhK
https://www.zotero.org/google-docs/?oIOICE
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There are many exciting opportunities for EMR datasets to give insights into disease 

phenotyping, characterize treatment pathways and outcomes for drug approvals and drug 

repurposing, disentangle disease heterogeneity, and even advance the understanding of disease 

biology. Some of the benefits of research with EMRs include flexibility in defining inclusions and 

exclusions for cohort selection, unlike many existing observational studies that apply extensive 

screening criteria and thereby not capturing the complexity among real-world contexts. The 

flexibility in cohort selection and individual representation among a large sample size further 

increases the potential for utilizing these datasets to investigate diverse cohorts or otherwise under-

studied populations and allowing an opportunity to answer questions on populations with 

otherwise sparse or unavailable data. Therefore, by utilizing EMRs and other real-world datasets, 

resulting analyses may better capture real world populations or real world measures of disease and 

outcomes.  

Nevertheless, despite the exponential increase in the interest in RWD and EMR datasets 

for advancing human health, there are also many drawbacks, biases, and considerations for 

utilizing and interpreting EMR data in research. Since the original purpose of EMR was not for 

research, but instead for billing and record-keeping, many drawbacks arise from biases in the data 

collection, data representation, and data preprocessing pathway. For example, some diseases may 

exist in a patient, but are not measured or recorded. Timing associated with a chronic disease like 

diabetes may represent the acknowledgement of a disease instead of biological onset. These 

considerations are essential to account for in designing methods and approaches for EMR 

utilization and interpretation of results, particularly if the insights will be utilized to inform 

treatment and care that can impact patient lives. Mitigating these challenges entails understanding 

the data collection pipeline and employing data pre-processing methods, such as models to account 
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for data missingness, disease encoding and representation across sites, and factoring in the 

influence of social or environmental exposures. Collaborating with practitioners can provide 

insight to account for these factors that may impact data collection in clinical practice, such as the 

order of medications given in a treatment pathway or insurance reimbursement incentives. 

Considerations for timing between biological disease and timing of EMR records may also be 

acknowledged during the process of model selection and statistical approaches. 

In this perspective chapter, we will first describe the pathway of EMR data collection and 

opportunities and examples for research use. We provide examples of leveraging clinical data for 

phenotyping, hypothesis generation, and specific hypothesis-driven studies in the context of 

disease diagnostics and therapeutics. We also provide considerations for researchers tackling 

EMR-based research and discuss current advances impacting the field and conclude with ongoing 

advancements in the EMR research field. 

 
4.3 Data Collection to Data Insights 

Before clinical datasets can be utilized for answering questions related to disease biology, 

many decisions impact the workflow from data collection, normalization, preprocessing, 

simplification, and de-identification. Understanding this data flow is essential for making model 

decisions and evaluating insights based on biases that may be introduced in the data flow pathway. 

Data Collection and Representation. To understand the possibilities and limitations of how 

EMR data can be utilized to answer questions in health, it is important to recognize the process of 

EMR data collection. In turn, this will guide the process of hypothesis development, method 

selection, and interpretation of results. Heterogeneity in data collection may arise as a result of 

varying clinical practices between providers, insurance coverages, patient population, location, 

existence of scribes, and even the EMR software and database storage approach for a healthcare 
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setting16.  For example, when a clinical visit is scheduled, there may be diagnoses given, 

medications prescribed, diagnostic tests ordered, and/or procedures delivered. These may be 

recorded with codes (e.g., ICD (International Classification of Diseases) for diagnoses; RxNorm 

and NDC (National Drug Code) for medications; LOINC (Logical Observation Identifiers Names 

and Codes) for laboratory tests; CPT (Current Procedural Terminology) for procedures; and 

SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms) which includes codes 

for diagnoses, symptoms, medications, procedures to indicate a service given and ensure billing or 

payment for the personnel, medication, and equipment16. The choice of a coding system may differ 

between clinical sites and may not encompass the same underlying biological phenomenon due to 

differences in clinical workflows or treatment pathways. Furthermore, there is no fully 

standardized way for providers to adhere to a terminology when assigning diagnosis (e.g., two 

providers may assign different ICD codes for the same condition). 

Care sites in the United States may also choose to utilize different EMR softwares like 

Epic, Cerner, Athena, OpenEMR, etc., which may result in differences in coding approaches and 

database structure (e.g., EMR software may come with their own diagnostic codes instead of using 

ICD codes). Other considerations between care sites include that a few community clinics may 

still primarily utilize paper records, while other sites may only have recently adopted EMR systems 

due to cost and administrative concerns17, which may lead to different data starting times or 

differences in captured intervals of care. Without standardization, each record system may have 

heterogeneous ways of storing and representing health data. In other countries, the coding and 

database structure may be consistent in a centralized healthcare setting, but variations still exist 

between national borders18,19. These differences therefore contribute to heterogenous starting 

points in data storage and representation. 

https://www.zotero.org/google-docs/?9ZLkex
https://www.zotero.org/google-docs/?WohN9H
https://www.zotero.org/google-docs/?XUgQbl
https://www.zotero.org/google-docs/?WxL3aZ
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In order for EMR data to be utilized for research, they need to exist in a form that can be 

leveraged for analysis. After data collection, data extraction can take the form of manual labor 

including populating tables from EMR chart review to database queries and machine learning-

based concept extraction. In all cases, extraction takes the form of converting raw data 

representations encoded by the EMR software or user interface into standardized representations 

of data, for example through a Clinical Data Warehouse (CDW) or the Observational Medical 

Outcomes Partnership (OMOP) Common Data Model20.  

Data Preparation and Standardization. Data preprocessing into a database structure 

requires personnel such as database managers and infrastructure engineers to be involved in the 

decision-making process of mapping raw data to usable formats and representations and 

identifying the appropriate hardware and software required for future data manipulation. 

Furthermore, in order to ensure the data can be utilized for research purposes, de-identification 

methods are performed on the preprocessing step to ensure proper privacy is maintained13,21. Each 

one of these decisions to transform the originally recorded data into a format that maintains 

relevant information influences model selection and interpretation of results downstream for the 

researcher.  

In 2007, the FDA in collaboration with industry and academia introduced OMOP20,22, 

which has since been expanded to the ODHSI (Observational Health Data Sciences and 

Informatics) suite of tools and applications to enable clinical evidence to be used for research 

purposes worldwide23. This structure and paradigm have the additional benefit of utilizing a 

standard vocabulary and structure that can enable data representation and code sharing between 

sites. While the goals of standardization has enabled greater data harmonization, transportability, 

and federated analyses, there are still site-based biases and limitations that may result from 

https://www.zotero.org/google-docs/?weVV0D
https://www.zotero.org/google-docs/?Ww6Kmg
https://www.zotero.org/google-docs/?tv0DaX
https://www.zotero.org/google-docs/?1Jr8m4
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individual site decisions for treatment and mappings between the source EMR data structure to 

standardized structures and SNOMED CT ontology, resulting in loss of specificity from a 

diagnostic code to a broader category in SNOMED and many-to-many mappings that may lead to 

further loss or addition of clinical codes.  

Another pre-processing step important in increasing the availability of EMR data for 

researchers is the process of de-identification13,24. Methods and approaches to achieve de-

identification of EMR data must be done in accordance with the Health Insurance Portability and 

Accountability Act (HIPAA) of 1996, including the Safe Harbor Method and the Expert 

Determination Method25. The de-identification process may contribute to new biases in the data 

due to removal of patients or loss of accuracy from shifting of dates and exclusion of some 

information such as ages over 89 years, which may especially impact the records of vulnerable 

populations and the elderly26,27. Text information may require further automated means of de-

identification that can introduce biases from perceived lower relevance of concepts that may come 

from removal of information as opposed to lack of association28. Every step in data collection, data 

representation, and data preprocessing is therefore important to consider for careful use of EMR 

data for research purposes (Figure 4.1).  

 
4.4 EMR For Hypothesis Generation 

In leveraging EMR data, one of the greatest opportunities includes improved understanding 

of the magnitude and implications of disease burdens, as well patterns of healthcare service 

utilization within specific demographics or locations. This can allow for an approach to 

characterize the impact of a disease without any influences from prior beliefs or inferences from 

potentially non-representative studies. Moreover, a thorough phenotyping can provide a relatively 

unbiased view of the EMR dataset for investigating comorbid conditions and formulate hypotheses 

https://www.zotero.org/google-docs/?KL5Svb
https://www.zotero.org/google-docs/?XFtls3
https://www.zotero.org/google-docs/?FEYW6a
https://www.zotero.org/google-docs/?cUkOmr
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pertaining to underlying trends. It is, however, crucial to recognize that EMR data captures only 

discrete intervals of an individual's health trajectory. Therefore, understanding the limitations and 

representation of the EMR dataset becomes imperative in determining the breadth of measurable 

data and the feasibility of specific research goals. 

Phenotyping of Disease, Drugs, and Clinical Behaviors. EMR data provide a great way to 

characterize and phenotype many aspects of health, including gaining a broad understanding of 

the prevalence of diseases, drugs, and higher order combinations of comorbid disorders or 

concomitant medications within a disease29–33. Many researchers view real world data and EMR 

data as a data source for exploratory research and scientific inquiry pipeline. Understanding and 

characterizing patterns in the data can also give insight into understanding disease populations, 

practices for treatment prescription and current clinical behaviors34–36, as well as identify potential 

differences in subgroups and disparities in current care37–39. Data exploration approaches can also 

better quantify any issues in data quality, such as the extent of data missingness, as well as 

understand potential provider or patient behaviors that may contribute to variations in data quality. 

Since clinical datasets may contain potential misclassifications or lack of specificity, exploratory 

analysis of the data can aid in the development of phenotyping algorithms and cohort selection 

approaches that may best represent the biological characteristics of a desired population (e.g., 

increasing confidence in Alzheimer’s Disease diagnosis with more diagnostic occurrences or by 

identifying a neurologist’s diagnosis as trustworthy)40. Augmentation of EMR datasets with 

molecular datasets, such as genomics data or imaging datasets, can aid in biological support of 

cohort selection approaches and phenotyping41. 

Once a researcher gains a deeper understanding of the characteristics and patterns in the 

dataset, they can leverage EMR to perform deep phenotyping of a disease for improved 

https://www.zotero.org/google-docs/?84jRD5
https://www.zotero.org/google-docs/?0Lt8b5
https://www.zotero.org/google-docs/?wVC1wV
https://www.zotero.org/google-docs/?Y8TgH0
https://www.zotero.org/google-docs/?QVgghD
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characterization of associated comorbid conditions, medications, and lab results that can give 

unbiased insight into disease associations through characterization of multiple patient disease 

profiles. For example, large-scale association analyses in Alzheimer’s Disease (AD) identified 

sex-specific and racialized population specific comorbidities that may highlight heterogeneous 

differences in the clinical profile, risk or manifestation of AD, enabling hypotheses for downstream 

analyses31,42. To investigate associations, choosing a cohort, comparison cohort, and statistical 

approach are needed. In the above AD association studies, this took the form of a cross-sectional 

case-control study between AD and matched controls, where matching (i.e. propensity-score 

matching) was utilized to account for associations that may not be useful for disease interpretation. 

Many approaches exist for matching43–45, with each approach having its benefits and limitations. 

Ultimately, the covariates utilized in matching or adjustment should be considered when 

contextualizing the high-level understanding of associations in the data set for hypothesis 

generation (for example, whether an association is independent of age or not). Low-dimensional 

embeddings can also aid in visualizing clusters of pathways or differences in patient populations 

due to the observed clinical profile29,30,46. 

Hypothesis Generation. Hypothesis generation approaches can take many forms depending 

on available data and give insight into behaviors, biological underpinnings of disease, risk factors, 

or drug outcomes. From a cross-sectional view of disease, broad associations can aid in exploratory 

research through deep phenotyping of disease31. Medication and procedure associations can be 

explored to understand patient populations and generate hypotheses that may impact these 

populations47,48. With availability of genetic data, genetic association with phenotypes can also be 

explored to elucidate biological hypotheses (e.g., PheWAS41,49). Beyond genetics, other datasets 

that can be mapped to patients in the EMRs can also help augment hypothesis generation and 

https://www.zotero.org/google-docs/?NzDMli
https://www.zotero.org/google-docs/?lYAL4k
https://www.zotero.org/google-docs/?hYmIUH
https://www.zotero.org/google-docs/?MlYJMq
https://www.zotero.org/google-docs/?CaFpw4
https://www.zotero.org/google-docs/?4lrF3X
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elucidate potential biological associations with clinical phenotypes (e.g, the Rheumatology 

Informatics System for Effectiveness database50). Excitingly, augmentation of clinical phenotypes 

with known disease-molecular associations from heterogenous knowledge databases are evolving 

as one potential opportunity for biological hypothesis prioritization51,52.  

Hypothesis generation approaches can also include temporal filters in the analyses to derive 

insights into the temporal nature of an association, based on time to an index event or index date. 

For example, one study identified associations prior to pregnancy in order to identify hypotheses 

related to mechanisms of recurrent pregnancy loss, such as menstrual abnormalities and infertility 

diagnoses53. Beyond hypothesis generation, if the dataset and features are utilized for machine 

learning model training, then understanding associations can provide explainability in model 

performance based on available associations. With an available index time, careful interpretation 

is needed to understand what the associated time represents in order to interpret the data and define 

what hypotheses are possible (e.g., whether a time represents the onset of a disease, or the clinical 

acknowledgement of a disease). If the time represents a clinical acknowledgement of a health 

event, then any associations should be considered as a means to interpret existing clinical behaviors 

with potential utility in identifying red herrings and clinical biases in either diagnostic, decision-

making, or inequities in care42,54. 

Exploratory approaches to EMR data can provide unbiased insight into disease phenotypes, 

trajectories, subphenotypes, and associations with any other available dataset (measurements, 

genetics, imaging, biomarkers), improving understanding and generating hypotheses that can 

advance scientific inquiry into health (Figure 4.2). 

 

https://www.zotero.org/google-docs/?aEP07j
https://www.zotero.org/google-docs/?y7iSUy
https://www.zotero.org/google-docs/?zJ1T1b
https://www.zotero.org/google-docs/?EqoyS6
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4.5 EMR For Hypothesis-Driven Studies 

Electronic medical records also provide an opportunity to extend traditional 

epidemiological clinical research and biostatistics into large patient settings, although 

modifications may need to be made to account for the retrospective and nature of available data. 

As mentioned in the previous sections, it is imperative to understand the data through exploratory 

approaches and ensure a hypothesized question can be answered. In particular, biases from data 

missingness or clinical behaviors should be considered before publicizing conclusions, which may 

impact regulatory decision making, clinical care, or even patient health behaviors. 

Identifying a question or hypothesis. The first step for a hypothesis-driven study includes 

identifying a hypothesis, including expanding on findings from prior literature or identifying a 

cohort of interest that can answer the hypothesis as robustly as possible. Time is also an important 

consideration in the choice of a cohort, whether the time is relative to an index date or based on a 

year or societal event. The choice of a cohort may also need to include adjustments or 

acknowledgements of potential biases or quality control steps in retrospective real world datasets 

in order to understand limitations in cohort specificity. Ultimately, both the existence of a cohort 

and relevant data for a hypothesis will impact the answerability of a question and choice of analysis 

approach. While there is extensive literature in the epidemiological fields on classifying studies 

that are applied to retrospective data, some considerations are currently in development for the 

advancement of methods applicable to EMR data that address issues such as data missingness, 

biases, and data noise55–58. A portion of studies currently published include case-control, cross-

sectional, and cohort study designs, as well as other designs not mentioned here. 

Case-control design. Case-control designs encompass not only the selection of a target 

cohort but also a control or comparison cohort. In numerous studies, the selection of controls often 

https://www.zotero.org/google-docs/?ptIutR
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involves adjusting for confounders, either in the choice of the control or within the analytical model 

itself59. Presently, there is increased emphasis on control selection, including the utilization of 

matching methods, propensity score models, or regression to account for multiple covariates or 

identify controls from external databases55,60–62. Since certain diseases may manifest concurrently 

and single datasets may have sample size limitations, some studies are expanding to include 

multiple cohorts or controls of various complexities56,62–64. 

The choice of a control or comparator cohort influences the interpretation of analyses, 

especially in scenarios where specific predefined covariates have been accounted for. While 

unadjusted analyses remain useful in discerning overarching patterns, adjusted or matched 

analyses can better pinpoint trends that persist even after controlling for other potential 

confounders. Since case-control and case-comparator designs are inherently retrospective, causal 

conclusions cannot be made. This caveat holds true analogously for machine learning models 

designed with a similar approach in the selection of the training cohort. 

Within cohort selection, temporal assignments to data are important in determining 

whether the analysis is completely retrospective or cross-sectional, and whether a specific date of 

an acute event is relevant for a cohort. Given a specific hypothesis of interest, general prevalence 

and associations with outcomes can be identified (e.g., exposure to drug and death), but a 

consideration of the temporal relationships is needed to identify the degree of support for causal 

conclusions (e.g., the time assigned to chronic diseases like hypertension is not representative of 

biological onset). As an example, a cross-sectional study validating bumetanide as a drug 

repurposing candidate for Alzheimer’s Disease explored the association between bumetanide use 

and Alzheimer’s Disease prevalence65. The real-world evidence in this study supports a lower 

prevalence of Alzheimer's Disease in those with bumetanide exposure, but causal conclusions 

https://www.zotero.org/google-docs/?hS3vVY
https://www.zotero.org/google-docs/?pA1nyn
https://www.zotero.org/google-docs/?ThKNQ2
https://www.zotero.org/google-docs/?UHCawH
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about the drug’s effect could not be made without the support of experimental evidence in mice, 

which was also included in the study. 

Retrospective Cohort Study Design. Another approach to leveraging EMR for hypothesis-

driven studies includes the use of a retrospective cohort study design or survival style design. 

Questions may investigate the relationship between drug exposure or risk factor exposure and 

outcomes or prognosis of a disease and labeled with terms such as ‘emulated trials’66. These 

designs are best approached with consideration of what a cohort study may look like, and selection 

of the cohort must be done with information up to a certain point in the EMR. This study design 

was utilized to investigate statin and antidepressant usage in COVID-19 mortality67,68 as well as 

antidepressant use in pregnancy outcomes69. With this design, a temporal association can be 

determined to understand disease progression, drug exposure outcomes, or risk factor associations. 

It is nevertheless important to consider that cohort study design is still retrospective in nature and 

while causal inference techniques can help in the interpretation of an association, there are still 

large issues in terms of large attrition rates and missing data. For example, studies have identified 

antidepressant use associated with preterm birth as an adverse outcome, with possible confounding 

by depression severity and medication adherence69.  

Machine learning and biases. These fundamental designs and considerations also apply to 

sophisticated machine learning models. The selection of a cohort, temporal covariates of inclusion, 

impact of biases, and hypothesis of interest all play into the interpretation of a model’s performance 

and the causal nature of an identified association51. Furthermore, as mentioned previously, the 

behavior of clinicians and patients must not be ignored in interpreting associations, as the presence 

of a diagnosis may represent the acknowledgement of a disease and not biological onset. Also, the 

presence of abnormal lab results may indicate a symptom or indication bias that influences the 

https://www.zotero.org/google-docs/?9HY5QI
https://www.zotero.org/google-docs/?Q7ldsH
https://www.zotero.org/google-docs/?QRJc4S
https://www.zotero.org/google-docs/?jHpuHt
https://www.zotero.org/google-docs/?KmqYtL
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presence of a measurement. As such, sometimes these underlying behaviors that lead to a diagnosis 

or measurement may be associated with an outcome as opposed to the diagnosis or measurement 

itself57.  

In summary, hypothesis-driven approaches can provide valuable insight into specific 

questions, such as risk factors, disease prognosis, and drug exposure outcomes. Currently, causal 

inference methods and prospective studies are currently being implemented as a means to aim for 

more precise causal conclusions70. Nevertheless, due to the convoluted nature of the data, 

conclusions from EMRs studies are suggestive, and confidence in conclusions should be further 

supported by similar conclusions across study sites, study designs, and omics modalities31,53 

(Figure 4.2). 

 
4.6 Considerations for EMR Studies 

Data appropriateness for the question. When considering the utilization of EMR as a data 

source for a study, the first step is determining whether the EMR data is the right data source to 

answer the question, hypothesis, or exploratory question. This includes ensuring that the specificity 

of the cohort desired (e.g., ICD-10 code G35 may not be sufficient to identify multiple sclerosis 

subtypes) and measurements of interest (e.g., genotype information may be unavailable or sparse 

in EMR) are available. Data visualization tools such as ATLAS71 and PatientExploreR33 provide 

a means to understand data availability at either an individual or group level. Depending on the 

specificity, quality, or type of data desired, other real world data sources may be more relevant to 

the question of interest (e.g., claims database for medication use, research databases for improved 

specificity, social media for patient-oriented viewpoints)9. Mappings between real world data 

sources may exist to help augment EMR information with improved specificity or map phenotypic 

information with molecular information but careful consideration of selection biases and timing of 

https://www.zotero.org/google-docs/?CY7Jo0
https://www.zotero.org/google-docs/?AfvQWw
https://www.zotero.org/google-docs/?kcbLbR
https://www.zotero.org/google-docs/?4Ike80
https://www.zotero.org/google-docs/?tmi3za
https://www.zotero.org/google-docs/?0fFjI2
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data is essential to consider for possible results and analyses that can be obtained. In the future, we 

anticipate the development of methods that map between databases for improved multimodal data 

availability as well as methods that account for missing data. Nevertheless, it is important to 

consider how much noisy preprocessing or incomplete mappings will impact the results of a 

potential analysis.  

Sociopolitical and behavioral impacts on data. Often, real world datasets have a lot of 

influences due to societal exposures (e.g., racism, sexism, homophobia, transphobia, policies that 

negatively impact vulnerable populations) and biases that can impact patient behaviors or clinical 

decision making. In terms of societal exposures, patient language, background, and identities can 

influence the label assignment in the demographic tables of real-world datasets. These identities 

can differ between regions and countries and may represent the impact of an exposure as opposed 

to an inherent biological phenomenon72. If a question is aimed at studying the impact of 

sociopolitical groupings, it is recommended to utilize a “one vs rest” reference group or to identify 

controls of the same grouping42, as opposed to a comparative analysis between two groups where 

one group is chosen as the reference group, similar to comparison of cell types in bioinformatics 

studies73. 

Biases in data, timing, and clinical decisions. In terms of biases that may impact patient or 

clinical decision making, often one should consider that the timing and presence of a diagnosis or 

record in the EMR often indicates a clinical acknowledgement of the entry, with both monetary 

and legal incentives in play. For example, due to potential impacts on a patient’s mental capacity 

or driving rights when diagnosed with certain neurological disorders (e.g., epilepsy74), the timing 

of a diagnosis may be delayed. Prior temporal associations and predictive models may therefore 

pick up nonspecific diagnoses or other clues that indicate the diagnostic pathway of a clinician as 

https://www.zotero.org/google-docs/?BwccJ6
https://www.zotero.org/google-docs/?lBHbii
https://www.zotero.org/google-docs/?ZeWlLw
https://www.zotero.org/google-docs/?wpXDMK
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opposed to true biological risk. For example, some prior association analyses and models for 

Alzheimer’s Disease pick up the prescription of an anti-dementia drug prior to an official 

Alzheimer’s Disease diagnosis75. The existence of a lab or measurement may also indicate biases 

in ordering tests from a clinician (indication bias), while missing data may not indicate the lack of 

an abnormal measurement. Biases may also exist in clinical decision making, such as clinician 

biases towards certain identities. For example, race correction in interpreting glomerular filtration 

rate (GFR) or deciding on a C-section may lead to increased rates of procedures within a 

demographic group, which may be picked up by association studies or predictive models38,76,77. 

Those results should therefore be interpreted with potential clinical decision biases in mind before 

considering biological differences between groups. Predictive models may predict and identify 

causes of clinician misclassification or diagnostic errors, which can then be corrected in disease 

prediction models54.  

Interpretation is complex. Covariates and features utilized in patient representation are also 

important in the study design, and the choice of features that are balanced between groups also 

impact contextualization and interpretation of results57. Since EMR data may be inaccurate, 

incomplete, insufficiently granular, or transformed in ways that introduce new biases, the 

specificity of a phenotype may not be sufficient for accurate biological representation of a cohort. 

It is also important to consider the difference between characteristic information (e.g., 

demographic information), chronic conditions (e.g., hypertension), and acute conditions (e.g., 

fractured bone). Timing associated with chronic conditions may not be accurate due to the chronic 

nature of a disease. Furthermore, even “persistent” information may change (e.g., patient moves 

location). All these considerations in the accuracy and temporal nature of a feature or covariate 

can impact the interpretation of a result (Figure 4.3). 

https://www.zotero.org/google-docs/?bRLaHu
https://www.zotero.org/google-docs/?q0W91h
https://www.zotero.org/google-docs/?1pQYyE
https://www.zotero.org/google-docs/?UOuZS8
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In the future, sophisticated methods with causal diagrams may be utilized to account for 

the influence of behaviors. ML models may still learn temporal patterns that are behavior-based 

rather than biology-based due to the retrospective nature of the data and the impact of indication 

biases. Heterogeneity due to data missingness and biases can not be completely accounted for in 

methods, so one should consider EMR informatics as one approach among many for understanding 

health and disease evidence. Augmentation of EMR data with specialty databases (e.g., use of a 

memory and aging center database for neurodegeneration51) or molecular datasets (e.g., genomics 

data41) provide the ability to identify links between biological and phenotypic signals. 

Furthermore, identifying an association or signal among alternative EMRs, diverse cohorts, or 

across omics modalities can help fully generalize what is identified in EMRs and improve 

biological plausibility. Follow-up studies will still be needed to help further support a hypothesized 

causal biological mechanism. Therefore, EMR analysis is only a step out of many in the process 

of clinical decision making, treatment identification, and biological understanding of a disease.  

 
4.7 Conclusions  

Electronic medical records provide an extensive, rich, longitudinal dataset with great 

opportunity for answering scientific questions, developing AI models, and advancing therapeutics 

in human health and disease9,58,78,79. Nevertheless, clinical behavioral biases, data missingness, 

data preprocessing, and societal impact of a conclusion should be considered when designing, 

implementing, and interpreting EMR-based studies. Currently, advancements in the EMR 

informatics fields include causal inference methods45,80, state transition models81, and transformer 

models82,83 to account for temporal relationships in the records. Furthermore, methodological 

developments allow for combined analysis with both structured and unstructured datasets, 

including clinical imaging, clinical notes, and even inclusion of molecular omics datasets such as 

https://www.zotero.org/google-docs/?gNj3fY
https://www.zotero.org/google-docs/?U8fnx3
https://www.zotero.org/google-docs/?VCvA3I
https://www.zotero.org/google-docs/?DlZF8O
https://www.zotero.org/google-docs/?XIdlNK
https://www.zotero.org/google-docs/?ov8WA1
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genetics, gene expression, and proteomic measurements. Of importance is the identification of 

corroborated findings across datasets and omics modalities, even if on different patients, as similar 

signals across heterogeneous data collection and measurement methodologies can help validate a 

potential biological conclusion identified from a single dataset. 

With improved data collection and methodological advancements, there is great potential 

for exciting applications in the future for deriving insight into biology based on EMR trends and 

molecular-phenotype associations, which allows  for improved predictive modeling,51, 

subtyping46, drug repurposing, and therapeutic response investigations65,78. Prospective methods 

to evaluate algorithmic performance and biases are also developed as part of the implementation 

process to allow for iterative evaluation and improvement of algorithms or models, ensuring 

equitable performance across diverse cohorts84. With these considerations and advancements in 

both data collection and methodologies, EMR-based informatics research will provide support to 

the understanding and treatment of complex diseases in the future.  

https://www.zotero.org/google-docs/?WZ3RcV
https://www.zotero.org/google-docs/?7wFmPO
https://www.zotero.org/google-docs/?uBkFHd
https://www.zotero.org/google-docs/?5nZ35M
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4.8 Figures 

 
 
Figure 4.1 Electronic medical record data collection, storage, and processing for research 
applications 
 
Patients first interact with a health-related care site, such as a hospital, primary care clinic, 
pharmacy, or other relevant sites. These intervals of care will have electronic footprints due to 
scheduling and billing, as well as provider inputted data about visits, diagnoses, and labs. Both 
structured and unstructured data may be obtained. Depending on the structure of the underlying 
databases, initial preprocessing must be performed by an information technology team to combine, 
simplify, standardize, and de-identify the data in order to make it available for researcher use. 
When the researcher accesses the data, the study goals and models will impact data processing and 
analysis decisions. Ultimately this data flow will impact the insights and algorithms obtained for 
various scientific inquiry or application purposes. 
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Figure 4.2 Potential EMR informatics study approaches include phenotyping and hypothesis 
generation, hypothesis-driven studies, and goal-oriented applications 
 
Exploratory phenotyping and hypothesis generation provide unbiased profiling of a disease, 
including subphenotypes and relevant pathways and associations. Augmentation with biological 
datasets and knowledge networks can aid in biological hypothesis generation. Hypothesis-driven 
studies can further investigate a suggested relationship through careful selection of study design 
and adjustment methods. In both approaches, further evidence may be required to support or 
strengthen interpretations of the findings. Ultimately, applications of EMR informatics include 
predictive and diagnostic models, clinical decision making, drug repurposing and emulated trials, 
and ultimately support improvement of human health. 
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Figure 4.3 Sources of heterogeneity and bias in EMR-based informatics studies 
 
EMR data, while providing extensive opportunity with a large unbiased sample of patients, also 
suffer from extensive biases and inaccuracies across the data flow pathway. These biases start from 
limitations in sampling of patients that seek healthcare, to data entry and representation 
heterogeneity, to choices of preprocessing and de-identification that can even introduce new biases 
to the data. Understanding these potential biases and sources of error are essential in the choice of 
data analysis methods and interpretation of results, or evaluation of models. 
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Conclusions 

Increasing interests in real-world datasets, such as electronic medical records (EMRs), 

presents both opportunity and challenges in the study of complex disorders like Alzheimer’s 

Disease (AD). The intricate interplay between molecular pathology and clinical manifestations 

poses significant hurdles in the development of effective disease modifying treatments. AD is 

characterized by considerable heterogeneity, hinting at the possibility of a spectrum of diverse 

mechanisms of disease onset, potentially influenced by factors such as biological sex. Our research 

leverages real-world data to demonstrate how deep phenotyping can facilitate a more accurate 

characterization of AD’s real-world manifestations. This serves as a foundational step for 

comprehending variations attributable to characteristics like sex, and in identifying associations 

and hypotheses concerning disease risks, subgroup disparities, disease prognosis, and possible 

protective or harmful impacts of medications. 

Furthermore, the rich data in EMRs pose opportunity for predictive modelling, which can 

pave the way for the creation of tools that could assist clinical decision-making through disease 

onset prediction and risk identification for possible early intervention. To address limitations 

inherent in EMR dataset quality, we enhanced EMR data with expert diagnoses from the UCSF 

Memory and Aging Center, ensuring a more accurate representation of potentially biological AD. 

Additionally, we carefully selected an index date to enhance the prediction accuracy of potential 

biological disease onset. Our work also underscores the value of integrating heterogenous 

knowledge networks, using human datasets as a starting point for deriving prioritized biological 

relationships. This approach led to notable findings, such as the identification of ACTB gene’s 

role in the context of combined sensorineural hearing loss, arthropathy, and AD, offering avenues 

for targeted treatment strategies.  
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Beyond the prioritization of existing knowledge, our study showcases the benefits of 

enriching human dataset insights with molecular omics datasets. This approach has also facilitated 

novel discoveries, such as the high probability of causal association between MS4A gene family 

polymorphisms with low bone mineral density and AD, particularly among females. These 

findings open avenues for future research on the impact of MS4A variants in AD, especially in the 

context of known mechanisms in immune activation and homeostasis.  

In summary, this dissertation demonstrates the effective utilization of EMR data, 

knowledge networks, and external omics databases in deepening our understanding of Alzheimer’s 

disease and its heterogeneity. These insights are instrumental in guiding the future of personalized 

prevention and treatment strategies in AD, and the methodologies hold promise for furthering our 

understanding of other complex diseases within and beyond neurodegeneration. 
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