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TV regularization, ŝ′TV, and LST with (e,f) Haar wavelet and . . . . . . . . 99

Figure 6.6: Conventional, TV, and LST tomography results without travel time error for
smooth-discontinuous map (Fig. 6.3(b)). Same order as Fig. 5, with vertical
1D profile of estimated and true slowness. RMSE (ms/km, (6.24)), is printed
on 2D slownesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 6.7: Conventional, TV, and LST tomography results for different values of regu-
larization parameters for (a–c) checkerboard (Fig. 6.3(a)) and (d–f) smooth-
discontinuous (Fig. 6.3(b)) maps, without travel time error. (a,d) Conven-
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ABSTRACT OF THE DISSERTATION
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In ocean acoustics and seismology, the Earth’s subsurface is imaged using acoustic

and seismic waves. As they propagate through the ocean and solid earth, these waves obtain

geophysical information. This information is recovered via optimization procedures which fit

physical models to wavefield observations from sensor arrays. The estimation of geophysical

model parameters from the observations, typically referred to as inverse problems, are challenging

due to many issues, e.g. noisy and incomplete observations, as well as non-linear forward models.

In this dissertation, geophysical inversion methods are developed based on sparse model-

ing and dictionary learning, an unsupervised machine learning method. These techniques employ

more sophisticated model priors and latent representations than conventional methods, and obtain
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state-of-the-art performance in a variety of signal processing tasks. Sparse modeling assumes

that signals can be reconstructed to acceptable accuracy using a small (sparse) number of vectors,

called atoms, from a larger set of atoms, or dictionary. Sparsifying dictioniaries can be designed

from generic functions such as wavelets, or can be learned directly from the data via dictionary

learning. Provided sufficient signal examples exist, dictionary learning can learn sparsifying

dictionaries which obtain better performance than generic dictionaries. Conventional methods,

rely on smoothness and second order statistics (e.g. empirical orthogonal functions (EOFs)) to

estimate geophysical structure. In contrast, sparse methods potentially permit the recovery of true

smooth and discontinuous geophysical structures.

Ocean acoustic sound speed profile (SSP) estimation requires the inversion of acoustic

fields using limited observations. A specific case of sparse modeling, called compressive sensing

(CS) asserts that certain underdetermined problems can be solved in high resolution, provided

their solutions are sparse. CS is used to estimate SSPs in a range-independent shallow ocean by

inverting a non-linear acoustic propagation model. It is shown that SSPs can be estimated using

CS to resolve fine-scale structure.

To provide constraints on their inversion, ocean sound speed profiles (SSPs) are modeled

often using empirical orthogonal functions (EOFs). However, this regularization, which uses

the leading order EOFs with a minimum-energy constraint on their coefficients, often yields low

resolution SSP estimates. It is shown that dictionary learning, a form of unsupervised machine

learning, can improve SSP resolution by generating a dictionary of shape functions for sparse

modeling that optimally compress SSPs; both minimizing the reconstruction error and the number

of coefficients. These learned dictionaries (LDs) are not constrained to be orthogonal and thus,

fit the given signals such that each signal example is approximated using few LD entries. LDs

describing SSP observations from the High Frequency ‘97 experiment and the South China Sea

are generated using the K-SVD algorithm. These LDs better explain SSP variability and require

fewer coefficients than EOFs, describing much of the variability with one coefficient. Thus, LDs
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improve the resolution of SSP estimates with negligible computational burden.

A 2D travel time tomography method is developed based on sparse modeling and dictio-

nary learning. The method regularizes the inversion by modeling groups of slowness pixels from

discrete slowness maps, called patches, as sparse linear combinations of atoms from a dictionary.

Dictionary learning is used in the inversion method to adapt dictionaries to specific slowness

maps. This patch regularization, called the local model, is integrated into the overall slowness

map, called the global model. The local model considers small-scale variations using a sparsity

constraint and the global model considers larger-scale features constrained using `2 regularization.

This strategy in a locally-sparse travel time tomography (LST) approach enables simultaneous

modeling of smooth and discontinuous slowness features. This is in contrast to conventional

tomography methods, which constrain models to be exclusively smooth or discontinuous. We

develop a maximum a posteriori formulation for LST and exploit the sparsity of slowness patches

using dictionary learning. The LST approach compares favorably with smoothness and total

variation regularization methods on densely, but irregularly sampled synthetic slowness maps.

Finally, the LST travel time tomography method is used to obtain high-resolution subsur-

face geophysical structure in Long Beach, CA, from seismic noise recorded on a “large-N” array

with 5200 geophones (∼13.5 million travel times). LST exploits the dense sampling obtained

by ambient noise processing on large arrays by learning a dictionary of local, or small-scale,

geophysical features directly from the data. Using LST, a high-resolution 1 Hz Rayleigh wave

phase speed map of Long Beach is obtained. Among the geophysical features shown in the map,

the important Silverado aquifer is well isolated relative to previous surface wave tomography

studies. The results show promise for LST in obtaining detailed geophysical structure in travel

time tomography studies.
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Chapter 1

Introduction

1.1 Background

Physical information about solid earth and oceanic structure has many different purposes,

such as seismic hazard assessment [1,2], estimation of ocean heating from climate change [3], and

acoustic communication [4]. However, it is generally too expensive and difficult to obtain directly

large scale estimates of ocean temperature distributions or geology. Challenges for obtaining

these measurements include obvious physical limitations, e.g. the impracticality of excavation or

sampling every point in the ocean, and the high costs of existing sensor arrays and deployment.

Hence, geoscientists and oceanographers rely on remote or indirect measurements for estimating

geophysical parameters. The problems of estimating such parameters from observations, generally

referred to as inverse problems, pose their own challenges which must be addressed to obtain

useful models.

In ocean acoustics and seismology, the Earth’s subsurface is imaged using acoustic

and seismic waves. These waves are generated by anthropogenic sources such as explosions

or airguns (or even traffic noise [5, 6]), and natural sources such as earthquakes and ocean-

atmospheric coupling [7]. In their transmission, which can extend across ranges of thousands
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of kilometers, seismic and acoustic waves obtain information about the transmission medium.

When these wavefields are observed on arrays of sensors, this information can be extracted.

Generally, observations are obtained as either travel times between the array elements, full

seismic waveforms, or acoustic modes. The inverse problem is then to find a physical model that

best fits the observations. A basic inverse problem statement is

x̂ = argmin
x

N

∑
n=1

p(yi−G(x)) (1.1)

where p is a penalty (e.g. least squares), yn is the data (N points), G is the forward model, x ∈RM

are M model parameters, and x̂ is the model parameter estimate. In travel time tomography, yn is

a travel time observation, and G is the ray propagation relating yi to slownesses x.

Typically, inverse problems in geoscience (e.g. Eq. 1.1) are difficult to solve due to

limited and imperfect observations, and the non-linearity of the forward operator G. Thus,

solving Eq. 1.1 directly will almost certainly give poor results. These problems require careful

regularization to obtain physically plausible results. Much research in geophysics has been

devoted to inverse problem theory [8–11]. Conventional regularization techniques in geophysics

include damping and smoothing [8, 11] and total variation (TV) [12, 13], and characterize

environment variability using only second-order statistics, e.g. empirical orthogonal functions

(EOFs) [14,15]. These methods regularize Eq. 1.1 by penalizing rough or piecewise-discontinuous

features in x. Damping is accomplished via `2-regularization (a.k.a. Tikhonov regularization) [11],

and TV-regularization [16] penalizes the gradient between pixels.

While the smoothing and orthogonality constraints in conventional regularization are con-

venient, they potentially over-simplify the parameterization and mask true geophysical features,

which are smooth and discontinuous at multiple spatial scales [1, 11]. As a result, the parameter

estimates may not converge to their true values, and geophysical features such as faults and

fine-scale ocean sound speed structures and are potentially lost. A large body of inverse problem
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theory has been developed in related signal processing fields, including image processing and

medical imaging [17,18]. Although these fields are not geophysical, their strategies are relevant to

geophysical inverse problems. Important relelvant developments have included sparse modeling,

a modern interpretation of parsimony, and machine learning. These modern signal processing

paradigms have the potential to transform geophysical inverse theory.

This dissertation concerns the development of sparse modeling (a.k.a. compressive

sensing (CS) in acoustics) [17–20] and machine learning-based methods [21, 22] for improving

geophysical parameter estimation in ocean acoustics and seismology. Sparse modeling and

machine learning techniques represent a modern paradigm for signal processing. These techniques,

which employ more sophisticated model priors and latent representations than conventional

methods, obtain state-of-the-art performance in a variety of signal processing tasks. Sparse

modeling assumes that signals can be reconstructed to acceptable accuracy using a small (sparse)

number of vectors, called atoms, from a potentially large set of atoms, called a dictionary.

Early sparse approaches were developed in seismic deconvolution [23, 24]. This philosophy has

since become ubiquitous in signal processing for image restoration tasks such as denoising and

inpainting [18], and medical imaging [25]. Recent works in ocean acoustics and seismics have

utilized sparse modeling, e.g. beamforming [26, 27], matched field processing [28], estimation

of ocean acoustic properties [29–34], and seismic tomography [35–38]. In Chapter 2 of this

dissertation [31], a CS-based approach to ocean SSP inversion is developed.

Machine learning in the context of this dissertation provides a means of learning an

optimal sparsifying dictionary directly from data examples. An important problem in sparse

modeling is finding the best dictionary for sparsely representing specific signals. Such dictionaries

can, for instance, be composed of wavelet functions, or the discrete cosine transform (DCT).

These predefined or “generic” dictionaries perform well for many signals. Some works in seismic

tomography have used sparse modeling, e.g. [36, 39]. However, using a form of unsupervised

machine learning, called dictionary learning, optimal dictionaries can be learned directly from
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specific data [18]. It has been shown that learned dictionaries outperform generic dictionaries

when sufficient signal examples are available. Dictionary learning-based techniques have recently

obtained compelling results in ocean acoustics [31–33, 40] and seismology [41–43]. Dictionary

learning has been used to denoise seismic [39,44] and ocean acoustic [29] recordings, to regularize

full waveform inversion [41, 45], and to regularize ocean SSP inversion [30, 32]. In Chapters 3

and 4 of this dissertation [32, 33], dictionary learning is applied to ocean SSP data.

Machine learning has found many useful applications in geosciences, including seismic

waveform classification [46], event localization [45, 47, 48], earthquake prediction [49], and

earthquake early warning [50]. Part of the success of these methods arises from the existence of

large amounts of training and ground-truth data. However, in geophysical tomography, little-to-no

training or ground-truth exists. This issue has driven development of ML-based methods that do

not depend on large volumes of training data [41,43,45] or use synthetic data for training [51,52].

Methods that do not require explicit training data are based on adaptive, dictionary learning

frameworks [17, 18]. In these adaptive approaches, data observations themselves are used for

training with unsupervised learning. Recent results have been obtained in full waveform inversion

in a geophysical exploration context [41, 45]. In Chapters 5 and 6 of this dissertation, [33, 43]

an adaptive approach to travel time tomography, called locally sparse travel time tomography

(LST) is developed. LST is a machine learning-based travel time tomography method which

requires no training data. Relative to previous travel time tomography methods which enforce

exclusively smooth and discontinuous models, including conventional straight ray [53] and

eikonal tomography [54], the sparse model in LST permits both smooth and discontinuous

geophysical features. In Chapter 7 of this dissertation, the LST method use to perform ambient

noise tomography (ANT) using data from a large seismic array.
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1.2 Objectives

The objectives of this dissertation are listed below:

1. Determine whether CS can be use to recover a true geoacoustic model better than conven-

tional methods. CS, a special case of sparse modeling, asserts that certain underdetermined

problems can be solved in high resolution, provided their solutions are sparse. CS theory

is applied to the ocean SSP estimation in a shallow water environment to evaluate its

applicability to geophysical inversion. Acoustic data is simulated using a modal acoustic

forward model with SSPs from the SWellEx-96 acoustics experiment. The response of the

non-linear forward model is linearized and the SSPs are estimated assuming they are sparse

in a half-sinusoidal dictionary and in EOF representations.

2. Assess the compression and inversion performance of dictionary learning-based ocean SSP

representations relative to conventional, EOF-based representations. A major challenge in

sparse modeling is the design of sparsifying dictionaries for signal representation. Such

dictionaries can be learned from specific signal examples using dictionary learning. Dictio-

naries of ocean SSPs from the High Frequency (HF)-97 experiment [55, 56] and internal

waves studies from the South China Sea (SCS) [57] are obtained with dictionary learning

to see if improved inversion results over EOFs can be obtained. The SSP compression

performance of the learned dictionaries is also compared with EOFs, for environmental

communication.

3. Develop a sparse modeling-based theory for travel time tomography, which learns the

dictionary from the travel time data, and compare its performance with conventional

tomography methods. Dictionary learning-based techniques have achieved state-of-the-art

performance in adaptive image denoising and medical imaging, using corrupted signal

examples themselves as training data (no ground-truth data available). A dictionary learning-

based approach to 2D travel time tomography, formulated for ANT, is developed and
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tested on synthetic tomographic data. The performance of the approach is compared with

conventional (damping and smoothing) and TV-regularized tomography techniques.

4. Apply the sparse modeling-based travel time tomography method to data from a large,

dense seismic array and compare the results with competing approaches. The dictionary

learning-based 2D tomography approach is demonstrated on seismic data obtained from the

very dense Long Beach array in 2011. The high-resolution features obtained are assessed

against those obtained via a competing state-of-the-art seismic tomography method: eikonal

tomography. The geophysical features visible in the LST phase speed map are supported

by prior geological studies and simulation based on the studies.

1.3 Basic concepts

1.3.1 Sparse modeling

Sparse models represent a modern interpretation of parsimony in statistics and model

selection [17, 18, 58–60], and are capable of representing diverse signal features, including

localized features like bumps and edges. There has been an explosion of sparse modeling

literature in the last two decades, first applied in geophysics [23, 24], and popularized in statistics

by the LASSO estimator [61]. This popularity of sparse modeling has also been driven by the

development of CS [19, 20], which showed that under certain conditions the frequency resolution

of recovered signals can exceed the limit established by the Shannon-Nyquist sampling theorem.

The applications of sparse modeling are very broad. Some examples from signal processing

include image denoising [17,62,63], inpainting [64], and medical imaging [25,65]. Recent works

in acoustics and seismology have utilized sparse modeling, e.g. beamforming [26, 27], matched

field processing [28, 66], estimation of ocean acoustic properties [29–34]. In this dissertation

sparse modeling is used to model ocean SSPs, and solid earth geophysical features. Dictionary
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learning [17, 18] is also used in these works, and is discussed in the following section.

In the following, some basic concepts of sparse modeling and their relation to the work

in this dissertation are discussed. A linear measurement model of an arbitrary signal x gives

observations y = [y1, ...,yN ]
T ∈ RN as

y = Ax+ ε (1.2)

where A ∈ RN×M is the measurement matrix relating data y = [y1, ...,yN ]
T to model coefficients

x, and ε ∈ RN is Gaussian noise N (0,σ2
εI). Given signal observations y, the model coefficients x

can be estimated using Eq. 1.1, which corresponds to the maximum likelihood estimator when the

penalty p is least-squares. However, as often the case in geophysics, maximum likelihood will

give erratic results due the ill-posedness of the problem and the often ill-conditioned nature of

A. One classic regularization technique is `2 regularization (which is a special case of Tikhonov

regularization [11]). The `2-regularized estimator of x is

x̂ = argmin
x
‖Ax−y‖2

2 +λ1‖x‖2, (1.3)

where λ1 is a regularization parameter. The `2-norm penalizes large coefficient values in x.

Eq. 1.3 can be understood as a Bayesian maximum a posteriori (MAP) estimator of x. In this

interpretation, the `2-norm is derived from a Gaussian prior distribution with zero mean and

uniform, diagonal covariance. Eq. 1.3 has an analytic solution.

It has been observed however, that many real-world data sets have supergaussian (e.g.

Laplacian) distributions, which have ‘heavy tails’ and large mass near zero [67]. Coefficients

drawn from such distributions are considered sparse, since they tend to be zero value, or if

non-zero, have large values. Sample Gaussian and Laplacian distributions are plotted in Fig. 7.1.

If the true model is sparse, as in the case of compressive beamforming [26, 68], where there are

often only few active directions of arrival, the true DOAs can be better recovered using sparse
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modeling. A basic sparse model is given formally as

y≈ Ax and |x 6= 0| �M, (1.4)

where | · | denotes cardinality. An objective for sparse coefficients x̂ is

x̂ = argmin
x
‖Ax−y‖2

2 +λ2‖x‖0, (1.5)

where λ2 is a regularization parameter, and ‖ · ‖0 is the `0 pseudo-norm, which counts the

number of non-zero coefficients. In this way, the sparse objective Eq. 1.4 explicitly encourages

parsimonious solutions to the likelihood problem. However, Eq. 1.4 is a non-convex, NP-hard

combinatorial problem, which in many cases is prohibitively expensive to solve. Approximate

solution methods, such as the greedy orthogonal matching pursuit (OMP) method [69], can make

solution of Eq. 1.4 reasonable. Given sufficiently sparse signals, OMP provides an adequate

approximation to the true, combinatorial solution.

A sparse objective to Eq. 1.2 can also be written using the `1-norm, which is a convex

relaxation of the `0-norm

x̂ = argmin
x
‖Ax−y‖2

2 +λ3‖x‖1, (1.6)

where λ3 is a regularization parameter. This formulation is also known as the LASSO [61].

The `1-norm, from the Laplacian prior, encourages estimates x̂ which have few non-zero entries

with large magnitude (relative to the `2 which has many small entries) due the probability mass

distribution of the Laplacian. Under certain conditions, Eq. 1.4 is equivalent to Eq. 1.5 [20],

and the `1-norm provides an adequate approximation to the `0-norm regularizer and can solve

(potentially large) problems in polynomial time. Other means of enforcing sparsity include the

popular sparse bayesian learning (SBL) approach, which is also quite fast [59]. SBL uses the

Type-II likelihood to optimize the hyperparameters of a Gaussian prior. It is less sensitive to the
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Figure 1.1: Probability density functions of Gaussian (dashed line) and Laplacian (solid line)
distributions. Densities have zero mean.

sensing matrix or dictionary coherence of A than `1 methods.

Sparse distributions can be obtained by projecting signals onto sets, or dictionaries of

shape functions, such as wavelets [70]. For example, it has been observed that the projection of

small rectangular groups of pixels from images, called patches, of natural scenes onto wavelet

bases have sparse distributions [71,72]. Here the dictionary is defined as D = [d1, ...,dQ]∈RN×Q,

which represents N-dimensional signals, and is comprised of Q vectors, called atoms. Typically,

the atoms are normalized such that ‖dq‖2 = 1. Signals x are approximated as a sparse linear

combination of atoms from D. This is stated formally as

x≈ Dα and |α 6= 0| � Q, (1.7)

where α ∈ RQ are the coefficients. A sparse MAP solution to Eq. 1.2, with Eq. 1.7, is

α̂ = argmin
α

‖ADα−y‖2
2 +λ4‖α‖1, (1.8)
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where λ4 is a regularization parameter. Under certain conditions on the sensing matrix A, the true

signal α (and thereby x) can be well recovered [73]. This concept is the cornerstone of CS, and is

applied in this dissertation to ocean SSP profile estimation from few acoustic measurements [31].

Although the `0-norm is non-convex, for sufficiently sparse signals greedy solution

methods (e.g. OMP) provide good approximations to the true, combinatorial solution. Further,

the `0-norm regularizer provides a means of explicitly defining the sparsity of the desired solution,

which is useful for adaptive signal processing frameworks such as adaptive denoising [17]. Eq. 1.5

can be rewritten as

α̂ = argmin
α

‖ADα−y‖2 subject to ‖α‖0 ≤ T, (1.9)

where T is the number of non-zero coefficients in the sparse solution. This sparse objective

formulation is employed in Chapters 5–7, in an adaptive travel time tomography formulation.

1.3.2 Dictionary learning

Many signals, including natural images [74–76], and seismic profiles [23] are well

approximated using a small (sparse) number of vectors from a dictionary D, provided a dictionary

exists under which their representation is sparse. The atoms in D are considered “elemental

signals”, where only a small number of atoms are necessary to adequately approximate x. The

challenge addressed here is the design of optimal sparsifying dictionaries for given classes of

signals.

Dictionary atoms can be designed ad-hoc using generic functions, e.g. wavelets or the

discrete cosine transform (DCT). Given enough signal examples for training, atoms can can

also be learned directly from data using dictionary learning [17, 77–82]. Sparse reconstruction

performance in a variety of problems is often improved using learned dictionaries, which represent

well specific data, relative to generic dictionaries, which achieve acceptable performance for

many tasks [18]. Applications where dictionary learning has achieved state-of-the-art results
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include image compression, denoising, and inpainting [17, 62, 74, 75], and medical imaging

[25]. Dictionary learning-based techniques have recently obtained compelling results in ocean

acoustics [29–32, 40] and seismology [39, 41, 41–45].

Early dictionary learning techniques were based on neural networks [72] and vector

quantization [76], e.g. [77, 79]. Many popular dictionary learning approaches now exist [17, 18,

83, 84]. Given I data examples X = [x1, ...,xI] ∈ RN×I , the dictionary learning problem can be

written as

{D̂, Â}= argmin
D

{
argmin

αi

‖Dαi−xi‖2 subject to ‖αi‖0 ≤ T ∀ i
}
, (1.10)

where A = [α1, ...,αI] ∈ RQ×I are the coefficients corresponding to the I examples, and D̂ and Â

are the dictionary and coefficient estimates. Eq. 1.10 is bilinear optimization problem, which in

clustering-based dictionary learning is solved using a simple, two-step alternating minimization

procedure:

1. Sparse coding: Given dictionary D, solve for up to T non-zero coefficients in αi corre-

sponding to examples xi for all i

2. Dictionary update: Given coefficients A, solve for D which minimizes reconstruction error

for X, with ‖dq‖2 = 1.

Dictionary atom normalization (‖dq‖2 = 1) is typical, as it removes scaling ambiguity from the

coefficient and atom estimates. The sparse coding stage can be accomplished using any number

of sparse solvers (e.g. OMP). Since D is initially unknown, it must be initialized. Acceptable

initializations include Gaussian noise or generic dictionaries (e.g. DCT).

One clustering-based dictionary learning algorithm is the classic K-SVD algorithm [79].

The K-SVD performs the dictionary update step (2, from above) by solving for atoms based on

the residual error obtained from excluding that atoms from the reconstruction of examples X (for

11



more details, see Chapter 4). The K-SVD algorithm is given in Table 1.1. The K-SVD is used

in Chapters 3 and 4 to compress ocean SSPs. In Chapters 5–7, the iterative thresholding and

K-means dictionary learning algorithm [83] is used to obtain sparse, adaptive representations of

geophysical features.

Table 1.1: The K-SVD Algorithm (Ref. [79])

Given: X ∈ RN×I , D0 ∈ RN×Q, T ∈ N, and k = 0
Repeat until convergence:

1. Sparse coding
for i = 1 : I

solve using any sparse solver
a: α̂i = argmin

αi∈RN
‖xi−Dkαi‖2 subject to ‖αi‖0 ≤ T

end
b: A = [α̂1, ..., α̂I]

2. Dictionary update
for j = 1 : Q

a: compute reconstruction error E j as
E j = X− ∑

p6= j
dk

nα
p
T

b: obtain ER
j , α

j
R corresponding to nonzero α

j
T

c: apply SVD to ER
j

ER
j = USVT

d: update dk
j: dk

j = U(:,1)
e: update α

j
R: α

j
R = V(:,1)S(1,1)

end
f: Dk+1 = Dk

k = k+1

1.3.3 Ambient noise processing and tomography

In ANT, seismic noise generated by ocean-atmospheric interactions [7] or anthropogenic

sources [5, 6], is cross-correlated between seismic sensors over periods of days to months to

obtain travel times between sensors. The calculated travel times are used to estimate phase speed

structure [85,86]. The number travel times in ANT can be very large, and the coverage of a region
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dense, as the number of cross-correlations is N(N−1)/2 (with N the number of sensors). Yet,

the estimation of high-resolution phase speed structure with ANT remains an ill-posed inverse

problem due to many factors, including irregular sensor distributions, phase ambiguities in the

noise cross-correlations (especially for high-frequency surface waves), and non-isotropic noise

distributions [54]. The success of ANT, critical for improving our understanding of Earth’s

structure and characterizing seismic hazard [1, 2], are reliant on signal processing theory to

obtain physically plausible results. In this dissertation (Chapter 7), a the machine learning-based

tomography method called LST (Chapter 6) [43], is demonstrated on data obtained from the

“large-N” Long Beach array, deployed in Long Beach, CA, USA in 2011. It is shown that LST

can improve ANT results over previous methods.

1.4 Scope of the dissertation

Chapter 2 [31] investigates the application of CS theory to geophysical inversion. Ocean

SSPs are sparsely modeled using dictionaries of sound speed perturbations from a reference

sound speed. The perturbations are estimated from an acoustic forward model using CS in a

160m depth shallow water environment. Acoustic data is simulated using the Kraken modal

acoustic forward model [87] with SSPs from the SWellEx-96 acoustics experiment. For use

with CS theory, the response of the non-linear acoustic forward model is linearized. The SSP

dictionaries are comprised of half-sinusoial shape functions and EOFs from the SWellEx-96

acoustics experiment.

Chapters 3 [33] investigates the use of dictionary learning for ocean SSP parameterization.

Dictionaries of ocean SSPs are learned from the HF-97 experiment [55, 56]. The compression

and inversion capabilities of learned dictionaries are compared with EOFs estimated from the

same data.

Chapter 4 [32] extends the investigation of Chapter 2, using dictionary learning for
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ocean SSP parameterization with data from both the from the HF-97 experiment [55, 56] and

internal waves studies from the SCS [57]. The compression and inversion capabilities of learned

dictionaries are compared with EOFs estimated from the same data and the theory is further

developed.

Chapter 5 [42] investigates the formulation of a machine-learning (dictionary learning)

based travel time tomography method, called LST. A hierarchal modeling strategy is developed,

which constrains large-scale or global slowness features with `2 regularization, and smaller-scale

or local slowness features using sparse modeling and dictionary learning. The local features

are rectangular groups of neighboring pixels called patches. The patches are represented using

few (sparse) atoms from the dictionary. Further, the dictionary is trained on patches from the

`2-regularized global slowness map. LST is formulated as a Bayesian MAP estimator, and is

solved iteratively to obtain the final slowness map. The performance of LST is evaluated against

conventional tomography on synthetic slownesses.

Chapter 6 [43] further formalizes the theoretical developement from Chapter 5 of the LST

tomography method. The performance of LST is further compared with TV-regularization and a

greater variety of synthetic slownesses.

Chapter 7 performs ANT with the LST method [43] using seismic data obtained from

the very dense Long Beach array in 2011. The high-resolution geophysical features obtained are

compared with those obtained from a competing state-of-the-art seismic tomography method:

eikonal tomography. The geophysical features visible in the LST phase speed map are supported

by prior geological studies and simulations based on the studies. It is found that the Silverado

aquifer, which is an important source of fresh water in the Long Beach region, is better localized

relative to previous travel time tomography studies.
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Chapter 2

Compressive acoustic sound speed profile

estimation

2.1 Introduction

Inversion of ocean parameters using acoustic propagation models requires simultaneous

optimization of water column sound speed profile (SSP) and sediment properties using limited

observations. Such inverse problems are ill-posed, and require regularization to ensure phys-

ically realistic solution [1]. The water column SSP estimation problem has been regularized

traditionally by minimizing the energy of the solution to a least-squares cost function, which

requires undersampling of complex SSP structure or explaining the structure using few shape

functions [2–4]. This reduction in resolution causes SSP uncertainty, especially when internal

waves or currents generate strong, temporally varying SSP anomalies [5–7]. This uncertainty can

severely effect the accuracy of inversion for other parameters [5, 7].

We show that SSPs in range-independent shallow ocean environments can be resolved

using compressive sensing (CS) [8, 9]. CS asserts that parameters can be recovered robustly for

certain highly underdetermined linear problems via sparse regularization of a least-squares cost
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function, provided that the solutions are sparse, i.e. few non-zero parameters (out of many) explain

the observations. Recent applications of CS in ocean acoustics have demonstrated performance

improvements to coherent passive fathometry [10] and beamforming [11–13] under sparsity

assumptions. Here, the inversion for ocean acoustic SSPs is formulated as an underdetermined

linear problem where SSP perturbations are parameterized in a sparse domain using shape

functions.

Pressure observations from a vertical line array (VLA) of hydrophones in a shallow ocean

are forward-modeled using normal modes. The non-linear response of the forward model to SSP

is linearized using a first order Taylor expansion. The linearized sensitivities of few observations

are calculated for many shape functions, which parameterize SSPs in a sparse domain. Thus,

SSP estimation is expressed as an underdetermined linear problem and solved using convex

optimization of a least squares cost function with an `1 sparsity constraint [8, 9].

2.2 Compressive estimation of water column SSP

A K-point discretized ocean SSP, c(x) ∈ RK , is modeled as

c(x) = c0 +Qx, (2.1)

where c0 ∈ RK is a reference SSP (e.g. derived from historical statistics or CTD casts), Q =

[q1, ...qN ] ∈ RK×N is a dictionary of N unique shape functions qn discretized into K points,

and x ∈ RN is the coefficients. The SSP is modeled by shape functions [1] that describe SSP

perturbations with few non-zero coefficients in x. SSP perturbations that are isolated to specific

depths of the water column are here modeled using half-sinusoidal shape functions. Larger SSP

variation is modeled using EOFs [4, 6, 7].
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The pressure pobs ∈ CM received at an M element VLA is modeled as

pobs = g(x)+n, (2.2)

where g(x) ∈CM is the normal mode propagation given c(x) and n ∈CM is Gaussian white noise.

Here, the source is known and included in the g(x) term.

Assuming the perturbations to the reference SSP are small, the non-linear response of

g(x) to SSP perturbations is linearized using the first order Taylor expansion

g(x)≈ g(0)+
∂g(x)

∂x

∣∣∣∣
x=0

x = g(0)+Dx. (2.3)

The matrix D = [d1, ...dN ] ∈ CM×N contains the derivatives of the M pressure observations

relative to the N shape functions in Q. The columns dn are calculated using two-sided finite

differences, by perturbing the reference profile by a fraction of qn.

Provided the columns of D are sufficiently incoherent, a sparse estimate of x is found

using `1-norm convex optimization [8, 9]. The sparse solution to Eq. (2) is formulated as

x̂`1(µ) = argmin
x∈RN

‖g(0)+Dx
|pobs|

− p̃obs‖2
2 +µ‖x‖1, (2.4)

where (assuming a signal is present) Eq. (2) is scaled by |pobs| as

p̃obs =
pobs

|pobs|
=

g(0)+Dx+n
|pobs|

, (2.5)

x̂`1 is the sparse estimate of the SSP perturbation coefficients, and µ is the regularization parameter

which controls the relative importance of sparsity (`1-norm regularization) and measurement

fit (`2-norm). Eq. (2) is scaled to improve numerical stability, by reducing the difference in

magnitude between the `1-norm of x and the `2 cost function.
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The sparse solution x̂`1 selects the coefficients in x that best explain the observations, but

their values are biased [14]. The coefficients are optimized using least-squares criteria by solving

the overdetermined problem [12, 13]

x̂CS = D+
A [pobs−g(0)], (2.6)

where DA contains only the active columns of D, corresponding to non-zero elements in x̂`1 , and

D+
A is its Moore-Penrose pseudoinverse. Here, x̂CS is the optimal compressive sensing solution to

Eq. (2).

The non-sparse (minimum energy) estimate x̂`2 of x is written as

x̂`2(µ) = argmin
x∈RN

‖g(0)+Dx
|pobs|

− p̃obs‖2
2 +λ‖x‖2

2, (2.7)

where λ controls the relative importance of solution energy (`2-norm regularization) and measure-

ment fit (`2-norm).

2.3 Simulation and results

The acoustic field in a 160 m constant-depth ocean was simulated using the Kraken

normal mode model [15]. The field, generated by an 100 Hz acoustic source at 30 m depth, was

sampled at 2 km range by M = 10 evenly spaced VLA elements spanning 10 to 150 m depth. The

reference SSP was the mean SSP from the SWellEx-96 experiment. The bottom sound speed was

1800 m/s, density 2.0 g/cm3, and attenuation 0.1 dB/λ. A diagram of the environment is shown in

Fig. 1(a).

The sparse problems were solved using the CVX toolbox, which specifies and solves

convex optimization problems [16]. Sparsity of x̂`1 , Eq. (4), was enhanced using reweighted

`1-norm minimization method; for details see Refs. [12] and [17]. For comparison, the minimum
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energy estimate x̂`2 of the parameters, Eq. (7), was solved with λ = 5×10−5.

2.3.1 Compressive estimation of half-sinusoidal SSP perturbations

To simulate SSP anomalies confined to narrow depth ranges, two half-sinusoidal perturba-

tions [Fig. 1(b)] were added to the reference SSP at depths of 63.3 and 126.7 m with magnitudes

of ±2 m/s and 20 m widths. Eq. (3) was formulated with Q containing N = 100 half-sinusoid

shape functions having the same widths as the perturbations.

Fig. 2(a)–(b) shows the sparse solution x̂CS, Eq. (6) after solving (4)–(5), for the

half-sinusoidal perturbations with 30 dB SNR for µ = 5× 10−4. It can be seen that for one

realization of Gaussian white noise, the sparse magnitudes and locations of the perturbations

were estimated accurately. With 10 observations and 100 potential shape functions, this problem

was underdetermined by a factor of 10 and CS still gave an accurate result. The minimum energy

solution x̂`2 , Eq. (7), shown in Fig. 2(c)–(d), did not provide the true parameters. Instead the

solution was non-sparse, having many small perturbations.

2.3.2 Compressive estimation of SSP using EOFs

A set of EOFs was calculated using 26 CTD casts spanning depths ≥160m from the

SWellEx-96 experiment, resulting in a dictionary Q with N = 26 EOFs. The first three EOFs are

shown in Fig. 1(c). Synthetic SSPs and SWellEx-96 profiles were estimated using CS.

The robustness of the CS EOF inversion was tested by finding sparse estimates x̂CS for

1000 synthetic SSPs, having randomly selected active EOF components with coefficients of ±6

m/s. The active EOF components were selected randomly from a half-Gaussian distribution,

with the peak located at the first EOF, to simulate the relative importance of the EOFs. Each of

the synthetic SSPs were compressively inverted without observation noise with µ = 5× 10−5

(corresponding to 3 sparse EOF coefficients for most cases). The SSP estimation error (standard
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Figure 2.1: (Color online) (a) Ocean environment and measurement configuration. (b) Half-
sinusoid shape function. (c) First 3 EOFs derived from the SWellEx-96 data.

deviation, STD) versus depth in Fig. 3(a) shows that SSP error increases toward shallow depths.

This is likely due to downward refraction of the acoustic waves by the warmer surface water,

which makes the inversion insensitive to near-surface variability. For deeper SSP variability, 1

STD of error is within ±0.2 m/s. In Fig. 3(b)–(c) a CS EOF inversion result is shown for one

random trial. Considering a SSP from the SWellEx-96 experiment, Fig. 3(d)–(e) shows CS

inversion of 3 EOF components with µ = 1.5×10−4 .

Fig. 4(a)–(b) shows the CS estimation of the 3 EOF SSP used in Fig. 3 with a 30 dB SNR

for µ = 2×10−4 (µ increases due to noise). With one realization of Gaussian white noise, the

EOF components are estimated. As shown in Fig. 4(c)–(d) the x̂`2 solution was non-sparse and

provided inaccurate estimates of the true (sparse) parameters.

2.4 Conclusion

A method for compressive inversion of ocean acoustic SSPs was developed and demon-

strated. With medium SNR, a priori knowledge of the ocean sound speed statistics, and a

dictionary of shape functions that sparsely represent the SSPs, fine-scale SSP structure is well

estimated using CS. Robust recovery of sparse SSP perturbations was shown using dictionaries

containing either half-sinusoidal shape functions or EOFs.
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[(a) and (c)] Depth and magnitude of perturbations, and [(b) and (d)] the corresponding SSPs.

0

20

40

60

80

100

120

140

160

D
e
p
th

 (
m

)

-1.5 -1 -0.5 0 0.5 1 1.5

Sound Speed (m/s)

(a)

1 STD
2 STD
3 STD

-12

-6

0

6

12

E
O

F
 C

o
e
ff
ic

ie
n
t 
(m

/s
) (b)

True
Estimated

0

50

100

150

D
e
p
th

 (
m

)

(c)

True
Estimated

1 5 10 15 20 25

EOF Order

-12

-6

0

6

12 (d)

Estimated

0

50

100

150

1485 1495 1505 1515 1525

Sound Speed (m/s)

(e)

True
Estimated

Figure 2.3: (Color online) (a) SSP estimation error versus depth of the sparse solution x̂CS

(without noise) for 1000 randomly generated synthetic SSPs with 3 EOF components. For one
randomly generated SSP, x̂CS estimate (b) of the EOF coefficients and (c) the corresponding SSP.
For one SWellEx-96 SSP, x̂CS estimate for (d) EOF coefficients and (e) corresponding SSP.

27



-9

-6

-3

0

3

6

9

E
O

F
 C

o
e

ff
ic

ie
n

t 
(m

/s
) (a)

True
Estimated

0

50

100

150

(b)

True
Estimated

1 5 10 15 20 25

EOF Order

-9

-6

-3

0

3

6

9 (c)

True
Estimated

0

50

100

150

1485 1495 1505 1515 1525

Sound Speed (m/s)

(d)

True
Estimated

Figure 2.4: (Color online) Sparse x̂CS [(a) and (b)] and minimum energy x̂`2 [(c) and (d)]
estimates of 3 SSP EOF coefficients from noisy observations (SNR=30 dB). [(a) and (c)] EOF
coefficients and [(b) and (d)] the corresponding SSPs.

2.5 Acknowledgments

This work was supported by the Office of Naval Research, Grant No. N00014-11-1-0439.

Chapter 2, in full, is a reprint of the material as it appears in the Journal of the Acoustical

Society of America 2016. Bianco, Michael; Gerstoft, Peter, Acoustical Society of America, 2016.

The dissertation author was the primary investigator and author of this paper.

2.6 Bibliography
[1] P. Gerstoft, “Inversion of acoustic data using a combination of genetic algorithms and the

gauss–newton approach,” J. Acoust. Soc. Am., vol. 97, no. 4, pp. 2181–2190, 1995.

[2] M. I. Taroudakis and J. S. Papadakis, “A modal inversion scheme for ocean acoustic
tomography,” J. Comput. Acoust., vol. 1, no. 4, pp. 395–421, 1993.

[3] C. Park, W. Seong, P. Gerstoft, and W. S. Hodgkiss, “Geoacoustic inversion using backprop-
agation,” IEEE Journal of Oceanic Engineering, vol. 35, no. 4, pp. 722–731, 2010.

[4] B. A. Tan, P. Gerstoft, C. Yardim, and W. S. Hodgkiss, “Broadband synthetic aperture
geoacoustic inversion,” J. Acoust. Soc. Am., vol. 134, no. 1, pp. 312–322, 2013.

28



[5] M. Siderius, P. L. Nielsen, J. Sellschopp, M. Snellen, and D. Simons, “Experimental study
of geo-acoustic inversion uncertainty due to ocean sound-speed fluctuations,” J. Acoust. Soc.
Am., vol. 110, no. 2, pp. 769–781, 2001.

[6] Y. T. Lin, C. F. Chen, and J. F. Lynch, “An equivalent transform method for evaluating
the effect of water-column mismatch on geoacoustic inversion,” IEEE Journal of Oceanic
Engineering, vol. 31, no. 2, pp. 284–298, 2006.

[7] C.-F. Huang, P. Gerstoft, and W. S. Hodgkiss, “Effect of ocean sound speed uncertainty on
matched-field geoacoustic inversion,” J. Acoust. Soc. Am., vol. 123, no. 6, pp. EL162–EL168,
2008.

[8] E. Candés, “Compressive sampling,” Proc. Internat. Cong. Math., vol. 3, pp. 1433–1452,
2006.

[9] M. Elad, Sparse and Redundant Representations. Springer, New York, 2010.

[10] C. Yardim, P. Gerstoft, W. S. Hodgkiss, and J. Traer, “Compressive geoacoustic inversion
using ambient noise,” J. Acoust. Soc. Am., vol. 135, no. 3, pp. 1245–1255, 2014.

[11] G. F. Edelmann and C. F. Gaumond, “Beamforming using compressive sensing,” J. Acoust.
Soc. Am., vol. 130, no. 4, pp. EL232–EL237, 2011.

[12] A. Xenaki, P. Gerstoft, and K. Mosegaard, “Compressive beamforming,” J. Acoust. Soc.
Am., vol. 136, no. 1, pp. 260–271, 2014.

[13] P. Gerstoft, A. Xenaki, and C. F. Mecklenbräuker, “Multiple and single snapshot compressive
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Chapter 3

Regularization of geophysical inversion

using dictionary learning

3.1 Introduction

Dictionary learning algorithms may provide optimal regularization bases for geophysical

inversion. Inversion for geophysical phenomena is typically ill-posed and requires significant

regularization to obtain physically plausible solutions and moderate the size of the parameter

search [1]. If many representative measurements are available, the dimension of the model

typically is reduced using principal component analysis (PCA) [2]. PCA, or empirical orthog-

onal function (EOF, in the geosciences) analysis, provides a set of orthogonal shape functions

which describe the features of largest variance in the data [2, 3]. However, this requirement of

orthogonality may limit the regularization effectiveness.

Many signals, including natural images [4, 5], audio [6], and seismic profiles [7] are

well approximated using sparsifying dictionaries. Given a signal, a dictionary is defined here

as a set of `2-normalized vectors which describe the signal using few coefficients. The sparse

processor is then an `2-norm cost function with an `0-norm penalty on the number of non-zero
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coefficients [8]. Signal sparsity is exploited for a number of purposes including signal compression

and denoising [9]. Here, signal sparsity is exploited for inverse problem regularization of dynamic

geophysical phenomena.

Dictionaries of vectors that approximate a given class of signals using few coefficients

can be designed with dictionary learning. A popular dictionary learning approach, the K-SVD

algorithm [9], based on vector quantization (VQ) [6], finds a dictionary of vectors that optimally

partition the data from the training set such that the few dictionary vectors describe each data

example. Relative to EOFs, the learned dictionary vectors are not constrained to be orthogonal and

potentially provide more optimal signal compression because the vectors are on average, nearer

to the signal examples [10]. Dictionary learning has been applied in the geophysics community

to improve denoising results in seismics [11] and ocean acoustics [12, 13].

In this paper, dictionaries describing 1D ocean sound speed profile (SSP) data are gener-

ated using the K-SVD algorithm and the reconstruction performance is evaluated against EOF

methods. In Section 2, the EOF methods and sparse processing are briefly introduced. In Section

3, dictionary learning and the K-SVD algorithm are described. In Section 4, SSP reconstruction

results are given using the two methods. It is shown that each vector in the learned dictionaries

explains more SSP variability than the leading order EOFs trained on the same data. Further, it is

demonstrated that SSPs can be reconstructed up to acceptable error using as few as one non-zero

coefficient. This compression can improve the resolution of ocean SSP estimates with negligible

computational burden. More details of the approach and further experimental results are available

in a forthcoming paper [14].

3.2 EOF and sparse methods

EOF analysis seeks to reduce representation complexity of continuously sampled space-

time fields by finding spatial patterns which explain much of the variance of the process. These
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spatial patterns or EOFs correspond to the principal components, from principal component

analysis (PCA), of the temporally varying field [3]. Here, the field is a collection of ocean SSP

anomaly vectors Y = [y1, ...,yM] ∈ RK×M which are sampled over K discrete points in depth and

M instants in time. They are defined as

ym = cm− c̄ (3.1)

where cm ∈ RK is an observed K-point SSP and c̄ ∈ RK is the mean SSP over M observations.

The singular value decomposition (SVD) [15] finds the EOFs as the eigenvectors of YYT

by

YYT = PΛ2PT, (3.2)

where P= [p1, ...,pL]∈RK×L are L EOFs (eigenvectors, L=min(M,K)) and Λ2 = diag([λ2
1, ...,λ

2
L])∈

RL×L are the total variances of the data along the principal directions defined by the EOFs pl ,

with λ2
1 ≥ ...≥ λ2

L.

Since the leading-order EOFs often explain much of the variance in Y, the representation

of Y can be compressed by retaining only the leading order EOFs P < K for reconstruction of

ym. Each of the SSP anomaly vectors ym are approximated as ym = ∑
P
p=1 µppp, where the EOF

coefficients µp are solved as µp = pT
pym. For ocean SSPs, usually no more than 5 EOF coefficients

have been used to reconstruct ocean SSPs [16, 17].

A signal ym, whose model is sparse in the dictionary Q = [q1, ...,qN ] ∈ RK×N , is recon-

structed to an acceptable error using few vectors qn [8]. The inversion for these sparse coefficients

is phrased as an `2-norm minimization problem with an `0-norm penalization on the number of

non-zero coefficients

x̂m = argmin
xm∈RN

‖ym−Qxm‖2 subject to ‖xm‖0 ≤ T, (3.3)
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where xm ∈ RP is the vector of coefficients for Q, x̂m is the sparse estimate of xm, and T is the

number of non-zero coefficients in the solution (T � K). The sparse reconstruction ŷm ∈ RK of

the signal ym is then ŷm = Qx̂m. The `0-norm constraint is non-convex and imposes combinatorial

search for the exact solution to (4.6). Here, orthogonal matching pursuit (OMP) [18] is used as

the sparse solver.

3.3 Dictionary learning with K-SVD

The K-SVD algorithm [9] is inspired by the iterative K-means for VQ codebook design [6].

The N columns of the dictionary Q, like the entries in VQ codebooks, correspond to partitions

in RK . However, they are constrained to have unit `2-norm and thus separate the magnitude

(coefficients xn) from the shapes (dictionary entries qn) for the sparse processing objective (4.6).

When T = 1, the `2-norm objective in (4.6) is minimized by the dictionary entry qn that has the

greatest inner product with example ym [8]. Thus for T = 1, [q1, ...,qN ] define radial partitions

of RK . This corresponds to a special case of VQ, called gain-shape VQ [6]. For T = 1, the

sequential updates of the K-SVD provide optimal dictionary updates for gain-shape VQ [6, 9].

Optimal updates to the gain-shape dictionary will, like K-means updates, either improve or leave

unchanged the MSE and convergence to a local minimum is guaranteed. For T > 1, convergence

of the K-SVD updates to a local minimum depends on the accuracy of the sparse-solver used in

the sparse coding stage [9].

The dictionary learning objective is

min
Q

{
min

X
‖Y−QX‖2

F subject to ∀m,‖xm‖0 ≤ T
}
, (3.4)

where X = [x1, ...,xM] is the matrix of coefficient vectors corresponding to examples Y =

[y1, ...,yM], and F is the Frobenius norm. The K-means algorithm is generalized to the dic-

tionary learning problem as the two steps: 1) sparse coding and 2) dictionary update.
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In the K-SVD algorithm, each iteration i sequentially improves both the entries qn ∈Qi

and the coefficients in xm ∈ Xi, without change in support. Expressing the coefficients as row

vectors xn
T ∈ RN and x j

T ∈ RN , which relate all examples Y to qn and q j, respectively, the

`2-penalty from (4.7) is rewritten as

‖Y−QX‖2
F =

∥∥∥∥Y−
N

∑
n=1

qnxn
T

∥∥∥∥2

F
= ‖E j−q jx

j
T‖

2
F , (3.5)

where

E j =

(
Y−∑

n6= j
qnxn

T

)
. (3.6)

Thus, in (4.15) the `2-penalty is separated into an error term E j = [e j,1, ...,e j,M] ∈ RK×M, which

is the error for all examples Y if q j is excluded from their reconstruction, and the product of the

excluded entry q j and coefficients x j
T ∈ RN .

An update to the dictionary entry q j and coefficients x j
T which minimizes (4.15) is found

by taking the SVD of E j, which provides the best rank-1 approximation of E j. However, many of

the entries in x j
T are zero (examples which don’t use q j). To update q j and x j

T with SVD, (4.15)

must be restricted to examples ym which use q j

‖ER
j −q jx

j
R‖

2
F , (3.7)

where ER
j and x j

R are entries in E j and x j
T , respectively, corresponding to examples ym which use

q j, and are defined as

ER
j =

{
e j,l
∣∣∀l, x j

l 6= 0
}
, x j

R =
{

x j
l

∣∣ ∀l, x j
l 6= 0

}
. (3.8)

The K-SVD algorithm is given in Table 4.2.

34



Table 3.1: The K-SVD Algorithm [9]

Given: Y ∈ RK×M, Q0 ∈ RK×N , T ∈ N, and i = 0
Repeat until convergence:
1. Sparse coding

for m = 1 : M
a: solve (4.6) for x̂m using OMP
b: X = [x̂1, ..., x̂M]

2. Dictionary update
for j = 1 : N

a: compute reconstruction error E j from (4.16)
b: obtain ER

j , x j
R corresponding to nonzero x j

T
c: apply SVD to ER

j : ER
j = USVT

d: update qi
j = U(:,1), x j

R = V(:,1)S(1,1)
e: Qi+1 = Qi

i = i+1

3.4 Example

We here apply dictionary learning to ocean SSP data from the HF-97 acoustics experiment

[19, 20], conducted off the coast of Point Loma, CA. The reconstruction results are compared

with EOF methods. M = 1000 (15 point) profiles were used for the training set. The SSPs were

interpolated to K = 30 points using a shape-preserving cubic spline. EOFs were calculated from

(4.2) and learned dictionaries were generated with the K-SVD algorithm (Table 4.2). The number

of non-zero coefficients solved with OMP for each dictionary was held fixed at exactly T non-zero

coefficients. The initial dictionary Q0 was populated using randomly selected examples from the

training sets Y.

The HF-97 learned dictionary, with N = K and T = 1, is compared to the EOFs (K = 30)

in Fig. 4.4. Only the leading order EOFs (Fig. 4.4(a)) are informative of ocean SSP variability

whereas all shape functions in the dictionary (Fig. 4.4(b)) are informative (Fig. 4.4(c)–(d)). By

relaxing the requirement of orthogonality for the shape functions, the shape functions are adapted

to the data distribution and thereby achieve greater compression. The Gram matrix G, which
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Figure 3.1: (a) EOFs and (b) learned dictionary entries (N = K and T = 1, sorted by variance
σ2

qn
). Fraction of (c) total SSP variance explained by EOFs and (d) SSP variance explained for

examples using dictionary entries. Coherence of (e) EOFs and (f) dictionary entries.

gives the coherence of matrix columns, is defined for a matrix A with unit `2-norm columns as

G = |ATA|. Fig. 4.4(e) shows the shapes in the EOF dictionary are orthogonal, whereas those of

the learned dictionary (Fig. 4.4(f)) are not.

3.4.1 Reconstruction of SSP training data

Reconstruction performance of the EOFs and learned dictionaries are evaluated on SSPs

within the training set, using a mean error metric. The coefficients for the learned Q and initial

Q0 dictionaries x̂m are solved from the sparse objective (4.6) using OMP. The least squares (LS)

solution for the T leading-order coefficients xL ∈ RT from the EOFs P were solved by

xL = P+
L ym, (3.9)
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where PL is the T leading order EOFs from P, and P+
L is its pseudoinverse. The best combination

of T EOF coefficients was solved from the sparse objective (4.6) using OMP for Q = P. The

mean reconstruction error ME for the training set is

ME =
1

KM
‖Y− Ŷ‖1. (3.10)

The reconstruction error using the EOF dictionary is compared to results from dictionaries

Q with N = 3K, using T non-zero coefficients. In Fig. 4.8(a) results are shown for N = 90
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dictionary entries. Coefficients describing each example ym, were solved 1) from the learned

dictionary Q, 2) from Q0, the dictionary consisting of N randomly chosen examples from the

training set (to illustrate improvements in reconstruction error made in the K-SVD iterations),

3) the leading order EOFs, and 4) the best combination of EOFs. The mean SSP reconstruction

error using the dictionaries trained for each sparsity T is less than EOF reconstruction, for either

leading order coefficients or best coefficient combination, for all values of T shown. The best

combination of EOF coefficients, chosen approximately using OMP, achieves less error than the

LS solution to the leading order EOFs, with added cost of search.

Just one learned dictionary entry achieves the same ME as more than 6 leading order

EOFs, or greater than 4 EOFs chosen by search (Fig. 4.8(a)). To illustrate the representational

power of the learned dictionary entries, both true and reconstructed SSPs are shown in Fig. 4.9.

Nine true SSP examples from the training set are reconstructed using one learned dictionary entry.

It is shown for each case, that nearly all of the SSP variability is captured using a single entry in

Q.

3.4.2 Extra-sample SSP reconstruction

The extra-sample SSP reconstruction performance of learned dictionaries and EOFs is

tested using K-fold cross-validation [15]. The SSP data set Y of M profiles is divided into J

subsets with equal numbers of profiles Y = [Y1, ...,YJ], where the fold Y j ∈ RK×(M/J). For each

of the J folds: 1) Y j is the set extra-sample test cases, and the training set Ytn is

Ytn =
{

Yl
∣∣ ∀l 6= j

}
; (3.11)

2) the dictionary Q j and EOFs are derived using Ytn; and 3) coefficients estimating test samples

Y j are solved for Q j with sparse processor (4.6), and for EOFs by solving for leading order terms

and by solving with sparse processor. The extra-sample error from cross validation MECV for
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each method is then

MECV =
1

KM

J

∑
j=1
‖Y j− Ŷ j‖1. (3.12)

MECV increases over the within-training-set estimates for both the learned and EOF

dictionaries, as shown in Fig. 4.8(b) for J = 10 folds. The mean reconstruction error using learned

dictionaries, as in the within-training-set estimates, is less than the EOF dictionaries. More than 2

EOFs, choosing best combination by search, or more than 3 leading-order EOFs solved with LS,

are required to achieve the extra-sample performance as one learned dictionary entry.

3.4.3 Solution space for SSP inversion

Acoustic inversion for ocean SSP is a non-linear problem. One approach is coefficient

search using genetic algorithms. [2] Discretizing each coefficient into H values, the number of

candidate solutions for T fixed coefficients indices is

Sfixed = HT . (3.13)

If the coefficient indices for the solution can vary, as per dictionary learning with learned dictionary

Q ∈ RK×N , the number of candidate solutions Scomb is

Scomb = HT N!
T !(N−T )!

. (3.14)

Given the results in the last paragraph of Section 3.4.1, and assuming a typical H = 100 point

discretization of the coefficients and an unknown SSP similar to the training set, the SSP may

be constructed up to acceptable resolution using one entry from the learned dictionary with 104

possible solutions. To achieve the similar ME, 6 EOFs are required (1012 possible solutions),

using fixed indices. The best EOF combination requires 4 EOFs (1014 possible solutions).
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3.5 Conclusion

Given sufficient training data, dictionary learning generates optimal dictionaries for sparse

reconstruction of a given signal class. Since these learned dictionaries are not constrained to be

orthogonal, the entries fit the distribution of the data such that signal example is approximated

using few dictionary entries. Relative to EOFs, each dictionary entry is informative to the signal

variability.

The K-SVD dictionary learning algorithm is applied to ocean SSP data from the HF-

97 experiment. The learned dictionaries generated describe ocean SSP variability with high

resolution using fewer entries than EOFs. As few as one entry from a learned dictionary describes

nearly all the variability in each of the observed ocean SSPs. Provided sufficient SSP training

data is available, learned dictionaries can improve SSP inversion resolution. This could provide

improvements to geoacoustic inversion [2, 21], matched field processing [22], and underwater

communications [19].
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Chapter 4

Dictionary learning of sound speed profiles

4.1 Introduction

Inversion for ocean sound speed profiles (SSPs) using acoustic data is a non-linear and

highly underdetermined problem [1]. To ensure physically realistic solutions while moderating

the size of the parameter search, SSP inversion has often been regularized by modeling SSP as

the sum of leading order empirical orthogonal functions (EOFs) [2–7]. However, regularization

using EOFs often yields low resolution estimates of ocean SSPs, which can be highly variable

with fine scale fluctuations. In this paper, it is shown that the resolution of SSP estimates are

improved using dictionary learning [8–13], a form of unsupervised machine learning, to generate

a dictionary of regularizing shape functions from SSP data for parsimonious representation of

SSPs.

Many signals, including natural images [14–16], and seismic profiles [17] are well

approximated using sparse (few) coefficients, provided a dictionary of shape functions exist under

which their representation is sparse. Given a K-dimensional signal, a dictionary is defined as

a set of N, `2-normalized vectors which describe the signal using few coefficients. The sparse

processor is then an `2-norm cost function with an `0-norm penalty on the number of non-zero
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coefficients. Signal sparsity is exploited for a number of purposes including signal compression

and denoising. [9] Applications of compressive sensing, [18] one approximation to the `0-

norm sparse processor, have in ocean acoustics shown improvements in beamforming, [19–22],

geoacoustic inversion, [23] and estimation of ocean SSPs [24].

Dictionaries that approximate a given class of signals using few coefficients can be

designed using dictionary learning [9]. Dictionaries can be generated ad-hoc from common

shape functions such as wavelets or curvelets, however extensive analysis is required to find an

optimal set of prescribed shape functions. Dictionary learning proposes a more direct approach:

given enough signal examples for a given signal class, learn a dictionary of shape functions

that approximate signals within the class using few coefficients. These learned dictionaries

(LDs) have improved compression and denoising results for image and video data over ad-hoc

dictionaries [9,11]. Dictionary learning has been applied in the geophysics community to improve

denoising results in seismics [25] and ocean acoustics [26, 27], as well as to structural acoustic

health monitoring [28].

The K-SVD algorithm [12], a popular dictionary learning method, finds a dictionary of

vectors that optimally partition the data from the training set such that the few dictionary vectors

describe each data example. Relative to EOFs which are derived using principal component anal-

ysis (PCA), [29, 30] these LDs are not constrained to be orthogonal and thus provide potentially

better signal compression because the vectors are on average, nearer to the signal examples (see

Fig. 4.1) [13].

In this paper, LDs describing 1D ocean SSP data from the HF-97 experiment [31, 32]

and from the South China Sea (SCS) [33] are generated using the K-SVD algorithm and the

reconstruction performance is evaluated against EOF methods. In Section II, EOFs, sparse

reconstruction methods, and compression are introduced. In Section III, the K-SVD dictionary

learning algorithm is explained. In Section IV, SSP reconstruction results are given for LDs and

EOFs. It is shown that each shape function within the resulting LDs explain more SSP variability
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than the leading order EOFs trained on the same data. Further, it is demonstrated that SSPs can be

reconstructed up to acceptable error using as few as one non-zero coefficient. This compression

can improve the resolution of ocean SSP estimates with negligible computational burden.

Notation: In the following, vectors are represented by bold lower-case letters and matrices

by bold uppercase letters. The `p-norm of the vector x∈RN is defined as ‖x‖p =
(

∑
N
n=1

∣∣xn
∣∣p)1/p.

Using similar notation, the `0-norm is defined as ‖x‖0 = ∑
N
n=1

∣∣xn
∣∣0 = ∑

N
n=1 1|xn|>0. The `p-norm

of the matrix A ∈ RK×M is defined as ‖A‖p =
(

∑
M
m=1 ∑

K
k=1

∣∣am
k

∣∣p)1/p. The Frobenius norm

(`2-norm) of the matrix A is written as ‖A‖F . The hat symbol ̂ appearing above vectors and

matrices indicates approximations to the true signals or coefficients.

4.2 EOFs and compression

4.2.1 EOFs and PCA

Empirical orthogonal function (EOF) analysis seeks to reduce the dimension of continu-

ously sampled space-time fields by finding spatial patterns which explain much of the variance of

the process. These spatial patterns or EOFs correspond to the principal components, from princi-

pal component analysis (PCA), of the temporally varying field. [29] Here, the field is a collection

of zero-mean ocean SSP anomaly vectors Y = [y1, ...,yM] ∈ RK×M, which are sampled over K

discrete points in depth and M instants in time. The mean value of the M original observations are

subtracted to obtain Y. The variance of the SSP anomaly at each depth sample k, σ2
k , is defined as

σ
2
k =

1
M

M

∑
m=1

(
yk

m
)2 (4.1)

where [yk
1, ...,y

k
M] are the SSP anomaly values at depth sample k for M time samples.

The singular value decomposition (SVD) [34] finds the EOFs as the eigenvectors of YYT
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by

YYT = PΛ2PT, (4.2)

where P = [p1, ...,pL] ∈ RK×L are EOFs (eigenvectors) and Λ2 = diag([λ2
1, ...,λ

2
L]) ∈ RL×L are

the total variances of the data along the principal directions defined by the EOFs pl with

K

∑
k=1

σ
2
k =

1
M

tr
(
Λ

2). (4.3)

The EOFs pl with λ2
1≥ ...≥ λ2

L are spatial features of the SSPs which explain the greatest variance

of Y. If the number of training vectors M ≥ K, L = K and [p1, ...,pL] form a basis in RK .

4.2.2 SSP reconstruction using EOFs

Since the leading-order EOFs often explain much of the variance in Y, the representation

of anomalies ym can be compressed by retaining only the leading order EOFs P < L

ŷm = QPx̂P,m (4.4)

where QP ∈ RK×P is here the dictionary containing the P leading-order EOFs and x̂P,m ∈ RP is

the coefficient vector. Since the entries in QP are orthonormal, the coefficients are solved by

x̂P,m = QT
Pym. (4.5)

For ocean SSPs, usually no more than P = 5 EOF coefficients have been used to reconstruct

ocean SSPs [4, 6].
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4.2.3 Sparse reconstruction

A signal ym, whose model is sparse in the dictionary QN = [q1, ...,qN ] ∈ RK×N (N-entry

sparsifying dictionary for Y), is reconstructed to acceptable error using T � K vectors qn [9].

The problem of estimating few coefficients in xm for reconstruction of ym can be phrased using

the canonical sparse processor

x̂m = argmin
xm∈RN

‖ym−Qxm‖2 subject to ‖xm‖0 ≤ T. (4.6)

The `0-norm penalizes the number of non-zero coefficients in the solution to a typical `2-norm

cost function. The `0-norm constraint is non-convex and imposes combinatorial search for the

exact solution to Eq. (4.6). Since exhaustive search generally requires a prohibitive number of

computations, approximate solution methods such as matching pursuit (MP) and basis pursuit

(BP) are preferred [9]. In this paper, orthogonal matching pursuit (OMP) [35] is used as the sparse

solver. For small T , OMP achieves similar reconstruction accuracy relative to BP methods, but

with much greater speed [9].

It has been shown that non-orthogonal, overcomplete dictionaries QN with N > K (com-

plete, N = K) can be designed to minimize both error and number of non-zero coefficients T , and

thus provide greater compression over orthogonal dictionaries [9,13, 16]. While overcomplete

dictionaries can be designed by concatenating ortho-bases of wavelets or Fourier shape functions,

better compression is often achieved by adapting the dictionary to the data under analysis using

dictionary learning techniques [12, 13]. Since Eq. (4.6) promotes sparse solutions, it provides

criteria for the design of dictionary Q for adequate reconstruction of ym with a minimum number

of non-zero coefficients. Rewriting Eq.(7) with

min
Q

{
min

X
‖Y−QX‖2

F subject to ∀m,‖xm‖0 ≤ T
}
, (4.7)
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Figure 4.1: (Color online) (a) EOF vectors [u1,u2] and (b) overcomplete LD vectors [q1, ...,qN ]
for arbitrary 2D gaussian distribution relative to arbitrary 2D data observation ym.

where X = [x1, ...,xM] is the matrix of coefficient vectors corresponding to examples Y =

[y1, ...,yM], reconstruction error is minimized relative to the dictionary Q as well as relative

to the sparse coefficients.

In this paper, the K-SVD algorithm, a clustering based dictionary learning method, is used

to solve Eq.(4.7). The K-SVD is an adaptation of the K-means algorithm for vector quantization

(VQ) codebook design (a.k.a. the generalized Lloyd algorithm) [16]. The learned dictionary (LD)

vectors qn from this technique partition the feature space of the data rather than RK , increasing

the likelihood that ym is as a linear combination of few vectors qn in the solution to Eq. (4.6) (see

Fig. 4.1). By increasing the number of vectors N ≥ K for overcomplete dictionaries, and thus the

number of partitions in feature space, the sparsity of the solutions can be increased further [13].
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Figure 4.2: (Color online) Partitioning of gaussian random distribution (σ1 = 0.75,σ2 = 0.5)
using (a) 5 codebook vectors (K-means, VQ) and with (b) 5 dictionary vectors from dictionary
learning (K-SVD, T = 1).
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4.2.4 Vector quantization

Vector quantization (VQ) [16] compresses a class of K–dimensional signals Y= [y1, ...,yM]∈

RK×M by optimally mapping ym to a set of code vectors C = [c1, ...,cN ] ∈ RK×N for N < M,

called a codebook. The signals ym are then quantized or replaced by the best code vector choice

from C [16]. The mapping that minimizes mean squared error (MSE) in reconstruction

MSE(Y, Ŷ) =
1
N
‖Y− Ŷ‖2

F , (4.8)

where Ŷ = [ŷ1, ..., ŷM] is the vector quantized Y, is the assignment of each vector ym to the code

vectors cn based on minimum `2–distance (nearest neighbor metric). Thus the `2–distances from

the code vectors cn define a set of partitions (R1, ...,RN) ∈ RK (called Voronoi cells)

Rn =
{

i | ∀l 6=n,‖yi− cn‖2 < ‖yi− cl‖2} , (4.9)

where if yi falls within the cell Rn, ŷi is cn. These cells are shown in Fig. 4.2(a). This is stated

formally by defining a selector function Sn as

Sn(ym) =

{ 1 if ym ∈ Rn

0 otherwise.
(4.10)

The vector quantization step is then

ŷm =
N

∑
n=1

Sn(ym)cn. (4.11)

The operations in Eq. (4.9–4.10) are analogous to solving the sparse minimization problem

x̂m = argmin
xm∈RN

‖ym−Cxm‖2 subject to ‖xm‖0 = 1, (4.12)
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where the non-zero coefficients xn
m = 1. In this problem, selection of the coefficient in xm

corresponds to mapping the observation vector ym to cn, similar to the selector function Sn. The

vector quantized ym is thus written, alternately from Eq. (4.11), as

ŷm = Cx̂m. (4.13)

4.2.5 K-means

Given the MSE metric (Eq. (4.8)), VQ codebook vectors [c1, ...,cN ] which correspond to

the centroids of the data Y within (R1, ...,RN) minimize the reconstruction error. The assignment

of cn as the centroid of y j ∈ Rn is

cn =
1
|Rn| ∑

j∈Rn

y j, (4.14)

where |Rn| is the number of vectors y j ∈ Rn.

The K-means algorithm shown in Table 4.1, iteratively updates C using the centroid

condition Eq. (4.14) and the `2 nearest–neighbor criteria Eq. (4.9) to optimize the code vectors for

VQ. The algorithm requires an initial codebook C0. For example, C0 can be N random vectors

in RK or selected observations from the training set Y. The K-means algorithm is guaranteed

to improve or leave unchanged the MSE distortion after each iteration and converges to a local

minimum [12, 16].

4.3 Dictionary learning

Two popular algorithms for dictionary learning, the method of optimal directions (MOD)

[13] and the K-SVD [12], are inspired by the iterative K-means codebook updates for VQ

(Table 4.1). The N columns of the dictionary Q, like the entries in codebook C, correspond

to partitions in RK . However, they are constrained to have unit `2-norm and thus separate the
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Table 4.1: The K-means algorithm (Ref. [16].)

Given: Training vectors Y = [y1, ...,yM] ∈ RK×M

Initialize: index i = 0, codebook C0 = [c0
1, ...,c

0
N ] ∈ RK×N ,

MSE0 solving Eq. (4.8)–(4.11)
I: Update codebook

1. Partition Y into N regions (R1, ...,RN) by
Rn =

{
i | ∀l 6=n,‖yi− ci

n‖2 < ‖yi− ci
l‖2} (Eq. (4.9))

2. Make code vectors centroids of y j in partitions Rn
ci+1

n = 1
|Ri

n|
∑ j∈Ri

n
y j

II. Check error
1. Calculate MSEi+1 from updated codebook Ci+1

2. If |MSEi+1−MSEi|< η

i = i+1, return to I
else

end

magnitude (coefficients xn) from the shapes (dictionary entries qn) for the sparse processing

objective Eq.(4.6). When T = 1, the `2-norm in Eq. (4.6) is minimized by the dictionary entry

qn that has the greatest inner product with example ym [9]. Thus for T = 1, [q1, ...,qN ] define

radial partitions of RK . These partitions are shown in Fig. 4.2(b) for a hypothetical 2D (K = 2)

random data set. This corresponds to a special case of VQ, called gain-shape VQ [16]. However,

for sparse processing, only the shapes of the signals are quantized. The gains, which are the

coefficients xm, are solved. For T > 1, the sparse solution is analogous to VQ, assigning examples

ym to dictionary entries in Q for up to T non-zero coefficients in xm.

Given these relationships between sparse processing with dictionaries and VQ, the MOD

[13] and K-SVD [12] algorithms attempt to generalize the K-means algorithm to optimization of

dictionaries for sparse processing for T ≥ 1. They are two-step algorithms which reflect the two

update steps in the K-means codebook optimization: (1) partition data Y into regions (R1, ...,RN)

corresponding to cn and (2) update cn to centroid of examples ym ∈ RN . The K-means algorithm

is generalized to the dictionary learning problem Eq.(4.7) as two steps:

1. Sparse coding: Given dictionary Q, solve for up to T non-zero coefficients in xm corre-
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sponding to examples ym for m = [1, ...,M]

2. Dictionary update: Given coefficients X, solve for Q which minimizes reconstruction error

for Y.

The sparse coding step (1), which is the same for both MOD and K-SVD, is accomplished

using any sparse solution method, including matching pursuit and basis pursuit. The algorithms

differ in the dictionary update step.

4.3.1 The K-SVD Algorithm

The K-SVD algorithm is here chosen for its computational efficiency, speed, and con-

vergence to local minima (at least for T = 1). The K-SVD algorithm sequentially optimizes

the dictionary entries qn and coefficients xm for each update step using the SVD, and thus also

avoids the matrix inverse. For T = 1, the sequential updates of the K-SVD provide optimal

dictionary updates for gain-shape VQ [12, 16]. Optimal updates to the gain-shape dictionary will,

like K-means updates, either improve or leave unchanged the MSE and convergence to a local

minimum is guaranteed. For T > 1, convergence of the K-SVD updates to a local minimum

depends on the accuracy of the sparse-solver used in the sparse coding stage [12].

In the K-SVD algorithm, each dictionary update step i sequentially improves both the

entries qn ∈ Qi and the coefficients in xm ∈ Xi, without change in support. Expressing the

coefficients as row vectors xn
T ∈ RN and x j

T ∈ RN , which relate all examples Y to qn and q j,

respectively, the `2-penalty from Eq. (4.7) is rewritten as

‖Y−QX‖2
F =

∥∥∥∥Y−
N

∑
n=1

qnxn
T

∥∥∥∥2

F

= ‖E j−q jx
j
T‖

2
F ,

(4.15)

53



where

E j =

(
Y−∑

n6= j
qnxn

T

)
. (4.16)

Thus, in Eq. (4.15) the `2-penalty is separated into an error term E j = [e j,1, ...,e j,M] ∈ RK×M,

which is the error for all examples Y if q j is excluded from their reconstruction, and the product

of the excluded entry q j and coefficients x j
T ∈ RN .

An update to the dictionary entry q j and coefficients x j
T which minimizes Eq. (4.15) is

found by taking the SVD of E j, which provides the best rank-1 approximation of E j. However,

many of the entries in x j
T are zero (corresponding to examples which don’t use q j). To properly

update q j and x j
T with SVD, Eq. (4.15) must be restricted to examples ym which use q j

‖ER
j −q jx

j
R‖

2
F , (4.17)

where ER
j and x j

R are entries in E j and x j
T , respectively, corresponding to examples ym which use

q j, and are defined as

ER
j =

{
e j,l
∣∣∀l, x j

l 6= 0
}
, x j

R =
{

x j
l

∣∣ ∀l, x j
l 6= 0

}
. (4.18)

Thus for each K-SVD iteration, the dictionary entries and coefficients are sequentially updated

as the SVD of ER
j = USVT. The dictionary entry qi

j is updated with the first column in U and

the coefficient vector x j
R is updated as the product of the first singular value S(1,1) with the first

column of V. The K-SVD algorithm is given in Table 4.2.

The dictionary Q is initialized using N randomly selected, `2-normalized examples from

Y. [9,12] During the iterations, one or more dictionary entries may become unused. If this occurs,

the unused entries are replaced using the most poorly represented examples ym (`2-normlized),

determined by reconstruction error.
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Table 4.2: The K-SVD Algorithm (Ref. [12])

Given: Y ∈ RK×M, Q0 ∈ RK×N , T ∈ N, and i = 0
Repeat until convergence:

1. Sparse coding
for m = 1 : M

solve Eq. (4.6) using any sparse solver
a: x̂m = argmin

xm∈RN
‖ym−Qixm‖2 subject to ‖xm‖0 ≤ T

end
b: X = [x̂1, ..., x̂M]

2. Dictionary update
for j = 1 : N

a: compute reconstruction error E j as
E j = Y− ∑

n6= j
qi

nxn
T

b: obtain ER
j , x j

R corresponding to nonzero x j
T

c: apply SVD to ER
j

ER
j = USVT

d: update qi
j: qi

j = U(:,1)
e: update x j

R: x j
R = V(:,1)S(1,1)

end
f: Qi+1 = Qi

i = i+1

4.4 Experimental results

To demonstrate the usefulness of the dictionary learning approach, we here analyze two

data sets: (1) thermistor data from the HF-97 acoustics experiment [31, 32], conducted off the

coast of Point Loma, CA and (2) CTD data collected across the Luzon Strait near the South China

Sea (SCS) [33]. Training data Y were derived from the data sets by converting raw thermistor

and CTD data to SSPs and subtracting the mean. The HF-97 thermistor data was recorded every

15 s, over a 48 hour period, from 14 to 70 m depth, with 4 m spacing (15 points). The full 11,488

profile data set was down-sampled to M = 1000 profiles for the training set, and SSPs were

interpolated to K = 30 points using a shape-preserving cubic spline. The SCS CTD data was

recorded at about 1 m resolution from 116 to 496 m depth (384 points). From the SCS data set,
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Figure 4.3: (Color online) SSP data from (a) HF-97 experiment and (b) SCS.

M = 755 profiles were used as the training set, and the profiles were uniformly down-sampled

to K = 50 points. The SSP data sets are shown in Fig. 4.3. Both data sets have small and large

spatiotemporal variations.

EOFs were calculated from the SVD (Eq. 4.2) and LDs (learned dictionaries) were

generated with the K-SVD algorithm (Table 4.2), using OMP for the sparse coding stage. The

number of non-zero coefficients solved with OMP for each dictionary was held fixed at exactly T

non-zero coefficients. The initial dictionary Q0 was populated using randomly selected examples

from the training sets Y.
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Figure 4.4: (Color online) HF-97: (a) EOFs and (b) LD entries (N = K and T = 1, sorted
by variance σ2

qn
). Fraction of (c) total SSP variance explained by EOFs and (d) SSP variance

explained for examples using LD entries. Coherence of (e) EOFs and (f) LD entries.
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Figure 4.5: (Color online) HF-97: LD entries (a) N = 60 and T = 1, (a) N = 90 and T = 1, and
(c) N = 90 and T = 5. Dictionary entries are sorted in descending variance σ2
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N = 150 and T = 1. Dictionary entries are sorted in descending variance σ2
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4.4.1 Learning SSP dictionaries from data

Here, LDs and EOFs were generated using the full SSP data from HF-97 (M = 1000) and

SCS (M = 755). The EOFs and LDs from HF-97 are shown in Fig. 4.4–4.5 and from the SCS in

Fig. 4.6. The HF-97 LD, with N = K and T = 1, is compared to the EOFs (K = 30) in Fig. 4.4.

Only the leading order EOFs (Fig. 4.4(a)) are informative of ocean SSP variability whereas all

shape functions in the LD (Fig. 4.4(b)) are informative (Fig. 4.4(c)–(d)). This behavior is also

evident for the SCS data set (Fig. 4.6). The EOFs (K = 50) calculated from the full training set

are shown in Fig. 4.6(a), and the LD entries for N = 50 and T = 1 sparse coefficient are shown in
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Figure 4.10: (Color online) Number of candidate solutions S for SSP inversion versus T , S f ixed
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with H = 100 for dictionary Q ∈ RK×N with N = 100.

Fig. 4.6(b). The overcomplete LDs for the HF-97 data shown in Fig. 4.5 and for the SCS data in

Fig. 4.6(c).

As illustrated in Fig. 4.1, by relaxing the requirement of orthogonality for the shape

functions, the shape functions can be better fit to the data and thereby achieve greater compression.

The Gram matrix G, which gives the coherence of matrix columns, is defined for a matrix A

with unit `2-norm columns as G = |ATA|. The Gram matrix for the EOFs (Fig. 4.4(e)) shows the

shapes in the EOF dictionary are orthogonal (G = I, by definition), whereas those of the LD (Fig.

4.4(f)) are not.

4.4.2 Reconstruction of SSP training data

In this section, EOFs and LDs are trained on the full SSP data sets Y = [y1, ...,yM].

Reconstruction performance of the EOF and LDs are then evaluated on SSPs within the training

set, using a mean error metric.

The coefficients for the learned Q and initial Q0 dictionaries x̂m are solved from the sparse

objective (Eq. (4.6)) using OMP. The LS solution for the T leading-order coefficients xL ∈ RT
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from the EOFs P were solved by Eq. (4.5). The best combination of T EOF coefficients was

solved from the sparse objective (Eq. (4.6)) using OMP. Given the coefficients X = [x1, ...,xm]

describing examples Y = [y1, ...,ym], the reconstructed examples Ŷ = [ŷ1, ..., ŷm] are given by

Ŷ = QX̂. The mean reconstruction error ME for the training set is then

ME =
1

KM
‖Y− Ŷ‖1. (4.19)

We here use the `1-norm to stress the robustness of the LD reconstruction.

To illustrate the optimality of LDs for SSP compression, the K-SVD algorithm was run

using EOFs as the initial dictionary Q0 for T = 1 non-zero coefficient. The convergence of ME

for the K-SVD iterations is shown in Fig. 4.7(a). After 30 K-SVD iterations, the mean error of

the M = 1000 profile training set is decreased by nearly half. The convergence is much faster for

Q0 consisting of randomly selected examples from Y.

For LDs, increasing the number of entries N or increasing the number of sparse coeffi-

cients T will always reduce the reconstruction error (N and T are decided with computational

considerations). The effect of N and T on the mean reconstruction error for the HF-97 data is

shown in Fig. 4.7(b). The errors are calculated for the range N = K to N = 4K and the dictionaries

were optimized to use a fixed number non-zero coefficients (T ).

The reconstruction error using the EOF dictionary is compared to results from LDs Q

with N = 3K, using T non-zero coefficients. In Fig. 4.8[(a) and (c)] results are shown for the

HF-97 (N = 90) and SCS (N = 150) data, respectively. Coefficients describing each example ym,

were solved (1) from the LD Q, (2) from Q0, the dictionary consisting of N randomly chosen

examples from the training set (to illustrate improvements in reconstruction error made in the

K-SVD iterations), (3) the leading order EOFs, and (4) the best combination of EOFs. The mean

SSP reconstruction error using the LDs trained for each sparsity T is less than EOF reconstruction,

for either leading order coefficients or best coefficient combination, for all values of T shown.
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The best combination of EOF coefficients, chosen approximately using OMP, achieves less error

than the LS solution to the leading order EOFs, with added cost of search.

Just one LD entry achieves the same ME as more than 6 leading order EOF coefficients,

or greater than 4 EOF coefficients chosen by search (Fig. 4.8[(a) and (c)]). To illustrate the

representational power of the LD entries, both true and reconstructed SSPs are shown in Fig.

4.9(a) for the HF-97 data and in Fig. 4.9(b) for the SCS data. Nine true SSP examples from each

training set, for HF-97 (SCS) taken at 100 (80) point intervals from m = 100 to 900 (80 to 720),

are reconstructed using one LD coefficient. It is shown for each case, that nearly all of the SSP

variability is captured using a single LD coefficient.

4.4.3 Cross-validation of SSP reconstruction

The out-of-sample SSP reconstruction performance of LDs and EOFs is tested using K-

fold cross-validation [34]. The entire SSP data set Y of M profiles, for each experiment, is divided

into J subsets with equal numbers of profiles Y = [Y1, ...,YJ], where the fold Y j ∈ RK×(M/J).

For each of the J folds: (1) Y j is the set of out of sample test cases, and the training set Ytr is

Ytr =
{

Yl
∣∣ ∀l 6= j

}
; (4.20)

(2) the LD Q j and EOFs are derived using Ytr; and (3) coefficients estimating test samples Y j are

solved for Q j with sparse processor Eq. (4.6), and for EOFs by solving for leading order terms

and by solving with sparse processor. The out of sample error from cross validation MECV for

each method is then

MECV =
1

KM

J

∑
j=1
‖Y j− Ŷ j‖1. (4.21)

The out of sample reconstruction error MECV increases over the within-training-set

estimates for both the learned and EOF dictionaries, as shown in Fig. 4.8[(b) and (d)] for J = 10

folds. The mean reconstruction error using the LDs, as in the within-training-set estimates, is
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less than the EOF dictionaries. For both the HF-97 (SCS) data, more than 2 (2) EOF coefficients,

choosing best combination by search, or more than 3 (equal to 3) leading-order EOF coefficients

solved with LS, are required to achieve the same out of sample performance as one LD entry.

4.4.4 Solution space for SSP inversion

Acoustic inversion for ocean SSP is a non-linear problem. One approach is coefficient

search using genetic algorithms [1]. Discretizing each coefficient into H values, the number of

candidate solutions for T fixed coefficients indices is

Sfixed = HT . (4.22)

If the coefficient indices for the solution can vary, as per dictionary learning with LD Q ∈ RK×N ,

the number of candidate solutions Scomb is

Scomb = HT N!
T !(N−T )!

. (4.23)

Using a typical H = 100 point discretization of the coefficients, the number of possible solutions

for fixed and combinatorial dictionary indices are plotted in Fig. 4.10. Assuming an unknown

SSP similar to the training set, the SSP may be constructed up to acceptable resolution using

one coefficient from the LD (104 possible solutions, see Fig. 4.10). To achieve the similar ME,

7 EOFs coefficients are required (1014 possible solutions, Fig. 4.10) using fixed indices and the

best EOF combination requires 5 EOFs (1017 possible solutions, Fig. 4.10).

4.5 Conclusion

Given sufficient training data, dictionary learning generates optimal dictionaries for sparse

reconstruction of a given signal class. Since these LDs are not constrained to be orthogonal, the
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entries fit the distribution of the data such that signal example is approximated using few LD

entries. Relative to EOFs, each LD entry is informative to the signal variability.

The K-SVD dictionary learning algorithm is applied to ocean SSP data from the HF-

97 and SCS experiments. It is shown that the LDs generated describe ocean SSP variability

with high resolution using fewer coefficients than EOFs. As few as one coefficient from a LD

describes nearly all the variability in each of the observed ocean SSPs. This performance gain

is achieved by the larger number of informative elements in the LDs over EOF dictionaries.

Provided sufficient SSP training data is available, LDs can improve SSP inversion resolution with

negligible computational expense. This could provide improvements to geoacoustic inversion [1],

matched field processing [36, 37], and underwater communication [31].

4.6 Acknowledgments

The authors would like to thank Dr. Robert Pinkel for the use of the South China Sea CTD

data. This work is supported by the Office of Naval Research, Grant No. N00014-11-1-0439.

Chapter 4, in full, is a reprint of the material as it appears in the Journal of the Acoustical

Society of America 2017. Bianco, Michael; Gerstoft, Peter, Acoustical Society of America, 2017.

The dissertation author was the primary investigator and author of this paper.

4.7 Bibliography
[1] P. Gerstoft, “Inversion of seismoacoustic data using genetic algorithms and a posteriori

probability distributions,” J. Acoust. Soc. Am., vol. 95, no. 2, pp. 770–782, 1994.

[2] L. R. LeBlanc and F. H. Middleton, “An underwater acoustic sound velocity data model,” J.
Acoust. Soc. Am., vol. 67, no. 6, pp. 2055–2062, 1980.

[3] M. I. Taroudakis and J. S. Papadakis, “A modal inversion scheme for ocean acoustic
tomography,” J. Comput. Acoust., vol. 1, no. 4, pp. 395–421, 1993.

[4] P. Gerstoft and D. F. Gingras, “Parameter estimation using multifrequency range–dependent
acoustic data in shallow water,” J. Acoust. Soc. Am., vol. 99, no. 5, pp. 2839–2850, 1996.

66



[5] C. Park, W. Seong, P. Gerstoft, and W. S. Hodgkiss, “Geoacoustic inversion using backprop-
agation,” IEEE Journal of Oceanic Engineering, vol. 35, no. 4, pp. 722–731, 2010.

[6] C.-F. Huang, P. Gerstoft, and W. S. Hodgkiss, “Effect of ocean sound speed uncertainty on
matched-field geoacoustic inversion,” J. Acoust. Soc. Am., vol. 123, no. 6, pp. EL162–EL168,
2008.

[7] B. A. Tan, P. Gerstoft, C. Yardim, and W. S. Hodgkiss, “Broadband synthetic aperture
geoacoustic inversion,” J. Acoust. Soc. Am., vol. 134, no. 1, pp. 312–322, 2013.

[8] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation
modeling,” Proc. IEEE, vol. 98, no. 6, pp. 1045–1057, 2010.

[9] M. Elad, Sparse and Redundant Representations. Springer, New York, 2010.

[10] I. Tosic and P. Frossard, “Dictionary learning,” IEEE Signal Process. Mag., vol. 28, no. 2,
pp. 27–38, 2011.

[11] K. Schnass, “On the identifiability of overcomplete dictionaries via the minimisation princi-
ple underlying k-svd,” Appl. and Comp. Harm. Anal., vol. 37, no. 3, pp. 464–491, 2014.

[12] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation,” IEEE Trans. Signal Process., vol. 54, pp. 4311–4322,
2006.

[13] K. Engan, S. O. Aase, and J. H. H. y, “Multi-frame compression: theory and design,” Signal
Processing, vol. 80, pp. 2121–2140, 2000.

[14] A. Hyvärinen, J. Hurri, and P. O. Hoyer, Natural Image Statistics: A Probabilistic Approach
to Early Computational Vision. Springer Sci. Bus. Media, 2009.

[15] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still image coding system:
an overview,” IEEE Trans. Cons. Elec., vol. 46, pp. 1103–1127, 2000.

[16] A. Gersho and R. M. Gray, Vector quantization and signal compression. Kluwer Academic,
Norwell, MA, 1991.

[17] H. L. Taylor, S. C. Banks, and J. F. McCoy, “Deconvolution with the `1–norm,” Geophys.,
vol. 44, no. 1, pp. 39–52, 1979.

[18] E. Candés, “Compressive sampling,” Proc. Internat. Cong. Math., vol. 3, pp. 1433–1452,
2006.

[19] G. F. Edelmann and C. F. Gaumond, “Beamforming using compressive sensing,” J. Acoust.
Soc. Am., vol. 130, no. 4, pp. EL232–EL237, 2011.

[20] A. Xenaki, P. Gerstoft, and K. Mosegaard, “Compressive beamforming,” J. Acoust. Soc.
Am., vol. 136, no. 1, pp. 260–271, 2014.

67



[21] P. Gerstoft, A. Xenaki, and C. F. Mecklenbräuker, “Multiple and single snapshot compressive
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Chapter 5

Adaptive travel time tomography with

local sparsity

5.1 Introduction

Travel time tomography methods attempt to estimate complex Earth structure, which

contains smooth and discontinuous features at multiple spatial scales, using seismic and acoustic

wave travel times between recording stations [1,2]. The inversion of the travel times for a slowness

model (inverse of speed) is ill-posed, with often dense but irregular ray coverage of environments.

Conventional tomography techniques regularize the inversion by restricting the models to be

only smooth or discontinuous, which include 1st and 2nd order Tikhonov regularization [1, 2].

Other regularization methods have been proposed which employ of wavelet functions [3–6], total

variation (TV) [7, 8], or adaptive discretizations of slowness [9].

Recent works in acoustics have utilized sparse modeling and compressive sensing (CS)

[10–12] to improve performance in beamforming [13, 14] and inversion for ocean acoustic

properties [15–18]. Similarly, the more recent wavelet-based methods in seismic tomography,

e.g. [4, 6, 19], assume sparse wavelet coefficients. In sparse modeling and CS, inverse problems
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are regularized by modeling signals as sparse combinations of vectors or atoms from set or

dictionary of atoms, which can be prescribed or learned [11, 12, 20]. This paradigm is ubiquitous

in signal processing for image denoising and inpainting [11, 12], and medical imaging [21, 22],

to name a few examples. Learned dictionaries can improve reconstruction performance over

prescribed dictionaries and recently, inversion methods with dictionary learning have been

developed in the geosciences. Applications include denoising seismic traces [23] and ocean

acoustic recordings [24], full waveform inversion [25], and estimation of ocean sound speed

profiles [15, 16].

In this paper, we develop a sparse and adaptive approach to 2D travel time tomography,

which we refer to as locally-sparse travel time tomography (LST). The LST sparsely models local

behaviors of overlapping groups of pixels from a discrete slowness map, called patches. Large

scale features in the slowness map are constrained using least squares. This approach is similar

to works in image denoising [26] and CS magnetic resonance imaging (MRI) [22]. We develop

a maximum a posteriori (MAP) formulation to the problem and use the iterative thresholding

and signed K-means (ITKM) dictionary learning algorithm to improve the slowness models over

prescribed dictionaries. We demonstrate the performance of LST considering 2D surface wave

tomography with synthetic slowness maps and travel time data. The results are compared with

conventional tomography. More details of the approach and further experimental results are

available in a forthcoming paper [27].

5.2 Overview of LST

Given travel time perturbations t ∈ RM from M ray paths through a discrete slowness

map (see Fig. 6.1(a)), and tomography matrix A ∈ RM×N , LST estimates the sparse slowness ss.

We first estimate the global slowness sg, and then obtain the patch slowness Dxi for patch i of

sg. Here D ∈ Rn×Q is a dictionary of Q atoms, and xi ∈ Rn is the sparse coefficients with n the

71



number of pixels in a patch. Finally slownesses {Dx̂i ∀ i} are averaged with sg to obtain ss.

5.2.1 Global slowness and travel time

We discretize a 2D slowness map as a W1 ×W2 pixel image, shown in Fig. 6.1(a),

where each pixel has constant slowness. The slowness pixels are represented by the vector

s′ = sg + s0 ∈ RN , where s0 is reference slownesses and sg is perturbations from the reference,

with N =W1W2. We assume travel time observations t′ = t+ t0 from M straight ray paths, where

t0 and t are the reference travel time and perturbations. Since s0 and t0 = As0 are known, we

estimate the perturbations

t = Asg + ε, (5.1)

where ε ∈ RM is Gaussian noise N (0,σ2
εI), with mean 0 and covariance σ2

εI, in the travel time

observations. We call (S1) the global model, as it captures the large-scale features that span the

discrete map and generates t. We assume dense ray coverage, and do not explicitly account for

varying ray density (see Sec. 6.3).

5.2.2 Local sparse model

Each patch is a
√

n×
√

n group of pixels from ss, see Fig. 6.1(a). The patches are selected

from ss by the binary matrix Ri ∈ {0,1}n×N . Hence the slownesses in patch i are Riss. Each patch

is indexed by the row w1 and column w2 of its top-left pixel in the 2D image as (w1,i,w2,i). We

consider all overlapping patches, with w1,i and w2,i differing from their neighbor by ±1 (stride of

one). Thus, for a W1×W2 pixel image, the number of patches is I = (W1−
√

n+1)(W2−
√

n+1).

Riss is approximated by sparse combinations atoms from D. The coefficients xi are

estimated using the `0 pseudo-norm (see (S5)), which penalizes the number of non-zero coef-

ficients [12]. We call (S5) the local model, as it captures the smaller scale, localized features

72



Figure 5.1: (a) 2D slowness patches and slowness map parameters, with (b) example patch
distribution. Synthetic slowness s′ for (c) checkerboard map and (d) smooth-discontinuous
map (W1 =W2 = 100 pixels (km)). (e) 2016 straight ray paths (surface wave) from 64 seismic
stations (red X’s).

contained by patches.

The atoms in D are considered “elemental patches”, where only a small number of atoms

from Q� I are necessary to adequately approximate Riss. Atoms can be prescribed functions,

e.g. wavelets or the discrete cosine transform (DCT), or learned from the data (see Sec. 6.3.3).

5.3 Derivation of LST MAP objective

Starting with Bayes’ rule, we derive the LST MAP objective for ss, incorporating both

local sparse prior and global constraints. For the derivation, we assume the dictionary D and

sensing matrix A known. In Sec. 6.3.3, dictionary learning is included in the algorithm.

The posterior density is formulated as

p
(
sg,ss,X

∣∣t)∝p
(
t
∣∣sg,ss,X

)
p
(
sg
∣∣ss,X)p

(
ss
∣∣X)p

(
X), (5.2)

where X = [x1, ...,xI] ∈ RQ×I are the coefficients describing all patches. If sg (ss) is known, so is
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t (sg), whereby

p
(
sg,ss,X

∣∣t) ∝ p
(
t
∣∣sg
)

p
(
sg
∣∣ss)p

(
ss
∣∣X)p

(
X). (5.3)

We assume p
(
t
∣∣sg
)
, p
(
sg
∣∣ss
)
, and p

(
ss
∣∣X) are Gaussian, which results in a simple LST

objective. Hence, for the global model, p
(
t
∣∣sg
)
= N (Asg,Σε) and p

(
sg
∣∣ss
)
= N (ss,Σg) where

Σε ∈ RK×K is the covariance of ε and Σg ∈ RN×N is the covariance of sg.

For the local model, the patch slownesses {Riss ∀ i } are considered independent, giving

the local likelihood p
(
ss
∣∣X)
p
(
ss
∣∣X)= ∏

i
p
(
Riss

∣∣xi
)
= ∏

i
N
(
Dxi,Σp,i

)
(5.4)

where Σp,i ∈ Rn×n is the covariance of the patch slownesses for each patch i. Assuming the

coefficients xi independent and sparse, ln p
(
X
)
= ∑i ln p

(
xi
)
, with ln p

(
xi
)

∝ ‖xi‖0. We further

assume the number of non-zero coefficients T is the same for every patch (for which the `0-norm

penalty is well suited), and errors iid with Σε = σ2
εI, Σg = σ2

gI, and Σp,i = σ2
p,iI, where I is the

identity matrix. Hence the MAP estimate
{

ŝg, ŝs, X̂
}

is from (6.5)

{
ŝg, ŝs, X̂

}
= argmin

sg, ss, X

{
1

σ2
ε

‖t−Asg‖2
2 +

1
σ2

s
‖sg− ss‖2

2

+
1

σ2
p,i

∑
i
‖Dxi−Riss‖2

2

}
subject to ‖xi‖0 = T ∀ i.

(5.5)

5.3.1 Solving for the MAP estimate

We find the MAP estimates
{

ŝg, ŝs, X̂
}

solving (S3) via block-coordinate minimization,

similar to [22, 26]. The global objective is written from (S3)

ŝg = argmin
sg

‖t−Asg‖2
2 +λ1‖sg− ss‖2

2, (5.6)
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where λ1 = (σε/σg)
2 is a regularization parameter.

The local objective from (S3) for each patch is solved with ss = ŝg (decoupling the local

and global objectives), giving

x̂i = argmin
xi

‖Dxi−Rîsg‖2
2 subject to ‖xi‖0 = T. (5.7)

With X̂ = [x̂1, ..., x̂I] from (S5) and ŝg from (S4), we find ŝs from (S3), assuming σ2
p,i = σ2

p

ŝs = argmin
ss

λ2‖̂sg− ss‖2
2 +∑

i
‖Dx̂i−Riss‖2

2, (5.8)

where λ2 = (σp/σg)
2 is a regularization parameter. The estimate ŝs is obtained analytically from

(S7) by

ŝs =

(
λ2I+∑

i
RT

i Ri

)−1(
λ2ŝg +∑

i
RT

i Dx̂i

)
, (5.9)

which averages the pixels from the patch estimates {Dx̂i ∀ i}, with weight given to ŝg by λ2. From

(5.9), the average patch slowness is sp =
(

∑i RT
i Ri
)−1(

∑i RT
i Dx̂i

)
, with b= diag

(
∑i RT

i Ri
)
∈ZN

the number of patches per pixel. Hence, (5.9) is expressed as an operation at pixel n by

ŝs,n =
λ2ŝg,n +bnsp,n

λ2 +bn
. (5.10)

5.3.2 LST algorithm with dictionary learning

The results (S4), (S5), and (5.9) give the LST algorithm for estimating ss, shown in Table

6.1, as a MAP estimate with local sparse priors using a prescribed dictionary D. Dictionary

learning via the ITKM [20] is added to the LST in the solution to the local objective (S5). The
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Table 5.1: Sparse travel time tomography (LST) algorithm with fixed or adaptive dictionaries

Given: t ∈ RM, A ∈ RM×N , s0
s = 0 ∈ RN , D0 = Haar,

DCT (or) noise N
(
0,1
)
∈ Rn×Q, λ1, λ2, T , and j = 1

Repeat until convergence:
1. Global estimate: solve (S4) using LSQR [28],

ŝ j
g = argmin

s j
g

‖As j
g− t‖2

2 +λ1‖s j
g− s j−1

s ‖2
2.

2. Local estimate
a: Setting s j

s = ŝ j
g, center patches {Rîs

j
g ∀ i } and

i. (Dictionary learning) Find D j using ITKM [20].
i. (Prescribed dictionary) Set D j = D0.
ii. Solve (S5) using OMP,

x̂ j
i = argmin

x j
i

‖D jx j
i −Rîs

j
g‖2

2 subject to ‖x j
i ‖0 = T .

b: Obtain ŝ j
s by (S8) as

ŝ j
s,n =

λ2ŝ j
g,n+bns j

p,n
λ2+bn

j = j+1

global objective (S4) is solved using the sparse least squares program LSQR [28]. The local

objective (S5) is solved using OMP after the slowness patches {Rîsg ∀ i } are centered [11].

The complexity of each LST iteration is determined primarily by LSQR computation in

the global estimate, O(2MN), and by ITKM O(knQI) and OMP O(T nQI) in the local estimate,

where k is the ITKM iterations (see Table 6.1). For large slowness maps, we expect the LST

complexity to be dominated by LSQR. In our simulations we obtain reasonable run times (see

Sec. 5.4.1).

5.3.3 Conventional tomography

We illustrate conventional tomography with a Bayesian approach [29], which enforces

smoothness regularization with a global (non-diagonal) covariance. Considering the measure-
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ments (S1), the MAP estimate of the slowness is

ŝg =
(
ATA+ηΣ−1

L
)−1ATt, (5.11)

where η = (σε/σc)
2 is a regularization parameter, σc is the conventional slowness variance, and

smoothness ΣL(i, j) = exp
(
−Di, j/L

)
. Here, Di, j is the distance between cells i and j, and L is

the length scale [29, 30].

5.4 Simulation

We demonstrate the performance of LST (Sec. 6.3, Table 6.1) relative to a conventional

tomography (Sec. 6.4.1). Experiments are conducted using simulated travel times from two

synthetic 2D slowness maps (Fig. 6.1(c,d)) with dimensions W1 =W2 = 100 pixels (km). The

checkerboard pattern (Fig. 6.1(c)) contains only discontinuous slowness whereas the smooth-

discontinuous map (Fig. 6.1(d)) contains a fault-like discontinuity in a smooth map. The slowness

estimates from LST are plotted as ŝ′s = ŝs + s0 ∈ RN , and for conventional ŝ′g = ŝg + s0 ∈ RN .

The slownesses are sampled by M = 2016 straight-rays between 64 seismic stations (see

Fig. 6.1(e)). The travel time vector t is found by integrating along these ray paths. We consider

only straight ray propagation, to focus on our proposed inversion approach. The reference

slowness is calculated from the mean travel time using the the tomography matrix A. The LST

inversion valid-region is obtained with a dilation operation with a patch template along the

outermost ray paths. The conventional valid region is the outermost pixels along the ray paths.

The conventional valid region is used for error calculations for both methods.

We consider the noise-free case (σε = 0). The results of the LST and conventional

tomography are shown in Figs. 6.5 and 6.6. RMSE (s/km) of the estimates ŝ′s and ŝ′s relative

to the true slowness s′ is printed on the 2D estimates. We invert using LST with and without

dictionary learning. We consider two prescribed dictionaries D, overcomplete Haar wavelet and

77



(a)

0.047

1

20

40

60

80

100

R
a
n
g
e
 (

k
m

)

0.3 0.4 0.5

Slowness (s/km)

0.35 0.425 0.5

(b)

True

Estimated

(c)

0.056

0.35 0.425 0.5

(d)

(e)

0.050

1 20 40 60 80 100

Range (km)

0.35 0.425 0.5

Slowness (s/km)

(f) (g)

0.021

(h)

Figure 5.2: LST and conventional tomography for checkerboard map (Fig. 6.1(c)). 2D and 1D
(from black line in 2D) slowness estimates against true slowness for: (a,b) conventional ŝ′g; LST
ŝ′s with (c,d) Haar dictionary and (e,f) with DCT dictionary D; and (g,h) with dictionary learning.
RMSE (s/km) is printed on each 2D image.

DCT dictionaries (both Q = 169, n = 64, since Haar wavelet dimensions power of 2).

5.4.1 Inversion parameters and results

The regularization parameter values for LST and conventional tomography were selected

to minimize RMSE (s/km). For LST, the best parameters were: for both prescribed dictionary and

dictionary learning, λ1 = 0 km2 (in (S4)) and λ2 = 0 (in (S7)); for prescribed dictionaries T = 2

non-zero coefficients in (S5); for dictionary learning, T = 1, n = 100, and for the checkerboard

(smooth-discontinuous) Q = 166 (Q = 268 atoms). Since for the noise free case σε = 0, we

expect λ1 = (σε/σg)
2 = 0 km2 to be best. We assume the slowness patches are well approximated

by the sparse model (S5), and expect σp� σg. Hence, we expect the best value of λ2 = (σp/σg)
2

in (S7) to be small. For conventional tomography (Sec. 6.4.1), the best parameters were L = 10

km and η = 0.1 km2 (in (5.11)) for the both the checkerboard and smooth-discontinuous maps,

which deviates from the expected value of η = (σε/σc)
2 = 0.

While the discontinuous shapes in the Haar dictionary are similar to the discontinuous

content of the checkerboard image, the local features in the higher order Haar wavelets overfit

the ray sampling where sampling is poor (near the edges of the inversion, Fig. 6.5(c,d)). The
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Figure 5.3: LST and conventional tomography for smooth-discontinuous map (Fig. 6.1(d)).
2D and 1D (horizontal and vertical, from black lines in 2D) slowness estimates against true
slowness for: (a–c) conventional ŝ′g; LST ŝ′s with (d–f) Haar dictionary and (g–i) with DCT
dictionary D; and (j–l) with dictionary learning. RMSE (s/km) is printed on each 2D image.

performance of the Haar wavelets is better for the smooth-discontinuous slowness map (Fig.

6.6(d–f)) than for the checkerboard. As shown in Fig. 6.6(d–f), the Haar wavelets add false high

frequency structure to the slowness reconstruction but the trends in the smooth-discontinuous

features are well preserved. The inversion performance of the DCT transform (Fig. 6.5(e,f)

and Fig. 6.6(g,j)) is better than the Haar wavelets for both cases, but matches less closely the

discontinuous slowness features, as the DCT atoms are smooth. The smoothness of the DCT

atoms better preserve the smooth slowness structure.

The LST with dictionary learning (Fig. 6.5(g,h) and Fig. 6.6(j–l)) achieves the best RMSE

relative to the true slowness s′. As in the other cases, the performance degrades near the edges of

the ray sampling, where the ray coverage is poor, but high resolution is maintained across a large

part of the sampling region. The RMSE of the Haar wavelet inversion for the checkerboard is

greater than for the conventional method, although resolution is lost in the conventional MAP
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inversion near the more densely sampled region of the wave speed maps. The RMSE for the

DCT is less than the that of the Haar wavelets and also the conventional MAP inversion. A better

qualitative fit to the true slowness is also observed.

The LST algorithm (Table 6.1) used 100 iterations for all cases and the ITKM used 50

iterations. In Matlab, the inversion with dictionary learning took ∼ 5 min on a Macbook Pro 2.5

GHz Intel Core i7.

5.5 Conclusions

We derived a travel time tomography method which incorporates a sparse prior on patches

of the slowness image, which we refer to as the LST algorithm. The LST uses prescribed or

learned dictionaries, though the learned dictionaries improve performance. The local sparse prior

and dictionary learning provide an improved slowness model, which is capable of modeling

simultaneously smooth discontinuous features.

We considered 2D surface wave tomography, and for densely sampled slowness maps

obtained superior results from the LST over conventional tomography. The LST is relevant

to other tomography scenarios where slowness structure is irregularly sampled, in for instance

ocean [16] and terrestrial [31] acoustics.
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Chapter 6

Travel time tomography with adaptive

dictionaries

6.1 Introduction

Travel time tomography methods estimate Earth slowness structure, which contains

smooth and discontinuous features at multiple spatial scales, from travel times of seismic waves

between recording stations. The estimation of slowness (inverse of speed) models from travel

times is often formulated as a discrete linear inverse problem, where the perturbations in travel

time relative to a reference are used to infer the unknown structure [1, 2]. Such problems are ill-

posed, with irregular ray coverage of environments, and require regularization to obtain physically

plausible solutions.

We propose a 2D travel time tomography method which regularizes the inversion by

assuming small groups of slowness pixels from a discrete slowness map, called patches, are well

approximated by sparse linear combinations of atoms from a dictionary. In this sparse model [3,4],

the atoms represent elemental slowness patches and can be generic dictionaries, e.g. wavelets, or

adapted to specific data by dictionary learning [5, 6]. This patch regularization, called the local
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model, is integrated into the overall slowness map, called the global model. Whereas the local

model considers small-scale variations using a sparsity constraint, the global model considers

larger-scale features which are constrained using `2 regularization.

This local-global modeling strategy with dictionary learning has been successful in

image denoising [3, 7, 8] and inpainting [9], where natural image content is recovered from

noisy or incomplete data. We use this strategy to recover true slowness fields from travel

time tomography by simultaneously modeling smooth and discontinuous slowness features.

This gives an improvement over conventional methods with global damping and smoothness

regularization [2,10] and pixel level regularization, e.g. total variation (TV) regularization [11,12],

which regularize tomography by encouraging smooth or discontinuous slownesses. Relative to

existing tomography methods based on wavelets [13, 14] and sparse dictionaries [15–18], our

formulation of the tomography problem permits the adaptation of the sparse dictionaries to travel

time data and ray sampling by dictionary learning, for which many methods exist [3, 5, 6, 8, 19].

Sparse reconstruction performance is often improved using adaptive dictionaries, which represent

well specific data, relative to generic dictionaries, which achieve acceptable performance for

many tasks [4].

Sparse modeling assumes signals can be reconstructed to acceptable accuracy using a

small (sparse) number of vectors, called atoms, from a potentially large set or dictionary of

atoms. The parsimony of sparse representations [4] often provides better regularization than,

for example, traditional `2 model damping [2]. Early sparse approaches were developed in

seismic deconvolution [20,21]. This philosophy has since become ubiquitous in signal processing

for image and video denoising [3, 7, 8] and inpainting [9], and medical imaging [22, 23], to

name a few examples. Recent works in acoustics and seismics have utilized sparse modeling,

e.g. beamforming [24, 25], matched field processing [26, 27], estimation of ocean acoustic

properties [28–33]. Dictionary learning has been used to denoise seismic [34, 35] and ocean

acoustic [28] recordings, to regularize full waveform inversion [36, 37], and to regularize ocean
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sound speed profile inversion [29, 30].

Inspired by image denoising [7], we develop a sparse and adaptive 2D travel time to-

mography method, which we refer to as locally-sparse travel time tomography (LST). Whereas

in [7], the image pixel values are directly observed, in LST the pixel values are inferred from

measurements [23]. This necessitates an extra term to fit slowness pixels to travel time obser-

vations. We develop a maximum a posteriori (MAP) formulation for LST and use the iterative

thresholding and signed K-means (ITKM) [6] dictionary learning algorithm to design adaptive

dictionaries. This improves slowness models over generic dictionaries. We demonstrate the

performance of LST for 2D surface wave tomography with synthetic slowness maps and travel

time data. The LST results compare favorably with two competing methods: a smoothing and

damping approach [38] referred to as conventional tomography, and TV regularization [11].

6.2 LST model formulation

In developing the LST method, we consider the case of 2D travel time tomography, where

slowness of the medium varies only in two dimensions. In seismic tomography, surface wave

tomography is one case where this assumption is valid [39]. The sensing configuration for such a

scenario is shown in Fig. 6.1. We discretize a 2D slowness map as a W1×W2 pixel image, where

the pixels have constant slowness. An array of sensors in the 2D map measure waves propagating

across the array. From these observations, wave travel times between the sensors, t′ ∈ RM, are

obtained. We assume t′ given and disregard refraction of the waves, yielding a ‘straight-ray’

formulation of the problem. The tomography problem is to estimate the slowness pixels (see

Fig. 6.1) from t′.

In the following, we develop separately two slowness models, deemed the global and

local models, which will be related in Section 6.3, and discuss dictionaries for sparse modeling.

The global model considers the larger scale or global features and relates travel times to slowness.
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Figure 6.1: 2D slowness image corresponds to slowness map divided into pixels (dashed boxes).
The square image patch i contains n pixels. W1 and W2 are the vertical and horizontal dimensions
of the image in pixels. Sensors are red x’s and the ray paths between the sensors are blue lines.

The local model considers smaller scale, localized features with sparse modeling.

6.2.1 Global model and travel times

In the global model, slowness pixels (see Fig. 6.1) are represented by the vector s′ = sg +

s0 ∈RN , where s0 is reference slownesses and sg is perturbations from the reference, here referred

to as the global slowness, with N = W1W2. Similarly, the travel times of the M rays are given

as t′ = t+ t0, where t is the travel time perturbation and t0 is the reference travel time. The

tomography matrix A ∈RM×N gives the discrete path lengths of M straight-rays through N pixels

(see Fig. 6.1). Thus t and sg are related by the linear measurement model

t = Asg + ε, (6.1)

where ε ∈ RM is Gaussian noise N (0,σ2
εI), with mean 0 and covariance σ2

εI. We estimate the

perturbations, with s0 and t0 = As0 known. We call (S1) the global model, as it captures the

large-scale features that span the slowness map and generates t.
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6.2.2 Local model and sparsity

In the local model, slowness pixels (see Fig. 6.1) are represented by the vector s′ = ss +

s0 ∈RN , where the sparse slowness ss is perturbations from the reference s0. The slowness ss is an

auxiliary latent variable that is introduced to capture local slowness behavior, and is instrumental

in the estimation procedure proposed in Sec. 6.3. In Sec. 6.3.1, ss is precisely related to sg in a

Bayesian hierarchy.

Formulating the local model, we assume that patches, or
√

n×
√

n groups of pixels from

ss (see Fig. 6.1) are well approximated by a sparse linear combination of atoms from a dictionary

D ∈ Rn×Q of Q atoms. The patches are selected from ss by the binary matrix Ri ∈ {0,1}n×N .

Hence the slownesses in patch i are Riss. The sparse model is

Riss ≈ Dxi and |xi 6= 0|= T ∀ i (6.2)

where | · | is cardinality, xi ∈ Rn is the sparse coefficients, and T � n is the number of non-zero

coefficients. Dxi is referred to as the patch slowness. We call (S2) the local model, as it models

smaller scale, localized features contained by patches.

Each slowness patch Riss is indexed by the row w1 and column w2 of its top-left pixel

in the 2D image as (w1,i,w2,i). We consider all overlapping patches, with w1,i and w2,i differing

from their neighbor by ±1 (stride of one). Further, the patches wrap-around the edges of the

image [23, 40]. Thus, for a N =W1×W2 pixel image, there are N patches, and the number of

patches per pixel is n. Wrapping the patches helps capture local features at the edges of the

slowness map, if there is sufficient ray sampling (see Sec. 6.5). Without patch wrapping, pixels

are modeled by as few as one patch, increasing to n patches at
√

n pixels from the map edge.

The atoms in D are considered “elemental patches”, where only a small number of atoms

are necessary to adequately approximate Riss. Atoms can be generic functions, e.g. wavelets or

the discrete cosine transform (DCT), or learned from the data (see Sec. 6.3.3). An example of DCT
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atoms are shown in Fig. 6.2. Adaptive dictionaries, which are designed from specific instances

of data using dictionary learning algorithms, often achieve greater reconstruction accuracy over

generic dictionaries. Examples of dictionaries learned from synthetic travel time data (from

slowness maps in Fig. 6.3) are shown in Fig. 6.4. Relative to generic dictionaries, learned

dictionaries can represent the smooth and discontinuous seismic features encountered in real

inversion scenarios.

6.3 LST MAP objective and evaluation

We now derive a Bayesian MAP objective for the LST variables and an algorithm for its

evaluation, with the ultimate goal of estimating the sparse slowness ss (from (S2)). Assuming the

travel times t, tomography matrix A, and dictionary D known, the solution to the objective gives

MAP estimates of the global slowness sg (from (S1)), ss, and the coefficients X = [x1, ...,xI] ∈

RQ×I describing all patches I (from (S2)). Since we use a non-Bayesian dictionary learning

algorithm (ITKM [6]), dictionary learning is added after the MAP derivation in Sec. 6.3.3.

6.3.1 Derivation of MAP objective

Starting Bayes’ rule, we combine the global (S1) and local (S2) models, and formulate

the posterior density of the LST variables as

p
(
sg,ss,X

∣∣t) ∝ p
(
t
∣∣sg,ss,X

)
p
(
sg,ss,X

)
. (6.3)

88



From (S2), ss is conditioned only on X. We further assume the patch coefficients X independent.

Hence, using the chain rule we obtain from (6.3)

p
(
sg,ss,X

∣∣t) ∝ p
(
t
∣∣sg,ss,X

)
p
(
sg
∣∣ss,X

)
p
(
ss,X

)
∝ p
(
t
∣∣sg,ss,X

)
p
(
sg
∣∣ss,X

)
p
(
ss
∣∣X)p

(
X
)
,

(6.4)

From (S1), t is conditioned only on sg, and we assume sg is conditioned only on ss. Hence, we

obtain from (6.4)

p
(
sg,ss,X

∣∣t) ∝ p
(
t
∣∣sg
)

p
(
sg
∣∣ss)p

(
ss
∣∣X)p

(
X
)
. (6.5)

We approximate p
(
t
∣∣sg
)
, p
(
sg
∣∣ss
)
, p
(
ss
∣∣X) as Gaussian, and all patch slownesses from

(S2) independent, giving

p
(
t
∣∣sg
)
= N (Asg,Σε),

p
(
sg
∣∣ss
)
= N (ss,Σg),

p
(
ss
∣∣X)= ∏

i
p
(
Riss

∣∣xi
)
= ∏

i
N
(
Dxi,Σp,i

)
,

(6.6)

where Σε ∈ RK×K is the covariance of the travel time error, Σg ∈ RN×N is the covariance of sg,

and Σp,i ∈Rn×n is the covariance of the patch slownesses. Taking the logarithm of the conditional

probabilities from (6.6), we obtain

ln p
(
t
∣∣sg
)

∝−1
2
(t−Asg)

TΣ−1
ε (t−Asg),

ln p
(
sg
∣∣ss
)

∝−1
2
(sg− ss)

TΣ−1
g (sg− ss),

ln p
(
ss
∣∣X) ∝−1

2 ∑
i
(Dxi−Riss)

TΣ−1
p,i (Dxi−Riss).

(6.7)

Since neighboring patches may share slowness features, xi may be correlated. For
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Figure 6.2: Discrete cosine transform (DCT) dictionary atoms. The Q = 49 atoms (ordered in a
7×7 grid) each contain n = 8×8 = 64 pixels. Atom values stretched to full grayscale range for
display.

simplicity, the coefficients xi describing the patches are assumed independent,

ln p
(
X
)
= ∑

i
ln p
(
xi
)
. (6.8)

From (6.5), and (6.7), and (6.8) we obtain

ln p
(
sg,ss,X

∣∣t) ∝ ln
{

p
(
t
∣∣sg
)

p
(
sg
∣∣ss)p

(
ss
∣∣X)p

(
X
)}

∝−(t−Asg)
TΣ−1

ε (t−Asg)− (sg− ss)
TΣ−1

g (sg− ss)

−∑
i

{
(Dxi−Riss)

TΣ−1
p,i (Dxi−Riss)+2ln p

(
xi
)}

.

(6.9)

Assuming the coefficients xi sparse, we approximate ln p
(
xi
)

with the `0 pseudo-norm ‖xi‖0,

which counts the number of non-zero coefficients [3]. We further assume the number of non-zero
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Figure 6.3: Synthetic slowness maps and ray sampling. Slowness s′ for (a) checkerboard map
and (b) smooth-discontinuous map (sinusoidal variations with discontinuity). Both maps are
W1 =W2 = 100 pixels (1 km/pixel). (c) 64 stations (red X’s), giving in 2016 straight ray (surface
wave) paths through synthetic images. (d) Density of ray sampling, in log10 rays per pixel.

coefficients T is the same for every patch. This gives the MAP objective as

max
{

ln p
(
sg,ss,X

∣∣t)}= min
{
− ln p

(
sg,ss,X

∣∣t)}
∝ min

{
(t−Asg)

TΣ−1
ε (t−Asg)+(sg− ss)

TΣ−1
g (sg− ss)

+∑
i
(Dxi−Riss)

TΣ−1
p,i (Dxi−Riss)

}
subject to ‖xi‖0 = T ∀ i.

(6.10)

Further simplifying, we assume the errors are Gaussian iid. Thus, Σε = σ2
εI, Σg = σ2

gI,

and Σp,i = σ2
p,iI, where I is the identity matrix. The LST MAP objective is thus

{
ŝg, ŝs, X̂

}
= argmin

sg,ss,X

{
1

σ2
ε

‖t−Asg‖2
2

+
1

σ2
g
‖sg− ss‖2

2 +∑
i

1
σ2

p,i
‖Dxi−Riss‖2

2

}
subject to ‖xi‖0 = T ∀ i,

(6.11)

where
{

ŝg, ŝs, X̂
}

are the estimates of the LST variables.
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6.3.2 Solving for the MAP estimate

We find the MAP estimates
{

ŝg, ŝs, X̂
}

solving (S3) via an alternating minimization

algorithm [7, 23]. This strategy divides the solution of (S3) into three subproblems: 1) the global

problem, corresponding to the global model (S1), which estimates ŝg; 2) the local problem,

corresponding to the local model (S2) which estimates X̂; and 3) an averaging procedure which

estimates ŝs. The global problem is least squares with `2 regularization. The global result is

substituted into the sparse model (S2) to obtain local structure by solving for the patches, and

averaging their estimates. Global `2 regularization has been used with TV regularization in

seismic tomography [11], which was an extension of [41]. This modified TV approach is adapted

to travel time tomography as a competing method in Section 6.4.2. LST combines a global `2-

norm constraint with local regularization of patches, following [3]. A major distinction between

LST and image denoising [7] is that the 2D image is inferred from travel time measurements, and

not directly observed, similar to [23].

The global problem is written from (S3) as

ŝg =argmin
sg

1
σ2

ε

‖t−Asg‖2
2 +

1
σ2

g
‖sg− ss‖2

2

=argmin
sg

‖t−Asg‖2
2 +λ1‖sg− ss‖2

2,

(6.12)

where λ1 = (σε/σg)
2 is a regularization parameter.

The local problem is written from (S3), with each patch solved from the global estimate

ss = ŝg from (S4) (decoupling the local and global problems), giving

x̂i = argmin
xi

‖Dxi−Rîsg‖2
2 subject to ‖xi‖0 = T. (6.13)

With the coefficients estimate X̂ = [x̂1, ..., x̂I] from (S5) and global slowness ŝg from (S4) we
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solve for ss from (S3), assuming constant patch variance σ2
p,i = σ2

p,

ŝs =argmin
ss

1
σ2

g
‖̂sg− ss‖2

2 +
1

σ2
p
∑

i
‖Dx̂i−Riss‖2

2

=argmin
ss

λ2‖̂sg− ss‖2
2 +∑

i
‖Dx̂i−Riss‖2

2,

(6.14)

where λ2 = (σp/σg)
2 is a regularization parameter. The solution to (S7) is analytic, with ŝs the

stationary point. Differentiating (S7) gives

d
dss

{
λ2‖̂sg− ss‖2

2 +∑
i
‖Dx̂i−Riss‖2

2

}
=λ2

(
ss− ŝg

)
+∑

i
RT

i
(
Riss−Dx̂i

)
=
(
λ2I+nI

)
ss−λ2ŝg− sp,

(6.15)

where nI = ∑i RT
i Ri and sp =

1
n ∑i RT

i Dx̂i. Thus,

ŝs =
λ2ŝg +nsp

λ2 +n
, (6.16)

which gives ss as the weighted average of the patch slownesses {Dx̂i ∀ i} and ŝg. When λ2� n,

ss ≈ sp. When λ2 = n, sg and sp have equal weight. In image denoising λ2 = 0 is typical [4].

6.3.3 LST algorithm with dictionary learning

The expressions (S4), (S5), and (S8) are solved iteratively, giving the LST algorithm, in

Table 6.1, as a MAP estimate of a slowness image with local sparsity constraints and a known

dictionary D. Further implementation details are given in Sec. 6.3.4. Dictionary learning is added
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to the algorithm in the solution to the local problem (S5), by optimizing D:

D̂ = argmin
D

{
min

xi
‖Dxi−Rîsg‖2

2

subject to ‖xi‖0 = T ∀ i
}
.

(6.17)

The dictionary learning problem (S6) is here solved using the ITKM algorithm, Table 6.2 (for

details, see App. 6.8.1).

The ITKM solves this bilinear optimization problem (S6) by alternately solving for the

sparse coefficients x̂i with D fixed, using thresholding [3], and solving for D̂ with x̂i fixed using

a ‘signed’ K-means objective. In the ITKM iterations, the columns of D, dq, are constrained to

have unit norm, to prevent scaling ambiguity. For fixed sparsity T , the ITKM is computationally

more efficient and has better guarantees of dictionary recovery than the K-SVD [6] [5].

To illustrate the content of learned dictionaries, the atoms learned during LST are shown

for the checkerboard (Fig. 6.4(a)) and smooth-discontinuous map (Fig. 6.4(b)). The atoms from

checkerboard (Fig. 6.4(a)) contain sharp edges, which correspond to shifted sharp edges from

the checkerboard pattern. The atoms from smooth-discontinuous map (Fig. 6.4(b)) contain both

smooth and discontinuous features. The smooth atoms correspond to the sinusoidal variations,

whereas the atoms with sharp edges correspond to shifted features the fault region. These

features give the shift-invariance property to the sparse, representation, which will be discussed

in Sec. 6.3.5. Since learned dictionaries are adapted to specific data, they better model specific

data with a minimal number of atoms than prescribed dictionaries, such as Haar wavelets or

DCT. Methods using dictionary learning have obtained superior performance over prescribed

dictionaries in e.g. image denoising and inpainting [4].
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Table 6.1: LST algorithm

Given: t ∈ RK , A ∈ RM×N , s0
s = 0 ∈ RN , D0 = Haar wavelet,

DCT (or) noise N
(
0,1
)
∈ Rn×Q, λ1, λ2, T , and j = 1

Repeat until convergence:
1. Global estimate: solve (6.18) using LSQR [42],

ŝ j
δ
= argmin

sδ

‖t−A(s j
δ
+ s j−1

s )‖2
2 +λ1‖sδ‖2

2,

ŝ j
g = ŝ j

δ
+ s j−1

s .
2. Local estimate
a: Setting s j

s = ŝ j
g, center patches {Rîs

j
g ∀ i } and

i. (Dictionary learning) Solve (S6) for D j using ITKM [6] (Table 6.2),
D̂ j = argmin

D j

{
min

xi
‖D jxi−Rîsg‖2

2 subject to ‖xi‖0 = T ∀ i
}

i. (generic dictionary) Set D j = D0.
ii. Solve (S5) using OMP,

x̂ j
i = argmin

x j
i

‖D jx j
i −Rîs

j
g‖2

2 subject to ‖x j
i ‖0 = T ∀ i.

b: Obtain ŝ j
s by (S8) ŝ j

s =
λ2ŝ j

g +ns j
p

λ2 +n
j = j+1

6.3.4 Implementation and complexity

In the following, we give the implementation details and complexity of the LST algorithm

(see Table 6.1). Since A is sparse, the global estimate (S4) is solved using the sparse least squares

program LSQR [42]. For LSQR, (S4) is rewritten as

ŝδ = argmin
sδ

‖t−A(sδ + ss)‖2
2 +λ1‖sδ‖2

2, (6.18)

with the substitution sδ = sg− ss, giving ŝg = ŝδ + ss. The sparse coefficients xi in the local

estimates (S5), (S6) are obtained using the orthogonal matching pursuit (OMP) algorithm [43].

For LST with dictionary learning, first the dictionary is obtained from ITKM, then (S5) is

solved with the same sparsity level T as ITKM. Before solving (S5), (S6), the slowness patches

{Rîsg ∀ i } are centered [4] – i.e. the mean of the pixels in each patch is subtracted. The mean of
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Figure 6.4: Dictionary atoms learned during LST with ITKM, with n = 100 and Q = 150 for
(a) checkerboard map (Fig. 6.3(a)) with T = 1 and (b) smooth-discontinuous map (Fig. 6.3(b))
with T = 2. Atoms adjusted to full grayscale range for display.

patch i is xi =
1
n1TRîsg. Hence, Rîsg ≈ Dxi +1xi.

The complexity of each LST iteration is determined primarily by LSQR computation in

the global problem, O(2MN), and in the local problem by ITKM O(knQN) and OMP O(T nQN),

where k is the number of ITKM iterations (see Table 6.2). For large slowness maps, we expect the

LST complexity to be dominated by LSQR. In our simulations we obtain reasonable run times

(see Sec. 6.5.2). In the special case when T = 1, the solution to (S5) is not combinatorial, and the

dictionary learning problem is equivalent to gain-shape vector quantization [5, 44].
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Table 6.2: ITKM algorithm

Given: j, ŝ j
g, D0 = D j−1 ∈ Rn×Q, T , and h = 1

Repeat until convergence:
1. Find dictionary indices per (6.27)

K(Dh−1,yi) = max
|K|=T

‖Dh−1
K

Tyi‖1,

with yi = Rîs
j
g−1x j

i .
2. Update dictionary per (6.32) using coefficient indices K

dh = λl ∑i:l∈K(Dh−1,yi)
sign

(
dh−1

l
Tyi
)
yi

with λl such that ‖dh
l ‖2 = 1.

h = h+1
Ouput: D j = Dh

6.3.5 Advantages

Improved inversion performance over conventional and TV regularized tomography is

obtained under the hypothesis that seismic image patches can be represented as sparse linear

combinations of a small set of elemental patches, or patterns. Such patterns are the atoms in the

dictionary D. This hypothesis follows numerous works in image processing and neuroscience,

e.g. [3, 8, 19, 45], which have shown that patches of diverse image content are well approximated

with a sparse linear combinations of atoms. This property has been exploited for signal denoising

and inpainting [3, 8] and classification [9, 46].

Further, sparse dictionaries trained on overlapping patches possess the shift-invariance

property, whereby features such as edges are recovered regardless of where they are located in

an image [3]. LST enables finer resolution as permitted by the atoms in the dictionary and can

exploit shift invariance. Slowness features in Fig. 6.3(a–b) are shifted such that only small cells

of constant slowness may be used with conventional tomography (which necessitates damping,

Sec. 6.4.1) to illustrate this effect.
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6.4 Competing methods

6.4.1 Conventional tomography

We illustrate conventional tomography with a Bayesian approach [38], which regularizes

the inversion with a global smoothing (non-diagonal) covariance. Considering the measurements

(S1), the MAP estimate of the slowness is

ŝg =
(
ATA+ηΣ−1

L
)−1ATt, (6.19)

where η = (σε/σc)
2 is a regularization parameter, σc is the conventional slowness variance, and

ΣL(i, j) = exp
(
−Di, j/L

)
. (6.20)

Here Di, j is the distance between cells i and j, and L is the smoothness length scale [10, 38].

6.4.2 Total variation regularization

We implement the modified TV regularization method [11, 41]. TV regularization pe-

nalizes the gradient between pixels, enforcing piecewise constant models [47], hence we might

expect TV regularization to preserve well discontinuous or constant features. The TV method is

adapted to the travel time tomography problem, giving the objective

{
ŝg, ŝTV

}
= argmin

sg,sTV

{
1

σ2
ε

‖t−Asg‖2
2

+
1

σ2
g
‖sg− sTV‖2

2 +µ‖sTV‖TV

}
,

(6.21)

where ‖sTV‖TV is the TV regularizer, which penalizes the gradient, and sTV ∈ RN is the TV

estimate of the slowness. Similar to LST, TV (6.21) is solved by decoupling the problem into two
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Figure 6.5: Conventional, TV, and LST tomography results without travel time error for
checkerboard map (Fig. 6.3(a)): 2D and 1D (from black line in 2D) slowness estimates plotted
against true slowness s′. (a,b) conventional, (c,d) TV regularization, ŝ′TV, and LST with (e,f)
Haar wavelet and (g,h) DCT dictionary with Q = 169, T = 5, n = 64; and (g,h) with dictionary
learning. RMSE (ms/km, (6.24)), is printed on 2D slownesses.
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subproblems: 1) damped least squares and 2) TV. The least squares problem is

ŝg =argmin
sg

1
σ2

ε

‖t−Asg‖2
2 +

1
σ2

g
‖sg− sTV‖2

2

=argmin
sg

‖t−Asg‖2
2 +λ1‖sg− sTV‖2

2,

(6.22)

where λ1 is related to global LST problem (see (S4)) and sTV is initialized to the reference

slowness. The TV problem is

ŝTV =argmin
sTV

1
σ2

g
‖sg− sTV‖2

2 +µ‖sTV‖TV

=argmin
sTV

‖sg− sTV‖2
2 +λTV‖sTV‖TV,

(6.23)

with λTV = σ2
gµ. (6.21) is solved by alternately solving (6.22) and (6.23), like LST, as an

alternating minimization algorithm. In this paper (6.22) is solved using LSQR [42] and (6.23)

is solved using the TV algorithm of Chambolle [47, 48]. We set the gradient step size α = 0.25,

which is optimal for convergence and stability of the algorithm [47]. The stopping tolerance is set

to 1e-2.

6.5 Simulations

We demonstrate the performance of LST (Sec. 6.3, Table 6.1), using both dictionary

learning and prescribed dictionaries, relative to conventional (Sec. 6.4.1) and TV (Sec. 6.4.2)

tomography on synthetic slowness maps (e.g. Fig. 6.3(a,b)). The recovered slownesses from

the methods are plotted in Figs. 6.5–6.11, with their performance summarized in Table 6.3. The

convergence of LST and its sensitivity to the sparsity level T are shown in Fig. 6.12. For LST

without dictionary learning, the dictionary D is either the overcomplete Haar wavelet dictionary

or the DCT (see Fig. 6.2). LST with prescribed dictionaries performs similarly to previous works
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which use wavelet transforms with a sparsity constraint on the coefficients [15–18]. Though LST

with prescribed dictionaries is not competing with these methods, as only two resolutions are

considered (global and local). Relative to conventional and TV regularization, good performance

can be obtained without dictionary learning and slowness is better recovered when dictionary

learning is used.

Experiments are conducted using simulated seismic data from two synthetic 2D seismic

slowness maps (Fig. 6.3(a,b)) with dimensions W1 =W2 = 100 pixels (km), as well as variations

of these maps. The boxcar checkerboard in Fig. 6.3(a) demonstrates the recovery of discontinuous

seismic slownesses. While the checkerboard slowness is quite unrealistic, it is commonly used as a

benchmark for seismic tomography methods. The smooth-discontinuous map Fig. 6.3(b), is more

realistic and illustrates fault-like discontinuities in an otherwise smoothly varying (sinusoidal)

slowness map, as used in [15]. These examples illustrate the modeling flexibility of the LST

algorithm. We also generate a variety of synthetic slowness maps, by altering the size of

the checkerboard squares and the width and horizontal location of the discontinuity, in the

checkerboard and smooth-discontinuous slowness maps, respectively. For more details, see

Sec. 6.5.1. The travel times from the synthetic slowness maps are generated by the global model

(S1). The slowness estimates from LST are ŝ′s = ŝs + s0 ∈ RN (from (S8)), for conventional

ŝ′g = ŝg + s0 ∈ RN (from (6.19)), and for TV ŝ′TV = ŝTV + s0 ∈ RN (from (6.23)).

The slowness map pixels are 1 km square and sampled by M = 2016 straight-rays between

64 sensors, shown in Fig. 6.3(c). The travel times t are calculated by numerically integrating

along these ray paths. The 2D valid-region for slowness map estimates using conventional and

TV tomography is bounded by the outermost pixels along the ray paths (see Fig. 6.3(c)). The

valid-region for LST is obtained by a dilation operation [49] on the conventional/TV valid-region,

effectively padding it by 5 pixels. The conventional/TV tomography valid region is used for error

calculations for all methods.

To avoid overfitting during dictionary learning (Table 6.2), we exclude patches from
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Figure 6.7: Conventional, TV, and LST tomography results for different values of regularization
parameters for (a–c) checkerboard (Fig. 6.3(a)) and (d–f) smooth-discontinuous (Fig. 6.3(b))
maps, without travel time error. (a,d) Conventional ŝ′g, effect of L and η. (b,e) TV regularization
ŝ′TV, effect of λ1 and λTV. (c,f) LST ŝ′s, effect of λ1 and λ2. RMSE (ms/km, (6.24)), is printed
on 2D slownesses.

training if more than 10 % of the pixels are not sampled by ray paths. This heuristic works

well and we have not investigated dictionary learning from incomplete information. The RMSE

(ms/km) of the estimates is given by

RMSE =

√√√√ 1
NP

N

∑
n

P

∑
p

(
s′np− s′est.,np

)2
, (6.24)

where s′est.,np is ŝ′s, ŝ′g, or ŝ′TV for the n-th pixel location, and the p-th trial. For σε = 0, P = 1. The

RMSE is printed on the 1D/2D slowness estimates in Figs. 5–12.
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6.5.1 Without travel time error

We first simulate travel times without errors (σε = 0) to obtain best-case results for

the tomography methods. See Figs. 6.5 and 6.6 for results from LST, conventional, and TV

tomography.

Inversion parameters for σε = 0

The LST tuning parameters are λ1, λ2, n, Q, and T . The sensitivity of the LST solutions

with dictionary learning to λ1 and λ2 are shown in Fig. 6.7(c,f) for nominal values of n = 100,

Q = 150, T = 1 for the checkerboard and T = 2 for the smooth-discontinuous (see Fig. 6.12(b)).

With the prior σε = 0 s, we expect the best value of λ1 = 0 km2 (from (S4)). From (S4), (S7) σ2
g

is proportional to the variance of the true slowness. For the checkerboard (smooth-discontinuous)

is σg = 0.10 (0.05) s/km. We assume the slowness patches are well approximated by the sparse

model (S5), and expect σ2
p � σ2

g. Hence we expect the best value of λ2 (from (S7)) to be

small. It is shown for both the checkerboard (Fig. 6.7(c)) and smooth-discontinuous maps

(Fig. 6.7(f)) that the best RMSE for the LST with dictionary learning is obtained when λ1 = 0

km2 and λ2 = 0, though the LST exhibits low sensitivity to these values and recovers well the

true slowness for a large range of values. We show the effect of varying the sparsity level T on

LST RMSE performance, relative to the true slowness per (6.24), for the nominal LST parameters

in Fig. 6.12(b). The values used for T were chosen based on the minimum error for these curves,

though LST performance exceeds conventional and TV performance for a wide range of T .

For the LST with the Haar wavelet and DCT dictionaries (both Q = 169, n = 64, since

Haar wavelet dimensions power of 2), the best performance by minimum RMSE was achieved

with λ1 = 0 km2, λ2 = 0, and T = 5 for the checkerboard and T = 2 for smooth-discontinuous

maps.

For conventional tomography, there are several methods for estimating the best values of

the regularization parameters L and η, but the methods not always reliable [2, 50]. To find the
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best parameters, we systematically varied the values of L and η (see Fig. 6.7(a,d)). The minimum

RMSE for conventional tomography was obtained by L = 10 km and η = 0.1 km2 for both the

checkerboard and smooth-discontinuous maps.

Similarly, for TV tomography, the best values of the tuning parameters, λ1 and λTV, were

obtained by systematically varying their values (see Fig. 6.7(b,e)). The minimum RMSE for

TV tomography was obtained by λ1 = 1 km2 and λTV = .01 s for both the checkerboard and

smooth-discontinuous maps.

Results for σε = 0

While the discontinuous shapes in the Haar dictionary are similar to the discontinuous

content of the checkerboard image, the local features in the higher order Haar wavelets overfit

the rays where the ray sampling density is poor (see Fig. 6.3(d)). The performance of the

Haar wavelets is better for the smooth-discontinuous slowness map (Fig. 6.6(g–i)) than for

the checkerboard (Fig. 6.5(e,f)). As shown in Fig. 6.6(g–i), the Haar wavelets add false high

frequency structure to the slowness reconstruction but the trends in the smooth-discontinuous

features are well preserved. The inversion performance of the DCT transform (Fig. 6.5(g,h)

and Fig. 6.6(j–l)) is better than the Haar wavelets for both cases, but matches less closely the

discontinuous slowness features, as the DCT atoms are smooth. The smoothness of the DCT

atoms better preserve the smooth slowness structure.

The LST with dictionary learning (Fig. 6.5(i,j) and Fig. 6.6(m–o)) achieves the best

overall fit to the true slowness, recovering nearly exactly the true slownesses. As in the other

cases, the performance degrades near the edges of the ray sampling, where the ray density is

low, but high resolution is maintained across a large part of the sampling region. The RMSE of

the LST with the Haar wavelet dictionary for the checkerboard (Table 6.3) is greater than for

conventional tomography, although a better qualitative fit to the true slowness is observed with the

LST. Both in the case of the checkerboard and smooth-discontinuous maps, the TV obtained the

105



Figure 6.8: Conventional, TV, and LST tomography results for checkerboard map (Fig. 6.3(a))
with 100 realizations of Gaussian travel time error (STD 2% mean travel time): 1D slice of
inversion for one noise realization against true slowness, 1D slice of mean from over all noise
realizations with STD of estimate against true slowness s′, and 2D RMSE of estimates over
noise realizations. (a–c) conventional tomography ŝ′g, (d–f) TV regularization ŝ′TV, (g–i) LST
ŝ′s with dictionary learning with λ1 = 2 km2, and (j–l) λ1 = 7 km2. RMSE (ms/km, (6.24)), is
printed on 1D errors.
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highest RMSE, though in regions of the map where the ray sampling was dense, the discontinuous

and constant features were well recovered (Fig. 6.5(c,d) and Fig. 6.6(d–f)), as expected for TV

regularization.

The true variances σε, σg, and σp in the LST regularization parameters λ1 and λ2 provide

best LST performance (see Fig. 6.7(c,f)), whereas the true variances for conventional tomography,

σε and σc, do not correspond to the best solutions (see Fig. 6.7(a,d)). The noise-free prior,

η = 0 km2, gives erratic inversions, and the conventional tomography is better regularized by

η = 0.1 km2. The noise-free prior also gives erratic results from TV (see Fig. 6.7(b,e)).

A variety of checkerboard and smooth-discontinuous slowness maps with different ge-

ometries were generated to more fully test the tomography methods. The results of these tests

are summarized in Table 6.3 (and cases with travel time error are shown in Fig. 6.11). Different

checkerboard maps were generated by varying the size horizontal and vertical of the checkerboard

boxes from 5 to 20 pixels (256 permutations), and different smooth-discontinuous maps were

generated by varying the location of the left edge (from 32 to 62 pixels) and width (from 4 to

10 pixels) of the discontinuity (217 permutations). From each of these sets, 100 slowness maps

were randomly chosen for simulation. Inversions without travel time errors were performed using

conventional, TV, and LST (with dictionary learning) tomography using the nominal parameters

from the aforementioned test cases, corresponding to the slowness maps in Fig. 6.3(a,b). LST

obtains lower RMSE than TV or conventional for all simulations for both varied checkerboard

and smooth-discontinuous maps.

6.5.2 With travel time error

We also test the performance of the tomography methods with travel time errors. We

simulate Gaussian travel time errors with σε = 0.02t̄, or the uncertainty is 2% of the mean travel

time, which is similar to the model implemented in [14]. For each true slowness map and method,

we run the inversions for 100 realizations of noise N
(
0,σε

)
(also the random initialization of D
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Figure 6.9: Conventional, TV, and LST tomography results for smooth-discontinuous map (Fig.
6.3(b)) with 100 realizations of Gaussian travel time error (STD 2% mean travel time). Same
format as Fig. 8, except vertical 1D slice of inversion is included, and only one LST case (i–l) ŝ′s
with dictionary learning. RMSE (ms/km, (6.24)), is printed on 1D errors.
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also changes 100 times for LST) and summarize the statistics of the results. The noise simulation

results for conventional, TV, and LST tomography are in Figs. 6.8 and 6.9. The RMSE for both

approaches, calculated by (6.24) with P = 100, are in Table 6.3.

Inversion parameters for σε = 0.02t̄

The sensitivity of the LST solutions with dictionary learning to λ1 and λ2 are shown in

Fig. 6.10(c,f) for nominal values of n = 100, Q = 150 and T = 2 (per Fig. 6.12(b)) for both the

checkerboard and smooth-discontinuous maps. With the prior σε = 0.02t̄, we expect for the

checkerboard map (σε = 0.27 s, σg = 0.10 s/km) the best value of λ1 ≈ 7.5 km2, and for the

the smooth-discontinuous (σε = 0.28 s, σg = 0.05 s/km) the best value of λ1 ≈ 28.3 km2 (from

(S4)). We use λ1 = 2 km2 for the checkerboard (Fig. 6.8(g–i)) and λ1 = 10 km2 for the smooth-

discontinuous map (Fig. 6.9(i–l)), and achieve lower RMSE than λ1 = 1 km2 (see Fig. 6.10(c,f)).

Although we expect the true values σg to decrease over the LST iterations, prior values of σg

proportional to the variance of the true slowness work well. It is further shown in Fig. 6.10 that,

as in the the noise-free case (Sec. 6.5.1), the LST recovers well the true slowness for a large range

of values.

For the LST with Haar wavelet and DCT dictionaries, the best performance by minimum

RMSE was achieved with λ1 = 5 km2, λ2 = 0, and T = 5 for the checkerboard and T = 2 for

smooth-discontinuous maps. For conventional tomography, the best values by minimum RMSE

were L = 6 km and η = 10 km2 for the checkerboard and L = 12 km and η = 10 km2 for the

smooth-discontinuous slowness maps Fig. 6.10(a,d). For TV tomography, the best values by

minimum RMSE were λ1 = 5 km2 and λTV = 0.02 s for both the checkerboard and smooth-

discontinuous slowness maps Fig. 6.10(b,e).

Considering again the influence of the choice of λ1 and λ2 on the LST with dictionary

learning in Fig. 6.10(c,f), since n = 100 the case λ2 = 100 gives equal weight to the global ŝg,n

and patch slowness nsp in (S8). The LST obtains results similar to the best conventional estimates
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Figure 6.10: Conventional, TV, and LST tomography results for different values of regular-
ization parameters for (a–c) checkerboard (Fig. 6.3(a)) and (d–f) smooth-discontinuous (Fig.
6.3(b)) maps, for 100 realizations of Gaussian travel time error (STD 2% mean travel time). (a,d)
Conventional mean ŝ′g, effect of L and η. (b,e) TV regularization mean ŝ′TV, effect of λ1 and λTV.
(c,f) LST mean ŝ′s, effect of λ1 and λ2. RMSE (ms/km, (6.24)), is printed on 2D slownesses.

(see Fig. 6.10) for the checkerboard with λ1 = 1 and λ2 = 100 and for the smooth-discontinuous

map with λ1 = 10 and λ2 = 500, though these parameter choices are suboptimal. Although

in this case, the sparsity regularization of the patches has an effect similar to the conventional

damping and smoothing regularization from (6.19), there is no direct relationship between the

regularization in (6.19) and the sparsity and dictionary learning in (S5).

Results for σε = 0.02t̄

The LST with dictionary learning (Fig. 6.8(g–i) and Fig. 6.9(i–l)) achieves the best overall

fit to the true slowness, relative to conventional tomography (Fig. 6.8(a–c) and Fig. 6.9(a–d))

and TV tomography (Fig. 6.8(d–f) and Fig. 6.9(e–h)) as evidenced by qualitative fit and RMSE

(Table 6.3). In the case of the checkerboard, a higher value λ1 = 7 km2 is tested and shown in
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Fig. 6.8(j–l). Because of the increased damping, the standard deviation (STD) of the estimate

(Fig. 6.8(k)) is less than the case λ1 = 2 km2 (Fig. 6.8(h)), and fit to true profile is improved.

We also simulate inversion for a variety of checkerboard and smooth-discontinuous

slowness maps with different geometries (per Sec. 6.5.1), with travel time error. The results of

these tests are summarized in Table 6.3 and Fig. 6.11. Inversions with 10 realizations of Gaussian

travel time error (σε = 0.02t̄) were performed using conventional, TV, and LST (with dictionary

learning) tomography using the nominal parameters for the slowness maps in Fig. 6.3(a,b).

Fig. 6.11(a,b) and Fig. 6.11(c,d) show the results for the varied checkerboard and smooth-

discontinuous maps. LST obtains lower RMSE than TV or conventional for all simulations for

both varied checkerboard and smooth-discontinuous maps, as shown in Fig. 6.11(a,c), a better

subjective fit to the true slowness is also observed (Fig. 6.11(b,d)).

Convergence and run time

The algorithms were coded in Matlab. The LST algorithm (Table 6.1) used 100 iterations

for all cases and the ITKM (Table 6.2) used 50 iterations. The TV algorithm (Sec. 6.4.2) also

used 100 iterations for all cases. The inversions in Fig. 6.5 and Fig. 6.6 with (without) dictionary

learning took 4 min (3 min) on a Macbook Pro 2.5 GHz Intel Core i7. For the same examples,

conventional tomography (Sec. 6.4.1) took 20 s and TV tomography took 3 s.

In Fig. 6.12(a), it is shown that the LST RMSE travel time error (from ss) decreased over

the iterations and converged within at most 50 iterations. For the cases with travel time error, the

RMSE approaches or falls only slightly below σε. Hence, the travel time data was not overfit.

6.6 Conclusions

We have derived a method for travel time tomography which incorporates a local sparse

prior on patches of the slowness image, which we refer to as the LST algorithm. The LST can
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use predefined or learned dictionaries, though learned dictionaries gives improved performance.

Relative to the conventional and TV tomography methods presented, the LST is less sensitive

the regularization parameters. LST with sparse prior and dictionary learning can solve for both

smooth and discontinuous slowness features in an image.

We considered the case of 2D surface wave tomography and using LST, for the dense

sampling configuration and synthetic images we used, well recovered true slowness maps with

smooth and discontinuous features. The LST is relevant to other tomography scenarios where

slowness structure is irregularly sampled, for instance in ocean [51] and terrestrial [52, 53]

acoustics.
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6.8 Appendix

6.8.1 ITKM algorithm details

The ITKM dictionary learning algorithm [6] (see Table 6.2) is derived from a ‘signed’

K-means objective. In signed K-means, T -sparse coefficients C = [c1, ...,cI] ∈ RQ×I with cT
i ∈

{−1,1} are assigned to training examples {yi, ...,yI} ∈Rn×I . The training examples are obtained

112



Table 6.3: Conventional, TV, and LST tomography RMSE performance. Bold entries are least
error.

RMSE (ms/km)
Checkerboard Smooth-discon.

Nominal(Fig. 6.3(a)) Varied Nominal(Fig. 6.3(b)) Varied
Error σε = 0∗ 0.02t̄∗∗ 0 0.02t̄‡ 0† 0.02t̄†† 0 0.02t̄‡

Conv. 56.92 62.32 59.96 65.77 17.97 22.65 13.98 19.00
TV 55.24 65.42 58.28 67.05 20.72 26.64 17.16 22.55
LST Haar 60.97 68.96 59.71 66.51 15.66 23.07 14.00 18.68
LST DCT 56.75 62.16 56.47 62.73 14.95 19.62 13.41 17.24
LST Adapt. 24.41 37.26 31.16 37.14 7.51 17.94 7.40 14.62
Estimated slownesses plotted in ∗Fig. 6.5, ∗∗Fig. 6.8, †Fig. 6.6, ††Fig 6.9, and ‡Fig 6.11.

from patch i as yi = Riss, and centered. The minimization problem is

{
C,D

}
=argmin

D
∑

i
argmin
T,cT

i =±1
‖yi−Dci‖2

2

=argmin
D

∑
i

argmin
T, ct

i=±1
‖yi−∑

t
dtct

i‖2
2,

(6.25)

where ct
i is a non-zero coefficient and dt is the corresponding dictionary atom. Expanding (6.25)

and requiring ‖dt‖2
2 = 1,

min
D ∑

i
min

T, ct
i=±1

{
‖yi‖2

2−2∑
t

ct
id

T
t yi +B

}
= ‖Y‖2

F +B−2 max
D ∑

i
max
|K|=T

∑
t

abs
(
dT

t yi
)

= ‖Y‖2
F +B−2 max

D ∑
i

max
|K|=T

‖DT
Kyi‖1,

(6.26)

where ‖ ·‖F is the Frobenius norm, B is a constant, and K is the set of T dictionary indices having

the largest absolute inner product abs(dtyi), by is by thresholding [3]

K(D,yi) = argmax
|K|=T

‖DT
Kyi‖1. (6.27)
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From (6.26), the dictionary learning objective is

max
D ∑

i
max
|K|=T

‖DT
Kyi‖1, (6.28)

which finds D that maximizes the absolute norm of the T -largest responses from K. The ITKM

solves (6.28) as a two-step algorithm. First, K is obtained from (6.27). Then, the dictionary atoms

are updated per

max
D ∑
i:l∈K(D,yi)

abs
(
dT

l yi
)
. (6.29)

(6.29) is solved using Lagrange multipliers, with the constraint ‖dl‖2 = 1. The Lagrangian

function is

Φ(dl,λ) = ∑
i:l∈K(D,yi)

abs
(
dT

l yi
)
−λ
(
dT

l dl−1
)
, (6.30)

with λ the Lagrange multiplier. Differentiating (6.30) gives

dΦ

ddl
= ∑
i:l∈K(D,yi)

sign
(
dT

l yi
)
yi−2λdl (6.31)

The stationary point of (6.30), per (6.31), gives the update for dl

dnew
l = λl ∑

i:l∈K(Dold ,yn)

sign
(
dold

l
Tyi
)
yi, (6.32)

where λl = 1/(2λ). The complexity of each ITKM iteration is dominated by matrix multiplication,

O(nQI), which is much less than K-SVD [5] which for each iteration calculates the SVD of a

n× I matrix Q times.

114



0 20 40 60 80 100

Case #

0

10

20

30

40

50

60

70

80

R
M

S
E

 (
m

s
/k

m
)

Conventional

TV

LST

52.19

Case 2
1

20

40

60

80

100

R
a

n
g

e
 (

k
m

)

77.10

Case 10

73.53

C
o

n
v
e

ti
o

n
a

l

Case 99

54.55 76.87 76.17

T
V

35.61

1 20 40 60 80 100

Range (km)

32.38 32.71

L
S

T

0.3 0.4 0.5

Slowness (s/km)

0 20 40 60 80 100

Case #

0

5

10

15

20

25

30

R
M

S
E

 (
m

s
/k

m
)

Conventional

TV

LST

19.79

Case 1
1

20

40

60

80

100

R
a

n
g

e
 (

k
m

)

16.80

Case 30

15.66

C
o

n
v
e

ti
o

n
a

l

Case 99

24.00 20.23 20.02

T
V

16.30

1 20 40 60 80 100

Range (km)

14.38 12.83

L
S

T

0.3 0.4 0.5

Slowness (s/km)

Figure 6.11: Conventional, TV, and LST tomography for 100 checkerboard and smooth-
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Figure 6.12: (a) LST algorithm travel time RMSE convergence vs. iteration (Table 6.1) and
(b) slowness RMSE vs. the sparsity level T with and without travel time error, with dictionary
learning. Results shown with and without travel time error, corresponding to the checkerboard
(Fig. 6.5(i), 6.8(g)) and smooth-discontinuous (Fig. 6.6(m), 6.9(i)) slowness maps.
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Chapter 7

High-resolution seismic tomography of

Long Beach, CA using machine learning:

delineating aquifers

In the past decade, ambient noise tomography (ANT) methods have been used to image

the interior of the Earth with great success [1–11]. Such methods are critical for improving our

understanding of Earth’s structure and characterizing seismic hazard [12, 13]. In ANT, seismic

noise generated by ocean-atmospheric interactions or anthropogenic sources [14, 15] is cross-

correlated between seismic sensors over periods of days to months to obtain travel times between

sensors. The calculated travel times are used to estimate phase speed structure [2, 4]. The number

of travel times in ANT can be very large, and the coverage of a region dense, as the number of

travel times is N(N−1)/2 (with N the number of sensors, e.g. N = 5204 gives ∼13.5 million).

Yet, the estimation of high-resolution phase speed structure with ANT remains an ill-posed inverse

problem due to many factors, including irregular sensor distributions, phase ambiguities in the

noise cross-correlations (especially for high-frequency surface waves), and non-isotropic noise

distributions [6]. Hence, ANT is reliant on signal processing theory to obtain physically plausible
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results. In this report, we demonstrate a machine learning-based tomography method, called

locally sparse travel time tomography (LST) [16], on data obtained from the “large-N” Long

Beach array (Fig. 7.1A–B), in Long Beach, CA, USA in 2011. It is shown that LST can improve

ANT results over previous methods.

Recently, machine learning techniques have found many useful applications in seismol-

ogy, including seismic waveform classification [17], event localization [10, 18, 19], earthquake

prediction [20], and earthquake early warning [21]. In part, the success of these methods is

derived from large amounts of training and ground-truth data. In ANT however, little training

data exists. LST addresses this issue by using an unsupervised machine learning method, called

dictionary learning, to constrain slowness features in the tomographic image. This procedure is

derived from the adaptive dictionary learning paradigm from image processing [22–24], in which

dictionaries are learned directly from corrupted measurements. In adaptive image denoising [22],

the dictionary is trained on small rectangular groups of pixels, called patches, of a noisy image.

In LST, slowness dictionaries are learned from patches of a least squares-regularized inversion,

and are subsequently used to reconstruct a sparsity-constrained slowness image. The dictionary

is initially unknown and is learned iteratively, assuming sufficiently dense ray sampling (see

Supplemental Material). Relative to previous travel time tomography methods which enforce

either smooth or discontinuous models, including conventional straight ray [25] and eikonal

tomography [6], the sparse model in LST permits both smooth and discontinuous geophysical

features. This approach is related to wavelet based methods [26], however in LST the atoms are

adapted to the slowness features in the data using dictionary learning.

Using LST, we perform surface wave ANT with data from the Long Beach array

(Fig. 7.1A–B). The Long Beach array was deployed from January to June 2011 as part of a

petroleum industry survey. It was a very dense, “large-N” array with 5204 high-frequency vertical

velocity sensors distributed over a 7× 10 km area (Fig. 7.1A). We obtained Rayleigh surface

wave travel times between all station pairs in the array by cross-correlating seismic noise recorded
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during the period 5–25 March 2011. With N = 5204, this yielded ∼13.5 million travel times,

which was reduced in preprocessing. We discretized the footprint of the Long Beach array into a

300×206 pixel (N-S×E-W) phase-speed map (Fig. 7.1B), which corresponds to pixel sizes of

35×35 m. The phase speed for each pixel is estimated by LST with the Rayleigh wave travel

times.

We use the 1 Hz Rayleigh surface wave band from the Long Beach data, which corresponds

to near-surface geophysical features (∼100-500 m depth). For each station pair, cross-correlations

of all 1-h segments from the 3-week recording were normalized and stacked to obtain the causal

and anti-causal travel times. The final travel times were obtained by averaging these causal and

anti-causal components [6]. After quality control the number of useful cross-correlations for 1 Hz

was ∼8.5 million. Quality control included SNR thresholding and removal of travel times with

ranges less than one wavelength. The cross-correlations further suffered from phase ambiguities,

which were reduced in preprocessing. This was done by clustering the rays [25] and filtering

travel times that exceeded the median travel times of the clusters by one half-period (0.5 s for

1 Hz). Further, cross-correlations were rejected if travel times from different virtual sources

disagreed by more than one-half period. This reduced the number of useful cross-correlations to

∼ 3 million. For further details and preprocessing steps, see Supplemental Material and [6].

The 1 Hz Rayleigh surface wave travel times are used by LST to estimate a 300×206 pixel

phase speed image of the Long Beach region. We assume straight-ray surface wave propagation,

which yields a simple linear measurement model (Eq. S1). Using the measuments, LST alternates

between solving larger-scale, or global, phase speed features (see Supplemental Material) and

smaller-scale or local phase speed features. The global problem (Eq. S4) is solved by least squares.

Since the tomography matrix is sparse, we use the sparse least square program LSMR [27]. The

local sparse problem (Eq. S5) is solved using orthogonal matching pursuit [22], and the dictionary

is learned using the iterative thresholding and signed K-means algorithm [28]. The reference

phase speed is constant, and estimated as the average phase speed of all ray paths.
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The LST tuning parameters are {n,T,Q,λ1,λ2}. n is the number of pixels per patch. We

use square, 10 by 10 pixel patches, giving n = 100 pixels per patch (yielding 300×206 = 61,800

patches). We assume sparsity T = 2 (see Eq. S5), meaning that each patch uses two atoms from

the dictionary D. Each atom in D is a vector with dimension n = 100 pixels (the patch size).

We assume D has Q = 200 atoms, or twice the patch dimension. D is initialized with Gaussian

random vectors of unit norm. λ1, which is the ratio of travel time error variance to global slowness

variance is set as λ1 = 13 km2 (see Eq. S4). λ2, which is the ratio of patch slowness variance

to global slowness variance, is set as λ2 = 0 assuming a sparse slowness representation (see

Eq. S5). When λ2 = 0, the sparse slowness is simply the average of the patch slownesses (see

Supplemental Material).

In the middle of the LST phase speed image (Fig. 7.1B), particularly to the West, a large

fast anomaly is observed between 33.78◦ and 33.82◦ latitude. This fast anomaly corresponds

well with the Upper Wilmington (UW) Quaternary formation, which includes the Silverado water

bearing unit (Lower Pleistocene age, ∼300–580 ka) that supplies nearly 90% of the total ground

water extracted in Long Beach [29,30]. Based on a 3D model [30], Fig. 7.2A) of the water-bearing

structures in Long Beach obtained using borehole, seismic, and gravity surveys, the Silverado

is significantly denser (2,290 kg/m3) than the surrounding formations (2,050-2,100 kg/m3) due

to its coarse-grained facies. From empirical relations of density and seismic wave speeds, we

expect the UW formation to increase Vs by ∼150% relative to the surrounding formations (see

Supplemental Material). Since Rayleigh wave phase speed is dependent primarily on Vs, we

conclude that this high velocity region of the map likely corresponds to the Silverado aquifer.

The proposed attribution of the fast anomaly to the Silverado aquifer is further supported

by simulations the 1 Hz Rayleigh surface wave phase speed (Fig. 7.2(D)) from the Silverado

depth range inferred in [30] and [29] (see Supplemental Material). In the region of the survey

used from [30], where both Silverado depth and thickness were available, the simulation shows a

gradual increase in phase speed from south to north. However, per [29], the Silverado is likely
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absent about 1 km south of the NI fault in the region of the Long Beach array (Fig. 7.5). With this

assumption for the simulation, the predicted trend and magnitude and phase speeds south of the

NI fault compare well with the LST result (Fig. 7.1(B)). Relative to the eikonal tomography phase

speed estimates of the Long Beach (Fig. 7.4(A)), the phase speed from LST shows better the

broad fast region predicted by the simulation. It is clear that the Silverado is resolved particularly

well by the LST in the west-central region. Moreover, well logs support an extension of the

high-velocity anomaly toward the NE across the Newport-Inglewood (NI) fault zone, as observed

in the LST phase speeds (see Fig. 7.2D), beyond the region of the gravity survey. The LST result

appears to corroborate the older study [29], and contradicts some of the results of [30], which

was based exclusively on a gravity survey in the region of the Long Beach array.

These results show that the LST method, by assuming that patches of seismic phase speed

fields are repetitions of a set of few patterns, contained by the dictionary, can be used to further

leverage existing seismic data to obtain high-resolution phase speed images from regions of

interest. The dictionary (Fig. 7.3A), since it is learned directly from the phase-speed data via

machine learning, is well adapted to the data itself, perhaps more so than predefined functions such

as wavelets (Fig. 7.3B,C), and also provides a flexible model that is capable of modeling smooth

and discontinuous slowness features. In the context of ambient noise tomography, LST leverages

the dense sampling by learning the patterns directly from the cross-correlation data. Thus, we

obtain high-resolution slowness maps that well complement other geophysical sensing modalities

and existing studies, for better estimating at least near-surface Earth structure. In this application

of LST to the Long Beach data, we believe it is likely that we have further-characterized key

water-bearing aquifers in Long Beach.
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Figure 7.1: The Long Beach array located in (A), contained 5204 stations (dots in (B)) dis-
tributed over a ∼ 70 km2 area. (B) Locally sparse tomography (LST) phase speed maps of Long
Beach, CA at 300×206 pixel resolution, using 3 million travel times. The Newport-Inglewood
(NI) fault network (black lines) and the valid boundary for LST (red line) are shown.
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Figure 7.2: (A) Inferred stratigraphy along ∼ N-S profile in (C) [30], with the 4 deep wells
used as constraints. The wells are located at Pier F, Pier C, Long Beach Cabrillo High School
(LBCH), and Long Beach Webster (LB Webster) elementary school, 1 km west of the Long
Beach array. (B) 1 Hz average Vs depth sensitivity kernel from [6] and overlap of northern end of
the inferred Silverado (shown in (C)) with Vs sensitivity, indicated in red. (C) Inferred Silverado
elevation [30] overlain with LST 1 Hz Rayleigh wave phase speed map (Fig. 7.1(B)), with wells
(red dots), and the location of the stratigraphy profile (brown line). (D) Hypothesized 1 Hz
Rayleigh surface wave phase speed calculated from geological properties and inferred Silverado
elevation range (C), from [29, 30].
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Figure 7.3: Comparison of (A) dictionary learned in LST inversion of Long Beach array data
(Fig. 7.1(B), 7.2(C,D)), and generic dictionaries (B) Haar wavelet and (C) discrete cosine
transform. All dictionaries shown with 169 atoms (n = 100). The atoms are sorted in order
of decreasing variance from top to bottom (left to right). The learned dictionary atoms (A)
with sharper, oriented gradients (higher variance) correspond to the sharper features in the
LST phase speed map (e.g. the boundaries of the Silverado aquifer, Fig. 7.1(B)), whereas the
smoother atoms (lower variance) are related to the smoother regions. Atom values stretched to
full grayscale (0 to 1) for display.
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7.1 Supplementary materials

7.1.1 LST theory and implementation

Our proposed locally-sparse travel time tomography (LST) approach obtains high resolu-

tion by assuming that small patches of discrete phase speed maps are repetitions of few elemental

patterns from a dictionary of patterns. Such patterns, referred to as atoms (chemistry analogy) are

learned in parallel with the inversion using dictionary learning, a form of unsupervised machine

learning. Relative to conventional tomography methods, the sparsity of the dictionary representa-

tion permits smooth and discontinuous, high-resolution features where warranted by the data. In

the following, we present an overview of the LST theory. For more details, please see [16].

In the LST, surface wave propagation is approximated as straight ray paths through an

N = W1×W2 pixel phase speed map, and the travel time perturbations t ∈ RM from a known

reference for M rays are modeled as

t = Asg + ε, (S1)

where A ∈ RM×N is the tomography matrix, sg ∈ RN is the perturbation global slowness (inverse

of speed), and ε ∈ RM is Gaussian noise N (0,σ2
εI). We call Eq. S1 the global model, as it

captures the large-scale features that span the discrete map and generates t.

We consider a second slowness model perturbation ss ∈ RN , called the sparse slowness,

in which
√

n×
√

n groups of pixels are represented as sparse linear combinations of atoms from

a dictionary. The patches are selected from ss ∈ RN by the binary matrix R ∈ {0,1}n×N , and

modeled as

x̂i = argmin
xi

‖Riss−Dxi‖2
2 subject to ‖xi‖0 = T, (S2)

where Riss ∈Rn selects the i-th patch, D ∈Rn×Q is the dictionary of Q atoms, x̂i ∈RQ coefficient

estimates for the i-th patch, and T is the number of non-zero coefficients in x̂i. We consider all

overlapping patches, and wrap the patches at the edges. Thus the number of patches is N. The
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`0 pseudo-norm penalizes the number of non-zero coefficients [22]. We call Eq. S2 the local

model, as it captures the smaller scale, localized features contained by patches. The dictionary D

is assumed unknown and is learned from the data during the inversion.

The global (Eq. S1) and local (Eq. S2) models are combined into a Bayesian maximum a

posteriori (MAP) objective

{
ŝg, ŝs, X̂

}
= argmin

sg,ss,X

{
1

σ2
ε

‖t−Asg‖2
2 +

1
σ2

g
‖sg− ss‖2

2 +
1

σ2
p,i

∑
i
‖Dxi−Riss‖2

2

}
subject to ‖xi‖0 = T ∀ i,

(S3)

where ŝg is an estimate of the global slowness perturbation, σ2
g is the global slowness variance, ŝs

is the estimate of the sparse slowness perturbation, σ2
p,i is the variance of the patch slowness, and

X̂ ∈ RQ×I is the coefficient estimates.

We find the MAP estimates
{

ŝg, ŝs, X̂
}

using a block-coordinate minimization algorithm

by decoupling the local and global models via substitution [22, 23]. The global objective is, from

Eq. S3,

ŝg = argmin
sg

‖t−Asg‖2
2 +λ1‖sg− ss‖2

2, (S4)

where λ1 = (σε/σg)
2 is a regularization parameter. The local objective is from Eq. S3, substituting

ss = ŝg,

x̂i = argmin
xi

‖Dxi−Rîsg‖2
2 subject to ‖xi‖0 = T. (S5)

Dictionary learning is added to the local problem (S5), by optimizing D:

D̂ = argmin
D

{
min

xi
‖Dxi−Rîsg‖2

2 subject to ‖xi‖0 = T ∀ i
}
. (S6)

The dictionary learning problem (Eq. S6) is here solved using the iterative thresholding and

signed k-means (ITKM) algorithm [28]. After D̂ is obtained, the coefficients X̂ = [x̂1, ..., x̂I] are

solved from Eq. S5 using orthogonal matching pursuit (OMP) with the same sparsity level T
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as ITKM. Then with X̂, D̂, and global slowness ŝg from Eq. S4 we solve for ss. Eq. S3 gives,

assuming constant patch variance σ2
p,i = σ2

p,

ŝs = argmin
ss

λ2‖̂sg− ss‖2
2 +∑

i
‖Dx̂i−Riss‖2

2, (S7)

where λ2 = (σp/σg)
2 is a regularization parameter. The solution to Eq. S7 is analytic

ŝs =
λ2ŝg +nsp

λ2 +n
, (S8)

where n is the number of patches and sp =
1
n ∑i RT

i Dx̂i. Eq. S8 gives ss as the weighted average

of the patch slownesses {Dx̂i ∀ i} and ŝg. When λ2� n, ss ≈ sp. When λ2 = n, sg and sp have

equal weight. It is typical in image denoising to set λ2 = 0 [24]. The expressions Eq. S4–S8 are

solved iteratively until convergence. Before solving Eqs. S5, S6, the slowness patches {Rîsg ∀ i }

are centered [24], i.e. the mean of the pixels in each patch is subtracted. The mean of patch i is

xi =
1
n1TRîsg. Hence, Rîsg ≈ Dxi +1xi.

We compare the results of the LST to eikonal tomography [6, 31], Fig. 7.4. Unlike

conventional tomography, eikonal tomography avoids the inversion of very large tomography

matrices in favor of solving a number of simpler subproblems and accounting partly for ray

bending. These subproblems estimate a phase speed surface for each virtual source, using

the eikonal equation on a smooth travel time surface, which are later averaged to obtain the

overall map. In the case of LST, the global straight ray tomography solution is more similar

to conventional than eikonal tomography. However, since relationships between neighboring

pixels (e.g. smoothness) are not enforced, the tomography matrix A is sparse and is inverted more

quickly than a non-sparse matrix. Where eikonal tomography enforces smoothness on travel time,

LST does not enforce smoothness. It enforces sparsity of the patches.

We quantify the relative quality of the LST and eikonal phase speed maps (Fig. 7.4)

by variance reduction, and by visual quality scores derived from natural images. With the
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straight-ray assumption, the distribution of the travel time residuals from the reference phase

speed are compared with the residuals from the LST phase speed, Fig. 7.7. The LST provides

a 57% variance reduction, whereas eikonal gives a 25% reduction. Since there is no true phase

speed map available, we use reference-less image quality metrics to help quantify the quality

of the LST and eikonal phase speeds. While such metrics may not reflect the truth of estimated

geophysical features, they can help quantify corruption of the geophysical features. We use the

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [32], the Natural Image Quality

Evaluator (NIQE) [33], and the Perception based Image Quality Evaluator (PIQE) [34]. With

lower score better, the LST (eikonal) visual quality results were for BRISQUE 45.8 (43.7), for

NIQE 5.9 (11.0), and for PIQE 72.5 (86.8). Overall, LST obtains a better score on 2 of 3 of the

metrics. The BRISQUE metric has incorporated human opinions of image quality, whereas NIQE

and PIQE do not. Hence BRISQUE may bill less suited to our application.

The LST provides improved results with less computational burden. Conventional to-

mography [35] complexity is dominated by square matrix inversion O(N3), though approximate

solution methods are slightly less complex. For large tomography matrices A, LST is dominated

by matrix multiplication in the LSMR algorithm [27] O(2MN). Since for LST the sparse matrix

A is used directly, the memory required for a tomography problem with M travel times scales

linearly with the map size N. For conventional, the memory required scales by N2. Hence LST

could be used for much larger maps than conventional tomography.

7.1.2 Geological interpretation

The LST sensitivity depth range (∼100− 500 m) with 1 Hz Rayleigh surface waves

is occupied by Pleistocene and Holocene deposits [30], which contain almost all the ground

water resources in the area, Fig. 7.5(A–C). The Silverado formation (Lower Pleistocene age,

∼300−580 ka, named in [29]), accounts for nearly 90% of the total ground water extraction

in the region considered here [36]. The producing aquifers consist of sand and gravel, where in
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particular the Silverado unit is characterized by coarse-grained sediments.

Ponti et al. (2007) [30] generated a 3D sequence stratigraphy model of Quaternary layers

at the Dominguez Gap in a 16.5 x 16.1 km area that overlaps with our LST model region (see

Figure 1). The study was aided by 5 reference boreholes drilled to more than 450 m depth (see

Figure 1). In addition, more than 300 oil and water wells were compiled and used in the study.

An important finding from this study was a fault, striking W-NW in agreement with the general

trend of the area, named the Pacific Coast Highway (PCH) fault from its location (see Figure

1), with a progressive vertical throw (up to 200 m) causing displacement of all pre-Holocene

formations down to the north (see Figure 2).

An area-wide gravity survey [30] was carried out to invert for stratigraphy along a N-S

profile (see Figure 3), ∼ 1 km west of the LST result region (see Figure 1). The Silverado

aquifer has significantly higher density (2290 kg/m3), due to its coarse-grained facies, than

the surrounding formations (2050–2100 kg/m3). The Silverado gravity anomaly is in general

agreement with the sequence-stratigraphic model (Figure S2), including the termination of the

Silverado unit just south of LBCH. However, the Poland et al. (1956) survey [29] contradicts the

Ponti et al. (2007) [30] inferred stratigraphy. In [29], it is concluded that the Silverado is missing

about 1km south of the NI fault - near the termination of the LST phase speed anomaly.

Several established empirical relations positively correlate seismic wave speeds with

density. Gardner et al. [37] relates density ρ to P-wave speed Vp as

ρ = 0.31V 0.25
p , (S9)

where Vp is in m/s. Eq. S9 gives a 40-50% increase in Vp for the Silverado formation, over the

surrounding Pliocene, Pleistocene and Holocene layers. Brocher [38] related Vp, Vs by

Vs = 0.7858−1.2344Vp +0.7949V 2
p −0.1238V 3

p +0.0064V 4
p , (S10)
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where Vs is in km/s. Eq. S10 gives a 150% increase in Vs using derived values of Vp [37] for the

densities of the Silverado and surrounding layers. Since Rayleigh surface wave phase speed is

dependent primarily on Vs [39], these results suggest that the Silverado aquifer should give rise to

a significant phase-speed anomaly.

From the predicted Vs for the Silverado layer from the empirical relations Eq. S9, S10,

we simulate the 1 Hz Rayleigh surface wave phase speed for the survey region to find the fast

anomaly in the LST result (Fig. 7.1(B)). The method and results are summarized in Fig. 7.6.

The inferred Silverado elevation and thickness (Fig. 7.6(A,B)) inferred in [30] are interpolated

(Fig. 7.6(D,E)) to localize the depth ranges of the Silverado layer in the survey region. It is

assumed per [29] that Silverado is missing south of the fast anomaly. The average Vs profile,

estimated from Rayleigh wave dispersion measurements in [6], is assumed for the region. For

each discrete Silverado depth range, the Silverado Vs is simulated by doubling the average Vs in

the Silverado depth range (e.g. Fig. 7.6(C)). The 1 Hz Rayleigh surface wave phase speed for the

survey region (Fig. 7.6(F)) is estimated using a numerical forward model [40].
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Figure 7.4: Comparison of 1 Hz Rayleigh surface wave phase speed maps from (A) eikonal
tomography [6] and (B) LST with the NI fault network (black lines). The general trends are the
same for eikonal and LST, though there is greater contrast and phase speed range observed in the
LST map. There is greater contrast along the NI fault lines for LST. The largest disagreement
the methods is in the western region of the map, where the LST is imaging the Silverado aquifer.
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Figure 7.5: Silverado base depth (ft) inferred from borehole measurements in Poland et al.
(1956) [29] overlain with LST phase speed (Fig. 7.1B, same colorscale). The results of [29]
contradict [30], suggesting Silverado is absent south of the high phase speed anomaly in the
west-central part of the LST map. The findings of [29] are corroborated by the LST result. The
lower extent of the high-speed anomaly is used to generate a hypothesized phase speed map
(Fig. 7.2D). We also note that the phase speed anomalies near and to the north of Signal Hill
(indicated above) correlate well with the contours.
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Figure 7.6: Interpolated Silverado (A) elevation and (B) thickness from the Ponti et al. (2007)
survey [30], with Silverado missing south of LST high speed anomaly per Poland et al. (1956)
survey [29] (see Fig. 7.5). (C) Phase speed estimated from (A,B), based on Silverado phase
speed perturbation (150% of average Vs from [6] from Eq. S9, S10). (D) Two example Vs

profiles: Silverado Vs predicted by Eq. S9, S10 (red line) superimposed on average Vs from [6]
(blue dashed line), over depths corresponding to (A, B), from locations in (A,B) indicated by
red and blue x’s. Valid boundary for LST inversion shown as blue dashed line.
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Figure 7.7: From left to right: residual histogram from straight-ray model, eikonal speed map
(Fig. 7.4(B)), LST speed map (Fig. 7.4(A)), and residual difference between LST and eikonal
tomography.
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Chapter 8

Conclusion

In this dissertation, methods for solving geophysical inverse problems were developed

based on sparse modeling theory and dictionary learning, an unsupervised machine learning

method. These methods, which employ more sophisticated model priors and latent representations

than conventional methods, provided compelling results in the estimation of true ocean sound

speed profile (SSP) models in geoacoustic inversion, improved compression of SSP structure over

that obtained by empirical orthogonal functions (EOFs), and provide a more flexible travel time

tomography framework based on machine learning. The locally sparse travel time tomography

(LST) method leverages dense array sampling to learn dictionaries of geophysical features directly

from the data under analysis. Thus LST does not require explicit training data.

A method for compressive inversion of ocean acoustic SSPs was developed and demon-

strated. With medium SNR, a priori knowledge of the ocean sound speed statistics, and a

dictionary of shape functions that sparsely represent the SSPs, fine-scale SSP structure was well

estimated using compressive sensing (CS). Robust recovery of sparse SSP perturbations was

shown using dictionaries containing either half-sinusoidal shape functions or EOFs.

The K-SVD dictionary learning algorithm was applied to ocean SSP data from the High

Frequency ‘97 and South China Sea experiments. It was shown that the learned dictionaries (LDs)
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generated describe ocean SSP variability with high resolution using fewer coefficients than EOFs.

As few as one coefficient from a LD describes nearly all the variability in each of the observed

ocean SSPs. This performance gain is achieved by the larger number of informative atoms in

the LD relative to EOF dictionaries. Provided sufficient SSP training data is available, LDs can

improve SSP inversion resolution with negligible computational expense. This could provide

improvements to geoacoustic inversion, matched field processing, and underwater communication.

A travel time tomography method with a local sparse prior on patches of the slowness

image, referred to as the LST algorithm, was derived. The LST can use predefined or learned

dictionaries, though learned dictionaries gives improved performance. Relative to the conventional

and total variation (TV) tomography methods presented, the LST is less sensitive the regularization

parameters. LST with sparse prior and dictionary learning can solve for both smooth and

discontinuous slowness features in an image.

LST was tested in the context of surface wave tomography (2D), with both synthetic and

real seismic data. For the dense sampling configuration and synthetic images used, LST well

recovered true slowness maps with smooth and discontinuous features. LST was further used to

perform ambient noise tomography (ANT) with data from the large and dense Long Beach array,

installed in Long Beach, CA during 2011. The Long Beach inversion results show that the LST

method, by assuming that patches of seismic phase speed fields are repetitions of few patterns,

described by the dictionary atoms, can be used to further leverage existing seismic data to obtain

high-resolution phase speed images.

LST exploits the dense sampling of ANT on large arrays by learning the patterns directly

from the cross-correlation data. Thus, high-resolution slowness maps are obtained that well

complement other geophysical sensing modalities and existing studies, for better estimating at

least near-surface Earth structure. The LST phase speed map from the Long Beach data is likely

to have further-characterized key water-bearing units in Long Beach. The LST is relevant to other

tomography scenarios where slowness structure is irregularly but densely sampled, for instance in
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ocean and terrestrial acoustics.

Future work could build-upon the approaches developed in this dissertation by further-

accounting for the physics of the problems, including generative models and further physical

assumptions about the geophysical parameters, and more sophisticated ray propagation modeling.

Machine learning-based tomography approaches should leverage physical models to obtain

synergy between the physical theory, and the enhanced, data-driven approaches from machine

learning techniques. For example, LST in its current formulation [1] does not account for ray

bending. Adding more physics to the propagation problem could improve tomographic resolution

and characterize uncertainty in ocean acoustic and seismic tomography contexts.

Further, more sophisticated sparse modeling and machine learning methods and theory

can be developed to account for the specific geophysical data issues. For instance, missing or

incomplete measurements can be accounted-for using inpainting [2–4], a dictionary learning

procedure which fixes missing pixels in images. Similar to natural images, geophysical structures

in the ocean and solid earth contain local, or small scale, features that can be described by scaled,

shifted, and rotated versions of a set of dictionary atoms. Further, these features are repeated

or exist at different image resolutions and are correlated. This notion, originally developed in

wavelet analysis (from image processing) [5], has given multi-resolution geophysical tomography

methods, e.g. [6]. Recently in image processing, a convolutional sparse coding (CSC) [7]

algorithm has been developed, which is a specific case of convolutional neural networks [8,9] that

use sparsity regularization on the weights. The CSC model accounts not only for shift variance,

but also rotation and scaling of image features, as well as the for correlations between patches.

The non-linearity of neural networks and the back-propagation method of their training [10],

make neural networks “general function approximators” [11]. That is, given sufficient training

data, a neural network can model nearly any function. The non-linear modeling capabilities of

neural networks can be leveraged to generate improved data assimilation frameworks.
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