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Epigraph

"In the intricate web of life's complexity, we stand at the crossroads of exploratory wonder and
hypothesis-driven clarity. The brilliance of a functional brain is our beacon, urging us to dispel
the clouds of neurodegeneration. As dawn breaks on the future of medicine, Al (Artificial
Intelligence) and ML (Machine Learning) light the way, crafting a precision in care that
resonates with the unique rhythm of each soul."

ChatGPT-4

“Words do not express thoughts very well. They always become a little different immediately
they are expressed, a little distorted, a little foolish. And yet it also pleases me and seems right
that what is of value and wisdom to one man seems nonsense to another.”

Hermann Hesse (from the novel Siddhartha)

“It’s complicated”

Sirota Lab
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Abstract

Leveraging Clinical Data and Knowledge Networks to Derive Insights into Alzheimer’s Disease

Alice Tang

Alzheimer’s Disease (AD) is a devastating neurodegenerative disorder that is difficult to
study and treat despite decades of progress. This is due to disease heterogeneity, lack of precise
phenotyping, and limited understanding of molecular mechanisms underlying clinical
manifestations. Electronic medical records (EMR) are emerging as a real-world dataset with
abundance of longitudinal human data across diagnoses, medications, and measurements with
opportunity to derive insights without predefined selection criteria or limitations in scope. Recent
developments of integrative heterogeneous graph databases that combine knowledge across omics
relationships provide a means to further identify molecular hypotheses underlying complex clinical
phenotypes. We performed deep phenotyping to characterize AD and sex differences in the EMR
against a control cohort, and identified sex and AD associated comorbidities, medication use, and
lab values. Extending this work to apply machine learning, we utilize clinical information to
predict AD onset and identify prioritized genes via knowledge networks (e.g., APOE, ACTB, IL6)
and genetic colocalization analysis (e.g., MS4A6A with osteoporosis). Our findings suggest that
AD onset risk can be predicted based on clinical data and that there are sex-specific relationships
in AD including musculoskeletal disorders among females with AD and neurological or sensory
disorders among males with AD. Extensions to knowledge networks and molecular datasets further
prioritize genes depending on an individual’s comorbid conditions. By leveraging clinical data to
identify hypotheses for complex disease, we can further make steps towards better understanding

molecular mechanisms and advance personalized treatment approaches in AD.
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Chapter 1: Opportunities from Bioinformatics to Clinical

Informatics for Understanding and Managing Disease

In the 21" century, the proliferation of electronics, digital tools, sequencing technologies,
data storage capabilities, and methodological advancements paved the way for an abundance of
diverse and large datasets that can be either utilized or repurposed for research or translational
goals. These datasets range across the multi-omics spectrum: from genetics databases like dbGAP
(database of Genotypes and Phenotypes, ncbi.nlm.nih.gov/gap) and The Cancer Genome Atlas
(portal.gdc.cancer.gov), to realms of epigenetics, gene and protein expression, clinical records,
sensor outputs, imaging, disease epidemiology, and more. Some repositories of datasets, like the
ADNI (Alzheimer’s Disease Neuroimaging Initiative, adni.loni.usc.edu) and NACC (National
Alzheimer’s Coordinating Center, naccdata.org) databases for neurodegeneration or March of
Dimes (MOD) Preterm Birth Database (pretermbirthdb.org) for pregnancy outcomes, provide
focal points for the investigation of specific research questions and topics. The digital
transformation has amplified data collection in health maintenance and care delivery, as evidenced
by extensive electronic medical records and novel utilization of data collection sources like
smartwatches or cellphone apps.

Such wealth of data provide opportunity in exploring potential untapped research questions
and development of tools for translational applications. In this chapter, a general review of
translational informatics across multimodal data domains will be provided, with emphasis on data
representation and equity. Then a commentary on machine learning based personalized lab result

insights will be provided. These will serve as the basis that leads to EMR-based insights for


http://www.ncbi.nlm.nih.gov/gap
http://portal.gdc.cancer.gov/
http://adni.loni.usc.edu/
http://naccdata.org/
http://pretermbirthdb.org/

Alzheimer’s Disease in following chapters, and finally an overview of methods and considerations

for expanding EMR informatics into other disease areas.



1.1 Translational Informatics Across Multimodal Data Domains for

Equitable Precision Medicine

1.1.1 Abstract

Challenges from the COVID-19 pandemic led to collaborative efforts among researchers
in the realms of data sharing and algorithmic development efforts across molecular, clinical, and
digital health domains for goals of prevention and treatment. We performed a literature assessment
of trends and approaches in clinical and translational bioinformatics to characterize and describe
recent advanced computational approaches since 2020. This includes applications of phenotyping,
disease subtype characterization, predictive modelling, biomarker discovery, treatment selection,
and artificial intelligence model utilization for advancement of human health. To pursue the goals
of equity and inclusion in scientific advancements and translational applications, data
representation and bias mitigation should be considered at every step including project design, data
collection, model creation, clinical implementation, and evaluation. Data representativeness along
with breakthroughs in big data and artificial intelligence will guide the future in precision medicine

applications for health.

1.1.2 Introduction

With the increasing acquisition of multimodal data (e.g., measurements or records that span
across multiple sources, such as genetic and imaging data), recent terms such as ‘translational
bioinformatics’ are evolving to encompass the discipline of the use of computational approaches
and tools across life sciences and clinical data for the purpose of advancing human health or

medicine!. Bioinformatics computational approaches have aided in the advancement for scientific



understanding of biological and disease phenomenon, often from genetics, gene expression, and
proteomics datasets. Recent increasing availability of molecular testing in the clinic and
opportunity to combine these datasets with clinical data has enabled applications for translational
applications for improved disease understanding or treatment.

Computational tools in bioinformatics have evolved along with technical advances in
genomic and single-cell sequencing, microbiome sequencing, proteomics, imaging technologies,
and other technologies to capture biological data at a cellular level**. Tools to analyze these large
datasets span across traditional statistical analyses to machine learning and unsupervised clustering
to better identify patterns and associations with minimal human intervention. Models that learn
upon biological phenomenon, as well as integrate across clinically observed diseases and
phenotypes, are increasingly being trained and applied for precision medicine approaches such as
disease risk prediction, diagnostic reasoning and classification, and prognostic modelling. In the
years following 2020, particularly due to challenges brought on by the COVID-19 pandemic, there
has also been unprecedented efforts in collaboration and data or model sharing across academia
and industry to tackle the challenges caused by the changing nature of SARS-CoV-2, the virus that
caused COVID-19%%. Systemic challenges due to shelter-in-place orders have also shifted
paradigms in healthcare delivery to increasingly rely on the role of technology for remote patient-
centric healthcare monitoring and delivery, leading to sustained efforts for convenient local health
management. This includes utilization of nearby lab facilities, imaging facilities, and digital health
devices to help with timely data collection and data sharing. Mobile clinics and healthcare teams
are also increasingly able to visit patient homes to deliver relevant devices, sensors, and even
medications. Telehealth visits are increasingly utilized for appointments that do not require

extensive physical exams, including psychiatric appointments and follow-up appointments from a



procedure. These changes lead to efforts to overcome challenges in data sharing and data
processing efforts across molecular omics, clinical data, and digital health for the advancement of
algorithmic approaches in healthcare and precision medicine in the future’.

Despite the rising opportunities available for leveraging multimodal datasets to understand
and tackle disease, it is important to evaluate how inequities can arise across the computational
pipeline. Inequities in the dataset and modelling approaches can lead to societally biased scientific
insight or biased algorithms, which can be further propagated when applied to translation. These
biases can arise from the beginning, with data collection and representation, to algorithmic bias in
model design, behavioral biases in data availability, as well as bias propagation due to algorithm
utilization despite data shifts or drift. Scientific advances should therefore be considered with a
framework of equity and inclusion to prevent transmission of healthcare disparities in translational
applications and ensure algorithmic advances can benefit all communities and populations.

For example, studies leveraging data from the All of Us database have explored differences
in disease prevalence across diverse populations, such as eczema and cardiovascular disease®’,
which provides a starting point to characterize disease epidemiology in a heterogenous patient
sample and motivate further research into understanding and addressing causes. The All of Us
population includes diverse racialized individuals, those over the age of 75, people with
disabilities, people with lower income, and people with less formal education. The All of Us
dataset has also been utilized to study disparities in family health history knowledge and the ability
to afford medications for diseases such as glaucoma!®!!. These types of studies are useful to inform
current understanding of disease characteristics and phenotypes across society, with the benefit of

inclusion of minority populations and allowing for informed changes across domains of health



policy, clinical decision making, and design of research studies to ensure proper representation in
the study of disease biology'2.

In this section, a brief review will be provided on recent advances across the fields of
bioinformatics, translational informatics, and clinical or medical informatics, and across omics

domains including molecular, microbiome, clinical, and digital health.

1.1.3 Approach

A literature search was performed on PubMed, Google Scholar, and within specific
journals for publications past 2019, including Nature, Nature Digital Medicine, Nature
Bioengineering, Lancet, the Journal of American Medical Association, Journal of Medical Internet
Research, the New England Journal of Medicine, and Bioinformatics. Keyword searches were also
performed to identify relevant publications, with keywords chosen by both broad and specific
translational informatics topics (Table 1.1.1). References were also acquired from citations in
papers identified from reviewed journals and keyword searches. After surveying identified papers,
chosen papers were determined by their breadth, novelty, impact, or relevance, with a particular

focus on papers that touch upon equity or inclusivity in the informatics fields.

1.1.4 Survey of Translational Bioinformatics

Translational bioinformatics applications include various goals, such as disease
phenotyping, disease characterization, predictive modelling, trajectory modelling,
subphenotyping, and drug discovery. Among these applications and pathway, we mention how
equity and inclusion which should be considered at every step of the process including population

identification, data collection, methodology, and algorithmic applications (Figure 1.1.1).



Informatics with Molecular Data

There are many recent exciting advances in the utilization of omics data to gain insights
into complex diseases, discover biomarkers, therapeutic targets, and perform drug discovery
through computational approaches across machine learning disciplines. Molecular datasets include
diverse data modalities measuring the genome and polymorphisms, cancer gene mutations,
epigenetics, gene expression, proteomics, microbiome, and others. These measurements have also
advanced to acquisition with high temporal and spatial resolution, including data at the single cell
and/or single organism level. As technologies are becoming more advanced, not only has
molecular measurements become more easily attainable in the clinic, but advances in both
molecular measurements and algorithmic development have allowed for improved clinical care to
include cancer phenotyping, infectious disease identification, and disease risk identification. As
technologies become increasingly advanced, there is also the need to revisit goals of equitable
representation and conclusions across molecular studies and clinical implementation.

The rise in available measurements across omics modalities across the same samples and
patients have paved the way for research in understanding associations among the intricacies of
disease and health. Microbial compositions and host transcriptome have been utilized for
applications including understanding crosstalk that influencing disease risk in inflammatory bowel
disease (IBD) and irritable bowel syndrome (IBS)!*!4, as well as prediction of preterm birth via a
crowdsourced DREAM challenge!>. Datasets provided in AMP-AD (Accelerating Medicines
Partnership - Alzheimer’s Disease) for Alzheimer’s Disease also allow for investigations across
both mice and human for understanding of shared disease mechanisms. Multi-omics datasets are
also being utilized to help identify disease biomarkers. For example, the CCGA (Circulating Cell-
free Genome Atlas) consortium employed an ML method to detect cancer and its origin by

analyzing the DNA methylation patterns of participants as a means for potential usage in early



cancer detection and treatment'® Some studies have also employed similar methods in the
identification of infectious disease based on cell-free DNA (cfDNA), particularly among infectious
diseases such as COVID-19'". Furthermore, there exists great interest in identifying biomarkers
for aging and AD, with many potentially identified markers in the blood and cerebrospinal fluid,
and full-scale clinical integration still pending.

Beyond disease detection, there is notable progress in identifying new indications for
existing FDA-approved medicines, called drug repurposing, which offers hope in treating a greater
variety of disease'®!°. Some initiatives, like the OCTAD (Open Cancer TheraApeutic Discovery)
website, are dedicated to assisting researchers in cancer drug discovery by comparing compound-
induced gene expression signatures with gene expression data from patients?®. The urgency
brought on by the COVID-19 crisis has also sparked efforts to find repurposed medicines, with
some prior approaches identifying statins and antipsychotics, as well as remdesivir, as potential

treatments in the early stages of the crisis?!*

. Overall, repurposing existing drugs can
revolutionize treatment methods for various diseases in the foreseeable future, and methods
spanning across omics domains are evolving for that purpose.

Considering Equity: It is crucial that all advancements in multiomics informatics methods
and applications cater to everyone equitably. The NHGRI (National Human Genome Research
Institute) emphasizes a diverse workforce in genomics and inclusive research participant to
advance understanding of diseases among diverse patient populations?. A current challenge is the
overrepresentation of European individuals in genome studies (>80%), leading to potential health
disparities due to decreased predictive power from polygenic risk scores in non-European

individuals®*. However, recent endeavors aim to address this imbalance. For example, the PAGE

(Population Architecture using Genomics and Epidemiology) study incorporated a diverse non-



European participant pool and unearthed various novel findings and ancestry-specific
polymorphisms?®. The All of Us research initiative also emphasizes diverse participant
involvement and combines various data types, aiming for a holistic understanding of human health
by integrating data across molecular data, electronic health records, survey data, and other social

h26,27

determinants of healt . For the goal of equitable benefit of precision medicine to be applied in

clinical translation, research inclusivity should be prioritized to ensure 2%,

Informatics with Clinical Data

Clinical information includes data extracted from electronic health databases, clinical
trials, imaging, and notes. Only recently has the potential of clinical data been utilized for
bioinformatics studies. Within electronic medical records (EMRs), patient information across
diagnoses, lab results, drug prescriptions, and outcomes can be linked and investigated, and
potentially include information about a patient’s economic and social backgrounds®®. For
example, a study in the UK on pediatric diabetes identified differences in treatment regimen due
to racism exposures’!. Clinical informatics have led to advancements in patient profiling, disease
prediction, treatment decisions, and subtyping. Based on a patient’s health profile, algorithms can
be employed that span from basic association analyses and diagnostic groupings to machine
learning models that intelligently embed and cluster patients. This has been applied to several
diseases such as type 2 diabetes, Alzheimer’s Disease, and depression®?34. These phenotyping
approaches highlight the heterogenous nature of disease and provide opportunity for treatment, but
this heterogeneity also highlights the necessity to include diverse cohorts for fair representation
across these heterogenous presentations and potential variations in treatment approaches.

There have also been a surge in further applications of clinical data for forecasting and

predicting clinical outcomes, triaging disease severity, and assessing treatment efficacy or adverse



effects®>%. Emphasis is particularly placed on interpretable models as opposed to ‘black box’
models, as well as models that can be validated across medical centers to account for heterogeneity
in treatment and patient differences. Since clinical records also contain extensive records of patient
treatment history and diagnoses, drug repurposing applications are investigated through virtual or
in silico trials to understand treatment patterns and gain insight into drug associations and
outcomes**#, Ultimately, the aim of many clinical informatics studies is the integration into
clinical routines and treatment decision making. Example successes of translational applications
include stories of prediction of patients undergoing radiation therapy?, identifying adults at risk
for clinical deterioration® guiding ultrasound and procedures >*, and managing COVID-19
outbreaks®>.

Considering Equity: As clinical bioinformatics increasingly plays a role in medical care
and insight, it is crucial that algorithms developed are beneficial to everyone, especially groups
that have been historically marginalized or understudied. If models are trained on data that lack
representation from diverse individuals, such as racial exposures and gender identity groups,

>7-67 Therefore, it is essential that

machine learning algorithms will learn from the bias themselves
research and algorithmic development takes into account equity along the pipeline of data

collection and model development.

Informatics with Digital Data

In the past two years, the COVID-19 pandemic has created many challenges and
opportunities in utilizing technology to aid in healthcare when direct face-to-face meetings are less
feasible, including video visits (telehealth) and sensor use via phones or wearables®®. This led to

maturation in digital health, informatics, and machine learning as a way to combat the pandemic
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from both a public health perspective on prevention and control, as well as with providing
individualized healthcare®.

Mobile phones and wearables help provide a source of data that can be analyzed for health
outcomes. As an example, population level information has been utilized to help with contact
tracing at the start of the pandemic®, and modeling infectious spread throughout numerous

countries’?7!

. Sensor data have also been utilized learning to detect COVID-19 infection” via
tracking of vital signs, sleep, activity, and even speech’>7*, These ‘digital biomarkers’ provide an
alternative proxy to invasive blood tests or molecular biomarkers, with applications including
screening for depression’, prediction of Parkinson’s disease severity’’, and evaluating frailty in
older people”. These applications provide recommendations in consumer applications or are
slowly integrating into medical care as evident in the use of digital biomarkers for onsite patient
triage and evaluation.

There has also been much work from the translational perspective in applying modeling
and analysis approaches to aid in the advancement of medical care. One application includes aiding
in physician monitoring of disease progression to inform clinical decision-making and
management for complex diseases. For example, there are efforts to improve inpatient and at-home

80-82and obtain non-invasive proxies for metrics such as glucose®* and

monitoring of vital signs
inflammation status®. There are also increasing efforts to utilize digital biomarkers for precision
medicine applications, such as in cancer and autoimmune diseases®>, to optimize therapies that
account for disease complexity and heterogeneity. Furthermore, computational approaches are in
development to manage the large data complexity of information acquired to derive scientific or

medical insights via phenotyping®” and predicting clinical or behavioral states®®%,
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Some digital health applications explored include incorporation of interactivity and
feedback through patient-facing mobile applications. Mobile applications can aid in patient-centric
care via patient education and treatment support, which is of particular importance for healthcare
affordability and access. There has been an increase in the availability of apps for a variety of
diseases, such as for vital sign monitoring, glucose monitoring for diabetes, weight management™,
mental health®!, and even for managing postpartum maternal health®. Informatics and artificial
intelligence techniques can also be used to guide patients in management of their own care®?, such

as determining optimal drug dosage or timing®*%

, or predicting risk and providing
recommendations from surveys and inputted data points®®®’. These translational applications have
great opportunities for improving equity and inclusion in disease care, such as in aiding health
management for those with disabilities®®, complex diseases®!%, or in under-resourced
locations!?!,

Considering Equity: With the impetus that comes from the COVID-19 pandemic,
technology and digital health are expected to continually become integrated into clinical care and
utilized for scientific and clinical research®. This spans a wide range of data types and
applications, ranging from public health analysis of mobile phones, networks, the internet, and
GPS to individualized applications from both the clinical perspective (EMR, telehealth, medical
devices) and from the patient perspective (wearables, mobile applications). There is therefore not
a better time than now to talk about opportunities in equity. These opportunities include access,
affordability, decreased time in the hospital, as well as early detection and prevention for public

health goals®®. With the maturation of digital health approaches, beyond issues regarding privacy

and regulations, applications should account for technological literacy!??; accessibility for

103-105 98,103.
b

culturally diverse populations , older people'®!'%7  and people with disabilities
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adaptability to rural environments!%®; various levels of health literacy!%>!'!%; and even access to

fundamental tools and technology!!!'!'*, With these considerations in place, digital health can
become an essential way to bring informatics into accessible and equitable translational

applications.

1.1.5 Discussion

This review of the field highlighted innovative research post COVID-19 pandemic,
blending computational progress with equity. The growing literature focuses on equity throughout
the bioinformatics process, from data collection to interpretation. Recognizing bioethicists like
Sandra Soo-Jin Lee's viewpoint, we acknowledged the ethical responsibilities when using
biomedical data, including nurturing trust with underrepresented communities and individuals®®2°.
In the current era, we can acquire vast amounts of data, driving the surge of informatics and
machine learning. These methods advance scientific knowledge, pinpoint therapeutic targets,
support medical decisions, and foster patient-centric care. With evolving technology, there are
opportunities to improve accessibility and health literacy. However, challenges persist in
translational informatics. Data representation is a hurdle; more needs to be done to ensure equity
in data collection. Technological literacy is also a barrier for many, impacting the efficacy of
translational tools. Access to institutions and technology is foundational for inclusivity in all areas,
from data to healthcare delivery!!>-12°,

The upcoming decade demands a focus on equity in data collection, analysis, model
implementation, and application development. In summary, with the vast amounts of genomic,

clinical, and digital health data available, computational methods offer immense potential to

advance human health. Machine learning's transformative power is evident, especially in
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predictive modeling. Integrating diverse data and prioritizing equity throughout research can pave

the way for universal precision medicine.
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Table 1.1.1 Keywords in the Search for Publications or Related Publications in Translational
Bioinformatics

These terms were utilized in identifying relevant publications within informatics and health
translation.

Informatics Broad Al or Disease or data  Clinical or digital
terms algorithmic related terms health relevant
terms terms
e Precision medicine e Machine learning ¢ Biomarker e Electronic medical
e Translational e Machine learning discovery records
bioinformatics bias e Phenotyping e Electronic health
e Translational o Artificial e Microbiome records
informatics intelligence o All of us research o Clinical trials
¢ Bioinformatics e Predictive program e Clinical informatics
¢ Bias informatics modelling ¢ Digital biomarkers e Digital health
e Multiomics o Clustering e Disease trajectories @ Mobile health
o Omics ¢ Disease subtyping o Telehealth

¢ Drug repurposing e Subphenotyping
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Figure 1.1.1 Translational Bioinformatics in the Era of Precision Medicine

Here we present recent translational bioinformatics approaches that leverage molecular, clinical,
and digital data to advance precision medicine. We discuss specific applications such as
phenotyping, outcome prediction, and therapeutics, as well as methods including informatics,

statistics, and machine learning, all within the context of equity and inclusion.
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1.2 Personalizing routine laboratory measurements from electronic health

records with machine learning

1.2.1 Abstract

Machine learning applied to electronic medical records can be used to create personalized
lab test reference ranges and to quantify disease risk, paving the way for precision medicine in

clinical care.

1.2.2 News and Views

Precision Medicine is “an emerging integrative approach for disease prevention, early
detection and treatment that takes into account individual variability in genes, environment, and
lifestyle.”! For instance, testing for genetic variants in a person’s tumor sample is being
increasingly performed as a part of diagnosing malignancies and determining therapeutic options,
and is becoming the standard of care for some cancers??. This targeted approach to clinical care is
enabled in part by basic research discoveries and is fueled by a growing volume of molecular,
clinical, and epidemiological data. Electronic medical records (EMRs) provide an invaluable
source of data for biomedical research and opportunity for precision medicine strategies, including
the use of EMRs for personalized lab test modeling* (Figure 1.2.1).

EMRs capture clinical data on the population of patients, including demographics,
diagnosis codes, medication orders and laboratory tests, which results in billions of data points on
millions of patients. Even though EMR data are collected for individual patient-care purposes,
there is an opportunity for de-identifying the data and, together with advanced computational

approaches, leveraging it for clinical and translational research.
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Integrative computational methods have become a valuable tool for turning various types
of biomedical data into clinically actionable information. Machine learning is a branch of artificial
intelligence based on the idea that systems can learn from data, identify patterns, and make
decisions with minimal human intervention. These predictive modeling approaches have been
successful in many fields, including computer vision and natural language processing, and have
been extensively applied in the biomedical domain >, Bringing together rich clinical phenotyping
in the EMR with advanced machine-learning techniques provides an incredible opportunity for
advancing precision medicine in the clinic.

Currently, since clinicians rely on ‘hard-coded’ reference ranges for laboratory results,
automated ways to use machine learning to identify personalized reference ranges are desired®,
especially since ranges can differ by age, sex, ethnicity, disease status and other relevant
characteristics. A recent study has provided support for this rationale by demonstrating that the
distributions of over 50% of laboratory tests with currently fixed reference intervals differ among
healthy people, according to self-identified racial and ethnic groups’. Although computational
analysis has been applied extensively to diagnosis codes®® and medications in the EMR!*!!,
relatively few studies have analyzed laboratory values. In Cohen et al., the authors made use of
the rich EMR dataset from Israel’s Clalit healthcare system to model 2.1 billion lab measurements
in 2.8 million healthy adults and modeled the trajectories of 92 different lab tests®. They
demonstrated the use of these models for personalized clinical applications, such as the creation
of patient-specific reference lab-value ranges and showed impressive performance in the
prediction of future test results and risks. This approach demonstrates the potential of using
artificial intelligence on EMR data to personalize the interpretation of clinical results, to better

quantify patient risk and to support clinical decision-making. Interpreting and acting upon lab data
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has been an art form practiced by healthcare providers, but now precision-medicine approaches
can help to increase the accuracy and reliability of that process.

To identify lab-test results that corresponded to healthy states, an unsupervised approach
was utilized to filter out those associated with 131 chronic and acute conditions and 5,223 drug—
test pairs that showed significant correlation. This generated a list of ~0.5 billion lab measurements
from 2.8 million people and sufficient data for multivariate modeling across an age range of 20—
90 years. These models were shown to better represent lab-test ranges for healthy people,
performing better than the absolute normal ranges now used in clinical practice. They were able
to consider variation due to sex-specific trends (e.g., changes in values for red-blood-cell
distribution width due to menopause) or transient age-linked trends (e.g., peaks in alanine
aminotransferase for males in their 30s) that absolute ranges fail to capture. These models can be
applied in the clinic to generate a personalized quantitative reference range, similar to the
utilization of the body-mass-index scale and percentile charts that pediatricians use to assess
growth progress in children.

Looking at median lab-test values among healthy patients, age and sex were also
contributors to less than 10% of within-norm variance in most tests, whereas personalized histories
explained over 45% of variance in over half of the tests*. Predictive modeling was performed to
account for this variance and these trained models could be used for personalized medicine, such
as stratifying patients based on 2- to 3-year prediction of future lab abnormalities, mortality risk
or disease risk. To demonstrate model utility, personalized risk stratification was performed on
people who had normal lab-test values, with the goal of predicting future lab-test abnormalities or
mortality. When used in a real-world setting, this type of modeling will allow healthcare systems

to interpret tests and stratify patients by risk, years before a potential disease may manifest. In
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another demonstration, temporal modeling of sparse patient histories allowed for quantification of
the risk for developing diabetes, renal failure or colorectal cancer*. These models can be extended
to any severe or insidious disease, which will allow more-precise early preventative measures in
the clinic based on the risk of future disease.

Although there is considerable potential for EMR analysis, there are also limitations that
need to be overcome, such as missing data, sampling bias, provider bias, reporting errors and
unreported factors, including over-the-counter medication use. Nevertheless, approaches such as
semi-automated strategy via unsupervised filtering has been utilized to model and replace the
missing values, which has been shown to not negatively affect model performance*. Trained
models could be extended in many potential future directions, some of which address the
limitations mentioned above. Models should be further tested and applied to other EMR systems
across a more diverse patient population to model ‘normal’ lab-test trajectories, which might also
help alleviate the limitations related to bias. Inclusion of additional covariates can also help to
further personalize the interpretation of lab values, even those within normal range. In addition,
there is enormous potential for extension of this methodology beyond laboratory tests, to inclusion
of medications, diagnoses, and longitudinal analysis. Finally, applications of this approach beyond
the ‘healthy’ population will allow immense potential for interpreting laboratory ranges in diseased
populations, which will potentially allow more-personalized interpretation and monitoring of
patients’ lab tests in this context.

Given the extensive clinical databases that exist across many countries and institutions,
there is an incredible opportunity for paving the way forward in making best use of big health data.
Applying modeling approaches to large-scale health data not only allows scientific progress

through interpretability and observation, but also can bring actionable insights into the clinic to
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improve personalized healthcare around the world. A stratified analysis according to personal
covariates (e.g., age, sex, race, and other characteristics) can allow for better modeling of the
complex extensive data within EMRs. Then, through the application of computational modeling
and machine learning, results such as personalized lab test ranges, disease risk scores, and targeted
therapeutics can be determined for each patient based on patient-specific covariates and medical

history.
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Figure 1.2.1 General workflow for modeling patient EMR data for personalized medicine

Information such as lab test results, diagnostic codes, medications, and other relevant demographic
information or covariates can be extracted from electronic medical records. By stratifying lab
results as outcomes to models and including demographic and relevant diagnostic or medication
covariates in machine learning models, personalized lab ranges can be determined based on a
patient’s individual characteristics and health profile. These personal ranges can be utilized to
identify potential diagnostic risks and therapeutic approaches.
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Chapter 2: Clinical Informatics Enables Deep Phenotyping and

Discovery of Sex-Specific Differences in Alzheimer’s Disease

2.1 Abstract

Alzheimer’s Disease (AD) is a devastating disorder that is still not fully understood. Sex
modifies AD vulnerability, but the reasons for this are largely unknown. We utilize two
independent electronic medical record (EMR) systems across 44,288 patients to perform deep
clinical phenotyping and network analysis to gain insight into clinical characteristics and sex-
specific clinical associations in AD. Embeddings and network representation of patient diagnoses
demonstrate greater comorbidity interactions in AD in comparison to matched controls.
Enrichment analysis identified multiple known and new diagnostic, medication, and lab result
associations across the whole cohort and in a sex-stratified analysis. With this data-driven method
of phenotyping, we can represent AD complexity and generate hypotheses of clinical factors that
can be followed-up for further diagnostic and predictive analyses, mechanistic understanding, or

drug repurposing and therapeutic approaches.

39



2.2 Introduction

Alzheimer’s Disease (AD) is the most common cause of dementia, making up 60-80% of
cases, with a devastating and increasing burden on patients, caregivers, and society!. AD is
characterized by brain atrophy and accumulation of beta-amyloid plaques and tau tangles seen on
brain pathology after death. The disease erodes memory and cognitive functions, causing
interference with daily activities and contributing to great emotional, social, and economic burden
on patients and their families. AD is incurable and challenging to understand and diagnose. One
reason AD is difficult to study is because it is a complex, heterogeneous, and multifactorial disease
that takes many years to manifest>. This complexity, along with the slow insidious progression of
the disease, makes it difficult to fully characterize disease phenotypes and associations.

Sex is one factor that has been shown to be important in AD, with higher prevalence in
women afflicted by the disease at a 2:1 ratio compared to men!. While women have an increased
estimated lifetime risk of AD, there is mixed evidence of risk between men and women of the
same age>*. Recent findings show that sex contributes to differing vulnerabilities or resilience to
AD, as men with AD progress to death quicker>® while women with this disease show higher
cognitive resilience despite increased tau pathology>’#. How sex contributes to these differences
in prevalence and vulnerability is a question of fervent interest among researchers in the AD field’.
Recent studies in mice demonstrate that a second X chromosome may contribute to AD resilience®.
Further sex-specific human studies in Alzheimer’s Disease also show sex modification of AD
risk!?, progression!!, and molecular phenotype!'"1>. As such, sex is a crucial factor to consider in
studying and phenotyping AD.

While many efforts have evaluated the association of individual risk factors with AD,

unbiased approaches to these associations are limited. Prior work, largely hypothesis-driven,
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focused on select comorbidities associated with AD, such as hypertension'®, vascular disorders'’,

20-22

diabetes'8, obesity!®, and others?**?2. However, how sex modulates AD complexity and

heterogeneity has still not been fully explored. Prior big data approaches to AD have examined

23,24

genotype-phenotype associations?>** and molecular analyses!*?>27 to characterize AD and sex

differences'*"3

. Other work on phenotyping AD patients using clinical data has examined
neuroimaging?®, neuropsychiatric phenotype?®®, chart reviews?’, and billing records independently.
Thus, an unbiased comprehensive approach to phenotype AD and identify sex associations using
full clinical records is needed.

With the rise in electronic medical record (EMR) use over the past decade?!, there is
abundant underutilized clinical data on patients covering comorbidities, medications, and lab
values. This type of dataset provides a great opportunity to deeply investigate diseases and identify
associations to facilitate understanding disease prevention and progression. Recently, EMR has
been utilized for other diseases for creating comorbidity networks*?, identifying disease subtypes??
and predicting disease outcomes***> highlighting the potential of utilizing EMR data to extract
insight and utility for complex and heterogeneous diseases’®, but a big data integrative analysis
with EMR data has not yet been applied to characterize AD.

Deep phenotyping is a data-driven approach that has been used to provide more detailed
stratification and representation of a disease in the era of precision medicine®’*%. Here, we take an
integrative approach through deep clinical phenotyping and network analysis to provide insight
into AD clinical characteristics with a focus on sex differences. For the first time to our awareness,
integrative phenotyping and association analysis is used to identify, in an unbiased manner, unique
clinical features associated with AD itself - and reveals potential previously unknown sex-specific

associations in the context of diagnoses, medications and lab test results.
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2.3 Results

From the UCSF EMR database (~5 million patients), we identified 8,804 AD patients
(5,558 female, 86.5 mean age (6.4 standard deviation)) and 17,608 propensity score (PS)-matched
control patients (11,117 females, 86.5 mean age (6.4 standard deviation)). From the Mount Sinai
EMR (~4 million patients), 5,958 AD patients (4,138 females, 88.3 mean age (8.7 standard
deviation)) and 11,916 PS-matched controls (8,446 females, 88.7 mean age (11.4 standard
deviation)) were identified. Post-matching analysis demonstrated adequate balance in covariates
with standardized mean differences in age and categorical distributions below 0.1 (or below 0.2
between matched sex groups). Demographic characteristics of AD and matched control patients

are shown in Table 2.1 and Supplementary Table 2.1.

2.3.1 Embedding with Diagnosis Shows Separation Between AD and Controls

Due to the size of our cohort, we first performed low-dimensional visualizations using
diagnoses as features to visualize patient separation. Low-dimensional UMAP visualizations of
non-AD diagnoses (47,439 features, ICD-10-CM codes) show that distributions for AD and
control patients are significantly different among the first two UMAP components (Mann-Whitney
U-Test, p-value < le-5, Figure 2.2A,B) at both UCSF and Mount Sinai, with a progressive
separation between groups. For the UCSF data, sex and death status show significant correlations
with the first component, while age is significantly correlated with both components (Mann-
Whitney U-Test p-value <0.01, Figure 2.2A, Supplementary Figure 2.1). Sex, death status, and
age are significantly correlated with both components at Mount Sinai (Mann-Whitney U-Test p-

value < 0.01, Figure 2.2B, Supplementary Figure 2.1).
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2.3.2 Alzheimer vs. Control Association Analysis Identifies Previously Known and Novel
Associated Comorbidities in AD

Among each diagnostic hierarchical level (Level 2 categories, Level 3 categories, and full
diagnosis names), AD disease networks contain more nodes and edges compared with control
networks (Supplementary Table 2.3). In UCSF Level 3 diagnosis networks, more nodes and
edges occur in AD vs control networks. As shown in Figure 3A, when thresholding Level 3
diagnosis categories by >5% of patients, there are 243 diagnosis pairs among AD patients
compared to one pair in controls. When comparing node-level network metrics between groups,
thresholded by >1% of patients within a group, AD and control networks are significantly different
(Mann-Whitney U-Test, p-value < 0.01) when compared on average shortest path length, closeness
centrality, neighborhood connectivity, and stress centrality, indicating a higher degree of
connectivity among AD networks across all levels (Figure 2.3C). In Mount Sinai Level 3
diagnostic networks, more nodes and edges occur in AD networks compared to control networks,
with significantly different distributions across AD and control networks on degree, eccentricity,
neighborhood connectivity, and topological coefficient (Mann-Whitney U-Test, p-value < 0.01,
Supplementary Table 2.3). Across the board, network metrics normalized by the metric are
significantly correlated between UCSF and Mount Sinai (Spearman p = 0.55, p-value < le-4,
Figure 2.3E)

Within Level 2 diagnosis categories, there were 166 significant diagnosis categories
(Fisher’s exact test, Bonferroni-corrected p-value < 0.05), with 120 diagnosis categories
significantly enriched (OR > 2) uniquely in the AD group and no significantly enriched diagnosis
categories uniquely in the control group (Figure 2.4A top). Within Level 3 diagnosis categories,

there are 501 significant categories, with 391 and 4 categories significantly enriched in AD and
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control groups, respectively (Fisher Exact test, Bonferroni-corrected p-value < 0.05,
Supplementary Data 2.1). Within full diagnosis names, there are 1,627 significant diagnoses,
with 1,491 and 7 diagnoses enriched uniquely in AD and control groups, respectively. Top
significant diagnoses in AD include vascular dementia, hypertension, hyperlipidemia, urinary tract
infection, syncope, hypothyroidism, and osteoporosis, while top significant diagnoses in controls
include neoplasms of liver and brain (Fisher Exact test, Bonferroni-corrected p-value < 0.05,
Figure 2.4A bottom, Supplementary Data 2.1). Top ICD diagnostic blocks in AD include mental
health and behavioral diseases, genitourinary diseases, endocrine and metabolic diseases, and
circulatory system diseases (Figure 2.4B). In the validation cohort, 1,495 of 1,627 significant
UCSF diagnoses mapped to Mount Sinai EMR codes, of which 889 (60.13%) are significant
(Fisher’s exact test, Bonferroni p-value < 0.05). Overall comorbidity odds ratios at UCSF are
significantly correlated with those of the validation cohort at Mount Sinai (Spearman p = 0.65, p-

value < le-5, Figure 2.4C).

2.3.3 Sex-Stratified AD vs. Control Association Analysis Identifies Vascular and
Musculoskeletal Disorders in Female AD & Behavioral/Neurological Disorders in Male AD

When stratifying diagnoses by sex (see Methods), AD disease networks are significantly
different on metrics of betweenness centrality and neighborhood connectivity in both males and
females compared to their respective controls among all diagnostic hierarchical levels (p-value <
0.001). Networks were significantly different in stress centrality among all diagnostic hierarchical
levels when comparing AD males to AD females, but not when comparing control males to control
females. Comparison of sex-specific network for diagnosis name show significantly greater
closeness centrality, greater neighborhood connectivity, and lower eccentricity in female networks

(Mann-Whitney U-Test, p-value<0.01 all three metrics, Figure 3D, Supplementary Table 2.4).
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Within the validation cohort, similarly, female AD networks show significantly greater
neighborhood connectivity compared to male AD networks (Mann-Whitney U-Test, p-value<0.01,
Supplementary Table 2.4). When thresholding full diagnosis names by >5% of patients within a
sex group, female AD patients have 45 shared co-diagnosis pairs compared to 14 in male AD
patients (Figure 2.3B), and no pairs were identified for either control sex group.

For both males and females, there are 136, 338, and 714 shared significant diagnostic
categories or diagnoses for Level 2, Level 3, and full diagnosis names, respectively. In a sex-
stratified analysis, there were 29, 164, and 699 female-only significant hits and 5, 18, and 91 male-
only significant hits for Level 2, Level 3, and full diagnosis names (Fisher Exact test, Bonferroni-
corrected p-value < 0.05, Figure 2.5A, Supplementary Data 2.1). Compared to males among
Level 2 diagnostic categories, females have a greater percent of significant diagnoses in blood-
related disorders (e.g., nutritional anemia, coagulation defects) and congenital disorders and also
have greater enrichment of pervasive and specific developmental disorders, musculoskeletal
disorders (e.g. chondropathies, other osteopathies), injuries (e.g. injuries to the hip and thigh,
injuries to the ankle and foot), infections with a predominantly sexual mode of transmission, and
metabolic disorders (Supplementary Data 2.1). When comparing Level 2 categories in the
validation cohort, among females, 153 out of 165 mapped with 60 (30.22%) significant, and among
males, 133 out of 141 mapped with 64 (48.12%) significant (Fisher Exact test, Bonferroni-
corrected p-value < 0.05 based on number of significant UCSF diagnoses). In general, Level 2
category sex-specific odds ratios are correlated between institutions (Females: Spearman p= 0.77,
p-value < le-5; Males: Spearman p = 0.83, p-value < le-5). In the validation cohort, females have
similar enrichment of blood-related disorders (e.g., nutritional anemia) and injuries (e.g., injuries

to the hip and thigh), while males have enrichment of behavioral/emotional disorders.
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Within full diagnosis names, unique significant diagnoses of female AD patients include
asthma, atrial fibrillation, arthritis, fractures, and accidents while unique significant diagnoses of
male AD patients include parkinsonism, sleep apnea, hypersomnia, neuropathy, irritability, and
imbalance (Fisher Exact test, Bonferroni-corrected p-value < 0.05, Figure 5A, Figure 5B,
Supplementary Table 2.4). Among full diagnosis names significant in both males and females,
female AD patients have greater association in depression, hypertension, hyperlipidemia, urinary
tract infections, upper respiratory infections, anemia, osteoporosis, and pneumonia, while male
AD patients have greater effect size with behavioral phenotypes, hearing loss, and agitation
(Supplementary Data 2.1). Among the full diagnosis names in the validation cohort, for females,
1,149 out of 1,383 significant diagnoses mapped, of which 240 (20.89%) were significant, and for
males, 702 out of 805 significant diagnoses mapped, of which 216 (30.77%) were significant. In
general, sex-specific diagnosis odds ratios were correlated for both females (Spearman p=0.77, p-
value < 1e-4) and males (Spearman p=0.83, p-value < le-4, Figure 2.5C). In the validation cohort,
similarly, female AD patients have greater association in depression, hypertension, and
osteoporosis while male AD patients have greater association in hearing loss and agitation

(Supplementary Data 2.1).

2.3.4 Few Comorbidities Change with Sensitivity Analysis Taking Encounters Into Account

For our sensitivity analysis that included only patients with > 10 encounters and records in
EMR spanning > 1 year, there were 6,612 AD patients (2,382 males, 4,223 females) and 13,224
control patients (4,674 males, 8,539 females) identified by PS-matching on the number and
timespan of encounters in addition to demographic characteristics and death status. A summary of
the demographic characteristics of these cohorts are shown in Supplementary Table 2.1. We

identified 100, 222, and 561 significant level 2, level 3, and full diagnosis names respectively
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(Fisher Exact test, Bonferroni-corrected p-value threshold of 0.05), and an increase in odds ratio
for chromosomal abnormalities and cerebrovascular disorders in AD patients (Supplementary
Table 5). With sex-stratified enrichment analysis, encounter controlling increased enrichment of
cerebrovascular disease in females, and increased significant enrichment of behavioral disorders,

vision problems, and vascular dementia in males (Supplementary Data 2.2).

2.3.5 Visualization of Enriched Comorbidities via Rshiny App
An interactive visualization of Figure 2.3 and Figure 2.4 are made available in an RShiny

app vizad.org.

2.3.6 Medication Association Analysis Identifies Dexamethasone as Enriched in Controls

In addition to comorbidities, we performed medication enrichment analysis in order to
phenotype patients and investigate drugs enriched in AD patients and controls. Medications found
enriched (Fisher Exact test, Bonferroni-corrected p-value < 0.05, OR >2 or <.5) in AD patients
include current treatments like donepezil and memantine, but also vitamin B12, antidepressants
(escitalopram, citalopram, sertraline, mirtazapine, trazodone), antipsychotics (quetiapine,
risperidone, olanzapine), carbidopa/levodopa, vitamin D3, and melatonin. Medications found
enriched in control patients include dexamethasone, ondansetron, and alteplase. Significant
medications in controls with lesser effect size (Fisher Exact test, Bonferroni-corrected p-value <
0.05, 0.5 < OR < 1) include midazolam, propofol, opioids (oxycodone, fentanyl citrate), and
furosemide (Figure 2.6A). From the validation cohort, 116 out of 121 medications mapped, of
which 66 (56.90%) were significant (Fisher Exact test, Bonferroni-corrected p-value < 0.05 based
upon significant medications at UCSF). In general, odds ratios of medications are significantly

correlated (Spearman p = 0.85, p-value < le-4, Figure 2.6C). Dexamethasone is significant among
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controls in both institutions, and multiple medications including vitamin B12, antidepressants, and
antipsychotics are significant in AD patients among both institutions.

In a sex-stratified analysis, medications enriched in AD males include Tdap vaccine,
melatonin, and carbidopa/levodopa while methylprednisolone and phenylephrine are enriched in
control males. Female AD patients have enrichments in diazepam, antipsychotics (risperidone,
aripiprazole), buspirone, antidepressants (sertraline, mirtazapine, trazodone, bupropion), vitamin
D2, and levothyroxine while control females are enriched in norepinephrine bitartrate and fentanyl
citrate (Figure 2.6B). In the validation EMR, 18 of 23 (78.25%) significant medications found at
UCSF are significant in females at Mount Sinai, and 13 of 16 (81.25%) in males (Fisher Exact
test, Bonferroni-corrected p-value < 0.05 based upon significant medications at UCSF within a
group). Overall, there is significant correlation of sex-specific medication odds ratios in females
(Spearman p = 0.7, p-value = .001) and males (Spearman p = 0.62, p-value = .001, Figure 2.6C).

Among both institutions, carbidopa/levodopa is significant in AD males only.

2.3.7 Comparing Labs Between Sex-Specific AD and Control Groups Identifies Clusters of
Lab Value Differences

We also performed an unbiased analysis of laboratory test result differences between AD
patients and controls to phenotype patient groups. Among significantly different median lab values
in both UCSF and Mount Sinai, AD patients have higher levels of hematocrit, serum calcium, RBC
count, serum albumin, and cholesterol and lower levels of glucose, activated partial thromboplastin
time (aPTT), alanine transaminase (ALT), and aspartate transaminase (AST) compared to controls
(Mann-Whitney U-test, Bonferroni-corrected p-value threshold of 0.05, Figure 2.6D,
Supplementary Figure 2.4A).

Average significant median lab values across sex-stratified groups (AD females, AD males,
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control females, control males) and across institutions were clustered into 7 significant clusters
(Family-wise Error Rate (FWER) corrected p-value 0.05 cutoff, Figure 2.6D). Clusters 1, 4, and
7 show discordant results between UCSF and Mount Sinai. Clusters 2 represent groups of
significant median lab values lowest in control males, and highest either in all AD patients (e.g.
albumin, sodium and carbon dioxide) or highest in AD females (e.g. HDL cholesterol,
lymphocytes, calcium). Cluster 3 represents significant labs with greater median values in females
and in controls (e.g. Free T4, sedimentation rate). Cluster 5 represents labs with lower significant
median values in AD patients than controls for either the whole group (e.g. B-Type Natriuretic
Peptide, AST) or in a sex-specific way where significant median lab values for males are greater
than for females (e.g. aPTT, ALT, ferritin). Cluster 6 shows labs greater in AD compared to
controls in a sex-specific way where overall males have greater significant median lab values than
females (e.g. hemoglobin, RBC count). Across the board, the normalized lab values are correlated
between the institutions (Female control: Spearman p = 0.45, p-value < 0.001; Male control: 0.46,
p-value < 0.001; Female AD: 0.59, p-value < le-5; Male AD: 0.64, p-value < le-5;

Supplementary Figure 2.4B).

2.4 Discussion

In this work, we demonstrate the capability of utilizing data from EMRs in order to perform
deep phenotyping of a complex and heterogeneous disease, Alzheimer’s Disease, and derive
insights into associations with AD in a combined and sex-stratified analysis.

First, we performed low-dimensional topographical embedding of patients using diagnoses
as features in order to visualize patients spatially. We see that AD status is significantly correlated
with the first two UMAP components at both institutions, suggesting that phenotypic

representation of patients using diagnosis data can demonstrate separation of AD and control
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patients. The UMAP representation demonstrates a progressive spectrum between controls and
AD, as well as representing variance and heterogeneity at individual patient resolution.
Furthermore, with the UMAP representation, we can visualize topographically the distribution of
age, sex, and other variables among patients.

We then generated comorbidity networks between AD and controls which provide a
phenotypic representation of disease interactions among patient groups and a difference in
connectivity between diseases in AD and controls. AD networks contain a greater number of edges
and network metrics that point to higher rates of comorbid conditions among AD patients at both
institutions, particularly with stronger links of hypertension (HTN)-hyperlipidemia, HTN-urinary
tract infection (UTI), and HTN-anemia. Indeed, other studies have found multimorbidities (such
as neuropsychiatric and cardiovascular patterns) to increase risk for dementia®, and to contribute
to AD pathological heterogeneity*®#! displaying the larger complexity and heterogeneous nature
of AD.

With enrichment analysis, we applied an integrative, unbiased, big data approach to EMR
and identified previously known associations and possible novel connections with AD. Some
diagnoses found enriched in AD patients compared to control patients from our analysis at both

institutions that have been previously identified as linked with AD include midlife

18,43 44,45

, anemia 17,46

hypertension'®#?, diabetes mellitus , vascular pathology!”*¢, osteoporosis*’*¥, and
urinary tract infections*’. Enrichment of hypertension and vascular risk factors supports many
current hypotheses of potential vascular pathologies and inflammatory factors that may lead to
AD!73052 or ‘unmask’ the symptoms of AD by decreasing cognitive reserve by causing vascular

brain disease. Enrichment of diabetes and dyslipidemia supports existing literature that found links

with diabetes mellitus and dyslipidemia®}, with proposed hypotheses involving energy
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metabolism>*°, inflammation®’>”, or the integrity of the blood brain barrier®®°*. Enrichment of
degenerative diseases of age, such as osteoporosis, osteoarthritis, urinary issues, and sensory issues
may align with theories of AD as being a disease linked with frailty®-6°. This analysis therefore
provides an unbiased integrative way to identify multifactorial associations with AD. Our
enrichment analysis also identified neoplasms as enriched in controls at UCSF, especially cancer
of brain and liver. While this is an associative finding, this supports ideas that cancer and AD co-
occur less frequently than the general population®®®’. Some theories propose that AD and cancer
have similar mechanisms and molecular pathways, but are dysregulated in different directions®°.

Next, we generated sex-specific comorbidity networks to provide insight into sex
differences in the complexity of the disease. In both EMRs, female AD networks contain more
nodes with network metrics suggesting greater connectivity than female controls or male AD
networks. This may support association with greater combined diagnoses and multimorbidity in
female AD patients compared to males’. These associations would be consistent with theories of
greater risk of dementia in females as a result of multiple diseases or the theory of greater cognitive
and pathological resilience to AD in females due to taking on a greater burden of more
comorbidities. Furthermore, sex-stratified networks show secondary interactions between
comorbidities and AD, such as links of HTN-UTI and HTN-chest pain among female AD
populations, but not in male AD patients. These findings give higher order comorbidity
interactions associated with AD that have not been examined previously.

When performing enrichment analysis, we identify sex-specific enrichments that may be
linked to AD that have not been previously explored in depth. Male AD patients show enrichment

of neurological and sensory disorders (sleep disorder, parkinsonism, and irritability), and among

diagnoses significant in both sexes, male AD patients have stronger effect size with behavioral
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diagnoses, agitation, and hearing loss. These disorders are also mostly shown to be significant and

associated with greater effect size compared to females in our validation cohort. Prior studies have

71,72 73,74

found hearing loss to increase risk of dementia diagnosis’"’# or cognitive decline’>"’* in men. The
enrichment of behavioral and neurological disorders found in male AD patients may indicate
lessened resilience or higher occurrence of co-pathology. Furthermore, this analysis found the
psychiatric phenotype associated with AD to be related to behavioral phenotypes in males
compared to females, which is consistent with prior studies’’6,

Female AD patients have enrichment of unique significant diagnoses in musculoskeletal
categories (arthritis, fractures), atrial fibrillation, and accidents, and among diagnoses significant
in both sexes, female AD patients show stronger effect size with depression, hypertension, urinary
tract infections, and osteoporosis. Some of these disorders are similarly significant and associated
with greater effect sizes compared to males in our validation cohort. The diagnoses of hypertension
and atrial fibrillation would be in line with the hypothesis of potential cardiovascular risk factors
and pathology that may affect females more. Indeed, there is evidence supporting cardiovascular
fitness to be protective or vascular risk factors to be harmful towards cognitive decline and
dementia in women*>’-", Furthermore, these diagnoses suggest a phenotype for female AD
patients along with other degenerative diseases of aging and frailty. In particular, the increase in
musculoskeletal and bone disorders in female AD patients, as well as high calcium and vitamin D
deficiency, may point to a potential bone metabolism pathology or aberrant calcium metabolism
in female AD patients. From a psychiatric standpoint, the female AD phenotype is more associated
with depression compared to males as supported by studies that found depression associated with
greater hippocampal volume loss in women®’, and is more likely to be a manifestation of mild

cognitive impairment or AD in females®!-32,
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We performed sensitivity analysis by taking the number of encounters for each group into
account. In general, we see a decrease in statistical significance in our enrichment analysis
consistently across all diagnoses. This is likely due to decreased power from a lower sample size,
and a bias towards selection of patients with more severe disease due to encounter thresholding.
Overall, enriched diagnoses are relatively similar, with an increase in cerebrovascular disorders
observed in AD, and particularly female AD patients. Neuroimaging studies have identified
differences in AD phenotypes and brain networks depending on presence of cerebrovascular

disease®8

, which may support cerebrovascular events as an associated phenotype for a different
or severe phenotype of AD.

Medication enrichments show expected associations with AD, as the top medication hits
are current therapies used to modify symptoms of AD (e.g. memantine, donepezil), or are
associated with diagnoses found in comorbidity analysis (e.g. antidepressants for depression).
These medications are also identified as AD-enriched in our validation cohort, although many of
these medications are expected as they are associated with conditions of aging. Medications
enriched in controls provide a more interesting story, as they not only suggest an ‘opposite AD’
phenotype, but control-enriched hits may provide a way to hypothesize potential targets for further
exploration of protective drug effects or drug repurposing. From our medication analysis, we see
control enrichments of opioids, sedatives, dexamethasone, and furosemide, with dexamethasone
also found significant in our validation cohort. The negative association with opioids is
inconsistent with prior studies that found associations between prescription opioid use and AD
risk®, although control enrichment of opioids could possibly be due in part to decreased ability to

communicate pain and decreased opioid prescriptions after AD®. Nevertheless, studies have

implicated the role of opioid system dysregulation in tau hyperphosphorylation and ADY’.
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Dexamethasone is a corticosteroid that has been suggested to help reduce inflammation in AD3%89,
although the data on efficacy is still uncertain and may depend upon the need for combination
therapy”® or control of other factors that complicate the relationship between hormonal levels and
the brain’!*2. Furosemide is a diuretic drug used to treat hypertension and may confer a protective
effect through the control of comorbid conditions that contribute to cardiovascular risk factors.
Furosemide also reduces the production of CSF by inhibiting carbonic anhydrase, which may
impact CSF dynamics and help decrease the risk of AD%. Prior studies have shown possible
protective effects from diuretic drugs and AD**?’, and one study identified furosemide as a
potential probe molecule for reducing neuroinflammation®®.

Characterizing patients by lab values provides another way to phenotype patient groups.
Through our analysis, greater calcium levels were identified, especially in AD females. A small
observational study found calcium supplementation to increase risk of dementia in women with
cerebrovascular disease®. Calcium dysregulation and homeostasis have been implicated in AD
neuronal signaling pathology, and identified as a target for drug development™:!%, Control-
enriched labs may also be related to gastrointestinal cancers or liver/pancreatic dysfunction, as we
observe increased AST, ALT, and glucose levels in controls and particularly among males. This
result is not consistent with a study observing greater glucose levels to increase dementia risk!'®!,

although one study did find low ALT!? to be associated with AD, and some publications implicate

103,104 102,105,106

altered glucose metabolism and liver dysfunction in AD pathology . Furthermore,

since our control cohort has been matched on age and death status, control patients may encompass
a population with terminal disease. Lab clusters also demonstrate phenotypes specific to a sex
group. A lower clotting time (aPTT, PT) and greater platelet count, prealbumin, lymphocytes, and

cholesterol levels in female AD patients may provide a multivariate way to identify potential AD
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phenotype in females. Prior studies have shown high thrombin!'7!%  abnormalities of

109,110 111-113

hemostasis , and abnormal platelet activation in AD patients that may contribute to a
pro-thrombotic state in AD!'!4, leading to microinfarcts and cerebrovascular dysfunction!!>!1®,
although sex-specific associations have not been studied previously. Furthermore, control sex
phenotype may demonstrate protective labs or biomarkers that decrease risk of AD. We see lower
free T3 in control males, and greater free T4 in control females. Indeed, studies on AD populations
have shown high TSH and low free T4 to be associated with the disease!!’-!!°, although sex-
specific associations have not been explored in depth.

Some limitations do exist in our study. First, AD is an insidious and heterogeneous
disorder, and is frequently misdiagnosed even in specialized dementia centers. Clinically,
Alzheimer’s Dementia is suspected when disease biomarker status is unknown, whereas
Alzheimer’s Disease is diagnosed when biomarker status is confirmed. Our current study did not
rely on biomarker-positive cases of Alzheimer’s Disease, and we did not exclude patients with
other pathologies that can also impact brain health through different pathways, such as Parkinson’s
Disease. Nevertheless, Alzheimer’s Disease often co-occurs with other dementias'?%!?!. Second,
EMRs, while a rich data source, is a very sparse dataset with a lot of missing data, such as
sociological factors (e.g., income, education, etc). Nevertheless, the number of patients represented
in the EMR is exceptionally large and provides robust opportunities for deriving meaningful
insights or hypotheses. This limitation also applies to our validation EMR. Additionally, some
associations may be different across the two systems due to differences in the underlying patient
populations or standards of care. Therefore, it is possible that the UCSF EMR does not capture an

association that may be more prevalent in a different population in New York, and vice versa. How

other covariates including socioeconomic factors modify specific AD associations is a question
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that can be followed-up in future work. Third, our definition of controls comes with limitations,
as it is difficult to identify ‘healthy’ controls in the EMR. The institutions represented in our data
includes both primary and tertiary care, which includes patients that seek hospital care for a variety
of reasons. As such, there may be bias in the underlying patient population who chooses to seek
medical care at a metropolitan medical center. Regardless, the power in utilizing EMR allows us
to generate hypotheses with a large number of patients and versatility in choice of controls
compared to many current AD studies. Lastly, our analysis only identifies associations with AD
and does not take temporal factors into consideration, therefore causal relationships cannot be
concluded. This will be the main focus of future work, as the temporal association can categorize
an association as a risk/protective factor (if early in age), a diagnostic clue (if during AD
diagnosis), or as a manifestation of AD progression or severity (if after AD diagnosis).
Nevertheless, given AD is an insidious disorder, there can be brain perturbations a decade or more
before a diagnosis is determined and documented in clinical records. While we made the
assumption of independence in our statistical methods to identify significant associations, this
method can be further extended to alternative statistical models that take covariates into account.
Our current work allows the unbiased identification of associations and phenotyping, which can
then be used to generate hypotheses for guiding follow-up studies.

Overall, our analyses leveraged an extensive clinical dataset to (1) phenotype and represent
AD and (2) perform enrichment analysis to identify known or suggested novel associations with
AD, as well as elicit sex-specific differences. We were therefore able to apply an integrative,
unbiased, big data approach to identify associations with AD and provide phenotypic
representations of an otherwise complex disease. With this approach, we can generate many new

hypotheses to better motivate future work to understand AD complexity and develop diagnostic
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strategies and therapeutic interventions. Future work will include temporal analysis in order to
identify longitudinal relationships and predictive modeling for AD risk, diagnosis, or progression.
More extensive analysis of medication and lab values, especially among opposite phenotypes in
controls, may lead to better strategies for prevention or treatment of AD. Besides elucidating sex
differences, next steps for phenotyping can include investigating race/ethnicity differences or
differences based upon other covariates to better characterize Alzheimer’s Disease heterogeneity.
Furthermore, incorporation of molecular or genetic data with clinical data can help better elucidate

potential mechanisms underlying identified associations.
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2.5 Methods

We performed deep phenotyping and association analysis of AD and control patients. First,
AD and control cohorts were identified from the UCSF EMR and topographically visualized via a
low-dimensional projection of comorbidities. Comorbidity networks were created, and association
and enrichment analysis were performed on all diagnoses, medications, and lab values. These
analyses were further performed in a sex-stratified manner to identify sex-specific associations,
and validation was performed on the Mount Sinai EMR. An overview of the workflow is shown

in Figure 2.1.

2.5.1 Patient Cohort Identification

Patient cohorts were identified from over five million patients in the UCSF EMR database,
which includes clinical data from 1982-2020. Due to the de-identification process, dates are shifted
by at most a year (with relative dates preserved) and all birth dates before 1930 (= estimated age
90) are shifted to be no earlier than 1930. AD patients were identified by inclusion criteria of
estimated age >64 years, and ICD-10-CM codes G30.1, G30.8, or G30.9, where estimated age is
determined from the birth date. To identify a control group, we used propensity score (PS)
matching method (matchit R package'!>) by a logistic regression model to match controls to AD
patients. The control group was selected from patients >64 years old without AD diagnosis,
matched on sex, estimated age, race, and death status at a 1:2 AD:control ratio using a nearest
neighbors method. The demographic properties of the UCSF and Mount Sinai cohorts are shown

in Table 2.1.

2.5.2 Dimensionality Reduction Patient Visualization

All identified patients were represented using one-hot encoding of diagnoses, excluding
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encoding of diagnoses with Alzheimer’s in the name (list in Supplementary Table 2.2, Figure
2.2). Patients were then visualized in a lower dimension using Uniform Manifold Approximation
and Projection!?? (UMAP) with the umap-learn package from Python. Correlations between
variables and UMAP coordinates were analyzed using Mann-Whitney U-Test for categorical

variables, and Pearson’s Correlation Coefficient for continuous variables.
9

2.5.3 AD vs. Control Enrichment Analysis of Comorbidities

To evaluate comorbidities, all diagnoses recorded from patient cohorts were identified with
the earliest entry of every diagnosis. Comparisons were made at different ICD-10 hierarchical
levels, specifically Level 2 categories (e.g. G30-G32: Other degenerative diseases of the nervous
system), Level 3 categories (e.g. G30: Alzheimer’s Disease), or full diagnosis names (e.g. G30.9
Alzheimer’s Disease, unspecified). Level 2, Level 3, and full diagnosis names are also grouped by
ICD-10 blocks (e.g. G00-G99: Diseases of the Nervous System. More information on ICD-10-CM

codes can be found at the following website: www.cms.gov/Medicare/Coding/ICD10/ICD-

10Resources.

Diagnosis networks were created based upon a diagnosis category or diagnosis shared by
>1% patients in a group (node) or pair of diagnosis categories or diagnoses shared by >1% of
patients in a group (edge). Network metrics were computed using Cytoscape app Network
Analyzer'?®, Metrics were then compared between AD and control networks using Mann-Whitney
U-test, with and without singleton nodes removed. Nodes and edges were thresholded by 5% of
patients in a group for visualization purposes.

Enrichment analysis of diagnosis was compared between AD and control cohorts. For each
diagnosis, the proportions of patients in each group were compared using Fisher Exact (if <5

patients in a category) or Chi-Squared test. Significant diagnoses were determined by a
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Bonferroni-corrected threshold of p-value < 0.05, and directionality determined with Odds Ratio
(OR). With inspiration from genetic and molecular approaches, the results were visualized using

Manhattan plots by categorizing diagnoses in ICD-10 blocks.

2.5.4 Sex-Stratified AD vs. Control Enrichment Analysis of Comorbidities

Diagnostic networks were created for each sex, with diagnosis categories or diagnoses
shared by >1% of patients in a group (node), and diagnosis category/diagnosis pair shared by >1%
of patients in a group (edge). Network metrics were then computed using Cytoscape Network
Analyzer app, and compared between sex-stratified AD patients and controls, and between males
and females for both AD and controls separately with a Mann-Whitney U-test. Nodes and edges
were thresholded by 5% of patients in a group for visualization.

Sex-specific enrichment analysis of diagnoses between AD and control cohorts were
compared with a subset of equal numbers of AD and control patients for each sex. For each
diagnosis, the proportions of patients in each group were compared using the Fisher Exact (if <5
patients in a category) or Chi-Squared test. Significance was determined by applying a threshold
of 0.05 for Bonferroni-corrected p-values. Log-log plots were generated from odds ratios between
Female and Male AD patients and controls, and Miami plots created by categorizing diagnoses in

ICD-10 blocks.

2.5.5 Sensitivity Analysis Taking Encounters into Account

Sensitivity analysis of diagnosis enrichment analysis was performed with a subgroup of
AD patients and a second control cohort to account for variability in the number of visits for each
patient. AD cohorts were subgrouped by identifying patients with over 10 encounters in the EMR

and records spanning over a year. The encounter-filtered control cohort was identified by
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additionally matching on the number of encounters and years between the first and last record in
the EMR. Diagnosis enrichment analysis was carried out as described above for general

comorbidities and sex-specific analysis.

2.5.6 AD vs. Control Enrichment Analysis of Medications

All medications ordered for AD and control patients were extracted and grouped based
upon the generic medication name, with route and dosage information removed. The proportions
of AD and control patients prescribed each medication were compared using Fisher Exact (if <5
patients in a category) or Chi-Squared tests. Significantly enriched medications were identified by
a Bonferroni-corrected threshold of p-value 0.05, and directionality was determined with an Odds
Ratio. Sex-specific medication comparisons were also performed within a subset of equal numbers
of AD and control patients for each sex and plotted with cutoffs based upon a Bonferroni-corrected

p-value threshold of 0.05 and odds ratios (OR) threshold of <0.5 or >2.

2.5.7 AD vs. Control Comparisons of Lab Values

For laboratory values, median values for all numerical lab test results for each patient were
identified. Lab tests missing data among 95% or more patients were removed. Lab value
distributions were compared using Mann-Whitney U-test across three comparisons (AD vs.
controls, Female AD vs. Female controls, and Male AD vs. Male controls) in order to identify
significantly different lab values.

For clustering analysis, significant lab tests above a threshold of 0.05 for Bonferroni-
corrected p-value were isolated, and mean values were then identified for each group (AD Females,
AD Males, control Females, control Males) and normalized across groups as a Z-score. Clustering

was then performed using the sigclust2 R package!'?* to determine significance of each cluster
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break using permutations (Euclidean distance metric and average linkage).

2.5.8 Validation in External EMR

AD and PS-matched control patients were identified in the Mount Sinai EMR in the same
fashion as described in [Patient Identification] in the UCSF EMR. All aforementioned analysis
with dimensionality reduction, comorbidity networks, diagnosis/medication enrichments, sex-
specific enrichments, and lab value comparisons were performed in the Mount Sinai dataset as
they have been in the UCSF EMR dataset.

For network comparisons, network metrics were standard normalized across the 12
networks (6 at UCSF, 6 at Mount Sinai) by the metric and Spearman rank correlation coefficient
and significance determined. For diagnosis comparison, Level 2, Level 3, and full diagnosis names
were mapped and compared by the sub-chapter, three-digit codes, and full ICD-10-CM code of
the ICD-10 hierarchy, respectively. Significant diagnosis in the validation cohort was determined
by a Bonferroni-corrected threshold of 0.05 based upon the number of mapped UCSF-significant
diagnoses. Correlations between odds ratios were determined by a Spearman rank correlation
coefficient and significance. Medications were mapped based upon the generic name, and
correlations between odds ratios determined with Spearman rank correlation coefficient.

For comparison of labs, the normalized lab values for each institution were combined, and
clustering performed using Euclidean distance and average linkage to identify groups of labs with
similar trends between AD/sex/institution stratified patient groups. The R package sigclust? was

used to determine significant clusters of labs.

2.5.9 Data Visualization Using RShiny

An interactive visualization of comorbidity enrichments and networks between AD and
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control groups and with sex stratification was implemented in an Rshiny!'?> app: vizad.org.
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2.6 Tables

Table 2.1 Patient Demographics

Summary table of sex, estimated age, death status, and first race among Alzheimer’s and control
cohorts at UCSF and Mount Sinai. Patients are propensity-score matched at a 1:2 Alzheimer to
control ratio with the demographics shown in the table. SD: standard deviation. SMD: standardized
mean difference. NHPI: Native Hawaiian/ Pacific Islander

UCSF Mount Sinai
Overall AD Control SMD Overall AD Control SMD
n 26412 8804 17608 17874 5958 11916
Sex, n (%)
16675 5558 11117 12584 4138 8446
Female (63.1) (63.1) (63.1) <0.001 | (70.4) (69.5) (70.9) 0.031
Male 9659 3220 6439 5290 1820 3470
(36.6) (36.6) (36.6) (29.6) (30.5)  (29.1)
26
Unknown 78(0.3) (0.3)  52(0.3)
Estimated Age, 86.5 86.5 86.5 88.6 88.3 88.7 -
mean (SD) (6.4) (6.4) (6.4) <0.001 | (10.6) (8.7) (11.4) 0.039
Race, n (%)
American Native 27 (0.1) 9(0.1) 18(0.1) <0.001 | 20(0.1) 8(0.1) 12(0.1) 0.129
Asian 2638 879 1759 177 78
(10.3) (10.3) (10.3) (2.0) (2.3) 99 (0.8)
Black/African 1758 586 1172 3732 1214 2518
American (6.9) (6.9) (6.9) (20.9) (20.4)  (21.1)
Native Hawaiian/ 1356 452 904
Pacific Islander (5.3) (5.3) (5.3) 9(0.1) 5(0.1) 4(0.0)
Other 2230 743 1487 3922 1496 2426
(8.7) (8.7) (8.7) (21.9) (25.1)  (20.4)
Unknown 2017 673 1344 786 253 533
(7.6) (7.6) (7.6) (4.4) (4.2) (4.5)
White/Caucasian 16386 5462 10924 9228 2904 6324
(64.0) (64.0) (64.0) (51.6) (48.7)  (53.1)
Death Status, n (%)
20146 6714 13432 9371 3264 6107
Alive (76.3) (76.3)  (76.3) 0.001 | (52.4) (54.8)  (51.3) 0.078
Deceased 6266 2090 4176 882 306 576
(23.7) (23.7)  (23.7) (4.9) (5.1) (4.8)
Unknown 7621 2388 5233
(42.6) (40.1)  (43.9)
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2.7 Figures
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Figure 2.1 Overview of the workflow

Visualization of patient cohort identification from the UCSF EMR and methods for deep
phenotyping and enrichment analysis. Validation analysis is done with Mount Sinai EMR to assess

correlations.
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Figure 2.3 Comorbidity Networks Show Greater Co-Diagnosis in AD vs. Controls, and in Female

AD vs Male AD patients
(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)

a,b: Network Diagrams: For each network, the node size, text size, edge size, and edge color
represent the number of patients sharing a diagnosis or diagnosis pair. Node colors are based on
ICD-10 category. A threshold of 5% sharing was applied.

a. Network for Level 3 diagnosis categories in AD vs. control patients. Nodes and edges represent
>5% of diagnosis or diagnosis pairs shared in each cohort, respectively.

b. Left: Female network of full diagnosis names. Each node and edge represent diagnosis or
diagnosis pairs shared by >5% of AD females. No analogous comorbidity network was generated
from control females.

Right: Male network of full diagnosis names. Each node and edge represent diagnosis or diagnosis
pairs shared by >5% of AD males. No analogous comorbidity network was generated on control
males.

c. Comparison of network metrics between AD and control Level 3 Diagnosis Category Networks.
Statistical Tests are performed with Mann-Whitney U-Test.

d. Comparison of network metrics between Male and Female Alzheimer’s Disease Full Diagnostic
Name Networks. Statistical Tests are performed with Mann-Whitney U-Test.

e. Correlation of network metrics compared with validation EMR network metrics, normalized by
the metric. Colors represent comparison type (left) or the specific network metric (right), Spearman
p =0.55, p-value < le-4.
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Figure 2.4 Comorbidity Enrichment Analysis identifies enriched diagnosis in AD vs. Controls

(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)

a. Volcano plot for Level 2 categories (top) and full diagnosis names (bottom) compared between
AD and control cohorts using Fisher Exact or Chi-Squared test. P-value cutoff is Bonferroni
corrected (p-value < 2e-8 and 1e-6) with log 2 odds ratio cutoff of 1 for AD-enriched (pink) or
log 2 odds ratio cutoff of -1 for control-enriched (green) and remaining significant diagnoses
in blue. Some of the top significant diagnoses are labelled.

b. Top, a Manhattan plot with full diagnosis names colored by ICD-10 categories with
Bonferroni-corrected p-value cutoff. Some of the top diagnoses in each category are labelled.
Bottom, percentage of diagnosis in each ICD-10 category that is significant.

c. Diagnosis AD vs. Control odds ratio correlation plots between UCSF and Mount Sinai for
Level 2 diagnosis categories and full diagnosis names that are significant at UCSF. Each dot
represents a category or diagnosis, and dots in orange are significant at Mount Sinai with
Bonferroni-corrected p-value threshold of 0.05.
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Figure 2.5 Comorbidity Enrichment Analysis identifies sex-specific enriched diagnoses in AD vs.

Controls

(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)

a.

Full diagnosis names compared between AD and controls within each sex. The log2 of the
odds ratio is plotted on the axis, and points are colored by significance (Bonferroni -corrected,
p-val cutoff > 3e-6).

Miami plot of the diagnosis names grouped by sex and ICD-10 categories. Select top diagnoses
are labelled, with diagnosis names colored by significance as female only (red), male only
(blue), or significant in both sexes (black).

Correlation plots of AD vs. control odds ratios between UCSF and Mount Sinai for diagnoses
that are significant at UCSF. Each dot represents a diagnosis, and dots in orange are significant
at Mount Sinai with Bonferroni-corrected p-value threshold of 0.05.
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Figure 2.6 Medication and Lab Analysis shows Medication Enrichments and Median Lab Value
Differences between AD and Controls

a. Volcano plot for generic medication names compared between AD and controls using Fisher
Exact or Chi-Squared Test. P-value cutoff is Bonferroni corrected (p-value < 2e-5) with odds
ratio cutoff at 2 for AD-enriched (pink) or 1/2 for control-enriched (green). Remaining
significant diagnoses are in blue.

b. Log-log plot of generic medication names compared between AD and controls within each

(Figure caption continued on the next page.)



(Figure caption continued from the previous page.)

C.

sex. The log of the odds ratio for each sex is plotted on the axis, with points colored by
Bonferroni-corrected significance (p-value cutoff < 4e-5) if female only (red), male only
(blue), or both (black).

AD vs control (top) and sex-specific (bottom) odds ratio correlation plots between UCSF and
Mount Sinai for medications significant at UCSF. Each dot represents a medication, and dots
in orange are significant at Mount Sinai with Bonferroni-corrected p-value threshold of 0.05.
Heatmap of lab values filtered on significance at UCSF in AD vs control comparison across
sex-specific groups at UCSF and Mount Sinai. Labs are clustered with light blue lines
representing significant cluster breaks (family-wise error rate (FWER) corrected p-value 0.05).
Text color represents significant labs at both institutions (purple), significant among females
only at UCSF (red), or significant between AD vs controls at UCSF only (black). Heatmap
colors represent z-score of the average median value across the 4 groups at each institution.
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2.8 Supplementary Tables

Supplementary Table 2.1 Patient Demographics with Encounter Thresholds and Controlling

Distribution of sex, estimated age, death status, and first race among Alzheimer’s and control
cohorts. These cohorts are thresholded on more than 10 encounters, and over a year representation
in the EMR. Patients are matched at a 1:2 Alzheimer to control ratio with the demographics shown
in the table. Estimated age shows mean and median (25%ile - 75%ile).

Alzheimer's

Age
86.4

Death Status
Alive: 6714 (76.3%)

White/Caucasian: 5462 (64.0%)

American Native: 9 (.1%)

90 (83-91) Deceased: 2090 (23.7%) |Asian: 879 (10.3%) Other: 743 (8.7%)
Cohort Black/African American: 586 (6.9%) |Unknown/Declined: 802 (4.7%)
Hawaiian/Pacific Islander: 452 (5.3%)
Males 2,382 (36.0%) 85.7 Alive: 1778 (74.6%) White/Caucasian: 1570 (66.8%) Other: 209 (8.9%)
90 (84-91) Deceased: 604 (25.4%) |Asian: 254 (10.8%) Unknown/Declined: 72 (3.1%)
Black/African American: 128 (5.4%)
Hawaiian/Pacific Islander: 117 (5.0%)
Females 4,223 (63_9%) 86.8 Alive: 3084 (73%) White/Caucasian: 2525 (60.5%) American Native: 8 (0.2%)
90 (82-91) Deceased: 1139 (27%)  |Asian: 497 (11.9%) Other: 404 (9.7%)
Black/African American: 393 (9.4%) Unknown/Declined: 130 (3.1%)
Hawaiian/Pacific Islander: 217 (5.2%)
Other or Unknown 7 (0.10%) 90.7 Alive: 7 (100%) White/Caucasian: 6 (85.7%)
91 (90.5-91) Unknown/Declined: 1 (14.3%)
Control 13,224 86.2 Alive: 13432 (76.3%) White/Caucasian: 10924 (64.0%) American Native: 18 (.1%)
90 (83 — 91) | Deceased: 4176 (23.7%) |Asian: 1759 (10.3%) Other: 1487 (8.7%)
Cohort Black/African American: 1172 (6.9%) |Unknown/Declined: 802 (4.7%)
Hawaiian/Pacific Islander: 904 (5.3%)
Males 4,674 (35.3%) 85.8 Alive: 3248 (69.5%) White/Caucasian: 3076 (66.8%) American Native: 5 (.1%)
90 (82-91) Deceased: 1426 (30.5%) |Asian: 490 (10.7%) Other: 384 (8.3%)
Black/African American: 277 (6.0%) Unknown/Declined: 247 (3.2%)
Hawaiian/Pacific Islander: 222 (4.8%)
Females 8,539 (64.6%) 86.5 Alive: 6253 (73.2%) White/Caucasian: 5225 (61.9%) American Native: 11 (.1%)
90 (84-91) Deceased: 2286 (26.8%) |Asian: 1024 (12.1%) Other: 783 (9.3%)
Black/African American: 768 (9.1%) Unknown/Declined: 246 (2.9%)
Hawaiian/Pacific Islander: 387 (4.6%)
Other or Unknown| 11 (0.10%) 90.2 Alive: 10 (90.9%) White/Caucasian: 1 (11.1%) Unknown/Declined: 5 (55.6%)
90 (90-91) Deceased: 1 (9.1%) Other: 3 (33.3%)
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Supplementary Table 2.2 UMAP Exclusion Terms

Table of diagnosis excluded in UMAP embedding. These terms contain the word ‘Alzheimer’.

AD (Alzheimer's disease) (HCC)

Alzheimer's type dementia (HCC)

Alzheimer disease (HCC)

Alzheimer disease type 3 (HCC)

Alzheimer's dementia (HCC)

Alzheimer's dementia with behavioral
disturbance (HCC)

Alzheimer's dementia with behavioral
disturbance, unspecified timing of dementia
onset (HCC)

Alzheimer's dementia without behavioral
disturbance (HCC)

Alzheimer's dementia without behavioral
disturbance, unspecified timing of dementia
onset (HCC)

Alzheimer's dementia, late onset (HCC)

Alzheimer's dementia, late onset, with
behavioral disturbance (HCC)

Alzheimer's disease (HCC)

Alzheimer's disease of other onset

Alzheimer's disease of other onset with
behavioral disturbance (HCC)

Alzheimer's disease of other onset without
behavioral disturbance (HCC)

Alzheimer's disease with delirium (HCC)

Alzheimer's type dementia with late onset with
behavioral disturbance (HCC)

Alzheimer's type dementia with late onset
without behavioral disturbance (HCC)

Alzheimers disease (HCC)

DAT (dementia Alzheimer type)

DAT (dementia of Alzheimer type) (HCC)

Dementia due to Alzheimer's disease (HCC)

Dementia in Alzheimer's disease (HCC)

Dementia in Alzheimer's disease with delusions
(HCC)

Dementia in Alzheimer's disease with
depression (HCC)

Dementia in Alzheimer's disease with early
onset (HCC)

Dementia in Alzheimer's disease with early
onset with behavioral disturbance (HCC)

Dementia in Alzheimer's disease with early
onset without behavioral disturbance (HCC)

Dementia in Alzheimer's disease with early
onset, with behavioral disturbance

Dementia in Alzheimer's disease with early
onset, without behavioral disturbance

Alzheimer's disease with early onset (CODE)
(HCC)

Alzheimer's disease with early onset (HCC)

Dementia in Alzheimer's disease with late onset

Dementia of Alzheimer's type with behavioral
disturbance (HCC)

Alzheimer's disease with late onset (CODE)
(HCC)

Dementia of Alzheimer's type, with early onset,
with depressed mood (HCC)

Alzheimer's disease with late onset (HCC)

Dementia of the Alzheimer's type (HCC)

Alzheimer's disease with presenile onset (HCC)

Alzheimer's disease, early onset (HCC)

Alzheimer's disease, familial (HCC)

Alzheimer's disease, focal onset (HCC)

Alzheimer's disease, unspecified (CODE) (HCC)

Alzheimer's disease, unspecified (HCC)

Dementia of the Alzheimer's type with early
onset with behavioral disturbance (HCC)

Dementia of the Alzheimer's type with late onset
without behavioral disturbance (HCC)

Dementia of the Alzheimer's type without
behavioral disturbance (HCC)

Dementia of the Alzheimer's type, with late
onset, uncomplicated (HCC)
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Dementia of the Alzheimer's type, with late
onset, with delirium (HCC)

Dementia of the Alzheimer's type, with late
onset, with delusions (HCC)

Dementia of the Alzheimer's type, with late
onset, with depressed mood (HCC)

Dementia of the Alzheimer's type, with late
onset, with depressive mood (HCC)

Dementia, Alzheimer's, with behavior
disturbance (HCC)

Early onset Alzheimer disease

Early onset Alzheimer's dementia without
behavioral disturbance (HCC)

Early onset Alzheimer's disease with behavioral
disturbance (HCC)

Family history of Alzheimer's disease

Focal Alzheimer's disease (HCC) 'Late onset
Alzheimer disease (HCC)

Late onset Alzheimer's disease with behavioral
disturbance (HCC)

Late onset Alzheimer's disease without
behavioral disturbance (HCC)

Major neurocognitive disorder due to
Alzheimer's disease (HCC)

Major neurocognitive disorder due to
Alzheimer's disease, possible (HCC)

Major neurocognitive disorder due to
Alzheimer's disease, probable, with behavioral
disturbance (HCC)

Major neurocognitive disorder due to
Alzheimer's disease, probable, without
behavioral disturbance (HCC)

Major neurocognitive disorder due to
Alzheimer's disease, with behavioral
disturbance (HCC)

Major neurocognitive disorder due to possible
Alzheimer's disease (HCC)

Major neurocognitive disorder, due to
Alzheimer's disease, with behavioral
disturbance, mild (HCC)

Major neurocognitive disorder, due to
Alzheimer's disease, without behavioral
disturbance, mild (HCC)

Major neurocognitive disorder, due to
Alzheimer's disease, without behavioral
disturbance, moderate (HCC)

Major neurocognitive disorder, due to
Alzheimer's disease, without behavioral
disturbance, severe (HCC)

Mild major neurocognitive disorder due to
Alzheimer's disease with behavioral disturbance
(HCC)

Mild major neurocognitive disorder due to
Alzheimer's disease without behavioral
disturbance (HCC)

Mild neurocognitive disorder due to Alzheimer's
disease (HCC)

Mild possible major neurocognitive disorder due
to Alzheimer's disease (HCC)

Mixed Alzheimer's and vascular dementia
(HCC)

Mixed Alzheimer's and vascular dementia with
behavior disturbances (HCC)

Moderate major neurocognitive disorder due to
Alzheimer's disease without behavioral
disturbance (HCC)

Moderate probable major neurocognitive
disorder due to Alzheimer's disease with
behavioral disturbance

Other Alzheimer's disease (HCC)

Possible major neurocognitive disorder due to
Alzheimer's disease

Primary degenerative dementia of Alzheimer
type (HCC)

Primary degenerative dementia of the Alzheimer
type, senile onset (HCC)

Primary degenerative dementia of the Alzheimer
type, senile onset, uncomplicated (HCC)

Primary degenerative dementia of the Alzheimer
type, senile onset, with depression (HCC)

Probable major neurocognitive disorder due to
Alzheimer's disease with behavioral disturbance

Probable major neurocognitive disorder due to
Alzheimer's disease without behavioral
disturbance

Progressive aphasia in Alzheimer's disease
(HCC)
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SDAT (senile dementia of Alzheimer's type)
(HCC)

Senile dementia of Alzheimer's type (HCC)

Sporadic Alzheimer's disease (HCC)
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Supplementary Table 2.3 All Diagnosis Network Metrics

Diagnosis Networks are created with nodes representing a diagnostic category or diagnosis shared among >1% of patients in a group,
and edges representing >1% of co-diagnosis in a group.

Number Number Avg Number Network Network Characteristic Clustering Network  Network Network Connected

UCSF: Graph (>1%) Nodes Edges Neighbors Diameter Radius Path Length  Coefficient density heterogeneity Centralization Components Singletons

ADDiagnosisNameaAll 1056 27504 62.15 4 2 2.043 0.830 0.070 1.626 0.763 171 169
ADDiagnosisNameFemale 962 25459 61.64 4 2 2.038 0.832 0.075 1.586 0.761 137 136
ADDiagnosisNameMale 924 20102 52.90 4 2 2.057 0.823 0.070 1.633 0.739 164 162
ADL3NameALL 483 23505 97.33 2 1 1.798 0.899 0.202 1.054 0.801 1 0
ADL3NameFemale 452 21958 97.16 2 1 1.785 0.899 0.215 1.021 0.788 1 0
ADL3NameMale 445 20099 90.33 2 1 1.797 0.899 0.203 1.046 0.800 1 0
ADL2NameALL 165 7960 96.48 2 1 1.412 0.896 0.588 0.479 0.417 1 0
ADL2NameFemale 160 7531 94.73 2 1 1.400 0.897 0.600 0.469 0.406 2 1
ADL2NameMale 158 7257 91.86 2 1 1.415 0.892 0.585 0.481 0.420 1 0
ConDiagnosisNameAll 421 2445 18.04 4 2 2.048 0.738 0.067 1.671 0.843 151 150
ConDiagnosisNameFemale 167 2109 25.72 3 2 1.892 0.848 0.158 1.156 0.797 4 3
ConDiagnosisNameMale 321 1417 13.43 4 2 2.078 0.681 0.064 1.717 0.815 111 110
ConL3NameALL 318 5772 43.89 2 1 1.832 0.760 0.168 1.135 0.839 56 55
ConL3NameFemale 190 5434 57.20 2 1 1.697 0.830 0.303 0.829 0.705 1 0
ConL3NameMale 282 4195 37.46 3 2 1.837 0.750 0.168 1.125 0.835 59 58
ConL2NameALL 150 3990 55.80 2 1 1.607 0.854 0.393 0.697 0.616 8 7
ConL2NameFemale 122 3760 61.64 2 1 1.491 0.866 0.509 0.552 0.499 1 0
ConL2NameMale 137 3200 48.48 2 1 1.630 0.862 0.370 0.726 0.640 6 5

Number Number Avg Number Network Network Characteristic Clustering Network Network Network Connected

Mount Sinai: Graph (>1%) Nodes Edges Neighbors Diameter Radius Path Length  Coefficient density heterogeneity Centralization Components Singletons

ADDiagnosisNameAll 483 1788 15.96 4 2 2.030 0.782 0.072 1.696 0.756 260 259
ADDiagnosisNameFemale 482 1753 15.72 4 2 2.035 0.769 0.071 1.700 0.751 260 259
ADDiagnosisNameMale 446 1034 12.16 4 2 2.084 0.722 0.072 1.674 0.700 277 276
ADL3NameALL 348 10434 59.97 2 1 1.827 0.910 0.173 1.152 0.832 1 0
ADL3NameFemale 352 10145 59.68 2 1 1.824 0.909 0.176 1.142 0.829 13 12
ADL3NameMale 332 8162 52.32 2 1 1.832 0.905 0.168 1.166 0.837 21 20
ADL2NameALL 141 4625 65.60 2 1 1.531 0.875 0.469 0.608 0.539 1 0
ADL2NameFemale 141 4480 64.93 2 1 1.526 0.876 0.474 0.602 0.534 4 3
ADL2NameMale 139 4037 59.37 2 1 1.560 0.878 0.440 0.642 0.569 4 3
ConDiagnosisNameAll 461 13 3.25 3 2 1.607 0.558 0.464 0.527 0.524 454 453
ConDiagnosisNameFemale 461 13 3.25 3 2 1.607 0.558 0.464 0.527 0.524 454 453
ConDiagnosisNameMale 423 13 3.25 3 2 1.607 0.558 0.464 0.527 0.524 416 415
ConL3NameALL 347 1038 17.16 2 1 1.857 0.788 0.143 1.267 0.871 227 226
ConL3NameFemale 351 1038 17.16 2 1 1.857 0.788 0.143 1.267 0.871 231 230
ConL3NameMale 331 980 16.47 3 2 1.863 0.780 0.140 1.280 0.867 213 212
ConL2NameALL 141 1323 32.67 3 2 1.594 0.877 0.408 0.677 0.568 61 60
ConL2NameFemale 141 1323 32.67 3 2 1.594 0.877 0.408 0.677 0.568 61 60
ConL2NameMale 139 1290 31.85 3 2 1.606 0.865 0.398 0.690 0.566 59 58
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Supplementary Table 2.4 All Diagnosis Network Comparisons

Network metrics are computed for nodes in each network at UCSF and at Mount Sinai, and the distribution of metrics are compared
between networks. Comparisons are performed with and without the removal of singletons (single nodes with no neighbors). A Mann-
Whitney U-test is performed to compare the distribution of each network metric, with colors based upon p-value cutoff. The mean
difference in metric between comparison groups is also shown.

Comparison  Nodes Mann Avg Betweeness Closeness Clustering Degree Eccentricity Neighbor- Number Stress Topological
Whitney Shortest Centrality Centrality Coefficient hood Undirected Centrality Coefficient

U Test Path Length Connecti- Edges

vity

UCSFAD vs All Nodes Stat 2.68E+05  2.46E+05 2.63E+05 2.73E+05 3.07E+05 3.22E+05 3.73E+05 3.07E+05 2.56E+05 2.81E+05
Dci:;‘:‘:;’s'i‘s pval 3.75E-10  9.15E-05 2.31E-08 1.07E-12 1.02E-30 6.87E-48 1.58E-93 1.02E-30 2.48E-08 6.20E-16
Name Amean 3.96E-01 -1.52E-03 9.88E-02 2.20E-01 4.05E+01 1.01E+00 2.57E+02 4.05E+01 1.17E+04  1.35E-01
Singletons Stat 1.23E+05 8.88E+03 1.18E+05 8.99E+04 1.61E+05 1.76E+05 2.28E+05 1.61E+05 1.89E+04 9.85E+04
Removed 6.05E-01  4.64E-11 6.05E-01 7.51E-01 1.22E-17 3.06E-42 4.30E-110 1.22E-17 1.31E-02 5.76E-02
Amean -7.26E-03  -9.16E-03 2.03E-03 1.81E-02 4.40E+01 4.97E-01 2.76E+02 4.40E+01 3.19E+04  3.63E-02
UCSFAD vs All Nodes Stat  8.30E+04  8.19E+04 9.71E+04 1.02E+05 1.10E+05 9.02E+04 1.39E+05 1.10E+05 8.70E+04 1.13E+05
c°;\‘|tar:1';L3 pval 5.19E-02  7.44E-02 2.16E-10 3.00E-17 2.15E-25 6.25E-21  2.69E-85 2.15E-25 3.50E-04 4.21E-29
Amean 2.83E-01 -9.79E-04 1.08E-01 2.70E-01 6.10E+01 3.47E-01 1.76E+02 6.10E+01 6.20E+03  2.50E-01
Singletons Stat 5.65E+04  1.03E+04 7.06E+04 5.77E+04 8.36E+04 6.36E+04 1.13E+05 8.36E+04 1.55E+04 6.79E+04
Removed 5 0.0121 0.0274 1.21E-02 1.03E-01 9.42E-13 6.64E-01 4.02E-69 9.42E-13 4.96E-05 2.53E-08
Amean -3.44E-02 -3.70E-03 1.27E-02 1.80E-02 5.34E+01 1.73E-03 1.49E+02 5.34E+01 1.31E+04  1.00E-01
UCSFAD vs All Nodes Stat  8.40E+03  1.39E+04 1.75E+04 1.26E+04 1.88E+04 1.29E+04 2.06E+04 1.88E+04 1.50E+04 1.72E+04
c°;\‘|tar:1';"2 pval 8.40E-07 5.70E-02 2.06E-10 7.73E-01 1.51E-15 3.52E-02 3.65E-24 1.51E-15 9.45E-04  2.48E-09
Amean -1.20E-01  -1.58E-03 1.23E-01  8.24E-02 4.33E+01 8.79E-02 3.31E+01 4.33E+01 7.29E+02  1.39E-01
Singletons Stat 7.24E+03  3.93E+03 1.64E+04 1.08E+04 1.77E+04 1.17E+04 1.94E+04 1.77E+04 5.03E+03 1.54E+04
Removed 5.14E-09 0.11 5.14E-09 0.362 5.46E-14 6.51E-01 1.64E-22 5.46E-14 2.07E-01 3.12E-07
Amean -1.95E-01 -4.17E-03 9.26E-02 1.80E-02 4.07E+01 -5.13E-03 2.85E+01 4.07E+01 4.30E+02  8.91E-02
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Comparison

UCSF Female
AD vs Male
AD: Diagnosis
Name

UCSF Female
AD vs Male
AD: L3 Name

UCSF Female
AD vs Male
AD: L2 Name

UCSF Female:
AD vs Control:
Diagnosis
Name

Nodes

Mann

Avg

Whitney Shortest
U Test Path Length

All Nodes Stat
pval
Amean

Singletons Stat

Removed pval

Amean

All Nodes Stat

pval

Amean
Singletons Stat
Removed pval

Amean

All Nodes Stat

pval
Amean
Singletons Stat
Removed pval
Amean
All Nodes Stat
pval
Amean
Singletons Stat
Removed pval

Amean

All Nodes Stat

4.57E+05
5.15E-01
1.98E-02
3.09E+05
1.01E-01
-1.50E-02
1.05E+05
9.12E-01
2.59E-03
1.05E+05
0.912
2.59E-03
1.24E+04
7.59E-01
-7.12E-03
1.24E+04
7.59E-01
-7.12E-03
2.47E+05
3.15E-11
3.93E-01
1.17E+05
1.53E-01
-1.64E-03
7.79E+04

Betweeness Closeness Clustering
Centrality Centrality Coefficient

4.69E+05
7.16E-01
-8.89E-05
5.33E+04
4.56E-01
-3.69E-04
1.04E+05
9.13E-01
-7.91E-05
2.01E+04
0.461
-2.17E-04
1.27E+04
9.08E-01
-7.87E-05
5.31E+03
0.429
-3.26E-04
2.23E+05
1.16E-04
-1.55E-03
8.17E+03
1.32E-10
-9.37E-03
7.70E+04

4.88E+05
6.35E-02
1.02E-02
3.39E+05
1.01E-01
2.79E-03
1.04E+05
9.12E-01
-7.28E-04
1.04E+05
9.12E-01
-7.28E-04
1.29E+04
7.59E-01
3.60E-03
1.29E+04
7.59E-01
3.60E-03
2.34E+05
1.98E-06
9.58E-02
1.04E+05
1.53E-01
1.03E-04
9.01E+04

4.73E+05
4.96E-01
1.69E-02
2.68E+05
9.79E-01
1.27E-03
1.05E+05
9.61E-01
-8.94E-04
1.03E+05
9.70E-01
-1.29E-03
1.27E+04
9.74E-01
5.89E-03
1.27E+04
0.974
5.89E-03
2.47E+05
6.28E-12
2.18E-01
8.21E+04
7.09E-01
1.76E-02
9.57E+04
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Degree Eccentricity Neighbor- Number Stress Topological

hood Undirected Centrality Coefficient

Connecti- Edges

vity
4.85E+05 3.41E+05 5.22E+05 4.85E+05 4.72E+05 4.78E+05
9.92E-02 3.39E-31 2.96E-06 9.92E-02 4.90E-01 2.93E-01
8.26E+00 -2.87E-01 4.19E+01 8.26E+00 2.75E+03  1.39E-02
3.37E+05 1.92E+05 3.74E+05 3.37E+05 5.67E+04 2.73E+05
1.71E-01 1.10E-73 9.98E-08 1.71E-01 5.32E-01 5.68E-01
8.82E+00 -4.06E-01 4.32E+01 8.82E+00 6.85E+03  6.75E-03
1.07E+05 1.04E+05 1.13E+05 1.07E+05 1.05E+05 1.06E+05
5.28E-01 9.74E-01 3.08E-02 5.28E-01 9.59E-01 7.47E-01
3.28E+00 1.05E-04 1.36E+01 3.28E+00 9.47E+02 -2.65E-04
1.07E+05 1.04E+05 1.13E+05 1.07E+05 2.07E+04 1.04E+05
5.28E-01 9.74E-01 3.08E-02 5.28E-01 8.03E-01 7.53E-01
3.28E+00 1.05E-04 1.36E+01 3.28E+00 1.95E+03 -5.36E-04
1.31E+04 1.26E+04 1.36E+04 1.31E+04 1.28E+04 1.29E+04
5.62E-01 9.92E-01 2.61E-01 5.62E-01 8.70E-01 7.35E-01
2.30E+00 1.58E-04 2.10E+00 2.30E+00 -6.22E+01 3.46E-03
1.31E+04 1.26E+04 1.36E+04 1.31E+04 5.35E+03 1.29E+04
5.62E-01 0.992 2.61E-01 5.62E-01 0.48 7.35E-01
2.30E+00 1.58E-04 2.10E+00 2.30E+00 -2.47E+02  3.46E-03
2.78E+05 2.49E+05 3.40E+05 2.78E+05 2.33E+05 2.55E+05
8.80E-29 3.89E-18 5.56E-91 8.80E-29 4.00E-08 3.53E-15
3.99E+01 6.46E-01 2.45E+02 3.99E+01 1.14E+04 1.36E-01
1.47E+05 1.19E+05 2.10E+05 1.47E+05 1.74E+04 9.03E+04
1.68E-16  2.64E-04 1.15E-107 1.68E-16 1.43E-02 5.98E-02
4.33E+01 8.01E-02 2.62E+02 4.33E+01 3.09E+04  3.67E-02
1.02E+05 8.41E+04 1.30E+05 1.02E+05 8.16E+04 1.05E+05



Comparison

UCSF Female:
AD vs Control:
L3 Name

UCSF Female:
AD vs Control:
L2 Name

UCSF Males:
AD vs Control:
Diagnosis
Name

UCSF Males:
AD vs Control:
L3 Name

Nodes

Mann

Avg

Whitney Shortest
U Test Path Length

pval

Amean
Singletons Stat
Removed pval

Amean

All Nodes Stat

pval

Amean
Singletons Stat
Removed pval

Amean

All Nodes Stat
pval
Amean

Singletons Stat

Removed pval

Amean

All Nodes Stat

pval

Amean
Singletons Stat
Removed pval

Amean

All Nodes Stat

5.75E-02
2.72E-01
5.40E+04
0.023
-3.09E-02
7.93E+03
1.25E-06
-1.25E-01
6.97E+03
1.70E-08
-1.91E-01

1.76E+05
1.84E-05
3.44E-01
7.94E+04
5.14E-01
-2.25E-02
6.90E+04
3.34E-02
3.35E-01
4.31E+04
0.00297
-4.15E-02
6.83E+03

Betweeness Closeness Clustering

Centrality Centrality Coefficient

7.26E-02
-1.00E-03
9.75E+03
0.019
-3.80E-03
1.29E+04
1.10E-01
-1.58E-03
3.97E+03
0.253
-3.84E-03

1.67E+05
1.18E-03
-2.21E-03
6.72E+03
5.87E-07
-1.24E-02
6.68E+04
1.31E-01
-1.19E-03
8.47E+03
0.0189
-4.27E-03
1.17E+04

3.32E-09
1.03E-01
6.63E+04
2.30E-02
1.15E-02
1.64E+04
1.13E-09
1.18E-01
1.54E+04
1.70E-08
9.11E-02

1.81E+05
2.82E-07
8.95E-02
8.42E+04
5.14E-01
5.42E-03
8.31E+04
5.52E-13
1.28E-01
5.72E+04
2.97E-03
1.46E-02
1.56E+04

3.11E-16
2.67E-01
5.42E+04
1.23E-01
1.81E-02
1.22E+04
5.29E-01
8.53E-02
1.04E+04
0.573
1.91E-02

1.91E+05
5.34E-13
2.38E-01
5.83E+04
6.58E-01
2.49E-02
8.75E+04
1.91E-20
3.03E-01
4.67E+04
2.26E-02
2.35E-02
1.11E+04
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Degree

3.67E-23
5.77E+01
7.85E+04
1.05E-11
5.04E+01
1.76E+04
1.39E-14
4.07E+01
1.67E+04
2.92E-13
3.84E+01

2.11E+05
3.46E-26
3.47E+01
1.15E+05
2.12E-19
3.92E+01
9.24E+04
4.43E-26
6.11E+01
6.65E+04
5.72E-12
5.34E+01
1.69E+04

1.91E-19
3.32E-01
6.02E+04
6.68E-01
1.75E-03
1.21E+04
6.37E-02
7.65E-02
1.11E+04
0.645
-5.36E-03

2.16E+05
3.29E-34
9.30E-01
1.19E+05
8.54E-33
4.96E-01
5.06E+04
1.11E-09
4.82E-03
2.47E+04
6.79E-61
-5.09E-01
1.12E+04

Eccentricity Neighbor-

hood

Connecti-

vity
1.25E-80
1.67E+02
1.06E+05
1.26E-65
1.42E+02
1.92E+04
3.75E-22
3.05E+01
1.82E+04
9.58E-21
2.65E+01

2.52E+05
1.28E-71
2.19E+02
1.56E+05
8.81E-91
2.43E+02
1.18E+05
8.58E-88
1.77E+02
9.23E+04
1.56E-70
1.50E+02
1.88E+04

Number

Edges

3.67E-23
5.77E+01
7.85E+04
1.05E-11
5.04E+01
1.76E+04
1.39E-14
4.07E+01
1.67E+04
2.92E-13
3.84E+01

2.11E+05
3.46E-26
3.47E+01
1.15E+05
2.12E-19
3.92E+01
9.24E+04
4.43E-26
6.11E+01
6.65E+04
5.72E-12
5.34E+01
1.69E+04

Stress

4.57E-04
5.77E+03
1.44E+04
3.64E-04
1.19E+04
1.39E+04
2.95E-03
6.27E+02
5.00E+03

0.106
4.35E+02

1.74E+05
9.63E-07
9.11E+03
1.43E+04
4.09E-05
2.60E+04
7.20E+04
3.40E-04
5.27E+03
1.36E+04
1.35E-06
1.12E+04
1.29E+04

Topological
Undirected Centrality Coefficient

2.62E-27
2.46E-01
6.36E+04
9.73E-08
9.75E-02
1.64E+04
8.95E-10
1.42E-01
1.47E+04
1.27E-07
9.01E-02

1.94E+05
2.09E-14
1.42E-01
6.18E+04
1.02E-01
3.46E-02
9.50E+04
9.71E-31
2.74E-01
5.42E+04
1.52E-08
1.11E-01
1.49E+04



Comparison

UCSF Males:

AD vs Control:

L2 Name

UCSF Male vs
Female
Controls:
Diagnosis
Name

UCSF Male vs
Female
Controls: L3
Name

UCSF Male vs
Female
Controls: L2
Name

Nodes

Mann

Avg

Whitney Shortest
U Test Path Length

pval

Amean
Singleton Stat
Removed pval

Amean

All Nodes Stat
pval
Amean

Singletons Stat

Removed pval

Amean

All Nodes Stat

pval

Amean
Singletons Stat
Removed pval

Amean

All Nodes Stat

pval

Amean
Singleton Stat
Removed pval

Amean

4.73E-08
-1.56E-01
6.04E+03
6.97E-10
-2.15E-01

6.07E+04
6.60E-02
-2.94E-02
2.30E+04
9.78E-04
-3.59E-02
4.40E+04
8.32E-01
6.56E-02
2.76E+04
0.403
-8.03E-03
9.32E+03
3.26E-01
-3.71E-02
8.61E+03
3.31E-01
-3.09E-02

Betweeness Closeness Clustering
Centrality Centrality Coefficient

2.10E-01
-2.01E-03
3.88E+03
0.808
-4.23E-03

6.58E+04
9.93E-01
-7.56E-04
3.08E+03
6.06E-01
-3.42E-03
4.32E+04
8.45E-01
-2.72E-04
5.40E+03
0.645
-6.85E-04
9.95E+03
9.35E-01
-5.06E-04
3.17E+03
0.761
-7.11E-04

6.05E-11
1.24E-01
1.48E+04
6.97E-10
1.01E-01

7.05E+04
8.92E-02
3.84E-03
3.28E+04
9.78E-04
8.11E-03
4.66E+04
1.48E-01
2.37E-02
3.02E+04
4.03E-01
2.41E-03
1.06E+04
3.96E-01
9.92E-03
9.87E+03
3.31E-01
1.34E-02

7.50E-01
6.13E-02
9.94E+03
0.635
1.66E-02

6.87E+04
2.69E-01
3.70E-02
1.83E+04
6.06E-01
8.57E-03
4.59E+04
2.39E-01
3.49E-02
2.17E+04
4.86E-01
4.14E-03
9.74E+03
6.97E-01
-1.81E-02
8.76E+03
0.976
3.35E-03

83

Degree Eccentricity Neighbor- Number Stress Topological

hood Undirected Centrality Coefficient

Connecti- Edges

vity
1.41E-16 9.67E-02  1.55E-27 1.41E-16 3.31E-03  2.52E-08
451E+01 6.76E-02 3.51E+01 4.51E+01 8.48E+02  1.29E-01
1.61E+04 1.04E+04 1.80E+04 1.61E+04 5.08E+03 1.38E+04
2.09E-15 0.674 2.50E-26  2.09E-15 0.00134  5.65E-07
4.34E+01 -5.08E-03 3.19E+01 4.34E+01 1.02E+03  9.47E-02
6.88E+04 6.59E+04 7.18E+04 6.88E+04 6.63E+04 6.85E+04
2.80E-01 9.75E-01 3.14E-02 2.80E-01 8.26E-01 3.22E-01
3.02E+00 -2.01E-03 1.58E+01 3.02E+00 4.12E+02 1.96E-02
3.11E+04 2.81E+04 3.40E+04 3.11E+04 3.54E+03 1.80E+04
3.14E-02 7.59E-01 3.46E-05 3.14E-02 2.82E-02 8.31E-01
4.71E+00 1.03E-02 2.48E+01 4.71E+00 1.99E+03 4.64E-03
4.67E+04 3.06E+04 5.20E+04 4.67E+04 4.39E+04 4.62E+04
1.30E-01 4.27E-13 4.51E-05 1.30E-01 8.74E-01 1.97E-01
6.69E+00 -3.27E-01 2.38E+01 6.69E+00 4.43E+02 2.81E-02
3.03E+04 1.42E+04 3.56E+04 3.03E+04 6.04E+03 2.20E+04
3.55E-01 6.24E-39 1.06E-05 3.55E-01 3.41E-01 3.75E-01
6.26E+00 -5.11E-01 2.23E+01 6.26E+00 1.27E+03  1.31E-02
1.09E+04 9.96E+03 1.16E+04 1.09E+04 1.02E+04 9.95E+03
1.73E-01 8.68E-01 2.06E-02 1.73E-01 8.08E-01 9.43E-01
6.74E+00 -8.75E-03 6.73E+00 6.74E+00 1.59E+02 -9.02E-03
1.02E+04 9.24E+03 1.09E+04 1.02E+04 3.38E+03 8.97E+03
1.30E-01 0.971 1.15E-02 1.30E-01 0.291 0.758
7.26E+00 4.33E-04 7.45E+00 7.26E+00 3.42E+02  8.03E-03



Comparison

Mount Sinai
AD vs Control:
Diagnosis
Name

Mount Sinai
AD vs Control:
L3 Name

Mount Sinai
AD vs Control:
L2 Name

Mount Sinai
Female AD vs
Male AD:
Diagnosis
Name

Nodes Mann Avg Betweeness Closeness Clustering
Whitney Shortest Centrality Centrality Coefficient
U Test Path Length

All Nodes Stat 1.62E+05  1.28E+05 1.60E+05 1.55E+05
pval 6.92E-57  9.38E-17 2.49E-54  1.21E-48
Amean 9.13E-01  3.95E-04 2.20E-01 3.53E-01
Singletons Stat 1.49E+03  1.20E+01 3.06E+02 7.93E+02
Removed ;| 1.55E-03  1.98E-03 1.55E-03  1.04E-01
Amean 4.23E-01 -1.89E-01 -1.49E-01  1.49E-01
All Nodes Stat  9.83E+04  7.77E+04 1.01E+05 1.02E+05
pval 4.40E-48  4.50E-17 2.23E-55  6.00E-62
Amean 1.18E+00 -1.21E-04 3.65E-01  6.35E-01
Singletons Stat 1.96E+04  1.87E+03 2.25E+04 1.82E+04
Removed 5| 0.263  0.000503 2.63E-01 8.41E-01
Amean  -2.98E-02 -1.61E-02 1.02E-02  1.04E-02
All Nodes Stat  1.34E+04  1.20E+04 1.49E+04 1.41E+04
pval 2.63E-07 6.47E-04 3.71E-13  3.72E-10
Amean 6.15E-01 -5.00E-04 3.05E-01 3.71E-01
Singletons Stat 4.99E+03  1.27E+03 6.43E+03 5.63E+03
Removed 5| 1.18E-01 0.15 1.18E-01 0.856

Amean -6.30E-02  -7.58E-03 2.93E-02 -1.83E-03

All Nodes Stat 1.14E+05  1.09E+05 1.19E+05 1.17E+05
pval 8.97E-02  5.42E-01 2.08E-03 5.16E-03
Amean 1.47E-01 -2.93E-04 4.45E-02  8.06E-02
Singletons Stat 1.64E+04  1.99E+03 2.15E+04 1.44E+04
Removed 2.31E-02  6.72E-02 2.31E-02  2.50E-01

Amean -490E-02 -3.85E-03 1.03E-02  2.26E-02

84

Degree

1.61E+05
1.91E-56
7.35E+00
1.28E+03
3.82E-02
1.27E+01
1.09E+05
4.78E-78
5.40E+01
3.04E+04
4.24E-13
4.28E+01
1.69E+04
1.79E-24
4.68E+01
8.44E+03
3.22E-09
3.29E+01

1.18E+05
4.75E-03
2.64E+00
2.05E+04
1.52E-01
3.56E+00

1.62E+05
6.59E-58
1.37E+00
1.47E+03
3.72E-09
6.79E-01
9.98E+04
1.82E-74
1.30E+00
2.11E+04
7.67E-01
2.52E-03
1.35E+04
3.02E-12
7.80E-01
5.07E+03
0.00012
-1.13E-01

1.15E+05
3.29E-02
2.25E-01
1.78E+04
4.96E-02
-6.38E-02

Eccentricity Neighbor-

hood

Connect-

ivity
1.62E+05
1.48E-57
5.33E+01
1.79E+03
1.56E-06
1.10E+02
1.19E+05
1.90E-113
1.95E+02
4.06E+04
2.67E-52
1.45E+02
1.96E+04
1.69E-45
7.09E+01
1.11E+04
6.39E-32
4.71E+01

1.24E+05
8.66E-06
2.12E+01
2.65E+04
1.26E-11
3.12E+01

Number

Edges

1.61E+05
1.91E-56
7.35E+00
1.28E+03
3.82E-02
1.27E+01
1.09E+05
4.78E-78
5.40E+01
3.04E+04
4.24E-13
4.28E+01
1.69E+04
1.79E-24
4.68E+01
8.44E+03
3.22E-09
3.29E+01

1.18E+05
4.75E-03
2.64E+00
2.05E+04
1.52E-01
3.56E+00

Stress

1.29E+05
3.27E-17
4.23E+02
2.68E+02
2.04E-02
2.57E+03
7.97E+04
9.06E-21
3.59E+03
3.82E+03
2.76E-03
7.72E+03
1.28E+04
1.92E-06
1.43E+03
2.09E+03
0.00077
2.31E+03

1.09E+05
4.39E-01
1.52E+02
2.40E+03
9.25E-01
7.35E+02

Topological
Undirected Centrality Coefficient

1.55E+05
1.27E-47
2.08E-01
3.96E+02
1.74E-01
-1.13E-01
1.05E+05
4.25E-66
4.59E-01
2.10E+04
3.08E-02
5.50E-02
1.49E+04
4.61E-13
3.33E-01
6.41E+03
0.128
3.40E-02

1.16E+05
1.02E-02
4.46E-02
1.37E+04
8.51E-01
3.32E-03



Comparison

Mount Sinai
Female AD vs
Male AD: L3
Name

Mount Sinai
Female AD vs
Male AD: L2
Name

Mount Sinai
Female: AD vs
Control:
Diagnosis
Name

Mount Sinai
Female: AD vs
Control: L3
Name

Nodes Mann

Avg

Whitney Shortest
U Test Path Length

All Nodes Stat

pval
Amean
Singletons Stat

Removed pval

Amean

All Nodes Stat
pval
Amean

Singletons Stat

Removed pval

Amean

All Nodes Stat
pval
Amean
Singletons Stat
Removed pval
Amean
All Nodes Stat
pval
Amean
Singletons Stat
Removed pval

Amean

5.94E+04
7.17E-01
4.04E-02
5.24E+04
8.06E-01
-7.80E-03
9.16E+03
0.348
-0.033
8.74E+03
0.33
-0.0342

1.61E+05
1.05E-56
9.14E-01
1.49E+03
1.35E-03
4.28E-01
9.85E+04
3.74E-44
1.12E+00
1.89E+04
0.197
-3.31E-02

5.86E+04
9.39E-01
-1.67E-04
9.11E+03
6.18E-01
-5.46E-04
9.68E+03
0.853
-0.000305
2.79E+03
0.518
-0.000165

1.28E+05
2.60E-16
4.12E-04
1.20E+01
2.04E-03
-1.89E-01
7.88E+04
2.28E-16
-1.28E-04
1.85E+03
0.000661
-1.60E-02

6.06E+04
4.12E-01
1.72E-02
5.36E+04
8.06E-01
2.77E-03
1.04E+04
0.344
0.016
1.00E+04
0.33
0.0161

1.60E+05
4.01E-54
2.19E-01
2.96E+02
1.35E-03
-1.51E-01
1.02E+05
5.53E-52
3.50E-01
2.22E+04
1.97E-01
1.14E-02

Betweeness Closeness Clustering
Centrality Centrality Coefficient

6.06E+04
3.51E-01
2.79E-02
5.34E+04
8.18E-01
1.46E-03
9.94E+03
0.824
-0.00158
9.52E+03
0.821
-0.00189

1.54E+05
1.67E-47
3.46E-01
7.81E+02
9.68E-02
1.49E-01
1.03E+05
1.98E-57
6.07E-01
1.78E+04
8.13E-01
9.48E-03

85

Degree Eccentricity Neighbor- Number Stress Topological
hood Undirected Centrality Coefficient
Connect- Edges
ivity
6.26E+04 5.98E+04 6.77E+04 6.26E+04 5.93E+04 6.14E+04
1.03E-01 1.60E-01 3.56E-04 1.03E-01 7.02E-01 2.43E-01
8.47E+00 4.96E-02 2.42E+01 8.47E+00 7.39E+02  2.51E-02
5.57E+04 5.29E+04 6.07E+04 5.57E+04 9.81E+03 5.42E+04
2.63E-01 6.15E-01 1.36E-03 2.63E-01 5.75E-01 5.84E-01
7.36E+00 -2.68E-03 1.97E+01 7.36E+00 1.67E+03  6.90E-03
1.06E+04 9.80E+03 1.07E+04 1.06E+04 9.79E+03 1.03E+04

0.251 0.984 0.206 0.251 0.991 0.446
5.46 0.000816 3.44 5.46 1.58E+02 0.0148
1.02E+04 9.39E+03 1.02E+04 1.02E+04 2.90E+03 9.90E+03
0.238 0.991 0.193 0.238 0.278 0.434
5.56 0.000213 3.49 5.56 4.69E+02 0.0149

1.61E+05 1.61E+05 1.61E+05 1.61E+05 1.28E+05 1.54E+05
3.26E-56  1.07E-57 2.35E-57 3.26E-56 9.41E-17 1.74E-46
7.22E+00 1.37E+00 5.27E+01 7.22E+00 4.13E+02  2.03E-01
1.26E+03 1.46E+03 1.78E+03 1.26E+03 2.59E+02 3.80E+02
4.74E-02  3.99E-09 1.58E-06 4.74E-02 2.27E-02 1.57E-01
1.25E+01 6.79E-01 1.10E+02 1.25E+01 2.57E+03 -1.17E-01
1.09E+05 1.00E+05 1.19E+05 1.09E+05 8.07E+04 1.05E+05
1.26E-72 7.58E-67 7.20E-105 1.26E-72 8.06E-20 6.21E-62
5.17E+01 1.24E+00 1.83E+02 5.17E+01 3.40E+03 4.42E-01
2.97E+04 2.06E+04 3.95E+04 2.97E+04 3.73E+03 2.06E+04
3.61E-13 7.82E-01 2.38E-51 3.61E-13 3.23E-03  2.55E-02
4.25E+01 2.38E-03 1.41E+02 4.25E+01 7.53E+03  5.71E-02



Comparison

Mount Sinai

Female: AD vs

Control: L2
Name

Mount Sinai
Male: AD vs
Control:
Diagnosis
Name

Mount Sinai

Male: AD vs

Control: L3
Name

Mount Sinai

Male: AD vs

Control: L2
Name

Nodes

All Nodes

Singletons
Removed

All Nodes

Singletons
Removed

All Nodes

Singletons
Removed

All Nodes

Singleton
Removed

Mann

Avg

Whitney Shortest
U Test Path Length

Stat

pval
Amean
Stat
pval

Amean

Stat
pval
Amean
Stat
pval
Amean
Stat
pval
Amean
Stat
pval
Amean
Stat
pval
Amean
Stat
pval

Amean

1.32E+04
1.65E-06
5.78E-01
4.83E+03
9.56E-02
-6.84E-02

1.29E+05
2.85E-40
7.64E-01
1.15E+03
9.02E-04
4.77E-01
1.29E+05
2.85E-40
7.64E-01
1.15E+03
0.000902
4.77E-01
1.30E+04
6.41E-07
5.91E-01
5.00E+03
2.61E-01
-4.56E-02

1.19E+04
1.52E-03
-5.37E-04
1.26E+03
0.239
-7.35E-03

1.07E+05
6.02E-13
5.47E-04
1.00E+01
2.24E-03
-1.85E-01
1.07E+05
6.02E-13
5.47E-04
1.00E+01
0.00224
-1.85E-01
1.17E+04
8.24E-04
-3.78E-04
1.23E+03
0.0909
-7.47E-03

1.47E+04
2.38E-12
2.94E-01
6.34E+03
9.56E-02
3.19E-02

1.28E+05
3.40E-38
1.74E-01
2.07E+02
9.02E-04
-1.61E-01
1.28E+05
3.40E-38
1.74E-01
2.07E+02
9.02E-04
-1.61E-01
1.40E+04
8.73E-11
2.75E-01
6.01E+03
2.61E-01
2.05E-02

Betweeness Closeness Clustering
Centrality Centrality Coefficient

1.39E+04
1.99E-09
3.53E-01
5.54E+03
0.911
-1.29E-03

1.23E+05
1.97E-32
2.65E-01
5.52E+02
1.70E-01
1.26E-01
1.23E+05
1.97E-32
2.65E-01
5.52E+02
1.70E-01
1.26E-01
1.35E+04
4.08E-09
3.55E-01
5.37E+03

0.872
2.06E-03

86

Degree

1.66E+04
7.39E-23
4.48E+01
8.27E+03
3.08E-09
3.23E+01

1.29E+05
1.05E-39
4.58E+00
8.94E+02
1.32E-01
8.91E+00
1.29E+05
1.05E-39
4.58E+00
8.94E+02
1.32E-01
8.91E+00
1.58E+04
4.30E-20
3.95E+01
7.81E+03
2.80E-07
2.75E+01

1.33E+04
8.21E-11
7.38E-01
4.96E+03
0.000136
-1.13E-01

1.29E+05
1.36E-40
1.14E+00
1.13E+03
1.93E-06
7.43E-01
1.29E+05
1.36E-40
1.14E+00
1.13E+03
1.93E-06
7.43E-01
1.28E+04
8.55E-10
7.12E-01
4.82E+03
5.81E-05
-1.26E-01

Eccentricity Neighbor-

hood

Connect-

ivity
1.92E+04
2.70E-42
6.69E+01
1.09E+04
3.16E-31
4.52E+01

1.29E+05
9.84E-41
3.15E+01
1.36E+03
1.82E-06
7.83E+01
1.29E+05
9.84E-41
3.15E+01
1.36E+03
1.82E-06
7.83E+01
1.85E+04
5.46E-40
6.31E+01
1.05E+04
5.09E-29
4.20E+01

Number

Edges

1.66E+04
7.39E-23
4.48E+01
8.27E+03
3.08E-09
3.23E+01

1.29E+05
1.05E-39
4.58E+00
8.94E+02
1.32E-01
8.91E+00
1.29E+05
1.05E-39
4.58E+00
8.94E+02
1.32E-01
8.91E+00
1.58E+04
4.30E-20
3.95E+01
7.81E+03
2.80E-07
2.75E+01

Stress

1.27E+04
7.09E-06
1.34E+03
2.06E+03
0.000274
2.26E+03

1.07E+05
2.27E-13
2.61E+02
2.36E+02
3.76E-03
1.84E+03
1.07E+05
2.27E-13
2.61E+02
2.36E+02
3.76E-03
1.84E+03
1.24E+04
4.95E-06
1.18E+03
1.96E+03

0.00993
1.80E+03

Topological
Undirected Centrality Coefficient

1.47E+04
3.44E-12
3.19E-01
6.31E+03

0.112
3.65E-02

1.23E+05
8.08E-32
1.57E-01
2.91E+02
1.98E-01
-1.20E-01
1.23E+05
8.08E-32
1.57E-01
2.91E+02
1.98E-01
-1.20E-01
1.41E+04
3.24E-11
3.08E-01
5.97E+03
0.232
2.81E-02



Comparison

Mount Sinai
Male vs
Female

Controls:
Diagnosis
Name

Mount Sinai
Male vs
Female

Controls: L3

Name

Male vs
Female
Controls: L2
Name

Nodes

Mann Avg

Whitney Shortest

U Test Path Length

All Nodes Stat
pval
Amean

Singletons Stat

Removed pval

Amean

All Nodes Stat

pval
Amean
Singletons Stat

Removed pval

Amean

All Nodes Stat
pval
Amean

Singleton Stat

Removed pval

Amean

9.73E+04
0.863
-0.00251
3.20E+01
0.957

0
5.71E+04
0.661
-0.0298
7.10E+03
0.847
-0.00638
9.63E+03
0.798
-0.0198
3.19E+03
0.775
-0.0114

Betweeness Closeness Clustering
Centrality Centrality Coefficient

9.74E+04
0.903
-0.000158
7.50E+00
1
-2.78E-17
5.80E+04
0.958
-0.00017
7.34E+02
0.799
-0.00132
9.77E+03
0.955
-0.000146
8.50E+02
0.93
-0.000286

9.73E+04
0.863
-0.00101
3.20E+01
0.957

0
5.73E+04
0.731
-0.00736
7.30E+03
0.847
0.00195
9.80E+03
0.994
-0.00259
3.37E+03
0.775
0.00475

9.74E+04
0.881
-0.00087
18

0.933

0
5.75E+04
0.789
-0.00852
5.43E+03
0.946
-0.00083
9.81E+03
0.984
-9.77E-05
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0.794 0.801 0.744 0.794 0.915 0.687
0.815 -0.0123 0.323 0.815 10 0.00653

Color Legend

pval < .05

pval < .01
pval < .001
pval < .0001

positive Amean
negative Amean
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2.9 Supplementary Data

Supplementary Data 2.1 Thresholded Full Tables of Diagnosis Enrichment Analysis

An excel sheet with 3 levels of diagnosis categories and sex-specific analysis (6 tabs) for each
institution (12 tabs total). Lists include diagnosis enriched between AD and control cohorts, and
sex-specific enrichments. Diagnoses are thresholded to represent > 10 patients, with uncorrected
p-values (from two-sided Fisher Exact or Chi Square test) and odds ratios. The data from UCSF
can be visualized and explored in the Rshiny app: vizad.org.

Data can be downloaded at this link:
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-28273-
0/MediaObjects/41467 2022 28273 MOESM4 ESM.xlsx

Supplementary Data 2.2 Encounter Controlled Diagnosis Enrichment Analysis

An excel sheets with 3 levels of diagnosis categories on encounter-controlled control cohorts
(described in Methods) and sex-specific analysis at UCSF (6 tabs). Lists include diagnoses
enriched between AD and control cohorts, and sex-specific enrichments. Diagnoses are
thresholded to represent > 10 patients, with un-corrected p-values (from two-sided Fisher Exact or
Chi Square test) and odds-ratios. The data can be visualized and explored in the Rshiny app:
vizad.org.

Data can be downloaded at this link:
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-022-28273-
0/MediaObjects/41467 2022 28273 MOESMS5 ESM . xlsx
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2.10 Supplementary Figures

b Mount Sinai
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Supplementary Figure 2.1 Demographic correlation across UMAP principal components

a. The top two graphs show the UMAP of AD and controls at UCSF, colored by deceased status
(left) and estimated age (right). The middle graphs show distribution of deceased status among
the two UMAP components, which are compared with a Mann-Whitney U-Test. The bottom
graphs show estimated age across the two UMAP components, with marginal distributions
shown on the sides. A regression line is plotted, and a Pearson’s R correlation test is performed.

b. The same UMAP plots are shown as in a, but for Mount Sinai.
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Supplementary Figure 2.2 Comorbidity Enrichment Analysis identifies diagnosis in AD vs.
Controls and Sex-Specific Enrichments at Mount Sinai

a. Volcano plot for Level 2 categories (top) and full diagnosis names (bottom) compared between
AD and control cohorts using Fisher Exact or Chi-Squared test. P-value cutoff is Bonferroni
corrected at 0.05 with log2 odds ratio cutoff at 1 for AD enriched (pink) and remaining
significant diagnoses in blue.

b. Above, a Manhattan plot with full diagnosis names colored by ICD-10 categories with
Bonferroni-corrected p-value cutoff of 0.05. Bottom, percentage of diagnosis in each ICD-10
category that is significant.

c. Full diagnosis names compared between AD and controls within each sex. The log of the

(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)
odds ratio is plotted on the axis, and points are colored by significance (Bonferroni-corrected,
p-val cutoff > 3e-6).

d. Miami plot of the diagnosis names grouped by sex and ICD-10 categories.
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Alzheimer vs. Control Medication Volcano
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Supplementary Figure 2.3 Medication Enrichment Analysis identifies Enriched Medications
between AD and Controls

a. Volcano plot for generic medication names compared between AD and controls using Fisher
Exact or Chi-Squared Test. P-value cutoff is Bonferroni-corrected at 0.05 with odds ratio cutoff
at 2 for AD enriched (pink) or 1/2 for controlled enriched (green). Remaining significant
diagnoses are in blue.

b. Log-log plot of generic medication names compared between AD and controls within each
sex. The log of the odds ratio for each sex is plotted on the axis, with points colored by

significance (Bonferroni-corrected p-value of 0.05) if female only (red), male only (blue), or
both (black).
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a UCSF Significant Median Lab Values

eGFR if non-African American
RBC Count
Hematocrit
Hemoglobin
Magnesium, Serum/Plasma
Hematocrit from Hb
Hemoglobin, Whole Blood
Lymphocyte Abs Cnt
Cholesterol, HDL
Platelet Count
Prealbumin
eGFR if African Amer
Albumin, Serum/Plasma
PH, Blood
Calcium, total, Serum/Plasma
Bicarbonate
Calcium, lonized, whole blood
pH, UA
Calcium, lonized, Serum/Plasma
Free T3, Adult
Carbon Dioxide, Total
Sodium, Serum/Plasma
Sedimentation Rate
Alkaline Phosphatase
Anion Gap
Free T4
aPTT
PT
Urea Nitrogen, Serum/Plasma
Bilirubin, Direct

Lactate, whole blood
Ferritin
C-Reactive Protein
Alanine transaminase
Glucose, fasting
Hemoglobin Alc
Methylmalonic Acid, serum
Aspartate transaminase

Mount Sinai Significant Median Labs

Lipase

Brain Natriuretic Protein
Phosphate
Creatine kinase
PH

INR

Bilirubin Total

QRS Duration

Hemoglobin A1C
Hematocrit
Mcv

Hemoglobin
Urine Specific Gravity
Urine Osmolality
D Eosinophil
zZ-score Red Blood Cell
1.5 Urine Potassium
10 Chloride
. Lactate
g'S Urobilinogen
-0.5

-1.0
-1.5

Troponin |
~ Estimated GFR
RDW
Protein Total
Free T4

significant between
AD vs. Controls
significant between

Imm Gran, Left Shift females only
WBC Count significant between
B-Type Natriuretic Peptide males only
Gamma-Glutamyl Transpeptidase — significant cluster
Glucose, non-fasting (FWER 0.05 Cholesterol, Total
Glucose, whole blood LDL Cholesterol
Control  Control  Alzheimer Alzheimer HDL Cholesterol
Female Male Female Male Control  Alzi Control  Alzheil
Male Male Female Female
b .
e Female Control ° © Male Control S L4
o Y
1 L . °
° o ° o0 °
Q:. oo -
0 ° @ . L S S ey S )
o L
[ ] e %
) S M o8
<4 °
g -1 ® 4 e .
[} @ o ° o8 .
N ° ° ° e ° L4
™ ] o e o °
£ -2
[2]
2 2
3 e Female AD ° © Male AD ®
s [ L4 n
° (]
°
1 . : ° *®
° ° ¢ esce
L] o [ ]
0 ®--® M % ..o Py () ® < °
°-® % o ® ° e @
oo o ® e® o ®
o ° o o® °
0
-1 ° ° ° = e °
° °
¢ °
° °
-2
-2 -1 0 1 2 =2 -1 0 1 2
UCSF Z-Score

Supplementary Figure 2.4 Stratifying by AD status and sex allows identification of lab trends

between groups

a. Heatmap of lab values filtered on significance at UCSF in AD vs control comparison across

(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)
sex-specific groups. Labs are clustered with light blue lines representing significant cluster
breaks (FWER corrected p-value 0.05). Text color represents significant labs among females
only (pink), or significant between AD vs controls (black). Heatmap colors represent z-score
of the average median value across the 4 groups.

b. Heatmap of lab values filtered on significance at Mount Sinai in AD vs control comparison
across sex-specific groups. Labs are clustered with light blue lines representing significant
cluster breaks (FWER corrected p-value 0.05). Text color represents significant labs among
males only (green), or significant between AD vs controls (black). Heatmap colors represent
z-score of the average median value across the 4 groups.

c. Comparison of z-scored lab values between UCSF and Mount Sinai showing significant
correlations within each AD/sex-stratified groups. Female control: Spearman p = 0.45, p-value
< 0.001; Male control: 0.46, p-value < 0.001; Female AD: 0.59, p-value < le-5; Male AD:
0.64, p-value < le-5.
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Chapter 3: Leveraging Electronic Medical Records and Knowledge
Networks to Predict Disease Onset and Gain Biological Insight Into

Alzheimer’s Disease

3.1 Abstract

Early identification of Alzheimer’s Disease (AD) risk can aid in interventions before
disease progression. We demonstrate that electronic health records (EHRs) combined with
heterogeneous knowledge networks (e.g., SPOKE) allow for (1) prediction of AD onset and (2)
generation of biological hypotheses linking phenotypes with AD. We trained random forest models
that predict AD onset with mean AUROC of 0.72 (-7 years) to .81 (-1 day). Top identified
conditions from matched cohort trained models include phenotypes with importance across time,
early in time, or closer to AD onset. SPOKE networks highlight shared genes between top
predictors and AD (e.g., APOE, IL6, TNF, and INS). Survival analysis of top predictors
(hyperlipidemia and osteoporosis) in external EHRs validates an increased risk of AD. Genetic
colocalization confirms hyperlipidemia and AD association at the APOE locus, and AD with

osteoporosis colocalize at a locus close to MS4A6A with a stronger female association.
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3.2 Introduction

Neurodegenerative disorders are devastating, heterogeneous, and challenging to diagnose,
and their burden in an aging population is expected to continue to grow!. Among these,
Alzheimer’s Disease (AD) is the most common form of dementia after age 65, and its hallmark
memory loss and other cognitive symptoms are costly and onerous to both patients and caregivers.
Approaches to curb this impact are moving increasingly to targeting interventions in at-risk
individuals prior to the onset of irreversible decline**. To this end, advancements in AD
biomarkers, diagnostic tests, and neuroimaging have improved the detection and classification of
AD, and disease-modifying treatments have been approved, but there is still no cure and much
remains unknown about its pathogenesis>¢. This is in part due to limited availability of longitudinal
data or data linking molecular and clinical domains.

In the past few decades, electronic health records (EHRs) have become a source of rich
longitudinal data that can be leveraged to understand and predict complex diseases, particularly
AD. Prior applications of EHRs for studying AD include deep phenotyping of AD’, identification
of AD-related associations and hypotheses®, and models classifying or predicting a dementia
diagnosis from clinical data modalities®. Data available in clinical records can also better represent
a clinician’s knowledge of a patient’s clinical history at a point in time prior to further diagnostic
studies or imaging, allowing a prediction model to be low cost to implement as a first line
application in primary care or for initial risk stratification!’. While machine learning (ML) has
been previously applied to EHRs for general dementia classification and prediction'!"!?, these
approaches are limited in their specificity for the AD phenotype, lack of biological interpretability,
or rely on data modalities that may not be readily available in the EHR to facilitate early prediction

14-16

(e.g. neuroimaging or special biomarkers!”!®). Sex as a biological variable is an important
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covariate for AD heterogeneity with potential contributions to differing risks and resilience, but
sex-specific contributions have often been omitted from prior AD machine learning models!'®-%°.
To our knowledge, there have not yet been approaches that utilize vast EHR data for predicting
future risk of AD with consideration of applicability and explainability of models.

With recent advances in informatics and curation of multi-omics knowledge, there is
increasing interest in integrative approaches to derive insights into disease. Heterogeneous
biological knowledge networks bring in the ability to synthesize decades of research and combine
human understanding of multi-level biological relationships across genes, pathways, drugs, and
phenotypes, with vast potential for deriving biological meaning from clinical data?!. There has
been much AD-research leveraging specific data modalities or combining a few modalities

2223 genetics?*, neuroimaging®’), but there is still a need for meaningful

(transcriptomics
integration that allows for the understanding of the relationship between pathogenesis and clinical
manifestations. Heterogeneous knowledge networks provide an opportunity to derive biological
hypotheses from clinical data by synthesizing knowledge across multiple data modalities to
explain potential relationships between many shared clinical associations?6-27,

Here, we utilize EHR data from the University of California, San Francisco (UCSF)
medical center to develop ML models for AD onset prediction and generate hypotheses of high-
level biological relationships between top predictors and AD. We carry out clinical model
construction for prediction and proceed with interpretation of matched patient models, controlling
for demographics and visit-related confounding, to identify biologically relevant clinical
predictors. We further demonstrate interpretability using heterogeneous knowledge networks

(SPOKE knowledge graph)*® and validate predictors with supporting evidence in external EHR

datasets and through genetic colocalization analysis. Our work not only has implications for

108



determining clinical risk of AD based on EHRs, but also can lead to further research in identifying

hypothesized early phenotypes and pathways to help further the field of neurodegeneration.
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3.3 Results

From the UCSF EHR database of over 5 million patients from 1980-2021, 2,996 AD
patients who had undergone dementia evaluation at the Memory and Aging Center and thus had
expert-level clinical diagnoses were identified and mapped to the UCSF Observational Medical
Outcomes Partnership (OMOP) EHR database. From the remaining patients, 823,671 control
patients were extracted with over a year of visits and no dementia diagnosis. After identifying an
index time representing AD onset (mean onset age (SD) 74 (5.6), see Methods) and filtering for
availability of at least 7 years of longitudinal data, 749 AD patients and 250,545 control patients
were identified (demographics shown in Table 3.1). From that, 30% was held-out for model
evaluation and 70% utilized for model training (Figure 3.1B, Supplementary Figure 3.1). For
each time point and within sex strata, ML models were either trained for AD onset prediction or
trained on the AD cohort and a subset of propensity-score matched controls for hypothesis
generation, where balancing was performed on demographics (sex, race & ethnicity, birth year,
age) and visit-related factors (years in EHR, first EHR visit age, number of visits, number of EHR
concepts, and days since first EHR record, Supplementary Table 3.4, matched example in Table

3.1).

3.3.1 ML models based on clinical data can accurately predict Alzheimer’s

Disease onset up to 7 years in advance

Random forest (RF) models trained on only clinical features from time points between -7
years to -1 day to AD onset were evaluated on the held-out dataset with average bootstrapped Area
Under the Receiver Operating Characteristic (AUROC) curve between 0.72 (median 0.75) for the

-7 year time model to 0.81 (median 0.85) for the -1 day model. The RF models performed with

110



Area Under the Precision Recall Curve (AUPRC) greater than the reference held-out evaluation
set AD prevalence of 0.003 (average/median of 0.05/0.01 for -7 year model and 0.10/0.06 for -1
day model, Figure 3.1C). With addition of demographics and visit-related features, RF model
performance improved with average bootstrapped AUROC between 0.86 (median 0.89) to 0.90
(median 0.94) and AUPRC between mean 0.06 (median 0.04) and 0.27 (median 0.14) for the -7
year to -1 day model, respectively (Figure 3.1C).

Top decision features across each time point model (see Methods) included features across
clinical data domains, including vaccines, abnormal feces content, hypertension, hyperlipidemia
(HLD), and cataracts (Supplementary Figure 3.2A, Supplementary Data 3.1). Demographic
and visit-related features became predictive for AD diagnosis when added to the model, which is
not unexpected since these features may contribute to confounding that influence the identified
features and predicted risk of AD diagnosis (Supplementary Figure 3.2A). EHR diagnoses
mapped to phecode categories29 (see Methods) identified sense organs, circulatory, and
musculoskeletal phecode categories for early models, and mental disorder category for late models
(Supplementary Figure 3.2B). Among the clusters of top 50 ranked phecodes, one cluster
identified phecode features that maintain high relative importance throughout the time models
(HLD, hypertension, dizziness, abnormal stool contents), and other clusters contain features with
relative importance at specific time points (Supplementary Figure 3.2C). While some of these
features support prior identified AD risk factors, the lack of adjustment may lead to feature
identification as proxies for age in risk determination but not directly relevant to disease
pathogenesis. Therefore, we proceed to identify disease relevant features by training models on

patients matched on demographics and hospital utilization for the goal of hypothesis generation.
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3.3.2 Models trained on matched cohorts can identify hypotheses for
biologically relevant AD predictors

To train models that are robust for AD prediction for identifying predictors without
demographic and visit-related confounding, we train time point models on a matched set of
participants at a 1:8 ratio between AD and controls. Sufficient balance was achieved on numerical
covariates that were highly important in unmatched demographic models (Supplementary Figure
3.3, Supplementary Table 3.3).

RF models trained on only clinical features from -7 years to -1 day performed with average
bootstrapped held-out evaluation set AUROC between .58 (median 0.57) for the -7 year time
model to .77 (median 0.77) for the -1 day time model. The models performed with AUPRC greater
than the held-out evaluation set AD prevalence of 0.003 with improvement closer to time 0
(mean/median of 0.02/0.008 for -7 year time model and 0.08/0.03 for -1 day model, Figure 3.2A).
When demographics and visit-related information were added as features, the models performed
with minimal improvement, with average bootstrapped test set AUROC between 0.61 (median
0.61) to 0.71 (median 0.72) and similar AUPRC (mean/median of 0.02/0.009 for -7 year time
model and 0.05/0.03 for -1 day model, Figure 3.2A). For both the full and matched cohort models,
the relative performances are consistent for balanced accuracy measures on the held-out
evaluation, and an example permutation test demonstrates significance for the -1 day matched
cohort model (Supplementary Figure 3.7).

Among top features sorted by average importance across time models, top features include
amnesia and cognitive concerns, HLD, dizziness, cataract, congestive heart failure, osteoarthritis,
and others (Figure 3.2B). These top features are consistently important even when demographics

and visit information was added to the model, although demographic and visit features still had
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minimal influence on prediction (Figure 3.2B). Compared to models trained on all patients, the
models trained on matched cohorts have increased importance assigned to features like
hyperlipidemia and amnesia, while decreasing importance of features like pain intensity rating
scale and essential hypertension (Supplementary Figure 3.6).

Since matching allows for the control of the influence of visit and demographic-related on
AD prediction, the remaining diagnoses features can be identified for hypothesis generation with
greater specificity for AD predictive risk. Top phecode categories include mental disorders, sense
organs, and endocrine/metabolic categories (Figure 3.2C). Among clusters of specific phecodes,
one cluster included features with maintained predictive importance throughout time models (HLD
and congestive heart failure), while other clusters include phecodes that are relatively predictive
several years prior to AD onset (osteoarthritis, allergic rhinitis). A cluster of features emerges as
important around -3 years (osteoporosis, dizziness, back pain, hemorrhoids, palpitations), and
some features only emerge as important closer to the time of AD onset (memory loss, vitamin D
deficiency, Figure 3.2C). Together, this shows that the model can identify a combination of
conditions that can lead to AD risk identification for a patient of a given age and hospital utilization

burden.

3.3.3 Stratification by sex allows identification of features that are predictive

within a subgroup

Since sex plays a role in AD risk, models were trained within male or female-identified sex
groups to perform sex-specific prediction and identify sex-specific predictive features, without and
with matching on demographics and hospital utilization (demographics in Supplementary Table
3.4). Models trained on clinical features performed with average held-out evaluation set AUROC

between 0.75 (median 0.76) and 0.71 (median 0.71) for -7 year female and male models to 0.84
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(median 0.86) and 0.82 (0.89) for -1 day female and male models. For AUPRC, the models
performed greater than the held-out evaluation set prevalence (0.0036 for females, 0.0023 for
males) with performance of 0.056-0.11(median 0.022-0.061) and 0.041-0.15(median 0.015-0.056)
for females and male -7 years to -1 day time models, respectively. With addition of demographics
and visit-related features, AUROC/AUPRC improved considerably (Supplementary Figure
3.4A). Top features include sense organs and musculoskeletal phecode categories in female-only
models, and circulatory system and digestive phecode categories as important among male-only
models (Supplementary Figure 3.4B).

To identify sex-specific biologically relevant clinical predictors for hypothesis generation,
models were also trained by matching on demographic and visit-related factors within each
subgroup (matching results in Supplementary Table 3.4). Time point models trained only on
clinical features performed with mean held-out evaluation set AUROC between 0.60-0.68 (median
0.58-0.74) and 0.41-0.75 (median 0.43-0.84) for female and male models respectively (Figure
3.2D). For AUPRC, models performed greater than held-out evaluation set prevalence with
performance ranging from 0.031-0.095 (median 0.0076-0.046) and 0.0040-0.125 (0.0033-0.022)
for female and male models, respectively. Slight improvement in performance was observed with
the addition of demographics and visit-related information (Figure 3.2D).

Top phecode categories in the female models include respiratory/circulatory system
features earlier on, to musculoskeletal features in the -5 year model, to sense organs and mental
disorders in the -1 year and -1 day model. Top categories in male models include endocrine/
metabolic/circulatory disorders earlier, to digestive and genitourinary in -5 and -3 models, to
mental disorders in -1 day model (Supplementary Figure 3.4B). When comparing specific

phecodes, some are general across the subgroups such as HLD, congestive heart failure (early
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models), and memory/cognitive symptoms (later models) (Figure 3.2E, Supplementary Figure
3.4C). Female-driven features across time models included osteoporosis, palpitations, allergic
rhinitis, myocardial infarction, major depressive disorder, and abnormal stool contents. Male-
driven features included chest pain, hypovolemia, sexual disorder, tobacco use disorder, and
neoplasms (Figure 3.2E).

For all formulations of the prediction task, logistic regressions (LR) models performed
comparably to random forests, and identify features with linear relationships with AD including
some overlap with features identified from random forest models (Supplementary Figure 3.5).
Nevertheless, for matched cohort models random forest performs better than logistic regression at
the same time points (Supplementary Table 3.5) and can identify decision features with nonlinear
relationships with AD (e.g., RF identifies osteoporosis). Balanced accuracy measures for all of the
random forest models support trends in performance between models, including lower overall
performance for matched cohort models, and improvement in model performance closer to onset
of AD (Supplementary Figure 3.7A, Supplementary Table 3.6). As an example to evaluate the
extent that clinical features meaningfully predict AD, random forest models were retrained on
permutations of the ground truth label for the -1 day matched cohort (40 permutations) and the
trained model distribution was significant compared to the null distribution (p=0.024,

Supplementary Figure 3.7B).

3.3.4 Use of a knowledge graph allowed prioritization of known biological

explanations underlying predictive features

Next, we utilized the SPOKE knowledge graph?® in order to utilize existing knowledge to

explain and prioritize biological relationships between groups of top clinical model features and
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AD. We mapped biological features (genes, proteins, compounds, etc.) between top 25 clinical
predictors (mapped to disease nodes) and AD node for each model (see Methods).

Genes that appear in shortest path networks among matched models across multiple time
include APOE, AKT1, INS, ALB, IL1B, INF, ALB, IL6, SODI, etc. and compounds include
atorvastatin, simvastatin, ergocalciferol, progesterone, estrogen, cyanocobalamin, and folic acid
(Figure 3.3). These genes and compounds also share relationships to multiple occurring model
input nodes, particularly familial hyperlipidemia and osteoporosis among all time point models
(Figure 3.3). Notable nodes that appear over at least 2 models include C9orf72, TREM2, APP,
MAPT with relationships to input nodes of musculoskeletal and joint disorders, deafness, and

depression (Figure 3.3).

3.3.5 Hyperlipidemia validates as a top predictor of AD in external EHRs and

a genetic link confirmed in APOE locus

In order to further validate the utility of models to identify predictive disease associations,
we followed up on HLD as a top feature that was a consistent predictor across all models. Utilizing
a retrospective cohort study design in an EHR on five hospitals across the University of California
system (University of California Data Discovery Platform (UCDDP)) with exclusion of UCSF,
HLD-diagnosed patients (exposed group, n = 364,289) had a faster progression to AD event
compared to matched unexposed patients (n = 364,289, matched demographics in Supplementary
Table 3.7) (Figure 3.4A, Supplementary Figure 3.8A, log-rank test p-value<0.005). This was
further confirmed with a Cox proportional hazards analysis (hazard ratio (HR) 1.52 (95%
Confidence Interval (CI) 1.46-1.57), visit/demographic adjusted HR (aHR) 1.26 (1.21-1.31), p-

value <0.005, Supplementary Figure 3.8C).
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In order to investigate potential relationships between HLD and AD, the HLD-specific
knowledge network demonstrated shared gene associations with LSS, APOE, INS, SMAD3, ALB,
and GFPT1 (Figure 3.4B). Locus intersections between high LDL cholesterol and AD across two
independent GWAS studies across 408,942 AD patients from Schwartzentruber et al.>® and 94,595
LDL Cholesterol patients from Willer et al.®! respectively identified multiple shared variants,
including ch19:44,892,362(hg38):A>G (rs2075650) and ch19:44,905,579(hg38): T>G (rs405509)
(https://genetics.opentargets.org/study-comparison/GCST002222?studylds=GCST90012878).
PheWAS for rs2075650 on the UK Biobank verified significant associations with cholesterol
levels, HLD, AD, and family history of AD (Figure 3.4C). Colocalization H4 probability, a
measure that determines the probability two traits are associated at a locus based on prior genetic
studies, supports a causal link with locus variants for APOE protein QTL and both HLD traits and

AD traits (Figure 3.4D).

3.3.6 Female-specific predictor of osteoporosis validates in an external EHR

with potential explanations given in SPOKE and genetic colocalization analysis

Osteoporosis was identified as an important feature in the matched models as a female-
specific clinical predictor of AD. In the UCDDP, osteoporosis-exposed patients (n=68,940)
showed a quicker progression to AD compared to matched unexposed patients (n=68,940, matched
demographics in Supplementary Table 3.8) (Figure 3.5A, Supplementary Figure 3.8B, log-
rank test p-value<0.005). When stratified by sex, this progression is significant when comparing
between female osteoporosis (n=57,486) vs female controls (n=58,636). Cox hazard analysis
further supported osteoporosis as a general risk feature for AD (HR 1.81 (95% CI 1.70-1.92), aHR

1.59 (1.45-1.70), p<.005 Supplementary Figure 3.8D).
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Osteoporosis-specific SPOKE network demonstrated shared gene associations with IL6,
SMAD3, TNF, HSPG2, GATA1, GFPTI1, HFE, INS, and ALB (Figure 3.5B). Based on previous
GWAS studies across 472,868 AD patients from Schwartzentruber et al.° and 426,824 heel bone
mineral density (HBMD) patients from Morris et al.*?, a shared risk locus was found in
Chromosome 11 between HBMD and AD among the MS4A gene family
(https://genetics.opentargets.org/study-comparison/GCST006979?studylds=GCST90012877),
with the closest gene as MS4A6A. A comparison of prior GWAS of up to 71,880 AD patients
from Jansen et al.’* and sex-stratified heel bone mineral density (HBMD) GWAS (111,152
Female, 166,988 Male) of UK Biobank patients from Neale Labs (www.nealelab.is/uk-biobank/)
supports a female-specific association at the shared locus (Figure 3.5C). Colocalization analysis
supports a link between MS4A6A and AD (H4 = 0.987), female-specific HBMD with AD, and
phenotypes with MS4A6A expression (Figure 3.5D, AD vs Female HBMD H4 = 0.998, MS4A6A
vs Female HBMD H4 = 0.997). This statistical significance is not replicated for male specific
HBMD GWAS (Figure 3.5D, AD vs Male HBMD H4 = 0.00263, MS4A6A vs Male HBMD H4
= 0.00266). MS4A6A weighted associations with other phenotypes from Open Targets Genetics
found locus associations with many inflammatory phenotypes including c-reactive protein,

lymphocyte percentage, and neutrophil count (Figure 3.5E).

3.4 Discussion

While there is enormous potential in ML on clinical data, balancing clinical utility and
biological interpretability can be challenging. To address this, we used thousands of EHR concepts
to develop prediction models for expert-identified AD diagnosis, and selected an index time
suggesting AD onset. Cohort selection and data preprocessing is a crucial first step to identify

available clinical measures and optimal ground truth AD onset that is as close to biological AD

118


https://genetics.opentargets.org/study-comparison/GCST006979?studyIds=GCST90012877
http://www.nealelab.is/uk-biobank/

and avoid overly optimistic model performance due to nonspecific groundtruth or improper data
preprocessing®*. Our prediction model shows predictive power up to -7 years before the defined
index time of AD onset with AUROC of 0.72 (and up to AUROC 0.86 with additional
demographic and care utilization features), which is comparable with other models in literature
that utilize clinical data to predict less specific dementia or AD diagnosis!!*>. An application of
the model trained on all patients includes determining early disease risk in primary care settings
before time-consuming and costly detailed neuropsychological, biomarker, or neuroimaging
assessments (after which imaging or biomarker classification models can be utilized'?). The model
may also identify at-risk patients for follow-up or inclusion in early intervention or clinical trials,
with the -1 day model as suggesting possible AD onset to be considered at that visit to prevent
underdiagnosis of AD. Furthermore, interpretable models, such as random forest models, can
identify common decision point features and allow clinicians to understand what clinical features
were used in determining prediction probability and assess the model output with greater trust
compared to “black box” models.

In order to identify early clinical predictors that may be biologically relevant for AD
diagnosis, we trained models on patients matched by pre-identified confounding variables such as
demographics and visit-related features so that these features have less influence in AD prediction.
Machine learning models still retain the ability to predict AD diagnosis with mean AUROC over
.70 after the -3 year time model for random forests. Inclusion of demographic and visit-related
features minimally improved model performance, which is expected since matching increased the
specificity of the task to predict AD onset controlled on demographics and visit-related features.
In terms of clinical utility, the models trained on matched patients provide predictive power for a

given clinical scenario between two patients with similar pre-test probability of AD risk (e.g., same
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age and disease burden), with application of this model as a tool for determining post-test
probability of future AD risk. Furthermore, by balancing on pre-identified confounders such as
demographics and visits, top features may be interpreted with more biological relevance for AD
risk. For example, while we identified essential hypertension as an important feature in the models
trained on the full cohort, this diagnosis became less important in the models trained on matched
cohorts, suggesting hypertension may be nonspecific for AD and may instead be more related to
aging or disease burden.

Our time models trained on matched cohorts identify or strengthen known or suggested
hypotheses for early clinical predictors of AD, such as hyperlipidemia as a feature for all time
point models. We also identify relative importance of features years in advance, such as allergic
rhinitis and atrial fibrillation as early predictors, osteoporosis and major depressive disorder as
non-neurological predictors, and cognitive impairment and vitamin D deficiency as late predictors
of AD. Some of these prior predictors, such as depression and vitamin D deficiency, have been
previously implicated in AD risk**38, These findings potentially support hypotheses suggesting
AD can be associated with general aging or frailty, which might present in non-neurologic body
systems either prior to or concurrent with AD 3%, Furthermore, interpretation of these models
allows for the identification of high order groups of predictors that may contribute to disease
heterogeneity or together, contribute to AD risk. Nevertheless, while these models can identify
hypotheses of predictive features, EHR data can still capture clinical biases or misdiagnoses, and
further studies can investigate the influence of behavioral bias vs biological relevance.

We further trained models on sex-stratified subgroups (female vs male), with and without
matching on demographics and visit-related covariates, in order to identify sex-specific drivers of

clinical predictors. Given evidence that sex may influence different pathways to AD
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diagnosis??44:4

, it is important to consider how patient heterogeneity may impact the training,
utility, and interpretation of a prediction model. From the matched cohort models, we identified
clinical features in each subgroup that were consistent with the general models, such as
hyperlipidemia as important in every model and memory loss as important in late models.
Furthermore, we identified features that were sex-specific, such as osteoporosis, major depressive
disorder, allergic rhinitis, and abnormal stool contents as predictors enriched among women, and
chest pain, hypovolemia, prostate hyperplasia, and sensorineural hearing loss as predictive among
men. Further work can seek to disentangle the biological meaning of these sex-specific predictive
features: whether they reflect sex-specific non-neurological manifestation of prodromal states,
contributing risk factors, or even sex biases in clinician evaluation and treatment (e.g., bone density
evaluation may arise more often after a fall). These models also demonstrate that for a
heterogeneous disorder like AD, subgroup composition, like sex ratio of a cohort, can influence
the performance and the features that are identified as important. Differences in subgroup size and
prevalence of AD contribute to greater predictive performance among female strata models, and
differences observed in AUPRC are impacted by AD prevalence which can influence
interpretation of the positive predictive value of models within each sex strata. In terms of
identified features, the higher preponderance of females lead to sex-specific predictive factor,
osteoporosis, being identified as a general predictive variable in the general group. This further
indicates that both generalizable models and subgroup-specific models can provide valuable
insight, both general and personalized, for a complex disease. Furthermore, in the context of ML
fairness, the performance and identified features of general models may be influenced by the

demographic make-up of the training population, just like how greater number and AD prevalence
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among females influence greater female-strata performance and identification of osteoporosis in
our general models.

We utilized a heterogeneous knowledge networks (SPOKE) to identify shared biological
hypotheses underlying model-identified top clinical predictors and AD. By combining shortest
paths in SPOKE between top predictors and AD, we can prioritize nodes (e.g., genes) that are
consistently relevant for the high order combination of human data derived top clinical predictors
and AD, and give novel insight via prioritization and combination of relationships. First of all, we
were able to identify known genetic associations with dementia based upon top diagnoses, such as
through identification of known autosomal dominant early AD genes such as APP and PSEN 1/24.
Other genes identified with known associations with AD include APOE, HFE, and HSPG2 variants
that impact AD risk*’->!. An example of novel insight gained through SPOKE integration includes
ACTB relating to AD%>33, sensorineural hearing loss>*, arthropathy, and arthritis®>. The prediction
model allows for the prioritization of ACTB for patients with the common comorbidities of
sensorineural hearing loss and arthropathy/arthritis with risk of AD (where the connection through
linking sensorineural hearing loss, arthropathy, arthritis, and AD all together through ACTB has
not been previously implicated in literature).

The SPOKE network can also be leveraged to propose biological explanations based on
common nodes and shared associations between clinical predictors identified from human data
and AD. For example, ALB is identified through SPOKE as a shared genetic association between
congestive heart failure, malnutrition, hyperlipidemia, and AD. While prior relationships have
been identified between ALB and many individual diseases, each of those diseases also have many
implicated genetic relationships. Leveraging human data through the predictive models allows for

the prioritization of abundant gene connection with multiple disease predictors. Given ALB roles
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in pathways such as heme biosynthesis (Reactome R-HSA-189445), HDL remodeling (Reactome
R-HSA-8964058), and insulin-growth like factor regulation (Reactome R-HSA-8964058),
prioritization of mechanistic hypotheses linking ALB related pathways with the pathophysiology
of EHR-derived predictors (congestive heart failure, malnutrition, hyperlipidemia) can be explored
in future studies. Another example insight includes INS as a shared association between
osteoporosis®®, hypertension®’, hyperlipidemia®®, and AD>*%°. Prior studies have identified
potential mechanisms underlying the relationship between energy utilization, lipid levels,
nutrition, and neurodegeneration (e.g., Reactome R-HSA-1266738, R-HSA-16368)%-%3, and this
analysis allows for prioritization of mechanistic hypotheses to be further explored. While these
associations are included in the SPOKE network due to evidence in literature, the association of
these genes with specific early clinical predictors is less established, and thus this analysis allowed
us to identify novel constellation of phenotypes and underlying genetic relationships observable
in a clinical setting that, together, can lead a clinician to suspect future AD risk, prioritize
molecular pathways for testing or personalized treatment, and guide biological hypotheses
generation in AD pathogenesis for future studies.

To validate a few top clinical predictors, we utilized a hypothesis-driven approach to
support the relationship between two identified features (hyperlipidemia and osteoporosis) and
progress to AD diagnosis in an external database across the University of California EHR system.
For both phenotypes, the UC-wide EHR database supports a potential increased AD diagnosis risk
due to evidence of decreased time to AD and increased hazard of AD diagnosis in patients exposed
to the predictor of interest. The association between hyperlipidemia and AD has been identified in
prior clinical studies and systematic reviews®®’. In particular, APOE is a well-established

associated genetic locus®®, and APOE polymorphism is known to modify AD risk, particularly in
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individuals carrying the €4 allele®. Many studies have also shown APOE association with elevated
lipid levels and cardiovascular risk factors’®’!. The validation of these well-known associations
not only show that our ML models on clinical data can pick up hyperlipidemia as a risk factor, but
also by utilizing the SPOKE network we can integrate known relationships in literature to
potentially explain the association between hyperlipidemia and AD and identify the APOE locus
as a potential shared causal mechanism as demonstrated in the colocalization results. Beyond the
ability to identify known relationships, the SPOKE network also proposes biological explanations
of higher-order shared associations between clinical predictors, such as ALB as a shared genetic
association between congestive heart failure, malnutrition, hyperlipidemia, and AD, or INS as a
shared association between osteoporosis, hypertension, hyperlipidemia, and AD. Prior studies
have identified potential mechanisms underlying the relationship between energy utilization, lipid

levels, nutrition, and neurodegeneration>%-¢0:72

, although specific hypotheses of mechanistic
relationships are an area for exploration in future studies.
The association between osteoporosis and AD is also validated to a lesser extent in clinical

studies and meta-analysis’>"*

, with unclear but possible sex-modification of this effect. Our study
identifies osteoporosis as a predictor for AD among females prior to AD, but shows less of a
relative predictive effect for males compared to other clinical features. Nevertheless, it is still
possible that shared relationships between osteoporosis and AD exist in males. A bone mineral
density GWAS analysis of female patients shows p-value association with AD GWAS around the
MS4A family locus, and this is further supported by MS4A6A eQTL colocalization with both
Alzheimer and female HBMD. These findings of osteoporosis as a potential sex-specific predictor

of AD, with shared relationships through MS4AG6A, is a potential new and unexpected results

identified from single hypothesis-driven follow-up from our prediction models. Prior studies have
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established the MS4A gene cluster as a risk for AD, with one study identifying the cluster based
on mendelian randomization”, and another that identifies a stronger female-specific effect size for
MS4A6A7°. Some studies investigating the role of the MS4A family suggest mechanisms that
involve immune function, particularly among microglia’’. While this gene may not have been
identified in SPOKE, SPOKE did capture direct pathways through known markers of inflammation
such as IL6 and TNF, and we also see MS4A6A as highly associated with measurements of
immune cells in the blood. Further studies will be needed to validate the exact associative
mechanism between osteoporosis and AD, although some prior hypotheses suggest the potential
impact of genetic variants on osteoclast function, amyloid clearance, or oxidative stress

response’7

. While we utilized knowledge networks to leverage knowledge to explain
relationships between groups of predictors, we performed hypothesis-driven analysis on
independent EHRs and genetics to further explore and validate a few chosen predictors
(hyperlipidemia, osteoporosis) with AD. Hypothesis-driven approaches can be applied to any other
selected predictor or phenotype identified by the models to understand their relationships with AD
onset that may not yet be represented by the knowledge graphs.

This study has several limitations. First, EHR data complexity and quality can affect
prediction models, and it is challenging to distinguish the influence of clinician/patient behavior,
sociological factors, or underlying biology on identification of features. Matching can improve
interpretability by removing influence of non-biological covariates, but follow-up validation of
hypotheses across omics data types is needed. Due to changing patient demographics and societal
factors, prediction models should be continuously trained, updated, and evaluated if implemented

in the clinical setting to ensure effective utilization and account for biases that may have been

learned from the data. Model utilization should investigate the impact of cohort selection biases
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and matching methods on model generalizability, and model retraining and calibration should be
a continual aspect of model application to account for possible data drifts and changing clinical
practice approaches that would arise in the future. Second, clinical EHR data is sometimes sparse
and provides a superficial interval snapshot of a patient’s health, so the absence of a record may
not necessarily reflect the absence of a condition and prior health information may not be available
in the EHR. Therefore, the EHR provides a representation of an interval of a patient’s health history
and is more likely to pick up diagnosis of chronic or common conditions, as well as common drugs
or measurements. Future work can investigate the impact of variations in data representation that
can account for data sparsity, continuous lab result outcomes, and best temporal assignment of
diagnosis onset beyond binary representation or considering drug prescriptions for assignment of
diagnoses. Third, survival models have extensive right censorship and do not take into account
competing risks. Fourth, since AD is heterogeneous and differential diagnosis is nuanced and
subjective even in expert hands, predictive performance can be limited by label quality and the
signal from clinical features can be noisy, limiting performance and generalizability. Future work
investigating heterogeneity may identify subgroup-specific features where subgroups can be
divided based on biotype, dementia syndromes, racialization, and so on. Future applications with
hierarchical models, transfer learning, or fine-tuning on a subpopulation can increase
personalization of models. Fifth, our sex-stratified analysis was restricted to patients that identified
as female or male. Future studies could explore AD patterns among intersex individuals. Lastly,
predictive features identified are relevant prior to AD onset, and future work is needed to identify
diagnostic-relevant AD comorbidities, or conditions that can occur after AD progression. Since

predictive features are identified as hypotheses, the direct mechanism and causal pathway relating

126



a phenotype to AD is not known. Future work can investigate causality with mendelian
randomization or mechanistic studies.

In this study, we demonstrate how formulation of prediction models can influence utility
for predictive application or biological interpretation. We show how models can be utilized to
identify early predictors, and utilize SPOKE to explain relationships via shared biological
associations. Lastly, we show that our models can pick up known associations with HLD through
APOE, and identify a lesser known association with osteoporosis through MS4A6A that may be
female-specific. This study contributes to the field of EHR integrative research that can inform

future directions in both AD care and research.
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3.5 Methods

3.5.1 Patient Identification

Alzheimer’s Disease (AD) patients were identified based on UCSF Memory and Aging
Center database containing over 9000 patients mapped to the UCSF Observational Medical
Outcomes Partnership (OMOP)-format EHR. These patients have undergone dementia evaluation
at the Memory and Aging Center and thus had expert-level clinical diagnoses. In clinical settings,
since AD is often a syndromic diagnosis indicating general dementia for memory or cognitive

concerns3-32

, we aimed to identify a highly accurate cohort diagnosed by neurodegeneration
specialists to obtain AD diagnosis that is closer to the biological ground truth®. The remaining
control patients were obtained from the rest of the UCSF EHR, with over 1 year of records and no
existing records of dementia diagnosis among the G[123]* ICD-10 categories (Supplementary
Table 3.1). These controls include patients seen at the UCSF Memory and Aging Center with EHR
data, but without a dementia diagnosis given.

In order to best build models for prediction of AD onset, an index time was determined to
identify input model features prior to first clinical indication of dementia. This was defined among
the AD cohort as the first time of any AD diagnosis, dementia diagnosis, or prescription of
cognitive drug (ATC codes NO6D, Supplementary Table 3.2) to be the first time point of possible
biological AD manifestation. This approach was utilized since AD patients may be prescribed an
anticholinesterase inhibitor or given an alternative dementia diagnosis before a formal
confirmation of an AD diagnosis. For controls, the index time was defined as 1 year before the last
recorded her visit date, with no dementia diagnosis given within that year. In order to maintain a

consistent patient population for training and evaluation of machine learning models, the final AD

and control cohort was identified by filtering to patients who are at least 55 years of age at the
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index time and have existing clinical visits and concepts 7 years prior to the index time. These
patients were then split into 70% for model training and tuning, while the remaining 30% was

held-out for model evaluation (Supplementary Figure 3.1).

3.5.2 Data Extraction and Preparation

Demographics (birth year, gender, race & ethnicity), clinical concepts (conditions, drug
exposures, abnormal measures), and visit-related features (age at prediction, first visit age, years
in UCSF EHR) were extracted before the index time for the AD and control cohort from the UCSF
OMOP EHR database. Race & ethnicity is a single variable derived from an algorithm developed
by the UCSF Data Equity Taskforce to codify aggregated sociopolitical categorizations based on
EHR reported identifiers®. To train models in advance of the index time, clinical information was
extracted for each patient including all clinical data up to a time point X before the index time,
where X includes -7 years, -5 years, -3 years, -1 years, and -1 day. These time points represent the
knowledge of a patient’s clinical history leading up to time X before time. All existing clinical
features (conditions, drug exposures, abnormal measurements) were one-hot encoded. Abnormal
measures were extracted from the OMOP measurement table based on the numeric value falling
either above range high or below range low. and abnormal measures were binary encoded based
on abnormal flagging, following the approach from Nelson et al.?’. If a clinical feature did not
exist or if the clinical measure was within normal range, the encoding is represented as a 0 and
therefore assumed to be normal. Since the UCSF database only captures an interval of a patient’s
interaction with the healthcare system, prior non-chronic conditions may not be captured within
the EHR.

Demographic and visit-related features (prediction age, first visit age, years in UCSF EHR,

log(number prior visits), log(number prior concepts), log(days since first clinical event)) were
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scaled between 0-1 on the training data, where log indicates natural logarithm and feature scaling
allows for multiple ML model approaches. Age at prediction is defined at the age of patient at
which the model is applied (e.g., if a patient index time is at age 70, then the age of prediction for
the -5 year model is 65). All features with no variance were removed for each model, with total
number of features ranging from 5,211 features (-7 year model on matched cohorts) to 23,760
features (-1 day models on unmatched cohorts). Information about input features and specific
OMOP concepts can be found in Supplementary Data 3.1. Some top feature prevalences are also

included in Supplementary Data.

3.5.3 Machine Learning Preparation and Training

Binary classification time point models for AD were trained using the patient
representation at each time point before the index time. We divided the data into two sets, 70% for
model creation and 30% for evaluation. Training and optimal model selection (with
hyperparameter tuning) was performed on the 70% split with cross-validation, and 30% was held-
out for evaluation and not seen during model training and selection in any way. Final selected
model evaluation was performed on the 30% held-out evaluation set as the common dataset to
obtain and compare the performance of all final models (diagram in Supplementary Figure 3.1).
Models were trained with clinical features only (clinical model) and with clinical features +
demographics and visit-related information (clinical + demo/visits model). Models were also
trained on samples matched by demographics and hospital utilization to account for biases and
confounding in prediction. In these models, control patients were matched to AD patients at a 1:8
ratio on demographics (birth year, race & ethnicity, sex) and visit-related features (age, first visit
age, years in EHR, log(# prior visits), log(# prior concepts), log(days since first clinical event))

utilizing propensity score matching®® (propensity score estimated based upon a logistic regression
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model, nearest neighbor matching without replacement). While propensity score is often utilized

to balance treatment probabilities in cohort studies, it has also been utilized for sample

86,87 7,89

selection®®87, exposure likelihood®®, or for outcome-based case-control studies

Random forest models were primarily utilized for both predictive performance and
interpretability that takes into account the high collinearity between clinical variables. Random
forests were trained using scikit-learn package”, with balanced class weight parameter. Hyper-
parameters were tuned (grid search) based on cross-validation performance (5 folds) of AUROC
on the 70% model training set to determine parameters of n_estimators (n_features, n_features*2,
n_features*3), max _depth (3,5,7,9), and max_features (sqrt, log2). The number of estimators and
max depth were tuned to balance between performance and overfitting, while a subset of features
(max_features) was utilized per tree to help account for high correlation between features®!-*2.
Models were evaluated on bootstrapped subsamples (50-200 iterations, 1000 samples) of the 30%
held-out evaluation set to determine AUROC (area under the receiver operating curve) and
AUPRC (area under the precision-recall curve) for model comparability. Balanced accuracy scores
were also computed on the 30% held-out evaluation set. An elastic net logistic regression model
was also trained on both the full and matched cohorts for comparison. We performed a permutation
test on the -1 day matched cohort model to determine the significance of AUROC compared to a
null distribution of AUROC scores of models trained from permuted ground truth labels (40
permutations) to determine to the extent clinical features can be predictive of AD.

Stratification: Both models for full patient cohorts and matched cohorts were re-performed
in sex strata in the same fashion based upon sex reported the UCSF EHR to augment the OMOP

database. Models were trained on two sex subgroups: female and male, due to lack of other

subgroups labelled in the EHR. For each strata, AD patients were re-matched to controls within
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each strata for the matched patient trained models. Models were evaluated similarly based on

AUROC/AUPRC on the same bootstrapped held-out evaluation set, stratified by sex.

3.5.4 Top Feature Interpretation

Random forest models were investigated for feature interpretation due to the combined
interpretable nature of the models (compared to neural networks) and the ability to capture
nonlinear relationships (compared to logistic regression models)®. Average gini impurity decrease
for each feature was utilized to evaluate the importance of each feature in the random forest models
(feature importance). The average importance for each feature was taken across each time point
models (-7yr, -Syr, -3yr, -1yr, -1day) to obtain an across-model importance for each model type,
and normalized by the maximum importance value across all time point models within each model
type (e.g., random forest) and group (e.g., female strata). Feature importances are then ranked
within each model to obtain relative importance within each of the time points.

Since a patient’s exposure to a medication or a laboratory test is often a result of a
diagnosis, we pursued interpretability based on diagnostic features that have been mapped to
phecodes, which is a semi-manual hierarchical aggregation of meaningful EHR phenotypes®. This
allows for a lossy categorization of detailed OMOP features (OMOP IDs) to phecodes (OMOP ID
— SNOMED — ICD10 — phecode) and phecode category. SNOMED IDs were mapped to ICD10
based upon recommended rule-based mappings from the National Library of Medicine (NLM)
September 2022 release (www.nlm.nih.gov/healthit/snomedct/us_edition.html). ICD10 codes
were then mapped to phecodes based on the release from Wu et al.3* To obtain the importance
within each phecode or phecode category, the average importance for the top 5 detailed OMOP

features per phecode or phecode category was computed, and ranked between phecodes or
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categories. For phecodes across all models and sex-stratified models, the ranking of importance of
phecodes across each time model was hierarchically clustered with Ward linkage.

To compare top phecodes between sex-stratified models to identify sex-specific features,
top random forest features over an average importance threshold of 1e-6 were identified per time
model trained on matched participants. Upset plots were then generated for each time point based
upon this overlap. Female-driven features are defined as features that exist in both the full model

and female models, or only female models, and male-driven features defined analogously.

3.5.5 UC-wide validation analysis with hypothesis-driven retrospective cohort
analysis

Two top clinical features were selected from the matched all patient model
(hyperlipidemia) and matched sex-specific models (osteoporosis) and further followed up on an
external EHR database to validate the feature as predictive and conferring risk for AD diagnosis.
With these features defined as exposures, hypothesis-driven analysis was performed with a
retrospective cohort study design on the University of California hospital EHR database
(University of California Data Discovery Platform (UCDDP)) with exclusion of any patients seen
at UCSF, so with included institutions consisting of UC Davis, UC Los Angeles, UC Riverside,
UC San Diego, and UC Irvine. Exposed patients were identified with the exposure (hyperlipidemia
or osteoporosis), which were identified by string-matching and mapping to all descendants or
related concepts based on the OMOP relationship tables, and final SNOMED codes are shown in
Supplementary Table 3.6 and 3.7. Controls were identified among the remaining patients.
Recruitment age was defined as the age of exposure diagnosis (for exposed cohort) or the first visit

age in the visit_occurrence table (for unexposed or control cohort), which was then matched to
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represent the start of the cohort study timeline. All patients are then filtered to have at least 2 years
of records in the EHR, and last visit age was utilized for right censorship.

The outcome of interest was AD diagnosis, which was identified based on SNOMED codes
26929004, 416780008, 416975007 (Supplementary Table 3.5). Exposed and control
(unexposed) groups were then matched based on demographics (gender, race & ethnicity), birth
year, and recruitment age (propensity score estimated based upon a logistic regression model,
nearest neighbor matching without replacement). We utilized the gender id column to identify
sex, as the standard documentation intend for this column to represent biological sex (see
www.ohdsi.org/web/wiki/doku.php?id=documentation:vocabulary:gender). Note that only two
options exist (female concept id=8532 and male concept id=8507), and that accurate sex and
gender information may be limited depending on the institution or EHR collection of sex
information.

Analysis of time to AD diagnosis includes utilization Kaplan Meier survival curves fitted
with 95% confidence interval and two-sided log-rank test to compare survival curves between
groups. Sex-stratified curves were also fitted. Cox proportional hazard models were utilized to
obtain unadjusted hazard ratios (HR) and adjusted hazard ratios by demographics and/or visit
information (aHR), with and without stratification by recruitment age or birth year, and with 95%

confidence intervals.

3.5.6 Heterogeneous Network Analysis

Heterogeneous knowledge networks, such as SPOKE, integrate known relationships across
biological and phenotypic data realms in databases and literature. Such a network could provide
hypotheses to explain relationships between groups of phenotypes that may not be immediately

known?!26, We proceed with interpretation on the matched models, with the top 25 model features
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taken per time point and mapped to SPOKE nodes based on Nelson et al.?” Note that mappings
may not be 1 to 1. All shortest paths were then computed from each input node to the Alzheimer’s
Disease node (DOID: 10652), and shortest paths were filtered to exclude certain node types
(Anatomy, SideEffect, AnatomyCellType,Nutrient) and edges (CONTRAINDICATES CcD,
CAUSES CcSE, LOCALIZES DIA, ISA AiA, PARTOF ApA, RESEMBLES DrD). Edges
were also filtered based on the following criteria: TREATS CtD at least phase 3 clinical trial,
UPREGULATES KGuG/ DOWNREGULATES KGdG p-value at most 1E-4, PRESENTS DpS
enrichment at least 5 and fisher p-value at most 1E-4.

If multiple detailed OMOP features map to the same node, the importance of the node was
obtained by the average of OMOP feature importances. Networks for all time models were
combined into a single network (union of nodes and edges), and total node importance was
determined by the maximum across time. Network metrics were then computed with Cytoscape
‘Network Analyzer’ function®. The combined time model networks were then sorted by
eccentricity metric on the x-axis (representing maximum distance to all other nodes, with lower
number representing higher importance) and number of individual time model network
occurrences in the y-axis (showing node importance persistence across time). With this layout,
highly traversed nodes in the shortest paths between multiple EHR informed top model features
and AD can be identified and prioritized for hypothesis generation and further investigation. Note
that due to heterogeneous nature of edges and lack of edge weighting, distance in the figure is not
meaningful.

To focus on two selected features for the full matched model (hyperlipidemia (HLD)) and
the female-specific matched model (osteoporosis), the combined network was filtered based on

first and second degree neighbors of the starting feature of interest. This allows for visualization
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of associated genes and AD, as well as relationships with other top model features found from the

clinical models.

3.5.7 Validation with Genetic Datasets

We further explored the association between clinical predictors and AD by identifying
shared genetic loci between top model phenotypes and AD, based on colocalization probability
and weighted evidence association scores computed from Open Targets Genetics®®”’
(genetics.opentargets.org). Colocalization analysis is a method that determines if two independent
signals at a locus share a causal variant, which helps increase the evidence that the two traits (e.g.,
hyperlipidemia and AD, or protein expression and AD) also share a causal mechanism. It is a
Bayesian method which, for two traits, integrates evidence over all variants at a single locus to
evaluate the following hypothesis that two associated traits share a causal variant. This is the H4
probability.

We first identified shared loci between the selected phenotypes (HLD or osteoporosis) and
AD by identifying the genetic intersection between AD and related phenotypes in Open Targets
Genetics.

For HLD and AD, we utilized the Open Targets Genetics platform to identify overlapping
variants and shared locus between LDL Cholesterol and Family History of AD or AD. Phe WAS
between a shared SNP and UK Biobank phenotypes were plotted and extracted from the Open
Targets Genetics platform. Coloc analysis tables between the gene, molecular QTLs, and
phenotypes were extracted, with protein QTLs for APOE specifically identified based on blood
plasma data from Sun et al.”® and Suhre et al.”

Similarly for osteoporosis and AD, we utilized the Open Genetics platform to identify

shared locus between heel bone mineral density (proxy for osteoporosis) and Family History of
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AD or AD. To further investigate the locus, we extracted GWAS summary statistics from Jansen
et al.*® for AD and sex-stratified GWAS summary statistics for heel bone mineral density (HBMD)
from Neale’s Lab GWAS round 2, Phenotype Code:3148, based on data from the UK Biobank
(www.nealelab.is/uk-biobank/)!?°. We then conducted colocalization analysis using the coloc
method described in Giambartolomei et al.!?!, from R package coloc 5.1.0. Summary statistics for
MS4A6A cis eQTLs in blood were extracted from eQTLGen!?, and colocalization analysis was
performed between AD, sex-stratified HBMD, and MS4A6A eQTLs on the Locus Region
60050000-60200000 of Chromosome 11. To investigate further associations with the locus,
MS4A6A associations with all other phenotypes was extracted from Open Targets Genetics

platform with inclusion of a weighted literature evidence association scores.

3.5.8 Ethical Approval

This study was approved by the Institutional Review Board of University of California San

Francisco (IRB #20-32422).

3.6 Code and Data Availability

EHR concepts and identification approaches are described in Methods, and concepts are provided
in  Supplementary Tables 3.1 and 3.2. Phecodes can be downloaded at
phewascatalog.org/phecodes_icd10 or phewascatalog.org/phecodes, and mappings between ICD-
10 codes and SNOMED can be accessed at www.nlm.nih.gov/healthit/snomedct/us_edition.html.
Code for EHR prediction models, model feature interpretation, matching, external EHR survival
analysis, and querying Open Targets API (genetics.opentargets.org/api) for P-P and eQTL plots
can be found at github.com/al1563/ADprediction_code. Data for UK Biobank phenotype GWAS

can be found at www.nealelab.is/uk-biobank/, and eQTL data can be downloaded from
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www.eqtlgen.org/. Access to EHR databases are controlled due to the sensitive nature of the data.
The UCSF EHR database can be accessed to UCSF-affiliated individuals by contacting UCSF
Clinical and Translational Science Institute (ctsi@ucsf.edu) or UCSF’s Information Commons
team (Info.Commons@ucsf.edu). If the reader is unaffiliated with UCSF, they can set up an
official collaboration with a UCSF-affiliated investigator by contacting the PI, Marina Sirota
(marina.sirota@ucsf.edu). Requests should be processed within a couple of weeks. UCDDP is only
available to UC researchers who have completed analyses in their respective UC first and have
provided justification for scaling their analyses across UC health centers (more details at
www.ucop.edu/uc-health/functions/center-for-data-driven-insights-and-innovations-cdi2.html or
by contacting healthdata@ucop.edu). The SPOKE knowledge network can be accessed at
spoke.rbvi.ucsf.edu/, and more details about the network can be found in Morris et al.?® and

mappings to EHR concepts can be found in Nelson et al.?’
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3.7 Tables

Table 3.1 Demographics of patients used in models, and an example matched cohort for the -1
year model

The top table shows characteristics of patients in the UCSF EHR with visits and concepts over 7
years prior to index time. Care utilization information can be found in Supplementary Table 3. The
bottom table shows an example of training data where AD and controls are matched by the listed
characteristics. Race & ethnicity (R&E) is a single variable derived from an algorithm developed
by the UCSF Data Equity Taskforce’®. NHPI: Native Hawaiian or Pacific Islander

All Filtered Patients (pre-test/train split)

Control AD
n 250545 749
Age of AD onset (SD) 74.0 (5.6)
Birth year, mean (SD) 1945.5 (10.2) 1933.9 (5.3)
First visit age, mean (SD) 51.2(11.4) 57.0 (10.4)
Sex, n (%) Female 139548 (55.7) 468 (62.5)
Male 110829 (44.2) 281 (37.5)
Nonbinary/Unknown 168 (0.1)
R&E, n (%) Asian/NHPI 32427 (12.9) 151 (20.2)
Black 17111 (6.8) 62 (8.3)
Latinx 15036 (6.0) 53(7.1)
Other/Unknown 28177 (11.2) 45 (6.0)
White 157794 (63.0) 438 (58.5)
Matched Train Patients for -1 year model
Control AD SMD
n 4184 523
Birth year, mean (SD) 19342 (5.6) 1934.0(5.3) -0.042
First visit age, mean (SD) 57.2(9.4) 56.9 (10.5) -0.028
AD onset / index time age, mean (SD) 74.1 (5.8) 74.1 (5.8) -0.002
Years in EHR, mean (SD) 15.9 (7.8) 159 (7.9) -0.004
Log(n prev visits), mean (SD) 3.6 (1.5) 3.7(1.6) 0.065
Log(n concepts), mean (SD) 3.1(1.3) 33(1.4) 0.108
Log(days since first event), mean (SD) 8.5(0.4) 8.5(0.4) 0.043
Sex, n (%) Female 2343 (56.0) 317 (60.6) 0.094
Male 1841 (44.0) 206 (39.4)
R&E, n (%) Asian/NHPI 705 (16.8) 112 (21.4) 0.219
Black 520 (12.4) 35(6.7)
Latinx 280 (6.7) 39 (7.5)
Other/Unknown 223 (5.3) 32 (6.1)
White 2456 (58.7) 305 (58.3)
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Figure 3.1 Overview of Patient Selection and Random Forest Model Performance

A. From the UCSF electronic health records and the UCSF Memory and Aging center
database, patients and clinical information was extracted, filtered, and prepared for time
points before the index time. All clinical features extracted were one hot encoded and
trained on random forest models to predict future risk of Alzheimer’s Disease diagnosis.
Models were evaluated on a 30% held-out evaluation set to compute AUROC/AUPRC,
and interpreted based on feature importances and using a heterogeneous knowledge
network (SPOKE). Top features were then further validated in external databases.

(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)

B. Filtering of a consistent set of AD and Control patients from the UCSF EHR for model
training and testing. Filtered patient cohorts are shown in Table 1, and split with 30% held-
out set for testing.

C. Bootstrapped performance of random forest models on the full held-out evaluation set
(prevalence of AD on held-out set =0.003). Bootstrapped AUROC performance for models
trained and tested on female strata and male strata are also shown.
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(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)

A.

Bootstrapped performance of models trained on cohorts matched by demographics and
visit-related factors on the full held-out evaluation set (prevalence of AD on held-out set =
0.003).

Top clinical phecode categories for matched models ranked by the average of the top 5
importance for each phecode category. Sorting is based on this average across time models.
Top 50 phecodes (detailed features) across time models, with features clustered based on
ward distance of rankings.

Bootstrapped performances of sex-stratified matched models on the held-out evaluation set
(reference AUPRC = .0036 female, .0022 male).

Overlap of top matched model features for models trained on all patients, female stratified
patients, and male stratified patients, with model cutoff importance (RF average impurity
decrease) greater than 1E-6. Specific features are listed, with bold features indicating top
features across all 5 time models, and non-bolded features indicating top features across 4
time models.
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Figure 3.3 SPOKE prioritizes known biological hypotheses associated with shared clinical

phenotypes
(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)

Combined SPOKE network of all shortest paths to Alzheimer’s Disease node (DOID:10652) for
top 25 input features (bolded) from matched AD model at every time point. Network is organized
based on the number of time point occurrences (y-axis) and eccentricity of a node in the
subnetwork (x-axis). Specific time point occurrences are colored by the pie chart within each node.
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Figure 3.4 The hyperlipidemia and AD association is validated externally with APOE as a shared
causal genetic link

A. Kaplan Meyer curve on UC-wide EHR for hyperlipidemia (HLD) as the exposure. Log
rank test is significant for all HLD vs controls (p=2.36e-85), female HLD vs female
controls (p=3.64e-69), and male HLD vs male controls (p=8.39¢-22).

paths from the top 25 features per time model.

Ist and 2nd degree neighbor of hyperlipidemia on the full network representing all shortest

PheWAS for variant rs2075650 on a shared loci associated with both hyperlipidemia and

AD, plotted based on associations with phenotypes in the UK Biobank.

Plot of APOE protein expression colocalization with H4 (probability two associated traits

share a causal variant) from Open Targets Genetics. Each dot represents a specific
phenotype categorized based on trait (x-axis). Each color represents an APOE molecular
trait measured from blood plasma from Sun et al. and Suhre et al.
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Figure 3.5 The association between osteoporosis and AD is validated externally with MS4A6A as
a potential female-specific shared genetic link

A. Kaplan Meyer curve on UC-wide EHR for osteoporosis as the exposure. Log rank test is
(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)

B.
C.

D.

significant for all osteoporosis vs controls and similarly for female strata, * p<0.005.

Ist and 2nd degree neighbors of osteoporosis node on the network representing all shortest
paths from top 25 feature per time model.

P-P plots between Alzheimer’s Disease GWAS (Jensen et al. 2018, n= 455,258) and sex-
stratified heel bone mineral density GWAS (Female n = 111,152, Male HBMD n =
166,988, UK Biobank / Neale’s Lab GWAS) around the MS4A locus (left and middle
plots) at region 60050000-60200000 of Chromosome 11 (locus plot on right).

MS4A6A cis eQTL association with AD, and association with sex-stratified heel bone
mineral density, from eQTLGen.

Open Targets associated phenotype graph for MS4A6A with association score computed
based on a weighted harmonic sum across evidence (described in platform-
docs.opentargets.org/associations#association-scores). Purple words indicate diseases,
while black words indicate measurements. Circles are phenotypes colored by the
association score, and boxes represent the most general categories.
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3.9 Supplementary Figures
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Supplementary Figure 3.1 Approach to Cross-Validation

30% held-out
evaluation

Final Evaluation

30% held-out
evaluation

Final Evaluation

The full dataset was split into 70% for training and chosing the best model, and 30% was set aside
as the held-out evaluation set. Model selection and optimization was performed with cross-
validation on the 70% training set. All final models are then evaluated on the 30% held-out
evaluation set.
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A Top 15 Random Forest Detailed OMOP Features

Clinical feature models
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Supplementary Figure 3.2 Top detailed features and phecodes from the random forest model

A. Top detailed OMOP clinical features utilized in models for clinical feature only models
(top), or clinical features + demographic + visit information models (bottom). Features
within the drug/measurement categories are marked with a triangle, while
demographic/visit features are marked with a circle.

B. Top phecode categories utilized in models, where importance is determined by the top 5
detailed features within each phecode mapping. The vertical order is based upon the
average importance across time models.

C. Top 50 phecodes utilized in time models, clustered based on relative importance across
time models.
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Supplementary Figure 3.3 Comparison of age and visit-related factors between AD, controls,
and matched controls

The plots demonstrate the distribution of continuous variables utilized in matching with standard
deviation. Orange represents AD patients at each time point. Dark blue represents all controls,
while light blue represents controls that have been matched at each time point.
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A Random Forest Bootstrapped Performance
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Supplementary Figure 3.4 Sex stratified models elucidate performance differences and sex
predictive features that drive the total cohort models

A. The full performance of sex-stratified models are shown. The bootstrapped

AUROC/AUPRC is determined by the male or female strata of the initial 30% held-out
(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)

B. evaluation set. Horizontal lines represent median and quartiles for the bootstrapped
performance.

C. Top phecode categories are listed by importance for all models, with inclusion of
comparison with the general non-stratified model. Vertical ordering is determined by the
average importance across time models.

D. Top 50 important phecodes clustered by relative importance across time models and across
strata.
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Supplementary Figure 3.5 Logistic regression models identifies some similar predictive features

A. The full performance of logistic regression models. The bootstrapped AUROC/AUPRC is
determined the 30% held-out evaluation set.

B. Top detailed OMOP feature logistic regression coefficients are listed by importance for all
model formulations. Top row shows coefficients from the model trained on all

(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)
patients, while the bottom row shows coefficients from the model trained on matched
cohorts.

C. The full performance of sex-stratified logistic regression models are shown. The
bootstrapped AUROC/AUPRC is determined by the male or female strata of the initial
30% held-out evaluation set.

D. Top phecode categories across time models and across strata, determined by the top 10
logistic regression coefficient magnitudes within each category.

E. Top 50 important phecodes clustered by average logistic regression coefficient across time
models and across strata, where the average logistic regression coefficient is determined
by the top 10 logistic regression coefficient magnitudes within each category.
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Supplementary Figure 3.7 Balanced Accuracy and Example Permutation Test

A. Balanced accuracy on the 30% held-out evaluation set was computed for all random forest
models.

B. A null distribution for AUROC was computed based on retrained random forest models
with permutations on the ground truth label (40 permutations)
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A Hyperlipidemia > AD survival curve

B

Osteoporosis > AD survival curve
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Censored 0 34374 79793 115262 142925 164421 176431 Censored 0 2231 4177 6199 7760 8903 9377
F control F control
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Censored 0 0 71230 124432 155187 174375 183104 Censored 0 0 0 15187 43391 55699 58897
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M control M control
Atrisk 177265 176599 111455 60617 28098 9024 0 Atrisk 8501 8430 8349 5079 1620 389 0
Censored 0 0 64658 115190 147561 166560 175584 Censored 0 0 0 3197 6640 7861 8250
Events 0 666 1152 1458 1606 1681 1681 Events 0 71 152 225 241 251 251
Log Rank Test test Log Rank Test test
Comparison statistic -log2(p) pval Comparison statistic -log2(p) pval
all: HLD vs control 383.32 281.13 2.36E-85 all: osteoporosis vs control 287.91 2121 1.42E-64
F: HLD vs control 308.98 227.35 3.64E-69 F: osteoporosis vs control 321.39 236.33 7.22E-72
M: HLD vs control 92.06 70.01 8.39E-22 M: osteoporosis vs control 0.55 1.12 4.60E-01
Fvs M HLD 255.75 188.82 1.45E-57 F vs M osteoporosis 5.14 542 2.34E-02
C UCDDP: Hyperlipidemia Exposure, AD Diagnosis Outcome
No Strata Strata: recruitment age
Model Hazard Ratio 95% Cl p-value | Hazard Ratio 95% Cl  p-value
Unadjusted 1.53 [1.47,1.58] 2.18E-124 1.49 [1.44,1.54] 9.79E-111
demographics adjusted 1.43 [1.38, 1.48] 1.12E-87 1.47 [1.42,1.53] 1.43E-104
visit adjusted| 1.32 [1.26, 1.37] 9.22E-42 1.28 [1.23, 1.34] 1.11E-32
visit/demographics adjusted 1.27 [1.22,1.32] 1.12E-27 1.28 [1.28, 1.33] 1.51E-31

UCDDP: Osteoporosis Exposure, AD Diagnosis Outcome

No Strata Strata: recruitment age
Model Hazard Ratio 95% ClI p-value |Hazard Ratio 95% CI p-value
Unadjusted 1.81 [1.70, 1.92] 5.20E-82 1.71 [1.61,1.82]  7.10E-67
demographics adjusted 1.61 [1.52,1.72] 1.52E-52 1.70 [1.60, 1.81] 6.98E-07
visit adjusted 1.68 [1.56, 1.80] 4.34E-47 1.59 [1.48,1.72] 457E-34
visit/demographics adjusted 1.57 [1.45,1.70] 7.96E-29 1.57 [1.46,1.69]  1.05E-31

Supplementary Figure 3.8 UCDDP hyperlipidemia and osteoporosis survival curve numbers and
cox proportional hazard model results

A. Hyperlipidemia sex-stratified combined Kaplan-Meyer survival curves with counts. 95%
confidence interval are shown. Log rank test comparison results are below.
B. Osteoporosis sex-stratified combined Kaplan-Meyer survival curves with counts. 95%
confidence interval are shown. Log rank test comparison results are below.
(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)

C. Hyperlipidemia exposure cox proportional hazard models for AD as the outcome, shown
are the hazard ratios and 95% confidence intervals obtained from the exposure coefficient
for unadjusted, demographic adjusted (gender, age, race, ethnicity), visit adjusted (first
visit age, log(number of visits)), and demographic/visit adjusted. Right group shows
computed hazard ratios with stratification by recruitment or starting age (age strata: <55,
55-60, 60-65, 65-70, 70-75, 75-80, >80).

D. Osteoporosis exposure cox proportional hazard models for AD as the outcome, shown are
the hazard ratios and 95% confidence intervals obtained from the exposure coefficient for
unadjusted, demographic adjusted, visit adjusted, and demographic/visit adjusted. Right
group shows computed hazard ratios with stratification by recruitment or starting age (age
strata: <60, 60-65, 65-70, 70-75, 75-80, >80).
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3.10 Supplementary Tables

Supplementary Table 3.1 Control exclusion codes

List of mappings from ICD-10 codes G[123]* to OMOP codes for determining exclusion of
Controls. The mapping was generated and manually reviewed to white-list certain codes and
approve exclusion of dementia-related codes.

Download at this link:
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC2/embed/
media-2.xlsx?download=true

Supplementary Table 3.2 Dementia codes

List of mappings from Dementia/FTD related condition concepts to SNOMED OMOP mappings
and NO6D ATC code to RxNorm OMOP mappings for identifying index time 0 for AD patients.
Download at this link:
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC3/embed/
media-3.xlsx?download=true

Supplementary Table 3.3 Matching results for time point models on matched cohorts

Demographics of matched cohorts (propensity-score matched by demographics and visit-related
factors, see Methods) on the training set for hypothesis generation models.

Download at this link:
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC4/embed/
media-4.xlsx?download=true

Supplementary Table 3.4 Male and female demographics and matching result

Demographics of male and female cohorts (combined train and test set). The same patients for
train/test set split in the general model are utilized for the sex-stratified models. Matched cohorts
on the sex-strata training sets are also shown for hypothesis generation models.

Download at this link:
https://www.medrxiv.org/content/medrxiv/early/2023/03/19/2023.03.14.23287224/DC5/embed/
media-5.xIsx?download=true
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Supplementary Table 3.5 Matched cohort trained model comparison between logistic regression
and random forest

Mean and standard deviations AUROC was computed for bootstrapped samples of the held-out
evaluation set for both the random forest and logistic regression models for comparability.

Bootstrapped  Bootstrapped std

Model Time mean AUROC AUROC Model Type Features

-1 day 0.771667 0.139762 random forest clinical

-l yr 0.738797 0.16183 random forest clinical

-1 day 0.70313 0.20803 logistic regression  clinical

-3yr 0.695912 0.183331 random forest clinical

-l yr 0.674981 0.189248 logistic regression  clinical

3yr 0.637145 0.187386 logistic regression  clinical

-Syr 0.598022 0.207104 random forest clinical

-Syr 0.589743 0.197771 logistic regression  clinical

-Tyr 0.583837 0.206874 random forest clinical

-7 yr 0.549061 0.192763 logistic regression  clinical
Bootstrapped Bootstrapped std

Model Time mean AUROC AUROC Model Type Features

-1 day 0.738133 0.170242 random forest clinical + demo/visits

-1 day 0.728514 0.182411 logistic regression clinical + demo/visits

-lyr 0.710432 0.183543 random forest clinical + demo/visits

-3 yr 0.700636 0.175239 random forest clinical + demo/visits

-1yr 0.663312 0.187115 logistic regression clinical + demo/visits

-3yr 0.657146 0.198652 logistic regression clinical + demo/visits

-5 yr 0.619819 0.201044 logistic regression clinical + demo/visits

-7 yr 0.60619 0.181737 random forest clinical + demo/visits

-Syr 0.599069 0.199292 random forest clinical + demo/visits

-7 yr 0.59507 0.199938 logistic regression clinical + demo/visits
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Supplementary Table 3.6 Balanced accuracy performance of models

Balanced accuracy (defined as average recall for both the positive and negative class) performance
on the held-out evaluation set for both the full model and the matched cohort trained model.

Full or matched Held-out evaluation set

Model Time cohort model balanced accuracy Features

-7 yr full 0.66333567 clinical

-5 yr full 0.68713887 clinical

3yr full 0.70504803 clinical

-l yr full 0.72020014 clinical

-1 day full 0.73342356 clinical

-7 yr matched 0.56751959 clinical

-Syr matched 0.59464602 clinical

3yr matched 0.64351437 clinical

-l yr matched 0.65277962 clinical

-1 day matched 0.67079665 clinical

Full or matched Held-out evaluation set

Model Time cohort model balanced accuracy Features

-7 yr full 0.79420735 clinical + demo/visits
-5 yr full 0.79553055 clinical + demo/visits
3yr full 0.80227966 clinical + demo/visits
-lyr full 0.79940679 clinical + demo/visits
-1 day full 0.81155760 clinical + demo/visits
-7 yr matched 0.56836172 clinical + demo/visits
-Syr matched 0.58730455 clinical + demo/visits
3yr matched 0.64186021 clinical + demo/visits
-lyr matched 0.65705140 clinical + demo/visits
-1 day matched 0.67644997 clinical + demo/visits
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Supplementary Table 3.7 UCDDP AD patient concepts and demographics

Top table shows the specific concepts utilized to identify Alzheimer’s Disease as the outcome in
the UCDDP database, with breakdown by number of patients per concept. Due to deidentification,
only a patient’s birth year is known for age estimation.

Term # patients
Alzheimer's disease 20562
Primary degenerative dementia of the Alzheimer type, senile onset 9327
Primary degenerative dementia of the Alzheimer type, presenile onset 2530
Overall
n 24389
estimated age, mean (SD) 45.6 (23.5)
gender, n (%) FEMALE 12915 (53.0)
MALE 11391 (46.7)
UNKNOWN 83 (0.3)
race, n (%) Native 78 (0.3)
[Asian 2069 (8.5)
Black 1079 (4.4)
Multirace 494 (2.0)
NHPI 108 (0.4)
Other Race 3413 (14.0)
Unknown 6535 (26.8)
White 10613 (43.5)
ethnicity, n (%) Hispanic or Latino 3815 (15.6)
Not Hispanic or Latino 13869 (56.9)
Unknown 6705 (27.5)
# visits, mean (SD) missing = 3092 21.1 (51.8)
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Supplementary Table 3.8 Hyperlipidemia UCDDP concepts and demographics

Top table shows the specific concepts utilized to identify HLD as the exposure in the UCDDP
database, with breakdown by number of patients per concept. Due to deidentification, only a
patient’s birth year is known for age estimation. Recruitment age is utilized as the starting age for
survival analysis, with HLD group as the age of HLD diagnosis, and unexposed group as the age
of first EHR visit. H/L: Hispanic/latino.

Term # patients
Hyperlipidemia 702142
Mixed hyperlipidemia 169316
Overall No HLD HLD SMD
n 728578 364289 364289
gender, n (%) |[FEMALE 371050 (50.9) [186259 (51.1) [184791 (50.7) [0.037
MALE 357255 (49.0)  [177768 (48.8) [179487 (49.3)
UNKNOWN 273 (0.0) 262 (0.1) 11 (0.0)
race, n (%) Native 3278 (0.4) 1762 (0.5) 1516 (0.4) 0.113
Asian 69432 (9.5) 32466 (8.9) 36966 (10.1)
Black 35072 (4.8) 16512 (4.5) 18560 (5.1)
Multirace 17486 (2.4) 7635 (2.1) 0851 (2.7)
NHPI 2972 (0.4) 1270 (0.3) 1702 (0.5)
Other Race 81646 (11.2) 44093 (12.1)  |37553 (10.3)
Unknown 81062 (11.1) 44889 (12.3) 36173 (9.9)
White 437630 (60.1)  [215662 (59.2) [221968 (60.9)
ethnicity, n (%) [H/L 102163 (14.0)  [53581 (14.7) [48582(13.3) [0.126
Not H/L 560067 (76.9) [271574 (74.5) [288493 (79.2)
Unknown 66348 (9.1) 39134 (10.7) 27214 (7.5)
estimated age, mean (SD) 69.7 (10.8) 69.6 (11.0) 69.8 (10.7) 0.012

recruitment age, mean (SD) 63.9 (10.5) 63.4 (10.5) 64.3 (10.5) 0.087
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Supplementary Table 3.9 Osteoporosis UCDDP concepts and demographics

Top table shows the specific concepts utilized to identify osteoporosis as the exposure in the
UCDDP database with inclusion of children concepts, and breakdown by number of patients per
concept. Due to deidentification, only a patient’s birth year is known for age estimation.
Recruitment age is utilized as the starting age for survival analysis, with osteoporosis group as the

age of osteoporosis diagnosis, and unexposed group as the age of first EHR visit

Term # patients

Osteoporosis 145608

Senile osteoporosis 30611

Osteoporotic fracture 7772

Osteoporotic fracture of vertebra 3987

Localized osteoporosis - Lequesne 3126

Osteoporotic fracture of femur 2971

Idiopathic osteoporosis 1231

Disuse osteoporosis 309

Osteoporotic fracture of humerus 186

Osteoporotic fracture of hand 39

Overall No osteo osteo SMD

n 137880 68940 68940

gender, n (%) [FEMALE 119637 (86.8) 60386 (87.6) [59251 (85.9) [0.049
MALE 18241 (13.2) 8554 (12.4) 19687 (14.1)
UNKNOWN 2 (0.0) 2 (0.0)

race, n (%) Native 496 (0.4) 272 (0.4) 224 (0.3) 0.134
Asian 15784 (11.4) 7364 (10.7) [8420 (12.2)
Black 4611 (3.3) 2546 (3.7) 2065 (3.0)
Multirace 3564 (2.6) 1737 (2.5) 1827 (2.7)
NHPI 419 (0.3) 198 (0.3) 221 (0.3)
Other Race 13032 (9.5) 7427 (10.8) 5605 (8.1)
Unknown 13670 (9.9) 7552 (11.0) 6118 (8.9)
White 86304 (62.6) 41844 (60.7) 44460 (64.5)

ethnicity, n (%) [H/L 15530 (11.3) 8509 (12.3) [7021 (10.2) ]0.133
Not H/L 112474 (81.6) 54548 (79.1) 57926 (84.0)
Unknown 9876 (7.2) 5883 (8.5) 3993 (5.8)

estimated age, mean (SD) 74.8 (9.2) 75.2 (9.1) 74.5 (9.3) -0.074

recruitment age, mean (SD) 68.7 (8.9) 68.2 (8.7) 69.2 (9.1) 0.12
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3.11 Supplementary Data

Supplementary Data 3.1 Model Inputs and Model Importances

Excel sheet with a list of the number of model inputs and tabs with input OMOP concept for each
model. ‘Model Inputs’ tabs lists the number of input features per model, and a description of
demographic or visit-related features. ‘Model Importance’ tab lists all trained random forest model
importance, full and matched, and sex-stratified models, and the mapped phecodes. ‘Top Feature
Prevalences’ tab shows the prevalence of some of the top conditions utilized in prediction. The
rest of the excel sheets lists all model inputs and associated OMOP concept ids.

The data can be downloaded at www.synapse.org/AD EHR Prediction or Synapse repository ID
syn52816091.
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Chapter 4: Learnings and Considerations in Designing,
Implementing and Interpreting Electronic Medical Record-based

Informatics Studies

4.1 Abstract

With the increasing availability of rich longitudinal real world clinical data across millions
of patients recorded in electronic medical records (EMR), there is a growing interest in leveraging
these records for scientific questions and applications to improve understanding and treatment of
human health and disease. While EMR datasets provide great opportunity for deriving insights
into disease and treatments, there is also a need to carefully consider limitations due to biases from
clinical diagnostic or treatment behaviors and missing information from data collection. These
limitations can pose great challenges in EMR-based informatics studies that can lead to confusing
or incorrect conclusions. Here, we discuss the potential applications of EMR datasets as well as
considerations in the design, implementation, and interpretation of EMR-based informatics studies
and draw from examples in the literature across hypothesis generation and hypothesis-driven
studies. This paper aims to provide a perspective and starting point for researchers and engineers

tackling EMR-based clinical informatics studies.
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4.2 Introduction

Since the beginning of the practice of medicine, record-keeping has been an important
aspect of clinical care!. These records include relevant health history of a patient, such as
diagnoses, procedures, treatments, and monetary exchanges, across multiple care delivery sites.
The FDA now defines these clinical records as part of real world data (RWD)?, which spans across
sources like health records from hospitals and clinics, databases of medications sold at pharmacies,
registry and public health databases, insurance claims, and data acquired from sensors and mobile
devices that may inform health status for an individual or a population. With the advancements of
computer technologies, databases and records have transitioned from manual physical
documentation to electronic and automated forms, including the use of electronic medical records
(EMR) in care site settings. In 2009 President Obama prioritized and financially incentivized the
transition to digital records and implementation of software for EMRs in hospitals®#. This adoption
has been useful to the medicine workflow by decreasing medication errors and improving billing,
with various impacts on healthcare delivery quality and cost effectiveness>.

EMRs are now mainstream in the healthcare setting, with over 75% of office-based
practices and over 90% of hospitals with EMRs adopted and utilized®. With longitudinal health
data on millions of patients collected, and billions of invested dollars over a decade of this big data
collection and data storage effort, there is much recent rising interest in leveraging real world
datasets, especially EMRs, for research applications within biological and healthcare spaces®!°.
These datasets are now available at many institutions and healthcare systems within the US and

11,12

worldwide!!!2, and some are publicly accessible for research, such as MIMIC!?, AllofUs!4, and

UK Biobank!’.
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There are many exciting opportunities for EMR datasets to give insights into disease
phenotyping, characterize treatment pathways and outcomes for drug approvals and drug
repurposing, disentangle disease heterogeneity, and even advance the understanding of disease
biology. Some of the benefits of research with EMRs include flexibility in defining inclusions and
exclusions for cohort selection, unlike many existing observational studies that apply extensive
screening criteria and thereby not capturing the complexity among real-world contexts. The
flexibility in cohort selection and individual representation among a large sample size further
increases the potential for utilizing these datasets to investigate diverse cohorts or otherwise under-
studied populations and allowing an opportunity to answer questions on populations with
otherwise sparse or unavailable data. Therefore, by utilizing EMRs and other real-world datasets,
resulting analyses may better capture real world populations or real world measures of disease and
outcomes.

Nevertheless, despite the exponential increase in the interest in RWD and EMR datasets
for advancing human health, there are also many drawbacks, biases, and considerations for
utilizing and interpreting EMR data in research. Since the original purpose of EMR was not for
research, but instead for billing and record-keeping, many drawbacks arise from biases in the data
collection, data representation, and data preprocessing pathway. For example, some diseases may
exist in a patient, but are not measured or recorded. Timing associated with a chronic disease like
diabetes may represent the acknowledgement of a disease instead of biological onset. These
considerations are essential to account for in designing methods and approaches for EMR
utilization and interpretation of results, particularly if the insights will be utilized to inform
treatment and care that can impact patient lives. Mitigating these challenges entails understanding

the data collection pipeline and employing data pre-processing methods, such as models to account
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for data missingness, disease encoding and representation across sites, and factoring in the
influence of social or environmental exposures. Collaborating with practitioners can provide
insight to account for these factors that may impact data collection in clinical practice, such as the
order of medications given in a treatment pathway or insurance reimbursement incentives.
Considerations for timing between biological disease and timing of EMR records may also be
acknowledged during the process of model selection and statistical approaches.

In this perspective chapter, we will first describe the pathway of EMR data collection and
opportunities and examples for research use. We provide examples of leveraging clinical data for
phenotyping, hypothesis generation, and specific hypothesis-driven studies in the context of
disease diagnostics and therapeutics. We also provide considerations for researchers tackling
EMR-based research and discuss current advances impacting the field and conclude with ongoing

advancements in the EMR research field.

4.3 Data Collection to Data Insights

Before clinical datasets can be utilized for answering questions related to disease biology,
many decisions impact the workflow from data collection, normalization, preprocessing,
simplification, and de-identification. Understanding this data flow is essential for making model
decisions and evaluating insights based on biases that may be introduced in the data flow pathway.

Data Collection and Representation. To understand the possibilities and limitations of how
EMR data can be utilized to answer questions in health, it is important to recognize the process of
EMR data collection. In turn, this will guide the process of hypothesis development, method
selection, and interpretation of results. Heterogeneity in data collection may arise as a result of
varying clinical practices between providers, insurance coverages, patient population, location,

existence of scribes, and even the EMR software and database storage approach for a healthcare
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setting!®. For example, when a clinical visit is scheduled, there may be diagnoses given,
medications prescribed, diagnostic tests ordered, and/or procedures delivered. These may be
recorded with codes (e.g., ICD (International Classification of Diseases) for diagnoses; RxNorm
and NDC (National Drug Code) for medications; LOINC (Logical Observation Identifiers Names
and Codes) for laboratory tests; CPT (Current Procedural Terminology) for procedures; and
SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms) which includes codes
for diagnoses, symptoms, medications, procedures to indicate a service given and ensure billing or
payment for the personnel, medication, and equipment'®. The choice of a coding system may differ
between clinical sites and may not encompass the same underlying biological phenomenon due to
differences in clinical workflows or treatment pathways. Furthermore, there is no fully
standardized way for providers to adhere to a terminology when assigning diagnosis (e.g., two
providers may assign different ICD codes for the same condition).

Care sites in the United States may also choose to utilize different EMR softwares like
Epic, Cerner, Athena, OpenEMR, etc., which may result in differences in coding approaches and
database structure (e.g., EMR software may come with their own diagnostic codes instead of using
ICD codes). Other considerations between care sites include that a few community clinics may
still primarily utilize paper records, while other sites may only have recently adopted EMR systems
due to cost and administrative concerns!’, which may lead to different data starting times or
differences in captured intervals of care. Without standardization, each record system may have
heterogeneous ways of storing and representing health data. In other countries, the coding and
database structure may be consistent in a centralized healthcare setting, but variations still exist
between national borders'®!®. These differences therefore contribute to heterogenous starting

points in data storage and representation.
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In order for EMR data to be utilized for research, they need to exist in a form that can be
leveraged for analysis. After data collection, data extraction can take the form of manual labor
including populating tables from EMR chart review to database queries and machine learning-
based concept extraction. In all cases, extraction takes the form of converting raw data
representations encoded by the EMR software or user interface into standardized representations
of data, for example through a Clinical Data Warehouse (CDW) or the Observational Medical
Outcomes Partnership (OMOP) Common Data Model?°.

Data Preparation and Standardization. Data preprocessing into a database structure
requires personnel such as database managers and infrastructure engineers to be involved in the
decision-making process of mapping raw data to usable formats and representations and
identifying the appropriate hardware and software required for future data manipulation.
Furthermore, in order to ensure the data can be utilized for research purposes, de-identification
methods are performed on the preprocessing step to ensure proper privacy is maintained'*?!. Each
one of these decisions to transform the originally recorded data into a format that maintains
relevant information influences model selection and interpretation of results downstream for the
researcher.

In 2007, the FDA in collaboration with industry and academia introduced OMOP?%-22,
which has since been expanded to the ODHSI (Observational Health Data Sciences and
Informatics) suite of tools and applications to enable clinical evidence to be used for research
purposes worldwide?®. This structure and paradigm have the additional benefit of utilizing a
standard vocabulary and structure that can enable data representation and code sharing between
sites. While the goals of standardization has enabled greater data harmonization, transportability,

and federated analyses, there are still site-based biases and limitations that may result from
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individual site decisions for treatment and mappings between the source EMR data structure to
standardized structures and SNOMED CT ontology, resulting in loss of specificity from a
diagnostic code to a broader category in SNOMED and many-to-many mappings that may lead to
further loss or addition of clinical codes.

Another pre-processing step important in increasing the availability of EMR data for
researchers is the process of de-identification'*?*. Methods and approaches to achieve de-
identification of EMR data must be done in accordance with the Health Insurance Portability and
Accountability Act (HIPAA) of 1996, including the Safe Harbor Method and the Expert
Determination Method?. The de-identification process may contribute to new biases in the data
due to removal of patients or loss of accuracy from shifting of dates and exclusion of some
information such as ages over 89 years, which may especially impact the records of vulnerable
populations and the elderly?®2’. Text information may require further automated means of de-
identification that can introduce biases from perceived lower relevance of concepts that may come
from removal of information as opposed to lack of association?®. Every step in data collection, data
representation, and data preprocessing is therefore important to consider for careful use of EMR

data for research purposes (Figure 4.1).

4.4 EMR For Hypothesis Generation

In leveraging EMR data, one of the greatest opportunities includes improved understanding
of the magnitude and implications of disease burdens, as well patterns of healthcare service
utilization within specific demographics or locations. This can allow for an approach to
characterize the impact of a disease without any influences from prior beliefs or inferences from
potentially non-representative studies. Moreover, a thorough phenotyping can provide a relatively

unbiased view of the EMR dataset for investigating comorbid conditions and formulate hypotheses
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pertaining to underlying trends. It is, however, crucial to recognize that EMR data captures only
discrete intervals of an individual's health trajectory. Therefore, understanding the limitations and
representation of the EMR dataset becomes imperative in determining the breadth of measurable
data and the feasibility of specific research goals.

Phenotyping of Disease, Drugs, and Clinical Behaviors. EMR data provide a great way to
characterize and phenotype many aspects of health, including gaining a broad understanding of
the prevalence of diseases, drugs, and higher order combinations of comorbid disorders or
concomitant medications within a disease**3. Many researchers view real world data and EMR
data as a data source for exploratory research and scientific inquiry pipeline. Understanding and
characterizing patterns in the data can also give insight into understanding disease populations,

practices for treatment prescription and current clinical behaviors4-36

, as well as identify potential
differences in subgroups and disparities in current care’’—°. Data exploration approaches can also
better quantify any issues in data quality, such as the extent of data missingness, as well as
understand potential provider or patient behaviors that may contribute to variations in data quality.
Since clinical datasets may contain potential misclassifications or lack of specificity, exploratory
analysis of the data can aid in the development of phenotyping algorithms and cohort selection
approaches that may best represent the biological characteristics of a desired population (e.g.,
increasing confidence in Alzheimer’s Disease diagnosis with more diagnostic occurrences or by
identifying a neurologist’s diagnosis as trustworthy)*. Augmentation of EMR datasets with
molecular datasets, such as genomics data or imaging datasets, can aid in biological support of
cohort selection approaches and phenotyping*!.

Once a researcher gains a deeper understanding of the characteristics and patterns in the

dataset, they can leverage EMR to perform deep phenotyping of a disease for improved
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characterization of associated comorbid conditions, medications, and lab results that can give
unbiased insight into disease associations through characterization of multiple patient disease
profiles. For example, large-scale association analyses in Alzheimer’s Disease (AD) identified
sex-specific and racialized population specific comorbidities that may highlight heterogeneous
differences in the clinical profile, risk or manifestation of AD, enabling hypotheses for downstream
analyses®!*2, To investigate associations, choosing a cohort, comparison cohort, and statistical
approach are needed. In the above AD association studies, this took the form of a cross-sectional
case-control study between AD and matched controls, where matching (i.e. propensity-score
matching) was utilized to account for associations that may not be useful for disease interpretation.

Many approaches exist for matching*—4°

, with each approach having its benefits and limitations.
Ultimately, the covariates utilized in matching or adjustment should be considered when
contextualizing the high-level understanding of associations in the data set for hypothesis
generation (for example, whether an association is independent of age or not). Low-dimensional
embeddings can also aid in visualizing clusters of pathways or differences in patient populations
due to the observed clinical profile?®-3%46,

Hypothesis Generation. Hypothesis generation approaches can take many forms depending
on available data and give insight into behaviors, biological underpinnings of disease, risk factors,
or drug outcomes. From a cross-sectional view of disease, broad associations can aid in exploratory
research through deep phenotyping of disease’!. Medication and procedure associations can be
explored to understand patient populations and generate hypotheses that may impact these
populations*’8, With availability of genetic data, genetic association with phenotypes can also be

explored to elucidate biological hypotheses (e.g., Phe WAS*#%). Beyond genetics, other datasets

that can be mapped to patients in the EMRs can also help augment hypothesis generation and
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elucidate potential biological associations with clinical phenotypes (e.g, the Rheumatology
Informatics System for Effectiveness database?). Excitingly, augmentation of clinical phenotypes
with known disease-molecular associations from heterogenous knowledge databases are evolving
as one potential opportunity for biological hypothesis prioritization>!->2,

Hypothesis generation approaches can also include temporal filters in the analyses to derive
insights into the temporal nature of an association, based on time to an index event or index date.
For example, one study identified associations prior to pregnancy in order to identify hypotheses
related to mechanisms of recurrent pregnancy loss, such as menstrual abnormalities and infertility
diagnoses?. Beyond hypothesis generation, if the dataset and features are utilized for machine
learning model training, then understanding associations can provide explainability in model
performance based on available associations. With an available index time, careful interpretation
is needed to understand what the associated time represents in order to interpret the data and define
what hypotheses are possible (e.g., whether a time represents the onset of a disease, or the clinical
acknowledgement of a disease). If the time represents a clinical acknowledgement of a health
event, then any associations should be considered as a means to interpret existing clinical behaviors
with potential utility in identifying red herrings and clinical biases in either diagnostic, decision-
making, or inequities in care*>>4,

Exploratory approaches to EMR data can provide unbiased insight into disease phenotypes,
trajectories, subphenotypes, and associations with any other available dataset (measurements,

genetics, imaging, biomarkers), improving understanding and generating hypotheses that can

advance scientific inquiry into health (Figure 4.2).
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4.5 EMR For Hypothesis-Driven Studies

Electronic medical records also provide an opportunity to extend traditional
epidemiological clinical research and biostatistics into large patient settings, although
modifications may need to be made to account for the retrospective and nature of available data.
As mentioned in the previous sections, it is imperative to understand the data through exploratory
approaches and ensure a hypothesized question can be answered. In particular, biases from data
missingness or clinical behaviors should be considered before publicizing conclusions, which may
impact regulatory decision making, clinical care, or even patient health behaviors.

Identifying a question or hypothesis. The first step for a hypothesis-driven study includes
identifying a hypothesis, including expanding on findings from prior literature or identifying a
cohort of interest that can answer the hypothesis as robustly as possible. Time is also an important
consideration in the choice of a cohort, whether the time is relative to an index date or based on a
year or societal event. The choice of a cohort may also need to include adjustments or
acknowledgements of potential biases or quality control steps in retrospective real world datasets
in order to understand limitations in cohort specificity. Ultimately, both the existence of a cohort
and relevant data for a hypothesis will impact the answerability of a question and choice of analysis
approach. While there is extensive literature in the epidemiological fields on classifying studies
that are applied to retrospective data, some considerations are currently in development for the
advancement of methods applicable to EMR data that address issues such as data missingness,

biases, and data noise’ 8

. A portion of studies currently published include case-control, cross-
sectional, and cohort study designs, as well as other designs not mentioned here.

Case-control design. Case-control designs encompass not only the selection of a target

cohort but also a control or comparison cohort. In numerous studies, the selection of controls often
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involves adjusting for confounders, either in the choice of the control or within the analytical model
itself>. Presently, there is increased emphasis on control selection, including the utilization of
matching methods, propensity score models, or regression to account for multiple covariates or
identify controls from external databases>>*-62, Since certain diseases may manifest concurrently
and single datasets may have sample size limitations, some studies are expanding to include
multiple cohorts or controls of various complexities>®2-64,

The choice of a control or comparator cohort influences the interpretation of analyses,
especially in scenarios where specific predefined covariates have been accounted for. While
unadjusted analyses remain useful in discerning overarching patterns, adjusted or matched
analyses can better pinpoint trends that persist even after controlling for other potential
confounders. Since case-control and case-comparator designs are inherently retrospective, causal
conclusions cannot be made. This caveat holds true analogously for machine learning models
designed with a similar approach in the selection of the training cohort.

Within cohort selection, temporal assignments to data are important in determining
whether the analysis is completely retrospective or cross-sectional, and whether a specific date of
an acute event is relevant for a cohort. Given a specific hypothesis of interest, general prevalence
and associations with outcomes can be identified (e.g., exposure to drug and death), but a
consideration of the temporal relationships is needed to identify the degree of support for causal
conclusions (e.g., the time assigned to chronic diseases like hypertension is not representative of
biological onset). As an example, a cross-sectional study validating bumetanide as a drug
repurposing candidate for Alzheimer’s Disease explored the association between bumetanide use
and Alzheimer’s Disease prevalence®. The real-world evidence in this study supports a lower

prevalence of Alzheimer's Disease in those with bumetanide exposure, but causal conclusions
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about the drug’s effect could not be made without the support of experimental evidence in mice,
which was also included in the study.

Retrospective Cohort Study Design. Another approach to leveraging EMR for hypothesis-
driven studies includes the use of a retrospective cohort study design or survival style design.
Questions may investigate the relationship between drug exposure or risk factor exposure and
outcomes or prognosis of a disease and labeled with terms such as ‘emulated trials’®. These
designs are best approached with consideration of what a cohort study may look like, and selection
of the cohort must be done with information up to a certain point in the EMR. This study design

67.68 35 well as

was utilized to investigate statin and antidepressant usage in COVID-19 mortality
antidepressant use in pregnancy outcomes®. With this design, a temporal association can be
determined to understand disease progression, drug exposure outcomes, or risk factor associations.
It is nevertheless important to consider that cohort study design is still retrospective in nature and
while causal inference techniques can help in the interpretation of an association, there are still
large issues in terms of large attrition rates and missing data. For example, studies have identified
antidepressant use associated with preterm birth as an adverse outcome, with possible confounding
by depression severity and medication adherence®’.

Machine learning and biases. These fundamental designs and considerations also apply to
sophisticated machine learning models. The selection of a cohort, temporal covariates of inclusion,
impact of biases, and hypothesis of interest all play into the interpretation of a model’s performance
and the causal nature of an identified association’!. Furthermore, as mentioned previously, the
behavior of clinicians and patients must not be ignored in interpreting associations, as the presence

of a diagnosis may represent the acknowledgement of a disease and not biological onset. Also, the

presence of abnormal lab results may indicate a symptom or indication bias that influences the
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presence of a measurement. As such, sometimes these underlying behaviors that lead to a diagnosis
or measurement may be associated with an outcome as opposed to the diagnosis or measurement
itself>’.

In summary, hypothesis-driven approaches can provide valuable insight into specific
questions, such as risk factors, disease prognosis, and drug exposure outcomes. Currently, causal
inference methods and prospective studies are currently being implemented as a means to aim for
more precise causal conclusions’. Nevertheless, due to the convoluted nature of the data,
conclusions from EMRs studies are suggestive, and confidence in conclusions should be further
31,53

supported by similar conclusions across study sites, study designs, and omics modalities

(Figure 4.2).

4.6 Considerations for EMR Studies

Data appropriateness for the question. When considering the utilization of EMR as a data
source for a study, the first step is determining whether the EMR data is the right data source to
answer the question, hypothesis, or exploratory question. This includes ensuring that the specificity
of the cohort desired (e.g., ICD-10 code G35 may not be sufficient to identify multiple sclerosis
subtypes) and measurements of interest (e.g., genotype information may be unavailable or sparse
in EMR) are available. Data visualization tools such as ATLAS’! and PatientExploreR>* provide
a means to understand data availability at either an individual or group level. Depending on the
specificity, quality, or type of data desired, other real world data sources may be more relevant to
the question of interest (e.g., claims database for medication use, research databases for improved
specificity, social media for patient-oriented viewpoints)’. Mappings between real world data
sources may exist to help augment EMR information with improved specificity or map phenotypic

information with molecular information but careful consideration of selection biases and timing of
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data is essential to consider for possible results and analyses that can be obtained. In the future, we
anticipate the development of methods that map between databases for improved multimodal data
availability as well as methods that account for missing data. Nevertheless, it is important to
consider how much noisy preprocessing or incomplete mappings will impact the results of a
potential analysis.

Sociopolitical and behavioral impacts on data. Often, real world datasets have a lot of
influences due to societal exposures (e.g., racism, sexism, homophobia, transphobia, policies that
negatively impact vulnerable populations) and biases that can impact patient behaviors or clinical
decision making. In terms of societal exposures, patient language, background, and identities can
influence the label assignment in the demographic tables of real-world datasets. These identities
can differ between regions and countries and may represent the impact of an exposure as opposed
to an inherent biological phenomenon’. If a question is aimed at studying the impact of
sociopolitical groupings, it is recommended to utilize a “one vs rest” reference group or to identify
controls of the same grouping*?, as opposed to a comparative analysis between two groups where
one group is chosen as the reference group, similar to comparison of cell types in bioinformatics
studies’.

Biases in data, timing, and clinical decisions. In terms of biases that may impact patient or
clinical decision making, often one should consider that the timing and presence of a diagnosis or
record in the EMR often indicates a clinical acknowledgement of the entry, with both monetary
and legal incentives in play. For example, due to potential impacts on a patient’s mental capacity
or driving rights when diagnosed with certain neurological disorders (e.g., epilepsy’®), the timing
of a diagnosis may be delayed. Prior temporal associations and predictive models may therefore

pick up nonspecific diagnoses or other clues that indicate the diagnostic pathway of a clinician as

192


https://www.zotero.org/google-docs/?BwccJ6
https://www.zotero.org/google-docs/?lBHbii
https://www.zotero.org/google-docs/?ZeWlLw
https://www.zotero.org/google-docs/?wpXDMK

opposed to true biological risk. For example, some prior association analyses and models for
Alzheimer’s Disease pick up the prescription of an anti-dementia drug prior to an official
Alzheimer’s Disease diagnosis’. The existence of a lab or measurement may also indicate biases
in ordering tests from a clinician (indication bias), while missing data may not indicate the lack of
an abnormal measurement. Biases may also exist in clinical decision making, such as clinician
biases towards certain identities. For example, race correction in interpreting glomerular filtration
rate (GFR) or deciding on a C-section may lead to increased rates of procedures within a
demographic group, which may be picked up by association studies or predictive models®7677,
Those results should therefore be interpreted with potential clinical decision biases in mind before
considering biological differences between groups. Predictive models may predict and identify
causes of clinician misclassification or diagnostic errors, which can then be corrected in disease
prediction models™.

Interpretation is complex. Covariates and features utilized in patient representation are also
important in the study design, and the choice of features that are balanced between groups also
impact contextualization and interpretation of results’’. Since EMR data may be inaccurate,
incomplete, insufficiently granular, or transformed in ways that introduce new biases, the
specificity of a phenotype may not be sufficient for accurate biological representation of a cohort.
It is also important to consider the difference between characteristic information (e.g.,
demographic information), chronic conditions (e.g., hypertension), and acute conditions (e.g.,
fractured bone). Timing associated with chronic conditions may not be accurate due to the chronic
nature of a disease. Furthermore, even “persistent” information may change (e.g., patient moves
location). All these considerations in the accuracy and temporal nature of a feature or covariate

can impact the interpretation of a result (Figure 4.3).
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In the future, sophisticated methods with causal diagrams may be utilized to account for
the influence of behaviors. ML models may still learn temporal patterns that are behavior-based
rather than biology-based due to the retrospective nature of the data and the impact of indication
biases. Heterogeneity due to data missingness and biases can not be completely accounted for in
methods, so one should consider EMR informatics as one approach among many for understanding
health and disease evidence. Augmentation of EMR data with specialty databases (e.g., use of a
memory and aging center database for neurodegeneration!) or molecular datasets (e.g., genomics
data*!) provide the ability to identify links between biological and phenotypic signals.
Furthermore, identifying an association or signal among alternative EMRs, diverse cohorts, or
across omics modalities can help fully generalize what is identified in EMRs and improve
biological plausibility. Follow-up studies will still be needed to help further support a hypothesized
causal biological mechanism. Therefore, EMR analysis is only a step out of many in the process

of clinical decision making, treatment identification, and biological understanding of a disease.

4.7 Conclusions

Electronic medical records provide an extensive, rich, longitudinal dataset with great
opportunity for answering scientific questions, developing Al models, and advancing therapeutics

in human health and disease®>%7%7

. Nevertheless, clinical behavioral biases, data missingness,
data preprocessing, and societal impact of a conclusion should be considered when designing,
implementing, and interpreting EMR-based studies. Currently, advancements in the EMR

4580 state transition models®!, and transformer

informatics fields include causal inference methods
models®?# to account for temporal relationships in the records. Furthermore, methodological

developments allow for combined analysis with both structured and unstructured datasets,

including clinical imaging, clinical notes, and even inclusion of molecular omics datasets such as
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genetics, gene expression, and proteomic measurements. Of importance is the identification of
corroborated findings across datasets and omics modalities, even if on different patients, as similar
signals across heterogeneous data collection and measurement methodologies can help validate a
potential biological conclusion identified from a single dataset.

With improved data collection and methodological advancements, there is great potential
for exciting applications in the future for deriving insight into biology based on EMR trends and
molecular-phenotype associations, which allows for improved predictive modeling,!,
subtyping*®, drug repurposing, and therapeutic response investigations®®’8, Prospective methods
to evaluate algorithmic performance and biases are also developed as part of the implementation
process to allow for iterative evaluation and improvement of algorithms or models, ensuring
equitable performance across diverse cohorts®. With these considerations and advancements in
both data collection and methodologies, EMR-based informatics research will provide support to

the understanding and treatment of complex diseases in the future.
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Figure 4.1 Electronic medical record data collection, storage, and processing for research

applications

Patients first interact with a health-related care site, such as a hospital, primary care clinic,
pharmacy, or other relevant sites. These intervals of care will have electronic footprints due to
scheduling and billing, as well as provider inputted data about visits, diagnoses, and labs. Both
structured and unstructured data may be obtained. Depending on the structure of the underlying
databases, initial preprocessing must be performed by an information technology team to combine,
simplify, standardize, and de-identify the data in order to make it available for researcher use.
When the researcher accesses the data, the study goals and models will impact data processing and
analysis decisions. Ultimately this data flow will impact the insights and algorithms obtained for

various scientific inquiry or application purposes.
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Figure 4.2 Potential EMR informatics study approaches include phenotyping and hypothesis
generation, hypothesis-driven studies, and goal-oriented applications

Exploratory phenotyping and hypothesis generation provide unbiased profiling of a disease,
including subphenotypes and relevant pathways and associations. Augmentation with biological
datasets and knowledge networks can aid in biological hypothesis generation. Hypothesis-driven
studies can further investigate a suggested relationship through careful selection of study design
and adjustment methods. In both approaches, further evidence may be required to support or
strengthen interpretations of the findings. Ultimately, applications of EMR informatics include
predictive and diagnostic models, clinical decision making, drug repurposing and emulated trials,
and ultimately support improvement of human health.
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Figure 4.3 Sources of heterogeneity and bias in EMR-based informatics studies

EMR data, while providing extensive opportunity with a large unbiased sample of patients, also

suffer from extensive biases and inaccuracies

across the data flow pathway. These biases start from

limitations in sampling of patients that seek healthcare, to data entry and representation
heterogeneity, to choices of preprocessing and de-identification that can even introduce new biases

to the data. Understanding these potential bia

ses and sources of error are essential in the choice of

data analysis methods and interpretation of results, or evaluation of models.
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Conclusions

Increasing interests in real-world datasets, such as electronic medical records (EMRs),
presents both opportunity and challenges in the study of complex disorders like Alzheimer’s
Disease (AD). The intricate interplay between molecular pathology and clinical manifestations
poses significant hurdles in the development of effective disease modifying treatments. AD is
characterized by considerable heterogeneity, hinting at the possibility of a spectrum of diverse
mechanisms of disease onset, potentially influenced by factors such as biological sex. Our research
leverages real-world data to demonstrate how deep phenotyping can facilitate a more accurate
characterization of AD’s real-world manifestations. This serves as a foundational step for
comprehending variations attributable to characteristics like sex, and in identifying associations
and hypotheses concerning disease risks, subgroup disparities, disease prognosis, and possible
protective or harmful impacts of medications.

Furthermore, the rich data in EMRs pose opportunity for predictive modelling, which can
pave the way for the creation of tools that could assist clinical decision-making through disease
onset prediction and risk identification for possible early intervention. To address limitations
inherent in EMR dataset quality, we enhanced EMR data with expert diagnoses from the UCSF
Memory and Aging Center, ensuring a more accurate representation of potentially biological AD.
Additionally, we carefully selected an index date to enhance the prediction accuracy of potential
biological disease onset. Our work also underscores the value of integrating heterogenous
knowledge networks, using human datasets as a starting point for deriving prioritized biological
relationships. This approach led to notable findings, such as the identification of ACTB gene’s
role in the context of combined sensorineural hearing loss, arthropathy, and AD, offering avenues

for targeted treatment strategies.
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Beyond the prioritization of existing knowledge, our study showcases the benefits of
enriching human dataset insights with molecular omics datasets. This approach has also facilitated
novel discoveries, such as the high probability of causal association between MS4A gene family
polymorphisms with low bone mineral density and AD, particularly among females. These
findings open avenues for future research on the impact of MS4A variants in AD, especially in the
context of known mechanisms in immune activation and homeostasis.

In summary, this dissertation demonstrates the effective utilization of EMR data,
knowledge networks, and external omics databases in deepening our understanding of Alzheimer’s
disease and its heterogeneity. These insights are instrumental in guiding the future of personalized
prevention and treatment strategies in AD, and the methodologies hold promise for furthering our

understanding of other complex diseases within and beyond neurodegeneration.
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