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Rapid evolution and strain turnover in the
infant gut microbiome
Daisy W. Chen1,2 and Nandita R. Garud3,4

1Computational and Systems Biology, University of California, Los Angeles, California 90095-1606, USA; 2Bioinformatics and
Systems Biology Program, University of California, San Diego, California 92093, USA; 3Department of Ecology and Evolutionary
Biology, 4Department of Human Genetics, University of California, Los Angeles, California 90095-1606, USA

Although the ecological dynamics of the infant gut microbiome have been intensely studied, relatively little is known about
evolutionary dynamics in the infant gut microbiome. Here we analyze longitudinal fecal metagenomic data frommore than
700 infants and their mothers over the first year of life and find that the evolutionary dynamics in infant gut microbiomes
are distinct from those of adults. We find evidence for more than a 10-fold increase in the rate of evolution and strain turn-
over in the infant gut compared with healthy adults, with the mother–infant transition at delivery being a particularly dy-
namic period in which gene loss dominates.Within a fewmonths after birth, these dynamics stabilize, and gene gains become
increasingly frequent as the microbiomematures. We furthermore find that evolutionary changes in infants show signatures
of being seeded by a mixture of de novo mutations and transmissions of pre-evolved lineages from the broader family.
Several of these evolutionary changes occur in parallel across infants, highlighting candidate genes that may play important
roles in the development of the infant gut microbiome. Our results point to a picture of a volatile infant gut microbiome
characterized by rapid evolutionary and ecological change in the early days of life.

[Supplemental material is available for this article.]

The infant gut microbiome is a rapidly changing ecosystem that
plays a crucial role in infant health, including milk digestion
(Sela et al. 2008), immune system development (Smith et al.
2013), and prevention of colonization of pathogens (Sela et al.
2008; Nicholson et al. 2012). Given its importance, there has
been substantial research focus on the ecological and functional
maturation of the infant gut microbiome (Palmer et al. 2007; Koe-
nig et al. 2011; Vallès et al. 2014; Bäckhed et al. 2015; Yassour et al.
2016; Chu et al. 2017; Ferretti et al. 2018; Korpela et al. 2018; Stew-
art et al. 2018; Niu et al. 2020; Sprockett et al. 2020), as well as the
extent to which themode of delivery, feeding, and exposure to an-
tibiotics alters its development (Dominguez-Bello et al. 2010; Koe-
nig et al. 2011; Karlsson et al. 2013; Bokulich et al. 2016; Yassour
et al. 2016; Shao et al. 2019; Fehr et al. 2020; Mitchell et al.
2020). Strain tracking methods using single-nucleotide variants
(SNVs) have revealed that mothers (Nayfach et al. 2016; Ferretti
et al. 2018; Yassour et al. 2018; Mitchell et al. 2020), the family
at large (Korpela et al. 2018; Hildebrand et al. 2021), and hospitals
(Raveh-Sadka et al. 2016; Brooks et al. 2017) play critical roles in
seeding the infant microbiome. In contrast, how these lineages
evolve once they colonize the infant remains unknown.

Evolutionary changes are important to characterize because
the rise of new genetic variants ultimately drives the emergence
of new traits. For example, genetic variants in the human gut
microbiome are known to confer traits such as the ability to digest
food (Hehemann et al. 2010; Kenny et al. 2020), metabolize drugs
(Spanogiannopoulos et al. 2016), and evade antibiotics (Gumpert
et al. 2017). Recent studies illustrate the pervasiveness of evolu-
tionary changes in adult gut microbiomes, which include chang-
ing SNV frequencies and horizontal gene transfers on short
timescales of just a few days, weeks, and months (Ghalayini et al.

2018; Garud et al. 2019; Jiang et al. 2019; Poyet et al. 2019; Zhao
et al. 2019; Yaffe and Relman 2020; Groussin et al. 2021;
Roodgar et al. 2021). However, rapid evolutionary changes within
species frequently are not associated with changes in species’ rela-
tive abundances (Roodgar et al. 2021), illustrating that intra-spe-
cies genetic variation can reveal changes in the microbiome that
species’ abundances cannot. Given the functional importance of
genetic variation in themicrobiome, it is necessary that we charac-
terize the typical evolutionary dynamics that occur over the course
of infant development.

There is reason to believe that the targets of selection as well
as the tempo and mode of evolution in infant gut microbiomes
differ substantially from those of adults. Compared with adults,
microbes in infants confront unique selective pressures. For
example, infants have a relatively immature immune system com-
pared to adults (Sjögren et al. 2009) and a vastly simpler diet com-
posed primarily of milk in the early months of life before
transitioning to solid foods. Moreover, infants harbor simpler eco-
logical communities with low levels of species richness (Bäckhed
et al. 2015), which could alter the overall rate of evolution in the
community (Post and Palkovacs 2009; Venkataram et al. 2021).
In particular, rates of horizontal gene transfer, a common feature
of the adult gut microbiome (Garud et al. 2019; Lin and Kussell
2019; Groussin et al. 2021; Sakoparnig et al. 2021), could be re-
duced in infants given the simpler community because the broad-
er ecosystem may serve as a reservoir for preadapted material.
Given these differences, it is possible that infant-specific evolu-
tionary changes are not only present but also necessary for gut
microbiota to successfully colonize their new environment.
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Here, we track the evolutionary and ecological dynamics of
the gut microbiome in more than 700 infants and their mothers
over a span of 1 yr after birth. In this study, we assess changes in
the rates of evolution and strain replacement with life stage.
Additionally, we assess evidence for parallelism of evolution across
infants to identify candidate genes that may play important roles
in the developing infant gut microbiome. By examining both eco-
logical and evolutionary dynamics of the developing infant gut
microbiome, we can better understand the fundamental processes
that contribute to the maturation of this complex ecosystem at a
particularly volatile and critical juncture.

Results

Microbiome diversity rapidly grows in the first year of life

To quantify the evolutionary dynamics of gut microbiota in in-
fants, we analyzed fecal metagenomes from four cohorts (Bäckhed
et al. 2015; Ferretti et al. 2018; Yassour et al. 2018; Shao et al. 2019),
totaling 2399 samples from 762 healthy infants and 337 mothers.
Additionally, we analyzed 249 healthy adults from the Human
Microbiome Project (HMP) (The HumanMicrobiome Project Con-
sortium 2012; Lloyd-Price et al. 2017) and 185 healthy adults from
Qin et al. (2012; Table 1) to compare the evolutionary dynamics in
adults versus infants. These data sets were chosen because of the
availability of deeply sequenced longitudinal data from a large
panel of healthy individuals. Infants were longitudinally sampled
at two to seven time points, ranging frombirth (meconium) to 1 yr
after delivery across cohorts (Supplemental Fig. S1), with dense
samples within the first week and month of life, as well as every
month thereafter. Mothers were sampled within 1 wk after deliv-
ery, whereas HMP adults were sampled one to three times over a
time span of ∼1 yr.

We used a reference-based mapping approach (Nayfach et al.
2016) to call SNVs and gene copy number variants (CNVs) for suf-
ficiently abundant and prevalent species in our data sets
(Methods). Summaries of diversity in infant microbiomes at the
species and subspecies levels have been reported previously
(Bäckhed et al. 2015; Nayfach et al. 2016; Ferretti et al. 2018;
Korpela et al. 2018; Yassour et al. 2018; Shao et al. 2019). Here,
we revisit diversity patterns at the species and nucleotide level to
investigate how gut microbiome community complexity changes
in the infant over the first year of life. We then leverage these ob-
servations to infer the lineage structure within metagenomic sam-
ples to be able to make evolutionary inferences.

To understand how diversity changes over life stage, we first
revisited Shannon alpha diversity of gut microbiota from birth to
adulthood (Supplemental Fig. S2). Alpha diversity increases with
the age of the infant, approaching levels observed in adults (The

Human Microbiome Project Consortium 2012; Qin et al. 2012)
by month 12, but generally does not surpass that of mothers at
the time of delivery. Among these data sets, mothers at the time
of delivery have higher alpha diversity than nonpregnant female
adults (P-value 0.035, GLMM) (Supplemental Fig. S3), suggesting
that pregnancy significantly increases microbiome diversity of
the mother.

We next asked whether within-species genetic diversity also
increases with life stage. Here we measure the polymorphism
rate, estimated by the fraction of synonymous sites in core genes
with an intermediate frequency polymorphism between 0.2 and
0.8 (Supplemental Text). We plot polymorphism levels for the
most prevalent species in our data set in Figure 1 and Supplemental
Figure S4. Although polymorphism levels are generally not signifi-
cantly different between data sets for the same life stage (Supple-
mental Fig. S6; Supplemental Table S1; Supplemental Text), we
also plot polymorphism within the Shao et al. data set only (Sup-
plemental Fig. S5), for which there are maximal time points avail-
able. Some species, including Escherichia coli, Bifidobacterium
longum, and Bifidobacterium breve, experience increases in nucleo-
tide diversity over time (Fig. 1; Supplemental Figs. S4, S5). Specifi-
cally, coincident with the average time of the transition to solid
foods at ∼5–6 mo of age (Van Dijk et al. 2012), median polymor-
phism rates increase sharply by an order of magnitude from
<10−3/bp to ∼10−3–10−2/bp. This sudden increase in polymor-
phism rates is likely driven by increasing numbers of strains colo-
nizing the host and not evolution of the resident strains. A
mutation rate of 10−9/bp (Barrick and Lenski 2013) and generation
time of approximately one to two generations per day (Sender et al.
2016) are too low to produce such rapid increases in levels of poly-
morphism, whereas “oligo-colonization” of multiple strains of the
same species is a far more likely candidate (Garud et al. 2019).

Rates of polymorphism do not consistently increase with age
for all species. For example, Bacteroides fragilis and Bifidobacterium
bifidum have a consistently low median within-host polymor-
phism of 10−4/bp over most time points in the first year of life.
Other species do not display consistent trends and instead show
wide variation in levels of polymorphism over time, likely a reflec-
tion of the stochasticity of the colonization process (Supplemental
Figs. S4, S5). Thus, the ecological forces determining colonization
success and lineage structure likely vary from species to species.

Because hosts are often oligo-colonized bymultiple genetical-
ly distinct strains of the same species (Truong et al. 2015; Garud
et al. 2019), fluctuations in strain frequencies can confound the
detection of evolutionary changes from shotgun metagenomic
data as both processes can generate SNV and gene differences
over time (Garud et al. 2019). To confidently distinguish SNV
and gene changes (e.g., horizontal gene transfers) owing to evolu-
tion from fluctuations in strain frequencies, we leveraged a quasi-

Table 1. Data sets analyzed in this study

Data set No. of hosts Host type No. of samples No. of time point(s) per host

HMP 249 U.S. adults 469 1–3
Qin et al. 2012 185 Chinese adults 185 1
Bäckhed et al. 2015 98 Swedish infants and mothers 391 4
Yassour et al. 2018 44 Finnish infants and mothers 213 6
Ferretti et al. 2018 25 Italian infants and mothers 119 6
Shao et al. 2019 600 United Kingdom infants and mothers 1676 2–7

For the infant gut microbiome data sets, “host” refers to all samples from mothers and infants in the same dyad. For the Yassour et al. (2018) data set,
only mothers at the time of delivery were included in our analyses.
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phasing approach thatwepreviously developed (Garud et al. 2019)
to assign genotypes to individual lineages for each species
(Methods) (Supplemental Text). This approach can be applied to
species in samples with sufficiently simple lineage structures,
that is, having a single dominant strain such that alleles can be
confidently assigned to that dominant lineage; specifically, the
probability of incorrectly inferring the allelic state of a lineage at
any given site is bounded (Supplemental Text). In practice, qua-
si-phasing excludes samples with high proportions of intermedi-
ate frequency polymorphisms, which have a high probability of
being misassigned to the correct lineage. With quasi-phaseable
(QP) samples, evolutionary changes that occur on the background
of a given lineage can be tracked and distinguished from SNV and
gene changes owing to fluctuations of genetically distinct strains.

Supplemental Figures S7 and S8 show the distribution of QP
samples (host × species QP lineage) across sufficiently prevalent
gut bacterial species in the combined data set and in individual
data sets, respectively. Among infants, there are 7063 QP samples;
among mothers, there are 1159 QP samples; and among HMP
adults, there are 3544 QP samples from 217 candidate species. To
quantify evolutionary changes, we first identified QP sample pairs
for consecutive time points from the same infant or adult host as
well as mother–infant comparisons from the same dyad. This
yielded a total of 2184 infant–infant, 241mother–infant (in which
the infant samplewaswithin the first weekof life), and 1296 adult–
adult HMPQP pairs (combinations of host, species, and time point
pair) across 176 of the 217 most prevalent species. This large num-
ber of QP pairs enables tracking of gut microbiota evolutionary dy-
namics across life stages. To infer evolutionary changes, we
identified SNVs that change in allele frequency from ≤0.2 to
≥0.8 in the core and accessory parts of the genome between pairs
of QP time points (Methods) (Supplemental Text). By biasing our
results toward extreme allele frequency changes, the expected
number of false-positive SNV changes owing to sampling error is
less than one (Supplemental Text).

Elevated rates of evolutionary change and strain turnover
in the infant compared with the adult gut microbiome

We quantified SNV differences between sampled time points in
four categories of life stages: infants sampled over <3-mo intervals
(which generally fall within the first 3mo after birth), infants sam-
pled over∼3- to 6-mo intervals (which generally fall after the first 3
mo of life), pairs of mother and infant samples within the first
week of life, and HMP adults sampled ∼6 mo apart. In the moth-

er–infant category, we treated mothers as one time point and in-
fants as another for a given dyad, where mother time points fall
within the first week after delivery.

SNV differences between time points in a QP pair can arise
from a combination of two processes: strain replacement and evo-
lutionary modification (Garud et al. 2019). Reflecting this, SNV
differences are distributed bimodally across all four life stage cate-
gories (Fig. 2A). Most within-host QP sample pairs (83%) experi-
ence zero SNV changes over timescales of a week or less, but a
small percentage (9%) undergo a small number of SNV changes
(20 or fewer). An even smaller percentage of hosts harbor ∼104

SNV differences (7%), which is on the same order of magnitude
of the number of SNV differences between unrelated hosts. This
between-host comparison serves as a helpful reference for typical
nucleotide divergence between resident and invading strains.
Thousands of SNV changes accumulating within hosts over
6-mo timescales are unlikely to have arisen from the evolutionary
diversification of a lineagewithin a host and are instead consistent
with strain replacement (Garud et al. 2019). Thus, we classified the
samples experiencing 20 or fewer SNV changes as undergoing pu-
tative evolutionary modifications and the samples experiencing
more than 500 SNV changes as undergoing strain replacements.

Figure 2A shows that infants sampled ∼3–6 mo apart have el-
evated proportions of modification (24.2%) and replacements
(25.6%) compared with adults. In contrast, among HMP adults
sampled on ∼6-mo timescales, only 8.1% of resident populations
undergo modification, and an even smaller percentage (2.5%) un-
dergo replacement (Garud et al. 2019). Mother–infant dyads sam-
pled within the first week also have elevated proportions of
modification (14.5%) and replacement (11.3%).

The increased proportions of modifications and replacement
events in infants relative to adults suggest that ecological and evo-
lutionary processes occur more frequently and rapidly early in life
compared with in adulthood. To confirm this, we next quantified
per-day rates of evolutionary modification and replacement (Fig.
2B–D) over various life stages, aggregated over species (Methods).

Both modification and replacement rates decay rapidly with
life stage and, in fact, follow a scaling relationship with the age
of the host (Fig. 2; Supplemental Fig. S9). During themother-to-in-
fant transition, the average modification rate is ∼0.1 SNV changes
per day. Within infants during the first week of life, the average
rate drops 10-fold to ∼0.02 SNV changes per day (P-value =0.012,
permutation test), and by adulthood, the average rate drops anoth-
er∼10-fold to∼0.001 SNV changes per day (P-value <10−4, permu-
tation test), consistent with rates previously estimated in adults

Figure 1. Polymorphism rates for E. coli over the course of the first year of life. Shown are within-sample nucleotide polymorphism rates per base pair for
the most prevalent species among infants in our data set, E. coli. Supplemental Figures S4 and S5 show distributions for the next 12 most prevalent species.
Here, within-sample nucleotide polymorphismwas quantified as the fraction of synonymous sites in core genes with allele frequencies between 0.2 and 0.8
(see Methods).
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(Didelot et al. 2012; Zhao et al. 2019). Similarly, replacement rates
also rapidly decay with the age of the host. During the mother–in-
fant transition, the average strain replacement rate is 1.6 × 10−2 re-
placements per QP pair per day. Then, within the first week of life,

the average replacement rate drops to 8.9 ×10−3 replacements per
day (P-value =0.16, permutation test), and finally in adulthood, it
further drops to 1.3 ×10−4 replacements per day (P-value <10−4,
permutation test).

A

B

C

D

Figure 2. Rates of evolutionary change and replacement decaywith life stage. (A) Survival distributions of number of SNV differences (defined as changes
in allele frequency from <0.2 to >0.8 between two time points) for each life stage. (B–D) Rates of number of SNV changes per day for QP pairs experiencing
evolutionary modification (B), rates of number of strain replacements per day for all QP pairs (C ), and rates of gene gains and losses per day for QP pairs
experiencing evolutionary modification (D). Asterisks indicate the mean rate computed over all QP pairs in a life stage. To assess variance, rate estimates for
each life stage were bootstrapped 1000 times by subsampling with replacement 40 out of all QP pairs available. The mother–infant category only includes
comparisons between the mother and her baby sampled within 1 wk of life. To address potential confounding of amount of time between sampling, we
compared rates for infants and HMP adults sampled 4–8mo apart (Supplemental Fig. S10). In B–D, all sample sizes are 53 or more for each life stage. Exact
sample sizes and statistical significance of permutation tests comparing all pairs of life stages are reported in Supplemental Table S2. In Supplemental Figure
S9, a scaling relationship between changes and life stage is assessed.
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Wenext quantified rates of gene gains and losses per day, rep-
resenting another mode of evolutionary change common in adult
microbiomes (Methods) (Smillie et al. 2011; Coyne et al. 2014;
Garud et al. 2019; Lin and Kussell 2019; Zhao et al. 2019; Yaffe
and Relman 2020; Zlitni et al. 2020; Groussin et al. 2021). Gene
gains and losses represent acquisition or loss, respectively, of genes
in the most common lineage relative to the most common lineage
at a prior time point. Like the modification and replacement rates,
gene change rates also rapidly decay with life stage and follow a
scaling relationship (Fig. 2D; Supplemental Fig. S9). However,
the rate of gene loss decays more quickly than the rate of gene
gain with life stage after the mother–infant transition; further-
more, during the mother–infant transition, gene losses exceed
gains by almost 10-fold (an average of 0.06 gene losses per day
vs. 0.007 gene gains per day, P-value= 0.002, permutation test).
This trend reverses later in life; between 1 mo and 1 yr after birth,
gains exceed losses by almost 10-fold (an average of 5.9 × 10−3

gains per day vs. 6.6 × 10−4 losses per day, P-value =0.008, permu-
tation test). Eventually, by adulthood, losses and gains occur at
similar rates of about 5 ×10−4 changes per day (P-value =0.33, per-
mutation test). This suggests that during the initial host coloniza-
tion process at birth, diversity at the gene level is reduced through
gene loss but recovers gradually as the infant gut matures before
eventually reaching an equilibrium in adulthood. As discussed fur-
ther below, we note that it is not possible to exclude the possibility
that the gene gains and losses observed in infants represent pre-
evolved lineages transmitted from the mother or another family
member at a later time point.

Because earlier life stages are generally sampled at shorter con-
secutive time intervals in our data set,we assessedwhether the dura-
tion of time between sampling points, rather than the life stage,
could explain the faster rates of modification, strain replacement,
and gene changes observed in infants. We found that infants
sampled over 4- to 8-mo timescales had significantly elevated SNV
change (for modification events), gene change, and strain replace-
ment rates compared with adults sampled on similar timescales
(P-values<0.02, permutation test) (Supplemental Fig. S10), con-
firming that age, rather than duration of the sampling interval, is
a major driver of faster evolution in the infant gut microbiome.

Finally, we assessed whether birth or feeding mode is associ-
ated with changes in rates in evolution or strain replacement
(Supplemental Fig. S11). To perform this analysis, we focused on
QP pairs for the age ranges of day 0 to week 1 and week 1 to mo
1 because these had the most samples available in the C-section
versus vaginal classes and breast- versus formula-fed classes.
Rates of gene gain and loss are significantly elevated among C-sec-
tion infants compared with those vaginally born in both life stages
(P-values < 0.05, permutation tests), but SNV change and strain re-
placement rates do not significantly differ with delivery mode.
Gene losses were also elevated among formula-fed infants com-
pared with breast-fed infants during the day 0 to week 1 life stage
(P-value <0.05, permutation test) but not in the older life stage.
The consistent elevation in gene gain and loss rates for C-section
infants across both life stages suggests that ongoing gene changes
may play an important role in the establishment of the micro-
biomes of C-section infants.

Evolutionary changes in the infant are likely seeded by a mixture
of de novo mutations and standing genetic variation

To further probe the evolutionaryorigins of the SNV changes in in-
fants, we asked whether they arise in infants from de novo muta-

tion or pre-existing standing genetic variation that may have
been seeded by recombination and also could have potentially
arisen in the broader family unit before being transmitted to the
infant. To assess evidence for the two scenarios, we combined
the 428 SNV changes occurring in the 154 infant–infant QP pairs
corresponding to modification events and then assessed the prev-
alence of sweeping (or “derived”) alleles (Fig. 3B). Here, “preva-
lence” is defined as the proportion of HMP adults that harbor
the sweeping allele.We compare the prevalence of sweeping alleles
with that of a null distribution of randomly selected sites assuming
de novo mutation (Methods). Additionally, we compare the prev-
alence of sweeping alleles during the mother-to-infant transition
(Fig. 3D) and in adults (Fig. 3F).

The observed distribution of prevalences shows interesting
departures from the null expectation. Specifically, under the
null, the majority of sweeping alleles are expected to be rare in
the broader population. In contrast, the observed distribution of
prevalences is bimodal, with infant sweeping alleles being
completely absent from adults or present in virtually all HMP
adults (Fig. 3B). This is distinct from the distribution observed in
adults in which sweeping SNVs are also enriched for intermediate
prevalences (0.1–0.5) (Fig. 3F). The bimodal distribution in infants
suggests that evolutionary changes occurringwithin infants are ei-
ther de novomutations that are absent among adults or reversions
to the consensus state in adults, possibly reflecting infant-specific
adaptations in the former case or reversions of maladaptations in
the latter case.

Themajority of infant sweeping alleles that are absent among
unrelated adults are private to the infant inwhich the allele sweeps
and are rarely found in the infant’s respective mother
(Supplemental Fig. S14). Specifically, only 2% of the 186 infant
sweeping alleles that are absent in HMP hosts are found in moth-
ers. These rare infant sweeping SNVs have a dN/dS value of 1.3 (CI
0.95–2.37; Methods) (Supplemental Fig. S13), indicating that they
are indeed potentially adaptive. However, they could also be recent
deleterious mutations that reached high frequency by chance dur-
ing a bottleneck associated with transmission to the infant. In sev-
eral instances, we observe that private nonsynonymousmutations
that arise early in an infant’s life revert to an allelic state that is pre-
sent in all other HMP adults later in life (Fig. 4A), suggesting that
some of these initial mutations may indeed be deleterious.
Together, the preponderance of rare alleles with an overall
dN/dS > 1 and the frequent reversions of these rare alleles to preva-
lent allelic states indicate that de novo mutations are likely com-
mon in infants.

However, the rest of the infant sweeping alleles, most of
which are present in the majority of HMP adults (Fig. 3B), have a
dN/dS value of ∼0.6. This lower dN/dS likely reflects that purifying
selection has had sufficient time to purge deleterious variants
from the population, indicating that de novo mutation is not
the only mode of evolution in the infant. Instead, the high preva-
lence and lower dN/dS value suggest that inmany instances, sweeps
from standing variation seeded by recombination events may be
common in the infant as well, as has been observed in adults
(Garud et al. 2019). Consistent with recombination playing an im-
portant role, the gene gains observed in infants cannot have arisen
via de novomutation and insteadmust have arisen via recombina-
tion events. In fact, the increase in rate of gene gains over the first
year of life indicates that recombination likely plays a significant
role in recovering the diversity that is lost during themother-to-in-
fant transition. Indeed, Figure 3C shows that few genes are gained
during the mother-to-infant transition in contrast to the first year
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of life (Fig. 3A). Over the first year of life, a larger proportion of
genes gained in infants compared with those gained in adults
have a high prevalence (e.g., >0.9) (Fig. 3A,E), suggesting that com-
mon genes play an important role in recovery of diversity.

It is possible that several of these evolutionary events ob-
served in infants occurred in themother or broader family unit be-
fore the strain was transmitted to the infant. In twomother–infant
dyads, multiple alleles sweep to high frequency in the infant after
birth before later reverting to allelic states found in the mother
(Fig. 4B). It is unlikely that these are de novo mutations that oc-
curred twice in succession because more than four SNVs change
twice and include synonymous sites. Notably, multiple haplotype
configurations are observed over time in these two dyads, suggest-
ing that multiple variants of the same lineage circulate among the
members of the family unit. This suggests that infantsmaybe seed-
ed multiple times by their family members and likely experience a
significant flux of variants of the same strain over the course of
their first year.

We conclude that multiple processes contribute to SNV
changes within infants. During infancy, de novo mutations arise

that are generally absent from the broader population.
Additionally,more prevalent allelic changes in the infant are likely
seeded by recombination events. Finally, there is evidence for on-
going transmission between mother and infants well after birth,
which may also seed evolutionary changes in the infant.

Parallelism of SNV changes across hosts

We next scanned for putative loci experiencing positive selection
in the infant gut microbiome. To do so, we leveraged a signature
of positive selection known as parallel evolution, in which inde-
pendent mutations in the same gene sweep to high frequency in
multiple distinct hosts. Signatures of parallel evolution have
been successfully used to detect positive selection in human-asso-
ciated microbes (Lieberman et al. 2011; Zhao et al. 2019; Feder
et al. 2021), as well as in laboratory experiments (Wichman et al.
1999; Woods et al. 2006; Barroso-Batista et al. 2014).

To identify candidates for parallel evolution, we counted the
number of mutations that each gene class (defined as a unique
PATRIC gene description; Methods) has accumulated across hosts

A B

C

E

D

F

Figure 3. Prevalence of gene and SNV changes. Distribution of prevalence of gene (A,C,E) and SNV changes (B,D,F) occurring in infant–infant, mother–
infant, and HMP adult–adult QP pairs. Here, prevalence is defined as the fraction of HMP adults that harbor a SNV or gene. Additional cohorts are used to
compute prevalence in Supplemental Figures S12 through S14. The null distributions in gray show the expectation for random de novo events (Methods).
By definition, gene gains cannot occur de novo. In B,D, and F, the prevalence bin < 0 indicates that no HMP adult harbors the sweeping allele other than the
person in which the allele arises, and the prevalence bin > 1 indicates that the allele is present in all HMP adults.
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and compared this number with that of a null in which the
mutations are randomized across metagenomes across hosts
(Methods) (Fig. 5A). Under the null, fewer than one mutation is
expected in a given gene class, reflecting the massive size of the
metagenome relative to the number of evolutionary changes ob-
served (Supplemental Table S3). In contrast, several gene classes
have more than one mutation in the observed data, sometimes
occurring in a single host and sometimes in multiple hosts
(Supplemental Table S3). To bias our candidate list toward gene
classes that are mutated recurrently in multiple hosts, we imposed
a threshold requirement that gene classes must undergo an evolu-
tionary modification in at least four distinct hosts. With these cri-
teria, we found a total of 14 distinct gene classes (excluding
hypothetical proteins) experiencing parallel evolution (Fig. 5B).
Some of these gene classes additionally acquired multiple muta-
tions within hosts; for example, a TonB-dependent transporter

part of the SusC family acquired a total
of 32 SNV changes across 26 unique
hosts (Fig. 5B).

Themutations in these 14 gene clas-
ses have a combined dN/dS of ∼1.0. Al-
though this value of dN/dS is consistent
withamodelwithoutpositiveornegative
selection, it is significantly higher than
the dN/dS for other gene classes that
are not as recurrently mutated (∼0.6; P-
value =0.001, permutation test) and is
even greater than the dN/dS for SNVs
that differ in replacement events (∼0.1)
(Fig. 5C). This suggests that a higher pro-
portion ofmutations in these recurrently
evolving gene classes may be potentially
adaptive.

Two of the top-ranking gene classes
have been previously discovered to un-
dergo parallel evolution, most promi-
nently genes in the starch utilization
system (SusC and SusD) family (Zhao
et al. 2019). Of notable interest is the
previously mentioned TonB-dependent
transporter part of the SusC family,
which is implicated in processing of
complex glycans (Martens et al. 2009)
and degradation of breast milk–associat-
ed human milk oligosaccharides (Sela
et al. 2008), is associated with the coloni-
zation of infant gut microbiomes (Yas-
sour et al. 2018), and is posited to
undergo adaptation in infant micro-
biomes (Sela et al. 2008; Kujawska et al.
2020). Another notable candidate gene
class undergoing parallel evolution in
our data set includes beta-galactosidase,
which was previously shown to be en-
riched in infants (Sela et al. 2008;
Ambrogi et al. 2019; Duranti et al. 2019;
Kujawska et al. 2020; Lawson et al.
2020) and is involved in the digestion
of breast milk (Kitaoka 2012).

Other gene classes undergoing par-
allel evolution include transcriptional
regulators, membrane transporters, and

histidine kinases. In particular, the periplasmic ligand-binding
sensor domain/histidine kinase is mutated 12 times in infants
but never in adults. Although, to our knowledge, these gene classes
have not previously been implicated in microbiome adaptation or
infant microbiomes, the recurrent evolutionary changes across
multiple hosts provide interesting opportunities for follow-up
analyses.

Discussion
To date, there has been substantial focus on the ecological and
functional development of the infant gut microbiome (Palmer
et al. 2007; Koenig et al. 2011; Vallès et al. 2014; Bäckhed et al.
2015; Chu et al. 2017; Ferretti et al. 2018; Stewart et al. 2018;
Yassour et al. 2018; Niu et al. 2020; Sprockett et al. 2020), but rel-
atively little is known about evolutionary dynamics of microbiota

A

B

Figure 4. Reversion events in infant gut microbiomes. There were 371 host × species instances with at
least three QP samples across available infant time points and mother at delivery. Of these, 13 experi-
enced modifications at two nonoverlapping time point pairs. Seven of these 13 experienced reversions;
here, we illustrate the haplotypes corresponding to these reversions. Sites are ordered by gene’s position
in the reference genome. Sites are annotated as being in a 1D, 2D, 3D, or 4D position, which indicates
codon degeneracy. For example, 1D indicates that the site is onefold degenerate (any nucleotide differ-
ence results in an amino acid change), whereas 4D indicates that the site is fourfold degenerate (any nu-
cleotide difference will not result in an amino acid change). 2D and 3D sites indicate that either two or
three possible nucleotide changes, respectively, can be tolerated before the amino acid is changed. (A) In
five of these cases, there is a reversion at a single nonsynonymous site to an allelic state that is prevalent in
adults; two examples are shown. (B) In two instances, multiple nucleotides change at both synonymous
and nonsynonymous sites. In the host “Backhed 59,” a replacement occurs at birth with respect tomoth-
er, and then by month 4, it reverts back to the strain harbored by mother.
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in the infant gut microbiome. Here we examined the evolutionary
dynamics of gut microbiota in a cohort of more than 700 infants
(Bäckhed et al. 2015; Ferretti et al. 2018; Yassour et al. 2018;
Shao et al. 2019) and compared them with that of adults. We
found that the initial days after birth are marked by more than
10-fold increased rates of evolutionary modification and replace-
ment of dominant resident strains relative to typical rates observed
in adults. Over time, these rates settle, but not without rapid recov-
ery of diversity initially lost during the mother-to-infant transmis-

sion period via elevated rates of gene
gains in the first year of life. Many of
these evolutionary events show signa-
tures of de novo mutation that may
potentially be adaptive, but ongoing
transmission from the broader family
also plays a significant role in seeding
evolutionary changes in the infant gut
microbiome over time.

Perhaps it is not surprising that in-
fancy is marked by particularly volatile
rates of evolutionary change and strain
turnover that eventually stabilize with
time, given that ecological succession at
the species level is also rapid and dynam-
ic in the early days of life. However, with
a mechanistic understanding of how in-
dividual lineages change at a nucleotide
level over time, we may be able to better
understand ecological succession in the
infant gut microbiome. For example,
some species such as E. coli undergo two
orders of magnitude increase in nucleo-
tide polymorphism levels over just a
span of 1–2 mo (Fig. 1), whereas other
species such as Bacteroides vulgatus and
Enterococcus faecalis show idiosyncratic
patterns at different life stages (Supple-
mental Figs. S4, S5). Community-wide
level statistics like Shannon alpha diver-
sity may miss these sharp transitions in
subspecies diversity because Shannon al-
pha diversity is computed as an aggregate
of abundances across species. Species-
specific signatures of ecological and evo-
lutionary change at the nucleotide level
may be important for uncovering func-
tional shifts in the microbiome and un-
derstanding the roles each species plays
in the maturation of the human gut
microbiome.

We note that several studies (e.g.,
Donovan 2020; Niu et al. 2020) use the
term “evolution” to describe ecological
changes in species composition over
time. In our paper, we define evolution
as genetic change on the background of
a resident lineage on top of which addi-
tional changes can accumulate, and we
distinguish such evolutionary changes
from strain replacement (Garud and
Pollard 2020). By distinguishing evolu-
tion from strain replacement, we can

start to understand at amolecular level the genetic variants needed
for microbes to survive in the gut, as well as the mechanisms
through which they arise. Additionally, adaptation and coevolu-
tion of infant gut bacteria have been described in the literature
in reference to the enrichment of genes that play a role in milk
digestion in genera like Bifidobacterium (Sela et al. 2008; Milani
et al. 2015; Duranti et al. 2017, 2019). Here, we do not examine
longer-term evolutionary forces that result in functional enrich-
ment in certain strains of gut bacteria, instead focusing on short-

A C

B

Figure 5. Parallelism of SNV changes across hosts. (A) Mutations are randomized across the metage-
nomes across hosts to construct two null distributions to assess parallelism (Methods). Observed SNV
change counts are shown with green dots for the 14 gene classes found to mutate in parallel in four
or more hosts. In the cases in which there are multiple green dots, there are multiple gene classes expe-
riencing the same number of SNV changes. (B) SNV changes in these 14 gene classes found to mutate in
parallel in four or more hosts are partitioned by life stage and colored by degeneracy (e.g., 1D indicates a
nonsynonymous site, and 4D indicates a synonymous site). Some functional classes are also mutated
multiple times within hosts. For inclusivity, the mother–infant age class here includes all QP sample pairs
in which the earliest infant time point is taken, irrespective of whether the infant was sampled in the first
week of life. This avoids overlapping time points with the infant–infant age group. (C) dN/dS of SNV
changes in the 14 gene classes found to mutate in parallel in four or more hosts compared with dN/dS
of SNV changes in all other gene classes and dN/dS of sites that differ in strain replacements. The 95%
confidence intervals for bootstrapped dN/dS values are reported as black bars.
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term within-host changes. Despite this, among the genes experi-
encing parallel evolution across multiple infants are those impli-
cated in milk digestion, suggesting that short-term forces within
hosts could be contributing to signals of adaptation that accrue
over longer periods.

Although our analysis distinguishes evolution from strain re-
placement, some evolutionary modifications detected in infants
reflect migrations of lineages that may have evolved recently in
the mother or another family member. Previous studies have
found extensive evidence for transmission of strains frommother
and infant, as well as among other family members over time
(Milani et al. 2015; Asnicar et al. 2017; Ferretti et al. 2018; Korpela
et al. 2018; Yassour et al. 2018; Shao et al. 2019; Koo et al. 2020;
Mitchell et al. 2020; Siranosian et al. 2020; Hildebrand et al.
2021). In our study, by analyzing QP samples, we were able to re-
cover evidence of transmission of lineages diverged by only a few
SNVs, reflecting evolutionary modifications that occurred in the
recent past in the broader family unit. If families indeed circulate
strains among each other over several decades, it may then be
worth considering the broader family’s microbiome as a larger, in-
terconnectedmicrobiome. Additional data frommultiple cohabit-
ing individuals is needed to fully understand the extent of
evolution and transmission of closely related lineages among fam-
ily members (Korpela et al. 2018; Hildebrand et al. 2021). More-
over, data from multiple body sites over multiple time points
(Ferretti et al. 2018; Mitchell et al. 2020) can reveal additional
sources of strains colonizing the infant.

It is possible that the genetic changes observed during the
mother-to-infant transmission are confounded by yet another pro-
cess: bottlenecks. During a bottleneck event, deleterious alleles can
rise in frequency owing to drift. However, recent work suggests
that fluid flow in the adult colon cannot create bottlenecks that
can result in large fluctuations in allele frequencies (Ghosh and
Good 2021) and that, instead, natural selection is a more plausible
mechanism of genetic change occurring over short timescales.
Still, the mother–infant transition represents a unique coloniza-
tion process in which a sterile or nearly sterile environment is col-
onized by microbes for the first time. Thus, the strength of
bottleneck may be stronger in the infant than in established adult
guts. In support of bottlenecks potentially playing a role in the
evolutionary dynamics of the infant, we observe, in five host × spe-
cies instances, private single-nucleotide mutations at nonsynony-
mous sites reaching high frequency within infants that later revert
back to the prevalent allelic state observed in adults. This suggests
that the initial mutation was either temporarily adaptive or rose to
high frequency owing to drift and then reverted owing to deleteri-
ous selective effects. There are, however, hallmarks of positive se-
lection driving evolutionary change within infants. The dN/dS of
rare SNV changes in infants is greater than one, and many genes
are mutated in parallel across multiple hosts, which also harbor el-
evated levels of dN/dS∼1 compared with other sweeping SNVs.
Future work resolving the role of bottlenecks in the infant coloni-
zation process will be needed to fully understand the evolutionary
processes taking place in infant microbiomes.

A future goal in the field is to understand the functional con-
sequences of evolutionary changes in the gut microbiome.
Although our focus was on understanding signatures of evolution
over different life stages, we did find that C-section infants have el-
evated rates of gene gains and losses compared with vaginally born
infants (Supplemental Fig. S11). Given that C-section babies expe-
rience a disruption in transmission ofmicrobes from theirmothers
(Mueller et al. 2015; Shao et al. 2019), the elevated rates of gene

gain and loss in C-section infants pose the possibility that these
microbes may need to evolve genetic adaptations to survive in
the infant gut. Future work investigating the relative importance
of evolutionary change in infants with different birth modes, as
well as other attributes such as feeding mode and medication,
will be needed to fully understand how the microbiome forms in
these early days, as well as their impact on infant health.

Another potential area for future work is to understand
changes in the gut microbiome during pregnancy. In this paper,
we computed species diversity in delivering mothers in four co-
horts (Bäckhed et al. 2015; Ferretti et al. 2018; Yassour et al.
2018; Shao et al. 2019) and compared levels with that of healthy
nonpregnant female adults in the HMP (Supplemental Fig. S3;
Lloyd-Price et al. 2017; Methé et al. 2012; Qin et al. 2012). We
found that alpha diversity is significantly higher among mothers
compared with nonpregnant females. The increase in alpha diver-
sity finding is consistent with previous findings by Jašarevic ́ et al.
(2017). However, Goltsman et al. (2018) find that Shannon diver-
sity decreases, and Koren et al. (2012) find that Faith’s phylogenet-
ic diversity decreases in pregnancy. Given the importance of being
able to predict microbiome changes associated with preterm birth
(Vinturache et al. 2016) and the resulting impacts on the develop-
ing infant gut microbiome, future studies examining microbiome
ecological and evolutionary biomarkers of pregnancy and delivery
are needed.

The finding that many species in the infant gut microbiome
rapidly evolve is important for understanding how the micro-
biome is assembled early in life. In particular, it will be important
to understand how these frequent evolutionary changes in
the infant gut impact the persistence of lineages, ecological inter-
actions, and the overall development of the gut microbiome. By
incorporating evolution into our study of the development of the
infant gut microbiome, we may be able to better understand the
functional impact of the microbiome on human health.

Methods

Data

The raw sequencing reads for the metagenomic samples used in
this study were downloaded from Bäckhed et al. (2015) (NCBI Bio-
Project database [https://www.ncbi.nlm.nih.gov/bioproject/] ac-
cession number PRJEB6456), Ferretti et al. (2018) (BioProject
accession number PRJNA352475), Yassour et al. (2018) (BioProject
accession number PRJNA 475246), Shao et al. (2019) (BioProject
accession number PRJEB32631), The Human Microbiome Project
Consortium (2012) and Lloyd-Price et al. (2017; https://aws
.amazon.com/datasets/human-microbiome-project/), and Qin
et al. (2012) (BioProject accession number PRJNA422434).

Estimation of species, gene, and SNV content of metagenomic
samples

We used the Metagenomic Intra-species Diversity Analysis System
(MIDAS; version 1.2, downloaded on November 21, 2016)
(Nayfach et al. 2016) to estimate within-species nucleotide and
gene content of each metagenomic shotgun sequencing sample.
MIDAS uses a reference database of 31,007 bacterial genomes, clus-
tered into 5952 species, which covers ∼50% of species found in
“urban” human stool metagenomes. We followed the parameters
described by Garud et al. (2019) and below to estimate species
abundances, SNVs, and gene CNVs with MIDAS.
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Estimation of species content

A major goal in this work is to infer evolutionary changes from
metagenomic data. To do so, we mapped reads to call SNVs and
CNVs to infer evolutionary changes. However, to avoid spurious
inferences of allele frequency changes owing to mismapping of
reads to regions of the genome shared bymultiple species, we con-
structed a personal reference database for each host composed of
the union of all species present at one or more time points. This
per-host reference database was constructed to be as inclusive as
possible to prevent reads from being “donated” to reference ge-
nome while also being selective to prevent a reference genome
from “stealing” reads from a species truly present.

To estimate the species abundances for each host × time point
sample, we mapped the reads to a set of single copy marker genes
(Wu et al. 2013;Nayfach et al. 2016) belonging to the 5952 species.
A species was considered present in a given sample if it had an av-
erage marker gene coverage of three or more. Next, we determined
a single reference database for each host by including all species
present at one or more time points with coverage of three or more.

Estimation of CNV content

We estimated CNV content by mapping reads to the pangenome
for each species in each per-host reference database using Bowtie
2 (Langmead and Salzberg 2012) with default MIDAS settings (lo-
cal alignment, MAPID≥94.0%, READQ≥20, and ALN_COV≥
0.75). The average coverage for each gene was estimated by divid-
ing the total number of reads mapped to a given gene by the gene
length. Among these genes was a panel of universal single-copy
genes. The copy number of a given gene (c) was then estimated
by taking the ratio between its coverage and the median single
marker gene coverage.

These copy number values were used to estimate the preva-
lence of genes in the broader population, defined as the fraction
of samples with copy number c≤3 and c≥0.3 (conditional on
the mean single gene marker coverage being 5× or more). For
each species, we computed “core genes,” defined as genes in the
MIDAS reference database that are present in at least 90% of sam-
ples within a given cohort (infants or adults). We separated the
computation of core genes by cohort because several species that
are prevalent in infants are absent in adults and vice versa. In
our computation of within-host polymorphism rates, we analyzed
the union of core genes found in adults (mother +HMP) and
infants.

Genes shared across species boundaries can result in read
stealing and read donating, potentially confounding evolutionary
inferences. Thus, we used a “blacklist” of genes that are shared
across species boundaries that was constructed by Garud et al.
(2019). Briefly, this blacklist was constructed by using USEARCH
(Edgar 2010) to cluster all genes in human-associated reference ge-
nomes with a 95% identity threshold. Additionally, because some
genes may be absent from the MIDAS database that may also be
shared across species boundaries, we implemented another filter
of Garud et al. (2019) in which genes with c≥3 in at least one sam-
ple in our cohort were excluded from further analysis to avoid ex-
amining common genes.

Estimation of SNV content

Wenext estimated SNV content. Below we describe the thresholds
and parameters used by Garud et al. (2019) and in this paper. To
call SNVs, wemapped reads to a single representative reference ge-
nome as per the default MIDAS software. Reads were mapped with
Bowtie 2 (Langmead and Salzberg 2012), with defaultMIDASmap-
ping thresholds: global alignment, MAPID≥94.0%, READQ≥20,

ALN_COV≥0.75, and MAPQ≥20. We excluded species from fur-
ther analysis if readsmapped to≤40%of their genome.We further
excluded samples from further analysis if they had low median
read coverage (�D) at protein-coding sites. Specifically, samples
with �D , 5 across all protein-coding sites with nonzero coverage
were excluded.

Because a large component of the analyses performed here
was to infer evolutionary changes between time points, additional
bioinformatic filters were imposed. First, in addition to excluding
the blacklisted genes, to further avoid read stealing and donating
from generating fluctuations in allele frequencies, wemasked sites
in a given sample if D , 0.3�D or D . 3�D as these sites harbor cov-
erage anomalously low or high compared with the genome-wide
average �D. We also imposed another filter in which a SNV differ-
ence between two samples from the same host was called only if
the successive values ofD/�Dwerewithin a factor of three, as we ex-
pect that samples from the same host will have a smaller range of
coverage fluctuations over time than samples from different hosts.
An additional coverage threshold requirement of 20 reads per site
was imposed for calling SNVs for analyses below.

Quasi-phasing and inference of rates of SNV changes, gene
changes, and replacements over time

We followed the approach of Garud et al. (2019) to identify QP
samples (for an explanation of QP samples, see Supplemental
Text S1). We then identified SNV and gene changes between pairs
of QP samples collected from consecutive time points with avail-
able data from the same host (for the expected rate of false-positive
SNV changes owing to sampling error, see Supplemental Text S1).
A consecutive time point consists of two time points in the moth-
er–infant dyad that are both QP for a given species such that there
is no intervening time point that is alsoQP. Note that “mother–in-
fant” time point pairs were restricted to comparisons between
mother time points at delivery and infant time points within the
first week in order to best approximate gut microbiome dynamics
of the mother–infant transition at birth and exclude changes that
occur later onwithin the infant. The only exception to this “moth-
er–infant” definition is in Figure 5B, in which the mother–infant
age class includes all QP sample pairs comprising mothers and
the earliest infant time point irrespective of whether the infant
was sampled in the first week of life. This enables all data to be con-
sidered for the parallelism analysis.

SNV changes were computed by identifying SNV allele fre-
quency changes from ≤0.2 to ≥0.8. With these strict thresholds
as described in Supplemental Text S1, much less than one SNV
changeper genome is expected by chance owing to sampling error.
Because SNV changes can be generated by either modification or
replacement events, we classified QP pairs as undergoing amodifi-
cation or no change if they had 20 or fewer SNV differences or
as undergoing a replacement if they had 500 or more SNV
differences.

Additionally, we assessed evolutionary gene gains and losses
between time points not experiencing replacements. These were
computed by identifying genes with copy number c≤0.05 (indi-
cating gene absence) in one sample and 0.6≤ c≤1.2 in another (in-
dicating single copy gene presence), reflecting parameters used by
Garud et al. (2019).

Per-day rates of SNV changes, replacements, and gene changes

To quantify per-day modification rates, we divided the number of
SNV changes and gene changes, respectively, observed among
nonreplacement QP pairs by the number of days elapsed between
sampling time points. To quantify per-day replacement rates, we
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divided the number of replacement events by the number of avail-
able QP pairs and the number of days elapsed between sampling
time points. In the case of mother–infant time point pairs, al-
though mothers were generally sampled around the time of birth,
some were sampled within a few days (up to a week) after birth in
the Bäckhed data set. In cases in which the mother’s exact time of
sampling was known, the sum of time since birth for the mother
and infant samples was used as time elapsed between sampling
time points. For the Shao, Ferretti, and Yassour data sets, themoth-
er was assumed to have been sampled on the day of birth.

To assess variance, we performed bootstrapping of rates by re-
peatedly taking random subsamples of size 50 (with replacement)
of all QP pairs in a category. In each bootstrap, the total number of
SNV changes, gene changes, and replacements, respectively, was
summed across the samples and divided by the total duration
elapsed between time point pairs for the sample.

To quantify the scaling relationship between rate of change
versus life stage, we performed a linear regression on logged
mean SNV change, replacement, and gene gain/loss rates comput-
ed per time point pair category as a function of days since birth. To
compute days since birth, the median time point was computed
for each life stage (mother–infant within the first week, day 0 to
week 1, week 1 to month 1, month 1 to year 1). In the case of
HMP adults, a value of 40 yr was assigned, reflecting the age range
of HMP participants (Methé et al. 2012; Lloyd-Price et al. 2017).

Permutation tests

To assess whether rates of SNV changes, gene changes, or replace-
ments are significantly different between age categories (Fig. 2;
Supplemental Fig. S10; Supplemental Table S2), or between C-sec-
tion versus vaginally born infants (Supplemental Fig. S11), or be-
tween formula- versus breast-fed infants (Supplemental Fig. S11),
we performed permutation tests. For the permutation tests, labels
(e.g., C-section vs. vaginal, or infant vs. adult) were shuffled for
10,000 trials, and in each trial, the difference in rates between
the two categories being considered was computed. The
resulting P-value was computed by assessing the quantile of the
observed difference in rates from the distribution generated from
permuted data.

Prevalence of sweeping alleles

Derived allele prevalencewas computed with respect to three prev-
alence cohorts: HMP adults, infants, and mothers (Fig. 3;
Supplemental Figs. S13, S14). Replicating the analysis of Garud
et al. (2019), we define population prevalence of an allele as the
fraction of samples in which the majority of the reads at a given
site (minimum coverage of at least 20×) harbor the allele. If a
host had multiple time points, that host’s contribution to total
prevalence was the fraction of time points possessing the allele.
Private SNVs were assigned a prevalence of zero. We computed a
null distribution for SNV change prevalence by randomly drawing
the number of SNV modifications observed in data from all SNV
opportunities in the genome, bootstrapped 10 times.

Prevalence of gene gains and losses

Gene prevalence was computed with respect to three prevalence
cohorts: HMP adults, infants, and mothers. As described above,
we defined population prevalence of a gene as the proportion of
all samples harboring the gene with copy number≤3 and ≥0.3.
We computed a null distribution for the prevalence of gene losses
by randomly drawing the number of genes lost from all genes pre-
sent in the pangenome, bootstrapped 10 times. The null expecta-

tion for gene gains was zero across prevalence bins as there are no
de novo gene gains by definition.

dN/dS computation for changing SNVs

To investigate whether or not SNV changes inmodification events
are adaptive, we estimated dN/dS. dN/dS was computed as the ratio
between number of observed nonsynonymous (1D) SNV changes
divided by nonsynonymous opportunities and number of ob-
served synonymous (4D) SNV changes divided by nonsynony-
mous opportunities per QP pair under consideration. We also
bootstrapped dN/dS estimates by sampling a binomial distribution
10,000 times with number of trials n equal to total number of non-
synonymous or synonymous SNV changes and with success prob-
ability p equal to the proportions that are either nonsynonymous
or synonymous; this resulted in bootstrapped nonsynonymous
and synonymous SNV change counts that were divided by the
same nonsynonymous and synonymous SNV opportunities. We
reported 95% confidence interval for dN/dS estimates using the
2.5% and 97.5% quantiles of the bootstrapped dN/dS values.

Parallelism of evolutionary SNV changes across hosts

To assess parallelism of evolutionary changes across hosts, we enu-
merated the number of observed SNV changes per PATRIC gene
description. A PATRIC gene description is a gene product annota-
tion string from the PathoSystems Resource Integration Center
(PATRIC) database. This same string can potentially be present
across multiple species (Supplemental Table S3), although as de-
scribed above, genes shared across species boundaries (i.e., possess
≥95% nucleotide identity with a gene in a different species in the
MIDAS database) were filtered from our data set.

We evaluated whether the observed number of SNV changes
per gene class is greater than expected under two null distribu-
tions. The two null distributions were constructed as follows: the
number of observed changes were randomly distributed across
(1) all genes present at either time point for a given QP pair and
(2) all genes present in the MIDAS pangenome for the species har-
boring the SNV changes.We bootstrapped the null distribution es-
timates 100 times.

Software availability

All computer code for this paper is available at GitHub (https://
github.com/garudlab/mother_infant) and as Supplemental Code.
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