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ABSTRACT
Caveolins have been recognized over the past few decades
as key regulators of cell physiology. They are ubiquitously
expressed and regulate a number of processes that ultimately
impact efficiency of cellular processes. Though not critical to life,
they are central to stress adaptation in a number of organs. The
following review will focus specifically on the role of caveolin in

stress adaptation in the heart, brain, and eye, three organs that
are susceptible to acute and chronic stress and that show aswell
declining function with age. In addition, we consider some novel
molecular mechanisms that may account for this stress adap-
tation and also offer potential to drive the future of caveolin
research.

Introduction
Caveolins (Cav) are ubiquitously expressed proteins found

inmany cell types and have been abundantly studied asmajor
regulators of cell function and physiology. As form follows
function, the initial discovery and description was limited to
structural characterization of caveolae, Latin for “little caves,”
first identified in the early 1950s by Palade (1953) and
Yamada (1955) using electron microscopy. Though initially
considered artifacts of tissue processing for electron micros-
copy, in the nearly four decades following the initial discovery
of the caveolar structure to eventual molecular characteriza-
tion, multiple studies have described the physical presence of
caveolae in numerous cell types and organ systems (Mugnaini
et al., 1977; Gabella, 1978; Costello and Shafiq, 1979;
Abrahams et al., 1980; Frank et al., 1980; Oguchi and
Tsukagoshi, 1980; Severs, 1981; Sakata et al., 1983) and
manipulation of the structure through a number of interven-
tions (i.e., swelling, osmotic stress, stretch) (Gabella and
Blundell, 1978; Sage and Jennings, 1988; Kordylewski et al.,
1993; Parton et al., 1994). What emerged from these largely
structural electron microscopy studies was the sense that
caveolae were dynamic and versatile structures that could be
manipulated by extracellular stressors. In the early 1990s, the
protein caveolin, the structural and scaffolding component of

caveolae, was discovered (Rothberg et al., 1992) and this
allowed over the next two decades the molecular character-
ization of structural caveolae. Caveolins served as a means to
explain compartmentation of signaling molecules that could
be assembled into these “little caves” via enrichment of
caveolins and various lipids creating a microenvironment for
efficient signaling.
Besides the discovery of caveolin proteins, the one tool that

has most dramatically shaped and guided caveolin research is
the generation of caveolin knockout mice (Galbiati et al., 2001;
Razani et al., 2001, 2002; Park et al., 2002b). Three isoforms of
caveolin have been identified, with caveolins -1 and -2 being
ubiquitously expressed and caveolin-3 being restricted pre-
dominantly to muscle (Williams and Lisanti, 2004). Though
the various caveolin knockout mice showed a number of
phenotypes (i.e., altered life span, muscular dystrophy, car-
diomyopathy, altered adiposity, pulmonary hypertension,
neoplasia, etc. (Galbiati et al., 2001; Razani et al., 2001,
2002; Park et al., 2002a,b, 2003; Woodman et al., 2002;
Williams and Lisanti, 2004; Capozza et al., 2005)), knockout
of one or effectively all caveolins did not result in lethality.
Such an observation questions the relative importance and
central focus that has been attributed to caveolin as a key
regulator of such critical and important cellular functions;
compatibility with life of the various single- and double-
knockout mice would suggest some sort of potential compen-
sation (Insel and Patel, 2007). Interestingly, restoring Cav-1
specifically in the endothelium of Cav-1 global knockout mice
restores many of the specific pathophysiologies observed in
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the global Cav-1 knockout mouse (Murata et al., 2007). This
suggests that cell-specific expression of caveolin as well as
expression of caveolin in specific cells may be the feature most
critical to organism health. Since the discovery of the caveolin
proteins, over 6500 publications appear on PubMed with the
term caveolin and nearly a sixth of these make some use of
caveolin knockout phenotypes (i.e., knockout, deficient, null).
A broad perspective on this literature suggests an alternative
view of the importance of caveolin to biology: Loss of caveolin
may not result in embryonic lethality; rather, its expression
and ultimate manifestation in caveolae allows the cell, organ,
and organism to sense and respond in an efficient manner to
external stimuli and the larger environment for stress adap-
tation. What has emerged from this larger view is that, in
general, increased expression of caveolin is adaptive to stress
(i.e., survival positive), whereas loss of caveolin ismaladaptive
(i.e., survival negative) (Fig. 1). Though caveolin is ubiqui-
tously expressed and has important implications for physiol-
ogy, pathophysiology, and stress adaptation in multiple
organs and various cell types (i.e., see the following thorough
reviews for lung (Jin et al., 2011; Maniatis et al., 2012; Royce
and Le Saux, 2014; Thompson et al., 2014) and liver
(Fernandez-Rojo and Ramm, 2016), we will focus on three
particular organs. If one were to age long enough with no other
issues, three things would likely fail, the brain, heart, and eyes
owing to declining function of terminally differentiated cells
that largely make up these organs. As such, these become
important organs for consideration of caveolin expression
and stress adaptation as a function of age. This review will
focus on the role of caveolin in the heart, brain, and eye in terms
of stress adaptation and offer perspective on potential novel
caveolin-dependent molecular determinants of this adaptation.

Heart

Terminal differentiation of cells offers a means to develop
specialization of cells on the basis of structure, shape, and
function with potential maintenance of the cell for a lifetime.
In the heart, the cardiac myocyte serves this purpose. It is
largely nondividing and therefore its survival is critical to

stress adaptation. Stress in the heart can be described as
acute, chronic, and building across a lifetime.
In terms of acute stress, Murry et al. (1986) discovered that

multiple, brief episodes of ischemia, applied before a sustained
ischemic insult, did not contribute to ischemic injury; rather, it
induced an increased resistance to ischemic damage. Termed
ischemic preconditioning (IPC), this intervention has proven
to be the most robust and potent application to confer
protection against myocardial ischemia/reperfusion (I/R) in-
jury. Preconditioning is mediated via a molecular signaling
cascade that has become known as the reperfusion injury
salvage kinase pathway (Hausenloy et al., 2005). The role of
caveolin in regulating IPC and the signaling network of
survival kinases is well described. Ischemia/reperfusion in-
jury activates p42/44 and p38 mitogen-activated protein
kinases (MAPKs), redistributes Cav-3, and downregulates
expression of Cav-1 (Ballard-Croft et al., 2006). Ischemic
preconditioning may modulate the microenvironment of cav-
eolae and caveolin-associated protein interactions so as to
enrich for proteins that promote cardiac protection. This idea
is consistent with findings indicating that endothelial nitric-
oxide synthase (eNOS) and the glucose transporter GLUT4
translocate to caveolae after preconditioning (Koneru et al.,
2007). Myocytes treated with methyl-b-cyclodextrin to deplete
membrane cholesterol and disrupt caveolae fail to display IPC
and opioid-mediated cardiac protection (Patel et al., 2006),
whereas transgenic mice with cardiac myocyte-specific over-
expression of Cav-3 have increased tolerance tomyocardial I/R
injury. Hearts of Cav-3-overexpressingmice have an improved
functional recovery after myocardial ischemia and reperfu-
sion, and increased basal protein kinase B (Akt) and glycogen
synthase kinase 3b phosphorylation, suggesting augmenta-
tion of the reperfusion injury salvage kinase signaling path-
way in Cav-3-overexpressing mice (Tsutsumi et al., 2008).
Such findings suggest that caveolae/caveolins may be major
regulatory control points for cardiac homeostasis and patho-
physiology in the acute setting, predominantly by providing a
scaffold for existing and trafficking proteins.
The protective role of caveolin in the setting of acute

stress may be potentially ubiquitous. Caveolin is critical to

Fig. 1. Caveolin has a critical role in maintaining cell
survival via regulation of multiple cellular sites, including
the membrane and mitochondria, as well as negative
aspects—loss of caveolin expression can lead to cell death.
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protection in the heart and kidney and may regulate common
signaling pathways. Pharmacological agents such as volatile
and intravenous anesthetics and opioids that have the
potential to activate G protein-coupled receptors (GPCRs) to
induce acute protection inmultiple organsmay use caveolin as
a key signaling protein inmediating this response (Patel et al.,
2007; Horikawa et al., 2008; Song et al., 2010; Tsutsumi et al.,
2010; See Hoe et al., 2014; Zhu et al., 2017). These agents
appear to use caveolin and its binding partners to enhance
signaling efficiency in these various organs, suggesting that a
common network of cellular protection may be activated.
Importantly, these agents also show the ability to modulate
caveolin and caveolae, suggesting that potential pharmaco-
logical means to manipulate these proteins and structures
may advance potential therapies in the future.
As stress becomesmore chronic, the network of proteins and

structures have added pressures that lead to modulation of
expression of various proteins and signaling networks. Heart
failure is a major cause of morbidity and mortality with very
large human, social, and economic costs (Lloyd-Jones et al.,
2009). The quality of life and life expectancy of patients with
heart failure are poor despite optimal therapy.
Both Cav-1 and -3 have been shown to be involved in cardiac

hypertrophy. Knockout of Cav-1 (Cav-1 KO) results in cardiac
hypertrophy and induces contractile dysfunction (Augustus
et al., 2008b). Hearts from Cav-1 KO mice show a progressive
cardiac hypertrophy characterized by increased cardiomyo-
cyte size and interstitial fibrosis. Impairment of heart function
in Cav-1 KO mice is characterized by a dilated cardiomyopa-
thy with an enlarged left ventricular diameter, wall thinning,
decreased systolic function, and decreased contractility
(Cohen et al., 2003). Although gross histologic and functional
changes within the heart are a hallmark of Cav-1 depletion,
Cav-1 KO mice exhibit hyperactivation of the p42/44 MAPK
cascade in isolated cardiac fibroblasts (Cohen et al., 2003) and
nitric oxide synthase in endothelial cells. It is known that
caveolae contain numerous signaling molecules involved in
cardiac hypertrophy, including but not limited to a adrenergic
receptors, Gq proteins, phospholipase C, epidermal growth
factor receptors, Ras, MAPKs, Src kinases, natriuretic peptide
receptors, and Cav-3 (Krajewska and Masłowska, 2004).
Woodman et al. (2002) have shown that knocking out the gene
for Cav-3 results in hyperactivation of the Ras/extracellular
signal-regulated kinases (ERK) 1/2 signaling pathway, car-
diac hypertrophy, and reduced cardiac function. Cav-1/Cav-3
double KO mice completely lack morphologically identifiable
caveolae and develop a severe cardiomyopathic phenotype
with left ventricular hypertrophy and dilation (Park et al.,
2002b). Cav-3 KOmice develop cardiomyopathy characterized
by hypertrophy, ventricular dilation, and reduced contractility
(Woodman et al., 2002). Koga et al. (2003) have demonstrated
that in vitro overexpression of Cav-3 in neonatal cardiac
myocytes attenuated phenylephrine- and endothelin-induced
ERK1/2 activation and blocked myocyte hypertrophy.
Cardiac-specific overexpression of caveolin results in blunted
hypertrophy and cardiac dysfunction in response to transverse
aortic constriction (Horikawa et al., 2011).
When considering the organization of signaling networks

critical to heart failure, the adrenergic nervous system is a key
part of the neurohumoral response to heart failure and amajor
focus of heart failure research and therapy (Triposkiadis et al.,
2009). Decreased cardiac function in the early stages of heart

failure leads to increased sympathetic neuronal activity,
increased circulating norepinephrine, and activation of car-
diac b-adrenergic receptors (bARs) as a means to increase
cardiac output by increasing heart rate and myocardial
contractility. However, heart failure progression is associated
with a decrease in b1AR number and in coupling of b1 and
b2ARs to downstream effectors (Dorn and Liggett, 2009).
Persistent bAR stimulation worsens heart failure, and ther-
apy with bAR agonists can be detrimental. bAR antagonists
are now used to treat patients with heart failure. Deleterious
effects of persistent bAR activation appear to result from
activation of the b1AR pathway, whereas beneficial effects
from b2AR activation may ameliorate such deleterious
changes (Xiao et al., 2004). b1ARs and b2ARs are the principal
bARs in the heart, but b3ARs may also contribute to cardiac
bAR activity andmay be a therapeutic target for heart failure.
Work in recent years has shown that subcellular localization/
compartmentation of bAR subtypes within cardiac myocytes
influences functional responses that result from receptor
activation. Altered distribution of bARs in cardiac myocytes
may be a critical derangement in heart failure progression
(Dorn, 2010; Nikolaev et al., 2010; Macdougall et al., 2012).
Recent data show that ideas about GPCR signaling must

take into account subcellular localization of the receptors and
postreceptor signaling components (Calebiro et al., 2009;
Kamal et al., 2012; Maurice et al., 2012; Timofeyev et al.,
2013). The localization of b1ARs and b2ARs differs in cardiac
myocytes (Steinberg, 2004). b1AR is broadly expressed in the
sarcolemma, whereas b2AR primarily localizes to caveolar
microdomains. bAR subtypes in the different locales have
different signaling properties: b1AR activation produces ino-
tropic and chronotropic responses via global G stimulatory
(Gs) coupling and activation of adenylyl cyclase (AC; AC 5 and
6 are the twomajor AC isoforms in the heart), protein kinase A
(PKA), cAMP-regulated guanine nucleotide exchange factors
(Epac), L-type calcium channels, and other downstream
targets (Chen-Izu et al., 2000; Timme et al., 2000; Xiang and
Kobilka, 2003; Han et al., 2013; Pereira et al., 2013). In
contrast, b2ARs couple to both Gs and G inhibitory (Gi)
pathways. b2ARs localized in caveolae produce transient
PKA-dependent inotropic responses adjacent to L-type cal-
cium channels, followed by decreased contraction owing to
sequential coupling to Gs and then Gi proteins (Xiang and
Kobilka, 2003). Gi proteins are enriched in caveolae (Chen-Izu
et al., 2000). The different localization of bAR subtypes has
implications for cell death responses that occur in heart
failure: b1AR stimulation can promote myocyte apoptosis,
whereas b2AR activation can be antiapoptotic via a Gi-,
phosphoinositide 3-kinase (PI3K)-, or Akt-dependent pathway
(Communal et al., 1999; Xiao et al., 2004).
b2ARswithin caveolae localize to transverse (T)-tubules and

produce localized cAMP signals in cardiac myocytes (Head
et al., 2005; Nikolaev et al., 2010). T-tubules are enriched in
cholesterol and Cav-3 molecules that characterize caveolar
microdomains (Carozzi et al., 2000). The loss of T-tubule
structure probably contributes to progression of heart failure
and changes in subcellular distribution of bARs and their
signaling components (Wei et al., 2010).With the development
of heart failure, the restricted localization of b2ARs in
T-tubules can be disrupted, such that b2ARs are found on
themyocyte plasmamembrane where b1ARs are normally the
dominant bAR subtype. As a result, b2ARs can then produce a
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diffuse cAMP signal that is similar to what occurs with b1AR
stimulation and thus may enhance myocyte dysfunction
(Nikolaev et al., 2010). Importantly, the abnormal distribu-
tion of bARs in heart failure can be mimicked by
chemical disruption of the T-tubule/caveolae microenviron-
ment (Nikolaev et al., 2010).
Cav-3 preferentially interacts with b2ARs versus b1ARs

(Steinberg, 2004). Caveolae and caveolins play a key role in
organizing and regulating cell signaling pathways, including
bAR signaling (Patel et al., 2008). Caveolae contain major
components of b-adrenergic signaling, including bARs, Gs and
Gi, ACs, G protein-coupled receptor kinases, PKA subunits,
and L-type calcium channels (Krajewska and Masłowska,
2004; Balijepalli et al., 2006). Localization of L-type calcium
channels to caveolae is essential for their regulation by b2ARs
(Balijepalli et al., 2006) and localization of b2ARs to caveolae
in association with Cav-3 is critical for localized b2AR
signaling in cardiac myocytes: Disruption of caveolae converts
b2AR responses to a b1AR-like response (Calaghan et al.,
2008). Cav-3 knockoutmice have a 40% increase inmyocardial
cAMP content, suggesting that absence of Cav-3 enhances
cAMP synthesis (Augustus et al., 2008a). Other data imply
that cAMP synthesis in caveolae is influenced by Gi signaling
with a key role for PI3K and cyclic nucleotide phosphodies-
terase (PDE) (Kerfant et al., 2006). PI3K signaling in this
response depends on macromolecular complexes within cav-
eolae, and close apposition of the T-tubular membrane (con-
taining caveolae) with the sarcoplasmic reticulum (SR)
membrane gives PDEaccess to the SR compartment. Caveolae
and T-tubules share structural and functional similarities;
both are enriched in cholesterol and Cav-3, increase the
functional surface area of the sarcolemma, and share analo-
gous mechanisms of biogenesis (Carozzi et al., 2000). Cav-3
plays a major role in organizing and maintaining T-tubule
structure and function in cardiac myocytes (Ziman et al.,
2010). Chronic adrenergic stimulation and heart failure can
decrease Cav-3 expression (Yamamoto et al., 1999; Ruiz-
Hurtado et al., 2007), which may ultimately impact the
caveolar structure to alter networks for stress adaptation.
Finally, when considering stress adaptation over a lifetime

one must consider the aging heart. Age is an important
predictor of mortality linked to cardiovascular disease
(Boersma et al., 2000). Protective networks are lost in aged
myocytes (Mio et al., 2008). Preclinical studies reveal in-
creased sensitivity and decreased tolerance to I/R injury in the
aged heart (Headrick et al., 2003;Willems et al., 2005). Recent
studies indicate that the heart may be a central player in
dysfunction of peripheral organs such as brain, liver, and
kidney, underscoring a key idea: A better functioning heart
and the resultant enhancement in tissue perfusion will
positively influence multiple organ systems with age-related
loss in function, contribute to healthier aging, and perhaps
enhance lifespan.
Importantly, a decrease in the expression of cardiac Cav-3

(Kawabe et al., 2001) is observedwith age, and aging results in
dissociation of Cav-1 and -3 from membrane caveolae
(Ratajczak et al., 2003). Although Cav-1 KO mice show a
decreased lifespan (Park et al., 2003), it is not clear if this a
consequence of the cardiovascular aspects regulated by Cav-1;
however, these mice are resistant to cardiac protective stimuli
(Patel et al., 2007). Cav-3 KO mice develop a progressive
cardiomyopathy (Woodman et al., 2002) and are also resistant

to cardiac protective stimuli, (Horikawa et al., 2008) but
lifespan does not appear to be impacted. However, there is
growing evidence to suggest that Cav-3may have an impact on
the function of the aging heart. Cav-3 and caveolae are
reduced with age and may be associated with dysfunctional
survival signaling (Peart et al., 2007, 2014). Protein kinase C
is critical to cardiac protection and this is largely dependent on
trafficking to mitochondria. Recently, Cav-3 was shown to be
critical for this transport, and age resulted in reduced mito-
chondrial Protein kinase C (Kang et al., 2017). Such data
indicate the potential survival benefits of caveolin in the heart
and a potential molecular target to impact acute, chronic, and
lifetime stress.

Brain

Neurons, Glia, and the Blood-Brain Barrier. Neurons
are absent of morphologic caveolae but do possess planar
microdomains enriched in cholesterol, glycosphingolipids, and
sphingomyelin and express all three caveolin isoforms (Shyng
et al., 1994; Head and Insel, 2007). Cav-1 is also expressed in
CNS endothelia (Sowa, 2012), pericytes (Virgintino et al.,
2002), and astrocytes (Cameron et al., 1997). Within cellular
components of the blood-brain barrier (BBB), Cav-1 regulates
extracellular matrix proteins that include metalloproteinases
(Virgintino et al., 2002) and tight junction proteins, which in
turn modulate BBB physiology (Abbott et al., 2006; Gu et al.,
2011; Liu et al., 2012; Lakhan et al., 2013; Zhao et al., 2014;
Gurnik et al., 2016). Cav-1 has also been shown to be critical in
hypoxia-induced astrocyte injury (Xu et al., 2016), which can
lead to BBB damage and leakage. Knockdown of Cav-1 using
Cav-1 small-interfering (si)RNA exacerbated astrocyte cell
damage and impaired cellular glutamate uptake after oxygen-
glucose deprivation (OGD). In contrast, overexpression of the
Cav-1 caveolin scaffolding domain peptide attenuated OGD-
induced astrocyte apoptosis via ERK signaling (Xu et al.,
2016), thus further demonstrating the importance of Cav-1 in
BBB physiology (Gu et al., 2012; Fu et al., 2014).
Cav-1 is expressed in both microglia and astrocytes (Salgado

et al., 2012). Cav-1 expression was detected in activated micro-
glia (using kainic acid) in several brain regions,with the highest
expressionmeasured after 3 days, implicating a potential role of
Cav-1 inmicroglial activation (Takeuchi et al., 2013).Moreover,
work from our group demonstrated that Cav-1 protein was
decreased and redistributed from the plasmalemma to cyto-
plasmic vesicles in inactive microglia, whereas the active
(amoeboid-shaped) microglia exhibited increased Cav-1 expres-
sion (Niesman et al., 2013). Additional published findings
demonstrated that Cav-1 KO mice exhibited significant astro-
and microgliosis as well as an early aging phenotype in the
brain (decreased hippocampal synapses, altered cerebrovascu-
lar, and reduced progrowth signaling components) (Head et al.,
2010), suggesting that loss of Cav-1 may in part contribute to
neuropathological conditions in the brain.
Neuronal Cav-1: Neuroprotective Signaling and

Plasticity. Specifically, within neurons, Cav-1 scaffolds
and organizes neurotransmitter and neurotrophic receptors [N-
methyl-D-aspartate receptors (NMDARs) and tropomyosin re-
ceptor kinase B (TrkB)] in raft microdomains in vitro (Head
et al., 2008, 2011) and in vivo (Mandyam et al., 2017). Knockdown
of Cav-1 using small-interfering (si)RNA knockdown blunted
NMDAR and TrkB-mediated signaling (Head et al., 2008, 2011).
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Studies employing either a sublethal ischemia- or NMDA-
preconditioning model increased expression of phosphory-
lated (P) Cav-1, P-Src, and P-ERK1/2 in primary cortical
neurons from rats ormice (Head et al., 2008). Primary neurons
treated with Cav-1 small-interfering RNA or isolated from
Cav-1 KOmice lacked NMDA-mediated increase in P-Src and
P-ERK, as well as sublethal ischemia- and NMDA-induced
preconditioning. Cav-1 re-expression (using a viral vector) in
Cav-1 KO primary neurons restored NMDA-mediated in-
creases in P-Src and P-ERK1/2 and redistributed NMDAR2B
to membrane rafts.
In addition to a neuroprotective role, additional studies

have shown that Cav-1 promotes neuronal and synaptic
plasticity and improves neurobehavior (Head et al., 2011;
Egawa et al., 2017a,b; Mandyam et al., 2017). Using a neuron-
specific synapsin promoter to express Cav-1 (termedSynCav1)
specifically in neurons, Cav-1 overexpression enhanced cellu-
lar cholesterol accumulation and raft formation, augmented
receptor-mediated cAMP production, functional NMDAR
(P-Src, P-CaMKII, P-ERK1/2) and TrkB signaling (P-TrkB,
P-Akt), dendritic growth and arborization in vitro (Head et al.,
2011) and in vivo (Mandyam et al., 2017) and prevented
hippocampal-dependent learning and memory loss and im-
proved motor function in a murine model of traumatic brain
injury (Egawa et al., 2017a). Further work from our group
showed that when delivered to the hippocampus in vivo,
AAV9-SynCav1 increased hippocampal neuroplasticity, im-
proved fear learning and memory in adult and aged mice
(Mandyam et al., 2017), and promoted ultrastructural and
functional indicators of synaptic plasticity (Egawa et al.,
2017b), suggesting that Cav-1 and raft microdomains alter
aspects of synapse biology necessary for functional neuronal
and synaptic plasticity.

Eye

Along with the heart and brain, the eye is an organ sensitive
to external stressors and one that shows a clear aging
phenotype. The aging eye shows retinal deterioration, macu-
lar degeneration, changes in the lens, drainage issues, and
many other changes that ultimately lead to declining and
failing vision (Salvi et al., 2006). Though studies involving
caveolin in the eye have been lagging compared with other
organ systems, there is a recent growing interest in studying
the relationship of caveolin to the eye (Gu et al., 2017). This
interest has been fueled by a number of recent studies
suggesting Cav-1/Cav-2 as potential glaucoma-susceptible
genes in multiple populations (Wiggs et al., 2011; Chen
et al., 2014; Loomis et al., 2014; Yoshikawa et al., 2017).
Cav-1 has been shown to protect retinal ganglion cells through
a survival kinase activation mechanism involving Akt similar
to that in the heart (Zhang et al., 2017). This was observed in a
stress model involving ocular hypertension–induced injury
and suggests Cav-1 as a potential therapeutic target. Studies
with pressure overload and hypertension in the heart
(Horikawa et al., 2011; Markandeya et al., 2015) suggest the
same protection of terminally differentiated cardiac myocytes,
with the unique observation that cardiac myocytes and hearts
with overexpression do not hypertrophy, whereas wild-type
hearts nearly double in size. Such preserved responses in
myocytes and neurons suggest a generalized response to
hypertensive stress (i.e., physical or receptor initiated stress)

with common, as of yet unidentified, downstream signaling
that is caveolin-dependent and may be a novel therapeutic
target. Further studies usingCav-1KOmice suggest that Cav-
1/caveolae may bemechanoprotective in the eye in response to
increased pressure thatmay be linked to alteration in aqueous
humor drainage and is probably dependent on nitric oxide
(Elliott et al., 2016; Song et al., 2017). At the cellular level, this
mutation probably impacts a variety of cells in the eye,
including the trabecular meshwork cells (Aga et al., 2014).
Further exploration is needed to confirm a molecular function
for caveolin in glaucoma. In addition, a number of studies have
linked caveolin to retinal blood-barrier changes (Klaassen
et al., 2009; Tian et al., 2012; Gu et al., 2014) that have
important implications for primary and secondary diseases
related to the eye. As the field grows, it is expected that the eye
will present a fruitful target for caveolin modulations as
potential therapy for stress adaptation.

Novel Molecular Mechanisms
Many different domains that have been described for

caveolin (i.e., scaffolding domain, oligomerization domain, a
number of post-translational modification sites) are impli-
cated in a number of cellular and disease processes (Patel
et al., 2008; Patel and Insel, 2009). Studies related to these
domains have led to significant insights into caveolin regula-
tion of cell biology. However, detailed mechanistic functions of
the C-terminus of Cav-1 are not well described and this area of
caveolin research is fairly new but may hold promise for
defining novel functions of caveolin. During the last decade,
many patients with juvenile pulmonary arterial hypertension
and various lipodystrophy phenotypes were identified with
C-terminal Cav-1 mutations (Austin et al., 2012; Garg et al.,
2015; Schrauwen et al., 2015). Importantly, a heterozygous
frameshift mutation that leads to a premature stop codon and
truncation at amino acid 160 results in a neonatal progeria-
like phenotype (Schrauwen et al., 2015). The fibroblasts from
this patient show a near complete loss of Cav-1 expression,
suggesting an importance for caveolin in regulating “aging”
phenotypes in the cell.
The two main functions of the C-terminus were originally

described as: 1) membrane attachment (proximal third) and 2)
protein/protein interaction (distal third) (Razani et al., 1999;
Schlegel and Lisanti, 2000). Mutated caveolin (Cav-1 dC)
proteins show that the C-terminus is required for homo-
oligomers to interact (Li et al., 1998). Additionally, functional
Cav-1 is required to recruit Cav-2 to the membrane (Li et al.,
1998). Furthermore, the Cav-1 C-terminal region has been
described as interacting with both the N- and C-terminal
region specifically and is required for homo-oligomerization
(Song et al., 1997), and both the N- and C-terminus interact
with eNOS oxygenase domain (Ju et al., 1997). The C-terminal
region is important in conjunction with the scaffolding domain
to mediate endothelin B signaling (Yamaguchi et al., 2003). A
splice variant of caveolin-2 mRNA that was identified lacked
the C-terminal region. This variant localized to the endoplas-
mic reticulum, whereas the full version localized with Cav-1 to
the Golgi apparatus and plasma membrane, suggesting an
important role for the C-terminus in caveolin localization
(Kogo et al., 2002). There appears to be a gap in the literature
when it comes to assessing the structure of the C-terminal
region, and just recently, the C-terminal secondary structure
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of Cav-1 was described as helical using NMR spectroscopy
(Plucinsky and Glover, 2015). C-terminal tagging of ectopi-
cally expressed Cav-1 with fluorescence proteins (EGFP,
mCherry, and myc) showed enhanced aggregation and/or
degradation of a wild-type and mutant form, whereas the
endogenous forms remained mainly intact (Han et al., 2015).
Antibodies against the C-terminal domain are currently under
investigation for inhibiting Cav-1-mediated signaling in can-
cer cells (Kuo et al., 2012). Taken together, these studies imply
a crucial role for the C-terminal region of Cav-1 in signaling,
localization, and assembly of caveolin oligomers. Though
detailed mechanisms have not been worked out, a descrip-
tion of these C-terminal mutations identify a new region of
caveolin, one largely ignored, as a potential hot spot for
regulation of cell physiology critical to stress adaptation.
Caveolins can be post-translationally modified, though

limited insights exist regarding the physiologic consequence
of such modification. Caveolin was originally discovered as a
target of Src (Rothberg et al., 1992), which itself is a major
stress-regulated kinase. In the heart, studies in Cav-1 knock-
out mice suggest that Cav-1/Src interactions are critical to
adaptation to ischemic stress (Patel et al., 2007) and cell-cell
communication and arrhythmogenicity (Yang et al., 2014).
Cav-1 tyrosine 14 is the primary Src phosphorylation target
that has been implicated in focal adhesion and cancer biology
(Ortiz et al., 2016;Meng et al., 2017), endothelial cell signaling
in sepsis-induced lung injury (Jiao et al., 2013), regulation of
mechanotransduction (Zhang et al., 2007; Joshi et al., 2012),
and insulin signaling (Chen et al., 2008). Additionally,
caveolins can undergo S-nitrosylation, which is important in
the setting of oxidant stress. This may have implications for
acute cardiac ischemia (Sun et al., 2015), as well as the
structure of caveolin oligomers (Bakhshi et al., 2013) and
caveolae in pathophysiology. Limited information exists re-
garding modifications specific to Cav-3; however, it has been
suggested that in addition to S-nitrosylation (Sun et al., 2015),
Cav-3 may undergo SUMOylation leading to regulation of
GPCR and eNOS signaling (Fuhs and Insel, 2011).
In addition to potential membrane-specific changes related

to caveolin, caveolae and caveolin have become important
considerations in the regulation of mitochondrial structure
and function. Mitochondria, being major regulators of energy
homeostasis and regulators of stress signaling in the cell, are a
major control point for stress adaptation in the cell. In the
heart, caveolae are found in close proximity to mitochondria,
and stress induces a transfer of caveolin to the mitochondria,
leading to preserved mitochondrial structure and function in
response to injury (Fridolfsson et al., 2012). Such an observa-
tion was also seen in cancer cells and Caenorhabditis elegans
suggesting a potential generalized mechanism of caveolin
protection of mitochondria (Fridolfsson et al., 2012). Cav-1 has
also been described as a modulator of mitochondrial function
(Bosch et al., 2011; Asterholm et al., 2012), wherein decreased
Cav-1 expression led to mitochondrial cholesterol accumula-
tion (Bosch et al., 2011) and downregulation of mitochondrial
genes (Asterholm et al., 2012).
Recently, it was shown that in Cav-12/2 mouse embryonic

fibroblasts, cellular senescence, and mitochondrial dysfunc-
tion was observed. This was attributed to the p53-p21
pathway and the downregulation of cardiolipin. In regard
to mitochondrial function, respiration was decreased with
a reduced activity of complex I, inactivated SIRT1, and

decreasedNAD1/NADH ratios (Yu et al., 2017). From a cancer
perspective, the influence of Cav-1 on cell metabolism, mito-
chondrial function, glutaminolysis, fatty acidmetabolism, and
autophagy has been reviewed (Nwosu et al., 2016). In regard
to mitochondrial function, increased Cav-1 levels in tumor
cells increased mitochondrial number and respiration, mito-
chondrial reactive oxygen species, mitochondrial complex I-V,
Ca21-signaling, altered intracellular cholesterol flux, and
decreased apoptosis (Nwosu et al., 2016). Furthermore, Cav-
1 has been attributed roles in maintaining mitochondrial
integrity and function in the setting of increased free radicals
(Volonte et al., 2016). Knockdown of Cav-1 results inmetabolic
switching with decreased glycolytic intermediates, increased
fatty acids, and autophagy activation (Shiroto et al., 2014).
Furthermore, Cav-1 is downregulated in stromal fibroblasts,
which leads to accelerated epithelial breast cancer growth.
This has been termed reverse Warburg effect or “two-
compartment tumor metabolism,” in which the stromal
fibroblasts supply the tumor cells with metabolites (Salem
et al., 2012). Taken together these multiple roles for caveolin
in regulating mitochondrial dynamics seem to be a crucial to
cell fate and offer multiple sites for possible therapeutic
intervention. Nevertheless, the role of caveolin in end-
differentiated cells like cardiac myocytes and neurons is less
well described with respect to mitochondrial function and
warrants further investigation.

Conclusions
The study of caveolins/caveolae has come a long way since

the early structural description of caveolae over six decades
ago. Over this time our understanding has grown dramatically
from structure to function with a particular focus on the
caveolin proteins. What has emerged is an appreciation that
these proteins are indeed critical features of cells and act as
regulatory control points for cell adaptation to stress. The role
of caveolin proteins is readily apparent in terminally differ-
entiated cells such as cardiac myocytes and neurons, but
caveolins have important implications for proliferative cells as
well, such as smoothmuscle, fibroblast, glia, cancer, andmany
others. We can learn a lot from mutations in these proteins
and their impact on cell biology as well as the regulation of
intracellular structures by caveolin. What will likely fuel the
next six decades of research on caveolin is the use of cell-
specific knowledge that has and will be gathered and the
application of targeted therapeutics to modulate caveolin and
caveolin-specific pathways in precise ways to modulate dis-
ease manifestation and treatment.
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