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ARTICLE OPEN

A multiscale chemical-mechanical model predicts impact of
morphogen spreading on tissue growth
Alireza Ramezani 1,2, Samuel Britton3, Roya Zandi1,2, Mark Alber 2,3, Ali Nematbakhsh 3✉ and Weitao Chen 2,3✉

The exact mechanism controlling cell growth remains a grand challenge in developmental biology and regenerative medicine. The
Drosophila wing disc tissue serves as an ideal biological model to study mechanisms involved in growth regulation. Most existing
computational models for studying tissue growth focus specifically on either chemical signals or mechanical forces. Here we
developed a multiscale chemical-mechanical model to investigate the growth regulation mechanism based on the dynamics of a
morphogen gradient. By comparing the spatial distribution of dividing cells and the overall tissue shape obtained in model
simulations with experimental data of the wing disc, it is shown that the size of the domain of the Dpp morphogen is critical in
determining tissue size and shape. A larger tissue size with a faster growth rate and more symmetric shape can be achieved if the
Dpp gradient spreads in a larger domain. Together with Dpp absorbance at the peripheral zone, the feedback regulation that
downregulates Dpp receptors on the cell membrane allows for further spreading of the morphogen away from its source region,
resulting in prolonged tissue growth at a more spatially homogeneous growth rate.

npj Systems Biology and Applications            (2023) 9:16 ; https://doi.org/10.1038/s41540-023-00278-5

INTRODUCTION
Understanding mechanisms underlying proper tissue growth and
shape formation in an embryo is among the most important
unanswered questions in developmental biology. The growth of
tissues and organs always exhibits the property of self-organiza-
tion, with precise control of cell proliferation resulting in robust
tissue size and specific shape as integrity. This process also stays
robust under external perturbations as observed in wound healing
and tissue regeneration1–6. Uncontrolled cell growth and cell
division often lead to abnormal development or fatal diseases
such as cancer.
During tissue development, chemical signals are found to be

critical to the regulation of cell proliferation and tissue shape
formation. A variety of molecules, from extracellular ligands to
intracellular proteins, have been identified as growth regulators in
different biological systems. For example, transforming growth
factor Beta (TGF-β), a member of the growth factor superfamily,
has been found to regulate the growth in multiple animal
organs7,8. In particular, bone morphogenic proteins (BMP) are
members of the TGF-β family and play essential roles in
establishing the basic embryonic body plan for tissue develop-
ment in vertebrates9–13. Disruption of BMP signals can affect the
growth rate and pattern formation, leading to disorders in adult
tissues14,15. On the other hand, in addition to the central core of
the growth control machinery, which depends on chemical cues,
cell mechanics play a fundamental role in shaping a tissue16–23.
Each cell has a complex mechanical architecture that not only
shapes itself as integrity but also allows it to sense the physical
surroundings and make responses. For example, cytoskeletal
tension in one cell can be affected by differential growth
associated with neighboring cells and modulate intracellular
molecular signals to regulate growth as feedback24. Cell deforma-
tion can be induced by mechanical forces such as the adhesion to
the extracellular matrix (ECM), contractility in the cytoskeleton,
and cell–cell adhesion, which may also lead to physical changes of

nuclei and an alteration in gene expression to switch cell fate
between growth, differentiation, and apoptosis25. Therefore, it is
necessary to consider both chemical signals and mechanical
properties, as well as the interplay between them, to understand
the general principles involved in tissue development.
Drosophila wing disc, a primordial epithelial organ that later

becomes the adult wing, as shown in Fig. 1a, serves as a classic
model to study tissue growth regulation due to its simple
geometry, the limited number of cells, and fast growth.
Additionally, the well-established molecular signaling network
involved in this tissue contains multiple conserved molecules
critical to other developing systems in mammals8. Understanding
the mechanism of growth regulation in the Drosophila wing disc is
substantial in understanding limb development in mammals. In
this tissue, Decapentaplegic (Dpp), a homolog of BMP, forms a
spatial gradient across the anterior-posterior (AP) axis of the tissue
to establish and maintain domains of multiple target genes that
specify different compartments in the adult tissue (Fig. 1b, c). For
individual cells, a signal transduction cascade converts local
concentrations of Dpp into intracellular phosphorylated MAD
(pMAD) through binding with receptors on the membrane. pMAD
protein is also commonly observed in other systems and related to
several cancers in humans7. Based on the level of pMAD, different
genes are activated along the AP axis of the imaginal wing disc to
establish the pattern and regulate growth. In terms of mechanical
properties, a wing disc consists of a flat sheet of cells with
E-cadherin responsible for cell–cell adhesion between neighbor-
ing cells. Inside individual cells, actomyosin is dynamically
rearranged to give rise to different levels of contractility, which
links to multiple cellular functions, including nuclear motion
during mitotic rounding (Fig. 1d)26 and vesicle trafficking27,28.
Moreover, actin networks in the cytoplasm, as a major component
of the cytoskeleton, provide structural support to each cell and
determine cell shapes together with the cytoplasm. More recently,
it has been observed that chemical signals can affect cell
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mechanics by directly controlling the subcellular distribution of
the small GTPase Rho1 and the regulatory light chain of non-
muscle myosin29. Dpp signal promotes the compartmentalization
of Rho1 and myosin, which leads to the contraction of actomyosin
filaments and an increase in cortical tension. This suggests the
interaction between chemical signals and mechanical properties
also plays an important role in shaping cells and, therefore, the
overall tissue shape.
Several hypotheses regarding growth regulation in the wing

disc tissue have been proposed so far. Substantial data suggest
that Dpp morphogen is pivotal in regulating growth; however, the
underlying mechanism remains controversial and uncertain. In
Wartlick et al.30, it was suggested that cells have memory and will
divide if the temporal change of the Dpp signal reaches a certain
threshold value. In contrast, recent experiments have shown that a
Dpp signal is not always required for growth since removing Dpp
from the center of the tissue at some stage during the
development does not affect the growth31. On the other hand,
mechanical properties have been shown to be critical in
regulating growth based on measurements of cell stress in
experiments24.
Many computational models have been developed to study

tissue growth in different biological systems, including cell lineage
in epithelia32–35 and tumor growth36–38. To include chemical
signaling networks, it is common to use continuous models in
which the dynamics of chemical signals are captured by a system
of differential equations. This kind of approach usually involves
moving boundary problems for capturing tissue growth that are
challenging to solve numerically. It can be overcome by using
Lagrangian coordinates39, immersed boundary method40, level set
method41, or other similar approaches. To include cell mechanics,
some models use discrete particles to represent individual cells,
which allows one to model cell growth, cell division, and cell–cell
interaction. More specifically, each cell can be represented by a
single particle (agent-based model)42, multiple particles on the cell
membrane (multi-agent-based model)43, a polygon (vertex-based
model)21,30,44,45, or multiple particles on the cell membrane and in
the cytoplasm (subcellular element method)46. In particular, multi-
agent-based models and subcellular element models can describe
biologically relevant cell shapes with greater flexibility due to the

multiple nodes involved. Another type of model is based on the
finite element framework, coupled with continuum mechanics
principles47–50. Models of this type focus more on tissue growth
without subcellular details. Most existing models for studying
tissue growth focus on either chemical signals or mechanical
properties only. As suggested by recent experimental data,
exploring mechanisms involved in tissue growth regulation
requires a model that includes both chemical and mechanical
factors, as well as the interactions between them.
Several coupled chemical-mechanical models have been

developed recently and gained lots of attention. In Aegerter-
Wilmsen et al.51, both chemical signals and mechanical cues were
considered. However, fixed morphogen gradients were adopted
without considering the temporal dynamics or subcellular
activities. Vertex-based models have been coupled at the cell
level with diffusive molecules52 or intracellular gene expression7,8

to study tissue development. The subcellular element model has
also been coupled with chemical signals without distinguishing
cell membrane and cytoplasm53,54. Those existing models provide
novel insights into growth regulation in different systems. As far as
we know, very few of them consider subcellular details and the
interaction between chemical signals and mechanical forces,
which is critical in the regulation of individual cell behavior and
tissue growth.
In this study, we developed a multiscale coupled chemical-

mechanical model where the mechanical submodel describes cell
mechanical and adhesive properties at the subcellular and cellular
levels, and the chemical signaling submodel describes both
morphogen gradient at the tissue level and the intracellular gene
regulatory network at the cellular level. This model was then
applied to study growth regulation in Drosophila wing imaginal
disc. In addition, we incorporated a cell division rule proposed in
Wartlick et al.30, in which cells enter the mitotic phase and divide
when the Dpp signal is increased by 50% compared with that at
the beginning of the cell cycle in individual cells. Following this
hypothesis and including cell mechanical properties, morphogen
gradients with different decay lengths were tested in the model to
simulate tissue growth. We found that a morphogen gradient with
a larger decay length maintained the tissue growth longer,
resulting in a more symmetric shape at a more spatially

Fig. 1 Overview of wing disc epithelium and morphogen gradient. a Diagram of Drosophila larva with wing disc tissue circled. b Illustrative
diagram of the Drosophila imaginal wing disc. The blue color denotes the Dpp morphogen gradient. c Schematic profile of the Dpp
morphogen in half wing disc. Its distribution follows an exponential shape, as observed in experiments. d Configuration of epithelial cells in
the wing disc pouch. The image has been reproduced from Gibson et al.26.
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homogeneous growth rate, which was consistent with experi-
mental observations. Together with the assumption of an
absorbing boundary condition, feedback regulation of the down-
stream signal to inhibit the synthesis of cell membrane receptors
facilitated tissue growth by indirectly expanding the spread of the
morphogen gradient. Although the chemical-mechanical model
was only applied to studying the growth regulation of Drosophila
wing disc, it can be applied to simulate tissue growth and test
hypotheses on growth regulation involved in other epithelial
tissues.

RESULTS
We developed a two-dimensional chemical-mechanical model for
studying tissue development and applied it to explore the growth
regulation mechanism in the Drosophila wing disc. In particular,
we aimed to understand how spatially uniform growth can be
achieved and maintained throughout tissue development, as
observed in experiments.

Multiscale chemical-mechanical model of tissue development
in two dimensions
During tissue development, both chemical signals and mechanical
forces play essential roles in regulating cell growth. We have
introduced a multiscale model to integrate both chemical and
mechanical factors and the interactions between them at the
subcellular level (see Fig. 2). This chemical-mechanical model
employs a subcellular element particle-based method for the
mechanical submodel and a system of differential equations as
the submodel for chemical signals coupled both in space and
time. Details of each submodel are provided in “Methods”. In what
follows, we briefly describe the coupling of submodels.

Spatial coupling of mechanical and chemical submodels
The spatial coupling of the chemical signaling submodel and the
mechanical submodel is achieved by adopting a dynamic
triangular mesh over individual cells as well as the entire tissue.
Such dynamic mesh is constructed using discrete nodes
representing cell membranes obtained in the mechanical
submodel (Fig. 2a). Shared edges and junction points between
neighboring cells are identified as the edges and vertices of
triangles, respectively (Fig. 6). Together with cell centers, they give
rise to a triangular mesh covering individual cells (Fig. 2a, b) (More
details about this mesh generator are provided in “Methods”). The
chemical signaling submodel in the form of Eqs. 4–7 is then
simulated over the latest mesh to reach the steady state, using an
initial condition based on the old Dpp levels from the last update
of the chemical signaling submodel in individual cells (Fig. 2c).
Distributions of chemical signal concentrations are obtained at
both individual cells and tissue level (Fig. 2d). Meanwhile, cell
averages of the chemical signals are used in the mechanical
submodel to direct cell growth and division.

Temporal coupling of mechanical and chemical submodels
Cell growth and division are initiated and regulated by chemical
signals. Moreover, the dynamics of chemical signals are at a much
faster time scale than the time scale of mechanical changes.
Therefore, quasi-steady states (Supplementary Fig. 1) of chemical
signaling distributions are computed over the dynamic mesh,
which captures cell and tissue deformation, and are transmitted
into the mechanical submodel at some frequency. This frequency
was chosen to limit redundant computation and unnecessary
computational cost, as well as to transmit accurate distributions of
chemical signals to the mechanical submodel. In our model, the
change in the chemical signaling distribution depended on the
deformation of individual cells. Therefore, to couple two
submodels in time, we estimated the average time that one cell
takes to enter the mitotic phase and divide. It was then converted

Fig. 2 Spatial coupling of chemical and mechanical submodels. a Triangular mesh over the nodes obtained in the mechanical submodel.
b A zoom-in view of the triangular mesh within the red box indicated in (a). cMathematical model (left) and a schematic diagram (right) of the
chemical signaling network in a single cell of Drosophila wing disc. d Discretized tissue with Dpp gradient, denoted by blue-red color, obtained
in the chemical-mechanical model.
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into the frequency to update the quasi-steady state of chemical
signaling distribution over the domain based on the most recent
tissue configuration (More details are provided in “Methods”).
The multiscale chemical-mechanical model can be applied to

study tissue development and investigate mechanisms underlying
growth regulation in different biological systems. In what follows,
we calibrate the model and use it to study the development of
Drosophila wing disc pouch tissue.

Calibration of the model for the development of Drosophila
wing disc pouch
Dpp morphogen is the primary signal controlling cell growth and
tissue development in Drosophila wing disc pouch29,30,55–62. In
individual cells, the Dpp molecule binds with its receptors,
Thickvein (Tkv), on the cell membrane to form the complex
phosphorylates MAD (pMAD) as a downstream signal (Fig. 2c).
Experimental data also suggested pMAD represses the production
of Tkv as a negative feedback regulation6, leading to a lower
synthesis of Tkv near the Dpp source region.
In the multiscale model, dynamics of the morphogen and the

intracellular signaling network are modeled by a system of
reaction-diffusion equations, as shown in Fig. 2c, d. Parameters
d�’s represent degradation rates, and v*’s represent production
rates. vmin and vmax are the minimum and maximum production
rates of Tkv receptors. The production of Dpp is modeled as a Hill
function of the distance to the Dpp production region located at
the AP boundary. Half of the tissue width is denoted as LðtÞ and
the width of the Dpp production region is denoted as rsLðtÞ,
where rs is a constant calibrated using experimental data6. The
activation of intracellular signal pMAD by the binding complex
Dpp-Tkv is also modeled by a Hill function, and so is the negative
feedback regulation of pMAD on Tkv.

We applied a hypothesized cell division rule proposed in
Wartlick et al.30, assuming that cells divide when the level of Dpp
signal is increased by 50% compared with that at the beginning of
each cell cycle, i.e., ½Dpp��½DppDiv �

½DppDiv � � 50%, where ½Dpp� is the Dpp
concentration at the current time and ½DppDiv � is the concentration
at the beginning of one cell cycle. This hypothesis, also known as
the temporal model, assumes that cells have a memory to keep
track of Dpp level throughout the cell cycle, and they divide once
its relative change gets sufficiently large. Therefore, in our model,
cells have a constant growth rate during the interphase
(Supplementary Table 4), and they progress into the mitotic
phase based on the division rule condition indicated above
(Fig. 5a). All other parameter values were provided in Supple-
mentary Tables 2 and 3. Movies for simulating wing disc pouch
growth using this model were provided in Supplementary
Information. This model can be easily revised to incorporate any
other cell division rule.

Morphogen absorbance at the tissue boundary and large
decay length prolong tissue growth at a fast and spatially
homogeneous rate
Dpp is generated along the midline of the wing disc and diffuses
bilaterally into the neighboring tissue. Therefore, it forms an
exponentially shaped gradient along the AP axis (Fig. 1b). To
characterize the Dpp gradient, it is common to use a quantity
called decay length (λ), which measures the distance from the
source region to the location where the Dpp level is reduced to
e�1 � 37% of its maximum (see Supplementary Information for
more details)6. A greater decay length represents a further spread
of the exponential morphogen gradient. The experimental data
revealed that ubiquitous expression of Tkv led to a smaller decay
length of the Dpp gradient, followed by slower growth and

0.0

8.3

ppD

40.0=d

0.0

2.0

ppD

0.4=d

0.0

4.0

ppD

0.0

7.4

ppD

40.0=d

dcba

'a

hgfe

Fig. 3 Simulation results of the coupled model with the simplified chemical submodel. a Initial configuration of the tissue in simulations.
Final configuration of the tissue at t= 200 with a’ no flux boundary condition, b absorbing boundary condition with a large degradation rate
of Dpp, and c absorbing boundary with a small degradation rate of Dpp. The scale bar in (a–c) is 10 μm. d Percentage of cells having n number
of neighbors for simulations and experimental results. e Normalized Dpp profile at t= 200 with respect to the relative cell position in the
tissue under different boundary conditions and with different degradation rates of Dpp. The black line shows fitted experimental
quantification of the relative Dpp concentrations from 48 to 130 h. f Cell numbers with respect to time for different degradation rates and
different boundary conditions. g Tissue circularity with respect to the cell number for different degradation rates. Circularity was defined as
the ratio of tissue height over tissue width. h Distribution of the angular position of dividing cells with respect to tissue center for different
degradation rates when there are 500 cells in the tissue.
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smaller tissue size6. This observation suggests that the spatial
distribution of morphogen gradient should play an important role
in regulating tissue growth.
To understand how the distribution of the Dpp gradient

affected tissue growth, we first used a simplified chemical
submodel by ignoring intracellular processes and downstream
signals in the form of Eq. 3 provided in “Methods”. This simplified
model allowed us to perturb the shape of the gradient easily by
tuning one parameter only. In particular, the source term (second

term on the right-hand side of Eq. 3) is specified as vDpp = ½1þ x
rsL tð Þ

� �ns

�
to represent the synthesis of Dpp molecules along the midline,
where vDpp , rs , ns are constants and L tð Þ denotes half of the tissue
width. Moreover, the decay length of Dpp in this simplified model

can be analytically estimated as λ¼
ffiffiffiffiffiffiffi
DDpp
dDpp

q
(See Supplementary

Information for details), depending on the diffusion rate and
degradation rate. A higher diffusion rate or lower degradation rate
allows diffusing molecules to travel further, giving rise to a larger
decay length. Both diffusion and degradation rates were
calibrated to achieve a similar decay length observed in
experiments6. We then coupled this simplified chemical submodel
with the mechanical submodel under the specific cell division rule
to simulate tissue growth. All simulations started with 100 cells
(Fig. 3a). The final shapes of simulated tissue development are
shown in Fig. 3a’, b, c. To understand how the decay length could
affect tissue growth, we varied the degradation rate of Dpp
concentration, which changed the underlying decay length under
different boundary conditions.
First, we considered the scenario that free Dpp molecules

cannot escape at the boundary of the wing disc pouch and are
always kept within the tissue. This was modeled by no flux
boundary condition associated with cells located at the tissue
boundary. For tissue growth with no flux boundary condition,
smaller degradation resulted in a flatter Dpp gradient (red and
blue triangles in Fig. 3e). The Dpp concentration was saturated at
high levels in individual cells, and it did not increase sufficiently to
satisfy the cell division rule at the early stage of development.
Therefore, most cells only experienced one cell cycle, and tissue
growth stopped at the early stage, leading to small tissue sizes
(red and blue dash line in Fig. 3f). With a larger degradation rate,
the Dpp gradient became more exponential (green triangles in
Fig. 3e), which was still far from the experimental profile of Dpp30

(black crosses in Fig. 3e) and the final tissue size obtained was
slightly increased (green dash line in Fig. 3f). However, tissue
growth was still terminated early, and the overall tissue size was
much smaller than that obtained in experiments (Fig. 3f).
Therefore, by assuming Dpp molecules could not escape at the
boundary, tissue growth only occurred in a short time period at
the early stage, and small final sizes were always obtained for
different decay lengths of Dpp.
Second, we considered the scenario with Dpp being completely

degraded at the periphery zone of the tissue (see “Methods” for
more information), which was modeled by using absorbing
boundary conditions for cells at the boundary of the tissue.
Under these assumptions, the Dpp gradient changed from a linear
shape to an exponential shape as the tissue size increased
(indicated by circles in Fig. 3e). Furthermore, by assuming
absorbing boundary conditions, the tissue growth was able to
reach a size greater than the decay length of Dpp gradient
(indicated by solid lines in Fig. 3f). We also observed that with a
larger degradation rate, the morphogen gradient became
exponential at a smaller tissue size, and the growth was
maintained in a shorter period of time, giving rise to a smaller
tissue size (see solid green line in Fig. 3f). With a smaller
degradation rate, the morphogen gradient became exponential at
a larger tissue size (blue circles in Fig. 3e) and it was still in a good
agreement with experimental data30 (black crosses in Fig. 3e). In

addition, the growth was maintained for a much longer time (Fig.
3f). To compare our simulated tissue size with experimental data
more carefully, we found the time in simulations when a similar
cell number was obtained as that at the initial time point and the
last time point in the experiments of Wartlick et al.30. Then we
scaled the simulation time accordingly to match those two time
points and compared the cell number at intermediate time points.
The simulated tissue growth matched experimental data best with
the smallest degradation rate (Fig. 3f). These results were
consistent with the experimental observations of a larger decay
length of the Dpp, giving rise to larger tissue sizes6.
In addition to limited growth, it was also shown that with a

higher degradation rate, the overall shape of the growing tissue,
which was symmetric initially (Fig. 3a), became asymmetric, and
the boundary became less smooth under the absorbing boundary
condition (Fig. 3b). To look into this further, we tracked in model
simulations the spatial locations of all dividing cells and visualized
the distribution by dividing the tissue into eight sectors of equal
size (Fig. 3h). It was observed that a higher degradation rate led to
more dividing cells near the production region of Dpp, hence
faster tissue growth along the AP boundary. As a result, the height
of the tissue grew faster than the width, yielding an asymmetric
shape (Fig. 3g). In contrast, a smaller degradation rate gave rise to
more spatially homogeneous cell division (Fig. 3h) and a more
symmetric overall tissue shape (Fig. 3g). Indeed, the spatially
homogeneous growth rate was also observed in experiments of
Drosophila wing disc pouch30,63–67, suggesting larger decay length
of Dpp might be beneficial to achieve homogeneous growth in a
wild-type wing disc pouch tissue. We also measured the number
of neighboring cells throughout the simulated tissues with
different boundary conditions and different degradation rates
and compared them with experimental data (Fig. 3d). In all cases,
most cells had five or six neighbors, similar to the experimental
observations. With the smallest degradation rate and absorbing
boundary condition, the cell population with less than four
neighbors was the smallest, which was most consistent with
experimental data.
Overall, simulation results suggested that the decay length of

the morphogen played an essential role in maintaining tissue
growth and determining the final shape when absorbing
boundary condition is applied. Under such boundary conditions
and the specific cell division rule, Dpp distribution with a larger
decay length helped a tissue grow longer, faster, and in a more
spatially homogeneous manner, which closely resembled the
shape of the wild-type wing disc pouch observed in experiments.
The absorbing boundary condition with a lower degradation rate
allowed Dpp molecules to travel further to establish a gradient
with a larger decay length, while no flux boundary condition gave
rise to relatively high concentrations everywhere and much
smaller tissues. In fact, the specific cell division rule was less
frequently satisfied under no flux boundary conditions (see
Supplementary Fig. 2 for details). In fact, it was observed that
due to the hinge region around the wing disc pouch, the Dpp
level dropped to almost zero at the tissue boundary6, suggesting
the absorbing boundary condition was more biologically relevant.
Therefore, the morphogen absorbance at the peripheral zone also
facilitated tissue growth by reshaping the morphogen gradient in
a wild-type wing disc.

Negative feedback regulation on the synthesis of receptors
promotes tissue growth through increasing morphogen decay
length
It was previously shown that the transduction of Dpp signals into
cells in the Drosophila wing disc relies on a receptor kinase Tkv.
Removal of Tkv had a similar effect as the Dpp mutant. Recently, it
was also observed that the intracellular downstream signal pMAD
downregulates the production of Tkv as a negative feedback
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regulation, which may reshape the morphogen gradient to some
extent6. Next, we applied our coupled model with absorbing
boundary condition to study the effects of this feedback
regulation on tissue growth.
Notice that in the chemical submodel, the negative feedback

regulation of pMAD on Tkv was modeled using a Hill function, as
illustrated in Fig. 2c. In particular, the parameter kp denoted the
effective level of pMad involved in negative feedback regulation.
Therefore, in simulations, we perturbed kp to give rise to different
levels of this feedback regulation. Higher kp values gave rise to
weaker negative regulation in a smaller region, while lower kp
values led to stronger negative regulation in a larger domain. The
cell division rule involved in the coupled model depended on the
intracellular signal pMAD.
Simulations were run for low (kp ¼ 10), medium (kp ¼ 1), and

high (kp ¼ 0:1) strength of negative feedback, as well as different
values of maximal Tkv receptor production rate (vmax) (Fig. 4). All
simulations showed a good match with experimental data on the
number of neighboring cells throughout tissues (Fig. 4d). The
simulation results showed that, with stronger strength of negative
feedback of pMAD, i.e., lower values of kp, the tissue grew faster
and the profile of cell number growing over time was closer to the
one obtained in experiments (Fig. 4f, f’) and the overall tissue

shape was more symmetric (Fig. 4g, g’). Moreover, the spatial
distribution of dividing cells was more homogeneous (Fig. 4h, h’).
However, it was also observed that simulation results for kp ¼ 0:1
and 1 were similar to each other. This was because the production
rate of Tkv became close to the minimum almost everywhere
within the tissue for sufficiently small kp. Hence, the pMAD
gradient remained more or less the same for sufficiently small kp
values. By comparing the results generated using different values
of the maximal receptor production rate (vmax ¼ 10 v.s. 20), it was
observed that the effect of the feedback regulation strength
became more significant when vmax was larger, i.e., the difference
in the circularity of tissue shape due to different strength of the
negative feedback regulation became more visible (Fig. 4g, g’).
In fact, stronger negative feedback regulation of pMAD on Tkv

receptors allowed Dpp molecules to diffuse into a larger area by
reducing the binding occurrence near the Dpp production region,
and therefore it gave rise to a pMAD gradient with a larger decay
length (Fig. 4e, e’). Based on the cell division rule used in this
study, depending on temporal changes of the Dpp signal, a more
widely spreading morphogen gradient helped maintain the tissue
growth for a longer time and keep the cell number increasing
linearly at a faster rate, leading to a larger tissue size and more
symmetric shape. This was also consistent with the results
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pMAD profile at t= 250 with respect to the relative cell position in the tissue with different levels of feedback regulation and e vmax ¼ 20 and
e’ vmax ¼ 10. The black line represents fitted experimental quantification of the relative signal concentrations from 48 to 130 h. Cell numbers
at different levels of feedback regulation over time for f vmax ¼ 20 and f’ vmax ¼ 10. Tissue circularity with respect to cell number for different
levels of feedback regulation for g vmax ¼ 20 and g’ vmax ¼ 10. Distributions of the angular position of dividing cells with respect to the tissue
center for different levels of feedback regulation and h vmax ¼ 20 and h’ vmax ¼ 10 when there are 500 cells in each simulation.
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obtained by using the simplified chemical submodel (Eq. 3), in
which decreasing the degradation rate led to a larger tissue size
and more spatially homogeneous cell division.

DISCUSSION
In this paper, we described a multiscale chemical-mechanical
model to study growth regulation involved in tissue development
and applied it to study the development of the Drosophila
imaginal wing disc at the larva stage. The mechanical submodel
represents the shape change of individual cells and cell–cell
physical interactions. It is coupled with a chemical submodel by
utilizing an adaptive mesh generated over the growing tissue
domain. This chemical signaling submodel describes the dynamics
of the morphogen gradient and associated downstream signals
inside individual cells, which control cell growth and division in
the mechanical submodel. A hypothesized cell division rule based
on the morphogen concentration sensed by individual cells is
applied to study how the decay length of the morphogen gradient
affects tissue growth.
By applying different boundary conditions in the chemical

submodel, we found that tissue growth was maintained longer
under absorbing boundary conditions. This indicates that the

significant reduction of morphogen at the hinge region surround-
ing a wing disc tissue, as observed in experiments, could better
promote tissue growth, compared with the case of the hinge
region being a simple obstacle and preventing morphogen
spread. By varying the decay length of the morphogen gradient,
it was also shown that the tissue grew faster with a greater decay
length. Moreover, cell division became more spatially homoge-
neous, giving rise to a more symmetric tissue shape consistent
with experimental observations. We also found that the feedback
regulation of pMAD, a downstream signal of the morphogen, on
the synthesis of receptors increased the decay length and
therefore facilitated tissue growth. Overall, these results suggest
that the decay length of the morphogen gradient can play an
important role in the growth regulation of the wing disc.
In this study, we tested a hypothesized cell division rule based

on the temporal changes of morphogen, which was proposed in
Wartlick et al.30. However, this chemical-mechanical model
developed provides a general framework to study growth
regulation of epithelial tissue, and it can be used to investigate
other hypothesized mechanisms of growth regulation. For
example, it was shown that cell mechanical stress contributes to
growth control through a feedback loop in the wing disc23,63,65,
known as the integral-feedback mechanism, which might help to

Fig. 5 Diagram of the underlying physical basis of the mechanical submodel. a Life cycle of a cell in the mechanical submodel.
b Mechanical forces between different nodes in the mechanical submodel. c Initial tissue configuration in a simulation with no growth
regulations. d Final tissue configuration from the simulation in (c). e Zoom-in view of the final configuration.
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achieve a more uniform growth rate in the presence of an
exponential morphogen gradient. In addition, it demonstrated
that cytoskeletal tension could regulate growth by altering the
Hippo pathway directly24, working as an interaction between
chemical signals and mechanical properties at a subcellular scale.
Therefore, the multiscale model developed in this paper can be
extended to implement cell growth rate in the form of a function
of both cellular mechanical properties and chemical signals.
Moreover, it was suggested that some signaling pathways could

be affected by cell mechanical properties, including shear stress
and tension sensed at adherens junctions68–70. Meanwhile,
signaling molecules could rearrange structural components within
individual cells and direct new materials to the cell membrane to
modify the mechanical properties29. These interactions between
chemical and mechanical components can be incorporated into
the multiscale model as more detailed experimental quantification
is provided. Also, in this study, the subcellular scale was mostly
used in the mechanical submodel to describe cell growth and
introduce mechanical properties. Although we calculated the
distributions of chemical signals over a mesh with subcellular
partitioning, only cell-based averages were used to regulate cell
division. However, this spatial mesh with subcellular partitioning
benefited the simulation results in terms of accuracy compared
with a cell-based mesh. It is also possible to apply this coupled
model to study polarized chemical signals within individual cells
and subcellular interaction between chemical signals and
mechanical properties for other biological systems.
2D models are commonly used for studying the growth of the

Drosophila wing disc pouch by neglecting the tissue thickness.
This is because the wing disc pouch consists of epithelial cell
layers, and the thickness is much smaller than the apical view
dimensions. Also, the key structural components, such as
E-cadherins and actomyosin, are concentrated on the top surface
of the epithelia. These components contribute significantly to cell
adhesion and contractility. In our 2D mechanical submodel, during
cell division, the movement of the nucleus and a significant
amount of cytoplasm added to the top surface of the cell, known
as the process of mitotic rounding, are taken into account to
include effects from the neglected dimension to some level.
Additionally, a 2D model allows simulations with a large number
of cells in a high resolution. As a future direction, we will try to
extend our model into 3D to include extracellular matrix (ECM)
and the interaction between ECM and cells, as well as intracellular
signals distributed along the 3rd dimension regulating cell
growth. The use of parallel computing and GPU clusters may
enable 3D simulations at a similar resolution with more reasonable
computational costs.

METHODS
Mechanical submodel
For the mechanical submodel, we follow a similar approach as the
Epi-scale model46. Epi-scale model is a multiscale subcellular
element computational platform that simulates the growth of
epithelial monolayers with detailed cell mechanics. Individual cells
are represented as collections of two types of interacting
subcellular nodes: internal nodes and membrane nodes. Internal
nodes account for the cytoplasm, and the membrane nodes
represent both the plasma membrane and associated contractile
actomyosin cortex. Interactions between internal and membrane
nodes are modeled by using different energy functions, as shown
in Fig. 5b 53,71. Combined interactions between internal nodes (EII)
represent the cytoplasmic pressure of a cell. Combined interac-
tions between internal and membrane nodes of the same cell (EMI)
represent the pressure from the cytoplasm to the membrane.
Interactions between membrane nodes of the same cell (EMMS)
represent cortical stiffness. Cell–cell adhesionðEAdh) is modeled by

combining pairwise interactions between membrane nodes of
two neighboring cells. EMMD is a repulsive force between
membrane nodes of neighboring cells and prevents membranes
of different cells from overlapping. Springs and Morse energy
functions are utilized to model all the interactions54. The following
equations of the motion describe the movements of internal and
membrane nodes, respectively:

η _xIi ¼ �
X
j

∇EMI
ij þ

X
m

∇EIIim

 !
i ¼ 1; 2; ¼ ::NIðtÞ (1)

η _xMj ¼ �
X
i

∇EMI
ij þ

X
k

∇EMMS
kj þ

X
l

∇EMMD
lj þ ∇EAdhj

 !
j ¼ 1; 2; ::NM

(2)

where η is the damping coefficient, xIi and xMj represent positions
of internal and membrane nodes. m is the index for any internal
node. k is the index for any membrane node of the same cell
interacting with the membrane node j. l is the index for any
membrane node of a different cell interacting with the membrane
node j. Cell growth is modeled by adding internal nodes and
therefore NI increases based on the cell proliferation rate. The
individual cell cycle in the current model is shown in Fig. 5a. Initial
and final configurations of the tissue in a simulation with a given
growth rate and cell division rate are shown in Fig. 5c–e,
respectively.

Chemical submodel
In the chemical signaling submodel, we consider a chemical signal
which regulates the growth rate and cell division. A morphogen,
which is a signaling molecule governing the growth and
patterning of tissue development, diffuses in the extracellular
space to form a gradient at the tissue level. A reaction-diffusion
equation is used to model the spatiotemporal dynamics as below:

∂ M½ �
∂t

¼ DM∇2½M� þ sMðxÞ � dM M½ � (3)

where ½M� denotes the concentration of the morphogen
molecules, DM is the diffusion coefficient of morphogen mole-
cules, and dM is the degradation rate of morphogen molecules.
The production rate of morphogen molecules, varying spatially, is
denoted by sMðxÞ. DM and dM together determine how far the
molecules can reach in the steady state (See Supplementary table
2–4 for more information). The local morphogen concentration is
sensed by individual cells through binding with receptors on the
cell membrane to activate the intracellular signaling network.
To model the intracellular signaling network, we consider the

receptor R, the complex after binding MR, and a downstream
signal S. More components with more complex regulations can be
modeled similarly. Together with the diffusive morphogen, it gives
rise to a chemical signaling network at both cell and tissue levels,
formulated as Eqs. 4–7 below. More specifically, the binding of the
morphogen molecules and receptors is reversible, so both binding
and unbinding kinetics are included with kon denoting the binding
rate and koff characterizing the unbinding rate. A standard Hill
function is applied to model the activation of downstream signal S
by the complex MR. The maximal signal production rate and
concentration at which the production is half of the maximum are
denoted by vs and kMR, respectively. It is assumed that S regulates
the synthesis of the receptor as a feedback regulation, which is
also modeled as a Hill function, to accommodate the feedback
regulation present in the Drosophila wing disc. The minimum and
maximum receptor production rates are vR;min and vR;max. The
concentration producing half occupation is represented by ks.
Notice that only M can diffuse within the tissue, and all other
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components are restricted within the cell without diffusion.

∂ M½ �
∂t

¼ DM∇2½M� þ sMðxÞ � dM M½ � � kon½M� R½ � þ koff MR½ � (4)

∂½R�
∂t

¼ vR;min þ vR;max � vR;min

1þ ½S�
kS

� �n1 � dR R½ � � kon½M� R½ � þ koff MR½ � (5)

∂½MR�
∂t

¼ kon M½ � R½ � � koff MR½ � � dMR MR½ � (6)

∂½S�
∂t

¼ vS

1þ ½MR�
kMR

� �n2 � dS S½ � (7)

Dynamic mesh generator to couple mechanical and chemical
submodels
To generate a computational mesh for the chemical signaling
submodel, we first identify neighbors of individual cells based on
the distance between membrane nodes of every two cells (See
Fig. 6 and Supplementary Table 1 for more information). In
particular, one cell is considered to be a neighbor of the other if
the shortest distance between their membrane nodes is less than
some threshold. This threshold is chosen based on the distance
between neighboring cells obtained in the equilibrium in the
simulation (See Supplementary Table 1 for more details). The same
threshold is also used to determine a common edge between
neighboring cells, i.e., membrane nodes from neighboring cells

with a distance less than the threshold are selected to form a
common edge. The middle points are calculated for each pair of
those selected nodes, which give rise to a common edge between
these two neighboring cells (Fig. 6b). The endpoints of each
shared edge are used to determine the vertices of the triangular
mesh. It is possible that multiple cells neighboring each other give
rise to a junction. Therefore we consider all common edges
associated with the same junction point and calculate the centroid
of their endpoints near the junction as a vertex in the triangular
mesh (red dots in Fig. 6c). We go over all junctions and calculate
corresponding vertices throughout the tissue. Next, the center of
each cell is obtained by calculating the centroid of all its
membrane nodes, and it is connected to vertices obtained at
junctions (Fig. 6d). By doing that, each cell is discretized by a
triangular mesh that shares a common edge with its neighboring
cells, and triangles in all cells give rise to a mesh covering the
entire tissue (Fig. 2a). Notice that boundary cells usually lack
neighbors along one or more sides; therefore their discretization
will be treated separately (See the next section for more
information). Nodes from cell membranes that act as the tissue
boundary in those cells are selected as vertices such that some
minimal distance is satisfied between successive ones. They are
denoted by boundary vertices and connected with the corre-
sponding cell centers to give rise to the triangular mesh inside
boundary cells. A mesh quality check is implemented to guarantee
that no highly skewed triangles are generated for convergence
and accuracy of the computation over the mesh. Adjustment is
conducted by merging or splitting triangles if triangles are found
to be too skewed in the quality check (See the next section for
more information). Such a mesh generator provides triangular

Fig. 6 Illustration of dynamic mesh generator. a Nodes obtained from the mechanical submodel. Black nodes represent cytoplasm. Gray
nodes represent cell membrane, connected by linear springs. b Identifying common edges shared by neighboring cells. Blue dots are
obtained as middle points of membrane nodes from neighboring cells. c Identifying junction points, i.e., centroids of endpoints of contacting
edges among neighboring cells, denoted by red nodes. d Triangles obtained by connecting cell centers and junction points.

Fig. 7 Treatments on skewed triangles and boundary cells. a Triangular meshes with two highly skewed triangles. a’ Midpoint of two close
vertices is calculated, and a” old vertices are replaced by the midpoint, then we update triangles accordingly. b A configuration within which
the boundary cell is not covered by the triangular mesh. b’ Some of the membrane nodes are chosen as vertices. The number of new vertices
depends on the boundary angle. b” New triangles are built with the new vertices. Membrane nodes in (b’) are chosen such that these
triangles are close to equilateral triangles.
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meshes in individual cells, as well as a global mesh over the whole
tissue. Moreover, the triangular mesh is updated at some
frequency to accommodate the cell deformation and tissue
growth obtained in the mechanical submodel.

Treatments on skewed triangles and boundary cells
Highly skewed triangles involved in the triangular mesh may
affect the convergence and precision of the numerical solver. As
shown in gray color in Fig. 7a, a highly skewed triangle is often
generated when the shared edge of two neighboring cells is too
short. To avoid that, we merge two vertices into one at the middle
point when the edge of two neighboring cells is less than a
threshold (lintersect) (shown in red in Fig. 7a’). Merging two vertices
into one implies that each skewed triangle is now merged with
the corresponding adjacent regular triangle (shown in green color
in Fig. 7a’). Consequently, three connected triangles with the one
skewed at the middle are now converted into two regular
triangles (shown in blue color in Fig. 7a”).
Discretizing boundary cells needs special treatment since some

parts of their membrane are not adjacent to any other cells. The
membrane parts of boundary cells that are not adjacent to any
other cells (see the cell in red color in Fig. 7b as an example) are
discretized by selecting a few of their own membrane nodes (blue
dots in Fig. 7b’) as the vertices of triangles. The number of
membrane nodes is chosen so that triangles are close to
equilateral triangles, as shown in Fig. 7b”. Mathematically, the
number of new vertices on the membrane of boundary cells can
be approximated according to the following equation:

nvertex ¼ Round½ θboundary
π=3

� (8)

Discretization of governing equations of chemical submodel
We discretize Eqs. 1–4 by using the explicit Euler method in time.
The diffusion of [Dpp] is approximated by passive transport
between neighboring triangles. The chemical submodel is solved
on the triangular mesh to obtain the quasi-steady state. The
chemical signaling concentration at the cell level is obtained by
calculating the average over triangles within individual cells and is
also used as the initial condition for the next update on the
chemical signaling distribution.

½Dpp�tþΔt
i ¼ ½Dpp�ti þ ðDDpp

P
nghbr

Ai;nghbr ð Dpp½ �tnghbr� Dpp½ �ti Þ
li;nghbr

þ vDpp

1þ xi
rsL tð Þ

� �ns � dDpp

1þ xi
rsL tð Þ

� �ns Dpp½ �ti

� kon Dpp½ �ti Tkv½ �ti þ koff Dpp Tkv½ �ti Þ ´ Δt

(9)

Tkv½ �tþΔt
i ¼ Tkv½ �ti þ ðvmin þ vmax�vmin

1þ ½pMad�t
i

kP

� �n1

� dTkv Tkv½ �ti � kon Dpp½ �ti Tkv½ �ti þ koff Dpp Tkv½ �ti Þ ´ Δt

(10)

Dpp Tkv½ �tþΔt
i ¼ Dpp Tkv½ �ti þ ð � dDpp Tkv Dpp Tkv½ �ti

þ kon Dpp½ �ti Tkv½ �ti � koff Dpp Tkv½ �ti Þ ´ Δt
(11)

½pMad�tþΔt
i ¼ ½pMad�ti þ

vP

1þ ½Dpp Tkv�ti
kDpp Tkv

� �n2 � dP pMad½ �ti

0
B@

1
CA ´ Δt

(12)

In Eqs. 9–12, ½��ti is the concentration of chemical signals on
triangle i at time t. The diffusion is approximated as the flux
between two neighboring triangles, which is dependent on the
length of the contact edge, Ai;nghbr, and the concentration

gradient between them. The steady state is obtained when the
relative difference in concentrations of each chemical signal (Dpp,
Tkv, and pMad) between two successive time steps is less than
10�4, i.e.,

½α�tþ1
i � ½α�ti
½α �ti Δt

<10�4 8i 2 all meshes; α ¼ Dpp; Tkv; DppTkv ; pMad

(13)

Absorbing boundary condition is applied by assuming that free
Dpp molecules would be diminished to zero at the boundary of
the domain, corresponding to the fact that no Dpp signal was
captured in the hinged region surrounding the wing disc pouch.
We impose this condition in our chemical submodel by enforcing
zero Dpp level on triangles along the tissue boundary at every
time step, i.e.,

½Dpp�ti ¼ 08t& 8i 2 boundary meshes (14)

Frequency of information exchange between mechanical and
chemical submodels
When coupling the mechanical and chemical submodels, cell
configurations used in the chemical submodel and chemical signal
concentration used in the mechanical submodel need to be
updated at some frequency to ensure consistent information is
used in both submodels. Such frequency has to be chosen
appropriately because too small frequencies will lead to non-
compatible information exchanged between two submodels,
while too big frequencies result in redundant computation and
high computational cost.
When applying the coupled model to study the development of

the Drosophila wing disc, the minimum time scale that takes one
cell to enter the mitotic phase and divide is used to estimate the
frequency of information exchange between two submodels.
Considering the maximum cell growth rate at the beginning of the
simulation (g0,max= 1.1 × 10−4), it takes at least 9090 units of time
in the mechanical submodel for one cell to start a cell cycle and
divide. Note that the growth rate of daughter cells decays with
respect to time. Therefore, cell cycle length increases in the later
stage of the simulation. Thus 9090 units of time is the shortest cell
cycle used in the simulation. Also, the chance of getting cell
divisions will be higher if there are more cells involved. Therefore,
we update the steady state of chemical signal concentration
based on the cell configurations obtained most recently in the
mechanical submodel every 200 units of time in the mechanical
submodel, i.e., the coupling frequency fexch ¼ 0:005. This means
we update the profile of chemical signals around 45 times within
each cell cycle. This estimated frequency allows us to compute the
relative change on the Dpp signal (Eq. 5) for all cells without too
expensive computational cost.
We have utilized Intel(R) Xeon(R) CPU E5-1650 v2 3.50 GHz CPU

and an Nvidia TITAN V graphic card (GPU) to run our simulations.
The GPU is used to simulate the mechanical submodel, whereas
the CPU is utilized to calculate the pseudo-steady state of the
morphogen profile in the chemical signaling submodel. Typically,
a simulation of the simplified model takes around 100 h to
complete, while a simulation of the advanced model takes
approximately 200 h. These simulation times are obtained from
simulations with the highest rate of cell division in both simplified
and advanced models. Other simulations in each model take less
time to complete as they have fewer cells included in the model
during the simulation.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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