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ABSTRACT OF THE DISSERTATION

DNA Methylation Based Biomarkers,

Imputation, and Prediction Algorithms

by

Kristen McGreevy

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2024

Professor Donatello Telesca, Chair

DNA methylation (DNAm) is commonly used to develop aging biomarkers such as predictors

of age, mortality risk, and blood cell counts. Challenges arise due to its high-dimensionality,

variability in cytosine-phosphate-guanine (CpG) loci coverage across different arrays, and mea-

suring the most relevant tissue DNAm. This dissertation introduces novel approaches to harness

DNAm data for biomarker development, imputation accuracy enhancement, and cross-tissue

prediction through three interconnected studies.

Because DNAm data are often high dimensional, they require regularized regression frame-

works to construct practical prediction models. In the first arm, I developed DNAm-based

biomarkers for fitness parameters, like maximum handgrip strength and VO2max, using regu-

larized linear regression. These biomarkers demonstrate significant associations with physical

activity across diverse groups, from individuals with low to intermediate activity levels to elite

athletes, showcasing their potential for evaluating the epigenetic impacts of physical fitness.

DNAm data has common missingness challenges, and my second arm presents tools that uti-

lize Copula models to enhance imputation accuracy. Unmeasured loci become problematic when

DNAm biomarkers require those methylation levels for their algorithm, however, DNAm data do

not commonly meet the underlying normality assumption needed for imputation tools. There-

fore, we developed algorithms that can improve DNAm imputation by transforming DNAm into

gaussian variables using their inherent distribution. While designed with DNAm in mind, our

algorithms extend to any continuous variable needing gaussian structure, offering a versatile

tool for all research projects.
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The final arm explores Transfer Learning (TL) methodologies to facilitate the prediction of

DNAm biomarkers across tissues, addressing the limitation of tissue accessibility in biomarker

development and measurement. By enabling the use of saliva DNAm to predict blood DNAm

biomarker values, this approach significantly broadens the scope of non-invasive epigenetic stud-

ies, providing researchers with robust algorithms for cross-tissue biomarker prediction and tools

for development of new biomarkers. In doing so, we demonstrate how information from other

tissues’ DNAm can enhance biomarker prediction, and provide guidelines for researchers to

implement our TL methods.

Collectively, this dissertation uncovers novel strategies for extracting valuable insights from

high-dimensional DNAm data, contributing new biomarkers for physical fitness, enhancing

DNAm imputation methods, and pioneering cross-tissue prediction algorithms. These offer sig-

nificant advancements integrating epigenetics with the biostatistics field, facilitating a deeper

understanding of DNAm and their implications for human health and aging.
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1 Introduction

Data sets with tens of thousands of samples and many times more variables are the new norm

to statisticians in the field of epigenetics. Many classical statistical methods can be readily

and robustly applied to these large data sets directly, such as epigenome-wide association stud-

ies (EWAS) for DNA methylation data. The idea is to evaluate a phenotypical trait against

genotypes one locus at a time, and then summarize findings after adjusting for multiple hypoth-

esis testing using, most commonly, false discovery rates (FDR) or Bonferroni correction [1, 2].

These methods have been effective in discovering associations between individual genotypes

and phenotypes, leading to numerous discoveries and remarks [3, 4]. In epigenetics, some of the

more data-driven multivariate models used in recent years include least absolute shrinkage and

selection operator (LASSO) or elastic net for DNA methylation data [5, 6, 7]. This proposal

will focus on DNA methylation data analyses. In later sections, I will address the statistical

methods that have been applied to DNA methylation data and different phenotypical traits and

outline future work that will compare and potentially improve these algorithms.

1.1 DNA methylation data

DNA methylation (DNAm) is an epigenetic modification of DNA which regulates gene expres-

sion and can be influenced by lifestyle and environmental factors. Methylation is the process

of attaching a methyl group (-CH3) to the cytosine (C) nucleotide in DNA. Scientists focus

on methylation at cytosine-phosphate-guanine (CpG) sites (or loci) because these methylation

patterns are retained as cells divide. The methylation process regulates gene expression without

modifying the DNA sequence by preventing transcription factors from binding to the DNA [8].

For example, your skin cells and kidney cells have the same DNA, but the way they express the

DNA makes the cellular type and function vastly different.

Researchers collect DNA methylation data by using bisulfite sequencing or a methylation

array. The methylation arrays are cheaper and efficiently cover a fraction of total CpG sites (∼

28 million) spanning the epigenome. For example, two of the most efficient and comprehensive

methylation arrays for the human genome, Illumina 450K array and EPIC v1 array, measure

around 450,000 and 860,000 CpG loci, respectively. At any one CpG site on any one strand

of DNA, the cytosine can be methylated or not, and arrays use 50 base pair (bp) probes
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complimentary to the target loci to detect methylation at each locus. These measurements are

referred to as methylation beta values and are commonly used because they can approximately

be interpreted as the percent methylated at each CpG site. Specifically, the beta value is the

ratio of the methylated intensity to the sum of methylated, unmethylated intensities, and a

constant α as an offset for stabilizing sites where both intensities are small [9],

βi =
max(yi,methy, 0)

max(yi,unmethy, 0) + max(yi,methy, 0) + α
. (1.1)

yi,methy is the methylated probe intensity and yi,unmethy the unmethylated probe for the ith

CpG site. The constant, α, is usually set to 100 [9].

By definition, beta values are always between 0 and 1. M-values are logit transformed betas

(log2(β/(1−β))), which take values from negative to positive infinity and are more homoscedas-

tic. However, this transformation to M-values does not make the distribution of methylation

values more gaussian. Instead, DNAm tend to be concentrated near 0 or 1, skewed, and/or mul-

timodal. The Beta distribution is commonly used to simulate methylation data because it has

support on (0, 1) and has a lot of flexibility. Software that simulates methylation data commonly

use this distribution and allow for bimodality [10]. Recently, the beta-binomial distribution has

also been proposed for use with DNAm data [11]. Therefore, it is commonly accepted that

methylation is not gaussian in nature and requires flexible frameworks for modeling. Additional

context around DNAm data distributions will be discussed in later sections.

1.2 DNAm Biomarkers

Hundreds of thousands of CpG sites across the genome change methylation states as organisms

grow older. This change means aging is reflected in DNAm, which has enabled the construction

of high-precision algorithms that predict age. These are collectively known as epigenetic clocks,

and a large body of literature demonstrates these clocks are associated with human mortality

risk [7, 12] and various age-related conditions [7, 13, 14]. The first DNAm-based age predictor

was built in 2011 using LASSO (least absolute shrinkage and selection operator) regression

from saliva [15]. It was later demonstrated that aging clocks could be built in almost all

human tissues. Horvath developed a multi-tissue human DNA methylation epigenetic clock

(DNAmAge) in 2012 which is a linear combination of 353 CpG sites and later become one of

the most widely recognized human epigenetic aging clocks [6]. Since then, epigenetic clocks have
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expanded into broader DNAm-based biomarkers which can estimate mortality risk [7], smoking

[7], and blood cell count [16], which also appear to reflect one’s biological age.

1.3 Biological Age

Aging is often manifested through the gradual and progressive deterioration across a variety

of organ systems- like decline in cardiovascular, metabolic, mental, immune, and pulmonary

systems [17]. Chronological age (CA) is a strong predictor of deterioration across systems,

however, it does not explain why two people of the same age and sex can have such different

aging phenotypes. Some people appear to age faster than others; they have earlier onset of

diseases, frailty, or die at a younger chronological age. Conversely, lifestyle choices, such as

a healthy diet and exercise are known to increase healthspan and slow the decline in some

organ systems [18, 19]. Chronological age fails as an aging biomarker because it merely reflects

the passage of time. Biological age (BA), however, reflects the underlying biological processes

of aging captured through molecular and cellular changes. Therefore, measures of BA should

be stronger predictors of age-related phenotypes than CA and distinguish people of the same

chronological age but with different aging phenotypes.

Biological age does not have a gold standard metric for measuring it. Instead, BA is a latent

variable, and we derive estimates of BA using observable variables that (we believe) relate to the

biological process of aging. Some biological age indicators use DNAm, some use physiological

tests, and others use plasma proteins to provide insight to the biological aging process.
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2 DNAm Fitness Biomarkers and DNAmFitAge, a Biological

Age Indicator Incorporating Physical Fitness

In this section I describe the first arm of my research, which entails developing DNAm biomark-

ers of fitness parameters and incorporating them into an estimate of biological age. This research

corresponds to a manuscript published in Aging Albany titled “DNAmFitAge: Biological Age

Indicator Incorporating Physical Fitness” [20].

2.1 Motivation

Physical fitness declines with aging and is well known to correlate to health [21]. This decline is

evident in reduced function in specific organs, like lungs [22], and in performance tests of strength

[23] or aerobic capacity [24]. The rate of this decline varies between individuals [18, 25], and

those who preserve physical fitness as they age are at lower risk for a range of diseases and tend

to live longer lives [18, 19, 26]. At the molecular level, changes in fitness and related indices

of functional capacity correlate with changes in molecular signs of decline thought to reflect

underlying biological processes of aging [27]. Measures of fitness may therefore provide a new

window into biological aging [28]. However, fitness measurements are not possible for studies

with remote data collection or those conducted with stored biospecimens. To enable such studies

to quantify fitness, I developed blood based DNAm biomarkers of fitness parameters spanning

mobility, strength, lung function, and cardiovascular fitness and use these to construct a novel

indicator of fitness-based biological age, DNAmFitAge.

Multiple lines of evidence support a focus on DNAm to develop biomarkers of fitness. First,

prediction of aging-related morbidity, disability, and mortality by DNAm biomarkers is en-

hanced by the incorporation of physiological data into prediction algorithms [7, 12, 17]. This

suggests utility in including physical fitness in DNAm biomarkers, however, current DNAm

biomarkers do not use fitness parameters in their construction. Second, there is emerging evi-

dence that epigenetic clocks are sensitive to lifestyle factors [29], individual differences in fitness

parameters are reflected in DNAm data [30, 31], and blood DNAm differs between athletes and

controls [32]. Therefore, a growing body of evidence suggests blood DNAm carries information

related to physical fitness, but it was unknown if fitness parameters could be estimated using

4



blood DNAm levels.

I develop blood DNAm biomarkers of four fitness parameters: gait speed (walking speed),

maximum handgrip strength, forced expiratory volume in 1 second (FEV1; an index of lung

function), and maximal oxygen uptake (VO2max; a measure of cardiorespiratory fitness). These

parameters were chosen because handgrip strength and VO2max provide insight into the two

main categories of fitness: strength and endurance [33], and gait speed and FEV1 provide

insight into fitness-related organ function: mobility and lung function [26, 34]. Furthermore,

each parameter is known to be associated with aging, mortality, and disease [26, 34]. The newly

constructed DNAm biomarkers provide researchers a new method to incorporate physical fitness

into epigenetic clocks and emphasizes the effect lifestyle has on the aging methylome.

2.2 Methods

2.2.1 LASSO Penalized Regression for DNAm Fitness Biomarkers

I used blood DNAm data from three datasets, Framingham Heart Study Offspring cohort (FHS,

n=1830), Baltimore Longitudinal Study on Aging (BLSA, n=820), and novel data (Budapest,

n=307) to develop the DNAm biomarkers of fitness parameters. In short, the FHS cohort is a

cardiovascular study which followed adults from Massachusetts starting in 1948 [35]. The BLSA

cohort began in 1958 studying healthy adults and the aging process [36]. Finally, Budapest is

a smaller study (n=307) measuring physical fitness and DNA methylation in middle to older

aged adults, some of whom are current or former rowing athletes. Dataset harmonization was

performed to join multiple datasets when variables were on different scales following previously

developed methods [37]. In brief, datasets were rescaled to have the same mean and standard

deviation for each fitness parameter by recentering and multiplying by the ratio of standard

deviations.

I developed DNAm biomarkers for four fitness parameters: gait speed, maximum handgrip

strength (Gripmax), forced expiratory volume in 1 second (FEV1), and maximal oxygen uptake

(VO2max). Gait speed, also known as walking speed, is measured in meters per second. Maxi-

mum hand grip strength is a measurement of force taken in kg. FEV1 measures lung function;

it is the amount of air forced from the lungs in one second, measured in liters. VO2max is a

measure of cardiovascular health and aerobic endurance [24]. It measures the volume of oxygen

the body processes during incremental exercise in milliliters used in one minute of exercise per

5



kilogram of body weight (mL/kg/min). VO2max has been regarded as the best indicator of an

athlete’s physical capacity and is the international standard of physical capacity [38].

Each fitness DNAm biomarker was developed using least absolute shrinkage and selection

operator (LASSO) penalized regression with 10-fold cross validation in which the fitness pa-

rameters were dependent variables and independent variables were either (1) DNAm levels at

cytosine-phosphate-guanines (CpG) sites and chronological age or (2) DNAm levels at CpG sites

only. Removing age as a potential variable for selection in LASSO was performed to remedy

high collinearity discovered among these DNAm biomarkers when constructing DNAmFitAge.

The LASSO-regression method uses an l1 penalty on a standard multiple linear regression that

shrinks each coefficient towards zero [39]. Specifically, LASSO minimizes with respect to β,

∥y −Xβ∥2 + λ∥β∥1 (2.1)

where y is the n× 1 vector of a fitness parameter, X is the n× p matrix of methylation values

at p CpG loci, β is the coefficient vector of all p features, and λ is a tuning parameter for the

shrinkage. An optimal λ was chosen using the 10-fold cross validation process.

LASSO is more effective than Ridge (l2 penalty) [40] and elastic net (mixture of l1 and l2

penalty) [41] when handling many irrelevant predictors and yields a smaller number of predictors

in the final model because coefficients are shrunk to 0. Models were fit separately for men

and women in the case of gait speed, gripmax, and FEV1 to select for sex specific CpG loci

that reflect gender variation in fitness. When it came to building the biomarker for VO2max,

stratifying by sex was not feasible due to the smaller sample size. This forced us to choose

between using sex as a covariate or omitting sex and trusting LASSO to select X chromosome

markers that best signify differences between males and females. We chose the latter, and it did.

The selected covariates and estimated coefficients were then used as a prediction algorithm for

each fitness parameter. I refer to the predicted fitness parameters generated by these algorithms

as DNAmGaitspeed, DNAmGripmax, DNAmFEV1, and DNAmVO2max.

2.2.2 DNAmFitAge Construction via Klemera Doubal Method

DNAmFitAge is an indicator of biological age which is constructed separately for males and

females using four DNAm variables: three of the DNAm fitness biomarkers: DNAmGripmax,

DNAmGaitSpeed, and DNAmVO2max, and DNAmGrimAge, a biomarker of mortality risk [7].

6



DNAmGrimAge is formed from multiple DNAm biomarkers, including seven plasma proteins

and smoking pack years. Including DNAmGrimAge allows DNAmFitAge to be a well-rounded

biological age indicator that captures multiple facets of aging, not just facets related to physical

fitness. Models including DNAmFEV1 as a fifth variable were explored, however no improve-

ment in association to physical activity or age-related outcomes were observed; the parsimonious

DNAmFitAge model using a subset of the DNAm fitness biomarkers was therefore chosen.

I constructed DNAmFitAge following the methods proposed by Klemera and Doubal [42] for

constructing estimates of biological age. The Klemera-Doubal model framework stipulates there

exists an underlying trait which is unobserved (biological age) which relates to an observable

trait (chronological age) and a set of additional variables (DNAm biomarkers). This framework

posits biological age is centered on chronological age with additional noise. The linear relation-

ship between chronological age and each DNAm biomarker is used to estimate the relationship

between biological age and the DNAm biomarker. Weighted least squares combines the stan-

dardized variables into a biological age estimate where the weights are formed from correlations

of each variable with chronological age.

Let bj be jth biomarker of interest from j = 1, . . . , 4 (DNAmGaitSpeed, DNAmGripmax,

DNAmVO2max, DNAmGrimAge). The correlation between bj and chronological age is rj and

the linear relationship bj has with chronological age is

bj = α0j + α1j ×Age (2.2)

where α0j is the intercept and α1j is the slope. For the ith observation, DNAmFitAge is

calculated as a weighted sum:

DNAmFitAgei =
4∑

j=1

wj
bij − α0j

α1j
(2.3)

where wj is the weight of each DNAm biomarker based on its strength of relationship with

chronological age. Specifically,

wj =

r2j
1−r2j∑4

k=1
r2k

1−r2k

. (2.4)

I estimate all parameters (α0, α1, r) using the harmonized FHS and BLSA training dataset.

7



Therefore, the only component that is different for each person’s estimated DNAmFitAge is the

DNAm biomarker values.

Finally, I created FitAgeAcceleration, the age-adjusted estimate of DNAmFitAge formed

from taking the residuals after regressing DNAmFitAge onto chronological age. As such,

FitAgeAcceleration is uncorrelated with chronological age. FitAgeAcceleration provides an

estimate of epigenetic age acceleration, ie how much older or younger a person’s estimated bio-

logical age is from expected chronological age. A positive FitAgeAcceleration means biological

age is estimated to be older than chronological age. A negative FitAgeAcceleration means bi-

ological age is estimated to be younger than chronological age, which is the preferred outcome

for a person.

DNAmFitAge and FitAgeAcceleration are novel DNAm biomarkers incorporating mortality

risk with strength, mobility, and cardiovascular fitness.

2.3 Validation

Validation of the DNAm fitness biomarkers and DNAmFitAge consisted of multiple steps across

five independent datasets. First, I correlated DNAm biomarker values with direct measurements

of the fitness parameters and correlated DNAmFitAge with chronological age. In cases where

direct measurement of a fitness parameter was not included in a validation dataset, substi-

tutions were selected. Strong correlation between DNAm fitness biomarkers and true fitness

parameters indicate the strength of a surrogate DNAm marker in estimating the fitness value.

The Klemera Doubal modeling framework posits biological age is centered on chronological age,

therefore validation datasets should demonstrate good correlation and general centeredness be-

tween DNAmFitAge and chronological age. Second, I test the association of DNAm biomarkers

to aging-related variables. The DNAm biomarkers provide insight to the aging process through

a fitness paradigm, therefore they should relate to aging-related phenotypes. Third, I test the

relationship of DNAm biomarkers to physical activity and athlete status to demonstrate these

biomarkers do capture fitness.

I combine results across validation studies using fixed effect models or Stouffer’s meta anal-

ysis method. Fixed effect models use the inverse variance to weight estimates, and Stouffer’s

method uses the square root of the sample size to weight estimates. The latter is used when

harmonization across cohorts was challenging; such as with physical activity variables, the num-

ber of age-related conditions, disease free status, and age at menopause. Forest plots evaluating

8



FitAgeAcceleration hazard ratios or coefficients in models adjusted for age and sex are displayed

in Figure 2.3 and Supplemental Table B.4. We perform a test of heterogeneity for coefficients

across datasets using Cochran Q test for fixed effect models; p-values are displayed as Het. P.

Validation relationships evaluating error are presented in Supplemental Table B.1.

Detailed descriptions of each validation dataset are provided in the appendix A.2.

2.3.1 Correlations

I calculate Pearson’s correlation between the DNAm fitness biomarkers and fitness parameters

in validation datasets to understand how well the DNAm fitness surrogates estimate the true

fitness parameters. The DNAm fitness biomarkers had modest correlation with direct fitness

parameters. Average correlations across validation datasets ranged from 0.16-0.48 (Figure 2.1,

Table 2.1). Correlation of DNAmVO2max to VO2max in CALERIE, the one validation dataset

with the same direct fitness parameter, has good correlation overall and within sex (overall

R=0.55, female R=0.19, male R=0.47).

DNAmFitAge had strong correlation to chronological age in validation datasets. The average

Pearson r between DNAmFitAge and chronological age across validation datasets was 0.77

(Figure 2.2), and the lower correlation in LBC1921 (r=0.38) and LBC1936 (r=0.68) can be

attributed to the small age range they cover. LBC1921 ages ranged from 77 to 90 and LBC1936

ages ranged from 67 to 80. The average r excluding LBC cohorts was 0.92. In addition,

each validation dataset had low median absolute deviation (median of the absolute difference

from chronological age to biological age) ranging from 2.3 to 4.9 years (Supplemental Table 3).

Reproducibility across a wide span of ages (21 in CALERIE to 100 in InChianti) demonstrate

DNAmFitAge’s calibration across a wide adult age range.

2.3.2 Age-related Phenotypes

I tested DNAm fitness biomarker and DNAmFitAge associations to multiple aging-related vari-

ables in validation datasets. Specifically, I conducted regression analysis for time-to-death,

time-to-coronary-heart-disease (CHD), the count of age-related conditions (arthritis, cataract,

cancer, CHD, CHF, emphysema, glaucoma, lipid condition, osteoporosis, and type 2 diabetes),

age at menopause, cancer, hypertension, type-2 diabetes, and disease-free status. Time-to-event

outcomes were analyzed using Cox regression to estimate hazard ratios (HR); continuous out-

comes were analyzed using linear regression to estimate slopes; dichotomous outcomes were

9



Figure 2.1: Scatterplots of DNAm fitness biomarker models versus true values in test datasets.
Pink indicates females, and blue indicates males. When original variables were unavailable,
best alternative variables are plotted against the DNAm fitness estimates. Each panel
corresponds to the performance of one DNAm-based model built with chronological age across
test datasets displayed with Pearson correlation and p-values. (A) DNAmGaitspeed with
performance in InChianti dataset displayed, (B) DNAmGripmax with performance in WHI
dataset, (C) DNAmFEV1, (D) DNAmVO2max. (A-C) (DNAmGaitspeed, DNAmGripmax,
and DNAmFEV1) were built in each sex separately while (D) (DNAmVO2max) was built in
both sexes jointly.
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Figure 2.2: Scatterplots of DNAmFitAge versus age separated by sex. Pink indicates females,
and blue indicates males. (A-F) Each panel corresponds to the performance of DNAmFitAge
in one validation dataset displayed with Pearson correlation to chronological age and
corresponding p-values. DNAmFitAge models applied to the same sex it was built in (ie
DNAmFitAge built for females tested in females and DNAmFitAge built for males tested in
males). DNAmFitAge is centered on chronological age with high correlation across all test
sets.
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analyzed using logistic regression to estimate odds ratios (OR); and ordinal outcomes were an-

alyzed using multinomial regression to estimate OR. Some of our cohorts (InChianti, LBC1921,

and LBC1936) involved longitudinal measures. In these cases, linear regression models with

person-level random intercepts were implemented in R using the lmer function to adjust for

correlation within the same individual.

All DNAm fitness biomarkers are individually predictive of mortality and disease-free status,

and some are predictive of type 2 diabetes status and number of comorbidities in the validation

datasets. After controlling for age and sex, higher (or more fit) values of DNAmGaitspeed (p =

1.1E-10), DNAmGripmax (p = 2.6E-9), DNAmFEV1 (p = 2.2E-20), and DNAmVO2max (p =

0.003) are associated with decreasing mortality risk (Supplementary Figure B.1). For example,

on average, every 1 kg stronger DNAmGripmax is has an associated 5% decrease in mortality

risk compared to a person of the same age and sex (hazard ratio = 0.95, confidence interval =

[0.93, 0.96]). DNAmGaitspeed and DNAmFEV1 are both predictive of type 2 diabetes status

(p=0.0013, p=0.0032) and number of comorbidities (p=0.0004, p=4E-12). Stronger values of

any DNAm fitness biomarkers are associated with disease-free status.

I find that the age-adjusted version of FitAge, FitAgeAcceleration, is a significant predictor

of mortality risk (all cause mortality), coronary heart disease, and other age-related conditions.

Cox Proportional Hazard models demonstrated FitAgeAcceleration is a strong predictor for

time-to-death (p=7.2E-51) and time-to-coronary heart disease (p=2.6E-8). FitAgeAcceleration

had an overall hazard ratio of 1.07 (1.06, 1.08) (Figure 2.3). Thus, a FitAgeAcceleration value

of 10 years was associated with almost doubling the mortality risk compared to the average

person of the same age and sex (1.0710 = 1.97 risk). Similarly, an increase in FitAgeAcceler-

ation corresponds to more comorbidities (p=9.0E-9), hypertension (p=8.7E-5), and earlier age

at menopause (p=6.6E-9) (Figure 2.3, Supplemental Table 4). A lower FitAgeAcceleration was

associated with disease free status (p= 1.1E-7) and lower cholesterol (p=0.0005) (Supplemental

Table 4). FitAgeAcceleration is additionally informative for mortality risk beyond the infor-

mation captured with AgeAccelGrim (Age adjusted DNAmGrimAge) in JHS females and in

InChianti males and females when comparing LRT p-values (Supplemental Table B.5). Our re-

sults indicate FitAgeAcceleration is informative for mortality risk and may act as a supplement

(not replacement) to AgeAccelGrim.

Each of these associations were in the expected direction, as someone who had a low

FitAgeAcceleration had a biological age estimate that was younger than their chronological

13



Figure 2.3: Meta-analysis forest plots for FitAgeAcceleration to age-related conditions
adjusted for age and sex. Each panel reports a meta analysis forest plot for combining hazard
ratios or regression coefficients across dataset cohorts. (A) Time-to-death with number of
events, (B) time-to-coronary heart disease with number of events, (C) type 2 diabetes, (D)
comorbidity count, and (E) disease free status. Meta-analysis p-values are displayed in the
header of each panel, and test of heterogeneity Cochran Q test p-value (Het. P) are displayed
for fixed effect models. Fixed effects models were used for (A-C) and Stouffer’s method was
used for (D, E).

age. Hence, people whose DNAm predicted them to be more ’physically fit’ than their chrono-

logical age would suggest had better age-related outcomes. These relationships demonstrate

epigenetic age acceleration can be well explained through DNAm fitness parameter biomarkers,

and that FitAgeAcceleration provides a practical tool for relating fitness to the aging process.

2.3.3 Physical Activity and Athlete Status

The DNAm fitness biomarkers and DNAmFitAge incorporate physical activity into epigenetic

clocks, therefore, they should relate to physical activity and athlete status. I test for associations

across a range of fitness levels including people with low to intermediate physical activity, long-

term rowing athletes (current and former), and body builders.

Low to Intermediate Physical Activity

I used linear regression to test for associations between physical activity or physical function-

ing in low to intermediate physically fit individuals with DNAm fitness parameter biomarkers

and FitAgeAcceleration in the validation datasets. I restricted our analysis to people of low

to intermediate fitness to determine if FitAgeAcceleration is sensitive to small improvements

14



Table 2.2: Reference DNAm Fitness Parameter Values for Fit (FitAge Acceleration
≤ −5 yrs) and Unfit (FitAge Acceleration ≥ +5 yrs) Individuals

Females

DNAmGaitspeed DNAmGripmax DNAmVO2max DNAmGrimAge
Age Fit Unfit Fit Unfit Fit Unfit Fit Unfit

<40 2.1 2.0 34.6 30.5 42.8 40.1 37.1 40.9
40-59 1.9 1.7 31.3 26.9 39.2 37.9 49.2 60.5
60-79 1.7 1.5 28.8 22.4 37.6 36.1 63.2 72.4
80+ 1.6 1.3 23.9 19.1 37.0 35.4 74.7 81.8

Males

DNAmGaitspeed DNAmGripmax DNAmVO2max DNAmGrimAge
Age Fit Unfit Fit Unfit Fit Unfit Fit Unfit

<40 2.1 1.8 49.3 43.8 45.1 44.9 34.8 52.9
40-59 1.9 1.7 46.6 42.5 43.9 42.3 47.5 60.1
60-79 1.7 1.5 41.3 36.8 43.1 39.5 68.0 77.9
80+ 1.6 1.3 39.3 32.0 41.3 37.7 78.0 86.7

in fitness. In addition, this separation captures low to average physically active individuals in

each dataset. LBC1921, LBC1936, and JHS measure physical activity, and WHI and InChianti

measure physical functioning. Higher values of any variable indicate more activity or better

physical functioning.

FitAgeAcceleration, DNAmGaitspeed, DNAmGripmax, and DNAmFEV1 have associations

in the expected direction with physical activity in low to intermediate physically active individ-

uals. Coefficients indicate the effect on physical activity for a one unit increase in each DNAm

fitness biomarker after adjusting for chronological age within each sex (Table 2.3, Figure 2.4).

The relationship to DNAmFitAge is as expected; someone with a higher FitAgeAcceleration

has an estimated biological age that is older than expected, which corresponds to lower physical

activity or physical functioning (Table 2.2). Similarly, men and women with a faster DNAm-

Gaitspeed, stronger DNAmGripmax, and larger DNAmFEV1 are more physically active when

holding age constant. In conclusion, men and women who were more active showed correspond-

ingly ‘fitter’ values of FitAgeAcceleration and the DNAm fitness biomarkers.

Rowing Athletes

I evaluated whether DNAm fitness biomarkers and DNAmFitAge were able to distinguish

athletes from controls across two independent studies using Kruskal Wallis tests. The Budapest

study is a small, novel study (n=307) measuring physical fitness and DNA methylation in

middle to older aged adults, some of whom are current or former athletes. The athletes (n=83

females, n=110 males) previously participated in the World Rowing Masters Regatta in Velence,
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Figure 2.4: Meta-analysis forest plots for DNAmFitAge and DNAm fitness parameters
relationship to physical activity or physical functioning in people with low to intermediate
physical activity. Each panel reports the Stouffer’s meta-analysis p-value for combining
coefficients across dataset cohorts after adjusting for chronological age. (A) DNAmFitAge,
(B) DNAmGaitspeed, (C) DNAmGripmax, (D) DNAmFEV1, and (E) DNAmVO2max.
DNAmFitAge, DNAmGaitSpeed, DNAmGripmax, and DNAmFEV1 are predictive of
physical activity in low to intermediate physically active individuals.

Hungary. We use the age-adjusted DNAm variables (such as FitAgeAcceleration) to remove the

age effect seen between groups. The Polish Study is a small, novel study (n=416) measuring

blood DNA methylation and lifestyle behaviors in Polish body builders and similar aged healthy

controls ranging from 17 to 56 years of age (Kruskal wallis p-value ¿ 0.05). There were a total of

66 male body builders and 30 female body builders. Because of the small sample size in females,

we restricted the analysis to males only, which decreases the sample size to 215 individuals total,

149 male controls and 66 male body builders. Both groups reported the number of years they

regularly trained, the average number of intensity trainings they participated in per week, and

88 total participants reported supplements or drugs they are taking. Kruskal Wallis tests are

reported for physical fitness parameters to provide a reference for the DNAm fitness biomarkers.

All the DNAm fitness biomarkers can distinguish trained from untrained females in the Bu-

dapest study but only DNAmVO2max distinguishes fitness grouping in males. We hypothesize

the DNAm fitness biomarkers could not detect differences in the male fitness groups because

the true physical fitness parameters are not very distinct between the male groups (relative

gripmax p=0.252 and jumpmax p=0.015). FitAgeAcceleration distinguishes male and female

athletes from controls in the Budapest study better than the other epigenetic clocks. FitAge
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Acceleration is 2.7 years younger on average in trained females compared to untrained females

(p=1.7E-7), and FitAgeAcceleration is 2.3 years younger on average in trained males compared

to untrained males (p=0.0002). AgeAccelGrim and AgeAccelPheno estimate younger values

in the trained groups of males and females, but only GrimAge is significant in females (p =

0.019). Furthermore, the differences observed between female fitness groups with GrimAge and

PhenoAge Acceleration have smaller magnitudes than FitAgeAcceleration. Therefore, trained

females and trained males are estimated to be 2.7 and 2.3 years biologically younger on average

than their untrained counterparts, suggesting regular physical exercise is protective to biological

age in males and females.

Male Body Builders

In the Polish study, male body builders are estimated to be biologically younger and more

physically fit compared to male controls of the same age. On average, DNAmFitAge is 2.74

years younger in male body builders compared to controls (p=0.041), and DNAmVO2max is 0.4

mL/kg/sec better in male body builders (p=0.023) (Table 2.4). FitAge Acceleration (p=0.080),

DNAmGaitspeed (p=0.055), and DNAmGripmax (p=0.075) are suggestive of having improve-

ment in male body builders, however they were not significant at the 0.05 level. Boxplots

displaying the spread of DNAmFitAge, DNAmVO2max, FitAge Acceleration, and DNAmGait-

speed between body builders and controls are presented in Figure 2.5. Male body builders have

5.4 more years of regular training (p=2.6E-6) and 1.1 more training sessions per week (p=9.4E-

7) compared to male controls on average, and the DNAmFitAge and DNAmVO2max results

correspond to male body builders being estimated as more physically fit, as expected. Our

promising results in male body builders show a physically fit lifestyle corresponds to biological

aging benefits that can be captured with our new DNAm fitness biomarkers and DNAmFitAge.

I evaluate whether dietary supplement use can explain the improvement in DNAmFitAge or

DNAmVO2max in male body builders in the appendix A.3, accompanying Supplemental Table

B.2.

2.4 Discussion

DNAm biomarkers have been constructed for blood cell count [16], age [6, 43], smoking [7],

and more, however, there were not yet DNAm biomarkers for fitness parameters. Our work

introduces new DNAm biomarkers for the fitness parameters of maximum handgrip strength,

gait speed, FEV1, and VO2max. These DNAm biomarkers represent new tools for researchers
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Table 2.4: Comparison between Male Controls and Body Builders in Polish Study

Mean
Control

Mean
Body Builder

Control -
Body Builder

Kruskal Wallis
p-value

(n=149) (n=66)

Intensity trainings per week 3.0 4.1 -1.1 9.43E-07
Years regular training 6.6 12.0 -5.4 2.61E-06
DNAmFitAge 41.1 38.4 2.74 0.041
DNAmVO2max 44.0 44.4 -0.40 0.023
FitAgeAcceleration 0.15 -0.56 0.72 0.080
DNAmGaitspeed w/o Age 1.99 2.02 -0.03 0.055
DNAmGripmax w/o Age 46.5 47.2 -0.69 0.075
DNAmFEV1 3.82 3.87 -0.05 0.199
DNAmGrimAge 44.1 41.8 2.24 0.063
DNAmPhenoAge 26.7 24.7 2.01 0.181
DNAmPAI1 19033 18238 795 0.009
DNAmGDF15 701.8 680.4 21.4 0.447

Figure 2.5: Boxplots showing spread of DNAm biomarkers between male controls (n=149) and
male body builders (n=66) in the Polish Study. (A) DNAmFitAge is younger on average in
the male body builders, (B) DNAmVO2max is fitter on average in the male body builders,
(C) FitAge Acceleration and (D) DNAmGaitspeed are suggestively improved in body builders
but not significantly different at 0.05.
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interested in studying the epigenetic components to physical fitness.

DNAm biomarkers have been improved by incorporating phenotypic information [7, 12],

however, DNAm biomarkers had not yet incorporated physical fitness. DNAmFitAge provides

researchers a novel indicator of biological age which combines physical fitness and epigenetic

health. This biomarker integrates the established DNAm prediction of mortality risk (DNAm-

GrimAge) with the newly developed DNAm predictions of fitness. Higher values of DNAm-

Gaitspeed, DNAmGripmax, DNAmFEV1, and DNAmVO2max, which reflect greater physical

fitness, correspond to younger estimated biological ages in men and women. We demonstrate

physically fit lifestyles have younger biological ages and fitter DNAm fitness biomarkers, which

we observe in people of low to intermediate physical activity levels across five large-scale val-

idation datasets and in male body builders who have intense, athletic exercise regimes. Fur-

thermore, FitAgeAcceleration is strongly associated with a host of age-related conditions and

predicts time-to-death and time-to-CHD across validation datasets. FitAgeAcceleration pro-

vides a novel measure of epigenetic age acceleration that is expected to be particularly sensitive

to exercise interventions.

We acknowledge the following limitations. First, the DNAm fitness parameter biomarkers

lead to only modest improvement to estimate fitness parameters after including age and sex as

covariates in validation datasets. This reflects the relatively weak signal present in blood for

fitness parameters. Because of the biomarkers’ limited correlation, DNAm fitness biomarkers

should not replace true fitness parameters. Instead, the main benefit of our biomarkers is that

they show blood epigenetic changes accompany physical fitness. These biomarkers advance the

molecular understanding of exercise benefits, which we hypothesize to be most pronounced in

athletic populations as illustrated in our analysis of body builders. The male body builders had

a mean 2.7 year reduction in DNAmFitAge compared to controls, whereas the intermediate

physically active people had at most a mean 0.33 year reduction in DNAmFitAge (WHI).

Second, our DNAmVO2max biomarker was only validated in one dataset with VO2max; more

research is needed to evaluate how our DNAmVO2max biomarker performs across a range of

independent datasets.

Overall, DNAmGaitspeed, DNAmGripmax, DNAmFEV1, DNAmVO2max, and DNAm-

FitAge provide epigenetic components to evaluating a person’s physical fitness. Physically fit

people have a younger DNAmFitAge and younger FitAgeAcceleration, and younger values are

associated with more physical activity and better age-related outcomes. Our research suggests
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exercise and stronger fitness parameters are protective to DNAmFitAge in both sexes. We

expect DNAmFitAge will be a useful biomarker for quantifying fitness benefits at an epigenetic

level and can be used to evaluate exercise-based interventions.
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3 Pseudo Copula Transformations for Large Scale Missing Data

Imputation of Methylation Data

3.1 Motivation

As described in more detail in Section 1.1, DNA methylation data is measured using arrays and

beta values can summarize the percent methylated at each CpG locus [9]. DNAm tend to arise

from heterogeneous marginal distributions and both the beta distribution [10] and beta-binomial

distribution [11] are commonly used for simulating DNAm data. For example, they are often

concentrated near 0 or 1, skewed, and/or multimodal. Therefore, it is commonly accepted that

methylation is not Gaussian in nature and requires flexible frameworks for modeling, however

many statistical tools are built on the basis of Gaussian residuals which has limited the proper

application of statistical tools to DNAm data. Furthermore, the transformation from beta to

M-values may not result in a transformed margin that is close to Gaussian.

Missing DNAm & Imputation

Missing or poorly measured DNAm values commonly occur in samples from multiple factors.

One reason is due to the presence of single nucleotide polymorphisms (SNPs), which can affect

the hybridization of the probe to the DNA and cause inaccurate measurement of the DNAm

value. Another factor is the large volume of measurements that need to be processed, which can

result in technical errors, inconsistencies, and poor probe detection. Finally, different DNAm

arrays measure different sets of CpG sites, which can cause missing values when comparing

samples across arrays. Ignoring poor reads or missing values will increase the noise in the study,

so it is important to fill in missing DNAm values (imputation) before downstream analyses.

For example, methylation-based biomarkers use beta values from a limited number of CpG

sites across the human genome to construct their estimates. Hannum developed an age predictor

based on 71 CpG markers from the whole blood tissue [43] and Horvath’s model is a multi-tissue

predictor relying on 353 CpGs markers [6]. Given the limited set of markers considered by

these and other epigenetic clocks [20], the estimation accuracy is crucially dependent on the

availability of the methylation levels for all the selected CpGs. Furthermore, it has been shown

that imputing probes that are absent from the EPIC array but present in the 450K or 27K
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Beta Scale Empirical CDF Transform Gaussian Copula Transform

Figure 3.1: Transforming bimodal CpG loci into Gaussian variables using empirical CDFs and
a Gaussian copula.

arrays lead to underestimation of published ageing measures [44].

Most imputation tools are not explicitly built for DNAm data; they require error normality

and DNAm data is not Gaussian in nature. Imputation tools that are designed specifically for

DNAm data, such as the R package methyLImp, similarly assume error normality. Therefore,

there is an unmet need to align the imputation tools with the inherent structure of DNAm data.

3.1.1 Copulas

Copulas are flexible multivariate models used to represent the dependence between random

variables. The name copula comes from the latin word “link” introduced by Abe Sklar who

developed the theoretical foundation for copulas [45]. This technique allows one to model the

multivariate joint distribution among d variables using a well-defined distribution through a link

function which doesn’t require specifying the marginal distributions of the d variables. Today,

Copula models are commonly used in quantitative finance [46] and high-dimensional statistical

applications to model relationships between random variables. However, copula applications to

bioinformatics have largely been ignored.

Copulas allow one to easily model and estimate the distribution of random vectors by es-

timating marginals and copulae separately and linking them through a transformation. This

transformation is based on Sklar’s theorem [45], where every continuous multivariate cumulative

distribution function (CDF), H(x1, . . . , xd) = Pr(X1 ≤ x1, . . . , Xd ≤ xd) can be expressed by

its marginals, Fi(xi) = Pr(Xi ≤ xi) and a Copula link function, C such that

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (3.1)

23



and when the density h exists,

h(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)). (3.2)

The Gaussian copula specifies an elliptical dependence structure through the variance-covariance

matrix, which is commonly assumed in statistical procedures. There are different copula fam-

ilies and many parametric copula families which vary parameters to control the strength of

dependence.

We leverage the separation of distribution margins and joint distributions through copulas to

transform DNAm to Gaussian variables for use in statistical procedures. For each CpG site, we

estimate the smoothed empirical CDF and inverse CDF. Then, we use these to transform each

CpG into a normally distributed variable and impute missing values in this transformed space

using popular imputation tools. Once values are imputed, we backtransform imputed values

to the original beta scale. An example of a transformation converting a bimodal CpG locus

into a Gaussian variable using the empircal CDF (F) and Gaussian copula (C) is provided in

Figure 3.1. On the original Beta scale, bimodality may lead to complex patterns of dependence,

which are potentially difficult to exploit for missing data imputation. Using a data-adaptive

empirical CDF transform combined with a Gaussian Copula, we obtain patterns of dependence

that follow a more familiar elliptically symmetric distribution.

Here, we develop an algorithm that transforms DNAm data into a Gaussian space using

copulas to meet the statistical assumptions required for imputation and common statistical

procedures and returns DNAm values on the original data scale for ease of interpretation. We

demonstrate the use of our algorithm by imputing missing DNAm values.

In the following sections, we delineate the methodology and the multifarious aspects inherent

to our algorithm. In the ”Methods” section, we discuss the studies involved, articulate how we

learn DNAm missingness patterns, and describe the process of mimicking this missingness for

imputation analysis. This section will also detail the various methods we employ for imputation,

share the specifics of our copula transformation algorithm, and explore the evaluations made to

ascertain the efficacy of the imputation methods used. The subsequent ”Results” section will

focus on how our algorithm maintains the original distribution of the DNAm data and will shed

light on the computational demands required, along with a comparative discussion on preferred

imputation tools based on our findings. We will provide insights into the practicality and reli-
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ability of the established methods, laying a comprehensive groundwork for understanding the

operational intricacies and outcomes of our algorithm. Finally, the ”Discussion” section encap-

sulates the benefits of our proposed method, along with an honest discourse on its limitations.

We discuss how researchers in the field can integrate this method into their work, emphasizing

the accessibility and adaptability of our open-source pipeline. We aim to provide a holistic view

of our contributions, positioning them within the broader context of DNAm data analysis and

highlighting the potential implications and applications in various scientific domains.

3.2 Methods

3.2.1 Datasets

CALERIE

Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE)

was a Phase 2 clinical trial studying young and middle-aged non-obese healthy adults [47]. CA-

LERIE is the first clinical trial to focus on the effects of sustained caloric restriction in humans.

Participants were randomized in a 2:1 fashion to 25% caloric restriction (CR) or ad libitum con-

trol group (diet is available at all times) in 2007 (N = 220). The intervention ran for two years

across three sites. All participants needed to have a baseline body mass index (BMI) of 22-27.9

kg/m2 (lean to slightly overweight). An average of 12% caloric reduction was achieved in the CR

group throughout the study. CALERIE data are available at https://calerie.duke.edu/samples-

data-access-and-analysis [48].

CALERIE DNA methylation datasets were generated from banked whole blood DNA and

adipose tissue samples by NIH grants R01AG061378 and 1U01AG060908 using Illumina EPIC

850k Arrays (Illumina Inc., San Diego, CA) as per the manufacturer’s protocol. Blood DNA

methylation assays were conducted by the Kobor Lab at the University of British Columbia.

Adipose tissue DNA extraction and methylation assays were conducted by UCLA Technology

Center for Genomics and Bioinformatics (TCGB). Adipose tissue methylation assays were ran

by UCLA Neuroscience Genomics Core (UNGC). Quality control of sample handling included

comparison of clinically reported sex versus sex of the same samples determined by analysis of

methylation levels of CpG sites on the X chromosome. Methylation beta values were generated

using the Bioconductor minfi package with Noob background correction.

Probes in either dataset were classified as poorly detected and therefore set to missing if they
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had poor detection (p-value above 0.05) using the minfi package in R. For the blood dataset, a

total of 608 observations and 845,645 probes were fully observed, and 20,446 probes had at least

1 poor detection whose missing pattern was analyzed. Details on analyzing missing patterns

are provided below. The CALERIE blood dataset was used for analyzing missingness whereas

the CALERIE fat dataset was used for imputation analysis.

For imputation analysis, the fat dataset was used and probes were excluded if any observation

had a poor detection p-value; 91 observations and 856,697 probes remained for imputation

analysis. We classified all 856,697 probes in the CALERIE fat dataset based on their relative

distribution (Normal or Not Normal if Shapiro Wilks p-value was< 0.05 or≥ 0.05, respectively),

having a SNP in the probe or not, and median distance to SNP (either within 5 bp, within 20

bp, or over 20 bp away). The EPIC hg38 common SNP genomic annotation file was used to

determine the presence and location of CpG loci to single nucleotide polymorphisms (SNPs).

FHS

Framingham Heart Study Offspring Cohort (FHS) is a longitudinal study that began in 1971

following the initial FHS study that began in 1948 in the town of Framingham, Massachusetts.

The FHS cohort was initially composed of men and women aged 30 to 62 years who were free of

cardiovascular disease (CVD) and were followed over time to investigate the causes of CVD [35].

All participants provided written informed consent at the time of each examination visit. The

study protocol was approved by the Institutional Review Board at Boston University Medical

Center (Boston, MA, USA).

Bisulphite converted DNA samples were hybridised to the 12 sample Illumina HumanMethy-

lation450BeadChips [38] using the Infinium HD Methylation protocol and Tecan robotics (Illu-

mina, San Diego, CA, USA). Peripheral blood samples were collected at the eighth examination

samples (2005 to 2008). Genomic DNA was extracted from buffy coat using the Gentra Puregene

DNA extraction kit (Qiagen) and bisulfite converted using EZ DNA Methylation kit (Zymo Re-

search Corporation). DNA methylation quantification was conducted in two laboratory batches.

Methylation beta values were generated using the Bioconductor minfi package with background

correction. Sample exclusion criteria included poor SNP matching of control positions, miss-

ing rate >1%, outliers from multi-dimensional scaling (MDS), and sex mismatch. Probes were

excluded if any observation had a poor detection p-value (p-value above 0.05) using the minfi

package in R. In total, 2,544 observations and 455,200 probes remained for analysis. The 450K
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common SNP and EPIC hg38 common SNP genomic annotation files were used to determine

the presence and location of CpG loci to single nucleotide polymorphisms (SNPs). We observed

more probes were mapped to the EPIC file (326,515) than to the 450K file alone (273,661),

which is why we chose to use both. We classified all 455,200 CpG probes in the FHS dataset

based on their relative distribution (Normal or Not Normal if Shapiro Wilks p-value was < 0.05

or ≥ 0.05, respectively), having a SNP in the probe or not, and median distance to SNP (either

within 5 bp, within 20 bp, or over 20 bp away).

3.2.2 Examining True DNAm Missingness

Imputation tools commonly assume missingness is ’at random’, and we hypothesized that DNAm

missingness is non-random and related to known factors. If this was true, missing at random

could not be assumed, and our imputation analysis would induce missingness based on the

discovered non-random missing relationship instead of randomly throughout the dataset.

We explored the missingness pattern (determined by poor detection) within each CpG probe

in CALERIE blood by examining probe distribution and presence and proximity to SNPs. To

summarize findings, probes were binned into one of six categories based on missingness: All

Measured (meaning no missing values), 1 poor (meaning 1 value missing in all 608 samples), ≤

1%, ≤ 5%, ≤ 10%, and > 10%. CpG loci were classified as normally distributed if the Shapiro

Wilks p-value was > 0.05 and non-normal if it was ≤ 0.05. The EPIC hg38 common SNP

genomic annotation file was used to determine the presence and location of CpG loci to single

nucleotide polymorphisms (SNPs). If multiple SNPs were present in a single probe, the median

distance to the SNP was taken.

3.2.3 Inserting Missingness

We use the observed missing patterns in CALERIE blood to design the missing pattern in

the FHS dataset and CALERIE fat dataset for the imputation analysis. Global missingness

(probes with any missingness) determined selecting 3% of probes to induce missingness which

corresponded to 13,656 probes (3% of 455,200 = 13, 656). We chose to induce 1%, 5%, and 10%

missing rates at 8,876, 3,414, and 1,366 loci, respectively, based on the relative frequency of

missingness at those rates (Table 3.2). CpG loci were categorized based on normality, presence

of SNP, and distance to SNP. Then CpG loci were randomly sampled within each category

(without replacement) to match the relative frequency observed in CALERIE blood. The
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Table 3.1: Missing Strategy in FHS and CALERIE Fat

Missing Total CpGs No SNP in Probe SNP in 0-5 BP SNP in 6-20 BP SNP in 21-50 BP
Rate to Sample Normal Not Normal Not Normal Not Normal Not
1% 8,876 186 2,920 135 2,115 114 1,790 97 1,519
5% 3,414 61 963 60 943 47 741 36 562
10% 1,366 20 20 28 433 20 318 14 212

breakdown of number of CpGs sampled for each breakdown are provided in Table 3.1. For

simplicity, 13,656 probes were also selected for inducing missingness for imputation in CALERIE

fat, which corresponds to a global missing rate of 1.6%.

We randomly remove 1%, 5%, and 10% of the CpG values in the selected probes 5 separate

times (different seeds for each loci) in the FHS dataset. This corresponds to removing 25,

128, and 255 samples. Because the CALERIE fat data is smaller (n=91), we chose to instead

randomly remove approximately 5%, 10%, and 20% of the CpG values 5 separate times. This

process results in having 5 different datasets to impute values in for FHS and CALERIE fat,

but the loci needing imputation stays the same across the 5 iterations. By having repeated

imputations at one locus, we improve precision in estimating imputation accuracy at a single

locus which improves power to examine accuracy at a probe-specific basis.

3.2.4 Imputation Methods

Because many imputation procedures assume error normality, only the outcome of interest

needs to follow a Gaussian distribution. Therefore, only probes with missing values need to

be transformed into the Gaussian space for adequately meeting common imputation procedu-

ral assumptions. We devised 4 different scenarios to understand the operating characteristics

associated with the use of our transformation method for DNAm imputation. Each method

results in a different number of CpG loci being transformed. Our first method is referred to

as “Missing Normal”, where all probes with missing values are transformed into Gaussian vari-

ables. The dataframe to be imputed has 13,656 columns that are transformed and is fused

with the non-missing untransformed CpG loci. The other three methods transform CpG loci if

they are non-normally distributed based on a p-value threshold. Specifically, we chose common

p-value thresholds for determining significance: 0.05, 0.01, and 0.001 and classified CpG’s as

normal or non-normally distributed based on those thresholds using the Shapiro Wilks p-value.

CpG loci with missing values and Shapiro Wilks p-values that fall below the threshold are clas-

sified as non-normal and are transformed. We refer to each of these thresholding methods as

28



“Normal 05”, “Normal 01”, and “Normal 001” indicating CpGs were transformed if they were

classified as non-normal at their corresponding p-value significance threshold and fused with the

remaining untransformed missing CpG loci and untransformed non-missing CpG loci. A table

summarizing the number of CpG loci transformed for each method and dataset are provided in

Table 3.3.

These four methods are compared to the untransformed imputation approach, where the

dataframe to be imputed does not undergo any transformation. This is how imputation is

recommended to be performed [49] or compared [?], and we refer to this method as “Untrans-

formed”.

3.2.5 Imputation Tools

We explore imputing missing values in our datasets using three imputation tools in R that

cover broad and different methods in their underlying imputation procedure. Specifically, we

use imputePCA, impute.knn, and methyLImp from the missMDA, impute, and methyLImp R

packages, respectively. We present only results using the first two tools in the body of this

paper because of complications using methyLImp (explained below), however, a smaller analysis

using methyLImp is provided in Appendix A.6. It is important to point out that our comparisons

are not meant to exhaustively assess all imputation methods, but rather to evaluate the value

of our transformation pipeline as we explore imputation methods with differing levels of model

flexibility.

imputePCA

imputePCA imputes values using a regularized iterative principal components analysis [50].

imputePCA assumes error normality in the fixed effect model framework [50]. Initial values are

drawn from a Normal distribution with mean and standard deviation calculated from the data.

Then, PCA is performed on the completed dataframe, and values are imputed using the new

principal components and loadings. This imputation process is repeated (PCA on dataframe,

impute using new PC’s) until the convergence threshold is met. Further explanation of this

method is provided in Appendix A.4.1. We chose the number of principal components that

explained 95% of the variance in the non-missing CpG loci, which corresponded to 1935 PC’s

in FHS and 81 PC’s in CALERIE fat.
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impute.knn

impute.knn was built for gene expression data and uses k-nearest neighbors to impute missing

values [51]. This procedure finds k other non-missing CpG loci which have values similar to the

CpG loci to be imputed (evaluated using Euclidean distance). The imputed value is a weighted

average of the k loci with weights formed from similarity. Further explanation of this method

is provided in the Appendix A.4.2. We chose k to be 50 neighbors based on the commonality

and recommendations used in DNAm imputation. This procedure does not have distributional

requirements and can safely be used for imputation regardless of the original distribution.

methyLImp

methyLImp was developed specifically for methylation data and builds a linear regression model

via Singular Value Decomposition using completely observed data. It uses other samples as

predictors (not CpG loci) and ignores the assumption of residual normality in the linear model

specification. In addition, this method is known to have poor performance for methylation

levels near 0.5 [49]. However, our methods prevented use of this function. methyLImp requires

complete cases for observations, and our imputation procedure resulted in every observation

having at least 1 missing value. We tried to circumvent this limitation by imputing on a smaller

subset of the data at a time, however the computation time and resources required made using

methyLImp infeasible. SVD is known to be computationally expensive, and we concluded other

researchers would be more likely to use a different imputation tool than write code loops to

similarly circumvent issues arising from using the method. We have included a small imputation

analysis in the supplement.

3.2.6 Copula Transformation Algorithm

The proposed copula transformation pipeline takes place in 4 steps. First, we calculate the

empirically smoothed CDF (F̃ ) and inverse CDF (F̃−1) of select CpG loci. Second, we transform

the select CpG loci to psuedo-Gaussian variables and return a fused dataframe (select CpG loci

in the transformed space and the rest of the CpG loci in the untransformed, original scale).

Third, we use one of the imputation tools described above to perform imputation. Fourth, we

backtransform the select CpG loci that were imputed to the original beta value scale to return

an imputed dataset on the desirable scale.
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Let X be a n×p matrix of methylation data with n observations and p total columns where

the first 1, . . . , k columns have missing values and columns k+1, . . . , p have completely observed

values. In the case of the “Missing Normal” tranformation method, 1, . . . , k columns will be

transformed. In the case of “Normal 05” or one of the other p-value thresholding methods, a

subset of the k columns will be transformed, call these columns 1, . . . , d for any one

thresholding approach.

X =
[

X1, . . . , Xd︸ ︷︷ ︸
missing CpG loci
to be transformed

, Xd+1, . . . , Xk︸ ︷︷ ︸
missing CpG loci

to stay on original scale

, Xk+1, . . . , Xp︸ ︷︷ ︸
non-missing CpG loci

]

The algorithm proceeds as follows:

For each j in 1, . . . , d {:

1. Calculate the empirical smooth CDF, F̃j(·), and inverse CDF function, F̃−1
j (·).

2. Transform Xj to a pseudo copula variable, Z̃j

Transform Xj to pseudo uniform variable, Ũj :

Ũj ∼ F̃j(Xj)

Transform Ũj to a pseudo normal variable, Z̃j :

Z̃j ∼ Φ−1(Ũj)

}

Collect {Z̃1, . . . , Z̃d} noting that each vector still has missing values.

Return dataset for imputation,

Z̃ =
[
Z̃1, . . . , Z̃d, Xd+1, . . . , Xk, Xk+1, . . . , Xp

]
3. Impute missing values using preferred tool such as imputePCA or impute.knn

Z̃∗ <- impute.knn(Z̃)

Z̃∗ =
[
Z̃∗
1 , . . . , Z̃

∗
d , X

∗
d+1, . . . , X

∗
k , Xk+1, . . . , Xp

]
4. Backtransform to obtain imputed dataset on original scale

For each j in 1, . . . , d {:

Transform Z̃∗
j to a pseudo uniform variable, Ũ∗

j

Ũ∗
j ∼ Φ(Z̃∗

j )
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Figure 3.2: Overview of Transformation Methodology

Transform Ũ∗
j to original scale of Xj

X∗
j ∼ F̃−1

j (Ũ∗
j )

}

Collect imputed and backtransformed variables {X∗
1 , . . . , X

∗
d}, imputed variables

{X∗
d+1, . . . , X

∗
k} and original non-missing variables {X(k+1), . . . , Xp} into

X∗, a n× p completely filled matrix.

X∗ =
[
X∗

1 , . . . , X
∗
k , X(k+1), . . . , Xp

]
can now be used as the non-missing version of X that would

be used for regression or other statistical procedures. This process is summarized in a diagram

in Figure 3.2.

Step 1: Calculating F̃i and F̃−1
i

The process to calculate functions needed to transform CpG values is a data driven process

and is done by calling our function, TransformDataset (Appendix A.5.1) on the methylation

dataframe with missing values set to NA. For each CpG loci i, we calculate the smooth den-

sity of the methylation beta values X, using the density function with a gaussian smoothing
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kernel and parameters n=1000 and adjust=0.5. The gaussian smoothing kernel uses 0.5 times

Silverman’s ‘rule of thumb’ for bandwidth [52], and using a smaller value of adjust would

result in a less smooth density estimation. We chose the Gaussian kernel for convenience and

efficiency. Additional details on the smoothing process are provided below in section 3.2.6. We

convert the density to a function by interpolating between the 1000 points using cubic splines

with splinefun function with the Forsythe, Malcolm and Moler (FMM) spline. Then, we in-

tegrate the density function using the integrate function to obtain vectorized values, Yi. The

empirically smoothed CDF, F̃i, is the interpolation between the set of input values (Xi) and

vectorized values (Yi). To obtain the empirically smoothed inverse CDF, F̃−1
i , we interpolate

between the mapping of Yi to Xi.

Step 2: Transforming to Psuedo Gaussian Variables

After the esCDF is computed, we can continue with the forward transformation into the Gaus-

sian space. We construct pseudo copula observations by first transforming to a pseudo uniform

variable and then to a pseudo normal variable. Pseudo uniform variables are computed one at

a time by applying the esCDF: Ũi = F̃i(Xi) for i = 1, . . . , d. Each pseudo uniform variable

is then transformed into a pseudo univariate normal variable using the normal inverse CDF:

Z̃i = Φ−1(Ũi) for i = 1, . . . , d (pnorm function). The output from this step corresponds to d

pseudo-copula transformed CpG loci, which can be merged with the p− d untransformed CpG

loci into a single data frame for imputation.

The process to transform CpG values is done alongside calculating the forward transfor-

mation functions in Step 1 by calling our single function, TransformDataset. The code and

corresponding R function are provided in the supplemental file (Appendix A.5.1) and our Github

repository github.com/kristenmcgreevy/CONCORDANT. To use the function, the user speci-

fies the dataset for transformation, the columns for transforming, and a name for the row names

in order to merge the dataframe. The function outputs the inverse functions of each CpG loci

needed to backtransform the d CpG loci and the transformed columns of the dataset ready for

imputation (ie Z̃1, . . . , Z̃d).

Step 3: DNAm Imputation

Once CpG loci are transformed into Gaussian variables, the transformed columns are com-

bined with the untransformed columns for imputation. Imputation can be performed using
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any imputation tool. We have selected to focus on two main imputation tools for comparison:

impute.knn and imputePCA with limited results (for computational reasons) using methyLImp

in the supplement. After imputation is performed on the dataset, we refer to the imputed

DNAm loci with an ∗, which includes columns Z̃∗
1 , . . . , Z̃

∗
d , X

∗
d+1, . . . , X

∗
k .

Step 4: Back Transformation to Original β Scale

After imputation is complete, we back transform Z̃∗
1 , . . . , Z̃

∗
d variables to their original scaled

methylation beta values. One locus at a time, we transform to a pseudo uniform variable:

Ũ∗
i = Φ(Z̃∗

i ) using the standard normal CDF. Then we transform to the original scale using

the esCDF from Step 1: X∗
i = F̃−1

i (Ũ∗
i ). Collect X∗

1 , . . . , X
∗
d as the CpG loci with missing

values imputed on the original scale that can be used alongside X∗
d+1, . . . , X

∗
k , Xk+1, . . . , Xp for

regression or other statistical procedures.

This process can be implemented calling our BackTransformDataset (Appendix A.5.2)

function which requires the imputed dataframe and inverse CDF functions as inputs. The

output is the completed dataframe referred to as X∗.

Rationale and Details for Step 1

If we know the true CDF, Fi for random variable xi, then Fi(xi) = ui, a uniform distributed

variable and we can proceed. However, in practice we often do not know the true CDF. Instead,

we can estimate the true Fi using the empirical CDF (eCDF), F̂i, which is formed from the

data ranks: F̂i(x) =
1
n

∑n
j=1 1(Xj ≤ x). However, because the eCDF measures the fraction of

data observed that are less than or equal to a value, the function generally takes on a ragged

staircase appearance, which makes the eCDF not differentiable. Smoothing the eCDF removes

discontinuities, improves the function’s mathematical properties, and captures the generalizable

trend for variable xi. We refer to the empirically smoothed CDF as esCDF and F̃ . Because F̃ is a

smooth, continuous, non-decreasing function, F̃−1
i exists and can be estimated similarly [53]. We

construct pseudo copula observations using the esCDF, F̃i: ũi ∼ F̃i(xi) and z̃i = Φ−1(F̂i(xi)).

In calculating the smooth density of xi, the density is calculated within a window size of

datapoints using a weighted sum. The weights are determined by the Gaussian kernel function.

The result of this calculation is then used as an estimate of the probability density of the data

points within the window. With the specifications laid out above, we estimate the density

of the CpG locus by dispersing the mass of the empirical distribution over a regular grid of

1,000 points. The fast Fourier transformation is used to convolve this approximation with a
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discretized version of the kernel and then uses linear approximation to evaluate the density at

the specified points. This computes the kernel density estimate using the gaussian smoothing

kernel with 0.5 times Silverman’s ‘rule of thumb’ for bandwidth [52]. The bandwidth used is

therefore h = 0.5 × 0.9 ×min(σ̂, IQR
1.34 ) × n−1/5, where σ̂ is the standard deviation of the CpG

loci, IQR is the interquartile range (Q3 − Q1), and n is the number of observed data points.

Specifically, the probability density function f is estimated by the smooth kernel function fn:

fn(X) = n−1h−1
n∑

j=1

K{h−1(X − xj)} (3.3)

where h is the bandwidth or smoothing parameter, K is the kernel function, and x1, . . . , xn are

the DNAm methylation values for CpG locus i [52]. Because h is defined as above, this means

the resulting smooth density is calculated as:

fn(X) =
1

n× 0.45×min(σ̂, IQR
1.34 )× n−1/5

n∑
j=1

K

{
(X − xj)

0.45×min(σ̂, IQR
1.34 )× n−1/5

}
(3.4)

fn(X) =
1

n4/5 × 0.45×min(σ̂, IQR
1.34 )

n∑
j=1

K

{
n1/5(X − xj)

0.45×min(σ̂, IQR
1.34 )

}
. (3.5)

The choice of kernel function is not an important factor for kernel density estimation because

it acts as the weight in the weighted sum of input points [54]. Therefore, the weight will be the

same for all data points regardless of the kernel function used. The weighted sum is used to

estimate the probability density of the data points within each window. As long as the same

weights are applied to all input points regardless of their kernel function, then they can be used

to estimate the same probability density. We chose the Gaussian kernel for convenience and

efficiency.

We convert the density to a function by interpolating between the 1000 points using cubic

splines, a method used to connect a set of data points that lie on a curve. The interpolated values

are smooth and continuous. The interpolant is constructed as a piecewise cubic polynomial

that passes through each given data point and its neighbors. We perform this using splinefun

function with the Forsythe, Malcolm and Moler (FMM) spline. FMM splines fit an exact

cubvic spline through the four points at each end of the data which is used to determine the

end conditions. These have several advantages over other interpolation methods, such as being

easier to compute, having fewer parameters to adjust, and providing more accurate results [55].

This method connects xi1 to xi2 with a spline where xi1 < xi2 < · · · < xin. Then, we integrate
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the density function to obtain the empirically smoothed CDF using the integrate function.

This integration results in vectorized values, yi. To obtain the empirically smoothed CDF, F̃i,

we interpolate between the set of input values and vectorized values, (xi, yi). To obtain the

empirically smoothed inverse CDF, F̃−1
i , we interpolate between the mapping of yi to xi.

3.2.7 Evaluating Imputation Performance

We evaluate imputation performance between our transformed methods and the untransformed

method using RMSE, Pearson’s r, and Kolmogorov-Smirnov test. All evaluations are calculated

in the original scale of the data (beta values), therefore imputed values using one of our four

methods were back transformed prior to calculating these metrics.

Root Mean Square Error (RMSE) is one of the most popular metrics for missing data

imputation performance assessment. It estimates total error between imputed (Pi) and true

values (Ti) for CpG locus i with lower values indicate better performance.

RMSE(Pi, Ti) =

√∑ni
j=1(Pij − Tij)2

ni
. (3.6)

Pearson’s r or Pearson Correlation Coefficient measures the amount of linear correlation between

the predicted and true values with values closer to 1 being better.

ri =

∑ni
j=1(Pij − P̄i)(Tij − T̄i)√∑ni

j=1(Pij − P̄i)2
√∑ni

j=1(Tij − T̄i)2
. (3.7)

Kolmogorov-Smirnov test is a non-parametric assessment of how similar a sample of values are

to a reference distribution [56]. We are interested in this metric to understand if the transformed

method better preserves the true distribution of the imputed CpG loci. The reference distri-

bution will be the empirical distribution of the ith CpG loci before missingness was inserted,

F̂i(Xi), and the distribution to compare will be the empirical distribution of the ni imputed

CpG values, F̂ni(X
∗
i ). The Kolmogorov-Smirnov (KS) statistic for CpG loci i is:

Dni = sup
Xi

|F̂ni(X
∗
i )− F̂i(Xi)|. (3.8)

We conclude that the imputed sample is not from the reference distribution when
√
niDni > Kα,

where Kα is the critical value of the Kolmogorov distribution. Imputed values are classified as

adhering to the original CpG locus distribution if the KS statistic p-value is > 0.01 and otherwise
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classified as not adhering to the original distribution.

RMSE and Pearson Correlation are calculated using the gen stat function from the methyLImp

package, and the KS test is performed using the ks.test function. We summarize imputation

performance stratified by various features including median methylation levels, loci distribution

(normal or non-normal), and presence of SNPs.

3.3 Results

3.3.1 DNAm Missingness Patterns

Poor probe detection and therefore missingness is not random across CpG loci in CALERIE

blood; percent missingness of a probe increases if the CpG loci is not normally distributed, has

more SNPs per probe, and is closer in proximity to SNPs. There were a total of 866,091 CpG

loci measured on 608 samples via the EPIC v1 array, and 845,645 probes were fully observed

with good detection across all samples (Table 3.2). This corresponds to 2.4% of all probes

having some poor detection, which is similar to previously reported research which observed

3% probe missingness on average in DNAm data [49]. In total, there are only 0.1% of data

points with poor reads because most (54%) of these CpG loci have only 1 bad read. 21% of

fully observed probes are relatively normally distributed, whereas CpG loci with missing values

are less likely to be normally distributed (5-8%), which is 13% less than probes with complete

values. Fully observed probes have on average 1.5 SNPs per probe and are 20 base pairs (bp)

away from the CpG loci to be measured. Probes with high levels of missing (> 10%) have over

2 SNPs per probe and are less than 10 bp away on average.

These results informed our procedure for selecting CpG loci to insert missingness in and

the missing rate to induce. While specifics of how missingness was inserted is provided in the

Methods section, probes were randomly selected for our imputation analysis based on their

normal distribution and distance to SNPs. More non-normal probes were selected for our

imputation analysis, and missingess at probes were induced at 1, 5, and 10% missing rates to

best match what is truly observed in real DNAm data.

3.3.2 Overall Imputation Performance

Our transformation methods improved or maintained imputation accuracy while significantly

improving imputed DNAm value adherence to the original methylation distribution in both the
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Table 3.2: Observed Missingness of CpG values in CALERIE Blood Study (n=608)

Probe Number Poorly Detected Relatively Normally Average Number of Median Distance
Missingness of CpGs CpGs Distributed SNPs per Probe to SNP
All Measured 845,645 - 179,071 21% 1.5 20

1 poor 11,029 54% 924 8% 1.6 18
≤ 1% 5,612 27% 331 6% 1.8 14
≤ 5% 2,120 10% 172 8% 2.1 11
≤ 10% 603 3% 49 8% 2.2 10
> 10% 1,082 5% 52 5% 2.2 9

FHS and CALERIE datasets.

Transformation Preserves Original Probe Distribution

Kolmorgov-Smirnov statistics demonstrate that our transformation method better preserves

the original data distribution than untransformed methods using impute.knn and imputePCA

for imputation. Interestingly, there is not one transformation method that outperforms the

rest globally. In the FHS dataset, 11.7% more of imputed probe values adhere to the original

distribution using the Normal 05 threshold with impute.knn. The untranformed approach,

however, has only 3.6% of all imputed probes following the original distribution. For imputePCA,

the Normal 001 transformation method in the FHS dataset performs the best with 61% of

imputed probes adhering to the original distribution which corresponds to a 4.1% improvement

over the untransformed imputation. Both the Normal 01 and Normal 05 methods also perform

comparably. In CALERIE, using imputePCA with any of our transformed methods corresponds

to 5.5-8.2% more probes adhering to the original distribution (Table 3.3). The Missing Normal

transformation method corresponds with 86.8% of probes adhering to the original distribution.

The effectiveness of the transformation methods lies in their ability to counteract the forced

symmetrization of the CDF curve near boundaries (methylation levels near 0 or 1) induced by

untransformed imputation procedures, evident in Figure 3.3. Both impute.knn and imputePCA

appear to be under and over-estimating the CDF curves at extremes. In contrast, the trans-

formed methods’ empirically smooth CDF overlay the original distribution (green) better than

the untransformed method (purple). Our transformation approach effectively integrates probe-

specific information and minimizes this forced symmetrization in the back transformation step,

providing a more accurate representation of the original data distribution.

It is evident from these findings that the proposed transformation pipeline provide sub-

stantial improvement in CDF adherence in both the FHS and CALERIE datasets. Relying on

empirical transformation methods, particularly the Normal 05 and Normal 001 proved effective
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Figure 3.3: Comparison of imputed methylation eCDFs to original methylation eCDF

in better preserving the original data distribution while maintaining or improving imputation

accuracy.

The proposed approach provides a more robust imputation that closely mirrors the original

data distribution. Consequently, practitioners can expect more accurate and reliable imputa-

tions that maintains a stronger adherence to the original data distribution, as demonstrated in

the FHS and CALERIE datasets using both impute.knn and imputePCA.

Impact of Transformation Methods on Imputation Accuracy

The median RMSE was maintained within each imputation tool regardless of the transformation

condition, with RMSE deviating by 0.001. Such a marginal change in accuracy indicates each

imputation tool has similar errors regardless if the data are transformed or not prior to imputa-

tion. Regarding median correlation, using any of the transformation methods with impute.knn

has better performance in both datasets. The best performance uses the Normal 05 transfor-

mation in FHS (r = 0.691, +0.055 improvement) and the Missing Normal transformation in

CALERIE (r = 0.508, +.17 improvement) compared to the untransformed imputation (Table

3.3). Median correlation using imputePCA is similar for any of the normal thresholding methods

in FHS (r = 0.775) and CALERIE (r = 0.594) compared to the untransformed imputation, with

less than 0.01 difference in correlation. However, the Missing Normal method performed worse

than the untransformed method in the FHS dataset with a 0.043 decrease in correlation.

The distribution of imputed probes’ correlations can be seen by dataset and imputation

tool in Figure 3.4. The best normal thresholding method is plotted in yellow alongside the

Untransformed and Missing Normal methods in red and purple, respectively. A substantial
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Figure 3.4: Comparison of Median Imputation Correlation by dataset (A) FHS or (B)
CALERIE and imputation tool. Purple refers to imputating on the original DNAm scale, red
to imputing with all missing probes converted to gaussian variables, and orange to imputing
probes that have been transformed using a p-value threshold.

improvement in correlation is observed for either transformation method in impute.knn with

comparative correlations between the Normal Thresholding and Untransformed methods with

imputePCA. A better global correlation is observed using imputePCA over impute.knn.

Comparing Imputation Tools

The imputePCA tool demonstrated a substantially stronger correlation, lower RMSE, and better

adherence to the original DNAm distribution than impute.knn. imputePCA consistently has

lower RMSE values across all transformation methods, ranging from 0.013 to 0.016. In contrast,

impute.knn ranges from 0.016 to 0.020 (Table 3.3).

imputePCA has a 0.145 and 0.254 better median correlation than impute.knn in the FHS

and CALERIE data, respectively when comparing untransformed imputation procedures. The

difference in median correlation between imputation tools is approximately halved when using

one of our transformation methods. For example, the improvement seen using imputePCA

over impute.knn is only 0.083 and 0.088 when using the Normal 05 approach in the FHS and

CALERIE data, respectively. As such, our transformation methods appear to make imputation

accuracy more robust and less sensitive to the imputation tool chosen to perform imputation.

Interestingly, the median KS statistic is much lower using imputePCA than impute.knn

resulting in a larger percentage of imputed values having better adherence to the original CpG

distribution. This is surprising because impute.knn does not have distributional assumptions
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Table 3.4: Imputation Performance by Missing Probe Normality

Imputation Dataset
Non-Normal Probes (p <0.001) Normal Probes (p ≥ 0.001)

Dataset
Tool Form

Median Median Correlation Median Median Correlation

RMSE Correlation Difference RMSE Correlation Difference

FHS

impute.knn

Untransformed 0.02 0.636 - 0.035 0.673 -

Missing Normal 0.019 0.681 0.045 0.037 0.689 0.016

Normal 05 0.02 0.697 0.061 0.0375 0.695 0.022

imputePCA

Untransformed 0.015 0.781 - 0.025 0.818 -

Missing Normal 0.017 0.717 -0.064 0.03 0.748 -0.07

Normal 001 0.015 0.781 0.0 0.026 0.812 -0.006

CALERIE

impute.knn

Untransformed 0.016 0.344 - 0.017 0.327 -

Missing Normal 0.015 0.551 0.207 0.017 0.444 0.117

Normal 001 0.015 0.535 0.191 0.017 0.398 0.071

imputePCA

Untransformed 0.013 0.611 - 0.015 0.566 -

Missing Normal 0.012 0.615 0.004 0.015 0.56 -0.006

Normal 001 0.012 0.616 0.005 0.015 0.567 0.001

in its imputation process, however imputePCA assumes normally distributed errors. Across both

datasets, impute.knn corresponds to roughly 2%-16% of the imputed probes adhering to the

original distribution whereas imputePCA has 44%-87% adherence.

In general, it can be noted that the imputePCA method shows a greater percentage of

probes adhering to the original distribution in both datasets compared to the impute.knn

method, indicating a better match to the expected distribution. These results, in addition to

better accuracy compared to impute.knn, demonstrate potential superiority of imputePCA in

handling missing DNAm data imputation.

3.3.3 Imputation Performance by Probe Properties

Probe Normality

Imputation accuracy using our transformation is generally improved more for non-normal probes

than normal probes (Pearson Correlation in Table 3.4). Probes are classified as ‘normal’ if their

Shapiro Wilks p-value is > 0.001 on the original beta value scale and ‘non-normal’ otherwise.

For impute.knn, there is about 0.05 better correlation in FHS and 0.20 better imputation cor-

relation in CALERIE when using our transformation on non-normal probes. This improvement

is approximately twice the improvement seen when using our transformation on normal probes

prior to imputing with impute.knn (0.02 in the FHS and 0.09 in CALERIE). There is almost

no difference in imputation accuracy via RMSE or correlation when using imputePCA, except

for worse correlation using the missing normal transformation method in FHS. As mentioned

earlier, the accuracy of missing normal transform method for imputePCA in FHS performed

worse, and both normal and non-normal probes have similar performance.
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Figure 3.5: Correlation Accuracy by Presence or Absence of SNP in CpG probe

SNPs

Probes without SNPs have better imputation performance via RMSE and correlation, with

approximately a 0.01 decrease in median correlation accuracy in FHS and 0.06 in CALERIE

between probes without SNPs and with SNPs (Figure 3.5, Supplemental Table B.7). The larger

difference in median correlation between SNP and non-SNP probes observed in CALERIE

compared to FHS is likely due to the smaller dataset size. Distance to SNP appears to slightly

decrease imputation accuracy if its within 5 bp away from the CpG locus, otherwise distance

to SNP does not appear to change median imputation accuracy (Supplemental Figure B.2).

3.3.4 Computational Demand

All computation was performed using R version 4.1.0 and the Hoffman2 Cluster, which is a

Linux compute cluster. The current peak CPU performance of the cluster is approximately 150

Trillion Floating Point, double precision, operations per second (TFLOPS). Some nodes have

36 cores and 192 GB of memory with computing capability between 4-7.5.

Transformation Functions

The forward transformation function, TransformDataset takes approximately 2 seconds to pro-

cess each CpG locus in the FHS dataset and less than 0.01 seconds in the CALERIE dataset

(Table 3.5). When employing the Normal 001 thresholding approach, this equates to a pro-

cessing time of roughly 11-12 minutes for either dataset. However, with the Missing Normal
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Table 3.5: Computational Demand for Forward Transformation

Overall Normal 001 Missing Normal
Dataset Time per CpG Storage per Time Storage Time Storage

(seconds) datapoint (bytes) (minutes) (GB) (hours) (GB)
FHS 1.97 64 10.8 0.053 7.46 2.2

CALERIE 0.09 80 11.6 0.059 0.32 0.10

approach, which involves transforming all missing CpG loci (totaling 13,656), the computation

time extends to 7.5 hours for the FHS dataset and 20 minutes for CALERIE. The scalability

of our forward transformation function is directly tied to the number of observations in the

dataset, a result of the data-driven methodologies employed in crafting the transformation.

Considering that the function outputs both the transformed data and the inverse functions

for the back transformation, it is essential to ascertain the storage requirements of this function.

For each datapoint needing transformed, this function requires roughly 70 bytes of space in its

output. In the context of the FHS data, this equates to approximately 0.17 megabytes per CpG

locus and a significantly smaller 0.01 megabytes for the CALERIE dataset. Consequently, when

applying the Normal 001 threshold, either dataset requires less than 0.1 gigabytes of memory.

However, when employing the Missing Normal approach for the FHS dataset, the memory

demand escalates to 2.2 gigabytes. Researchers can anticipate similar memory requirements in

their dataset by calculating 70 × (number observations) × (columns to transform)/109 = GB

required.

The back transformation of imputed data (BackTransformDataset), on the other hand, is

comparatively uncomplicated and economical in terms of computational power. In this phase,

no further development of functions or algorithms is necessary. On average, the back transfor-

mation requires 2.6 milliseconds per CpG locus for the FHS dataset and less than 1 millisecond

per CpG locus for CALERIE. This translates into approximately 1 second for FHS and 7.3

seconds for CALERIE when the Normal 001 threshold is used.

Imputation Tools Computational Demand

We observed considerable differences in the computational demands for impute.knn and

imputePCA, with impute.knn requiring substantially less computational resources. For the FHS

dataset, impute.knn required about 1.6 hours of computation time and used 64.3 GB of mem-

ory. In contrast, imputePCA showed significantly higher computational demand, necessitating

28.7 hours of time and 99.6 GB of memory. Using impute.knn corresponds to over 17 times re-
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duction in time and 1/3 the memory requirements compared to imputePCA. On a per data point

basis, this translates to roughly 3 and 50 microseconds needed for impute.knn and imputePCA,

respectively. As expected, there is a higher computational demand (time and memory) on the

larger FHS dataset compared to the smaller CALERIE dataset. With CALERIE, impute.knn

required approximately 0.05 hours and 16 GB of memory, whereas imputePCA required 1.3 hours

and slightly less memory (15 GB). These results are summarized in Supplemental Table B.8.

In summary, impute.knn exhibited less computational demand across both datasets.

imputePCA, on the other hand, demanded more computational resources, especially in terms of

time.

Our results underline the importance of carefully considering the balance between compu-

tational demand and imputation accuracy in DNAm studies. It was evident that the choice

of the imputation tool, the dataset size, and the use of additional transformation functions

significantly impact the computational demand. However, the incorporation of our transforma-

tion functions, although computationally expensive, can lead to substantial improvements in

imputation quality, justifying the increased computational load.

3.3.5 Open Source Pipeline

In our endeavor to facilitate and streamline the handling of missing data in DNA methylation

(DNAm) studies, we have designed an accessible and user-friendly coding pipeline. This pipeline

incorporates our novel transformation and backtransformation functions, effectively assisting re-

searchers in transforming and imputing DNAm data for increased accuracy. Functions and sam-

ple code can be found freely available at https://github.com/kristenmcgreevy/CONCORDANT

and in the Appendix Section A.5.

To begin with, researchers need to process the raw DNAm data using detection p-values.

In this initial step, probes that are poorly detected, indicated by a high detection p-value,

should be set to NA. Researchers should decide which transformation method they want to

incorporate, such as Normal 001, etc. Researchers can use our TestNormalityofMissingCols

function (Appendix A.5.3) on their dataset to determine which CpG loci have missing values

and are non-normal based on the preferred p-value threshold. Once this preprocessing is done,

the data is ready for transformation.

The first function in our transformation pipeline is TransformDataset (Appendix A.5.1).

This function is data-driven and performs a forward transformation on the specified columns,
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which in our case are each CpG locus. Specifically, it leverages the inherent data distributions

to convert the DNAm data into a standard normal scale, making it more conducive for com-

mon statistical procedures. While the performance of this function scales with the number of

observations in the dataset, it typically executes within two seconds per CpG locus for larger

datasets.

Following the transformation process and subsequent imputation, the imputed DNAm data

can be backtransformed to its original scale using our BackTransformDataset function (Ap-

pendix A.5.2). This function is relatively efficient, and doesn’t require the development of new

functions or algorithms, making the backtransformation process both simple and computation-

ally inexpensive.

By implementing this pipeline, researchers can effectively manage and analyze DNAm data.

The primary advantage of this approach is the improved imputation accuracy, which, in turn,

enhances the reliability of subsequent analyses and conclusions. We encourage researchers to use

this open-source pipeline in their DNAm studies and contribute to the collective advancements

in this field.

3.4 Discussion

Our research delves into the efficacy of applying transformation methods prior to imputing

DNA methylation values with imputation tools like impute.knn or imputePCA. We find that

our copula-based transformation strategies, especially Normal 05 and Normal 001, dramatically

improved preservation of original data distribution in DNAm imputed values. By acknowl-

edging the inherent non-symmetry in the methylation distribution and transforming the data

accordingly before imputation, our method curtails underestimation at the edges, a pitfall ob-

served in these imputation methods. The backtransformation process helps to mitigate the

issue of forced CDF symmetrization near extremes (methylation levels near 0 or 1). Thus, any

forced symmetrization arising from the imputation procedures in the transformed distribution

is effectively removed in the back transformation phase. Consequently, our methodology, unlike

its untransformed counterparts, leads to a more representative and accurate depiction of the

methylation values.

Our study encompassed various tissues and arrays, using differing dataset sizes to estab-

lish robustness. Unlike current research, which often assumes data is missing at random, we

conducted a thorough exploration of actual missingness patterns in DNAm data to inform our
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analysis. Moreover, we opted for real datasets over simulated DNAm to better reflect conditions

that researchers may encounter in actual analyses. Our discovery that the missingness of CpG

sites can be partially explained by probe normality suggests potential bias in imputation results

or analyses that employ standard statistical methods across randomly imputed loci. Conse-

quently, our results, derived from realistic conditions and considering true missingness patterns,

offer a more robust perspective.

While our study did not definitively identify an “optimal” p-value threshold for transforma-

tion, it provides evidence that applying transformations at common thresholds—such as 0.05 or

0.001—enhances correlation accuracy and adherence to the original probe distribution. With

our data-driven approach, we integrate probe-specific information into the imputation process,

a step that is overlooked when solely relying on neighboring values in untransformed methods,

such as in impute.knn. By transforming non-symmetric, extreme methylation values into a

symmetric normal distribution, we ensure that the initial sampling draw from imputePCA aligns

with the correct distribution, thereby negating any forced symmetrization during imputation.

This pioneering integration of copula models into bioinformatics—although in our case, lim-

ited to Gaussian copulas—suggests further scope for improvement if other copulas are explored.

While the Gaussian copula allows for elliptical dependence structure needed by many imputa-

tion tools, it fails to capture dynamic changes over time. Adopting alternative copulas that

accommodate evolving CpG dependencies could further refine the model.

While our research was conducted within the realm of DNAm, it’s crucial to highlight

that the transformation functions we tested are generalizable to any form of continuous data

that requires a Gaussian distribution. This universality expands their potential applicability

well beyond the confines of epigenetic studies, to virtually any field that grapples with the

challenges of handling continuous data. To facilitate their broader use, we have made the

code and functions freely accessible to researchers in the supplement and on GitHub. Our

findings not only shed light on the challenges of DNAm imputation but also open a pathway for

these transformation methods to be applied and evaluated in other bioinformatic fields. Future

research should extend these transformation methods across a broader spectrum of continuous

data types and imputation scenarios, thereby further enhancing their potential impact.

Our transformation approach provides a more robust imputation that closely mirrors the

original data distribution. Consequently, our transformation method provides a more accurate

and reliable imputation that maintains a stronger adherence to the original data distribution, as
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demonstrated in the FHS and CALERIE datasets using both impute.knn and imputePCA. Given

these outcomes, we strongly recommend researchers consider implementing our transformation

methods prior to imputing DNAm values. This approach will likely enhance the accuracy of

their imputed values and the validity of subsequent analyses, leading to more robust and reliable

results in epigenetic studies.
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4 Cross Tissue DNAm Biomarker Prediction using Transfer

Learning

4.1 Motivation

DNA methylation (DNAm) is an epigenetic mechanism that varies across tissues and contributes

to cell type, regulates gene expression, and influences disease states [8]. DNAm continues to be

studied offering a window into the biological processes and aging within cells [27]. Traditionally,

blood has been the tissue of choice for DNAm biomarker development, serving as a versatile

medium that interacts with and carries information from an array of organs. However, this

choice is not without its limitations. The performance of DNAm based biomarkers is inherently

tied to the relevance of the tissue that DNAm is measured in [57, 58], and biomarkers built

with tissues more related to the condition or trait of interest are likely to be more accurate and

informative.

Yet, herein lies a significant challenge—the tissues most pertinent to certain diseases or con-

ditions, such as the brain, adipose, and bone, are often the hardest to access. Their collection

is typically invasive, painful, and expensive, leading to small sample sizes. This scarcity signif-

icantly limits the development of tissue-specific DNAm biomarkers. While some research has

looked at estimating methylation across tissues [59] or predicting species’ average methylation

across tissues [60], algorithms are not available for individual level prediction or without needing

access to multiple tissue data. Moreover, simply measuring these tissues and applying current

DNAm biomarkers may not yield meaningful insights, a point underscored by researchers who

advise caution when using methylation markers from surrogate tissues [61].

This landscape delineates two explicit needs in the field of DNAm research. First, there is an

urgent requirement for using more accessible tissues to accurately measure biomarkers of interest

[57, 62]. Saliva emerges as a promising candidate, offering a non-invasive and easily accessible

alternative to blood [63]. Its collection is patient-friendly and uncomplicated, allowing for larger

sample sizes and broader applications. Second, there is a pressing need for novel methodologies

that can develop accurate biomarkers in tissues traditionally challenged by inadequate sample

sizes [64, 62].

Moreover, this context highlights an area for innovation: the use and understanding of Trans-
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fer Learning (TL) in the realm of DNAm research and biomarker development. TL, a powerful

technique in machine learning, is adept at leveraging small data sizes and applying knowledge

from one context to enhance precision in another [65]. TL has been used in bioinformatics for

tasks like imputing the methylome in low-coverage cases [66] and augmenting gene expression

data [67], but its application in DNAm biomarkers, particularly for cross-tissue prediction, has

yet to be explored.

Our study aims to address these needs from three angles. We demonstrate how transfer

learning can improve DNAm biomarker accuracy, especially with limited data sources. We

introduce cross tissue prediction algorithms for estimating common blood DNAm biomarkers

using saliva DNAm. Additionally, our study offers practical tools and guidelines for researchers,

empowering them to implement TL methods and develop algorithms tailored to their specific

biomarker interests. Through these contributions, we aspire to provide easily usable methods

for researchers to better estimate their favorite biomarkers across different tissues by leveraging

shared information from other tissues, as well as methods to develop more accurate biomarkers

in typically inaccessible tissues by combining data from similar sources.

4.1.1 Common Transfer Learning Terminology and Definitions

The following section lists notation and definitions commonly used in transfer learning, and the

notation is consistent with other papers outlining methodology [68, 69].

Domain, D: A domain is defined by two components: a feature space X and a marginal

probability distribution P (X). In the context of our study, the feature space X represents

DNA methylation levels, with X = {x1, . . . , xp} ∈ X indicating the set of methylation

loci.

Task, T : A task is characterized by an outcome space Y and a predictive function f(·) or

P (Y |X), which is derived from the relationship between feature vectors X and outcomes

Y . In our research, Y signifies DNAm biomarkers, making our task the prediction of these

biomarkers in tissue m based on methylation levels in tissue l (P (Ymi|Xli)).

Source Domain, DS, and Target Domain, DT : The source domain DS comprises

data {(xSi, ySi)} from which knowledge is transferred, with xSi ∈ XS and ySi ∈ YS . The

target domain DT , where this knowledge is applied, consists of data {(xTj , yTj)}.
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Heterogeneous transfer learning occurs when XS ̸= XT , indicating differences in covariates

between source and target domains. Homogeneous transfer learning occurs when XS = XT and

either P (XS) = P (XT ) or P (XS) ̸= P (XT ). In the case where P (XS) ̸= P (XT ), the source and

target domains differ in their marginal probability distributions. Our setting involves the same

methylation sites across different tissues (XS = XT ), but with distinct covariance structures in

X, representing tissue specific methylation, resulting in P (XS) ̸= P (XT ).

Finally, classical transfer learning is single source, single task, referring to one source domain

informing a single task [70, 71]. In contrast, multi-source TL uses multiple sources or datasets to

improve a task. This approach introduces additional heterogeneity among the data, amplifying

the complexity of the learning process [68, 72]. A critical consideration in multi-source TL

is the avoidance of ‘negative transfer’, the situation where incorporating source information

actually worsens the target model performance. Various methodologies have been developed

to assess the informativeness of source samples and effectively integrate them with the target

to mitigate negative transfer [72, 73, 74, 67, 75]. We implement and test methodologies for

our unique context, employing multiple cross tissue datasets (sources) to enhance the saliva

to blood biomarker prediction accuracy. Our implementation explores a nuanced approach to

gauge the relevance of source data, recognizing that its informativeness may vary across different

datasets, tissue combinations, and specific DNAm biomarkers. This careful examination ensures

the transfer learning techniques are tailored to the intricacies of DNA methylation.

4.1.2 Data Distinctions to Classical Transfer Learning

Our study falls within a unique category of ‘multi-source, multi-target, high-dimensional, ho-

mogeneous transfer learning’, however our data has novel characteristics not typically observed

or studied in TL.

Simultaneous Use of Similar and Dissimilar Data

While conventional transfer learning might focus on domains with significant overlap or simi-

larity, our approach blends data across various tissue types, some of which might share more

characteristics than others. This heterogeneity is distinct in that it involves not only different

domains (tissues) and different relationships within domains (tissue specific methylation pat-

terns), but also different relationships across two different, distal tissues. For example, how

adipose can predict muscle methylation can be different from how buccal can predict brain
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methylation in an individual. Despite having common CpG loci across tissues, the differing

covariance structure across tissues complicates predicting DNAm biomarkers from one tissue

to another as the biological contexts are no longer held constant. By predicting across tissues

and incorporating data from different cross tissue predictions, we are seeking to capture univer-

sal within-person shared tissue signals. This set-up recognizes that inter-tissue signaling exists

and biological processes can be shared in different tissue environments. We trust that shared

patterns across tissues and biomarkers exist, and our algorithm is designed to discern these

patterns, even in distally related tissues.

Multiple Source and Target Data

Our target datasets, focusing on saliva DNAm predicting blood DNAm biomarkers, are aggre-

gated from six different studies. This multi-study integration is uncommon in transfer learning,

where target data is usually drawn from a single or more uniform source [75, 73]. The diver-

sity in our target datasets adds complexity due to variations in study design, data collection

methods, and participant characteristics.

As we highlight later, what is typically called “source” datasets, we refer to as “auxiliary”

datasets instead, alluding to the potential of the data to be superfluous and uninformative

similar to auxiliary statistics.

Adaptation in High-Dimensional Settings

Addressing the high-dimensional nature of DNAm data, where the number of predictors p

exceeds the number of observations n, adds complexity. In this situation, the sparsity of X needs

learned, demanding robust model optimization [67, 75]. Our penalized regression framework

is designed to adapt to these settings, focusing on discerning shared patterns across tissues,

despite their diverse biological and environmental contexts.

Final TL remarks

Our approach uniquely embraces the heterogeneity of both domains and tasks. We do not limit

our analysis to similar biological contexts and instead structure our TL framework to capture

shared information across multiple distally related tissues. By developing algorithms that pre-

dict DNAm biomarkers across different tissues and incorporating data from multiple cross-tissue

predictions, we aim to capture universal within-person shared tissue signals. This methodol-
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ogy requires sophisticated data handling and model optimization to manage the heterogeneity

across sources and domains. We explore the optimization of TL techniques for complex epi-

genetic problems with methods simple enough that other researchers can readily adopt. This

approach offers an opportunity to unveil correlations and patterns in DNAm across various

tissues and advance methodologies in epigenetic research.
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4.2 Methods

The core aim of our study was to assess the utility of Transfer Learning (TL) in the context of

DNA methylation (DNAm) and DNAm-based biomarkers. Our analytical strategy is predomi-

nantly built upon the translasso framework [67]. In our research, we prioritized the this class of

algorithms due to their compatibility with the widely utilized Lasso regression techniques [39].

This choice ensures that our methods can be seamlessly integrated by researchers accustomed

to Lasso regression, thereby promoting wider adoption within the field. We employ a transfer

learning paradigm for high-dimensional linear regression, utilizing prediction and estimation

procedures outlined in their study to investigate whether transfer learning can be utilized in

high dimensional epigenetics to improve DNAm biomarker prediction across tissues.

Our methods section has the following format. First, we describe the basic model set-up

and datasets used. Then, we describe the transfer learning methodology that we employ. After

that, we develop several methodological variations aimed at optimizing parameterization and TL

application to our cross tissue DNAm setting. We then describe how we classify optimizations

and develop the final cross tissue prediction algorithms. Finally, we describe the validation

process for testing our algorithms in outside datasets.

4.2.1 Subsetting Potential Covariates: C+S and C Method

In our study, we developed two distinct algorithms for predicting DNA methylation (DNAm)

biomarkers across different tissues. The first algorithm, referred to as the C+S method, com-

bines both the DNAm biomarkers derived from saliva and the raw methylation values from saliva

samples. This approach allows for the saliva DNAm biomarkers to be ‘updated’ via methylation

loci, enhancing their predictive accuracy. The terminology “C+S” references CpGs and Saliva

DNAm Biomarkers being included as covariates. The second algorithm, known as the “C”

method, exclusively uses saliva methylation values to predict blood DNAm biomarkers. This

CpGs-only strategy is especially relevant when creating new biomarkers or when faced with

datasets that lack a significant number of CpGs necessary for computing DNAm biomarkers,

often due to variations in array platforms. By focusing solely on saliva methylation values, the

C method provides a valuable tool in situations where comprehensive CpG data is unavailable

or when developing novel biomarkers.

We restrict the potential covariates to predict each blood DNAm biomarker to CpG loci
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known to be informative to epigenetic clocks and conserved across commonly used methylation

arrays. These loci are those published in public DNAm epigenetic clocks, specifically DNAmAge

[6], DNAmAgeSkinBloodClock [76], DNAmHannumAge [43], DNAmPhenoAge [12], DNAm-

FitAge [20], Zhang [64], MethylDetectR [77], EpiTOC [78], and the PanMammalianClock [79].

Because some loci are not available across different array platforms, we included only CpG

loci conserved across the 450K and EPIC array. This resulted in 6662 unique CpG loci to

be included. For our C+S method, our potential covariates included 6663 variables: 6662

methylation sites and the saliva DNAm biomarker. For the C method, we further reduced the

methylation sites included to only those conserved across the 450K, EPIC, and Mammalian40K

array. This resulted in 1307 unique CpG loci to be potential covariates in our C method. This is

not only conducive to the development of human biomarkers but also holds potential for direct

application to animal studies because the loci are conserved across mammalian species. For

example, animal models measuring DNAm under calorie restriction (CR) could be integrated

into our research to better inform the conserved epigenetic changes in humans from CR. Overall,

developing and comparing algorithms in these two cases informs us of information loss or gain

when implementing TL in DNAm contexts.

4.2.2 Datasets

Our “target” data includes the datasets that have DNAm values in saliva and blood. These

datasets include the tissues of the targeted research objective: predicting blood DNAm biomark-

ers from saliva DNAm. We refer to “auxiliary” data as datasets that include DNAm in two

tissues that are not saliva and blood. Finally, we include validation datasets, which are datasets

not used in the TL algorithm development stage, but instead are for testing our developed al-

gorithms in. All the datasets used have been previously described elsewhere; we provide brief

summaries here.

Target Data

Our target data consisted of 6 independent datasets that included DNAm in saliva and blood

tissues for the same individuals. GSE111165 (n=33), GSE214901 (n=19), GSE159899 (n=19),

GSE130153 (n=22), GSE59507 (n=4), and GSE73745 (n=12) for a total of 109 samples in

the target datasets. In developing our methods, we employ a Leave-One-Data-Out (LODO)

methodology that builds the TL model in 5 of the target datasets and tests in the 1 held out
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target dataset. This process is repeated for each target dataset, resulting in 6 LODO iterations

per method, and the weighted average by target dataset size is used to calculate the final LODO

estimate.

GSE111165 collected samples from blood, saliva, buccal, and brain tissue in epilepsy pa-

tients undergoing brain resection. DNAm was measured with both the 450K and EPIC arrays.

GSE214901 measured brain, blood, saliva, and buccal in Japanese individuals undergoing neu-

rosurgery, aged 13-73. DNA methylation was measured using the EPIC array. GSE159899

collected and measured methylation in whole blood, saliva, and T-cells using the EPIC array.

GSE130153 measured saliva and blood sample methylation with the 450K array. GSE59507

measured multiple tissues from male crime scene samples aged 20-59 including blood, saliva,

and semen. Methylation was measured using the 450K array. GSE73745 measured methylation

in people with respiratory allergies and healthy controls in saliva and mononuclear blood cells.

Methylation was measured using the 450K array.

Auxiliary Data

Our auxiliary datasets consisted of 5 independent datasets that included DNAm measured in

two different tissues for the same individuals. Comprehensive Assessment of Long-term Effects

of Reducing Intake of Energy (CALERIE) included muscle and adipose (n=130), GSE111165

included buccal and blood (n=27), GSE214901 included buccal and brain (n=19), TwinsUK

included adipose and skin (n=136), and GSE48472 included fat and blood (n=6) for a total

of 318 samples in the auxiliary datasets. For each of these datasets, they are presented where

the first tissue listed is the tissue used as the potential covariates, and the second tissue is the

tissue used for the outcome. For example, in CALERIE, muscle DNAm is used in the X and

adipose DNAm biomarkers are used in the Y . In the TwinsUK data, original person ID’s were

not available for each tissue dataset, so individuals were matched across tissue based on SNPs,

age, BMI, twin zygosity, and matching family IDs.

Validation Datasets

We use three datasets that measure phenotypic variables known to relate to DNAm biomarkers

and DNA methylation. This included GSE119078, GSE148000, and GSE149747. The first has

59 saliva samples measured in males (n=25) and females (n=34) with and without Celiac’s

Disease on the 450K array. No differences were observed by disease group to the saliva DNAm
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biomarkers, and to our best knowledge, this has not been observed elsewhere. This dataset

is used to validate the relationship between sex and telomere length. The second dataset in-

cludes 26 asthma, COPD, and healthy patients where DNAm was measured in sputum using

the 450K array, which is similar to, but not identically saliva. Age was observed to be different

between the three disease classifications, so all models include age as a covariate. This dataset

was used to look at differences in predicted DNAm biomarkers to disease status, relate pre-

dicted blood cell count models to measured lymphocyte percentage, and lung health DNAm

biomarkers to reported cumulative smoking pack years. The third dataset is a exercise, diet,

and sleep intervention study with saliva DNAm measured at baseline, 4 weeks, and 8 weeks after

intervention on the EPIC v1 array. The HorvathHIV data measured methylation with a custom

array (HorvathMammalMethylChip) from 661 samples across 11 human tissues (adipose, blood,

bone marrow, heart, kidney, liver, lung, lymph node, muscle, spleen and pituitary gland) [58].

This sample included 133 clinically characterized, deceased individuals, including 75 infected

with HIV. Based on the results of the initial study, we restricted our analysis to tissues with

substantial sample sizes, relevant to saliva, and accessible- being lymph, muscle, and adipose.

When available, DNAm was processed using bioconductor package in R with Noob nor-

malization. This was not possible for GSE130153 which provides only processed DNAm data

and not the original idat files. In addition, 3 datasets (GSE73745, 159899, and 130153) did

not provide chronological age, which is required for some DNAm clocks. In these cases, their

predicted age from DNAm was used in place of their chronological age. After pre-processing,

DNAm data was uploaded to the online DNAm clock calculator to calculate DNAm biomarker

values (https://dnamage.clockfoundation.org). The resulting epigenetic clocks were used as end

points in our prediction models.

4.2.3 Transfer Learning Methodology

We are interested in estimating β that maps DNAm from saliva to DNAm biomarkers in blood.

The model of interest is

y
(0)
j = x

(0)⊤
j β + ϵ

(0)
j

where yj is the jth blood DNAm Biomarker, x is the vector of saliva DNAm inputs, and (0) refers

to the target data. Because we develop two different algorithms for each DNAm biomarker,

for the C+S method, x includes the jth saliva DNAm biomarker and saliva methylation values
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Table 4.1: Dataset Summary

Purpose Dataset N Tissues

Target

GSE111165 33

saliva, blood

GSE214901 19
GSE159899 19
GSE130153 22
GSE59507 4
GSE73745 12

Auxiliary

CALERIE 130 muscle, adipose
GSE111165 27 buccal, blood
GSE214901 19 buccal, brain
TwinsUK 136 adipose, skin
GSE48472 6 adipose, blood

Validation

GSE119078 59 saliva
GSE148000 26 sputum
GSE149747 122 saliva
HorvathHIV 28-58 lymph, adipose, muscle, blood
TwinsUK 53, 95 skin, blood

MammConsortium 2069 skin

(1×6663 size vector), whereas for the C only method, x includes only saliva methylation values

(1× 1307 size vector).

In our study, we observe additional data from a collection of auxiliary studies, denoted as

K, to enhance our estimation of the vector β. Each auxiliary study provides samples that may

vary in their relevance to the target data. The incorporation of these auxiliary samples into our

analysis can take various forms—they can be merged into a single dataset, kept separate, or

grouped into distinct combined datasets. To accommodate these different integration strategies,

we define L as the ensemble of auxiliary data configurations utilized. Specifically, L represents

any subset or combination of the K studies that we use for informing β.

Mathematically, let us considerK auxiliary samples indexed by k = 1, . . . ,K. The set L then

represents a collection of these samples in various configurations, such as L = {(4), (4, 1), (4, 1, 3),

(4, 1, 3, 2)}, or as a single combined set L = {(1, 2, 3, 4)}, or as individual datasets L = {(1), (2),

(3), (4)} when K = 4. Here, the first instance illustrates L containing three groupings of l

combining multiple auxiliary datasets (as is performed in the default settings of TransLasso),

the second instance shows L as one grouping that combines all auxiliary datasets, and the third

instance depicts L with each l representing an individual auxiliary dataset. For scenarios where

auxiliary samples are considered individually, such as in the Oracle 1df method, we can sub-

stitute l with k in our notation. This substitution reflects the scenario where each auxiliary

sample is assessed separately to inform the model.

58



The general methodology can be summarized into five primary steps below.

Step 1: Perform Lasso on the Target Data (saliva DNAm −→ blood DNAm biomarker):

β̂0 = min
β0∈Rp

∥y(0) −X(0)β0∥2 + λ0∥β0∥1 (4.1)

Step 2A*: Determine the informative set, L, from auxiliary data, K, as detailed in Section

4.2.4

Step 2B: Perform Lasso on Informative Auxiliary Data for each l ∈ L (any tissue DNAm −→

any other tissue DNAm biomarker):

ŵl = min
wl∈Rp

∥y(l) −X(l)wl∥2 + λl∥wl∥1 (4.2)

Step 3: Perform Lasso on Target Data Residuals (saliva DNAm −→ Residual blood DNAm

biomarker):

δ̂l = min
δl∈Rp

∥(y(0) − ŷ
(0)
ŵl

)−X(0)δl∥2 + λ0l∥δl∥1 (4.3)

= min
δl∈Rp

∥(y(0) −X(0)ŵl)−X(0)δl∥2 + λ0l∥δl∥1 (4.4)

Step 4: Calculate coefficients estimated from the auxiliary samples with a constant threshold

for combining:

β̂l = Icwŵl + Icdδ̂l (4.5)

Step 5: Combine β̂0, β̂1, . . . , β̂L for ∀m ∈ 0 : L using the squared prediction error on the target

data.

β̂ = θ0β̂0 + · · ·+ θLβ̂L (4.6)

where

θm =

Total squared error
mth squared error∑L

m=0
Total squared error
mth squared error

=
1/

∑n0
i (y

(0)
i − x

(0)⊤
i β̂m)2∑L

m=0[1/
∑n0

i (y
(0)
i − x

(0)⊤
i β̂m)2]

(4.7)

In Steps 1-3, the tuning parameters λ0, λl, λ0l are selected through cross validation and is

described in greater detail in the next Methods section. In Step 4, Icw and Icd are indicator
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vectors that indicate which coefficients of ŵl and δ̂l are of magnitude greater than or equal

to the threshold value of c. This is also in the next Methods section, where we detail the

different constants we use, including allowing any coefficient magnitudes to be added together.

In the weighting scheme θl of step 5, the error is calculated in the training target data. The

term, x
(0)⊤
i β̂m is the the prediction for individual i in the target data using model m, and the

summation over i aggregates squared prediction errors over all individuals. The weights are

based on the inverse of the squared error for each model’s predictions on the target data, which

gives more importance to models with lower errors. We note that this is not the error from

the left out target data, because then this algorithm would not be applicable to researchers

developing new algorithms without validation data. Error from LODO is used at a later step,

however, to combine the coefficients from our various TL models in a Super Learner process to

obtain the final coefficients.

This methodology is described with all 6 target datasets together in y(0) and X(0), which

is the case for our final algorithms. However, in the process of testing parameterization and

TL method specification, we employ a Leave-One-Data-Out (LODO) process, meaning 1 target

dataset is held out and the remaining 5 are used to develop the TL coefficients in the steps

described above. As such, for developing the TL algorithm for each biomarker and each tested

TL method, the 5 steps were performed 6 times to capture j = 6 LODO folds. This results in

β̂−01 , . . . , β̂−06 for each jth fold (total of 6 target datasets), which are the target data coefficients

when the jth target data is left out (β̂−0j ). After each fold is run, the β̂−0j coefficients are applied

in the jth dataset to calculate the LODO error and correlation for comparing the TL methods.

The LODO error and correlation are a sum of the metrics weighted by the left out dataset size,

nj . For example, the LODO total squared error is calculated as:

LODO Squared Error =

6∑
j=1

nj

n0

nj∑
i=1

(
y
(0)
ji − ŷ

(0)
ji

)2
(4.8)

=

6∑
j=1

nj

n0

nj∑
i=1

(
y
(0)
ji − x

(0)⊤
ji β̂−0j

)2
(4.9)

where y
(0)
ji is the blood DNAm biomarker of interest for the ith person in the jth left out

target dataset and x
(0)⊤
ji is vector of saliva DNAm for the ith person in the jth left out target

dataset.
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4.2.4 Calculating Informative Auxiliary Sets (Step 2A):

In Step 2A, we use * to denote the possibility to skip this step, as is the case for the Oracle

methods, where informativeness is a-priori known and therefore does not need calculated. We

employ two oracle methods. One, which we refer to as Oracle A0, treats all auxiliary datasets

as equally informative, and L is the combined set of all K auxiliary data. In the second oracle

method, deemed Oracle 1df, each auxiliary dataset is considered informative, but not necessarily

equal. In this case, L is exactly K, with each auxiliary dataset being treated individually.

When we are determining the informativeness of auxiliary datasets, we construct L, the set

of informative auxiliary datasets. In summary, this algorithm computes differences in marginal

correlations between auxiliary datasets and the target datasets. The most significant of these

differences calculates an index R̂(k) that gives an indication of the informativeness of the kth

auxiliary dataset. These are ranked and auxiliary datasets are taken in sequence to produce

the informative set L.

Step 1: Calculate ∆̂(k):

∆̂(k) =
1

nk

nk∑
i=1

x
(k)
i y

(k)
i − 1

n0

n0∑
i=1

x
(0)
i y

(0)
i . (4.10)

∆̂(k) holds the marginal statistics for the kth auxiliary dataset, which is the average difference

between the kth auxiliary dataset CpG’s and the target dataset CpG’s correlation to the DNAm

biomarker outcome. The term X ′y captures how each predictor variable individually correlates

with the DNAm biomarker variable. If you think of y as a vector in a space, and each column of

X as another vector in that space, then each component of X ′y is essentially the projection of

y onto each of those predictor vectors. So we are taking the average difference of the projection

between the auxiliary data and target data for each p. (∆̂(k) is a p× 1 vector)

Step 2: Pick out the most significant components of ∆̂(k) by obtaining the top t∗ ∆̂(k)

(largest differences) between the auxiliary and target data, called T̂k. As such, T̂k are indices

of the largest marginal statistics for each auxiliary dataset. The default value for t∗ is one

third the target dataset size (n0/3), and we also explore variations to include more ∆̂(k). This

parameter changes how many of the largest differences are considered. Call this subset ∆̂
(k)

T̂k
.

T̂k =
{
1 ≤ j ≤ p :

∣∣∣∆̂(k)
j

∣∣∣ is among the first t∗ largest of all
}

(4.11)
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By taking the largest values, we are capturing the most unique differences between the auxiliary

and target data. Capturing the largest differences allows us to understand how different the

auxiliary data are from the target data.

Step 3: Calculate Sparse Index (R̂(k)) for the kth auxiliary dataset.

R̂(k) =
∥∥∥∆̂(k)

T̂k

∥∥∥2
2

(4.12)

This estimated sparse index is the squared Euclidean norm of the vector ∆̂
(k)

T̂k
. Essentially, this

is summing the total squared differences of the top t∗ correlation differences. Auxiliary datasets

with smaller R̂(k) are more informative because the total deviation between the auxiliary and

target data is small. This metric will be larger for auxiliary datasets that have more significant

differences from the target datasets. After this, we use these sparsity indices to make candidate

sets / subsets of the auxiliary data. We rank each R̂(k) and take the smallest values in sequence

to make L subsets of size 1, . . . ,K. Specifically, the lth candidate set is:

l = 1 ≤ k ≤ K : R̂(k)is among the first l smallest of all (4.13)

For illustration, we have 5 auxiliary datasets, and suppose the rank of R̂(k)’s is 4,1,2,3,5. Then L

would be the 5 element set {(4), (4, 1), (4, 1, 2), (4, 1, 2, 3), (4, 1, 2, 3, 5)}. Computation proceeds

as described above with each subset of auxiliary datasets being run together in the Lasso

algorithm. In total, there will be K subsets each with 1, . . . ,K auxiliary datasets included.

Therefore, the most informative auxiliary dataset will be present in all L subsets.

4.2.5 Optimizing Transfer Learning Methodology for Cross-Tissue DNAm

Prediction

The core aim of our study was to assess the utility of Transfer Learning (TL) in the context of

DNA methylation (DNAm) and DNAm-based biomarkers. We made methodological modifica-

tions within the TransLasso framework to tailor the TL process for DNAm based biomarkers.

The variations explored include lambda penalty optimization, coefficient thresholding, and the

integration of auxiliary dataset information, which are delineated below.
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Lambda Penalty

The λ penalty in penalized regression models is typically determined through cross-validation

(CV), either by identifying the λ that minimizes CV error or by selecting a more conservative λ

within one standard error above the minimum. In transfer learning contexts involving multiple

auxiliary datasets, optimizing λ for each dataset can be computationally intensive. We expand

upon the TransLasso algorithm, which uses a constant calculated from the target dataset, c0,

to define λk for each auxiliary set: λk = c0 ×
√
2(log(p))/nk. Our investigation included this

approach and allowed for λ selection through CV in each auxiliary set, aspiring to harness

dataset-specific nuances to inform λ choice.

In our CV λ selection process, λ0 is the optimal λ for the target dataset from CV on y(0)

and X(0), λk is the optimal tuning parameter for ŵk from y(k) and X(k), and λ0k is the optimal

tuning parameter λk scaled by the target dataset size, n0. We scrutinized the constant λ and

individualized λ approaches under the min and 1se parameterizations to determine the most

suitable for our DNAm biomarker prediction. This approach was geared towards determining

the optimal λ for our prediction problem, with the intent to refine the model’s predictive

accuracy and reliability.

Coefficient Thresholding

In the transfer learning process, a two-step coefficient computation is used for estimating co-

efficients from auxiliary data: initially within the auxiliary dataset to predict the outcome of

interest (weights, wk), followed by an adjustment for biases between the target and auxiliary

datasets (δk). Lasso regression shrinks coefficients toward zero, which can result in some coef-

ficients being small and near zero. To mitigate the incorporation of negligible coefficients from

auxiliary sources, thresholding can be applied prior to combining the auxiliary weights and

bias coefficients. While the conventional TransLasso method maintains coefficients exceeding

a threshold of λ (described above), our exploration incorporated more lenient thresholds, in-

cluding halving the threshold (0.5× λ) and considering all coefficients, regardless of coefficient

magnitude. We compare these three thresholding approaches and refer to them as ‘lambda’,

‘half lambda’, and ‘all’. This approach acknowledges the inherent characteristics of DNA methy-

lation (DNAm) where the effects can be minuscule. By lowering or removing the thresholding,

we may account for the subtlety of DNAm effects and improve the application of TL to DNAm
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data.

Auxiliary Dataset Information

The relevance of auxiliary datasets to your target data and objective can often be ambiguous.

An ’oracle’ scenario would entail using only known informative auxiliary datasets; however,

this is not always practical. Consequently, we need a mechanism to gauge the informativeness

of auxiliary datasets. We examined both the oracle and estimation approaches for auxiliary

dataset incorporation. In the oracle scenario, we considered all auxiliary data as either a single

collective sample or as separate individual datasets, referred to as Oracle A0’ and Oracle 1df’,

respectively. Informativeness of auxiliary datasets were computed as described above using

the differences in marginal correlations. We varied the number of considered correlations to

calculate auxiliary data similarity starting from the default value of one-third of the target

dataset size (n0/3). For the C+S method, we considered the top 100, 500, 2000, and 6663

(all) correlation differences. For the C method, limited to the 40K array-conserved sites, we

considered the top 100, 500, and 1307 (all) correlation differences. These methods are referred

to as Rhat and the corresponding number, like ’Rhat100’.

4.2.6 Evaluating TL Methods and Developing Final Algorithms

Evaluating Transfer Learning (TL) Methodologies

To assess the efficacy of various TL algorithms, we conducted a comprehensive evaluation of their

performance using Leave-One-Dataset-Out (LODO) correlation, mean squared error (MSE),

and mean absolute percent error (MAPE). This approach provides a holistic view of how dif-

ferent parameters and methods of integrating auxiliary data affect the predictive accuracy for

DNA methylation (DNAm) biomarkers. It should be noted, however, that while this evalua-

tion offers a broad understanding of algorithmic performance, it does not specifically address

variations across individual DNAm biomarkers.

Development of Optimized TL Algorithms

Our methodology for refining TL algorithms involved a detailed analysis of their performance

across each DNAm biomarker. We calculated and then ranked both the correlation and predic-

tion error for each TL method within individual DNAm biomarkers. This ranking was based

on a weighted LODO MSE and the correlation between the predicted and actual blood DNAm
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biomarkers, with weights assigned in proportion to the size of the dataset left out. The most

effective methods were identified based on their mean performance in terms of correlation and

MSE across all DNAm biomarkers. The four top-ranked methods were subsequently applied to

the entire target dataset, with the resulting coefficients being recorded.

In the final stage of our analysis, we employed a Super Learner approach to combine coeffi-

cients from these four top performing methods, thereby deriving the final algorithms’ coefficients

for each DNAm biomarker. The weights assigned to each coefficient set were inversely propor-

tional to the squared errors from the LODO analysis of the respective method. We opted for the

Super Learner framework over the single best-performing TL method because of the former’s

proven superiority in enhancing predictive accuracy and providing more stable estimates in re-

gression models, particularly when multiple a priori techniques are utilized [80]. We developed

the optimal TL algorithm separately for the two algorithms desired: one incorporating saliva

DNAm biomarkers with 6662 CpGs as potential covariates and the other using only the 1307

CpGs conserved on the 40K array. Consequently, for each DNAm biomarker, we developed two

cross-tissue prediction algorithms — one incorporating saliva DNAm biomarkers and the other

based solely on saliva methylation beta values. However, as described in the section below, we

do not provide all DNAm biomarker algorithms to researchers because the TL method does not

always adequately predict DNAm biomarkers.

4.2.7 Validation of Algorithms

In our study, we embarked on a comprehensive evaluation of Transfer Learning (TL) to de-

termine its potential contributions in the realm of cross-tissue prediction, particularly in the

context of predicting blood DNA methylation (DNAm) biomarkers. Our evaluation framework

was multi-faceted, focusing on three key benchmarks deemed critical for any robust cross-tissue

prediction algorithm.

Comparison of TL with Direct Saliva DNAm Estimates

Initially, we assessed whether TL offers an advantage in predicting blood DNAm biomarkers

from saliva DNAm. This involved contrasting the efficacy of our TL algorithms with the base-

line approach of directly computing biomarkers from saliva DNAm. The TL algorithms can

be considered advantageous if they demonstrate superior performance in approximating blood

DNAm biomarkers compared to using saliva DNAm as a direct surrogate.
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Benchmarking TL against Lasso Regression

We then compared the TL algorithms against conventional Lasso regression to evaluate the

benefits of adopting advanced computational techniques. Lasso regression was applied solely to

the target data, serving as a comparative baseline. In contrast, our TL methods leveraged both

the target data and additional auxiliary cross-tissue DNAm data. The key distinction between

the TL and Lasso methods lies in the incorporation of this auxiliary cross-tissue DNAm data

in TL as both TL and Lasso used the same target and held out datasets for development and

comparison. We analyzed and compared the Leave-One-Dataset-Out (LODO) correlations and

errors generated by both the TL and Lasso algorithms. The TL algorithms can be considered

advantageous for DNAm biomarkers if they demonstrate better prediction accuracy compared

to Lasso techniques.

Comparing TL Algorithms with Different Domains

Lastly, we scrutinized the differential predictive power and accuracy between our two distinct

TL algorithms developed for each DNAm biomarker. One algorithm incorporated saliva DNAm

biomarkers and beta values across 6662 CpG loci, while the other was confined to 1307 CpG sites

alone. This comparative analysis aimed to determine whether the inclusion of saliva DNAm

biomarkers as covariates significantly enhances predictive accuracy or if their inclusion is largely

redundant in the context of these TL models.

4.2.8 Scope of Algorithms: Application to Validation Sets

The utility of these algorithms extends beyond mere accuracy; for them to resonate with and be

adopted by the broader research community, they must demonstrate an ability to reflect biologi-

cally meaningful relationships. We explore this by examining if our predicted DNAm biomarkers

have the same relationships that have been established between blood DNAm biomarkers and

phenotypic variables across three distinct validation datasets, and further explore the relation-

ship to age in two additional validation datasets.

We calculate the association between our predicted blood DNAmTL biomarker and sex

to evaluate if our predictions align with known biological trends, where females tend to have

longer telomere length compared to men. Next, we compare predicted blood DNAm biomarkers

among people with COPD, asthma, and healthy controls, using sputum DNAm and adjusting for
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age. Research has demonstrated older DNAm age estimates in people with COPD and asthma

compared to controls. We also investigate the congruence of predicted blood cell count DNAm

biomarkers with lymphocyte percentages. The study also reports cumulative pack years, and

we evaluate the association to predicted DNAm biomarkers surrounding lung health and fitness:

DNAmPackYears, DNAmFEV1, and DNAmVO2max blood biomarkers. Finally, we explore if

our predicted blood DNAm biomarkers change in the expected direction from a longitudinal

exercise, diet, and sleep intervention study. Here, we employ a main effects mixed model,

controlling for age and study duration, to determine if our fitness-related blood biomarkers

show expected improvements in the intervention group. This analysis also offers the unique

opportunity to assess whether the newly developed blood DNAm fitness biomarkers exhibit

expected improvements from an exercise intervention, an evaluation that has not yet been

undertaken. These comparisons validate the predictive potential of the TL algorithms and

demonstrate their robustness to application in novel data sources.

Assessing Algorithmic Flexibility to Tissue Type

Because our TL approach incorporates information from multiple human tissues, we are inter-

ested in understanding if the algorithm is robust to tissue type. For example, instead of saliva

DNAm, can we provide skin, lymph nodes, or other tissue DNAm and still have accurate blood

DNAm biomarker predictions? We applied the C algorithms to three accessible tissues (lymph

nodes, adipose, and muscle DNAm) in HIV-negative and HIV-positive individuals and compared

the predicted DNAm biomarkers. This helps us assess if the predictions accurately reflect the

accelerated aging and immune dysregulation associated with HIV infection. Furthermore, we

examine the prediction accuracy using skin DNAm compared to true blood DNAm biomarkers

in TwinsUK sample, and we relate the predicted blood DNAm biomarkers to chronological age

to determine if the predictions correlate in the expected direction.

4.2.9 Applying Human Biomarkers Across Species

In our final novel exploration, we apply the algorithms designed for predicting human blood

DNAm biomarkers to other mammals. Specifically, we use skin DNAm measured in mammals

using the 40K Mammalian array and calculate predicted DNAm biomarkers using our C algo-

rithms. This cross-species application aims to estimate ’human equivalent’ aging biomarkers,

offering a unique opportunity to translate and understand DNAm aging biomarkers beyond
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chronological age in different species. This includes an assessment of whether the algorithms

correlate in the expected directions to relative age (chronological age / maximum species age)

and if the predicted values fall within reasonable ranges. This offers access for animal studies

to have meaningful DNAm biomarkers that translate to human phenotypes and direct methods

for animal studies to inform human studies. These endeavors strive to bridge cross-species gaps

and contribute to a broader understanding of aging and disease processes.

Initially, we focus on mammalian species most commonly used in biomedical research, in-

cluding primates, mice, and rats. The selection of these species is strategic, as their frequent

use in laboratory studies presents an opportunity to leverage our biomarkers as surrogate aging

indicators. We also studied bats as a counter example of distant mammalian species to humans

that are also studied in aging research [81]. Subsequently, we broaden our scope to encompass a

diverse array of mammalian species, analyzing skin DNA methylation (DNAm) samples across

91 species. To evaluate these algorithms, we calculate overall correlation across all species and

samples, within-species weighted correlation, and compare the differences between the two to

understand if the strength of relationship is driven by conserved signal among all species or

conserved signal within species.

Rejuvenation Effects in Mice

Previous research has demonstrated epigenetic rejuvenation in kidney and skin samples of mice

with long-term partial reprogramming [82]. While this research sampled multiple tissues, it did

not include blood measurements. We wanted to determine if our C algorithms are predictive

of rejuvenation in the blood by using mouse skin DNAm as input. This analysis not only

provides insight to mice blood, an unmeasured tissue, but it also offers novel insight to potential

blood rejuvenation of human DNAm biomarkers from partial reprogramming. In this study,

they used both Black6 (B6) mice and 4 Factor (4F) mice, with the latter being genetically

modified mice with 4 reprogramming factors from a lentiviral vector (Tet-O-FUW-OSKM).

This vector is activated and the factors are expressed when the inducer, doxycycline (Dox)

is administered. Mice were categorized into 1 of 3 groups: Control (n=7 B6, n=11 4F, n=

2 B6 Dox), Short Treatment (n=3 4F+1mDox), or Long Treatment (n=5 4F+7mDox, n=2

4F+10mDox). In total, there are 20 control mice, 3 short term mice, and 7 long term mice.

To evaluate whether the C algorithms capture DNAm biomarker rejuvenation, we apply our C

algorithms to mice skin DNAm, and then calculate the association of each DNAm biomarker to
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the treatment group adjusting for relative age. We include relative age as a covariate because

balanced ages were not observed in the treatment groups. For the DNAm fitness biomarkers, we

additionally include sex as a covariate because the fitness biomarkers are sex specific. Therefore

for DNAmGaitspeed, DNAmGripmax, DNAmVO2max, DNAmFEV1, and DNAmFitAge, we

present results controlling for relative age and sex.

Summary of Terminology Used

• LODO: Leave-One-Data-Out, meaning leaving 1 target dataset out at a time.

• TL: Transfer Learning

• C+S Method: One algorithmic set up which includes 6662 saliva CpG loci and the

saliva DNAm biomarker as covariates to predict the blood DNAm biomarker.

• C Method: The second algorithmic set up which includes 1307 CpG loci as covariates

to predict the blood DNAm biomarker.

• Target Data: Datasets that include saliva and blood DNAm from the same individual.

There are 6 of these and are used to develop the algorithms. Referred to with (0).

• Auxiliary Data: Datasets that include two tissues that are not saliva and blood from

the same individual. There are K = 5 of these and are used to develop the algorithms.

Referred to with (k).

• Validation Data: Four datasets that are not used to develop the algorithms, but are

used to apply the algorithms to validate the signatures.

• Oracle A0: TL method where all auxiliary datasets are a-priori specified as equally

informative and combined into 1 auxiliary dataset

• Oracle 1df : TL method where all auxiliary datasets are specified as informative and

used as individual auxiliary datasets

• Informative Auxiliary Sets: When not using the Oracle TL methods, we estimate

which auxiliary datasets are informative for our target data. Referred to with l and L.

• Min / 1SE: The λ penalty term in Lasso that either minimizes the CV error or is the

value that is at most 1 standard error above the minimum CV error.

• lambda, half lambda, all: The three different coefficient thresholds used for combining

weights, ŵk, and bias coefficients, δ̂k, from the auxiliary data

• Rhat: The different number of correlation differences considered when determining aux-

iliary informative sets.
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4.3 Results

4.3.1 Optimal TL Algorithm

Optimal Parameters for C+S Method

The best median LOOCV correlation was observed using the minimum lambda in the C+S

methods (0.515) (Table 4.2). Interestingly, despite a relatively lower correlation of 0.475 un-

der the constant lambda, determined based on CV in target data and auxiliary dataset size,

the error metrics are slightly reduced. This suggests improved prediction accuracy despite a

less strong linear relationship between the predicted and true blood DNAm biomarker. Set-

tings without thresholding or partial thresholding results in comparable correlation with no

thresholding having 1.3% lower error. Both of these methods outperform complete (lambda)

thresholding with a difference of 0.05 correlation and 2.3% higher error, suggesting complete

thresholding underfits the model by removing small, but informative coefficients.

The integration of auxiliary datasets through the Oracle 1df approach yielded the best

correlation and the lowest Mean Squared Error (MSE) on average, with a median Mean Abso-

lute Percentage Error (MAPE) similar to other methods incorporating auxiliary information.

Contrary to expectations, the Oracle 1df method outperformed the standard Oracle approach,

which treats all auxiliary datasets as a single combined source, improving correlation by 0.06

and maintaining comparable MAPE. Furthermore, the estimation of the informative set indi-

cated a beneficial trend in incorporating more Rhats, as evidenced by a gradual improvement

in correlation (R = 0.494, 0.520, 0.530) with negligible variation in error metrics. To under-

stand variability in performance for the C+S method based on parameterization, we provide

Supplemental Figure B.5 for each biomarker.

In summary, the C+S method’s optimal generalization employs the Oracle 1df approach,

does not perform coefficient thresholding, and uses the minimal lambda derived from cross-

validation in each dataset.

Optimal Parameters for C Method

In contrast, the C method consistently demonstrates higher median R values across most pa-

rameters compared to C+S. This suggests a stronger correlation with the actual blood DNAm

biomarker under the C setting. Echoing the C+S method’s findings, the minimum lambda from
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auxiliary data CV was preferred, achieving the highest average R of 0.604 and lowest MAPE of

24.8% (Table 4.2).

In a departure from C+S, the C method favored more rigorous coefficient thresholding.

Specifically, the median R of 0.597 with complete thresholding was 0.016 higher than settings

without thresholding. This divergence between methods suggests a greater number of CpGs

are needed to estimate the blood biomarker in the absence of original tissue DNAm biomarkers

(C method), however, this also propagates noise in the prediction, which can be corrected by

removing smaller coefficients. Finally, auxiliary methods using either Oracle 1df or estimating

the informative set with more Rhats perform comparably well based on R and MAPE. While

Oracle and Oracle 1df have similar correlations, Oracle 1df decreases error by approximately

2%.

Thus, the C method’s best practice includes the minimal CV lambda from each auxiliary

dataset combined with complete (lambda) coefficient thresholding. Using either Oracle 1df or

estimating the informative sets with more Rhats are similarly efficacious.

General Recommendations

Both C+S and C methods favor the Oracle 1df method and the minimal lambda. They diverge

on coefficient thresholding — more thresholding benefits the C method, while less thresholding

benefits the C+S method. These recommendations, however, do not account for individual

biomarker variability, which may influence the optimal choice for a specific biomarker. Re-

searchers with the resources to conduct an LOO procedure are advised to employ the TL

tuning function to determine the best parameters for their specific scenario. In the absence of

such a procedure, our broad recommendations provide a starting point.

4.3.2 Final Algorithms

Our previous section evaluated individual parameters, however, it’s crucial to recognize that the

best individual parameterizations might not synergize when combined. Therefore, we ranked

each TL method within each biomarker to determine the most efficacious models. These re-

sults generally aligned with our recommendations, particularly for the C+S method where the

Oracle 1 df, min lambda, and all coefficient setup emerged as the top-ranked for lowest Mean

Squared Error (MSE) and highest correlation among all C+S TL methods. Despite its supe-

rior performance, it didn’t achieve a universal top rank, highlighting the presence of multiple
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Table 4.2: Optimal Parameters for Transfer Learning with DNAm

C+S C

Parameter
median median median median median median

R MSE MAPE R MSE MAPE

Lambda
Min 0.515 240 25.2 0.604 209 24.8
1SE 0.503 237 26.2 0.572 228 25.5
Constant 0.475 219 24.8 0.535 237 27.0

Coefficient Threshold
Complete (lambda) 0.490 256 27.1 0.597 226 25.5
Partial (.5 lambda) 0.545 248 26.1 0.592 248 25.6
None 0.540 220 24.8 0.581 200 25.1

Auxiliary Informative
Oracle 0.493 248 26.2 0.596 248 26.7
Oracle 1df 0.554 214 25.9 0.592 243 24.8
Estimate A0 0.513 244 26.1 0.586 214 25.5

Rhat nk/3 0.494 236 25.4 0.573 226 25.9
Rhat 500 0.520 248 26.2 0.592 208 25.4
Rhat All 0.530 242 26.2 0.592 213 25.4

algorithms with nearly identical performance across various methods. The top 4 C+S methods

were Oracle A0 1df, min lambda, all coef; Oracle A0, 1se lambda, half coef; Estimate A0 Rhat

nk/3, 1se, half coef; and Estimate A0 Rhat All, 1se lambda, half coef. For the C method, the

top 4 algorithms were OracleA0 1df, 1se lambda, all coef; Estimate A0 Rhat 500, min lambda,

all coef; Estimate A0 Rhat nk/3, min lambda, lamb coef; and Oracle A0, min lambda, lambda

coef. The variation in top methods reaffirms that no single TL method suits all scenarios.

Given the absence of one-size-fits-all solution, we used a Super Learner approach to generate

the final coefficients for each biomarker. This strategy capitalizes on the strengths of each

top algorithm, mitigating their individual weaknesses and catering to the specificities of each

biomarker. The final algorithms for each biomarker are readily accessible on our GitHub reposi-

tory at https://github.com/kristenmcgreevy/EpigenTL, and are also provided in the Appendix

section A.8.

4.3.3 Algorithmic Comparison

Comparison to Saliva Surrogates

In the comparative analysis of Transfer Learning (TL) algorithms for estimating blood DNA

methylation (DNAm) biomarkers from saliva DNAm, we found that 20 out of 26 biomarkers

were more accurately predicted by TL methods than by their saliva DNAm surrogates, based
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on Mean Squared Error (MSE) and correlation metrics. When separating the comparison be-

tween the C+S method and C method to saliva, 18 and 15 biomarkers were more accurately

predicted with the TL methods, respectively. The amount of improvement using either of the

Transfer Learning methods varied by biomarker. Some biomarkers saw drastic improvement,

such as DNAmGrip noAge and DNAmLeptin, which had 0.364 and 0.364 stronger correlation,

respectively. DNAmLeptin also saw a 7 figure improvement in MSE when using our C+S

algorithm. For our provided algorithms, the average LODO correlation improvement of our

algorithms compared to the saliva surrogate itself is 0.120. This improvement is not universal

across all DNAm biomarkers, however. One biomarker—Gran—showed notably poor correla-

tions across TL, Lasso, and saliva surrogate methods, prompting its exclusion from any saliva

to blood biomarker recommendations. In addition, CD8pCD28nCD45RAn did not have good

performance with C+S method, C method, or Lasso, however the saliva surrogate had a decent

correlation (0.33) (Supplemental Table B.9).

Comparison between TL and Lasso

When comparing TL algorithms directly against Lasso regression, TL algorithms outperformed

Lasso for 23 out of 26 biomarkers. This underscores the significant potential of TL algorithms

in the generation of new DNAm biomarkers. Additionally, the Lasso algorithm averaged the

lowest/worst rank in MSE and Correlation across all TL and Saliva surrogate methods within

each biomarker. Even when Lasso outperformed the TL methods, it did not outperform the

saliva surrogate alone. With these results, we did not observe any instance where Lasso would

be more beneficial than TL when saliva surrogates are available. As such, we strongly encourage

researchers to adopt TL methods in place of Lasso when similar data are available, like when

different tissue DNAm samples are available. Additional metrics evaluating median absolute

percent error are presented in the Appendix Section B.4.

Comparison of C+S to C method

Unexpectedly, 9 biomarkers estimated with the C method surpassed the performance of the

C+S method. This suggests that incorporating DNAm biomarkers from the original tissue can

sometimes introduce noise to its prediction, with pure methylation loci offering clearer signals

for certain biomarkers. DNAmCystatinC was one biomarker where the C method out performed

the C+S method with a 0.259 improvement in correlation and 9 figure improvement in MSE
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Figure 4.1: Correlation between True and Estimated Blood DNAm Biomarkers by top
Performing TL Methods, Lasso, and Saliva Surrogates. Median correlation presented as
dotted line. LODO Correlation presented for C+S, C, and Lasso methods.

compared to C+S method and saliva surrogate.

While not all TL algorithms outshined their corresponding saliva surrogates, they did exhibit

substantial predictive power for 23 out of the 26 biomarkers. For instances where saliva DNAm

biomarkers cannot be calculated without extensive imputation—as with the 40K array— our

C method algorithms provide a valuable alternative. This resulted in 10 biomarkers having

both a C+S algorithm and C algorithm. Three biomarkers have a C algorithm excluded due to

inadequate predictive power: CD8pCD28nCD45RAn, Gran, and PlasmaBlast. In addition, we

want to iterate that for CD4.naive, CD8.naive, DNAmB2M, and DNAmPAI1 biomarkers, the C

algorithms are only recommended when saliva DNAm biomarkers are unavailable. A summary

table detailing the available algorithms by biomarker can be found in Table 4.3.

In summary, 11 biomarkers were best predicted using the C+S method, 9 with the C method,

5 using saliva DNAm biomarkers directly, and 1 biomarker was not well estimated by any

method. We provide algorithms for predicting 23 blood DNAm biomarkers from saliva DNAm

along with guidelines for their use. For researchers in the field, this study offers a comprehen-

sive suite of algorithms tailored to a variety of biomarkers, enhancing the predictability and

applicability of DNAm studies. Our research underscores the efficacy of TL in biomarker pre-
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Table 4.3: Summary of Cross Tissue DNAm Biomarker Algorithms Provided

Biomarker Best Model C Algorithm
Total Algorithms

available
CD4.naive Saliva Yes 1
CD8.naive Saliva Yes 1
CD8pCD28nCD45RAn Saliva No 0
DNAmADM C+S Yes 2
DNAmAge C Yes 1
DNAmAgeHannum C+S Yes 2
DNAmB2M Saliva Yes 1
DNAmCystatinC C Yes 1
DNAmFEV1 noAge C+S Yes 2
DNAmFitAge C+S Yes 2
DNAmGait noAge C Yes 1
DNAmGDF15 C+S Yes 2
DNAmGrimAge2BasedOnPredictedAge C+S Yes 2
DNAmGrimAge2BasedOnRealAge C+S Yes 2
DNAmGrimAgeBasedOnPredictedAge C Yes 1
DNAmGrimAgeBasedOnRealAge C Yes 1
DNAmGrip noAge C Yes 1
DNAmLeptin C+S Yes 2
DNAmPACKYRS C+S Yes 2
DNAmPAI1 Saliva Yes 1
DNAmPhenoAge C+S Yes 2
DNAmTIMP1 C Yes 1
DNAmTL C Yes 1
DNAmVO2max C Yes 1
Gran None No 0
PlasmaBlast C+S No 1

diction and development and encourages its adoption over Lasso regression when applicable,

particularly when multi-tissue DNAm data are available.

4.3.4 Application to Validation Datasets

DNAmTL to Sex Relationship

We assessed the association between predicted blood DNA methylation Telomere Length

(DNAmTL) biomarkers and sex, noting that females generally exhibit longer telomeres com-

pared to males. Utilizing saliva DNA methylation (DNAm) as input, both C+S and C method

blood DNAmTL predictions accurately reflected this trend. Specifically, females exhibited an

average increase in telomere length of 0.29 and 0.3 for C+S and C methods, respectively, align-

ing closely with the observed 0.33 mean difference in the saliva surrogate. These disparities were

statistically significant, as indicated by t-test and Kruskal Wallis test, with p-values ranging

from 8.3E-6 to 3.5E-4 (Supplemental Table B.10).
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Figure 4.2: Scatterplots between True and Estimated Blood DNAm Biomarkers in Target
Datasets. LODO Correlation presented for C+S, C, and Lasso methods.

COPD, Asthma, and Healthy Controls

Subsequently, we compared predicted blood DNAm biomarkers among individuals with Chronic

Obstructive Pulmonary Disease (COPD), asthma, and healthy controls, adjusting for age us-

ing sputum DNAm as input. Consistent with previous studies showing advanced DNAm age

in COPD and asthma patients, our analysis identified elevated sputum DNAm biomarkers in

COPD individuals. Notably, a previously unreported association was discovered with DNAm-

FitAge, indicating that COPD patients have a 5.38 older sputum DNAmFitAge relative to

healthy controls after age adjustment (p=0.036). For asthma, two C+S predicted biomark-

ers (DNAmPhenoAge and DNAmGDF15) aligned with expectations, whereas DNAmVO2max

demonstrated an inverse relationship potentially influenced by inhaler use. For COPD patients,

three predicted biomarkers corresponded with expected outcomes, revealing higher mean Smok-

ing Pack Years (14.3, p=0.031) and an average 4.24 older DNAmAge (p=0.040) (Table 4.4A).

Our study further investigated the relationship between cumulative pack years and pre-

dicted DNAm biomarkers pertinent to lung health and fitness: DNAmPackYears, DNAmFEV1,

and DNAmVO2max. A strong correlation was observed between sputum and blood predicted

C+S DNAmPackYears: 0.793 (p=1.4E-6) and 0.764 (p=5.6E-6), respectively. However, the C

DNAmPackYears did not significantly correlate with cumulative pack years (p=0.348), likely
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due to it being an inferior algorithm as demonstrated in the Leave-One-Out-Dataset (LODO)

samples. Both sputum and blood-predicted C+S DNAmPackYears and DNAmVO2max exhib-

ited the anticipated directional correlation with cumulative pack years, with DNAmVO2max in-

versely associated, suggesting diminished DNAmVO2max in longer-term smokers. Furthermore,

both sputum and blood-predicted C+S and C DNAmFitAge displayed significant correlations

with self-reported cumulative pack years, moving in the expected direction, with both C+S and

C methods exhibiting comparable correlations of 0.52. These findings on DNAmVO2max and

DNAmFitAge are novel, illustrating that health phenotypes associated with physical fitness and

lifestyle factors like smoking can be detected using predicted blood DNAm biomarkers derived

from methylation profiles of alternative tissues. This insight underscores the broader systemic

implications of fitness and health habits, which manifest beyond the typically studied tissues,

highlighting the potential for a more holistic understanding of health and disease (Table 4.4B).

Exercise, Diet, and Sleep Intervention

Lastly, we evaluated the responsiveness of predicted blood DNAm biomarkers to a longitudinal

8-week intervention study focusing on an exercise, diet, and sleep. Employing a main effects

mixed model, we controlled for age and study duration to ascertain if fitness-related blood

biomarkers demonstrated anticipated improvements in the intervention group. This analysis

provided a novel opportunity to assess the effectiveness of newly developed blood DNAm fit-

ness biomarkers. We observed a significant increase in saliva DNAmVO2max by 0.781 in the

intervention group (p=0.026), marking an unprecedented finding in exercise-induced DNAm

fitness biomarker improvement in just 2 months time. Additionally, blood-predicted C DNAm-

CystatinC (a marker of inflammation), DNAmTL, DNAmVO2max, and DNAmFEV1 noAge

exhibited significant enhancements in the intervention cohort. Notably, CystatinC decreased,

while telomere length, VO2max, and FEV1 increased, with the latter two showing average

improvements of 0.101 liters and 0.699 mL/kg/min, respectively. These changes paralleled

the saliva DNAmVO2max improvement (0.781, p=0.026), reinforcing the credibility of our C

algorithm for predicting DNAmVO2max (Table 4.5).

4.3.5 Alternative Tissues

Because our TL approach incorporates information from multiple human tissues, we were in-

terested in understanding if the algorithm is robust to tissue type. We applied the C algo-
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Table 4.5: Exercise, Diet, and Sleep Intervention Effects
Controlling for Age, Study Time, and Person-Specific Variation

Outcome Treatment Effect p-value

C DNAmCystatinC Prediction -16580 0.030
C DNAmTL Prediction 0.112 0.031
C DNAmFEV1 noAge Prediction 0.101 0.033
C DNAmVO2max Prediction 0.699 0.033
Saliva DNAmVO2max 0.781 0.026

rithms to three accessible tissues (lymph nodes, adipose, and muscle DNAm) in HIV-negative

and HIV-positive individuals and compared the predicted DNAm biomarkers. In lymph node

DNAm samples, four predicted DNAm biomarkers demonstrated significant associations in the

anticipated direction with HIV status after adjusting for age. Notably, DNAmAge and DNAm-

PhenoAge were, on average, 6.1 and 9.4 years older, respectively, in HIV-positive individuals

when accounting for chronological age (p=0.043 and p=0.012), as shown in Supplemental Ta-

ble B.11. These findings suggest that lymph nodes might serve as viable alternative tissue

for our C algorithms as they can capture some biologically known differences. Nevertheless,

the limited sample size (n=28) necessitates cautious interpretation, particularly concerning the

performance of the remaining 19 predicted DNAm biomarkers using lymphatic tissue.

Conversely, adipose and muscle tissues exhibited markedly poor performance with these

algorithms. Specifically, nine predicted biomarkers in adipose tissue and four in muscle tissue

were significantly associated with HIV status after controlling for age. However, all 13 of these

biomarkers displayed effects opposing the expected direction. Consequently, these outcomes

imply that adipose and muscle tissues are unsuitable for application with our current C algo-

rithms. The distinct responses across tissues underscore the necessity for a nuanced approach

to selecting appropriate tissues for DNAm biomarker analysis in the context of HIV status and

potentially other conditions (Supplemental Table B.11).

When evaluating the performance using skin DNAm as input, the correlation between pre-

dicted and true blood DNAm biomarkers is positive for 22/23 of the biomarkers, with 10

biomarkers having significance beyond the Bonferroni threshold of 0.002, and 13 having sig-

nificance at the classical 0.05 threshold (Table 4.6). The best performance is with DNAmAge

(R=0.57, p=9.4E-6), DNAmGrimAgeBasedOnRealAge (R=0.57, p=1.1E-5), DNAmAgeHan-

num (R=0.56, p=1.6E-5), and DNAmTIMP1 (R=0.55, 1.9E-5). Interestingly, 15 biomarkers

have lower MSE compared to directly calculating the blood biomarker using skin DNAm, sug-
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Figure 4.3: Scatterplots between True Blood DNAm Biomarkers and Skin Estimated DNAm
Biomarkers using C algorithms in TwinsUK cohort (n=53).

gesting our C algorithms are preferable to direct biomarker calculation in skin. An additional

4 biomarkers have comparable MSE to their direct skin counterpart, being DNAmPACKYRS,

DNAmGaitspeed, DNAmFEV1, and DNAmVO2max. The strength of correlation and low error

from our predicted blood biomarkers via C algorithms demonstrate skin DNAm can be reliably

used for estimating blood DNAm biomarkers.

Twenty-one out of twenty-two (95%) of the predicted biomarkers have correlations in the

expected direction with chronological age (Supplemental Table B.12). Furthermore, 13 of

these biomarkers have significant correlations at the Bonferroni threshold, and 15 have signifi-

cance at the classical 0.05 threshold. Some of the best performing biomarkers are DNAmAge

(R=0.78), DNAmFitAge (R=0.75), DNAmGrimAgeBasedOnRealAge (R=0.72), and DNAm-

Gaitspeed (R=-0.68). These results demonstrate applying the C algorithms to skin DNAm

samples preserves relationships of the predicted DNAm aging biomarkers to chronological age.

As such, this further lends evidence that these algorithms can accurately reflect known aging

patterns consistent with blood DNAm biomarkers and can serve as valuable surrogate alterna-
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Table 4.6: Validation of Skin-Based Predicted Biomarkers Against Actual Blood and Direct
Skin DNAm Biomarkers in TwinsUK Study using C Algorithms

Biomarker Pearson R p-value
MSE C MSE Skin

Algorithm DNAm Biomarker

DNAmAge 0.567 9.41E-06 6.29 3.81
DNAmGrimAgeBasedOnRealAge 0.565 1.06E-05 4.93 32.6
DNAmAgeHannum 0.555 1.63E-05 17.9 9.98
DNAmTIMP1 0.552 1.86E-05 820 2295
DNAmPhenoAge 0.482 2.54E-04 11.3 5.54
DNAmGDF15 0.453 6.67E-04 403.8 640.1
DNAmB2M 0.433 0.0012 259473 1524836
DNAmGrimAgeBasedOnPredictedAge 0.423 0.0016 8.61 31.4
DNAmFitAge 0.422 0.0016 5.99 19.2
DNAmGrimAge2BasedOnRealAge 0.413 0.0021 6.29 30.8
DNAmGrimAge2BasedOnPredictedAge 0.384 0.0045 8.46 29.9
DNAmCystatinC 0.376 0.005 108517 458159
DNAmTL 0.325 0.018 0.41 0.49
CD8.naive 0.258 0.062 41.5 93.8
DNAmPAI1 0.242 0.081 5927 26089
DNAmPACKYRS 0.198 0.155 16.3 14.2
DNAmGait noAge 0.188 0.178 0.16 0.15
DNAmFEV1 noAge 0.121 0.390 0.26 0.23
DNAmADM 0.116 0.406 13.1 43.9
DNAmLeptin 0.067 0.635 4611 22475
DNAmGrip noAge -0.061 0.665 4.11 2.16
DNAmVO2max 0.026 0.852 1.53 1.38
CD4.naive 0.015 0.914 77.1 89.0

tives.

4.3.6 Human Biomarkers in Mammals

We apply the C algorithms to mammalian skin samples and correlate their predicted DNAm

biomarkers to relative age (chronological age / maximum species age). Of the 23 applied

algorithms, 6 are expected to decrease with age, 15 are expected to increase with age, and 1

doesn’t have an expected direction (Leptin).

Human Biomarkers in Laboratory Animals

In primates (n=74), 16 predicted biomarkers have correlations in the expected directions with

14 of these having p-values < 0.05. Twelve of these biomarkers have p-values below the Bon-

ferroni threshold (p < 0.002) (Table 4.8). Out of all DNAm biomarkers with significant signal

(p-value < 0.05), 87.5% of them have strong correlations in the expected direction, performing

far better than expected by our group. For example, the DNAmAge prediction has a correlation

of 0.695 (p=6.1E-12) and DNAmGaitspeed has a -0.68 correlation (p = 4.2E-11) which are com-

parable correlations to those observed in the TwinsUK sample, ie humans (Supp Table B.12).

Furthermore, 9 biomarkers have correlations above 0.5 including some of the widely renowned
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Figure 4.4: Scatterplots between Predicted Blood DNAm Biomarkers using Skin DNAm to
Relative Age in Primates (n=74). Overall correlation (primates) presented on the plot and
animal classification correlations presented in legend.

biomarkers like DNAmGrimAge, DNAmPhenoAge, and DNAmPAI1. Only 2 biomarkers had

a significant correlation in the unexpected direction, CD8.naive and DNAmGDF15. These

biomarkers consistently perform poorly across other mammalian species (strong negative cor-

relations which are opposite of their expected direction), suggesting the C algorithms for them

should not be used in mammalian skin DNAm samples.

However, the performance of the C algorithms in monkeys (Rhesus macque) have exception-

ally strong performance, further suggesting that species most related to humans will have better

DNAm biomarker performance. Specifically, 12 biomarkers have significant correlations at the

Bonferroni threshold and an additional 5 have correlations above the 0.05 p-value threshold. All

of the significant correlations are in the expected direction. The correlation magnitude between

C Predicted blood DNAm biomarkers using skin methylation as input and relative age are over

0.7 for nine predicted biomarkers. For example, DNAmAge R=0.93 (p=2.5E-23), DNAmGrim-

AgeBasedOnRealAge R=0.85 (p=1.9E-15), DNAmFitAge R=0.85 (p=5.2E-15), and DNAm-

Gait noAge R=-0.83 (p=3.9E-14) (Table 4.7, Figure 4.4).

In bats (n=723), 77% (17/22) of the predicted DNAm biomarkers have significant corre-

lations in the expected direction and only 4 biomarkers have significant correlations in the

unexpected direction (Table 4.8). DNAmGrimAge, DNAmVO2max, and DNAmFitAge are

some of the strongest correlations (r > 0.3) with p-values < 1E-16. Interestingly, the strength
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Table 4.7: Predicted Blood DNAm Biomarkers using Skin DNAm Correlation to Relative
Age (Age / Maximum Species Age) in Rhesus Macque (n=51)

C Predicted Biomarker Pearson R p-value In expected direction?

DNAmAge 0.933 2.5E-23 Yes
DNAmGrimAgeBasedOnRealAge 0.853 1.9E-15 Yes
DNAmFitAge 0.846 5.2E-15 Yes
DNAmGait noAge -0.832 3.9E-14 Yes
DNAmTIMP1 0.806 9.2E-13 Yes
DNAmPhenoAge 0.786 8.0E-12 Yes
DNAmGrimAgeBasedOnPredictedAge 0.756 1.4E-10 Yes
DNAmGrimAge2BasedOnRealAge 0.744 3.9E-10 Yes
DNAmAgeHannum 0.706 7.1E-09 Yes
DNAmGrimAge2BasedOnPredictedAge 0.668 8.7E-08 Yes
DNAmADM 0.516 1.1E-04 Yes
DNAmB2M 0.463 6.2E-04 Yes
DNAmPAI1 0.381 0.006 Yes
DNAmVO2max -0.349 0.012 Yes
DNAmFEV1 noAge -0.345 0.013 Yes
DNAmCystatinC 0.302 0.031 Yes
DNAmGrip noAge -0.286 0.042 Yes
DNAmGDF15 0.272 0.054 Yes
DNAmTL -0.174 0.221 Yes
CD4.naive -0.174 0.223 Yes
CD8.naive -0.101 0.480 No
DNAmLeptin -0.036 0.801 Yes
DNAmPACKYRS -0.009 0.949 No
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of correlation lowers dramatically in bat samples compared to primates and rats. Separating the

correlation into fruit, micro, and vampire bats, patterns become clearer, with fruit bats having

very different predicted DNAm biomarkers. For example, the correlation for DNAmFitAge is

0.25, 0.27, and -0.07 for micro, vampire, and fruit bats, respectively. Microbats also have much

lower DNAmFitAge at birth compared to the fruit and vampire bats.

In rats (n=153), 16 biomarkers have correlations in the expected direction with 11 being

significant at p < 0.05. Some of the best performing biomarkers include DNAmGrimAge-

BasedonRealAge (r=0.68, p=1.8E-22), DNAmADM (r=0.66, p=3.0E-20), and DNAmTIMP1

(r=0.57, p=1.0E-14) (Table 4.8). DNAmAge seemingly has a significant correlation in the un-

expected direction (r=-0.28, p=5.7E-4), but when the correlation is evaluated separately in true

rats, naked mole rats, and other mole rats, the strength and directionality of DNAmAge corre-

lation is as expected. Specifically, while the overall rat correlation was negative, r = 0.78, 0.56,

and 0.36 in true rats, naked mole rats, and other mole rats, respectively. Similarly, DNAm-

Gaitspeed’s correlation is 0.39, but is -0.31 in naked mole rats. Both of these findings point

to some DNAm biomarkers having strong within-species signal that are better averaged using

within-species correlation.

In mice (n=48), only 4/22 biomarkers have significant correlations, and 9/22 biomarkers

have correlations in the expected directions. Only 2/4 of the significant biomarkers are in the

expected direction, being DNAmAge (r=0.67) and CD4.naive (r= -0.54) (Table 4.8). This

lack of association is likely due to the small sample size (n=48) and concentration of samples

collected around the same point in mice life (relative age = 0.5).

Across these four animal classifications, DNAmGrimAgeBasedonRealAge, DNAmTIMP1,

and CD4.naive biomarkers have correlations in the expected direction in all four of these main

research animal classifications. DNAmAge, DNAmPhenoAge, DNAmPAI1, DNAmPACKYRS,

DNAmTL, DNAmFitAge, DNAmGripmax, DNAmADM, DNAmVO2max, and DNAmAgeHan-

num have correlations in the expected direction in 3/4 of the classifications. CD8.naive and

DNAmGDF15 biomarkers consistently perform poorly and are not recommended for application

in animal skin samples. The observed strength of these correlations, particularly in primates

which are genetically closest to humans, provides compelling evidence of the C algorithms’

ability to preserve the relationship to relative age. This finding is pivotal, as it supports the

feasibility of using these algorithms as reliable biomarkers for aging studies in research animals.

Such applications could offer invaluable insights into the human equivalents of these biomarkers
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Figure 4.5: Scatterplots between Estimated Blood DNAm Biomarkers and Relative Age in
Primates, Bats, Mice, and Rats. Overall correlation presented in black on figure, and within
animal classification correlations presented in legend.

and the potential impacts of various interventions at the animal level. This alignment not only

validates our algorithms’ efficacy but also sets the stage for advancing our understanding of

aging processes through animal models.
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Overall and Within-Species Correlation

The correlation between predicted DNAm biomarkers and relative age is significantly related

for 19 out of 23 of the biomarkers across all mammals (n=2069). Of these, 15 out of 18

biomarkers adhere to the anticipated direction of correlation (DNAmLeptin doesn’t have a di-

rection) as shown in Table 4.9. The magnitude of these correlations was modest compared to

those seen in primates, with the strongest overall correlations being DNAmTIMP1 (R=0.357,

p=4.6E-63), DNAmFitAge (R=0.34, p=3.7E-56), DNAmAgeHannum (R=0.32, p=1.8E-50),

and DNAmVO2max (R=-0.27, p=9.1E-37) (Figure 4.6). CD8.naive and DNAmGDF15 biomark-

ers exhibited significant but inverse correlations, deviating from expected trends but aligning

with results seen with the common laboratory animals.

The analysis of the average weighted within-species correlations revealed a tendency for

biomarkers’ correlations to maintain directionality observed with their overall counterparts. The

biomarkers showing the most pronounced average correlations in the predicted direction were

DNAmAge (R=0.45), DNAmVO2max (R=-0.31), DNAmAgeHannum (R=0.29), and DNAm-

FitAge (R=0.25) (Table 4.9). Twelve biomarkers have average weighted within-species corre-

lation above 0.15, and all of those are in the expected directions. The three biomarkers with

correlations in the unexpected directions overall (CD8.naive, DNAmGDF15, and DNAmPACK-

YRS) have low within-species average correlations (|R|< 0.15), further demonstrating their lack

of applicability in mammalian skin samples.

When taking the average, unweighted biomarker correlations within species, many of the

relationships closely parallel the weighted within-species correlations. These correlations, how-

ever, generally exhibited a slight increase in strength. For example, DNAmAge displayed a

noticeable increase of 0.09 in its correlation coefficient (R=0.54), and DNAmVO2max showed

a magnitude increase of 0.04 (R=-0.35) (Supp Table B.13). An exception was noted in the

case of DNAmCystatinC, which shifted from a positive weighted correlation of 0.14 to a neutral

correlation when unweighted.

In conclusion, the predictive accuracy of most DNAm biomarkers does not appear influ-

enced by a few largely sampled species. Instead, our findings conclude both the weighted and

unweighted within-species averages are similar and representative of their performance across

different mammalian species. Biomarkers with correlation magnitude above 0.15 seem to gen-

erally perform well across and within species, with exceptions noted above.
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Figure 4.6: Scatterplots between Estimated Blood DNAm Biomarkers and Relative Age in All
Mammals. Mammal species are grouped into smaller animal classifications for visual purposes.
Overall correlation presented in black on figure, and within animal classification correlations
presented in legend. Animal groupings can be found in Appendix A.7
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Biomarker Stability and Consistency in Mammalian Species

To be classified as stable, the difference between the biomarkers’ overall and average weighted

within-species species correlation needed to be less than 0.1. Biomarkers with correlation dif-

ference under 0.05 were classified as very stable, whereas differences beyond 0.15 were labeled

unstable.

Six biomarkers were very stable in their correlations, and an additional six biomarkers were

stable. Specifically, DNAmVO2max, DNAmGaitspeed, DNAmAgeHannum, DNAmGripmax,

and GrimAgeBasedOnRealAge were identified as highly stable biomarkers, showing strong corre-

lations across and within species (All Mammals |R| = 0.19-0.32, WithinSpecies |R| = 0.17-0.30)

(Supp Table B.13). In contrast, four biomarkers displayed less stability in their correlation pat-

terns, including DNAmAge, CD4.naive, DNAmTIMP1, and DNAmTL. Notably, DNAmTIMP1

exhibited the strongest correlation across all mammalian species (R=0.36), yet this correlation

diminished to an average of only 0.152 within individual species. Inversely, DNAmAge had a

weak correlation across all mammalian species (R=0.079), but had the strongest within-species

average correlation of 0.45. Deviations in biomarker correlations across all mammals and within

species demonstrates biomarkers like DNAmAge can reliably be compared to other mammals

within the same species, whereas biomarkers like DNAmTIMP1 may have more insight when

comparing across species. Highly stable and stable biomarkers can reliably be used and com-

pared across or within species, as the strength of relationship remains largely the same.

To understand biomarker consistency across species, we calculated the percent of species

where the biomarkers’ correlation was in the expected direction in species with a minimum of

10 samples, encompassing a total of 40 species. A large majority of biomarkers (17 out of 22)

demonstrated correlations in the anticipated direction in over half of these species. Notably, 10

of these 22 biomarkers were consistent in at least 75% of the species examined (Supp Table B.13).

The best alignment was observed with DNAmAge and DNAmVO2max, where an impressive

97.5% and 92.5% of species showed correlations in the expected direction, respectively. This was

closely followed by DNAmGripmax and DNAmAgeHannum at 85% consistency and DNAm-

GrimAgeBasedOnRealAge and DNAmFitAge at 80% consistency rate. Despite the relatively

small sample sizes within some species, 75% of the 40 species showed significant correlations

(p-value ¡ 0.05) between DNAmAge and relative age in the predicted direction. DNAmVO2max

and DNAmFitAge also demonstrated notable consistency and significance, with 52.5% and 45%
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of species, respectively, showing significant correlations in the expected directions.

Intriguingly, biomarkers related to physical fitness emerged as some of the most consis-

tent and predictive across the mammalian spectrum. This consistency underscores a potential

universality of the biological benefits of fitness, suggesting that the underlying mechanisms of

physical fitness and biological aging may be deeply conserved across mammalian species. As a

result, these fitness-related biomarkers could provide a rich area for cross-species aging studies,

particularly focusing on CpG sites conserved across mammals. This insight not only affirms

the validity of these biomarkers in capturing essential aging processes but also highlights their

potential as valuable tools for comparative biological research.

Predicted Biomarkers Demonstrate Rejuvenation in Mice

We applied the C algorithms to mice skin DNAm samples to predict their blood DNAm biomark-

ers, and twelve C predicted DNAm biomarkers have significant rejuvenation in the long treat-

ment group (p< 0.05). All 12 are in the expected direction even after controlling for relative age.

For example, many DNAm biomarkers are estimated to be younger in the long treatment mice

group after adjusting for relative age: DNAmPhenoAge = -3.72 (p=0.022), DNAmGrimAge

= -3.79 (p=0.023), DNAmAge = -1.88 (p=0.003), DNAmAgeHannum = -2.81 (p=0.008), and

DNAmFitAge = -2.3 (p=0.03) (Table 4.10, Figure 4.7). Eight additional C predicted DNAm

biomarkers have effects in the expected direction but are not significant at the p< 0.05 threshold.

Only 2 biomarkers have insignificant associations in the unexpected direction (DNAmGDF15

and DNAmGaitspeed), validating 20 out of 22 of the C algorithms for capturing rejuvenation

effects. Table 4.10 presents the regression coefficients and p-values compared to the control

group. Figure 4.7 displays DNAm biomarker effect sizes for effect sizes under 10. The con-

sistency of results across 91% (20/22) of the tested biomarkers emphasizes the C algorithms’

potential as surrogate aging biomarkers in animal models, offering a groundbreaking tool for

exploring aging and rejuvenation in mammalian models with surrogate human biomarkers.

4.4 Discussion

In this study, we explored the utility of Transfer Learning (TL) methodologies for predicting

blood DNA methylation (DNAm) biomarkers from saliva DNAm, a critical advancement in

the non-invasive assessment of epigenetic biomarkers. Our comprehensive approach not only

sheds light on optimal TL application strategies but also provides researchers with tools to

91



Table 4.10: Partial Reprogramming Effects of Mice Compared to Controls using Skin DNAm
as input to C Algorithms to Predict Blood DNAm Biomarkers

Biomarker
Long Trt Long Trt Short Trt Short Trt Relative Relative
Effect p-value Effect p-value Age Coef Age p-value

DNAmAge -1.88 0.0029 -1.03 0.229 10.19 1.65E-06
DNAmPhenoAge -3.72 0.022 -2.04 0.368 5.88 0.193
DNAmGDF15 3.26 0.922 -90.0 0.075 -24.7 0.798
DNAmPAI1 -435 0.016 3.82 0.988 91.6 0.853
DNAmGrimAgeBasedOnPredictedAge -3.79 0.023 -2.19 0.348 5.71 0.216
DNAmADM -4.95 0.274 -19.2 0.006 22.3 0.093
CD8.naive 19.0 0.046 17.6 0.197 -59.6 0.031
CD4.naive 26.3 0.083 24.1 0.271 -153 0.001
DNAmTL 0.07 0.0016 -0.03 0.256 -0.03 0.533
DNAmB2M -30083 0.0062 -19397 0.201 24501 0.408
DNAmCystatinC -7025 0.153 -2.86 1.00 -4425 0.751
DNAmLeptin -1279 0.114 413 0.721 635 0.780
DNAmPACKYRS -3.98 0.138 -1.04 0.788 3.44 0.651
DNAmTIMP1 -79.1 0.484 366 0.034 -734 0.031
DNAmAgeHannum -2.81 0.0080 -0.76 0.602 6.08 0.041
DNAmGrimAge2BasedOnPredictedAge -3.79 0.0084 -0.19 0.925 2.86 0.462
DNAmGrimAge2BasedOnRealAge -2.87 0.013 -3.04 0.064 3.96 0.213
DNAmGrimAgeBasedOnRealAge -2.01 0.0079 -0.44 0.673 2.61 0.207
DNAmGait noAge -0.01 0.262 -0.01 0.429 0.03 0.258
DNAmGrip noAge 0.39 0.107 0.73 0.034 -2.95 1.28E-04
DNAmVO2max 0.01 0.921 0.04 0.821 -0.68 0.077
DNAmFEV1 noAge 0.04 0.128 0.02 0.475 -0.14 0.040
DNAmFitAge -2.30 0.030 -2.68 0.067 6.40 0.030

Figure 4.7: Effect Sizes and 95% Confidence Intervals of (n=3) and Long (n=7) Partial
Reprogramming in Mice Compared to Controls. Predicted C Biomarkers are the estimated
blood DNAm biomarker when using skin DNA methylation as input to the C algorithms. All
effect sizes are adjusted for relative age, and DNAm fitness biomarkers are additionally
adjusted for sex.
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estimate 24 blood DNAm biomarkers from saliva, as well as functions to incorporate TL into

their work. This research underscores the potential of TL to enhance the prediction accuracy

and development of DNAm biomarkers.

Through extensive experimentation with different parameter settings and auxiliary data con-

figurations, we identified optimal strategies for applying transfer learning in our context. This

includes determining the best set of auxiliary data, the informative auxiliary set, and tuning

the combination of model coefficients for improved DNAm biomarker prediction. Notably, our

models demonstrated superior blood DNAm biomarker prediction accuracy from saliva com-

pared to saliva surrogates and Lasso models, highlighting the effectiveness of TL in integrating

diverse datasets and the utility of incorporating auxiliary data in high-dimensional settings.

A critical aspect of TL is the integration of auxiliary datasets, and our exploration into oracle

and estimation-based methods for determining dataset informativeness addresses a broader

challenge in TL: the need to leverage additional data without compromising or misdirecting the

predictive focus of the model. Our comprehensive analysis, coupled with provided functions

and recommendations, empowers researchers to employ our methods and final algorithms for

cross-tissue DNAm biomarker prediction effectively. The Oracle 1df method, in particular,

demonstrated good performance across both C+S and C methods. The divergence in optimal

coefficient thresholding between the C+S and C methods suggests that the inclusion of saliva

DNAm biomarkers requires a different approach to noise control compared to using CpGs alone.

The ability of TL predictions to reflect known biological trends validates the biological

relevance of our algorithms. We demonstrate they reflect the longer telomeres in females and

successfully differentiate between COPD, asthma, and healthy controls, with certain predicted

biomarkers aligning with known disease characteristics. We show that predicted DNAm fitness

biomarkers are responsive to an intervention study, demonstrating the promise of our algorithms

for monitoring lifestyle changes and health interventions. This not only validates our algorithms

but also illustrates their potential for novel discoveries, as evidenced by the identification of

elevated sputum DNAmFitAge in COPD patients and increased saliva DNAmVO2max following

an 8 week exercise intervention. These findings demonstrate recently developed fitness DNAm

biomarkers can be measured in saliva, expanding the horizons of non-invasive health monitoring.

We provide 34 algorithms to estimate 24 blood DNAm biomarkers from saliva DNAm. We

provide a comprehensive outline for preferred algorithm usage in various settings, and include

10 additional C algorithms with good predictive power for cases where saliva DNAm biomarkers
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are unmeasurable - like due to array differences. By developing our algorithms on CpG loci

measured across multiple arrays, we ensure broad compatibility and utility.

The strength of our study lies in its extensive evaluation of TL algorithms across various

parameters, coupled with comparisons to conventional methods. This provides a robust frame-

work for understanding the relative performance of different approaches and offers detailed

guidelines for employing TL in practice. The versatility and broader applicability of our al-

gorithms are demonstrated through their successful application to various validation datasets,

including alternative tissues. The ability of the algorithms to perform well in other tissues, like

lymph nodes, provides promise for their application and reliability in other tissues by capturing

shared information across different DNA methylation profiles. However, the observed poor per-

formance in adipose and muscle tissues highlights the necessity of verifying biomarker reliability

when applied to non-saliva tissues, emphasizing the need for careful tissue selection in research

and clinical applications.

Our analysis validates the use of skin DNAm as a viable input for our algorithms, setting

the stage for their application in non-human species. For a majority of biomarkers (22 out

of 23), a positive correlation was observed between the algorithm-predicted and actual blood

DNAm biomarkers, with notable significance achieved beyond the stringent Bonferroni threshold

(0.002) for 10 biomarkers and the conventional threshold (0.05) for 13 biomarkers. Remark-

ably, 19 biomarkers exhibited lower or comparable MSE using our C algorithms compared to

direct biomarker calculation from skin DNAm, suggesting a preferable alternative for accurate

DNAm biomarker estimation. These findings are bolstered by the strong correlations (95%) of

predicted biomarkers with chronological age, where several key biomarkers demonstrated signif-

icant associations. We showcase the novel capability of the C algorithms to detect rejuvenation

effects through partial reprogramming in mice. This further validates our C algorithms, as our

predicted human DNAm biomarkers can capture epigenetic rejuvenation effects from partial

reprogramming. Collectively, these results not only affirm the efficacy of our algorithms in

accurately mirroring aging patterns akin to blood DNAm biomarkers but also establish skin

DNAm as a reliable source for biomarker estimation with the C algorithms, thereby enhancing

the scope of their utility in diverse biological research contexts.

Our approach, rooted in the familiar terrain of penalized linear regression, aims to offer

epigenetic and aging researchers advancements without overwhelming complexity. While the

simplicity of linear regression broadens accessibility and improves its potential methodological
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integration, it does have limitations. For example, linear regression assumes a linear relation-

ship between the saliva CpGs and the DNAm biomarker. Other methods, like Random forest

and boosted tree models, may be better able to incorporate non-linear relationships, such as

the presence of SNPs into models. Future research could explore TL frameworks incorporating

non-linear or advanced regression models, potentially capturing complex biological relationships.

Furthermore, our methods only employed 1 method for estimating auxiliary data informative-

ness, and future research could explore other methods not based in marginal associations.

These insights open new avenues for non-invasive biomarker development and facilitate

cross-tissue studies. The methodologies we propose are particularly advantageous for creating

biomarkers in tissues that are traditionally challenging to access or available only in limited

quantities, such as the brain and other internal organs. Additionally, given expansive data

derived from animal models, we envision our outlined TL methods as ways for future research

to integrate animal data as auxiliary datasets. The capacity of our approaches to accurately

estimate informative datasets is a crucial asset in this context. It acts as a safeguard, ensuring

that non-informative or distantly related data does not compromise the model’s integrity. This

approach has the potential to significantly accelerate biomarker development, particularly for

human tissues that are typically elusive to study. We strongly encourage researchers to adopt

these TL strategies, not only as a means to expand the utility of extensive animal data but also

to transform it into actionable insights and human biomarkers.

The study’s results provide valuable insights into the optimal parameters and comparative

performance of TL algorithms in predicting blood DNAm biomarkers from saliva DNAm. The

findings demonstrate the potential of TL to enhance the prediction accuracy of DNAm biomark-

ers, offer guidelines for selecting the right TL approach, and showcase the algorithms’ applica-

bility to various biological and clinical scenarios. These contributions significantly advance the

field of epigenetic research and open new avenues for non-invasive biomarker development and

cross-tissue and/or cross-species studies.
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5 Final Discussion

Our research endeavors have collectively advanced the understanding and use of DNA methy-

lation data in the realm of physical fitness, data imputation accuracy, and transfer learning

methodologies. This integrated discussion synthesizes insights from three distinct arms of the

dissertation, highlighting their interconnected contributions to epigenetic and biostatistical re-

search.

Novel DNAm Biomarkers for Physical Fitness

We have introduced groundbreaking DNAm biomarkers for key fitness parameters including

maximum handgrip strength, gait speed, FEV1, and VO2max. These biomarkers, constituting

DNAmFitAge, offer a novel epigenetic perspective on biological age by integrating physical

fitness with DNAm-based mortality risk estimates. Our findings underscore the association

between physical fitness and younger biological ages, evidenced through extensive validation

across phenotypic outcomes in diverse aging datasets and observations in athletic populations.

These biomarkers provide the epigenetic community tools to understand the molecular benefits

of exercise captured through blood methylation.

Transformation Methods in DNAm Imputation

Our exploration into the efficacy of copula-based transformation to improve DNAm imputation

addresses common complexities and limitations in traditional imputation for DNAm and other

continuous outcomes. By addressing the inherent asymmetry and non-gaussian distribution

in methylation values, our approach leads to a more accurate representation of methylation

values. This methodological innovation, validated across various tissues and arrays, under-

scores the importance of considering the potential biases in standard imputation analyses. Our

findings advocate for the integration of probe-specific information into the imputation process,

enhancing the accuracy and reliability of epigenetic studies. Our results and transformation al-

gorithms provide researchers methods to ensure their data meet common statistical assumptions

of normality without losing interpretability or scale in their imputed values.
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Transfer Learning for Cross-Tissue DNAm Biomarker Prediction

The third arm of our research illuminates the utility of transfer learning in predicting DNAm

biomarkers from alternative tissues and in developing new DNAm biomarkers. By identifying

optimal TL application strategies and providing tools for researchers to implement our TL

methods, we provide workflows for other researchers to integrate information across diverse,

yet related epigenetic studies. We demonstrate the power of TL in estimating blood DNAm

biomarkers from saliva, with the development of 34 algorithms to estimate 24 blood DNAm

biomarkers from saliva DNAm. Our analyses reveal our algorithms can accurately predict

blood DNAm biomarkers using saliva and other tissue DNAm as input. Beyond this, we show

they accurately reflect known aging relationships and accurately capture epigenetic rejuvenation

effects, thereby validating their biological relevance and practical utility.

5.0.1 Cross-Domain Insights

Collectively, these studies underscore the complexity and potential of leveraging high-dimensional

DNAm data across different contexts. Within each project, our research identifies and utilizes

previously overlooked information embedded within the high-dimensional methylation land-

scape. By using blood methylation levels to make fitness biomarkers, enhancing methylation

imputation through distributional transformations, and harnessing shared information across

studies and tissues for biomarker prediction, our research showcases innovative ways to extract

and leverage hidden insights from methylation data. Our discoveries underscore the richness of

DNAm data, even when faced with the challenges posed by high dimensionality, missing values,

small sample sizes, and seemingly distally related biological contexts.

Central to our methodology is the foundation on simple yet powerful statistical concepts,

such as penalized regression models and the normal distribution, ensuring that the complexity of

our approaches does not deter researchers. By adhering to these well-understood principles, we

aim to democratize access to advanced epigenetic analysis, making our methods both accessible

and actionable for a broad audience. We extend accessibility to include code, functions, and

algorithms for all sections of my dissertation in GitHub repositories. Collectively, our research

contributes to a deeper understanding of epigenetics and the suite of biostatistical tools we can

use or adapt to gain insight to such data.
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5.0.2 Possible Research Project Extensions

Future epigenetic research projects can integrate multiple parts of our research together to de-

velop novel outcomes and algorithms. One such project can capitalize on our TL methodology

(3rd arm) to improve our fitness biomarkers (1st arm). While we were able to capture informa-

tion in blood tissue methylation to measure fitness biomarkers, tissues more directly related to

fitness, like muscle, bone, or adipose, may be better tissues to build such tools in. However, only

small datasets exist with methylation in such tissues, which naturally opens up the opportunity

for our TL approach to improve fitness biomarker prediction. Additionally, other projects may

be interested in predicting individual methylation levels in different tissues. These researchers

could benefit from incorporating our second and third projects together. For example, instead

of developing models to predict tissue k’s CpG locus j’s methylation beta value, xkj , models

could instead be built to predict the normal-transformed j’s level, zkj . Both target and auxiliary

data sources would have their outcomes transformed into gaussian variables using the original

methylation distribution. By doing this initial transformation step, the methylation error will

now be normally distributed, allowing researchers to properly implement our penalized linear

regression TL technique.

5.0.3 Future Research Advancements and Open Questions

Beyond developing biomarkers, there is also substantial room to use DNAm data as a way to test

and improve new transfer learning methodologies. Researchers can vary how auxiliary datasets

are calculated as informative, and potentially leverage the commonalities in the covariance

structure of X. In our current research, we used marginal correlations between individual

CpG levels and the outcome of interest to calculate informativeness. Research could instead

classify auxiliary data informativeness using information remaining after removing similarities

to the target source. Instead of the similarity to marginal associations between auxiliary and

target data, the strength of signal left between covariates and outcome residuals (by applying

the coefficients from the initial target data model) could capture additional informativeness. As

such, this would rank auxiliary datasets as more informative if they had more unique, additional

information that the target data did not already capture.

Future research should continue to explore the integration of auxiliary data from diverse

sources, particularly focusing on the refinement of TL methodologies to accommodate the het-
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erogeneity inherent in epigenetic data. Additionally, the exploration of non-linear or advanced

regression models could capture complex biological relationships more effectively, broadening

the scope of DNAm biomarker prediction and application.

5.0.4 Final Remarks

In conclusion, our integrated findings highlight the innovative application of DNAm biomarkers

to assess physical fitness, the critical role of transformation methods in DNAm imputation, and

the promising use of TL for cross-tissue biomarker prediction and development. This compre-

hensive approach not only advances the field of epigenetics but also sets the stage for future

breakthroughs in non-invasive biomarker development and cross-tissue or cross-species studies,

thereby contributing significantly to personalized medicine and the broader understanding of

aging.
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Appendix A

A.1 Functional CpG Annotation

I provide biological insight to the 627 unique CpG loci used in constructing our DNAm fitness

biomarkers by exploring genomic enrichment in the entire human genome and analyzing specific

enrichment in chromatin states.

A.1.1 GREAT

I use the Genomic Regions Enrichment of Annotations Tool (GREAT) for analyzing broad

genomic enrichment [83]. GREAT analyzes the genes within and nearby the genomic region

covered by the CpGs. To avoid confounding the enrichment analysis by gene size, the GREAT

algorithm performs a binomial test (over genomic regions) using a whole genome background.

We performed the enrichment based on default settings (Proximal: 5.0 kb upstream, 1.0 kb

downstream, plus Distal: up to 1,000 kb) using the hg19 assembly. We report nominal, Bon-

ferroni, and FDR p-values for gene, biological, cellular, and molecular function in Table 5A for

the top results.

The CpG loci were enriched in 5 gene sets, 11 cellular processes, and 7 molecular processes

mostly related to inflammation at FDR Q-value < 0.05 (Table B.6). The top genes enriched

include zinc ribbon domain containing 1 (ZNRD1; Bonferroni p=0.005) and histocompatibility

antigen (HLA-G; p=0.02). Cellular processes relate to major histocompatibility complex (MHC)

proteins (p=3.1E-7) and molecular processes relate to peptide antigen binding (p=0.032) and

tapasin binding (p=0.047). Tapasin is a MHC class I antigen-processing molecule present in

the lumen of the endoplasmic reticulum [84]. The relationship to inflammation-based genes and

processes like HLA, MHC, and tapasin support hypotheses relating physical fitness and systemic

inflammation [85]. In addition, previous research found inflammation response and endoplasmic

reticulum stress were down-regulated in people following a 12-week endurance exercise regime

compared to the non-exercising control group [86]. Both biological findings are intriguing and
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may provide direction for studying modifiable methylation from fitness parameters.

A.1.2 Chromatin States

To annotate the CpGs used to construct the DNAm fitness biomarkers based on chromatin

state, we assigned a state for the CpGs based on the detailed universal ChromHMM chro-

matin state annotation of the human genome in which chromatin structure and their associated

characteristics are annotated [87]. This annotation generated 100 distinct states using 1,032

experiments into 16 major categories such as weak enhancers (EnhW) and flanking promoter

states (PromF). We used one-sided hypergeometric tests to study both the enrichment (OR

> 1) and depletion (OR < 1) patterns of CpGs across the chromatin states as detailed in

[88]. Genomic CpG regions on the 450K array with chromatin state information were used

as background (n=483,090). The genomic regions of DNAm fitness biomarker CpG sites with

chromatin state information were used as foreground (n=626), which only excluded 1 CpG.

This yielded one-sided hypergeometric p-values not confounded by the number of CpGs within

a gene. We report the chromatin state, number of CpG loci enriched in each state, Odds Ratios,

and hypergeometric p-values in Table B.6B, and complete results are presented in Supplemental

Table 10. Because the underlying chromatin states follow a multinomial distribution, we do not

adjust our p-values for multiple comparisons.

The chromatin states are significantly depleted in heavily acetylated promoters and tran-

scription start sites (TSS) and enriched in regions with polycomb repressive complex 2 (PRC2)

binding (Table B.6). The odds ratios (OR) are significantly less than one in the chromatin

state PromF4 (heavily acetylated promoters, OR=0.45, hypergeometric p=6.5E-6) and TSS1

(acetylated TSS, OR=0.37, p=6.8E-6) (Table 5B). BivProm1 (OR=1.50, p=0.009), BivProm2

(OR=1.76, p=0.0006), and ReprPC1 (OR=1.87, p=0.007) regions are enriched in our DNAm

fitness biomarkers and are known PRC2 binding sites [87]. BivProm1 and BivProm2 are weak

bivalent promoters and ReprPC1 is a polycomb repressed region. Bivalent chromatin domains

control expression of HOX and other developmental genes in all vertebrates. PRC2 is one of the

main Polycomb repressive complexes (PRC) that act as negative epigenetic regulators of tran-

scription; it helps to initiate gene silencing via H3K27 methylation [89]. These results coincide

with the increasing observation that the process of development is connected to epigenetic aging

and that PRC2 targets are enriched in the age-dependent methylome in human and mammals

[6, 79].
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A.2 DNAmFitAge Validation Datasets

The Budapest dataset was used as the training dataset for the DNAmVO2max biomarker. For

the other biomarkers, this dataset was used for validation. The additional validation datasets

involved six cohorts: the Lothian Birth Cohorts (1921 and 1936), Comprehensive Assessment

of Long-term Effects of Reducing Intake of Energy (CALERIE), the Women’s Health Initiative

(WHI), Jackson Heart Study (JHS), and Invecchiare in Chianti, aging in the Chianti area

(InChianti). In addition, the Polish Study is used to evaluate biomarkers across body builders

and controls. Below we describe each study cohort/datasets in more detail.

Budapest

Budapest is a small, novel study (n=307) measuring physical fitness and DNA methylation in

middle to older aged adults, some of whom are current or former athletes. A total of n=205

participants previously participated in the World Rowing Masters Regatta in Velence, Hungary.

The study was approved by the National Public Health Center in accordance with the Helsinki

Declaration and the regulations applicable in Hungary (25167-6/2019/EÜIG). This research

study was undertaken by the Research Institute of Sport Science, Hungarian University of Sport

Science, Budapest. Subjects completed a questionnaire regarding their health, educational

status, and life-style- including exercise habits. Maximum hand gripping force was assessed

using the CAMRY EH101 dynamometer. Relative maximal oxygen uptake (VO2max) was

measured using the Chester step test on a treadmill. The strength of the legs (Jumpmax) was

assessed by a person’s maximal vertical jump, measured using a linear encoder.

Budapest DNAm methylation quantification

Epigenome wide DNA methylation was measured with the Infinium MethylationEPIC Bead-

Chip (Illumina Inc., San Diego, CA) according to the manufacturer’s protocol. DNA methy-

lation was derived from whole blood samples using 500 ng of genomic DNA. Quality control

of DNA methylation was performed using minfi, Meffil, and ewastools packages with R version

4.0.0. Samples which failed technical controls, including extension, hybridization and bisulfite

conversion, according to the criteria set by Illumina, were excluded. Samples with a call rate

< 96% or at least with 4% of undetected probes were also excluded. Probes with a detection

p-value > 0.01 in at least 10% of the samples were set as undetected. Probes with a bead num-

ber < 3 in at least 10% of the samples were excluded. Methylation beta values were generated
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using the Bioconductor minfi package in R with Noob normalization background correction.

Lothian Birth Cohorts

The Lothian Birth Cohorts (LBC) consists of two longitudinal studies evaluating cognition

and brain aging of older adults who were born in either 1921 (LBC1921) or 1936 (LBC1936)

and lived in Edinburgh or the surrounding Lothian regions of Scotland. LBC1921 was started

in 1999 and LBC1936 began in 2004. LBC1936 was established to study cognitive aging in

surviving members of the 1947 Scottish Mental Survey. Ethical approval was obtained from the

Multi-Centre Ethics Committee for Scotland and Lothian Research Ethics Committee. National

Records of Scotland provided regular updates on mortality data for the LBC participants via

data linkage with the National Health Service Central Register.

LBC1921

Participants were born in 1921 and most completed a cognitive ability test around age

of 11 years in the Scottish Mental Survey 1932 (SMS1932). The SMS1932 was administered

nationwide to almost all 1921-born children who attended school in Scotland in June 1932.

The cognitive test was the Moray House Test No. 12. The LBC1921 study attempted to

follow up individuals who might have completed the SMS1932 and resided in the Lothian

region (Edinburgh and its surrounding areas) of Scotland; 550 people (N=234, 43% men) were

successfully traced and participated in the study from the age of 79 years. To date, there have

been four additional follow-up waves at average ages of 83, 87, 90, and 92 years. The cohort

has been studied during the later-life waves, including blood biomarkers, cognitive testing, and

psycho-social, lifestyle, and health measures.

LBC1936

The methylation mortality survival analysis was investigated in LBC1936. All participants

were born in 1936 and most had taken part in the Scottish Mental Survey 1947. These partic-

ipants attended Scottish schools in June 1947. The cognitive test administered was the same

Moray House Test No. 12. A total of 1,091 participants (n=548, 50% men) who were living

in the Edinburgh and Lothian area of Scotland were re-contacted in later life. Data has since

been collected in waves at five time points.

Whole blood DNA methylation was measured using the Illumina HumanMethylation

450BeadChips from 514 whole blood samples in LBC1921 and from 1,004 samples in LBC1936.

Raw intensity data were background-corrected and methylation beta-values generated using the
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R minfi package. Quality control analysis was performed to remove probes with a low (<95%)

detection rate at P < 0.01. Manual inspection of the array control probe signals was used to

identify and remove low quality samples (for example, samples with inadequate hybridization,

bisulfite conversion, nucleotide extension, or staining signal).

CALERIE

Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE)

was a Phase 2 clinical trial started in 2007 studying young to middle-aged healthy adults

[47]. CALERIE is the first clinical trial to focus on the effects of sustained CR in humans.

It was completed in May 2013 as a two-year three-site randomized controlled trial in young

and middle-aged non-obese healthy men and women (N = 220). Participants were randomized

in a 2:1 fashion to 25% caloric restriction (CR) or ad libitum control group (diet is available

at all times). All participants needed to have a baseline body mass index (BMI) of 22-27.9

kg/m2 (lean to slightly overweight). Each participant has 1) behavioral counselor (Masters

of doctoral in psychology) AND 2) registered dietician who follow with them for the whole 2

years. 25% reduction and caloric goals are calculated based on each person’s initial food intake

at baseline. They must meet with the dietician 2-3 times a week and record food intake. Two

consecutive 14-day doubly labeled water studies are conducted with each participant at baseline

with the average used to determine AL TEE (total energy expenditure); from this, the 25% CR

prescription for that participant is derived. An average of 12% caloric reduction was achieved

in the CR group throughout the study.

DNA methylation was measured from Illumina EPIC 850k Arrays (Illumina Inc., San Diego,

CA) as per the manufacturer’s protocol. DNA methylation was derived from whole blood sam-

ples. CALERIE methylation assays were run by the Molecular Genomics Shared Resource at

Duke Molecular Physiology Institute, Duke University (USA). Quality control of sample han-

dling included comparison of clinically reported sex versus sex of the same samples determined

by analysis of methylation levels of CpG sites on the X chromosome. Methylation beta val-

ues were generated using the Bioconductor minfi package with Noob background correction.

CALERIE data are available at https://calerie.duke.edu/samples-data-access-and-analysis.
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Women’s Health Initiative

The WHI is a national study that enrolled postmenopausal women aged 50-79 years into the

clinical trials (CT) or observational study (OS) cohorts between 1993 and 1998 [90]. We in-

cluded 4,079 WHI participants with available phenotype and DNA methylation array data:

2,107 women from “Broad Agency Award 23” (WHI BA23). WHI BA23 focuses on identifying

miRNA and genomic biomarkers of coronary heart disease (CHD), integrating the biomarkers

into diagnostic and prognostic predictors of CHD and other related phenotypes, and other ob-

jectives can be found in

https://www.whi.org/researchers/data/WHIStudies/StudySites/BA23/Pages/home.aspx. The

total number of age-related conditions was based on Alzheimer’s disease, amyotrophic lateral

sclerosis, arthritis, cancer, cataract, CVD, glaucoma, emphysema, hypertension, and osteoporo-

sis.

Bisulfite conversion using the Zymo EZ DNA Methylation Kit (Zymo Research, Orange, CA,

USA) as well as subsequent hybridization of the HumanMethylation450k Bead Chip (Illumina,

San Diego, CA), and scanning (iScan, Illumina) were performed according to the manufacturers

protocols by applying standard settings. DNAmethylation levels were determined by calculating

the ratio of intensities between methylated (signal A) and un-methylated (signal B) sites.

Jackson Heart Study

The JHS is a large, population-based observational study evaluating the etiology of cardiovas-

cular, renal, and respiratory diseases among African Americans residing in the three counties

(Hinds, Madison, and Rankin) that make up the Jackson, Mississippi metropolitan area. The

age at enrollment for the unrelated cohort was 35-84 years; the family cohort included related

individuals >21 years old. Participants provided extensive medical and social history, had an ar-

ray of physical and biochemical measurements and diagnostic procedures, and provided genomic

DNA during a baseline examination (2000-2004) and two follow-up examinations (2005-2008 and

2009-2012). Annual follow-up interviews and cohort surveillance are ongoing. In our analysis,

we used the visits at baseline from 1747 individuals as part of project JHS ancillary study

ASN0104, available with both phenotype and DNA methylation array data. Total numbers of

age-related conditions were based on hypertension, type 2 diabetes, kidney dysfunction based

on ever dialysis, and CVD.
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Peripheral blood samples were collected at the baseline. DNA was extracted using the

Gentra Puregene blood kit (Gentra System, MN, Minnesota, USA). Methylation beta values

were generated using the Bioconductor minfi package with Noob background correction.

Invecchiare in Chianti, aging in the Chianti area (InChianti)

The InChianti (Invecchiare in Chianti, aging in the Chianti area) cohort is a representative

population-based study of older persons enrolling individuals aged 20 years and older from

two areas in the Chianti region of Tuscany, Italy, http://inchiantistudy.net/wp/. One major

goal of the study is to translate epidemiological research into geriatric clinical tools, ultimately

advancing clinical applications in older persons. Of the cohort, 924 observations from 484

individuals with both phenotype information and DNA methylation data were including in our

studies. The observations were collected from baseline in 1998 and the third follow-up visit

in 2007. All participants provided written informed consent to participate in this study. The

study complied with the Declaration of Helsinki. The Italian National Institute of Research

and Care on Aging Institutional Review Board approved the study protocol. We computed the

total number of age-related conditions based on cancer, hypertension, myocardial infarction,

Parkinson’s disease, stroke and type 2 diabetes.

Genomic DNA was extracted from buffy coat samples prior to bisulfite conversion. Blood

DNA methylation was taken twice over the span of nine years in a total of 966 people. CpG

methylation status of 485,577 CpG sites was determined using the Illumina Infinium Human-

Methylation450 BeadChip (Illumina Inc., San Diego, CA) as per the manufacturer’s protocol

and as previously described [11]. Threshold call rate for inclusion of samples was 95%. Quality

control of sample handling included comparison of clinically reported sex versus sex of the same

samples determined by analysis of methylation levels of CpG sites on the X chromosome. Methy-

lation beta values were generated using the Bioconductor minfi package with Noob background

correction.

Polish Study

The Polish Study is a small, novel study (n=416) measuring blood DNA methylation and

lifestyle behaviors in Polish body builders and similar aged healthy controls ranging from 17

to 56 years of age. It is part of a larger cohort representing the general population of Poland,

for which blood samples, buccal swabs or semen samples were collected as part of the local
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project EPIGENOME (DOB-BIO10 / 06/2019). Participants of the Polish Study recorded the

total number of years they regularly trained, average number of intensity trainings per week,

sports training they participate in, and dietary supplements or drugs they take. There were

a total of 66 male body builders and 30 female body builders. Because of the small sample

size in females, we restricted the analysis to males only, which decreases the sample size to 215

individuals total, 149 controls and 66 body builders. 88 males in the study reported dietary

supplements or drugs, and a total of 147 unique substances were reported. The use of each

analyzed supplement was coded based on presence of multiple phrases in the open question of

the questionnaire about drug/supplements intake. Specifically, multivitamins include reported

use of vitamins, multivitamins, and vitamins + minerals. Proteins included reported use of

protein supplement, branched chain amino acids (bcaa), amino acids, and training supplements.

Energy supplements included creatine, energy gels, and pre-workout. Magnesium included mg

and magnesium. Vitamin D consisted of vitamins D and D3. Omega-3 consisted of Omega-3

and cod liver oil.

Epigenome wide DNA methylation was measured with the Infinium MethylationEPIC Bead-

Chip using DNA from whole blood. The quality and quantity of DNA isolates were assessed

using NanoDrop 8000 UV-Vis Spectrophotometer and Qubit 4 Fluorometer. Then, the DNA

concentration was normalized to 50 ng/µl and subjected to microarray analysis. Quality control

and preprocessing were done using minfi and ENmix packages with R version 4.2.1. Methyla-

tion beta values were generated using the Bioconductor minfi package with Noob normalization

background correction.

A.3 Body Builder Supplement Use

I evaluated whether the improvement in DNAmFitAge and DNAmVO2max in male body

builders can be explained by the dietary supplements taken using a linear regression model

with DNAmFitAge or DNAmVO2max as the outcome with age as a covariate and indicator

variables for taking the supplement and being a body builder. We adjust for age in the model

because age was significantly related to taking certain supplements, therefore if age was not

included, the differences observed in DNAmFitAge or DNAmVO2max may actually represent

differences in chronological ages between supplement usage groups. Linear model results are

presented in Supplemental Table B.2. To ensure adequate power, we evaluated supplements and

drugs with at least 10 people reporting use across both body builders and controls. Only six sup-
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plements met this threshold: multivitamins (n=19), protein (n=17), energy (n=17) (creatine,

pre-workout, and energy gels), magnesium (n=16), vitamin D (n=14), and omega-3 (n=12).

We also evaluated if these supplements were disproportionately taken by male body builders

compared to male controls using Fisher’s Exact test (Supplemental Table B.3). Finally, we con-

sidered using a linear model with an interaction term between being a body builder and taking

a supplement; if the interaction term was significant, then we would deem the supplement can

adequately explain the improvement in DNAmFitAge or DNAmVO2max. However, the small

number of subjects taking supplements would not adequately power the interaction term which

would likely prevent any supplement from being significant. Therefore, we chose to use main

effects to determine supplement contribution as explained above.

Dietary supplement use cannot explain improvement in DNAmFitAge, but multivitamin

dietary supplements are associated with improvement in DNAmVO2max after controlling for

athlete status and age in males. Males from the Polish Study who take multivitamins have a 0.68

mL/kg/sec fitter DNAmVO2max on average after adjusting for athlete status and age (p=0.041,

Supplemental Table B.2). Multivitamins, energy, vitamin D, and Omega-3 all are dispropor-

tionately taken by the male body builders (Supplemental Table B.3), however, supplement use

is not sufficient to explain younger DNAmFitAge regardless of athlete status (Supplemental

Table B.2). These insignificant results may point to other components of athleticism that con-

tribute to younger estimated biological ages, such as increased physical activity and decreased

body fat. We note that supplement and athlete coefficients for multivitamins, proteins, and

Omega-3 are statistically insignificant, but their relationships are in the expected direction for

DNAmFitAge and DNAmVO2max. Our research does not establish the causative relationship

of body building or supplement use on biological aging, but it does establish there are observable

epigenetic benefits associated with being a male body builder.

A.4 Imputation Tools

I detail some of the methods used in the different R-based imputation tools below. These

include methyLImp, a procedure that develops a linear model using Singular Value Decompo-

sition, impute.PCA, a procedure that forms principle components of the methylation sites, and

imputeknn, a procedure that uses the most similar CpG’s (via Euclidean distance) to impute

the CpG values. These three methods span linear regression
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A.4.1 impute.PCA

impute.PCA is a regularized iterative PCA algorithm. based on the Fixed effect model, the

classical PCA model is a bilinear model where

Xik = mk + (FU′)ik + ϵik, ϵ ∼ N (0, σ2).

In this model, individuals have different expectations and the randomness is only due to the

error term. Iterative PCA is an expectation maximization algorithm for this model. The regu-

larization comes from adding a shrinkage term to reduce overfitting. Specifically, the regularized

model matrix is

X̂ = M̂+ ẐB̂′ = M̂+
S∑

s=1

λ̂s − σ̂2

λ̂s

FsUs
′ = M̂+

S∑
s=1

√
λ̂s ×

λ̂s − σ̂2

λ̂s

FsUs
′

The singular values (
√

λ̂s) are shrunk by a ratio of the signal over signal plus noise where

σ̂2 = 1
K−S

∑K
s=S+1 λ̂s, indicating the first S eigenvectors with corresponding λ eigenvalues.

A.4.2 impute.knn

The ‘impute.knn‘ algorithm is a method specifically developed for the imputation of missing

values in gene expression datasets, but it is also applicable to DNA methylation (DNAm) data.

This algorithm employs the k-nearest neighbors approach to estimate missing values based

on a set of similar, non-missing CpG loci. The core concept of ‘impute.knn‘ revolves around

the identification of k nearest neighbors for each CpG locus with missing data, utilizing the

Euclidean distance as a metric for similarity.

Given a DNAm dataset with missing values, let X represent the matrix of methylation

levels, where Xij indicates the methylation level of the jth CpG locus in the ith sample. For

a CpG locus i with a missing value, ‘impute.knn‘ identifies k nearest neighbors based on the

Euclidean distance calculated from the non-missing values. The Euclidean distance between

two samples, i and i′, for all CpG loci is defined as:

d(i, i′) =

√√√√ n∑
j=1

(Xij −Xi′j)2

where n is the total number of CpG loci. After identifying the k nearest neighbors, the missing

value Xij is imputed using a weighted average of these neighbors:

X̂ij =

∑k
l=1wilXlj∑k

l=1wil

The weight wil inversely correlates with the Euclidean distance d(i, l), emphasizing closer neigh-
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bors more significantly in the averaging process. Commonly, weights are calculated using:

wil =
1

d(i, l)2

to ensure that nearer neighbors contribute more to the imputed value.

The choice of k, the number of nearest neighbors, is crucial for the performance of ‘im-

pute.knn‘. In the context of DNAm data, k = 50 is recommended based on prevalent practices

and the typical structure of methylation datasets. This parameter balances the trade-off be-

tween capturing sufficient local information and avoiding the influence of distant, less relevant

CpG loci.

A.5 CONCORDANT Functions

A.5.1 TransformDataset Function

Transform your dataset to pseudo gaussian variables. This function calculates and applies a

normal transformation on a per column basis, allowing for missing values. The function calcu-

lates the forward and backwards transformation functions using an empirically smooth CDF to

convert continuous data to pseudo gaussian variables. This function requires 3 other helper func-

tions supplied below named, %!in%, extract transformed values, and qfun extract. Please

ensure these helper functions are in your global environment prior to calling the function.

To use this function, supply 4 arguments: dataset: The dataset to transform select columns

to gaussian variables columns: The specified columns to transform (as column names) rownamevar:

The observation ID variable to ensure the data are aligned when missing values are present.

iteration: Either TRUE or FALSE to print the current iteration to track progress.

The function returns a 2 item list: transformed df: has the row IDs and columns trans-

formed to gaussian variables. Note that columns transformed have normal var added to col-

umn names qfunctions: the inverse functions needed to backtransform the data

TransformDataset <- function(dataset, columns, rownamevar, iteration=TRUE){
# Output list initialization
col_output <- list()

# Preparing the dataset for transformation
row_name <- rownames(dataset)
dataset_prep <- data.frame(dataset[, columns], ID = row_name)

# Last column is the ID now
last_val <- dim(dataset_prep)[2]
# Define the last CpG column
last_cpg <- last_val - 1

# Loop through each column to apply transformations
for(i in 1:last_cpg){
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col_name <- colnames(dataset_prep)[i]

# Prepare the data: only non-missing values are processed.
# The data frame now has ID in the first column and CpG in the second column
dat_prep <- dataset_prep[!is.na(dataset_prep[, i]), c(last_val, i)]

# Density estimation for non-missing CpG values,
# using kernel density estimation for smoothing
# 2nd column used because the second column is the current CpG #
density_x <- density(dat_prep[, 2], adjust = 0.5, from=min(dat_prep[, 2]),

to=max(dat_prep[, 2]), n = 1000)

# Transform the frequency into density function
dapproxfun <- splinefun(x = density_x$x, y = density_x$y)
dfun <- function(x) dapproxfun(x)
support <- range(dat_prep[, 2])

# Integrate the density function to generate the empirical CDF
pfun_integrate_dfun_1 <- function(v) integrate(dfun, support[1], v,

subdivisions=2000, rel.tol =1e-15,
stop.on.error = FALSE)$value

pfun_integrate_dfun <- function(x) Vectorize(pfun_integrate_dfun_1)(x)

# pfun is the empirical (smoothed) CDF
pfun <- splinefun(x = dat_prep[, 2],

y = pfun_integrate_dfun(dat_prep[, 2]))

# Transform to uniform space using the empirical smoothed CDF
uniform_var <- pfun(dat_prep[, 2])

# If some values are over 1, rescale and make sure to not have exact 1’s or 0’s
if(sum(uniform_var > 1) > 0){
uniform_var <- uniform_var / max(uniform_var)
uniform_var <- ifelse(uniform_var == 1, 0.9999999, uniform_var)

}
uniform_var <- ifelse(uniform_var == 0, 0.0000001, uniform_var)

# Compute the inverse of the empirical CDF (qfun)
qfun <- splinefun(x = uniform_var, y = dat_prep[, 2])

# Transform to standard normal space
norm_var <- qnorm(uniform_var)
# Handling infinite values by setting them to +/- 5
norm_var <- ifelse(is.infinite(norm_var), sign(norm_var) * 5, norm_var)

# Create dataframe with normal transformed variable and ID
df_sm <- data.frame(norm_var, ID = dat_prep[, 1])
colnames(df_sm) <- c(paste0(col_name, "_normal_var"), "ID")

# Merge the original scale variable and normal_var
df_sm2 <- merge(dataset_prep[, c("ID", col_name)], df_sm, by = "ID", all.x=TRUE)

# Rename ID variable to original name
colnames(df_sm2) <- c(paste0({{rownamevar}}), colnames(df_sm2)[2:3])

# Prepare output for the current column
col_output1 <- list(qfun, df_sm2)
new_names <- c(paste0(col_name, "_qfun"), paste0(col_name, "_normal_var"))
names(col_output1) <- new_names

# Add the output to the main output list
col_output[[i]] <- col_output1

if(iteration == TRUE){
print(i) # Print current iteration number for tracking progress

}
}

# convert output to list of qfunctions and transformed dataframe
qfunctions_output <- qfun_extract(col_output)

# extract the transformed values
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transformed_df <- extract_transformed_values(col_output)

output_return <- list(transformed_df, qfunctions_output)
names(output_return) <- c("transformed_df", "qfunctions")
return(output_return)

}

A.5.2 BackTransformDataset Function

Back transform your normal transformed data to the original data scale. This function applies

the inverse CDF (q-function) of each column to back-transform. It only applies the backtrans-

formation to columns with supplied q-functions.

To use this function, supply 2 arguments: dataset: The dataset on the gaussian scale to

transform select columns back to variables on the original data scale

qfunctions: A list of the inverse functions to apply column-wise

The function returns a dataframe with original variable names and variables on the original

datascale.

BackTransformDataset <- function(dataset, qfunctions){

# Re-order the columns of the imputed data to match the order of qfunctions
newqfuncname <- gsub("*_qfun", "_normal_var", names(qfunctions))
col_neworder <- match(newqfuncname, colnames(dataset))
impute_df_matched <- dataset[, col_neworder]

# Identify the remaining columns that were imputed but don’t need to be transformed
# These will be combined with the back-transformed columns later
rest_imputed <- colnames(dataset)[colnames(dataset) %!in% newqfuncname]
impute_df_rest <- dataset[, rest_imputed]

# Start back transformation process
col_num <- length(qfunctions)
row_num <- nrow(impute_df_matched)

# Apply the standard normal CDF (pnorm) to the imputed data
# This transforms it to a uniform distribution
missnormal_rep_unif <- pnorm(impute_df_matched)

# Pre-allocate a dataframe for the back-transformed data
backtransform_missnormal_rep <- data.frame(matrix(NA, ncol = col_num,

nrow = row_num))

# For each column, apply the corresponding inverse CDF (q-function)
for(i in 1:col_num){
backtransform_missnormal_rep[, i] <- qfunctions[[i]](missnormal_rep_unif[, i])

}

# Restore the original column names
new_colnames <- gsub("*_normal_var", "\\1", colnames(missnormal_rep_unif))
colnames(backtransform_missnormal_rep) <- new_colnames

# Combine the back-transformed columns with the remaining imputed columns
impute_df_merged <- cbind(backtransform_missnormal_rep, impute_df_rest)

return(impute_df_merged)
}
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A.5.3 TestNormalityofMissingCols Function

This function finds columns with at least 1 missing value and evaluates whether it is normally

distributed or not using Shapiro Wilks test at your specified p-value threshold.

To use this function, supply 2 arguments:

dataset: dataset with variables in columns and observations in rows

p value threshold: either ’any’, 0.05, 0.01 or 0.001. When set to ”any”, the function

will return the names of all columns with missing values, regardless of the p-value from the

Shapiro-Wilks test.

The function returns a dataframe two columns: Columns contains the names of the columns

with p-values below the specified threshold, and

P values contains the corresponding p-values from the Shapiro-Wilk tests.

TestNormalityofMissingCols <- function(dataset, p_value_threshold = 0.001) {

if(!(p_value_threshold %in% c(0.05, 0.01, 0.001, "any"))) {
stop("p_value_threshold must be either ’any’, 0.05, 0.01 or 0.001")

}

# Identify columns with missing values
cols_with_na <- colnames(dataset)[colSums(is.na(dataset)) > 0]

# List to store columns with p-values below the specified threshold
cols_below_threshold <- vector()
p_values_below_threshold <- vector()

# Loop through each column with missing values
for(col_name in cols_with_na) {

# Exclude missing values
col_values <- dataset[[col_name]][!is.na(dataset[[col_name]])]

# Only calculate Shapiro-Wilk test for column with at least 3 unique values
if(length(unique(col_values)) >= 3) {
# Calculate the Shapiro-Wilk test
shapiro_test <- shapiro.test(col_values)

# If p-value is below the specified threshold, add column name
# and p-value to lists
if((shapiro_test$p.value < p_value_threshold) |

(p_value_threshold == "any")) {
cols_below_threshold <- c(cols_below_threshold, col_name)
p_values_below_threshold <- c(p_values_below_threshold,

shapiro_test$p.value)
}

}
}

output <- data.frame(Columns = cols_below_threshold,
P_values = p_values_below_threshold)

# names(output) <- c("Columns", "P_values")
return(output)

}

A.5.4 Helper Functions

# Not in from dplyr
‘%!in%‘ = Negate(‘%in%‘)
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extract_transformed_values <- function(input_list){

transformed_df <- data.frame(ID = input_list[[1]][[2]][, 1])
colnames(transformed_df) <- colnames(input_list[[1]][[2]])[1]

for (i in seq_len(length(input_list))) {
transformed_var <- input_list[[i]][[2]][, 3]
colname <- colnames(input_list[[i]][[2]])[3]
transformed_df[colname] <- transformed_var

}

return(transformed_df)
}

qfun_extract <- function(list_vals){

qfunc_names <- vector()
return_list <- list()
res_1_list <- list()

for(j in 1:length(list_vals)){
# res_1 this has q function and transformed data for jth cpg
res_1 <- list_vals[[j]]

# this is just q function, which is first list element
res_1_list[[j]] <- res_1[[1]]
# get name of the qfunction
qfunc_names[j] <- names(list_vals[[j]][1])

# jth item is inverse function
return_list[[j]] <- res_1_list[[j]]

}
# rename the list
names(return_list) <- qfunc_names
return(return_list)

}

A.6 methyLImp Imputation Results

SVD floating point operations per second (Flops) are 4n2p + 8np2 + 9p3. In the methyLImp

algorithm, SVD is performed for every unique missing pattern. In our case, every CpG column

and person had a unique missing pattern, so a new SVD would be performed for every column.

methyLImp uses people as columns, so in the case of the FHS dataset, transposing the data would

result in n = 455, 200 and p = 2, 544, which is 2.1x1015 flops for every single column needing

imputation (2,544). Assume the imputation would be performed on a Mac M1 chip with 8 cores

running at max 3.2 GHz (cycles per second) with 1.3 TeraFLOPS at double precision. That

corresponds to a maximum theoretical throughput = (Number of cores) x (Clock speed) x (Op-

erations per cycle) = 33.28 TeraFLOPS DP. Therefore, for every single column, we can estimate

the most optimistic time needed in minutes for computation as ((flops/1012)/33.28)/60) = 1.07

minutes. This means just over a minute would be needed in the optimal case for just the SVD

process itself, which is 2,722 minutes for 1 dataset or about 1.9 days. However, this calculation

assumes ideal conditions and maximum efficiency, which are usually achievable. Factors such
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as power management, system load, thermal conditions, and software optimizations can impact

the actual performance.

When we attempt to use methyLImp on the FHS dataset, we cannot run this within the

maximum time or memory available on the cluster, and the program aborts after specifying

13 cores, 1 week run time, and 100 GB of memory. We attempt to circumvent these issues by

subsetting the data and performing imputation on smaller dataframes, which successfully runs,

but slowly. It averages to 25 minutes user time needed for every CpG with missing values. We

restrict our analysis to 300 missing CpGs within each of the missing rates (1, 5, and 10%) for

a total of 900 CpGs to be imputed in 1 replication. This resulted in 900 ∗ 25/60/24 = 15.6

days of run time. If this process was continued for all missing CpG values (13,656 of them),

the program would require 238 days = 33.8 weeks for 1 replication. Because we only did

one replication and 900 loci, results cannot be summarized based on probe properties or at

the individual CpG locus level. Overall, the Untransformed approach has better imputation

accuracy than the Missing Normal approach in the FHS dataset (Supplemental Figure ??). As

seen with Missing Normal with imputePCA in FHS, this method performs quite poorly. The

median correlation is just above 0 in this transformed method, indicating almost no accuracy.

This can be expected, however, because our transformation method performs transformations

on the CpG loci whereas methyLImp performs imputation using observations. As such, our

transformation would not guarantee the imputed values are being imputed in the transformed

gaussian space.

A.7 Animal Groupings

Here we provide the exact labels used to classify animals into subgroups. We chose to keep

the labels as R code to ensure other researchers could reproduce results when accessing the

mammalian data in the Mammalian Consortium Repository.

primates <- c("Aye-aye", "Bamboo lemur", "Black lemur", "Blue-eyed black lemur",
"Brown lemur", "Chimpanzee", "Collared brown lemur", "Crowned lemur",
"Diademed sifaka", "Fat-tailed dwarf lemur", "Francois leaf monkey",
"Golden-crowned sifaka", "Gorilla", "Gray mouse lemur", "Greater galago",
"Marmoset", "Orangutan", "Potto(P.potto)", "Potto(P.coquereli)",
"Rhesus macaque", "Ring-tailed lemur", "Sanford’s brown lemur",
"Slow loris", "Vervet", "White-fronted marmoset", "White-headed lemur",
"Mongoose lemur", "Northern giant mouse lemur", "Red lemur",
"Red ruffed lemur(V.rubra)", "Red ruffed lemur(V.variegata)",
"Red-bellied lemur", "Olive baboon", "Orangutan",
"Slender loris", "Pygmy slow loris", "South African galago")

mice <- c("African pygmy mouse", "Deer mouse",
"Four-striped grass mouse", "Mouse")
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rats <- c("African mole rat", "Black rat", "Blind mole rat", "Brown rat",
"Bush tail rat", "Cape mole rat", "Cape-dune mole rat",
"Damaraland mole rat", "Muskrat", "Namaqua dune mole-rat",
"Namaqua rock rat", "Naked mole rat", "Pouched rat", "Rat")

bats <- c("Big brown bat", "Common vampire bat", "Egyptian fruit bat",
"Fish-eating bat", "Greater horseshoe bat", "Greater mouse-eared bat",
"Greater sac-winged bat", "Greater spear-nosed bat",
"Grey-headed flying fox", "Halcyon horseshoe bat", "Indian fruit bat",
"Jamaican fruit bat", "Large flying fox", "Lesser long-nosed bat",
"Lesser short-nosed fruit bat", "Little brown bat",
"Little golden-mantled flying fox", "Mexican free-tailed bat",
"Noack’s roundleaf bat", "Noctule", "Pallid bat", "Pale spear-nosed bat",
"Pallas’s mastiff bat", "Proboscis bat", "Seba’s short-tailed bat",
"Straw-colored fruit bat", "Variable flying fox", "Rodriguez flying fox")

fruit bats <- c("Egyptian fruit bat", "Grey-headed flying fox", "Indian fruit bat",
"Jamaican fruit bat", "Large flying fox", "Lesser long-nosed bat",
"Lesser short-nosed fruit bat", "Little golden-mantled flying fox",
"Straw-colored fruit bat", "Variable flying fox",
"Rodriguez flying fox")

microbats <- c("Big brown bat", "Fish-eating bat", "Greater horseshoe bat",
"Greater mouse-eared bat", "Greater sac-winged bat",
"Greater spear-nosed bat", "Halcyon horseshoe bat",
"Little brown bat", "Mexican free-tailed bat",
"Noack’s roundleaf bat", "Noctule", "Pallid bat",
"Pale spear-nosed bat", "Pallas’s mastiff bat",
"Proboscis bat", "Seba’s short-tailed bat")

vampire bats <- c("Common vampire bat")

lemurs <- c("Aye-aye", "Bamboo lemur", "Black lemur", "Blue-eyed black lemur",
"Brown lemur", "Collared brown lemur", "Crowned lemur",
"Diademed sifaka", "Fat-tailed dwarf lemur", "Golden-crowned sifaka",
"Gray mouse lemur", "Ring-tailed lemur", "Sanford’s brown lemur",
"White-headed lemur", "Mongoose lemur", "Northern giant mouse lemur",
"Red lemur", "Red ruffed lemur(V.rubra)",
"Red ruffed lemur(V.variegata)", "Red-bellied lemur")

monkeys <- c("Francois leaf monkey", "Rhesus macaque", "Vervet", "Olive baboon")

marmosets tamarins <- c("Marmoset", "White-fronted marmoset")

lorises galagos <- c("Slow loris", "Greater galago", "Slender loris",
"Pygmy slow loris", "South African galago", "Potto(P.potto)",
"Potto(P.coquereli)")

A.8 EpigenTL Functions

All of these functions can be found on Github with examples and more details on their use

and function calls: https://github.com/kristenmcgreevy/EpigenTL. These functions are sup-

plements to Section 4.3.2.

A.8.1 Epigen.TL.Lasso Function

Epigen.TL.Lasso performs Transfer Learning Lasso allowing either the Auxiliary Dataset In-

formation to be known (Oracle or Oracle 1df) or estimated in the process (Estimate A0).

As necessary input, X matrix is the matrix of covariates (nxp) concatenated between the

Target and all Auxiliary Datasets, in that order. n should therefore be n 0 + n 1 + ... +
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n k. X matrix needs to be a matrix and not a dataframe to allow for matrix multiplication

to be carried out in the function. Y vector is the outcome vector to develop the TL Lasso

model to estimate. It should align with your X matrix with Target and Auxiliary outcomes

concatenated and be a nx1 vector. N vector is a vector of number of observations in the Target

and each Auxiliary datasets in the order they are concatenated. AuxInformation is either

”Estimate A0”, ”Oracle”, or ”Oracle 1df” to signify the informative auxiliary datasets need

estimated (EstA0) or they should be treated as known. If known, they can either be treated as

equally informative and combined into 1 dataset (Oracle), or they can be treated individually

(Oracle 1df). RhatCount is either ”n0/3” or a value between 1, ..., p to specify how many

marginal correlations to consider when calculating information. This should be set to NULL

if AuxInformation is ”Oracle” or ”Oracle 1df”. LambdaType is either ”Constant” or ”CV” to

indicate if the lambda calculated from the target dataset should be used and adjusted based

on the aux dataset size (”Constant”) or whether the optimal lambda should be calculated via

cross validation (”CV”) for each set of auxiliary information. Default is ”CV”. seedstart is the

seed to set in the calculation for reproducibility. If not specified, it is set to 123.

This function will return a data.frame with TL coefficients in the columns. The first col-

umn, ”Variable” labels the intercept and columns from your X matrix that coefficient values

correspond to. Columns 2:7 or 2:4 have the final coefficients with slight variations in their

calculation. ”min” and ”1se” correspond to the lambda that either minimizes CV error or is at

most 1se above it, respectively. ”allcoef”, ”halfcoef”, and ”lambcoef” correspond to the coeffi-

cient thresholding used before combining coefficients across the auxiliary and target dataset. If

”Constant” LambdaType was specified, only the minimum lambda from the target data is used

and so ”1se” coefficients are not presented.

Epigen.TL.Lasso <- function(X_matrix, Y_vector, N_vector,
AuxInformation, RhatCount = NULL, LambdaType = "CV",
seedstart = 123) {

if(AuxInformation %!in% c("Estimate A0", "Oracle", "Oracle 1df")){
stop("You must specify a method to capture auxiliary data informativeness.

Options include ’Estimate A0’, ’Oracle’, or ’Oracle 1df’")
}

if(AuxInformation == "Estimate A0" & is.null(RhatCount)){
stop("You must provide the number of Rhats to use when calculating

auxiliary data informativeness.
Options include any integer up to the column size of X_matrix OR ’n0/3’")

}

if(AuxInformation == "Estimate A0" & !is.null(RhatCount)){
if(RhatCount > dim(X_matrix)[2]){
stop("Rhat must be smaller than the number of columns in X.

Please specify any integer up to the column size of X_matrix OR ’n0/3’")
}
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if(RhatCount == 0){
stop("Rhat must be a positive number from 1, ..., column size of X_matrix.")

}
}

if(LambdaType %!in% c("CV", "Constant")){
stop("LambdaType must be either ’CV’ or ’Constant’ to specify which

lambda parameter is used for the auxiliary data.")
}

if(is.null(X_matrix)){
stop("Please supply the X matrix")

}
if(is.null(Y_vector)){
stop("Please supply the outcome")

}
if(is.null(N_vector)){
stop("Please supply the N vector specifying the number of observations

in target and auxiliary datasets")
}

if(sum(N_vector) != dim(X_matrix)[1]){
stop("N_vector and X_matrix do not have the same number of observations")

}

if(sum(N_vector) != length(Y_vector)){
stop("N_vector and Y do not have the same number of observations")

}

if(!is.null(RhatCount)){
if(RhatCount == ’n0/3’){

# set before calling the other functions.
RhatCount <- round(N_vector[1] / 3)

}
}

# TransLasso for Estimating informative set
if(AuxInformation == "Estimate A0"){
# for reproducibility
set.seed(seedstart)

Translasso_output <- TransLasso.EstA0(X = X_matrix, y = Y_vector,
n.vec = N_vector, AuxInformation = AuxInformation,
LambdaType = LambdaType, RhatCount = RhatCount)

}
# TransLasso for Oracle or Oracle 1df
if(AuxInformation != "Estimate A0"){
# for reproducibility
set.seed(seedstart)

Translasso_output <- TransLasso.Oracles(X = X_matrix, y = Y_vector,
n.vec = N_vector, AuxInformation = AuxInformation,
LambdaType = LambdaType)

}

# calculate intercepts
intercept_beta_min <- mean(Y_vector - X_matrix %*%

Translasso_output$beta.hat_min,
na.rm=TRUE)

intercept_beta_1se <- mean(Y_vector - X_matrix %*%
Translasso_output$beta.hat_1se,
na.rm=TRUE)

intercept_beta_min_lambda <- mean(Y_vector -
X_matrix %*% Translasso_output$beta.hat_min_lambda,

na.rm=TRUE)
intercept_beta_1se_lambda <- mean(Y_vector -

X_matrix %*% Translasso_output$beta.hat_1se_lambda,
na.rm=TRUE)
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intercept_beta_min_halflambda <- mean(Y_vector -
X_matrix %*% Translasso_output$beta.hat_min_halflambda,

na.rm=TRUE)
intercept_beta_1se_halflambda <- mean(Y_vector -

X_matrix %*% Translasso_output$beta.hat_1se_halflambda,
na.rm=TRUE)

# keep all coefficients.
TL_beta_coef <- data.frame(Variable = c("Intercept", colnames(X_matrix)),

beta_min_allcoef = c(intercept_beta_min,
Translasso_output$beta.hat_min),
beta_1se_allcoef = c(intercept_beta_1se,
Translasso_output$beta.hat_1se),
beta_min_halfcoef = c(intercept_beta_min_halflambda,
Translasso_output$beta.hat_min_halflambda),
beta_1se_halfcoef = c(intercept_beta_1se_halflambda,
Translasso_output$beta.hat_1se_halflambda),
beta_min_lambcoef = c(intercept_beta_min_lambda,
Translasso_output$beta.hat_min_lambda),
beta_1se_lambcoef = c(intercept_beta_1se_lambda,
Translasso_output$beta.hat_1se_lambda))

# if Constant, only the min lambda is used.
if(LambdaType == "Constant"){

TL_beta_coef <- data.frame(Variable = c("Intercept", colnames(X_matrix)),
beta_min_allcoef = c(intercept_beta_min,

Translasso_output$beta.hat_min),
beta_min_halfcoef = c(intercept_beta_min_halflambda,

Translasso_output$beta.hat_min_halflambda),
beta_min_lambcoef = c(intercept_beta_min_lambda,

Translasso_output$beta.hat_min_lambda))
}

# return Final TL coefficients as a dataframe
return(TL_beta_coef)

}

A.8.2 Saliva.2.Blood.DNAmBiomarkers Function

Saliva.2.Blood.DNAmBiomarkers functions calculates the blood DNAm Biomarkers from

methylation values using either the C or C+S method algorithms.

As input, X is the matrix or dataframe of saliva DNA methylation beta values with samples

in rows and methylation sites in columns. To see the list of CpG loci needed for computation,

please call colnames to CS Algorithms GitHub or C Algorithms GitHub (which are loaded in

the global environment). method should be either ”C+S” or ”C” to indicate which set of

algorithms you are interested in calculating. If ”C+S”, you must also provide SalivaDNAmBiom.

SalivaDNAmBiom should be the matrix or dataframe of Saliva DNAm biomarkers (ie DNAm

biomarkers directly calculated with saliva methylation values) if using the C+S algorithms.

Otherwise, this should be NULL. Default is NULL.

This function outputs a dataframe with predicted DNAm Biomarkers in each column with

rows in the same order as the originally supplied X.

Saliva.2.Blood.DNAmBiomarkers <- function(X, method, SalivaDNAmBiom = NULL) {
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# make sure ppl provide the saliva DNAm biomarkers if its C+S
if (method == "C+S" && is.null(SalivaDNAmBiom)) {
stop("For method C+S, saliva DNAm Biomarker matrix must be provided.")

}

if (method == "C") {
TLcoeffMatrix <- C_Algorithms_GitHub
Varstart <- 2

} else if (method == "C+S") {
TLcoeffMatrix <- CS_Algorithms_GitHub
Varstart <- 3

} else {
stop("Invalid method specified. Please specify either ’C’ or ’C+S’")

}

cpgs_needed <- TLcoeffMatrix$Variable[Varstart:length(TLcoeffMatrix$Variable)]
if(sum(cpgs_needed %!in% colnames(X)) > 0){
cpgs_missing <<- cpgs_needed[cpgs_needed %!in% colnames(X)]
stop("Not all CpG columns are present in X for this prediction.

Please see cpgs_missing for a list of missing but necessary CpGs.")
}

X_keep <- X[, cpgs_needed]
if (any(is.na(X_keep))) {
stop("Missing values are not allowed.

Please impute missing values in the X matrix.")
}

### Now can start the computations ###

new_biomarker_list <- colnames(TLcoeffMatrix)[-1]

n_biom <- dim(TLcoeffMatrix)[2]
n_var <- dim(TLcoeffMatrix)[1]

# make temp dataset with intercept, saliva, and columns in correct order
if (method == "C"){
newdata_temp <- data.frame(intercept = 1,

X[, TLcoeffMatrix$Variable[Varstart:n_var]])
}else{
newdata_temp <- data.frame(intercept = 1, SalivaDNAmBiom = NA,

X[, TLcoeffMatrix$Variable[Varstart:n_var]])
}

# Turn Coefficient matrix into a real matrix for multiplying
TLcoeffMatrix2 <- matrix(unlist(TLcoeffMatrix[, 2:n_biom]),

ncol = (n_biom-1), nrow = n_var)

# initialize predictions dataframe
pred_df <- data.frame(rep(NA, dim(X)[1]))
k <- 1

for (i in new_biomarker_list) {

if(method == "C+S"){
# set Saliva value to the biomarker of interest
newdata_temp$SalivaDNAmBiom <- SalivaDNAmBiom[, i]

}

# get the column of the TL coef matrix the biomarker is in
TL_coef_Col <- (which(colnames(TLcoeffMatrix) == i) - 1)

# turn into matrix for multiplication
newdata_temp2 <- matrix(unlist(newdata_temp), ncol = dim(newdata_temp)[2],

nrow = dim(newdata_temp)[1])

# data has ppl in rows, variables in columns,
# TLcoef matrix has coefficients for each biomarker in a column
cur_pred <- newdata_temp2 %*% TLcoeffMatrix2[, TL_coef_Col]
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# set prediction to the dataframe
pred_df[, k] <- c(cur_pred)
colnames(pred_df)[k] <- i

# make k go up
k <- k + 1

# remove values so we don’t repeat by accident
rm(cur_pred); rm(newdata_temp2)

if(method == "C+S"){
# set Saliva value to NA so we don’t repeat by accident
newdata_temp$SalivaDNAmBiom <- NA

}

} # end of for loop in biomarker list

# return the predicted DNAm values.
if(method == "C+S"){
colnames(pred_df) <- paste0(colnames(pred_df), "_CS_Pred")

} else{
colnames(pred_df) <- paste0(colnames(pred_df), "_C_Pred")

}

return(pred_df)
}

A.8.3 TL Lasso Function

TL Lasso is the actual Transfer Learning Lasso loop process called inside both TL.Lasso.EstA0

and TL.Lasso.Oracles. As input, X is the matrix of covariates, y is the outcome vector, A0

is the informative Aux Set. It is either NULL or estimated. n.vec is a vector of number

of observations in the target and aux datasets in that order, lam.const is whether we are

calculating the optimal lambda via CV in each informative aux set or the constant value if

using the methods outlined in TransLasso paper.

It outputs the estimated beta coefficients with and without thresholding (when performed

in auxiliary data) and the estimated lambda values.

TL_Lasso <- function(X, y, A0, n.vec, lam.const=NULL, lam.const_1se = NULL, ...){

p <- ncol(X)
size.A0 <- length(A0) # set to NULL so its 0

if(size.A0 > 0){ # only for Aux data, otherwise SKIP to below

ind.kA <- ind.set(n.vec, c(1, A0+1))
ind.1 <- 1:n.vec[1] # vector of all values to build initial model.

y.A <- y[ind.kA]

# if null, CV done for each Informative Set and both min and 1se lambda kept.
if(is.null(lam.const)){
# this gets run on first run because we have it set to NULL
# does its own grid search for lambda
cv.init<-cv.glmnet(X[ind.kA,], y.A, nfolds=8)
# now, it will just take whatever the best value was and calculate the constant.
lam.const <- cv.init$lambda.min/sqrt(2*log(p)/length(ind.kA))
lam.const_1se <- cv.init$lambda.1se/sqrt(2*log(p)/length(ind.kA))

}
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if(!is.null(lam.const) & is.null(lam.const_1se)){
lam.const_1se <- lam.const

}

# w.kA = coefficients from Xk predicts Yk
w.kA_min <- as.numeric(glmnet(X[ind.kA,], y.A,

lambda=lam.const*sqrt(2*log(p)/length(ind.kA)))$beta)
w.kA_1se <- as.numeric(glmnet(X[ind.kA,], y.A,

lambda=lam.const_1se*sqrt(2*log(p)/length(ind.kA)))$beta)

# w.k coefficient thresholding
w.kA_min_halflambda <- w.kA_min*(abs(w.kA_min) >=

0.5*lam.const*sqrt(2*log(p)/length(ind.kA)))
w.kA_min_lambda <- w.kA_min*(abs(w.kA_min) >=

lam.const*sqrt(2*log(p)/length(ind.kA)))

w.kA_1se_halflambda <- w.kA_1se*(abs(w.kA_1se) >=
0.5*lam.const_1se*sqrt(2*log(p)/length(ind.kA)))

w.kA_1se_lambda <- w.kA_1se*(abs(w.kA_1se) >=
lam.const_1se*sqrt(2*log(p)/length(ind.kA)))

# build model in target where outcome is what is left after
# taking the yhat from kth model coefficients.
# delta.kA = coefficients from X0 predicts (Y0 - Y0hat from w.kA)
delta.kA_min <- as.numeric(glmnet(x=X[ind.1,],y=y[ind.1]-X[ind.1,]%*%w.kA_min,

lambda=lam.const*sqrt(2*log(p)/length(ind.1)))$beta)
delta.kA_1se <- as.numeric(glmnet(x=X[ind.1,],y=y[ind.1]-X[ind.1,]%*%w.kA_1se,

lambda=lam.const_1se*sqrt(2*log(p)/length(ind.1)))$beta)

# delta.k coefficient thresholding
delta.kA_min_halflambda <- delta.kA_min*(abs(delta.kA_min) >=

0.5*lam.const*sqrt(2*log(p)/length(ind.1)))
delta.kA_min_lambda <- delta.kA_min*(abs(delta.kA_min) >=

lam.const*sqrt(2*log(p)/length(ind.1)))

delta.kA_1se_halflambda <- delta.kA_1se*(abs(delta.kA_1se) >=
0.5*lam.const_1se*sqrt(2*log(p)/length(ind.1)))

delta.kA_1se_lambda <- delta.kA_1se*(abs(delta.kA_1se) >=
lam.const_1se*sqrt(2*log(p)/length(ind.1)))

# final beta coefficients (the kth lasso coefficients are the weights
# from kth lasso model + kth lasso on target)

# no thresholding
beta.kA_min <- w.kA_min + delta.kA_min
beta.kA_1se <- w.kA_1se + delta.kA_1se

# half lambda thresholding
beta.kA_min_halflambda <- w.kA_min_halflambda + delta.kA_min_halflambda
beta.kA_min_lambda <- w.kA_min_lambda + delta.kA_min_lambda

# lambda thresholding
beta.kA_1se_halflambda <- w.kA_1se_halflambda + delta.kA_1se_halflambda
beta.kA_1se_lambda <- w.kA_1se_lambda + delta.kA_1se_lambda

lam.const=NULL # reset lambda because we don’t want it to loop through as !null
# first auxillary dataset because we supply the lambda constant.

# output all coefficients
# recall if constant lambda was specified, min and 1se will be identical.
list(beta.kA_min = as.numeric(beta.kA_min), w.kA_min=w.kA_min,

beta.kA_1se = as.numeric(beta.kA_1se), w.kA_1se=w.kA_1se,
beta.kA_min_halflambda = as.numeric(beta.kA_min_halflambda),

w.kA_min_halflambda=w.kA_min_halflambda,
beta.kA_1se_halflambda = as.numeric(beta.kA_1se_halflambda),

w.kA_1se_halflambda=w.kA_1se_halflambda,
beta.kA_min_lambda = as.numeric(beta.kA_min_lambda),

w.kA_min_lambda=w.kA_min_lambda,
beta.kA_1se_lambda = as.numeric(beta.kA_1se_lambda),

w.kA_1se_lambda=w.kA_1se_lambda,
lam.const=lam.const, lam.const_1se=lam.const_1se)

}else{ # end of if(size.A0 > 0)
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# BEGINNING CODE FOR INITIAL / TARGET DATA
cv.init <- cv.glmnet(X[1:n.vec[1],], y[1:n.vec[1]], nfolds=8)

# When constant lambda selected, min lambda is used.
lam.const <- cv.init$lambda.min/sqrt(2*log(p)/n.vec[1])
lam.const_1se <- cv.init$lambda.1se/sqrt(2*log(p)/n.vec[1])

# extract coefficients (excluding the intercept)
beta.kA_min <- predict(cv.init, s=’lambda.min’, type=’coefficients’)[-1]
beta.kA_1se <- predict(cv.init, s=’lambda.1se’, type=’coefficients’)[-1]
w.kA_min <- w.kA_1se <- NA

list(beta.kA_min = as.numeric(beta.kA_min), w.kA_min=w.kA_min,
beta.kA_1se = as.numeric(beta.kA_1se), w.kA_1se=w.kA_1se,
lam.const=lam.const, lam.const_1se = lam.const_1se)

}

}

A.8.4 TransLasso.Oracles Function

TransLasso.Oracles performs Oracle Transfer Learning Lasso meaning the set of auxiliary

datasets is specified to either run all at once (Oracle) or 1 dataset at a time (Oracle 1df). As

input, X is the matrix of covariates, y is the outcome vector, n.vec is a vector of number of

observations in the target and aux datasets in that order, AuxInformation is either ”Oracle” or

”Oracle 1df”, LambdaType is either ”Constant” or ”CV” to indicate if the lambda calculated

from the target dataset should be used and adjusted based on the aux dataset size (”Constant”)

or whether the optimal lambda should be calculated via cross validation (”CV”) for each set of

auxiliary information.

It outputs the aggregated coefficients at various parameterizations and the weights used

when aggregating.

TransLasso.Oracles <- function(X, y, n.vec, AuxInformation = "Oracle 1df",
LambdaType = "CV", ...) {

M = length(n.vec)-1
p <- ncol(X)

# row indices of where these observations are for target
ind.1 <- ind.set(n.vec, 1)

Tset <- list()

if(AuxInformation == "Oracle"){
# make Tset actually just all the aux datasets (for oracle all at once)
# aux datasets start at 2.
Tset[[1]] <- c(1:M)

}
# take 1 aux dataset at a time, noting that we index by dataset before.
if(AuxInformation == "Oracle 1df"){
for(kk in 1:M){ #use Rhat as the selection rule
Tset[[kk]] <- kk

} # the sets of aux datasets to take for ranking of datasets.
}

k0 = length(Tset)
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Tset <- unique(Tset)

beta.T_min <- beta.T_min_lambda <- beta.T_min_halflambda <- list()
beta.T_1se <- beta.T_1se_lambda <- beta.T_1se_halflambda <- list()

# Lasso on Target Data only
init.re <- TL_Lasso(X=X, y=y, A0=NULL, n.vec=n.vec)

beta.T_min[[1]] <- init.re$beta.kA_min
beta.T_1se[[1]] <- init.re$beta.kA_1se

# if constant lambda specified, it is here.
c1_lambda_const <- init.re$lam.const
c1_lambda_const_1se <- init.re$lam.const_1se

og_lasso_coef_min <- init.re$beta.kA_min
og_lasso_coef_1se <- init.re$beta.kA_1se

beta.T_min_lambda <- beta.T_min_halflambda <- beta.T_min
beta.T_1se_lambda <- beta.T_1se_halflambda <- beta.T_1se

# go through TL Lasso for each informative set
for(kk in 1:length(Tset)){
T.k <- Tset[[kk]]

# changed function call to lam.const = NULL to do Aux CV
if(LambdaType == "CV"){
re.k <- TL_Lasso(X=X, y=y, A0=T.k, n.vec=n.vec, lam.const = NULL)

}else{ # constant lambda specification
re.k <- TL_Lasso(X=X, y=y, A0=T.k, n.vec=n.vec, lam.const = c1_lambda_const,

lam.const_1se = c1_lambda_const_1se)
}

# extract coefficients for each informative auxiliary set
beta.T_min[[kk+1]] <- re.k$beta.kA_min
beta.pool.T_min[[kk+1]] <- re.k$w.kA_min

beta.T_1se[[kk+1]] <- re.k$beta.kA_1se
beta.pool.T_1se[[kk+1]] <- re.k$w.kA_1se

beta.T_min_halflambda[[kk+1]] <- re.k$beta.kA_min_halflambda
beta.pool.T_min_halflambda[[kk+1]] <- re.k$w.kA_min_halflambda

beta.T_1se_lambda[[kk+1]] <- re.k$beta.kA_1se_lambda
beta.pool.T_1se_lambda[[kk+1]] <- re.k$w.kA_1se_lambda

}

beta.T_min <- beta.T_min[!duplicated((beta.T_min))]
beta.T_min <- as.matrix(as.data.frame(beta.T_min))

beta.T_1se <- beta.T_1se[!duplicated((beta.T_1se))]
beta.T_1se <- as.matrix(as.data.frame(beta.T_1se))

beta.T_min_halflambda <- beta.T_min_halflambda[
!duplicated((beta.T_min_halflambda))]

beta.T_min_halflambda <- as.matrix(as.data.frame(beta.T_min_halflambda))
beta.T_min_lambda <- beta.T_min_lambda[!duplicated((beta.T_min_lambda))]
beta.T_min_lambda <- as.matrix(as.data.frame(beta.T_min_lambda))

beta.T_1se_halflambda <- beta.T_1se_halflambda[
!duplicated((beta.T_1se_halflambda))]

beta.T_1se_halflambda <- as.matrix(as.data.frame(beta.T_1se_halflambda))
beta.T_1se_lambda <- beta.T_1se_lambda[!duplicated((beta.T_1se_lambda))]
beta.T_1se_lambda <- as.matrix(as.data.frame(beta.T_1se_lambda))

## aggregate coefficients using squared error.
## aggregate w.kA and delta.kA
agg.re1_min <- coef.aggr(B= beta.T_min, X = X, y = y, N_vector = n.vec)
agg.re1_1se <- coef.aggr(B= beta.T_1se, X = X, y = y, N_vector = n.vec)

agg.re1_min_halflambda <- coef.aggr(B= beta.T_min_halflambda, X = X, y = y,
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N_vector = n.vec)
agg.re1_1se_halflambda <- coef.aggr(B= beta.T_1se_halflambda, X = X, y = y,

N_vector = n.vec)

agg.re1_min_lambda <- coef.aggr(B= beta.T_min_lambda, X = X,
y = y, N_vector = n.vec)

agg.re1_1se_lambda <- coef.aggr(B= beta.T_1se_lambda, X = X,
y = y, N_vector = n.vec)

return(list(beta.hat_min = agg.re1_min$beta, theta.hat_min = agg.re1_min$theta,
beta.hat_1se = agg.re1_1se$beta, theta.hat_1se = agg.re1_1se$theta,
beta.hat_min_halflambda = agg.re1_min_halflambda$beta,
theta.hat_min_halflambda = agg.re1_min_halflambda$theta,
beta.hat_1se_halflambda = agg.re1_1se_halflambda$beta,
theta.hat_1se_halflambda = agg.re1_1se_halflambda$theta,
beta.hat_min_lambda = agg.re1_min_lambda$beta,
theta.hat_min_lambda = agg.re1_min_lambda$theta,
beta.hat_1se_lambda = agg.re1_1se_lambda$beta,
theta.hat_1se_lambda = agg.re1_1se_lambda$theta,
c1_lambda_const = c1_lambda_const))

}

A.8.5 TransLasso.EstA0 Function

TransLasso.EstA0 performs Transfer Learning Lasso while estimating the Informative Auxil-

iary Data. X is the matrix of covariates (nxp), y is the outcome vector (nx1), n.vec is a vector

of number of observations in the target and aux datasets in that order, RhatCount is either

”n0/3” or a value between 1, ..., p to specify how many marginal correlations to consider when

calculating information. LambdaType is either ”Constant” or ”CV” to indicate if the lambda

calculated from the target dataset should be used and adjusted based on the aux dataset size

(”Constant”) or whether the optimal lambda should be calculated via cross validation (”CV”)

for each set of auxiliary information.

It outputs the aggregated coefficients at various parameterizations and the weights used

when aggregating.

TransLasso.EstA0 <- function(X, y, n.vec, RhatCount, LambdaType, ...){

# count of aux datasets
M = length(n.vec)-1

Rhat <- rep(0, M+1)
p <- ncol(X)

# make row indices of where target observations are
ind.1 <- ind.set(n.vec, 1)

# calculate informativeness for each aux study
for(k in 2: (M+1)){
ind.k <- ind.set(n.vec, k) # row indices for kth aux sample.

# calculate difference in marginal correlations between k aux and target data.
Xty.k <- t(X[ind.k, ])%*%y[ind.k] / n.vec[k] - t(X[ind.1,])%*%y[ind.1]/ n.vec[1]

# Rhat adjusts how many marginal correlations are looked at
# take the top largest correlation differences based on RhatCount
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margin.T <- sort(abs(Xty.k), decreasing=T)[1:RhatCount]

# estimated sparse index for kth aux sample.
Rhat[k] <- sum(margin.T^2)

}

Tset <- list()
k0 = 0
# get ordering of smallest to largest Rhat for aux samples.
kk.list <- unique(rank(Rhat[-1]))

for(kk in 1:length(kk.list)){#use Rhat as the selection rule
Tset[[k0+kk]] <- which(rank(Rhat[-1]) <= kk.list[kk])

} # the sets of aux datasets to take for each ranking of datasets to include.

k0 = length(Tset)
Tset <- unique(Tset)

beta.T_min <- beta.T_min_lambda <- beta.T_min_halflambda <- list()
beta.T_1se <- beta.T_1se_lambda <- beta.T_1se_halflambda <- list()

# Lasso on Target Data only
init.re <- TL_Lasso(X=X, y=y, A0=NULL, n.vec=n.vec)

beta.T_min[[1]] <- init.re$beta.kA_min
beta.T_1se[[1]] <- init.re$beta.kA_1se

# if constant lambda specified, it is here.
c1_lambda_const <- init.re$lam.const
c1_lambda_const_1se <- init.re$lam.const_1se

og_lasso_coef_min <- init.re$beta.kA_min
og_lasso_coef_1se <- init.re$beta.kA_1se

beta.T_min_lambda <- beta.T_min_halflambda <- beta.T_min
beta.T_1se_lambda <- beta.T_1se_halflambda <- beta.T_1se

# go through TL Lasso for each informative set
for(kk in 1:length(Tset)){
T.k <- Tset[[kk]]

# which lambda type changes which section of function call it goes into
if(LambdaType == "CV"){
re.k <- TL_Lasso(X=X, y=y, A0=T.k, n.vec=n.vec, lam.const = NULL)

}
if(LambdaType == "Constant"){
re.k <- TL_Lasso(X=X, y=y, A0=T.k, n.vec=n.vec,

lam.const = c1_lambda_const,
lam.const_1se = c1_lambda_const_1se)

}

# extract coefficients for each informative auxiliary set
beta.T_min[[kk+1]] <- re.k$beta.kA_min
beta.T_1se[[kk+1]] <- re.k$beta.kA_1se
beta.T_min_halflambda[[kk+1]] <- re.k$beta.kA_min_halflambda
beta.T_min_lambda[[kk+1]] <- re.k$beta.kA_min_lambda
beta.T_1se_lambda[[kk+1]] <- re.k$beta.kA_1se_lambda
beta.T_1se_halflambda[[kk+1]] <- re.k$beta.kA_1se_halflambda

}

beta.T_min <- beta.T_min[!duplicated((beta.T_min))]
beta.T_min <- as.matrix(as.data.frame(beta.T_min))

beta.T_1se <- beta.T_1se[!duplicated((beta.T_1se))]
beta.T_1se <- as.matrix(as.data.frame(beta.T_1se))

beta.T_min_halflambda <- beta.T_min_halflambda[
!duplicated((beta.T_min_halflambda))]

beta.T_min_halflambda <- as.matrix(as.data.frame(beta.T_min_halflambda))
beta.T_min_lambda <- beta.T_min_lambda[!duplicated((beta.T_min_lambda))]
beta.T_min_lambda <- as.matrix(as.data.frame(beta.T_min_lambda))

127



beta.T_1se_halflambda <- beta.T_1se_halflambda[
!duplicated((beta.T_1se_halflambda))]

beta.T_1se_halflambda <- as.matrix(as.data.frame(beta.T_1se_halflambda))
beta.T_1se_lambda <- beta.T_1se_lambda[!duplicated((beta.T_1se_lambda))]
beta.T_1se_lambda <- as.matrix(as.data.frame(beta.T_1se_lambda))

## aggregate coefficients using squared error.
# No coef thresholding
agg.re1_min <- coef.aggr(B= beta.T_min, X = X, y = y, N_vector = n.vec)
agg.re1_1se <- coef.aggr(B= beta.T_1se, X = X, y = y, N_vector = n.vec)

# half lambda coef thresholding
agg.re1_min_halflambda <- coef.aggr(B= beta.T_min_halflambda, X = X, y = y,

N_vector = n.vec)
agg.re1_1se_halflambda <- coef.aggr(B= beta.T_1se_halflambda, X = X, y = y,

N_vector = n.vec)

# lambda coef thresholding
agg.re1_min_lambda <- coef.aggr(B= beta.T_min_lambda, X = X,

y = y, N_vector = n.vec)
agg.re1_1se_lambda <- coef.aggr(B= beta.T_1se_lambda, X = X,

y = y, N_vector = n.vec)

# theta are the returned weights of each dataset.
# betas are the final, aggregated coefficients for potential covariates
return(list(beta.hat_min = agg.re1_min$beta, theta.hat_min = agg.re1_min$theta,

beta.hat_1se = agg.re1_1se$beta, theta.hat_1se = agg.re1_1se$theta,
beta.hat_min_halflambda = agg.re1_min_halflambda$beta,
theta.hat_min_halflambda = agg.re1_min_halflambda$theta,
beta.hat_1se_halflambda = agg.re1_1se_halflambda$beta,
theta.hat_1se_halflambda = agg.re1_1se_halflambda$theta,
beta.hat_min_lambda = agg.re1_min_lambda$beta,
theta.hat_min_lambda = agg.re1_min_lambda$theta,
beta.hat_1se_lambda = agg.re1_1se_lambda$beta,
theta.hat_1se_lambda = agg.re1_1se_lambda$theta,
c1_lambda_const = c1_lambda_const,
og_lasso_coef_min = og_lasso_coef_min,
og_lasso_coef_1se = og_lasso_coef_1se))

}

A.8.6 Helper Functions

coef.aggr function aggregates the coefficients from target and auxiliary data using the error

in the target data. This function is called in the background; it is not being called directly by

users.

As input, this function requires B, the coefficient vector, X, the matrix of covariates, y, the

outcome vector, and N vector, a vector of number of observations in the target and aux datasets

in that order. It outputs a two item list, with the first item, theta, being the weights used to

aggregate the coefficients, and beta, the final, aggregated coefficients.

coef.aggr <- function(B, X, y, N_vector){

# if all coefficients are zero, just return zero
if(sum(B == 0) == ncol(B)*nrow(B)){
return(rep(0,nrow(B)))

}
p <- nrow(B)
K <- ncol(B)
colnames(B) <- NULL

# Take the difference in target y and predicted y
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# from each aux data coefficients
y0hatk <- -log(colSums(y[1:N_vector[1]] - X[1:N_vector[1], ] %*% B)^2)
theta.hat <- exp(y0hatk)
theta.hat = theta.hat / sum(theta.hat)
# weights by fraction of total squared error

# multiply betak by weights for each kth aux
beta <- as.numeric(B%*%theta.hat)

list(theta = theta.hat, beta = beta)

}

ind.set tells the TL functions where the first and last observation is for each dataset (target,

aux 1, ..., aux k) based on the sample sizes in n.vec. n.vec is the vector of number of observations

in the target and aux datasets in that order. k is index of the dataset we are interested in

extracting values from. It returns the indices in the X matrix and y vector to extract.

ind.set <- function(n.vec, k.vec){
ind.re <- NULL
for(k in k.vec){
if(k==1){
ind.re<-c(ind.re,1: n.vec[1])

}else{
ind.re<- c(ind.re, (sum(n.vec[1:(k-1)])+1): sum(n.vec[1:k]))

}
}
ind.re

}
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Appendix B

B.1 Supplemental Table and Figures

B.1.1 DNAm Fitness Biomarkers and DNAmFitAge

Supplemental Figure B.1 accompanies Section 2.3.2 by providing additional results relating the

DNAm fitness biomarkers to aging phenotypes in validation datasets.

Supplemental Table B.1 accompanies Section 2.3 by providing additional performance met-

rics beyond correlation and stratified by sex.

Supplemental Table B.2 and B.3 accompanies Section 2.3.3 and Section A.3 to evaluate

whether the effects observed in younger FitAges in body builders can be explained by their

supplement usage.

Supplemental Table B.4 accompanies Section 2.3 by providing hazard ratios and coefficient

values for phenotypic outcomes as well as meta-analysis results across the validation datasets.
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Table B.1: DNAmFitAge Performance in Validation Datasets

Females Males
Male Model
in Females

Female Model
in Males

Training Data
Median Absolute Deviation 2.7 3.0 11.9 13.5

Mean Deviation 0.0 0.0 -12.2 13.1
R 0.923 0.925 0.925 0.922

LBC1921
Median Absolute Deviation 3.7 4.8 11.0 14.5

Mean Deviation 0.8 1.1 -11.1 13.8
R 0.409 0.386 0.404 0.391

LBC1936
Median Absolute Deviation 3.2 3.4 11.6 13.3

Mean Deviation 0.0 0.2 -11.9 12.9
R 0.635 0.635 0.647 0.624

CALERIE
Median Absolute Deviation 4.9 2.3 17.1 11.0

Mean Deviation -5.0 -2.0 -17.1 11.0
R 0.926 0.915 0.928 0.912

InChianti
Median Absolute Deviation 3.9 3.9 16.0 9.6

Mean Deviation -3.8 -4.3 -16.1 9.1
R 0.969 0.964 0.969 0.963

JHS
Median Absolute Deviation 2.9 3.4 13.6 9.2

Mean Deviation -1.6 -2.8 -13.9 8.6
R 0.937 0.917 0.940 0.914

WHI
Median Absolute Deviation 3.8 16.8

Mean Deviation -3.4 -16.8
R 0.808 0.812

Table B.2: Linear models evaluating supplement usage to DNAmFitAge and DNAmVO2max
after adjusting for age

Supplement in Model
Outcome: DNAmFitAge Outcome: DNAmVO2max

Supplement BodyBuilder Supplement BodyBuilder

Multivitamins
coefficient -0.32 -0.62 0.68 0.07
p-value 0.690 0.208 0.041 0.746

Proteins
coefficient -0.05 -0.65 0.45 0.10
p-value 0.961 0.184 0.241 0.607

Energy
coefficient 0.16 -0.66 0.24 0.13
p-value 0.852 0.175 0.518 0.513

Magnesium
coefficient -1.03 -0.60 -0.12 0.15
p-value 0.213 0.219 0.727 0.472

Vitamin D
coefficient -0.56 -0.62 -0.32 0.16
p-value 0.570 0.207 0.439 0.431

Omega-3
coefficient -1.23 -0.46 0.33 0.08
p-value 0.157 0.366 0.355 0.687
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Table B.3: Dietary Supplement Use by Male Athlete Status

Control Body Builder
Fisher’s Exact

p-value

Multivitamins
No 141 55

0.016
Yes 8 11

Proteins
No 140 58

0.169
Yes 9 8

Energy
No 145 53

6.81E-05
Yes 4 13

Magnesium
No 140 59

0.265
Yes 9 7

Vitamin D
No 143 58

0.036
Yes 6 8

Omega-3
No 144 59

0.050
Yes 5 7
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Figure B.1: Meta-analysis forest plots for DNAm fitness parameter biomarkers with
age-related conditions. Each row reports a meta analysis forest plot for combining hazard
ratios or regression coefficients across dataset cohorts for one DNAm biomarker estimate.
(A-D) DNAmGaitSpeed without age, (E-H) DNAmGripmax without age, (I-L) DNAmFEV1,
and (M-P) DNAmVO2max. Time-to-death, type 2 diabetes, comorbidity count, and
disease-free status are presented. Meta-analysis p-values are displayed in the header of each
panel, and test of heterogeneity Cochran Q test p-value (Het. P) are displayed for fixed effect
models. Fixed effects models were used for time-to-death and type 2 diabetes whereas
Stouffer’s method was used for comorbidity count and disease-free status. All DNAm fitness
biomarkers are predictive of mortality, and DNAmGaitspeed and DNAmFEV1 are predictive
of number of comorbidities.
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Supplemental Table B.5 accompanies Section 2.3.2 by providing additional results relating

the DNAm fitness biomarkers to aging phenotypes in validation datasets.
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Supplemental Table B.6 accompanies Section A.1.1. We analyze the biological importance of the

CpG loci chosen for the DNAm fitness biomarker models using GREAT.

136



T
ab

le
B
.5
:
C
o
m
p
a
ri
n
g
D
N
A
m
F
it
A
ge

Im
p
or
ta
n
ce

w
it
h
ot
h
er

D
N
A
m

B
io
m
ar
ke
rs

fo
r
T
im

e-
to
-D

ea
th

an
d
N
u
m
b
er

of
C
om

or
b
id
it
ie
s
af
te
r

co
n
tr
o
ll
in
g
fo
r
ag

e
a
n
d
se
x

L
B
C
19

21
L
B
C
19

36
In
C
h
ia
n
ti

W
H
I

J
H
S

T
im

e-
to
-D

ea
th

M
o
d
el

C
o
m
p
a
ri
so
n

L
R
T

L
R
T

p
-v
a
lu
e

L
R
T

L
R
T

p
-v
a
lu
e

L
R
T

L
R
T

p
-v
a
lu
e

L
R
T

L
R
T

p
-v
a
lu
e

L
R
T

L
R
T

p
-v
a
lu
e

D
N
A
m
G
ri
m
A
g
e
+

D
N
A
m
F
it
A
g
e

to
D
N
A
m
G
ri
m
A
g
e

F
em

al
es

0.
5

0.
47

9
2.
9

0.
09

1
7.
2

0.
00

7
1.
1

0.
28

6
4.
6

0.
03

2
M
al
es

3.
7

0.
05

4
2.
6

0.
11

0
7.
7

0.
00

5
0.
2

0.
62

8

D
N
A
m
P
h
en

o
A
g
e
+

D
N
A
m
F
it
A
g
e

to
D
N
A
m
P
h
en

o
A
g
e

F
em

al
es

9.
1

0.
00

3
36

.0
1.
98

E
-0
9

1.
2

0.
26

9
17

.0
3.
70

E
-0
5

30
.4

3.
53

E
-0
8

M
al
es

11
.3

7.
64

E
-0
4

91
.0

<
1.
0E

-1
6

26
.4

2.
76

E
-0
7

4.
3

0.
03

9

D
N
A
m
P
A
I1

+
D
N
A
m
F
it
A
g
e

to
D
N
A
m
P
A
I1

F
em

al
es

9.
8

0.
00

2
51

.1
8.
67

E
-1
3

7.
3

0.
00

7
17

.0
3.
76

E
-0
5

38
.5

5.
36

E
-1
0

M
al
es

30
.4

3.
49

E
-0
8

83
.6

<
1.
0E

-1
6

22
.9

1.
67

E
-0
6

7.
1

0.
00

8

D
N
A
m
G
D
F
1
5
+

D
N
A
m
F
it
A
g
e

to
D
N
A
m
G
D
F
1
5

F
em

al
es

5.
2

0.
02

3
44

.8
2.
16

E
-1
1

6.
1

0.
01

4
23

.1
1.
54

E
-0
6

46
.6

8.
88

E
-1
2

M
al
es

25
.0

5.
78

E
-0
7

70
.7

<
1.
0E

-1
6

14
.1

1.
73

E
-0
4

4.
4

3.
66

E
-0
2

D
N
A
m
A
g
eH

a
n
n
u
m

+
D
N
A
m
F
it
A
g
e

to
D
N
A
m
A
g
eH

a
n
n
u
m

F
em

al
es

13
.2

2.
79

E
-0
4

60
.8

6.
11

E
-1
5

2.
0

0.
15

7
31

.5
1.
95

E
-0
8

41
.6

1.
11

E
-1
0

M
al
es

15
.0

1.
09

E
-0
4

10
4.
0

<
1.
0E

-1
6

22
.0

2.
70

E
-0
6

7.
0

0.
00

8

D
N
A
m
A
g
eS

k
in
B
lo
o
d
C
lo
ck

+
D
N
A
m
F
it
A
g
e

to
D
N
A
m
A
g
eS

k
in
B
lo
o
d
C
lo
ck

F
em

al
es

16
.4

5.
05

E
-0
5

92
.3

<
1.
0E

-1
6

3.
6

0.
05

8
34

.7
3.
79

E
-0
9

57
.2

3.
89

E
-1
4

M
a
le
s

22
.4

2.
17

E
-0
6

13
3.
8

<
1.
0E

-1
6

21
.8

3.
01

E
-0
6

10
.9

9.
46

E
-0
4

N
u
m
b
er

o
f
C
o
m
or
b
id
it
ie
s
M
o
d
el

C
om

p
ar
is
on

D
N
A
m
G
ri
m
A
g
e
+

D
N
A
m
F
it
A
g
e

to
D
N
A
m
G
ri
m
A
g
e

F
em

al
es

2.
1

0.
14

8
1.
2

0.
26

9
0.
4

0.
51

3
3.
4

0.
06

5
0.
0

0.
91

0
M
al
es

2.
5

0.
11

7
3.
1

0.
08

0
0.
05

0.
82

8
1.
2

0.
26

7

D
N
A
m
P
h
en

o
A
g
e
+

D
N
A
m
F
it
A
g
e

to
D
N
A
m
P
h
en

o
A
g
e

F
em

al
es

0.
05

0.
82

8
2.
6

0.
11

0
3.
4

0.
06

7
2.
9

0.
09

1
8.
6

0.
00

3
M
al
es

5.
2

0.
02

3
38

.7
4.
98

E
-1
0

0.
01

0.
92

7
0.
7

0.
41

2

D
N
A
m
P
A
I1

+
D
N
A
m
F
it
A
g
e

to
D
N
A
m
P
A
I1

F
em

al
es

0.
7

0.
40

1
1.
3

0.
25

5
0.
9

0.
34

4
1.
4

0.
23

0
2.
7

0.
10

1
M
al
es

1.
4

0.
23

3
26

.5
2.
70

E
-0
7

0.
1

0.
80

0
0.
1

0.
81

7

D
N
A
m
G
D
F
1
5
+

D
N
A
m
F
it
A
g
e

to
D
N
A
m
G
D
F
1
5

F
em

al
es

0.
5

0.
47

6
5.
3

0.
02

1
0.
01

0.
94

4
6.
7

0.
01

0
22

.1
2.
61

E
-0
6

M
al
es

2.
6

0.
10

5
31

.6
1.
86

E
-0
8

0.
6

0.
45

3
4.
2

0.
04

1

D
N
A
m
A
g
eH

a
n
n
u
m

+
D
N
A
m
F
it
A
g
e

to
D
N
A
m
A
g
eH

a
n
n
u
m

F
em

al
es

0.
03

0.
87

1
2.
4

0.
12

3
0.
7

0.
41

1
6.
5

0.
01

1
13

.1
2.
88

E
-0
4

M
al
es

2.
6

0.
10

8
39

.2
3.
78

E
-1
0

0.
2

0.
62

4
1.
1

0.
30

5

D
N
A
m
A
g
eS

k
in
B
lo
o
d
C
lo
ck

+
D
N
A
m
F
it
A
g
e

to
D
N
A
m
A
g
eS

k
in
B
lo
o
d
C
lo
ck

F
em

al
es

0.
3

0.
59

6
5.
6

0.
01

8
0.
2

0.
68

2
8.
3

0.
00

4
16

.5
4.
83

E
-0
5

M
al
es

1.
3

0.
25

6
55

.0
1.
21

E
-1
3

0.
2

0.
67

6
2.
9

0.
08

9

137



Table B.6: CpG Annotation and Chromatin State Results

A. Top GREAT CpG Annotation Results

Genes
Observed Fold Binomial Bonferroni
Regions Enrichment p-value p-value

ZNRD1 4 77.9 2.75E-07 0.0051
HLA-G 4 55.0 1.09E-06 0.020

Cellular
MHC protein complex 9 25.1 1.86E-10 3.11E-07

integral component of
endoplasmic reticulum membrane

21 3.7 4.49E-07 0.00075

intrinsic component of
endoplasmic reticulum membrane

21 3.6 6.39E-07 0.0011

MHC class II protein complex 5 26.9 1.56E-06 0.0026

integral component of lumenal side of
endoplasmic reticulum membrane

7 12.7 1.81E-06 0.0030

Molecular
peptide antigen binding 6 13.3 7.71E-06 0.032
tapasin binding 2 421.0 1.12E-05 0.047

B. Chromatin State Enrichment

State Description CpG loci Odds Ratio
Hypergeometric

p-value

PromF4
promoter; heavily acetylated -
flanking tss downstream bias

25 0.45 6.5E-06

TSS1 TSS more acetylated and active 15 0.37 6.8E-06

BivProm2
weak bivalent promoter-
stronger on H3K27me3

43 1.76 0.00057

TxEx3 exon; H3K36me3 strong 4 0.30 0.0030
DNase1 DNase I only 13 2.41 0.0041

ReprPC1
polycomb repressed; H3K27me3
strong and H3K4me1 weak

21 1.87 0.0065

BivProm1
weak bivalent promoter -
more balanced H3K4me3/ H3K27me3

43 1.50 0.0092
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B.1.2 Copula Transforms and Imputation

Supplemental Table B.7 accompanies Section 3.3.3 to evaluate the impact of SNP proximity in

imputation accuracy.

Table B.7: Imputation Performance by Presence of SNP

No SNP SNPs

Dataset
Imputation

Dataset Form
Median Median Median Median

Tool RMSE Correlation RMSE Correlation

FHS

impute.knn
Untransformed 0.019 0.64 0.02 0.628
Missing Normal 0.018 0.684 0.019 0.678

Normal 05 0.0185 0.698 0.0195 0.688

imputePCA
Untransformed 0.014 0.788 0.015 0.775
Missing Normal 0.016 0.742 0.017 0.725
Normal 001 0.014 0.784 0.015 0.773

CALERIE

impute.knn
Untransformed 0.015 0.371 0.017 0.312
Missing Normal 0.014 0.549 0.016 0.49
Normal 001 0.014 0.517 0.016 0.456

imputePCA
Untransformed 0.012 0.634 0.014 0.569
Missing Normal 0.012 0.633 0.014 0.574
Normal 001 0.012 0.633 0.014 0.578

Supplemental Table B.8 accompanies Section 3.3.4 to evaluate the computational demand of each

imputation method in different datasets.

Table B.8: Imputation Tool Computational Demand

Dataset
Imputation Time Memory

Time per Memory per

Tool (hours) (GB)
data point datapoint

(microseconds) kilobytes)

FHS
impute.knn 1.64 64.3 2.83 0.185
imputePCA 28.7 99.6 49.6 0.287

CALERIE
impute.knn 0.048 16.1 2.34 1.50
imputePCA 1.31 15.0 63.1 1.35

Supplemental Figure B.2 accompanies Section 3.3.3 to evaluate the impact of SNP proximity in

imputation accuracy.

Supplemental Figure B.3 accompanies Section A.6 by providing additional results evaluating methyLImp

in a small subset of the FHS dataset.
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Figure B.2: Scatterplot of median imputation correlation to distance to SNP. Regardless of
transformation or not, median correlation stays relatively constant except near low distances
(<5 bp) where accuracy decreases.

Figure B.3: Distribution of imputation correlation accuracy in 828 CpG probes using
methyLImp. (A) features the Missing Normal transformation method and (B) features the
Untransformed method.
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B.1.3 Cross Tissue DNAm Biomarker Prediction

Supplemental Table B.9 accompanies Section 4.3.3 to compare all methods to predict DNAm biomarkers

across tissues.
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Table B.10: Relationship of DNAmTL to Sex in GSE119078

Biomarker
Mean Males Mean Females Females - t-test Kruskal Wallis

(n=25) (n=34) Males p-value p-value

Saliva DNAmTL 6.54 6.88 0.33 1.4E-04 4.2E-04
C+S DNAmTL Blood Prediction 6.86 7.16 0.29 8.3E-06 2.1E-05
C DNAmTL Blood Prediction 7.20 7.50 0.30 5.3E-04 3.5E-04

Supplemental Table B.10 accompanies Section 4.3.4 to validate the DNAmTL algorithms in relating

to females having longer telomere lengths.

Supplemental Figure B.4 accompanies Section 4.3.3 by providing additional performance metrics

comparing different methods for cross tissue prediction of DNAm biomarkers.

Supplemental Figure B.5 accompanies Section 4.3.1 by demonstrating variability in LODO perfor-

mance based on different parameterizations within each biomarker.

Supplemental Table B.11 accompanies Section 4.3.5 to test the algorithms in supplying tissues other

than saliva for predicting blood DNAm biomarkers.
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Figure B.4: Median Absolute Percent Error (MeAPE) between True and Estimated Blood
DNAm Biomarkers by top Performing TL Methods, Lasso, and Saliva Surrogates. Median
MeAPE presented as dotted line with a change in X axis scaling. LODO MeAPE presented
for C+S, C, and Lasso methods.

Figure B.5: Boxplots of C+S Method LODO Correlation by DNAm Biomarker to
demonstrate variability in C+S method parameterizations.

144



T
ab

le
B
.1
1:

E
va
lu
at
io
n
of

L
y
m
p
h
,
A
d
ip
os
e,

an
d
M
u
sc
le

T
is
su
e
as

T
L
A
lg
or
it
h
m

In
p
u
t
A
ft
er

C
on

tr
ol
li
n
g
fo
r
A
g
e
in

H
o
rv
a
th
H
IV

d
at
as
et

B
io
m
ar
ke
r

L
y
m
p
h
N
o
d
e
(n
=
28

)
A
d
ip
os
e
(n
=
58

)
M
u
sc
le

(n
=
5
7
)

H
IV

+
E
ff
ec
t

p
-v
al
u
e

H
IV

+
E
ff
ec
t

p
-v
al
u
e

H
IV

+
E
ff
ec
t

p
-v
a
lu
e

C
D
4.
n
ai
ve

C
P
re
d
ic
ti
on

-3
9.
6

0.
11

3
-2
1.
5

0.
21

3
2
.0
6

0
.8
0
1

C
D
8.
n
ai
ve

C
P
re
d
ic
ti
on

-2
3.
8

0.
17

7
0.
39

0.
95

7
-9
.2
6

0
.1
6
4

D
N
A
m
A
D
M

C
P
re
d
ic
ti
on

10
.0
1

0.
09

5
-7
.3
6

0.
09

5
-1
0
.6

0
.0
1
4

D
N
A
m
A
ge

C
P
re
d
ic
ti
on

6.
11

0.
04

3
-2
.7
2

0.
09

1
-3
.1
3

0
.0
5
0

D
N
A
m
A
ge
H
an

n
u
m

C
P
re
d
ic
ti
on

5.
59

0.
08

0
-1
.6
4

0.
28

5
-1
.6
9

0
.2
0
1

D
N
A
m
B
2M

C
P
re
d
ic
ti
on

65
72

1
0.
06

4
-3
23

78
0.
13

1
-3
4
6
8
4

0
.1
1
4

D
N
A
m
C
y
st
at
in
C

C
P
re
d
ic
ti
on

46
02

1
0.
01

8
-2
13

72
0.
02

1
-9
9
5
3

0
.1
4
1

D
N
A
m
F
E
V
1
n
oA

ge
C

P
re
d
ic
ti
on

-0
.2
4

0.
16

8
0.
36

0.
00

9
0
.2
6

0
.0
3
8

D
N
A
m
F
it
A
ge

C
P
re
d
ic
ti
on

2.
45

0.
29

5
-4
.6
6

0.
01

4
-1
.6
9

0
.2
7
8

D
N
A
m
G
ai
t
n
oA

ge
C

P
re
d
ic
ti
on

0.
04

0.
24

3
0.
04

0.
10

7
0
.0
2

0
.4
0
9

D
N
A
m
G
D
F
15

C
P
re
d
ic
ti
on

26
5

0.
03

9
-2
8.
48

0.
45

3
-6
8
.5

0
.1
7
7

D
N
A
m
G
ri
m
A
ge
2B

as
ed

O
n
P
re
d
ic
te
d
A
ge

C
P
re
d
ic
ti
on

3.
52

0.
12

7
-3
.0
0

0.
04

7
-0
.7
9

0
.5
4
3

D
N
A
m
G
ri
m
A
ge
2B

as
ed

O
n
R
ea
lA

ge
C

P
re
d
ic
ti
on

3.
92

0.
07

1
-2
.6
3

0.
04

2
-0
.4
5

0
.7
0
2

D
N
A
m
G
ri
m
A
ge
B
as
ed

O
n
P
re
d
ic
te
d
A
ge

C
P
re
d
ic
ti
on

4.
24

0.
06

7
-3
.9
0

0.
03

0
-1
.1
0

0
.4
4
0

D
N
A
m
G
ri
m
A
ge
B
as
ed

O
n
R
ea
lA

ge
C

P
re
d
ic
ti
on

3.
66

0.
12

0
-3
.1
5

0.
01

9
-0
.9
4

0
.4
4
2

D
N
A
m
G
ri
p
n
oA

ge
C

P
re
d
ic
ti
on

-3
.6
3

0.
19

7
4.
22

0.
04

5
4
.0
3

0
.0
6
4

D
N
A
m
L
ep

ti
n
C

P
re
d
ic
ti
on

89
4

0.
69

6
-1
31

8
0.
18

9
4
1
4
.1

0
.7
7
5

D
N
A
m
P
A
C
K
Y
R
S
C

P
re
d
ic
ti
on

6.
59

0.
29

8
-0
.5
4

0.
75

0
0
.3
6

0
.8
4
7

D
N
A
m
P
A
I1

C
P
re
d
ic
ti
on

51
9

0.
18

2
5.
07

0.
98

3
-5
1
.4

0
.8
2
2

D
N
A
m
P
h
en

oA
ge

C
P
re
d
ic
ti
on

9.
45

0.
01

2
-2
.2
5

0.
19

9
-1
.5
6

0
.3
5
5

D
N
A
m
T
IM

P
1
C

P
re
d
ic
ti
on

93
1

0.
06

0
-5
61

.5
0.
08

0
-2
9
8

0
.1
9
1

D
N
A
m
T
L
C

P
re
d
ic
ti
on

-0
.1
2

0.
45

8
0.
01

0.
87

0
-0
.0
2

0
.6
3
3

D
N
A
m
V
O
2m

ax
C

P
re
d
ic
ti
on

-0
.9
4

0.
09

8
0.
97

0.
00

9
0
.6
5

0
.0
4
9

145



Supplemental Table B.12 accompanies Section 4.3.5 to test the algorithms in supplying tissues other

than saliva for predicting blood DNAm biomarkers, specific for motivating their application in mam-

malian skin samples.

Supplemental Table B.13 accompanies Section 4.3.6 to demonstrate minimal difference in calculating

correlation performance in mammalian species and consistency of performance in species.
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Table B.12: Correlation Between Predicted DNAm Biomarker from Skin to Age at Skin
Biopsy in TwinsUK Sample (n=95)

Biomarker Pearson R p-value
In expected
direction?

DNAmAge 0.776 2.4E-20 Yes
DNAmFitAge 0.751 1.9E-18 Yes
DNAmGrimAgeBasedOnRealAge 0.723 1.2E-16 Yes
DNAmGait noAge -0.684 2.3E-14 Yes
DNAmTIMP1 0.667 1.5E-13 Yes
DNAmAgeHannum 0.638 3.5E-12 Yes
DNAmB2M 0.617 2.7E-11 Yes
DNAmGrimAgeBasedOnPredictedAge 0.575 1.1E-09 Yes
DNAmPhenoAge 0.554 5.6E-09 Yes
DNAmGrimAge2BasedOnRealAge 0.500 2.5E-07 Yes
DNAmADM 0.414 3.0E-05 Yes
DNAmGrimAge2BasedOnPredictedAge 0.364 2.9E-04 Yes
DNAmCystatinC 0.345 6.1E-04 Yes
DNAmVO2max -0.237 0.021 Yes
DNAmTL -0.202 0.049 Yes
DNAmGDF15 0.198 0.054 Yes
DNAmFEV1 noAge -0.191 0.063 Yes
CD8.naive -0.186 0.071 Yes
DNAmGrip noAge -0.172 0.096 Yes
DNAmLeptin -0.154 0.137 -
DNAmPAI1 0.143 0.166 Yes
CD4.naive -0.029 0.779 Yes
DNAmPACKYRS -0.027 0.794 No
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Table B.13: Average Unweighted Correlation and Biomarker Consistency in Species with
at least 10 samples (species = 40, n=1959)

Average In expected
Species with Species with Sig

Biomarker
Correlation direction?

Corr in Exp Corr in Exp
Direction (%) Direction (%)

DNAmAge 0.539 Yes 97.5% 75%
DNAmVO2max -0.346 Yes 92.5% 52.5%
DNAmAgeHannum 0.292 Yes 85% 40%
DNAmGrip noAge -0.276 Yes 85% 37.5%
DNAmFitAge 0.267 Yes 80% 45%
CD4.naive -0.233 Yes 77.5% 32.5%
DNAmGrimAgeBasedOnRealAge 0.233 Yes 80% 30%
DNAmFEV1 noAge -0.210 Yes 77.5% 30%
DNAmGrimAgeBasedOnPredictedAge 0.204 Yes 75% 40%
DNAmPhenoAge 0.176 Yes 65% 20%
DNAmADM 0.168 Yes 77.5% 30%
CD8.naive -0.157 No 20% 5%
DNAmGait noAge -0.150 Yes 70% 37.5%
DNAmTIMP1 0.124 Yes 65% 20%
DNAmGDF15 -0.118 No 35% 12.5%
DNAmGrimAge2BasedOnRealAge 0.102 Yes 60% 17.5%
DNAmGrimAge2BasedOnPredictedAge 0.101 Yes 62.5% 17.5%
DNAmB2M 0.070 Yes 62.5% 7.5%
DNAmPACKYRS -0.042 No 47.5% 7.5%
DNAmTL 0.020 No 45% 10%
DNAmCystatinC -0.008 No 45% 20%
DNAmLeptin 0.006 - -
DNAmPAI1 -0.003 No 52.5% 10%
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