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ABSTRACT OF THE DISSERTATION 

 
 

The Causes and Consequences of Biodiversity Change in the Alpine Tundra of Western 

North America 
 

 

by 
 

 

Jared D. Anderson-Huxley 

 

Doctor of Philosophy, Graduate Program in Evolution, Ecology, and Organismal 

Biology, 

University of California, Riverside, September 2023 

Dr. Marko Spasojevic, Chairperson 

 

 

Mountain ecosystems in western North America are highly sensitive to climate change 

and are warming faster than the global average. Found at the tops of these mountains, the 

alpine tundra ecosystem is especially threatened due to its fragmented distribution (so 

called “sky islands”), limited area, and the impossibility of alpine species moving to 

higher elevations. As a result, alpine sky islands are considered a “sentinel system” for 

detecting the biological impacts of climate change, and rapid changes in alpine 

biodiversity are expected in the coming decades. In this dissertation, I explore how 

climate change is driving shifts in alpine plant biodiversity patterns (chapter 1), how 

species interactions structure current patterns of alpine biodiversity (chapter 2), and how 

variation in climatic conditions may affect the relationship between biodiversity and 

ecosystem function (chapter 3). To investigate these questions, I employ an observational 

study of regional plant biodiversity across a 12-year period, a neighbor removal 

experiment paired with spatial point pattern analysis, and structural equation modeling 

using data from the Niwot Ridge Long Term Ecological Research Program, respectively. 



viii 

 

I find evidence that: 1) alpine biodiversity patterns are shifting, notably towards species  

possessing traits which enable drought tolerance; 2) species interactions and species 

spatial patterns are largely governed by traits related to plant size like leaf area and 

height, though the manner in which these traits relate to species coexistence mechanisms 

changes across alpine community types; and 3) the alpine biodiversity-ecosystem 

function relationship is also best predicted by size-related traits; however, the ability of 

these traits to predict ecosystem function varies strongly depending on the amount of 

winter precipitation. Overall, my dissertation highlights that alpine biodiversity change is 

detectable over relatively short time periods, and that these changes are likely to have 

important implications for species interactions and the biodiversity-ecosystem function 

relationship.  
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Introduction 

Anthropogenic climate change is altering patterns of temperature and precipitation 

around the world, threatening biodiversity (Sala et al., 2000; Engler et al., 2011; Garcia et 

al., 2014). The impacts of climate change on biodiversity are vast and rapidly 

accelerating, ranging from shifts in the abundance and distribution of local populations to 

the extinction of entire species (Cardinale et al., 2012; Urban, 2015 De Laender et al., 

2016). While some species are directly impacted by shifting abiotic conditions, many 

more are affected by changes to the intricate web of species interactions which structure 

ecological communities, with new winners and losers emerging from a rearranged biotic 

environment (Tylianakis et al., 2008; Liancourt et al., 2013; Alexander et al., 2015). 

Biodiversity change can have further cascading impacts on the fluxes and pools of energy 

and materials within ecosystems (i.e., ecosystem function), potentially threatening the 

vital ecosystem services upon which human society relies (Mooney et al., 2009, 2009; 

Lee et al., 2015; García-Palacios et al., 2018; Maurer et al., 2020). To preserve the 

integrity and utility of biodiversity in the face of climate change, it is more important than 

ever that we work to understand the scale and pace of biodiversity change, the species 

interaction mechanisms which structure current ecological communities, and the 

relationship between biodiversity and ecosystem function. 

 Mountain ecosystems in western North America are particularly sensitive to 

climate change and are warming faster than the global average (McGuire et al., 2012; 

Rangwala and Miller, 2012; Pepin et al., 2015). Importantly, these ecosystems provide 

the majority of the water supply for human consumption in the region and many other 
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key ecosystem services such as snow-based recreation, timber, and critical habitat for rare 

and endangered species (Baron, 2002). Found at the tops of isolated mountain peaks (so 

called “sky islands”), alpine tundra is an ecosystem characterized by meadows of 

wildflowers and grasses (alpine by definition is above tree-line) and harsh environmental 

conditions (Bowman and Seastedt, 2001; Williams et al., 2015; Korner and Spehn, 2019). 

Alpine sky islands formed as continuous, low elevation tundra communities began to 

fragment and retreat upslope following the end of the last glacial maximum (Pewe, 

1983). Because of this unusual biogeographic history, alpine plant species face unique 

challenges in responding to anthropogenic climate change. For example, while lowland 

species may be able to track rising temperatures by moving to higher elevations, alpine 

tundra species are already located at the tops of mountains leaving little room for upward 

movement (Walther et al., 2002). Additionally, the disjointed distribution and limited 

area of alpine sky islands reduces rates of gene flow and dispersal and magnifies the 

effects of genetic and ecological drift, resulting in populations and communities which 

face a higher probability of stochastic change (McGraw, 1995; Newman and Pilson, 

1997; Holyoak et al., 2005; Jay et al., 2012; Leibold and Chase, 2017). Due to these 

factors, alpine sky islands are considered a “sentinel system” for detecting the biological 

effects of climate change (Engler et al., 2011; (Grabherr et al., 2000; Stanisci et al., 2005; 

Smith et al., 2009); but see Malanson et al., 2019) and thus an ideal setting to explore the 

scale and pace of biodiversity change, and cascading impacts on species interactions and 

ecosystem function. 
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 Climate change is already altering patterns of tundra biodiversity world-wide, 

with global syntheses demonstrating expanding vegetation cover, encroachment of sub-

alpine or low latitude species, and increasing community height over the last several 

decades (Elmendorf et al., 2012a; Bjorkman et al., 2018; Steinbauer et al., 2018). Despite 

solid evidence for these global trends, we still lack critical information about how alpine 

biodiversity change is proceeding at local and regional scales. At a local scale, it is 

unclear whether rates of biodiversity change differ between individual sky islands and 

how landscape context may mediate these changes (Spasojevic et al., 2014; Malanson et 

al., 2015). Island biogeography theory predicts that decreasing island area will increase 

rates of local species extirpation, while increasing island isolation will decrease rates of 

new species colonization, potentially leaving smaller and more isolated alpine sky islands 

primed for greater biodiversity change (MacArthur and Wilson, 2001; Losos and 

Ricklefs, 2009; Santos et al., 2016). At a regional scale, most current research on 

biodiversity change in tundra ecosystems is conducted in the Alps, the Tibetan Plateau, or 

the Arctic, and the lack of data from North American alpine tundra regions may be 

biasing the results of global syntheses (Wang et al., 2011; Elmendorf et al., 2012b; Wipf 

et al., 2013; Bjorkman et al., 2018; Steinbauer et al., 2018). Alpine tundra in Western 

North America is more arid than Europe and less productive than the Tibetan Plateau. 

Furthermore, the region is experiencing long-term declines in winter precipitation, and 

thus, biodiversity responses should not be expected to parallel trends observed in other 

alpine regions (Fyfe et al., 2017; Lesica and Crone, 2017; Mote et al., 2018; Testolin et 

al., 2020). To capture a holistic picture of global alpine biodiversity change, we must 
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quantify the sensitivity of individual sky islands and additionally prioritize long-term 

monitoring of North American alpine tundra. 

While biodiversity change is, in part, a direct result of shifting abiotic conditions 

exceeding species physiological limits, it can also result indirectly from changes in the 

ways species interact with one another (e.g., competition vs facilitation) (Chesson, 2000; 

Tylianakis et al., 2008; González-Megías and Menéndez, 2012; Liancourt et al., 2013). 

As climatic conditions shift, some species will gain advantages from their new abiotic 

context, subsequently allowing them to outcompete and exclude their neighbors 

(Liancourt et al., 2013; Alexander et al., 2015; Wainwright et al., 2019). For example, 

Alexander et al (2015) found that transplanting alpine species into sub-alpine 

communities to simulate the novel communities expected under warming temperatures, 

resulted in reduced probability of survival, growth rates, and probability of flowering as 

result of competition with novel competitors. To determine which alpine species may be 

favored or disadvantaged under new climatic conditions, it is first necessary to develop a 

mechanistic understanding of how species interactions structure current alpine 

biodiversity patterns. Functional traits (i.e., morphological, physiological, phenological, 

or chemical species traits linked to species fitness) provide a window into these 

interaction mechanisms, as they are linked to fitness and mediate how species respond to, 

and effect, their abiotic and biotic environment (Mcgill et al., 2006; Kraft et al., 2015; 

Garnier et al., 2016). By identifying important functional traits, linking these traits to 

interaction mechanisms, and finally showing how these interactions result in biodiversity 
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patterns, we can take a vital first step in predicting potential changes in balance of alpine 

species interactions.  

 Functional traits not only underpin species interactions, but also many of the 

processes responsible for moving energy and materials through ecosystems (e.g., net 

primary production, decomposition, nutrient cycling), collectively referred to as 

ecosystem function (Dı́az and Cabido, 2001; Garnier et al., 2016; Cadotte, 2017). 

Maintaining the integrity of ecosystem function is critical, not just for preserving natural 

systems, but also for stabilizing key ecosystem services on which human society relies 

like carbon sequestration, water filtration, and erosion control (de Bello et al., 2010; Grêt-

Regamey et al., 2012; Lee et al., 2015). However, climate induced changes in 

biodiversity, particularly functional diversity, are rapidly altering ecosystem functions 

and services around the world (de Bello et al., 2010; Funk et al., 2017). For example, 

warming temperatures at high latitudes have been linked to increases in the average 

height of Arctic tundra communities, with cascading effects on critical ecosystem 

functions including primary productivity, decomposition, and carbon cycling 

(Cornelissen et al., 2007; Cahoon et al., 2012; Elmendorf et al., 2012b; Bjorkman et al., 

2018). While decades of research have highlighted the relationship between functional 

trait diversity and ecosystem function, questions remain regarding how climate change 

will mediate this relationship in alpine tundra. Specifically, we must advance our 

understanding of which specific traits and mechanism underlie the biodiversity-

ecosystem function relationship in alpine tundra and how these factors may shift with 

varying climatic conditions.  
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 In this dissertation, I examine patterns of taxonomic, phylogenetic, and functional 

diversity from the scale of paired species to sky islands across the state of Colorado to 

better understand the sensitivity of the alpine tundra to climate change. In chapter 1, I use 

a regional survey of alpine sky islands in the Colorado Rocky Mountains to investigate 

changes in taxonomic, functional, and phylogenetic diversity patterns over a 12-year 

period and how these changes are mediated by sky island landscape context. In chapter 2, 

I couple a neighbor removal experiment with an observational study of local biodiversity 

patterns to investigate the nature of alpine species interaction mechanisms and how those 

mechanisms manifest as biodiversity patterns. In chapter 3, I synthesize multiple long-

term datasets on climatic conditions, local abiotic variables, species composition, and 

ecosystem function to explore how climatic variation affects the relationship between 

biodiversity and ecosystem function. By synthesizing these chapters, I hope to advance 

our understanding of the causes and consequences of alpine biodiversity change in 

Western North America. 
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Chapter 1 

Area, not geographic isolation, mediates biodiversity responses of alpine refugia to 

climate change 

 

Abstract  

Climate refugia, where local populations of species can persist through periods of 

unfavorable regional climate, play a key role in the maintenance of regional biodiversity 

during times of environmental change. However, the ability of refugia to buffer 

biodiversity change may be mediated by the landscape context of refugial habitats. Here, 

we examined how plant communities restricted to refugial sky-islands of alpine tundra in 

the Colorado Rockies are changing in response to rapid climate change in the region 

(increased temperature, declining snowpack, and earlier snow melt-out), and if these 

biodiversity changes are mediated by the area or geographic isolation of the sky-island. 

We resampled plant communities in 153 plots at 7 sky islands distributed across the 

Colorado Rockies at two time points separated by 12 years 2007/2008 to 2019/2020) and 

found changes in taxonomic, phylogenetic, and functional diversity over time. 

Specifically, we found an increase in species richness, a trend toward increased 

phylogenetic diversity, a shift toward leaf traits associated with the stress tolerant end of 

leaf economics spectrum (e.g., lower specific leaf area, higher leaf dry matter content), 

and a decrease in the functional dispersion of specific leaf area. Importantly, these 

changes were partially mediated by refugial area but not by geographic isolation 

suggesting that dispersal from nearby areas of tundra does not play a strong role 



14 

 

mediating these changes, while site characteristics associated with larger area (e.g., 

environmental heterogeneity, larger community size) may be relatively more important. 

Taken together these results suggest that considering the landscape context (area and 

geographic isolation) of refugia may be critical for prioritizing the conservation of 

specific refugia sites that provide the most conservation value. 

 

Introduction 

Rapid, anthropogenic climate change is altering temperature and precipitation patterns 

around the world, threatening biodiversity (IPCC, 2014; Díaz et al., 2019). While some 

changes in biodiversity patterns are inevitable, the impacts of climate change on 

biodiversity may be mitigated in part via the conservation of refugia: geographic 

locations or habitat types which are buffered from the most intense and immediate effects 

of environmental change (Tzedakis et al., 2002; Keppel et al., 2012). Refugia have played 

a key role in maintaining biodiversity during past (quaternary) climatic changes (Taberlet 

and Cheddadi, 2002; Byrne, 2008; Carnaval et al., 2009). For example, the climatic 

stability, rugged terrain, and complexity of soils and microclimates of the Klamath-

Siskiyou region of southwest Oregon allowed the region to serve as a refugia for 

ecological communities that required cool and moist conditions in the past (Whittaker, 

1960; Olson et al., 2012, Copeland and Harrison, 2015). Currently, refugia have the 

potential to maintain biodiversity in the face of anthropogenic climate change (Ashcroft, 

2010; Dobrowski, 2011; Ashcroft et al., 2012; Keppel et al., 2012; Keppel et al., 2018). 

While maintenance of taxonomic diversity has been the traditional focus of refugia 
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conservation efforts, the role of refugia in preserving functional and phylogenetic 

diversity may be more important as functional traits and phylogenetic identity are thought 

to more directly control ecosystem function and stability (Díaz and Cabido, 2001; 

Cavender-Bares et al., 2009, Funk et al., 2017). Despite the recognized importance of 

climate change refugia in general, there is still a need to better identify specific sites that 

may serve as high quality refugia given the economic and political constraints on 

conserving refugial habitats (Keppel et al., 2012; Keppel et al., 2015, Mokany et al., 

2017).  

 Importantly, refugia may differ in their capacity to buffer against environmental 

changes and therefore promote the persistence of threatened species (Keppel et al., 2015). 

Within geographic locations or habitat types that are broadly considered refugia, 

individual sites may vary in their ability to withstand the impacts of climate change based 

on their landscape context (Gaston and Blackburn, 1996; Ashcroft et al., 2009; Keppel et 

al., 2015). Specifically, island biogeography theory demonstrates that site area and 

geographic isolation mediate rates of dispersal and ecological drift (MacArthur and 

Wilson, 1967), with subsequent impacts on taxonomic, functional, and phylogenetic 

diversity (Graham and Fine, 2008; Spasojevic et al., 2014; Fernández-Palacios et al., 

2015; Carmona et al., 2016). Differences in area and isolation among refugia sites may 

also alter how those sites respond to shifts in the niche selection regime imposed by 

climate change (Keppel et al., 2015). For example, larger refugial sites are more likely to 

contain higher levels of environmental heterogeneity and thus may be able to provide 

optimal environmental conditions for a greater diversity of species (Currie et al., 2004), 
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functional strategies (Spasojevic et al., 2014), and/or phylogenetic lineages (Leibold et 

al., 2010) even with changes in regional climate (Keppel et al., 2015). Similarly, larger 

sites may also be able to support larger populations or communities that are less 

susceptible to demographic stochasticity (Loreau and de Mazancourt, 2008). On the other 

hand less isolated refugia sites may be more likely to be connected to other refugia via 

dispersal and thus may be able to retain species (Leibold et al., 2004), functional 

strategies (Schleuter et al., 2012), or phylogenetic lineages (Thorpe et al., 2008; Eldridge 

et al., 2018) negatively affected by changes in regional climate through source-sink 

dynamics. Understanding how the area and isolation of refugia mediate changes in 

taxonomic, functional, and phylogenetic diversity caused by climate change is therefore a 

key next step in prioritizing the conservation of specific refugia sites that provide the 

most conservation value. 

 Alpine tundra is an excellent system for understanding how site area and isolation 

may affect biodiversity change in climatic refugia. Found at the tops of mountains, alpine 

tundra is characterized by meadows of wildflowers and grasses (alpine by definition has 

no trees) and harsh environmental conditions (Bowman and Seastedt, 2001; Korner, 

2003; 2004). Alpine tundra in Western North America currently displays an archipelago-

like distribution, with “sky islands” of suitable, high-elevation habitat surrounded by a 

matrix of unsuitable, low-elevation habitat (Pewe, 1983). These disjunct sky islands 

formed when the large, continuous alpine communities present during the last glacial 

maximum began to fragment and retreat upslope in response to natural climatic warming 

(Pewe, 1983). Thus, alpine sky islands serve as an ex-situ refugia for a formerly widely 
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distributed palaeo-habitat type, as evidenced from molecular data on a wide range of 

organisms (e.g., Skrede et al., 2006; Shafer et al., 2011). The upslope movement and 

subsequent fragmentation of tundra habitat produced individual sky islands which vary in 

their size and geographic isolation (McCormack et al., 2009). This variation in landscape 

context may serve as a critical mediator of shifts in alpine taxonomic, functional, and 

phylogenetic diversity in response to climate change as mountain ecosystems in western 

North America are currently warming faster than the global average, a trend that is 

expected to accelerate (Rangwala and Miller, 2012; Pepin et al., 2015). Understanding 

how sky island area and isolation affect biodiversity change will not only help to identify 

the best refugia sites for this threatened ecosystem, but also potentially generalize to other 

systems with island-like distributions (e.g., serpentine soils).  

Here, we explore if the landscape context (site area and geographic isolation) 

mediates changes in the biodiversity of refugial alpine sky-islands in the Colorado Rocky 

Mountains over a twelve-year period. Specifically, we explored how site area and 

isolation mediate changes in species richness, Shannon’s diversity index, community 

level phylogenetic diversity, community weighted mean trait values, and community 

dissimilarity in functional traits between our two sampling periods. Based on the tenants 

of island biogeography (MacArthur and Wilson, 1967; Brown and Kodric-Brown, 1977; 

Connor and McCoy, 1979, Ottoviani et al., 2020a), we predict: 1) that site area will 

mediate biodiversity change as larger sites have the potential to support a wider range of 

habitat types and species and/ or larger populations; and 2) that geographic isolation will 
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mediate biodiversity change as potential local extinction or declining populations may be 

offset by dispersal from nearby areas of tundra.  

 

Methods  

Field sampling 

During the summers of 2007 and 2008 we sampled community composition at 7 alpine 

sites in the Colorado Rocky Mountains (see Spasojevic et al., 2014 for additional details). 

Using topographic maps, we selected sites to capture variation in size and geographic 

isolation, while also considering accessibility. All sites sampled were sky islands: alpine 

tundra habitat completely surrounded by less-suitable habitat for alpine populations such 

as rock outcrops, subalpine meadows, or coniferous forests. We sampled species 

composition and abundance in a series of 1-m2 plots within each site, where the number 

of plots was proportional to total site area and the arrangement of plots were standardized 

across major topographic gradients. In alpine tundra, topography plays a key role in 

shaping biodiversity patterns via snow deposition, and thus this sampling design enabled 

us to capture the full range of alpine vegetation types including snow-bed (high snow 

accumulation), moist meadow (intermediate snow accumulation), and fellfield (very low 

snow accumulation) communities. Within each plot, plant composition was estimated 

using visual estimations of percent cover of all species with the assistance of a 1m x 1m 

frame containing a 10cm by 10cm string grid. Across all sites we sampled species 

composition in 153 plots, with the number per site ranging from 8 at Greenhorn 

Mountain to 40 at Niwot Ridge (Fig. 1.1) with an average of 23 plots per site. Plot 
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locations were predetermined and spaced evenly along topographic gradients at each site 

at ~200m intervals. Since community composition in the alpine tundra is strongly 

determined by the redistribution of snow by wind along topographic gradients (Walker et 

al., 2001), sampling along topographic gradients allowed us to capture most of the 

diversity of each site. In 2019 and 2020 we revisited these sites keeping plot number and 

sampling locations as consistent as possible based on GPS coordinates recorded in 

2007/8. Given the relatively low accuracy of GPS units (± 3m) we examine site level 

patterns of biodiversity changes instead of plot level changes as we are more confident 

that we accurately resampled each site, if not individual plots (N = 14 in subsequent 

analyses, 7 sky islands in each sampling period).  

 

Spatial variables 

During site visits the approximate alpine area was delineated on a topographic map, and 

area was later calculated using Image-J (Rasband, 2007). Geographic isolation was 

calculated as the area (km2) of non-alpine tundra habitat within a 10km radius of the 

center of each site (not including the site area) using ArcGIS 9.0. MacArthur and 

Wilson’s (1967) classic theory of island biogeography suggests that area more strongly 

influences extinction rates and geographic isolation more strongly affects colonization 

rates. However, advances to this theory acknowledge that geographic isolation can 

influence extinction rates (the rescue effect: Brown and Kodric-Brown, 1977) and area 

can influence colonization rates (the passive sampling effect: Connor and McCoy, 1979). 

Importantly, area in the alpine tundra is often correlated with topographic heterogeneity, 
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where larger sites have a higher probability of capturing a greater variation in 

topographic variation that will influence biodiversity patterns (Walker et al., 2001).  

 

Trait measurements 

To quantify changes in community weighted mean trait values (CWM) and functional 

diversity metrics among sampling periods we used a combination of trait data that has 

been collected from previous studies in this system (Spasojevic and Suding, 2012; 

Spasojevic et al., 2014), from additional measurements conducted at the Niwot Ridge 

LTER (one of our sites), and from measurements of any new species that were not 

encountered in our first sampling period. All trait measurements followed established 

protocols (Perez-Harguindeguy et al., 2013), and were collected on a minimum of 10 

individuals for each species. Importantly, in our fist sampling period we compared trait 

values among the most abundant species present in both northern and southern sites 

(approximately 25% of our total species pool) and found that there was little variation in 

mean trait values along this broad north to south geographic gradient (Spasojevic et al., 

2014) suggesting that using trait mean values from this database will allows us to 

examine broad scale patterns of functional diversity.  

 We focused on four putatively important traits: overall height, specific leaf area 

(SLA), leaf area, and leaf dry matter content (LDMC). Plant vegetative height, a trait 

often allometrically related to overall plant size (biomass, rooting depth, lateral spread) as 

well as to competitive interactions for light (Aan et al., 2006), was measured as length 

from ground level to the highest photosynthetically-active tissue. We also collected a 
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fully formed adult leaf, with no signs of damage or senescence at peak biomass. 

Collected leaves were hydrated overnight prior to weighting fresh mass. Leaves were 

then dried at 55ºC for 4 days and weighed to determine leaf dry mass. Individual leaf area 

was calculated from the leaf scans using Image-J (Rasband, 2007); leaf area is associated 

with leaf energy and water balance, with various stressors (heat, drought, cold and high-

radiation) tending to select for small leaf area (Cornelissen et al., 2003). Specific leaf 

area, was calculated as leaf area (cm2) per unit of dry leaf mass (g) and is associated with 

the leaf economics spectrum, which characterizes a species capacity for stress tolerance 

vs resource acquisition (Westoby et al., 2002). Leaf dry matter content was calculated as 

the ratio of dry mass to fresh mass and is also associated with the leaf economics 

spectrum(Garnier et al., 2001). 

  

Diversity metrics 

To describe differences in biodiversity among sampling periods we first calculated 

species richness, Pielou’s evenness, and Shannon’s diversity index using the vegan 

package (Oksanen et al., 2019) in R version 4.0.2 (R Core Team, 2019). We then 

calculated two metrics of phylogenetic relatedness: mean pairwise distance (MPD) and 

mean nearest taxon distance (MNTD) using the PICANTE package (Kembel et al., 2010) 

in R. Mean pairwise distance is a metric of relatedness which measures the mean branch 

distance among all species pairs in a community (Webb et al., 2002) and is more 

sensitive to tree wide patterns of phylogenetic clustering and evenness (Kraft et al., 

2007). Mean nearest taxon distance is the mean distance separating each species in the 



22 

 

community from its closest relative in the community (Webb et al., 2002) and is more 

sensitive to patterns of clustering and evenness closer to the tips of the phylogeny 

(Kembel, 2009). We compared these metrics to null communities by randomizing species 

co-occurrences 9999 times while maintaining sample richness and species occurrence 

frequencies. For both of these metrics we calculated a standard effect size (SES, as per 

Gurevitch et al., 1992) based on a comparison of observed values and null values where 

)(

)(

Null

NullObserved

MetricSD

MetricMeanMetric
SES

−
=

 a SES of zero indicates no difference, values 

greater than zero indicates phylogenetic overdispersion and values less than zero 

indicates phylogenetic underdispersion. The net relatedness index (NRI) is calculated as 

the SES of MPD. The nearest taxon index (NTI) is calculated as the SES of MNTD. 

For each site in each sampling period we calculated two complementary functional 

diversity metrics: community-weighted mean (CWM) trait values (Garnier et al., 2004) 

and functional dispersion (FDis; Laliberte and Legendre, 2010) for each trait. CWM trait 

values were calculated as the sum across all species of species’ trait values weighted by 

their relative abundance (Garnier et al., 2004). Following Laliberte & Legendre (2010), 

we calculated FDis as the mean distance of each species, weighted by relative 

abundances, to the centroid of all species in a site. Although there are many metrics of 

functional diversity (reviewed in Mouchet et al., 2010; Schleuter et al., 2010), we focused 

here on FDis because it is independent of species richness, takes into account species 

abundances, and can be used for single traits or multiple traits (Laliberte and Legendre, 

2010). Moreover, Ricotta and Moretti (2011) proposed a unified analytical framework 
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that combines CWM and a close analogue of FDis (Rao’s Q). Functional diversity 

calculations were conducted using the FD package (Laliberte and Legendre, 2010) in R.  

 

Statistical analysis.  

To test whether our diversity metrics (i.e., richness, evenness, Shannon’s diversity, NRI, 

NTD, CWMs, FDis) differed among years and if those differences were mediated by 

refugial area or isolation, we constructed separate generalized linear mixed models 

(GLMM) with each diversity metric as the response variable and response variable with 

year, area, isolation, and all possible interactions of those as predictor variables, and site 

as a random factor – analyses were conducted in JMP version 13.0 (SAS Institute, 2016).  

 

Results 

We found that species richness significantly increased between sampling periods (2007/8: 

43.3±2.9; 2019/20: 50.9±5.2; F1,3=20.67, P=0.02) and that there was a significant 

interaction with area (F1,3=15.29, P=0.03, Fig. 1.2A) where larger sites had a larger 

increase in richness than smaller sites. We found no difference among years in evenness 

(F1,3=1.16, P=0.36) or Shannon’s diversity (F1,3=0.04, P=0.84, Fig. 1.2B & 1.2F), and a 

trend toward increased phylogenetic diversity (NRI: F1,3=9.4, P=0.05, Fig. 1.2C & 1.2G; 

NTD: F1,3=5.51, P=0.10, Fig. 1.1D & 1.1H) among years. All non-significant P values 

are reported in Supplement 1.1.  

 In the CWM analysis, we found a shift toward a more stress tolerant functional 

strategy between sampling periods with a significant decrease in leaf area (F1,3=43.36, 
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P<0.01; Fig. 1.3B & 1.3F), and a trend toward decreasing SLA (F1,3=6.56, P=0.08, Fig. 

1.3C & 1.3G) and increasing LDMC (F1,3=8.44, P=0.06, Fig. 1.2D & 1.2H). However, 

none of these responses were mediated by area or geographic isolation. Height had a 

significant year by area interaction (F1,3=27.99, P=0.01, Fig. 1.3A) where height 

decreased in smaller sites and increased in larger sites between sampling periods and a 

significant year by area by isolation interaction (F1,3=24.45, P=0.02).   

 Lastly, we found FDis of SLA decreased between sampling periods (F1,3=41.67, 

P=0.007, Fig. 1.4C & 1.4G) and that there was a significant year by area interaction 

(F1,3=24.41, P=0.02) where FDis of SLA decreased more in smaller sites (Fig. 1.4C). 

Moreover, height had a significant year by area interaction (F1,3=26.30, P=0.01, Fig. 

1.4A) where FDis decreased in smaller sites and increased in larger sites between 2009 

and 2019 and a significant year by area by isolation interaction (F1,3=35.51, P=0.01). 

Lastly we found no difference among years in the FDis of leaf area (F1,3=5.24, P=0.11, 

Fig. 1.4B & 1.4F) or FDis of LDMC (F1,3=2.41, P=0.22, Fig. 1.4D & 1.4H) and no 

significant interactions with area or isolation.  

 

Discussion 

Overall, we found that taxonomic, phylogenetic, and functional diversity of communities 

in sky-islands of alpine tundra in the Colorado Rocky Mountains are changing and our 

initial observations suggest that landscape context may mediate the ability of refugia to 

withstand the impacts of climate change (Gaston and Blackburn, 1996; Ashcroft et al., 

2009; Keppel et al., 2015). Specifically, we found an increase in species richness, a trend 
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toward increased phylogenetic diversity, a shift toward a more stress tolerant functional 

strategy, and a decrease in the functional dispersion (FDis) of SLA over time. 

Importantly, we found that refugial area mediated some of these responses, where larger 

sites had a larger increase in richness than smaller sites, CWM height decreased in 

smaller sites and increased in larger sites, and FDis of SLA decreased more in smaller 

sites. On the other hand, none of our responses were mediated by geographic isolation, 

which may be due to the rarity of long-distance dispersal events (Tackenberg and 

Stocklin, 2008) for the long-lived, clonally reproducing species which compose alpine 

communities (Forbis, 2003, Rossetto and Kooyman, 2005, Herben et al., 2015 ). 

Collectively, these results suggest that considering the landscape context (area and 

geographic isolation) of refugia may be important for conserving the refugial sites that 

provide the most conservation value.  

 

Changes in Taxonomic Diversity 

Our observation of increased species richness between sampling periods finds mixed 

support in the literature. Tundra wide syntheses of observational studies and global 

change experiments have generally observed decreases in taxonomic diversity as a result 

of shrub expansion due to increasing temperatures and decreasing snow cover duration 

period (Elmendorf et al., 2012; Pearson et al., 2013), and models of climate change 

forecast further losses of species richness as climate change continues to accelerate 

(Nabe‐Nielsen et al., 2017; Niittynen et al., 2020). However, research in alpine tundra 

specifically has found contrasting results. In non-Mediterranean European alpine 
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systems, Steinbauer et al. (2018) found species richness has significantly increased on 

87% of 302 mountain summits since 1871 and that these increases were accelerating 

through time in conjunction with accelerating increases in temperature and precipitation. 

Steinbauer et al. (2018) attributed the increase in species richness to the movement of 

subalpine species into the alpine zone due to the amelioration of harsh abiotic conditions. 

Numerous other studies from the alpine tundra of boreal and temperate Europe 

corroborate these results and interpretation (Stanisci et al., 2005; Gottfried et al., 2012; 

Wipf et al., 2013). Studies in Mediterranean alpine tundra have found more mixed 

responses, with some reporting decreases in species richness (Pauli et al., 2012), and 

other studies showing increases largely driven by the upward movement of thermophilic, 

generalist species (Evangelista et al., 2016; Jiménez‐Alfaro et al., 2014). Fewer studies 

have been conducted in the alpine tundra of western North America and those studies 

also demonstrate mixed support for species richness increases. In support of our results, 

at the Niwot Ridge LTER in the Colorado Rocky Mountains (one of our study sites, 

though we did not use long-term monitoring plots in this study), Spasojevic et al. (2013) 

found a significant increase in species richness over a 21 year period (sampled at 

irregular intervals from 1989 to 2010: 1989, 1990, 1995, 1997, 2006, 2008, and 2010) 

and attributed this trend to the increased establishment of subordinate alpine species as a 

result of increasing temperature, snow deposition, and nitrogen deposition. However, 

Scharnagl et al. (2019) found significant decreases in species richness using a different 

dataset at Niwot Ridge sampled over a 40 year period (sampled every ten years) and 

attributed the change in richness to an increase in shrub cover and a decrease in average 
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snow depth. The contrasting results may be a result of the differing sampling periods 

which exemplifies the need for more research in North American alpine ecosystems as 

these are two of the only published long term monitoring studies focused explicitly on 

community composition within the Rocky Mountains (Elmendorf et al., 2012; Bjorkman 

et al., 2018).  

 

Changes in Phylogenetic Diversity 

In conjunction with the observed increase in species richness between our two sampling 

periods, we also found a marginally significant (P=0.05) increase in phylogenetic 

diversity (using metrics independent of species richness). These patterns suggest that the 

species present within these alpine refugia are shifting toward being more widely 

distributed across the phylogeny, capturing greater variation in evolutionary histories, 

potentially as a result of continued climatic warming relaxing environmental filtering in 

the alpine. Despite the increased interest in linking evolutionary history with climate 

change (e.g., Botero et al., 2015; Harrison et al., 2020) few studies have considered 

changes in phylogenetic diversity in response to climate change within alpine tundra 

ecosystems. In one of the few studies to indirectly address phylogenetic diversity 

changes, Lesica and colleagues found that species with artic or boreal evolutionary 

histories have declined in Glacier National Park (Montana, USA) since 1988, and that 

this decline is worse for dicots than for monocots (Lesica and McCune, 2004; Lesica, 

2014; Lesica and Crone, 2017). While Lesica et al.’s (2004; 2014; 2017) studies point to 

interesting trends in how coarse phylogenetic groupings may mediate responses to 
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climate change, we were unable to find research that analyzed how community level 

phylogenetic diversity in the alpine shifted in response to climate change using common 

metrics of phylogenetic diversity (e.g. Faith’s PD, MNTD, etc.). This is an under-

appreciated aspect of biodiversity change which requires more attention moving forward 

(Gerhold et al., 2015), especially in refugia.  

 

Changes in Functional Diversity 

The shift towards stress tolerant functional traits we observed contrasts with tundra-wide 

syntheses (Gottfried et al., 2012; Pearson et al., 2013; Bjorkman et al., 2018; Steinbauer 

et al., 2018) which have generally found that increased temperatures drive shifts towards 

communities with greater average heights and trait values related to the resource 

acquisitive side of the leaf economics spectrum ( high SLA and Leaf N content, low 

LDMC). However, in those syntheses, soil moisture plays a strong role in mediating the 

effects of regional temperature on functional composition and diversity. For example, 

Bjorkman et al.’s (2018) analysis of 117 tundra sites throughout the northern hemisphere 

found that higher temperatures were only correlated with increases in resource acquisitive 

traits in wetter tundra sites. In sites, where soil moisture was limiting, temperature was 

correlated less positively with increasing heights and stress tolerant functional traits were 

favored (Low SLA and Leaf N, high LDMC). In the mountain ranges of the North 

American West, increased average temperature has been coupled with an overall decline 

in snowpack and earlier melt-out dates (Fyfe et al., 2017; Mote et al., 2018; Rhoades et 

al., 2018). Taken together, these regional climatic changes may reduce available soil 
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moisture during the summer growing season, thus selecting for alpine species possessing 

more stress tolerant functional traits. This is further reinforced by Lesica and McCune’s 

(2004) long term monitoring work in Glacier National Park where shifts towards 

community types associated with lower soil moisture and more stress tolerant functional 

strategies have been observed.  

 

Landscape Context 

In addition to these changes through time, our results suggest a deeper consideration of 

landscape context is important in assessing and conserving refugia. We found that some 

of the variation in taxonomic richness, phylogenetic diversity, functional composition, 

and functional diversity among sampling periods was mediated by site area but not by 

geographic isolation. Site area can mediate changes in biodiversity within refugia through 

several mechanisms. First, larger sites are more likely to contain a greater variety of 

environmental conditions (Bell et al., 1993; Hulshof and Spasojevic, 2020), which may 

buffer environmental change. This may be the case in alpine systems where stark 

topography leads to differential distribution of snow on the landscape, creating strong 

gradients in stress exposure and resource availability and generating a complex mosaic of 

distinct vegetation types which differ greatly in species composition and productivity 

(Bowman and Fisk, 2001; Walker et al., 2001; Bowman et al., 2003; Seastedt et al., 2004; 

Litaor et al., 2008). Second, larger sites may be able to support populations and 

communities of larger size and as community size decreases in smaller refugia, the 

probability of local extinctions is predicted to increase due to demographic stochasticity 
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(Loreau and de Mazancourt, 2008). Third, larger sites may be easier to colonize than 

smaller sites potentially counteracting local extinction (Brown and Kodric-Brown, 1977).   

  Due to the remote locations of our sampling site, we were unable to collect data 

on environmental heterogeneity or community size at the scale necessary to test these 

alternative mechanisms. However, we found that increases in taxonomic richness and 

phylogenetic diversity were greater in larger sky islands and that these sky islands 

seemed to display increased stability in terms of functional composition and diversity. 

For example, CWM values for leaf traits shifted more strongly towards stress tolerant 

functional strategies in smaller sky islands than they did in larger sky islands suggesting 

that increased temperatures and decreased snowpack may have more intense effects on 

smaller sky islands. Furthermore, FDis values for SLA declined substantially for smaller 

sky islands while large sky islands remained relatively constant, indicating a reduction in 

the breadth of functional strategies that small sky islands can support.  

Geographic isolation, on the other hand, did not play a strong role in mediating 

biodiversity change, likely due the importance of clonal reproduction for many alpine 

plants and physical constraints on seed dispersal. In other systems, research has 

demonstrated that a functional tradeoff exists between a species’ ability to locally persist 

through clonal reproduction and its capacity for sexual reproduction and seed dispersal 

(Rossetto and Kooyman, 2005, Herben et al., 2015). For the long-lived perennial plant 

species which compose the majority of alpine flora of the Rocky Mountains, clonal 

reproduction can be just as important as sexual reproduction for recruitment (Angevine, 

1983; Eriksson, 1989), potentially obscuring the influence of seed dispersal, and thus 
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geographic isolation, on biodiversity changes (Forbis, 2003. Furthermore, seed dispersal 

among sky islands is difficult due to the vast distances between areas of suitable habitat 

(Tackenberg and Stocklin, 2008) and the lack long-distance dispersal mechanisms in 

alpine species necessary to traverse these distances (Morgan & Venn, 2017). 

 

Limitations and Future Directions 

While the trends we found are generally supported by the literature, it is important to note 

two potential sources of bias within our data. First, the differences in exact plot locations 

due to inherent inaccuracy of GPS likely led to slightly different sampling locations. In 

this system, where there is high beta-diversity over short distances (Bowman and Fisk, 

2001; Walker et al., 2001; Bowman et al., 2003; Seastedt et al., 2004; Litaor et al., 2008), 

some of the variation we find could be due to altered sampling locations. Because of this 

issue, we examined site level patterns of biodiversity changes instead of plot level 

changes as we are more confident that we accurately resampled each site, if not 

individual plots. Furthermore, a comparison of dominant species (those composing a 

cumulative sum of ~70% of site relative abundance) for each site between sampling 

periods shows that the identity of dominant species is relatively stable and suggests that 

we sampled similar vegetation types in each time period (Supplement 1.2). Interestingly, 

this table qualitatively reinforces the results of our landscape context analysis, with larger 

sites (Niwot, Cornwall, Colorado Mines, Mummy) showing less turnover in dominant 

species identity than smaller sites (Boreas, Buffalo, and Greenhorn). Second, our 

sampling intentionally avoided areas with shrubs to instead focus on biodiversity changes 
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in the herbaceous community. Changes in shrub abundance are a major driver of change 

in the alpine (Elmendorf et al., 2012; Bjorkman et al., 2018) and may explain some of the 

contrasting results found with other studies that include shrubs. Specifically, our data 

does not capture potential shrub encroachment into the alpine and associated changes in 

functional diversity and composition, particularly increases in height, which might 

accompany this. Despite these limitations, our research suggests that the landscape 

context of refugia may be an important factor mediating climate change induced shifts in 

biodiversity patterns.  

We further highlight two important future directions for biodiversity research in 

climate change refugia. First, examining biodiversity patterns across scales (alpha, beta, 

and gamma) and linking these patterns to explicit mechanisms (environmental 

heterogeneity, community size) will provide a clearer picture of how landscape context 

mediates biodiversity change in refugia and how best to conserve refugia. Second,  shifts 

in functional diversity patterns caused by changing climate may be highly influenced by 

belowground traits (Ottaviani et al., 2020). This aspect of functional diversity deserves 

more attention, especially in abiotically stressful systems like alpine tundra where plants 

can allocate up to 80% of biomass to belowground organs (Klimešová et al., 2019). 

 

Conclusion  

Despite the recognized importance of refugia for conserving biodiversity in the face of 

climate change, there is still a need better identify quality refugia (Keppel et al., 2012; 

Keppel et al., 2015, Keppel et al., 2018). Our results suggest that landscape context has 
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the potential to mediate the ability of refugia to withstand the impacts of climate change 

(Gaston and Blackburn, 1996; Ashcroft et al., 2009; Keppel et al., 2015). Moreover, our 

results also highlight that the life history of species in a refugial landscape is important to 

consider. In alpine tundra, where species have long lifespans (Steinger et al., 1996; 

Morris and Doak, 1998), clonal reproduction is common (Angevine, 1983; Eriksson, 

1989), and many species lack the dispersal mechanisms necessary for long distance 

movement (Tackenberg and Stocklin, 2008), we found that area played a stronger role in 

mediating biodiversity change than geographic isolation. In systems with short lived 

annual species, geographic isolation and its influence on dispersal may be relatively more 

important. Future research examining the landscape context of refugia across a broader 

range of ecosystems and species will be critical for generalizing which sites will be most 

buffered from the impacts of climate change and offer the greatest value for conserving 

biodiversity.  
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Figures 

 

Figure 1.1 Map of sky island sampling locations in the Colorado Rocky Mountains 

(USA): 1. Cornwall Mountain (Latitude = 37.38046ºN, Longitude = 106.4802ºW), 2. 

Greenhorn Mountain (37.87668 ºN, 105.0121ºW), 3. East Buffalo Peak (38.99821ºN, 

106.0922ºW), 4. Boreas Peak (39.40397ºN, 105.9821ºW), 5. Colorado Mines Peak 

(39.79991ºN, 105.7594ºW), 6. Niwot Ridge (40.05745ºN, 105.5916ºW), 7. Mummy 

Range (40.5792ºN, 105.7246ºW).  
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Figure 1.2 Variation in taxonomic and phylogenetic diversity patterns among sampling 

periods in relation to site area (A-D) and geographic isolation (E-H). Black points and 

line represent the first sampling period (2007/2008) and the grey points and line represent 

the second sampling period (2019/2020).  
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Figure 1.3 Variation in CWM trait values between sampling periods in relation to site 

area (A-D) and geographic isolation (E-H). Black points and lines represent the first 

sampling period (2007/2008), and the grey points and lines represent the second sampling 

period (2019/2020).  
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Figure 1.4 Variation in functional dispersion (FDis) patterns among sampling periods in 

relation to site area (A-D) and geographic isolation (E-H). Black points and line represent 

the first sampling period (2007/2008) and the grey points and line represent the second 

sampling period (2019/2020). 
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Chapter 2 

Integrating Experimental and Observational Approaches Facilitates Scaling Species 

Interactions to Biodiversity Patterns 

 

Abstract 

Modern coexistence theory posits that horizontal species interactions are governed by a 

balance between niche and fitness differences. To investigate how these mechanisms 

determine the outcome of species interactions and shape local scale biodiversity patterns, 

research has typically focused on either: 1) simplified experimental systems that test 

specific mechanisms; or 2) observational studies where these processes are inferred from 

functional trait or phylogenetic patterns. While each approach has yielded valuable 

insights, both have drawbacks and few studies have integrated these approaches to 

explicitly connect mechanistic processes with observed biodiversity patterns. To this end, 

we paired a three-year neighbor removal experiment involving 22 species pairs in an 

abiotically mild community, with spatial point pattern analyses conducted in 8 spatially 

explicit 2m x 2m plots arrayed across a stress-resource gradient in the alpine tundra of 

Colorado. In the neighbor removal experiment, we found that species interactions were 

largely determined by hierarchical differences in plant height/leaf area and dissimilarity 

in leaf area. These same traits were also most important for predicting patterns of 

pairwise spatial associations across community types in the observational study, 

suggesting some degree of congruence between experimental and observational 

approaches. However, the spatial point pattern analysis also identified community 
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specific context dependence missing from the experimental approach. Specifically, in the 

abiotically mild moist meadow community, hierarchical differences in plant height and 

dissimilarity in leaf area had the largest effects on pairwise spatial association patterns, 

while in the abiotically harsh dry meadow and fellfield communities we found the 

reverse, with dissimilarity in height and hierarchical differences in leaf area having the 

largest effects. By coupling process-based experiments and pattern-based observational 

approaches, we were able to experimentally test coexistence mechanisms, demonstrate 

how these mechanisms manifest as functional trait patterns in the surrounding natural 

community, and highlight context dependent responses based on local abiotic conditions. 

Taken together our results suggest that future research should prioritize process-to-pattern 

mapping by coupling experiments which test mechanisms with observational studies that 

quantify real-world biodiversity patterns. 

 

Introduction 

A fundamental goal of ecology is understanding how species interactions shape local 

patterns of biodiversity (Gause, 1934; Macarthur and Levins, 1967; Chesson, 2000; 

Sutherland et al., 2013; Mittelbach and McGill, 2019). In recent decades, modern 

coexistence theory has helped resolve how relationships among species determine the 

outcome of interactions through a balance of niche and fitness differences (Chesson, 

2000; HilleRisLambers et al., 2012). Niche differences reflect discrepancies in the 

strength of interspecific vs intraspecific competition such that when intraspecific 

competition is stronger than interspecific competition, species at low abundance gain a 
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demographic advantage, which promotes stable multi-species coexistence (Chesson, 

2000). Fitness differences, on the other hand, capture differences in absolute competitive 

ability, where one species maintains an advantage over its competitors regardless of its 

relative abundance, leading to competitive exclusion when fitness differences are large 

and coexistence when fitness differences are small (Chesson, 2000). Decades of 

experiments examining paired species interactions have refined our understanding of 

niche and fitness differences and the best methods for quantifying these mechanisms 

(Kraft et al., 2015; Hallett et al., 2019; Pérez-Ramos et al., 2019; Wainwright et al., 2019; 

Spaak and De Laender, 2020; Spaak et al., 2023). However, challenges remain for scaling 

up these experiments to observed patterns of biodiversity in nature. While experiments 

are an invaluable tool for isolating and testing mechanisms, they necessarily use highly 

simplified designs (e.g., often only two species interacting at a time) and involve a 

limited number of species from the species pool (Adler et al., 2013; Kraft et al., 2015; 

Pérez-Ramos et al., 2019; Chang et al., 2023). These limitations make it difficult to 

translate the results of experiments on to highly complex natural communities which may 

be composed of hundreds of species and have even led some to argue that experimental 

approaches are so contingent and localized as to be useless for forming broader 

generalizations about species coexistence (Lawton, 1999; Simberloff, 2004). 

 A contrasting approach for investigating coexistence mechanisms is the use of 

observational studies, where the outcome of coexistence mechanisms in natural 

communities is inferred through the interpretation of functional trait patterns (Spasojevic 

and Suding, 2012; Yin et al., 2021; Perea et al., 2022). Traits are thought to provide 
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effective proxies for coexistence mechanisms because they are linked to fitness and 

mediate how species interact with each other and their abiotic environment (Adler et al., 

2013; Garnier et al., 2016; Mcgill et al., 2006; Spaak et al., 2023). For example, niche 

differences may be represented via trait dissimilarity, where species with more similar 

traits are expected compete more strongly due to greater niche overlap (Diamond, 1975; 

MacArthur, 1958; Macarthur & Levins, 1967; Mason et al., 2011; Stubbs & Bastow 

Wilson, 2004). Subsequently, if niche differences are the primary mechanism 

determining the outcome of species interactions in an ecological community, patterns of 

trait overdispersion may be observed as species with similar traits segregate to avoid 

strong competition (Weiher and Keddy, 1995; Velázquez et al., 2015; He and Biswas, 

2019). In contrast, fitness differences are often represented via a trait hierarchy where 

species possessing dominant trait values maintain a competitive advantage over species 

with subordinate trait values (Kraft et al., 2014, 2015; Funk and Wolf, 2016; Kunstler et 

al., 2016; Carmona et al., 2019). This results in the intensity of competition increasing as 

trait similarity decreases and may result in patterns of trait clustering (underdispersion) at 

the community level as species possessing similar traits coexist due to neither one being 

able to establish a competitive advantage (Scheffer and van Nes, 2006; Mayfield and 

Levine, 2010; Kunstler et al., 2012; Yin et al., 2021). While numerous studies have 

leveraged trait patterns to explore the supposed action of coexistence mechanisms in 

nature (Kunstler et al., 2012, 2016; Spasojevic and Suding, 2012; He and Biswas, 2019; 

Yin et al., 2021), these studies have been widely criticized for their ensconced 

assumptions, some of which have limited support  (Ben-Said, 2021; Gerhold et al., 2015; 
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Münkemüller et al., 2020). One notable problem is that identical trait patterns can result 

from multiple distinct processes. For example, environmental filtering, where harsh 

abiotic conditions limit community membership to a subset of the regional species pool, 

can also produce patterns of trait clustering indistinguishable from those generated via 

trait hierarchies (Mayfield and Levine, 2010; Spasojevic and Suding, 2012; Cadotte and 

Tucker, 2017). Thus, while observational approaches examine natural communities in 

their full complexity, they cannot definitively attribute patterns to specific coexistence 

mechanisms (but see: Suding et al., 2003 Gross et al., 2009).  

Increasingly, integration of process-focused experiments and pattern-focused 

observational studies has been advanced as a way to mitigate the weaknesses and 

highlight the strengths of each of these approaches (Gerhold et al., 2015; Münkemüller et 

al., 2020). Critically, functional traits provide an avenue for linking experimental and 

observational approaches since trait dissimilarities and trait hierarchies (acting as proxies 

for niche and fitness differences respectively) can be used to simultaneously evaluate 

changes in species demography/performance and species co-occurrence patterns and can 

be applied across species (McGill et al. 2010). Thus, explicit process-to-pattern mapping 

in a specific community can achieved via a two-step process where: 1) researchers select 

a subset of species from the community of interest and conduct an experiment which 

assesses species demography/performance as a function of relevant trait similarity and 

trait hierarchy metrics; and then 2) researchers conduct an observational study of trait 

patterns to determine whether those same trait metrics are correlated with species co-

occurrence patterns in natural communities. Employing both experiments and 
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observational studies within a single system ensures that specific mechanisms are 

rigorously tested and that these mechanisms provide relevant insights into the assembly 

of natural communities. Despite recognition of the need for this type of integrative 

approach (Gerhold et al., 2015; Münkemüller et al., 2020), studies which use both 

experiments and observational studies to explore coexistence mechanisms are rarely 

conducted.  

Here we examine how trait dissimilarity, trait hierarchies, and abiotic gradients 

shape biodiversity patterns in alpine tundra plant communities by coupling an in-situ 

neighbor removal experiment with spatial point pattern analyses of eight 4m2 plots 

arrayed along a stress-resource gradient. By employing the dual approach of experiment 

and observational study, we can first test the role of trait dissimilarity and trait hierarchies 

as mechanisms shaping plant performance and then map these mechanisms directly onto 

species co-occurrence patterns in the surrounding community. Specifically, we ask three 

questions: 1) How do trait similarities or hierarchies impact species performance in our 

experiment, and which traits best capture these mechanisms? 2) Do these same trait 

mechanisms predict pairwise spatial association patterns in natural communities? 3) Do 

the trait mechanisms which predict pairwise spatial association patterns differ across 

alpine community types?  
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Methods 

Study Site 

This study was conducted in alpine tundra at the Niwot Ridge Long Term Ecological 

Research site (40.03’ N, 105.35’ W) in the Front Range of the Colorado Rocky 

Mountains, approximately 40 km West of Boulder, CO USA. Niwot Ridge has a very 

short growing season (8-10 weeks, June-August) and a long winter, leading to an average 

annual temperature of -2.2 C and an average annual precipitation of 930 mm that 

predominantly falls as snow (~75%) (Williams et al., 2011; McGuire et al., 2012; Kittel 

et al., 2015; Knowles et al., 2015; Bueno de Mesquita et al., 2018). Annual wind speeds 

on Niwot Ridge average 8.1 m s-1 and winds typically blow from west to east (Litaor et 

al., 2008). Due to the stark topography and high wind speeds on Niwot Ridge, snow 

redistribution via wind is an important process for determining where snow accumulates 

on the landscape with cascading impacts on relative levels of soil nutrients, soil moisture, 

and growing season length (Greenland et al., 1984; Bowman and Seastedt, 2001; 

Williams et al., 2009). This high environmental heterogeneity in turn generates high plant 

beta-diversity, with near complete species turnover and differences of up to two orders of 

magnitude in productivity across gradients as short as 10 m (Spasojevic and Suding, 

2012). Some areas have low snow accumulation (dry meadow communities) or close to 

no snow accumulation (fellfield communities) and contain stress-tolerant species with 

low levels of productivity due to moisture limitation, nutrient limitation, and high wind 

speeds (Walker et al., 1993; Bowman and Seastedt, 2001). Areas with intermediate levels 

of snow (moist meadow communities) are more abiotically mild and contain more 
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resource acquisitive species with higher levels of primary productivity  (Walker et al., 

1993; Bowman and Seastedt, 2001).  

 

Trait Dissimilarity, Trait Hierarchies, and Phylogenetic Relatedness 

For both our experiment and observational study (described below), we first quantified 

trait hierarchies and trait similarities between all possible species pairs in each study 

using published trait data on four traits for which there is complete information in our 

trait database: plant height, leaf area, specific leaf area (SLA), and chlorophyll content 

(Spasojevic et al. 2022). Height is indicative of a species’ competitive ability for light 

(Westoby, 1998). SLA and chlorophyll content are related to the leaf economics 

spectrum, which characterizes a species’ capacity for stress tolerance vs resource 

acquisition (Wright et al., 2004; Osnas et al., 2013). Leaf area is indicative of a species’ 

water/energy balance, linked with both rates of transpiration and photosynthesis (Ackerly 

et al., 2002; Pérez-Harguindeguy et al., 2016). Trait values for each species were 

calculated as the mean of all individual trait measurements for that species across any 

community type in the Niwot Ridge trait database as we did not have community specific 

measurements for all species. Trait hierarchies were quantified as directional trait 

differences by subtracting the trait value of one species from its companion’s trait value, 

producing a metric which contains information on both the direction and magnitude of 

trait difference between both species. Trait dissimilarities were quantified by calculating 

the absolute value of directional trait values (i.e., Euclidean distance), and thus only 

reflect the magnitude, not the direction, of trait difference.  
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 In addition to calculating individual trait hierarchies and dissimilarities, we also 

calculated phylogenetic relatedness among all species pairs. Phylogenetic relatedness is 

often used as a substitute for trait similarity, as closely related species are thought to 

possess similar traits due to phylogenetic niche conservatism (Webb et al., 2002; Losos, 

2008; Cavender‐Bares et al., 2009). To calculate phylogenetic relatedness, we first built a 

phylogeny for all 143 species contained in the Niwot Ridge trait database (Spasojevic et 

al. 2022) using the mega-phylogeny developed by Jin and Qian (2019) as a backbone. We 

subset this mega-phylogeny using the “phylo.maker” function from the “V.PhyloMaker” 

package (Jin and Qian, 2019) and resolved any remaining genus level polytomies using 

the “multi2di” package in the “ape” package (Paradis et al., 2004). Importantly, resolving 

polytomies in this way does not affect branch lengths (Paradis et al., 2004). Finally, we 

estimated phylogenetic relatedness among all species pairs as cophenetic distance using 

“cophenetic.phylo” function in the “ape” R package (Paradis et al., 2004).  

To determine whether phylogenetic relatedness was correlated with functional 

similarity for any of our 4 traits, we examined patterns of phylogenetic signal for each 

trait by calculating Pagel’s lambda (Pagel, 1999) using the “phyloSignal” in the function 

“phylosignal” package in R (Keck et al., 2016). Pagel’s lambda ranges from 0 to 1, with 0 

indicating no phylogenetic signal and values close to 1 indicating traits evolution under 

Brownian motion model (Pagel, 1999). For studies of ecological communities, this metric 

has been found to accurately reflect patterns of phylogenetic signal (Molina-Venegas & 

Rodríguez, 2017)  and robustly handle the inclusion of polytomies (Münkemüller et al., 

2012). Additionally, Pagel’s lambda has been previously used to quantify phylogenetic 
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signal in alpine plants on Niwot Ridge (Spasojevic and Weber, 2021). We calculated 

Pagel’s lambda at four levels: 1) across the entire Niwot trait database; 2) for species 

used in our neighbor removal experiment; 3) across all communities in our point pattern 

analysis; 4) within each community type (fellfield, dry meadow, moist meadow) in our 

point pattern analysis (Supplement 2.1). 

  

Experimental Study – Neighbor Removal 

To examine how trait dissimilarities and trait hierarchies affect plant performance, we 

established a neighbor removal experiment involving a series of “interaction arenas” 

located at the interface between dry- and moist-meadow tundra on Niwot Ridge and 

monitored changes in the biomass of focal individuals across three years (2018-2020). 

Interaction arenas were installed in 2018 and constructed using ~10cm (4 inch) diameter 

PVC collars hammered approximately 10cm into the ground to isolate two naturally 

growing individuals of different species from their surrounding biotic environment, 

placing them into direct interaction. The 10cm diameter arena was large enough to 

contain two interacting alpine plants, which are relatively small, and deep enough to 

isolate the root interaction zone from the surrounding belowground community (Ashton 

et al., 2008). If individuals other than the two focal individuals were present within the 

interaction arenas, we removed their aboveground biomass using scissors upon 

installation and then maintained this removal for the duration of experiment. Many, but 

not all, alpine species are clonal and reproduce vegetatively through the growth of 

rhizomes (Bowman and Seastedt, 2001), so to maintain consistency across species, only 
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single clonal ramets were considered as focal individuals. All species pairs included in 

the experiment were composed of one individual of Artemisia scopulorum (ARTSCO 

hereafter; Asteraceae) and another individual from one of 22 species (See Supplement 

2.1). Each of the 22 species pairings had 15 co-located interaction arenas (330 total 

arenas): 5 replicates containing an ARTSCO individual and an individual from one of 

paired species, 5 replicates containing ARTSCO growing alone, and 5 replicates 

containing the paired species growing alone for a total of 440 individuals across all 

interaction arenas. ARTSCO was included in all species pairs to act as a control for the 

strength of competition (Funk & Wolf; 2016), as it is one of the few species which grows 

abundantly across the tundra (Walker et al., 1993).  

For all individuals, we tracked changes in biomass over the 3-year duration of the 

experiment. In these long-lived, perennial alpine plant species which rarely sexually 

reproduce, changes in biomass can serve as an effective proxy for performance and 

ultimately fitness (Sultan, 2001). However, because measuring aboveground biomass 

requires the destructive harvest of individuals, for the first two years (2018-2019) of the 

study we collected allometric measurements on all focal individuals which are putatively 

correlated with biomass including: overall height, vegetative height, longest leaf, and 

number of leaves. Overall height was recorded as the distance from the ground to the 

highest tissue, while vegetative height was recorded as the distance from the ground to 

highest photosynthetically active tissue. The longest leaf measurement was recorded as 

the distance from the tip of the leaf to the petiole-stem connection, while the number of 

leaves was determined by simple count. To determine which allometric measurement was 
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most predictive of biomass in each species, we further collected the above mentioned 

allometric measurements on between 15-40 individuals of each species collected from 

areas adjacent to each species interaction arenas. We then harvested the aboveground 

biomass of these individuals, placed the samples in a 60ºC drying oven for 24 hours, and 

weighed their dried biomass. For each species, we performed linear regressions to assess 

correlations between each of the four allometry measurements and dried biomass, using 

the line of best fit for the allometric measurement which was most predictive of biomass 

(i.e., highest adjusted-R2 value) to retroactively estimate the biomass of focal individuals 

in the interaction arenas during previous years of the experiment (i.e., 2018-2019) 

(Supplement 2.1). At the end of the experiment (2020), we harvested the aboveground 

biomass of all focal individuals in the interaction arenas, placed the samples in a 60ºC 

drying oven for 24 hours, and weighed their dried biomass.  

Next, we quantified how interactions between focal individuals affected changes 

in biomass by calculating relative interaction index scores (RII), which capture how 

individuals of each species performed when grown in paired vs isolated arenas. For 

individuals which survived the full 3 years of the experiment’s duration (Total = 276/440, 

62.7%; ARTSCO = 130/220, 59.1%; non-ARTSCO = 146/220, 66.4%) we calculated 

biomass change by subtracting biomass at the end of experiment (year 3, 2020) from 

biomass at the beginning of the experiment (year 1, 2018). Measured biomass was used 

for 2020 values, while allometric estimates of biomass were used for 2018 values. 

Because many individuals lost biomass over the course of the experiment, we added a 

constant of 1 to all values to ensure all biomass change values were positive while 
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retaining their position relative to each other. We then calculated RII scores using the 

following equation 𝑅𝐼𝐼 =  
(𝑃−𝐴𝑚𝑒𝑎𝑛) 

(𝑃+𝐴𝑚𝑒𝑎𝑛)
 where (P) stands for the biomass change value of 

an individual grown in a paired arena (i.e., interacting with an individual of another 

species) and (Amean) stands for the mean biomass change of all individuals of that same 

species grown isolated arenas (i.e., not interacting with an individual of another species) 

(Armas et al., 2004; Carmona et al., 2019). RII is centered at 0 and symmetrically 

bounded with a minimum of -1 and maximum of 1, with negative RII values indicating 

that biomass mass changes were more negative in paired arenas than in isolated arenas 

(i.e., competition), and positive values indicating that biomass changes were more 

positive in paired arenas than in isolated arenas (i.e., facilitation) (Armas et al., 2004; 

Carmona et al., 2019). 

Finally, we examined how trait hierarchies and trait similarity between species 

pairs affected RII using multi-model inference methods following the approach outlined 

in Carmona et al. (2019). To do this, we first filtered out RII values for all ARTSCO 

individuals, retaining only RII values for species paired with ARTSCO (N = 67) to 

investigate interaction responses (Funk & Wolf, 2016). We then built a global linear 

mixed effects model using the “lme4” R package with RII as the response variable, while 

phylogenetic relatedness, trait similarities, and trait hierarchies for all 4 traits (height, leaf 

area, SLA, Chlorophyll Content) served as fixed effects (Bates et al., 2014). We also 

included focal species identity as a random effect. We then used the “dredge” function in 

the R package “MuMIn” to generate all possible subsets of this global model and rank 

them according to AICc score (Barton 2020). We constrained subset models so that they 
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could only retain either a hierarchy or dissimilarity term for each trait (e.g., if leaf area 

hierarchy was included, then leaf area dissimilarity was not; Carmona et al., 2019). We 

selected all models that had AICc scores within 6 points of the model with the lowest 

AICc score for model averaging. For model averaging, we examined both conditional and 

full averages of parameter coefficients. Conditional averages are calculated using only 

using models which include the parameter of focus, while full averages are calculated 

using the “zero method” which assigns values of 0 to parameter coefficients when they 

are missing from subset models, and thus, full averages represent more conservative 

estimates of parameter significance (Grueber et al., 2011). Lastly, we used the 

“r.squaredGLMM” from MuMIn to obtain marginal and conditional R-squared values for 

the global model (Barton 2020).  

 

Observational Study - Spatial Point Pattern Analysis 

To determine how the effects of species interactions manifest as spatial co-occurrence 

patterns at the community level, we analyzed how spatial association patterns between 

pairs of alpine species changed as a function of trait hierarchies and trait dissimilarities. 

We used spatially explicit species composition data collected by Bowman and Swatling-

Holcomb (2018) for eight 2m x 2m plots arrayed across three community types, 

representing an abiotic stress-resource gradient (2 in moist meadow, 3 in dry meadow, 

and 3 in fellfield). In each of these plots, the spatial location (x-y coordinates in 

centimeters) and species identity of all individuals were recorded (more detailed field 
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methods can be found in Bowman & Swatling-Holcomb 2018; a list of species retained 

for analysis can be found in Supplement 2.3).  

 We used this spatially explicit species composition data to quantify spatial 

associations between all pairs of species by calculating the bivariate pair correlation 

function (pcf) gi,j(r) for a spatial window of 0-5cm around each focal species using the 

programitta spatial point pattern analysis program (Wiegand and Moloney, 2013; 

Velázquez et al., 2016; Wiegand et al., 2017). The pcf gi,j(r) measures the density of 

individuals of species j around focal individuals of species i at a given distance of r 

(Wiegand and Moloney, 2013; Wiegand et al., 2017). We chose to set r = 0-5cm, as this 

produces a 10-cm diameter circle around individuals of the focal species, which is 

analogous to the size of the interaction arenas used in our neighbor removal experiment. 

Furthermore, we restricted our analysis of species pairs to only include those with at least 

50 individuals per species per plot following the methods and rationale of Bowman & 

Swatling-Holcomb (2018). This resulted in 460 total species pairs, with 184 in fellfield, 

216 in dry meadow, and 60 in moist meadow. Reciprocal species pairs were retained for 

analysis (i.e., species i vs species j and species j vs species i) as species interactions may 

by asymmetric (Yin et al., 2021). We then calculated the standardized effect size for each 

species pair's pcf by comparing observed pcf values to 199 null model simulations. We 

generated null models by keeping the locations of species i individuals fixed while 

moving species j using the toroidal shift method, which removes the effects of species 

interactions by randomizing the location of species j with respect to species i while 

retaining the structure of species j individuals with respect to each other (Lotwick and 
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Silverman, 1982). Positive pcf SES scores indicate spatial attraction between species 

pairs, while negative pcf SES scores indicate spatial repulsion between species pairs 

(Wiegand and Moloney, 2013; Wiegand et al., 2017). SES scores that have an absolute 

value larger than 1.96 indicate that observed pcf value is outside the 95% confidence 

intervals generated by the null model simulations. SES scores greater than 1.96 indicate 

that attraction between species is significantly different from random while SES scores 

lower than -1.96 indicate that repulsion between species is significantly different from 

random.  

 To determine how pairwise spatial associations changed as a function of trait 

dissimilarities and hierarchies, we paired the conceptual framework developed by Yin et 

al., (2021) with multi-model inference methods. Within Yin et al.’s (2021) conceptual 

framework, trait dissimilarity metrics alone (i.e., not trait hierarchies) are initially used to 

identify relationships between traits and pairwise spatial associations. Positive 

correlations between trait similarity and spatial associations (i.e., spatial aggregation of 

species with different traits), indicate the action of limiting similarity, while negative 

correlations (i.e., spatial aggregation of species with similar traits) could indicate either 

the action of trait hierarchies or environmental filtering, necessitating further testing 

(described in the next paragraph). We implemented this approach by first constructing a 

global linear mixed effects model using lme4 where pcf SES values from all community 

types served as our response variable, while trait dissimilarity for the four traits, 

phylogenetic relatedness, and community served as fixed effects (Bates et al., 2014). 

Additionally, interactions between trait dissimilarity/phylogenetic relatedness and 
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community were included as fixed effects. Treatment species nested within focal species 

identity and plot ID were included as random effects. To determine which traits were best 

supported, we used the same methods described in the experimental study section to 

generate all possible model subsets, select the best model subsets (top 6 AICc), and 

calculate average model parameter coefficients. We also used the “partR2” function from 

the PartR2 package to evaluate how much variance was uniquely explained by different 

parameters within the global model (Stoffel et al., 2021). Because interaction effects 

between trait metrics and community were found to explain large amounts of variation in 

pairwise spatial associations in the across-community global model, we then created 

global models for each community type (moist meadow, dry meadow, and fellfield). 

These within-community models followed the same model structure as the across-

community model (except for the exclusion of the community fixed effect and interaction 

effects between traits and community) and we performed the same model averaging 

procedure as described above.  

If trait parameters within our community specific models had negative 

coefficients with 95% confidence intervals that did not overlap zero (indicating strong 

spatial aggregation of species with similar traits), we conducted further testing to 

determine whether this relationship resulted from trait hierarchies or environmental 

filtering following Yin et al., (2021). For trait parameters which had negative coefficients 

(e.g., height in moist meadow plots), we conducted linear regressions which assessed 

how pcf SES values changed as a function of either trait hierarchies or trait dissimilarity 

for each species in each community where it occurred. We then assessed differences in 
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the absolute values of trait hierarchy and dissimilarity coefficients across all species-level 

models for each trait by community combination using paired t-tests (e.g., height 

hierarchy vs height dissimilarity model for moist meadow species). If the absolute value 

of trait hierarchy coefficients was significantly higher than trait dissimilarity coefficients 

for these species-level models, then we interpreted this as evidence that trait hierarchies 

were driving the negative relationship between trait similarity and pairwise spatial 

associations in the within-community models. Alternatively, if the difference between the 

absolute values of trait hierarchy and trait dissimilarity coefficients was insignificant or if 

trait dissimilarities were significantly larger, then we interpreted this as evidence for 

environmental filtering.  

 

Results 

Phylogenetic Signal 

Across all species used in the neighbor removal experiment or the point pattern analysis 

observational study (both across and within community types), no traits showed 

significant phylogenetic signal. Across all species in the Niwot trait database, we found 

evidence of significant phylogenetic signal for leaf area (P < 0.01, Table 1) and 

chlorophyll content (P = 0.04, Supplement 2.1). While leaf area showed signal close to 

what is expected under a Brownian Motion model of trait evolution (Pagel’s λ = 0.98,), 

phylogenetic signal for chlorophyll content was much weaker (Pagel’s λ = 0.28). No 

other trait exhibited phylogenetic signal across the database.  
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Experimental Study - Neighbor Removal 

We found that trait dissimilarities, trait hierarchies, and phylogenetic relatedness (fixed 

effects) explained 32.7% of the variation in relative interaction index based on the global 

model (RII; R2
c = 32.9%). Next, using multi-model inference, we found that leaf area 

dissimilarity (Figure 2.1A), leaf area hierarchy ( Figure 2.1B), and height hierarchy 

(Figure 2.1C) parameters had the highest sums of AICc weights (i.e., importance) across 

the 56 models in the top 6 AICc subset and had 95% confidence intervals which did not 

contain zero when examining conditional coefficient averages (i.e., coefficient averages 

calculated using only subset models which contain these trait parameters; Supplement 

2.4). More specifically, individuals belonging to species which had dissimilar leaf area, 

larger leaf area, and greater height in comparison to ARTSCO tended to gain biomass 

relative to their controls, while individuals belonging to species with similar leaf area, 

smaller leaf area, and lesser height tended to lose biomass. It is important to note that the 

more conservative full coefficient averages (i.e., those calculated using the “zero 

method”; Grueber et al., 2011) indicated that no model parameters had confidence 

intervals which did not overlap zero. However, we use conditional coefficient averages 

here, as the goal of our of the experiment was to identify trait mechanisms which affect 

plant performance and determine if they match those observed in the observational study, 

not to determine which of the significant parameters has the largest effect on plant 

performance (Grueber et al., 2011).   
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Observational Study - Point Pattern Analysis 

 Across all alpine community types, we found that neutral pairwise spatial associations (-

1.96 < pcf SES <1.96) were the most common, comprising 81.7% of the total, while 

significant positive (pcf SES> 1.96) and negative associations (pcf SES < -1.96) made up 

14.3% and 3.9% respectively (Figure 2.2A). The proportion of significant positive 

associations increased with environmental stress, reaching the highest level in the 

abiotically harsh fellfield (20.7%), intermediate in dry meadow (11.6%), and lowest in 

the abiotically mild moist meadow (5%). Negative associations showed the reverse trend 

with the highest proportion in the moist meadow (16.7%), intermediate in the dry 

meadow (3.2%), and lowest in the fellfield (<0.01%).  

 Next, in the across-community global model, we found that trait dissimilarity, 

phylogenetic relatedness, and community type (fixed effects) explained 28.2% of the 

variation in pairwise spatial associations (R2
c = 44.3%). More specifically, multi-model 

inference (using full coefficient averages) indicated that leaf area dissimilarity, height 

dissimilarity, phylogenetic relatedness, and community type parameters were highly 

important across the 3 models in the top 6 AICc subset and had 95% confidence intervals 

which did not overlap 0 (Supplement 2.5). Interaction effects between dissimilarity 

metrics and community type were also highly important for all metrics except chlorophyll 

content (Supplement 2.5). Furthermore, we found that these interaction effects explained 

a much larger fraction of variation in pairwise spatial associations (phylogenetic 

relatedness x community semi-partial R2 = 0.032; leaf area dissimilarity x community 

semi-partial R2 = 0.069, height dissimilarity x community semi-partial R2 = 0.069, SLA 
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dissimilarity x community semi-partial R2 = 0.05; Figure 2.2B) than first order 

dissimilarity effects alone (all first order trait metrics had semi-partial R2 <0.01; Figure 

2.2B), indicating that relationships between traits and pairwise spatial associations 

differed depending on community type.  

Multi-model inference for the within-community models (using full coefficient 

averages) demonstrated how the direction and magnitude of these relationships shifted 

across communities. In the moist meadow (global model: R2
m = 58.2%; R2

c = 88.6%; 

Figure 2.2C), we found that species pairs with similar heights tended to be spatially 

clustered (i.e., negative coefficient), while species pairs with similar leaf areas tended to 

be spatially over-dispersed (i.e., positive coefficient), as indicated by the high importance 

of both trait parameters across the 8 models in the top 6 AICc subset and 95% confidence 

intervals which did not overlap zero. Additionally, we found that more closely related 

species (i.e., phylogenetic relatedness) showed a slight trend towards spatial clustering. In 

the dry meadow (global model: R2
m = 12.8%, R2

c = 39.1%; Figure 2.2D), we observed the 

reverse pattern for leaf area across 12 models in the top 6 AICc subset, where species 

pairs with similar leaf area values tended to be spatially clustered. Similarly, in the 

fellfield (global model: R2
m = 21.8%, R2

c = 26.1%; Figure 2.2E), we found spatial 

clustering of species pairs with respect to leaf area and additionally observed spatial 

overdispersion for height and SLA across 4 models in the top 6 AICc subset.  

 Finally, we found that slopes of trait hierarchies had significantly larger absolute 

values than trait dissimilarities in 2 of 3 cases when comparing species-level hierarchy 

and dissimilarity models for trait metrics which displayed significant negative 
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coefficients in the within community models described above (i.e., height in moist 

meadow, leaf area in fellfield and dry meadow). Specifically, in the moist meadow, we 

found that the magnitude of slopes from height hierarchy models were significantly 

greater than slopes from height dissimilarity models (t-test: P = 0.02; Figure 2.3A). 

Similarly, in the dry meadow, slopes from leaf area hierarchy models had larger 

magnitudes than slopes from leaf area dissimilarity models (t-test: P < 0.01; Figure 2.3B). 

This suggests that hierarchical competition involving these traits, not environmental 

filtering, likely drives spatial clustering of species pairs in each respective community. In 

contrast, in the fellfield, slopes for leaf area hierarchy models were not significantly 

different than slopes for leaf dissimilarity models (t-test: P = 0.47; Figure 2.3C) 

suggesting environmental filtering drives spatial clustering of leaf area in this 

community. Slopes for each species level model can be found in Supplement 2.6. 

 

Discussion 

Process-based experiments and pattern-based observational studies have played vital 

roles in advancing our understanding of species interactions and biodiversity patterns, but 

each method has flaws, which can only be resolved through the integration of both 

approaches (Gerhold et al., 2015; Münkemüller et al., 2020). By coupling a neighbor 

removal experiment with an observational study using point pattern analysis, we were 

able to identify trait-based mechanisms affecting the performance of interacting species 

and then show how these mechanisms relate to patterns of species co-occurrence in the 

surrounding community. Specifically, in the neighbor removal experiment, we found that 
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height hierarchy, leaf area hierarchy, and leaf dissimilarity predicted changes in biomass 

among interacting species. Furthermore, our observational study confirmed the 

importance of height and leaf area but also highlighted how relationships between these 

traits and pairwise spatial associations shifted across community types, where height 

hierarchy and leaf area dissimilarity best explained associations in moist meadow, leaf 

area hierarchy best explained associations in dry meadow, and height dissimilarity and 

leaf area environmental filtering best explained associations in fellfield. These changes 

suggest that traits may relate to coexistence mechanisms differently depending on abiotic 

conditions (Pérez-Ramos et al., 2019). Below, we first independently discuss the results 

of the neighbor removal experiment and observational study, before integrating these two 

approaches to provide a more holistic understanding of species interactions and 

biodiversity patterns in the alpine tundra. This integration highlights how experimental 

and observational approaches can be used in concert to generate insights that neither 

method alone could provide. 

  

Experimental Study - Neighbor Removal 

Our findings that height hierarchy, leaf area hierarchy, and leaf area dissimilarity 

simultaneously determined patterns of biomass change in our neighbor removal 

experiment add to a growing body of evidence demonstrating that plant size traits are 

often related to performance among interacting species (Alexander et al., 2015; Kraft et 

al., 2015; Carmona et al., 2019; Ferenc and Sheppard, 2020). Evidence for size-based 

competitive hierarchies is widespread, with larger plant species (e.g., taller, larger leaf 
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size, larger root systems) exhibiting a competitive advantage over smaller plant species 

across a variety of systems including grasslands (Carmona et al., 2019; Kraft et al., 2015; 

Pérez-Ramos et al., 2019), vernal pools (Kraft et al., 2014), novel ecosystems composed 

of invasive species (Ferenc and Sheppard, 2020), and alpine tundra (Alexander et al., 

2015). Competitive hierarchies based on height are especially common, as height 

mediates the ability of plant species to access light, with taller plants often achieving 

higher levels of photosynthesis, biomass accumulation, and relative fitness in comparison 

to shorter plants, (Craine & Dybzinski, 2013; Falster & Westoby, 2003; Westoby, 1998). 

Larger leaf area may offer a similar photosynthetic advantage, establishing a hierarchy 

where species with larger leaves attain competitive dominance by capturing more light 

and shading out smaller leafed competitors (Anten, 2005; Craine & Dybzinski, 2013). 

However, the importance of leaf area dissimilarity in our experiment suggests that 

limiting similarity also plays a role in determining plant performance in the alpine tundra, 

with species potentially partitioning available light through differentiation in leaf size 

(Anten, 2005; Craine & Dybzinski, 2013). Taken together, the results of this experiment 

suggests that multiple coexistence mechanisms operate simultaneously, and that while 

tall species have a competitive advantage, species that can partition niche space with tall 

species on the basis of leaf area can coexist.  

 

Observational Study – Point Pattern Analysis 

Our observational study strengthens the conclusions of previous point pattern research in 

alpine tundra, demonstrating that neutral, positive, and negative pairwise spatial 
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associations compose the largest, intermediate, and smallest proportions of association 

types respectively (Bowman and Swatling-Holcomb, 2018; Losapio et al., 2018). Our 

results also support a trend towards increasing positive associations and decreasing 

negative associations with mounting abiotic stress (moist meadow < dry meadow < 

fellfield) which has previously been detected in systems with severe abiotic conditions 

like alpine tundra and deserts (Bowman & Swatling-Holcomb, 2018; López et al., 2016). 

Overall, this trend agrees with predictions generated under the stress gradient hypothesis 

and reinforces research demonstrating an important role for positive species interactions 

in alpine tundra (Maestre et al., 2009; Butterfield et al., 2013; Kikvidze et al., 2015; 

Blonder et al., 2018; Losapio et al., 2018).  

In keeping with the results of our neighbor removal experiment, leaf area and 

height were highly correlated with pairwise spatial associations. However, the direction 

and magnitude of these trait-based relationships shifted dramatically across community 

types, suggesting that these traits act as proxies for different mechanisms depending on 

abiotic conditions. In the moist meadow, clustering of species pairs with similar heights 

(coupled with the large slopes of species-level models for height hierarchy) suggests that 

in more benign abiotic conditions species engage in hierarchical competition for light 

with taller species exhibiting a competitive advantage over shorter species (Craine & 

Dybzinski, 2013; Falster & Westoby, 2003; Walker et al., 1993; Westoby, 1998). This 

height hierarchy subsequently drives limiting similarity for leaf area (over-dispersion), 

with differentiation enabling species to access light at different levels of the canopy and 
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larger leaves even allowing shorter species to achieve levels of photosynthesis 

comparable to taller species (Anten, 2005; Craine & Dybzinski, 2013).  

In the abiotically intermediate dry meadow, clustering of species pairs with 

similar leaf area (coupled with the large slopes of species-level models for leaf area 

hierarchy) indicates the operation of hierarchical competition based on leaf area instead 

of height. This suggests that as abiotic stress increases (i.e., higher wind speeds, lower 

soil nutrients, lower snow cover) and plants are no longer able to mechanically support 

large heights (Bowman and Seastedt, 2001) species instead compete on the basis of leaf 

area. However, the examination of species level leaf area hierarchy models does not show 

a clear hierarchy of trait values. While species with similar, average leaf area values are 

clustered, we also see strong negative associations arising from two species with leaf area 

values on opposite ends of the dry meadow spectrum: Kobresia myosuroides which has 

smaller leaves, and Geum rossi which has larger leaves, and previous research has 

demonstrated dominant competitive ability in both species (Theodose and Bowman, 

1997; Ashton et al., 2010; Bowman and Swatling-Holcomb, 2018). Thus, leaf area 

clustering may instead be a result of two competitive dominants producing a bi-

directional competitive hierarchy, where trait values on either end of the leaf area 

spectrum confer a competitive advantage in dry meadow. Future research should explore 

if possessing trait values which differ from the community average in either direction 

may result in a competitive and/or demographic advantage. 

Finally, in the abiotically harsh fellfield, over-dispersion of species pairs with 

similar height and SLA suggests the importance of facilitation. Alpine cushion plants 
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dominate in the fellfield and are known to act as nurse plants, ameliorating exposure to 

harsh abiotic conditions and permitting the growth of taller and/or higher SLA species 

(i.e., resource acquisitive species) which would not normally occur in open fellfield 

(Bowman & Swatling-Holcomb, 2018; Butterfield et al., 2013; Kikvidze et al., 2015). 

While, height and SLA over-dispersion could also potentially result from limiting 

similarity, facilitation is likely the driving mechanism for over-dispersion due to the high 

proportion of positive pairwise spatial associations and near total absence of negative 

associations we detected in the fellfield (Figure 2.2A). This suggests that dissimilar 

species pairs are positively associated with one another, not that similar species are 

negatively associated (i.e., limiting similarity). Like dry meadow, fellfield also showed 

the clustering of species pairs with similar leaf area. However, the lack of significant 

difference between the slopes of leaf area hierarchy vs dissimilarity models suggests 

environmental filtering is driving the clustering of leaf area, not competitive hierarchy. 

This may be the result of micro-topographic species sorting, where large and small leafed 

species cluster around specific abiotic features. For example, Blonder et al. (2018) found 

that in a barren, fellfield-like alpine community, species were spatially clustered 

according to micro-topographic variation in soil characteristics, like moisture and organic 

matter content.  

 

Integration of Experimental and Observational Approaches 

Height and leaf area were important traits across both of our studies, correlated with plant 

performance in the neighbor removal experiment and pairwise spatial associations across 
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community types in the observational study. This result reinforces previous research 

conducted in the Swiss Alps, which found that height and leaf area differences predicted 

the outcome of competitive interactions between alpine species in a turf transplant 

experiment (Alexander et al 2015). Furthermore, an observational study at Niwot Ridge 

demonstrated that functional dispersion and community weighted means for leaf area and 

height showed the strongest responses across an alpine stress/resource gradient out of five 

examined traits (Spasojevic and Suding, 2012). Importantly, our experiment was 

conducted at the interface between dry and moist meadow, and we identified height 

hierarchy, leaf area dissimilarity, and leaf area hierarchy as the primary mechanisms 

shaping plant performance. We inferred the action of those same mechanisms in our 

observational study, with moist meadow patterns structured via height hierarchy and leaf 

dissimilarity and dry meadow patterns structured via leaf hierarchy. This parallel between 

the results of experimental and observational approaches suggests that: 1) trait hierarchies 

and dissimilarities affect plant performance during species interactions; and 2) over 

ecological time, the outcomes of those trait-based species interactions manifest as 

patterns of species co-occurrence at the community scale.  

Other parallels between our experiment and observational study include the lack 

of importance of chlorophyll content and phylogenetic relatedness, neither of which 

demonstrated strong relationships with plant performance or pairwise spatial associations. 

This result also finds agreement with Spasojevic and Suding (2012), who found weak 

patterns for both metrics. While phylogenetic relatedness showed minor clustering in the 

moist meadow, this is likely not indicative of the widespread positive association of 
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closely related species, but instead results from strong negative associations caused by 

the single, dominant monocot species (Deschampsia cespitosa) present in the moist 

meadow point pattern analysis (Walker et al., 1993; Bowman and Swatling-Holcomb, 

2018). Though some evidence indicates that phylogenetic relatedness may be useful as a 

proxy for trait similarity in some cases (Webb et al., 2002; Cavender‐Bares et al., 2009), 

we did not detect patterns of phylogenetic signal at the level of the experiment or 

observational study, and only minor phylogenetic signal when all species in the Niwot 

trait database were considered. Other studies at Niwot have also shown weak 

phylogenetic signal in leaf chemistry traits (Spasojevic & Weber, 2021), suggesting that 

phylogenetic relatedness is a poor proxy for species functional similarity in individual 

traits in alpine tundra. 

Lastly, our results highlight how the relationship between traits and coexistence 

mechanisms may change depending on abiotic conditions. This is most clearly 

exemplified by leaf area which was related to multiple mechanisms in both our 

experiment and observational study. Specifically, in the observational study, leaf area 

patterns indicated transitions from limiting similarity to hierarchical competition to 

environmental filtering with increasing environmental stress. Recent research in other 

systems has also this highlighted potential context dependence, with Pérez-Ramos et al. 

(2019) finding that, under control conditions in an experimental grassland system, trait 

dissimilarity in water-use efficiency promoted stabilizing niche differences, while under 

drought conditions, a trait hierarchy formed favoring species with high water use 

efficiency. While numerous studies have demonstrated relationships between traits and 
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coexistence mechanisms (Kraft et al., 2015; Gallego et al., 2019; Yin et al., 2021), fewer 

have explored how those relationships may change with abiotic conditions across space 

and/or time and our work suggests that this should be an area of increasing focus for 

future research.  

 

Study Limitations 

While we believe that our study provides a mechanistic link between pattern and process 

by uniting experimental and observational approaches, it is important to note two 

limitations related to our experiment which may affect our conclusions. First, our 

experiment used one species (ARTSCO) to standardize the effect of competition. While 

this experimental design is commonplace in studies of competition (Funk and Wolf, 

2016), a more robust design would involve interactions between all possible pairwise 

combinations of species (Carmona et al., 2019; Ferenc and Sheppard, 2020). We chose to 

use a standardized competitor because the high relative abundance of ARTSCO made 

finding naturally occurring species pairs relatively easy at the moist meadow/dry meadow 

interface. However, because ARTSCO is on the extreme small end of the alpine leaf area 

spectrum, we inadvertently generated co-linearity between hierarchy and dissimilarity 

metrics for leaf area, such that species paired with ARTSCO generally have larger leaves 

which are also more dissimilar (Figure 2.1A and 2.1B). We attempted to correct this 

problem during model selection by ensuring that models could not simultaneously 

contain both hierarchy and dissimilarity terms for any one trait (Carmona et al., 2019). 



77 

 

Second, because our experiment did not extend into the fellfield, we are only able 

to infer a connection between observed patterns (height/SLA over-dispersion and leaf 

area clustering) and mechanisms (facilitation and environmental filtering) for this 

community type, not make mechanistic links as we did with moist meadow and dry 

meadow. However, it is important to note that both of these inferred mechanisms are 

well-supported in the alpine literature and we are confident with our inference in this case 

(Bowman & Seastedt, 2001; Butterfield et al., 2013; Kikvidze et al., 2015; Spasojevic & 

Suding, 2012). 

 

Conclusions 

Overall, we found that both trait hierarchies and dissimilarities for size related traits 

(height and leaf area) are important mechanisms governing species coexistence, 

reinforcing similar results from other alpine tundra sites (Alexander et al., 2015) and 

other ecosystems (Kraft et al., 2015; Carmona et al., 2019; Gallego et al., 2019; Yin et al., 

2021). Our experiment and observational study strengthened one another, demonstrating 

how height and leaf area traits shape plant performance during species interactions and 

how those interactions ultimately manifest as patterns of species co-occurrence in natural 

alpine communities. Our results also add to recent research suggesting that traits may 

relate to coexistence mechanisms differently depending on abiotic context (Pérez-Ramos 

et al., 2019). Finally, this fusion of experimental and observational approaches represents 

a rigorous, but practical method for investigating trait-based coexistence mechanisms in 

systems composed of long-lived, clonally reproducing species like alpine tundra 



78 

 

(Bowman and Seastedt, 2001). Researchers working in other systems composed of long-

lived and/or difficult to manipulate species (e.g., forests), may also benefit from adopting 

and modifying this integrated approach. Future research which explicitly connects 

experiments with observational studies is key to advancing our understanding of species 

coexistence, trait-based community assembly, and the links between process and pattern 

in ecology. 
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Figures 

 

Figure 2.1 Relative interaction index (RII) as a function of leaf area dissimilarity (A: 

Importance = 0.54; simple R2 = 0.22), leaf area hierarchy (B: Importance = 0.28; simple 

R2 = 0.22) height hierarchy (C: Importance = 0.47; simple R2 = 0.15). Negative RII 

values indicate competition, while positive RII values indicate facilitation. Trend lines 

are from simple linear regressions with 95% confidence intervals. Colors indicate 

different species.  
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Figure 2.2 (A) Percentage of pairwise spatial associations for each community type, 

colors indicate association type. (B) Amount of variation uniquely explained (semi-

partial R2) by model parameters in cross community model; most variation is explained 

by trait x community interactions. (C-E) Full coefficient averages and 95% confidence 

intervals (CI) for model parameters from community specific models for moist meadow 

(C), dry meadow (D), and fellfield (E). Negative coefficients indicate negative slopes, 

positive values indicate positive slopes.  
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Figure 2.3 Comparisons of the absolute value of slopes for species-level hierarchy 

models and species level dissimilarity models. Differences in slopes were analyzed using 

paired t-tests. Only model parameters with negative coefficients and confidence intervals 

which do not overlap zero in community specific models are analyzed. (A) Height 

comparison for moist meadow species (P = 0.015). (B) Leaf area comparison for dry 

meadow species (P = 0.001); (C) Leaf area comparison for fellfield species (P = 0.469). 
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Chapter 3 

Plant functional traits are dynamic predictors of ecosystem functioning in variable 

environments 

 

Abstract 

A central goal at the interface of ecology and conservation is understanding how the 

relationship between biodiversity and ecosystem function (B-EF) will shift with changing 

climate. Despite recent theoretical advances, studies which examine temporal variation in 

the functional traits and mechanisms (mass ratio effects and niche complementarity 

effects) which underpin the B-EF relationship are lacking. Here, we use 13 years of data 

on plant species composition, plant traits, local-scale abiotic variables, aboveground net 

primary productivity (ANPP), and climate from the alpine tundra of Colorado (USA) to 

investigate temporal dynamics in the B-EF relationship. To assess how changing climatic 

conditions may alter the B-EF relationship, we built structural equation models (SEMs) 

for 11 traits across 13 years and evaluated the power of different trait SEMs to predict 

ANPP, as well as the relative contributions of mass ratio effects (community weighted 

mean trait values; CWM), niche complementarity effects (functional dispersion; FDis), 

and local abiotic variables. Additionally, we coupled linear mixed effects models with 

multi-model inference methods to assess how inclusion of trait-climate interactions might 

improve our ability to predict ANPP through time. In every year at least one SEM 

exhibited good fit, explaining between 19.6 – 57.2% of the variation in ANPP. However, 

the identity of the trait which best explained ANPP changed depending on winter 
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precipitation, with leaf area, plant height, and foliar nitrogen isotope content (δ15N) SEMs 

performing best in high, middle, and low precipitation years respectively. Regardless of 

trait identity, CWMs exerted a stronger influence on ANPP than FDis and total biotic 

effects were always greater than total abiotic effects. Multi-model inference reinforced 

the results of SEM analysis, with the inclusion of climate-trait interactions marginally 

improving our ability to predict ANPP through time. Our results suggest that temporal 

variation in climatic conditions influences which traits, mechanisms, and abiotic variables 

were most responsible for driving the B-EF relationship. Importantly, our findings 

suggest that future research should consider temporal variability in the B-EF relationship, 

particularly how the predictive power of individual functional traits and abiotic variables 

may fluctuate as conditions shift due to climate change.  

 

Introduction 

Global change has drastically altered ecosystem functioning by shifting patterns of 

biodiversity through species extinctions, range shifts, and changes in abundance 

(Cardinale et al., 2012; De Laender et al., 2016). While early research on the 

biodiversity-ecosystem function (B-EF) relationship examined how changing levels of 

species richness might impact ecosystem function (Tilman et al., 2001; Hooper et al., 

2005), recent advances show that functional trait distributions more strongly predict 

many ecosystem functions than species richness alone (de Bello et al., 2010; Cadotte et 

al., 2011; Gagic et al., 2015; Cadotte, 2017). Despite this theoretical advance in our 

understanding of the B-EF relationship, a recent large-scale experiment in European 
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grasslands revealed that joint consideration of 41 functional traits was still only able to 

explain 12.7% of the variation in 42 ecosystem properties over a 10-year period (van der 

Plas et al., 2020). However, the same study showed that within individual years, 

functional traits were able to explain up to 32.6% of the variation in those ecosystem 

functions. While this discrepancy may be partially attributed to statistical issues with 

analysis (Hagan et al 2023), the stark contrast in explanatory power between within-year 

and across-year models also suggests a biological explanation, specifically, that the 

strength of the B-EF relationship varies dynamically through time. Critically, we lack an 

understanding of what drives temporal variation in the B-EF relationship as most studies 

assume that the traits and/or mechanisms underlying the B-EF relationship are static (but 

see Cardinale et al. 2007, Armitage 2016, 2017, Mori et al. 2017, Qiu and Cardinale 

2020) or fail to consider how the multiple functional mechanisms underlying the B-EF 

relationship operate simultaneously (Mokany et al., 2008; Chiang et al., 2016).  

  One source of temporal variation in the B-EF relationship may be a shift in 

which traits best predict ecosystem functions, leading certain traits to be more important 

during some years and unimportant in others depending on environmental conditions. 

While environmental context dependence in the B-EF relationship has been demonstrated 

in numerous systems including benthic macro-invertebrates (Geert Hiddink et al., 2009), 

mycorrhizal fungi (Jonsson et al., 2001), and temperate forests (Ratcliffe et al., 2017), 

these studies have generally quantified biodiversity in terms of taxonomic richness and 

have examined context dependence across spatial, not temporal, variation in 

environmental conditions. In one of the few studies to explore temporal dynamics in the 
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ability of traits to predict ecosystem functions, Bongers et al. (2021) found that, in an 

experimental forest system, functional diversity metrics for multiple traits became more 

reliable predictors of accumulated stand volume as stand age increased. This temporal 

shift in the relationship between functional diversity and ecosystem function suggests that 

the predictive power of individual functional traits could trade-off in concert with 

changing environmental conditions. For example, a single trait may on average only 

explain a modest amount of variation in ecosystem function over long time periods 

because that trait is only predictive in “good” years (high resource availability) while not 

being predictive in “bad” years (low resource availability) when a different trait 

associated with environmental stress serves as the best predictor. Considering how 

temporal fluctuations in environmental conditions modify the importance of specific 

traits could help resolve the seemingly low predictive power of functional traits for 

ecosystem functions through time. 

A second source of temporal variation may arise from shifts in the functional 

mechanisms underlying the B-EF relationship. Two non-mutually exclusive mechanisms 

are typically invoked to explain the B-EF relationship: 1) niche complementarity and 2) 

mass ratio effects. Niche complementarity effects posit that ecosystem functioning should 

be maximized when species in a community use resources in complementary ways, 

leading to more complete and efficient consumption of the total resource pool. Because 

functional traits mediate how species interact with each other and their environment, 

communities containing a greater diversity of functional traits (often quantified as 

functional dispersion (FDis); see Cadotte 2017 and methods below) should be better able 
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to engage in complementary resource use, thus enhancing their level of functioning 

(Tilman et al., 2001; Petchey and Gaston, 2006). In contrast, mass ratio effects focus on 

how the presence of high performing, dominant species control ecosystem function. 

Dominant species possess specific traits which confer high fitness and determine their 

large contributions to functioning, however, these traits should contribute to functioning 

regardless of individual species identity. Thus community average trait values (often 

quantified as community weighted means (CWM); see Cadotte 2017 and methods 

below), can be used to capture relative differences in ecosystem functions (Grime, 1998).  

While a large body of research has focused on determining whether niche 

complementarity or mass ratio effects play a greater overall role in shaping ecosystem 

functions (Loreau and Hector, 2001; Cardinale et al., 2007b; Wang et al., 2021), these 

mechanisms are not mutually exclusive (Mokany et al. 2008, Chiang et al. 2016) and 

their relative importance can shift with changing environment conditions (Armitage, 

2017). Studies have shown that, in natural systems, mass ratio effects are generally better 

predictors of individual ecosystem functions than niche complementarity effects 

(Mokany et al., 2008; Tobner et al., 2016; Fotis et al., 2018; van der Plas, 2019; Needham 

et al., 2022), however, research focused on the stress gradient hypothesis suggests that 

the relative importance of these mechanisms may trade off as species interactions shift 

along stress/resource gradients (Bertness and Callaway, 1994; Fugère et al., 2012; Wang 

et al., 2013; Baert et al., 2018). For example, Wang et al. (2013) found that in an 

experimental grassland system, mass ratio effects tended to better explain net primary 

production in high-resource/low-stress environments where competition is thought to be 
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the dominant interaction among species (Bertness and Callaway, 1994), while niche 

complementarity effects became more important in low-resource/high-stress 

environments where resource partitioning and facilitation are thought to be more 

prevalent (Bertness and Callaway, 1994; Wang et al., 2013; Wright et al., 2017). Most 

studies demonstrating this trade-off between B-EF mechanisms have evaluated changes 

along spatial environmental gradients, however, similar results should be expected within 

a site as environmental conditions change temporally, with mass ratio effects generally 

acting as better predictors of ecosystem function, but niche complementarity effects 

becoming more important during periods of high environmental stress. 

Finally, while B-EF research often emphasizes the centrality of biotic 

mechanisms in shaping ecosystem functions, temporal variation in ecosystem functions 

can also be directly controlled by fluctuating abiotic conditions. For example, studies 

have found that in tundra ecosystems, temperature directly influences rates of plant litter 

decomposition, with higher temperatures leading to faster rates of decomposition 

independent of litter composition (Hobbie, 1996; Aerts, 2006). Similarly, short-term 

drought in tropical forest systems has been shown to shift biomass allocation patterns in 

tree communities from investment in aboveground to belowground tissues without 

inducing shifts in species or functional diversity patterns (Doughty et al., 2014). 

Ultimately, abiotic conditions determine both the productive capacity and biotic 

composition of ecosystems, and thus their direct and indirect influence (i.e., via changes 

in composition) should be considered concurrently in any complete assessment of the B-

EF relationship (Brun et al., 2019).  



97 

 

Here we couple long-term observational data from a natural system with 

structural equation models (SEMs) and linear mixed effects models to disentangle the 

complex temporal links between site-level climatic changes, local abiotic conditions, 

biodiversity patterns, and ecosystem function (Pugesek et al., 2003; Grace, 2008). To 

explore these dynamics, we used 13 years of data (2008, 2010-2021) on local abiotic 

conditions, plant species composition, plant functional traits, and aboveground net 

primary productivity (ANPP) collected in the alpine tundra of Colorado, USA at the 

Niwot Ridge Long Term Ecological Research (LTER) site. During the last four decades, 

Niwot Ridge has experienced increasing winter precipitation (e.g., precipitation falling 

between October-May) and increasing summer temperatures (McGuire et al., 2012; Kittel 

et al., 2015; Bjarke et al., 2021). Climatic changes at Niwot Ridge (and in the Southern 

Rocky Mountain region generally), are correlated with shifts in the taxonomic and 

functional composition of alpine plant communities (Niwot Ridge LTER unpublished 

data, Huxley and Spasojevic 2021), making this an ideal system to disentangle the 

complex temporal nature of the B-EF relationship. We predict that: 1) Functional traits 

associated with plant size (e.g., plant height, leaf area) should generally best predict 

ANPP, but the identity of the trait which best predicts ANPP will change during 

climatically stressful years with unusually high winter precipitation or summer 

temperatures; 2) Mass ratio effects (measured as CWM traits values) will be the primary 

driver of ANPP, but during climatically stressful years niche complementarity effects 

(measured as FDis trait values) will become relatively more important than mass ratio 

effects; 3) Biotic mechanisms (inferred from trait patterns) will generally play a stronger 
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role in shaping ANPP than local abiotic conditions, but the influence of abiotic conditions 

will become more important during climatically stressful years; and 4) Considering 

interactions between annual climatic conditions climate and biotic/abiotic variables will 

improve our ability to predict ANPP through time. 

 

Methods 

Study Site 

 This study uses data collected from alpine tundra on Niwot Ridge (40.03’ N, 105.35’ W) 

in the Front Range of the Rocky Mountains, approximately 40 km West of Boulder, CO 

USA, a research site which is managed by the Niwot Ridge Long Term Ecological 

Research Program (NWT). All data used in this study were collected and curated by 

NWT staff or researchers affiliated with NWT and are available for public use via the 

NWT Electronic Data Initiative portal (see “data availability” section and associated data 

package citations).  Niwot Ridge has a very short growing season (8-10 weeks, June-

August) and a long winter, leading to an average annual temperature of -2.2 C and an 

average annual precipitation of 930 mm that predominantly falls as snow (~75%) 

(Williams et al., 2011; McGuire et al., 2012; Kittel et al., 2015; Knowles et al., 2015; 

Bueno de Mesquita et al., 2018). Annual wind speeds on Niwot Ridge average 8.1 m s-1 

and winds typically blow from west to east (Litaor et al., 2008). Due to the stark 

topography and high wind speeds on Niwot Ridge, snow redistribution via wind is an 

important process for determining where snow accumulates on the landscape (Greenland 

et al., 1984; Bowman and Seastedt, 2001; Williams et al., 2009). Predictable patterns of 
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snow accumulation generate high plant beta-diversity, with near complete species 

turnover and differences of up to two orders of magnitude in productivity across 

gradients as short as 10 m (Spasojevic and Suding, 2012).  

 

Saddle Climate Data 

NWT has maintained continuous, site-level measurements of temperature, precipitation, 

and other climate variables in the "Saddle” area of Niwot Ridge since 1982 (Bjarke et al., 

2021). For the period of our study (2007-2021), daily mean and instantaneous minimum 

and maximum temperatures were recorded using a Campbell Instruments CR23X data 

logger (2007-2014) and a CR1000 data logger (2014-2021) (Morse et al. 2022a). 

Temperature data quality assurance was performed by previous NWT climatologists up 

through 2014 and has been automated using the GCE Data Toolbox since September 

2014. Daily precipitation was measured using Belfort weighing-bucket gauge with Alter 

shield and recorded by mechanical chart (Morse et al. 2022b). The bucket contains 

antifreeze to melt snow and prevent collected precipitation from freezing. For the period 

of our study (September 2007-August 2021), about 3.7% of raw temperature data and 

13.7% of raw precipitation data were missing.  

Prior to infilling missing data, we performed additional data quality control of 

temperature and precipitation data as recommended in Brunet et al. (2006) and Kittel 

(2009) to screen gross errors, tolerance tests, temporal coherence, and spatial coherence. 

We used 24 stations at NWT LTER or in the region for spatial coherence checks and 

infilling. Geographic range of stations from Saddle are approximately 28 km south to 35 
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km north, 22 km east to 18 km west, and 1248 m below to 206 m above. Because of 

documented blowing snow issues for precipitation at Saddle (Williams et al., 1998), 

precipitation events were reviewed when 1) Saddle was the only station in the region to 

record precipitation, 2) the only station of six at NWT to record precipitation and only 1-

3 stations in the region recorded precipitation, and 3) Saddle was the only station at NWT 

to not record precipitation. Additional QC removed 0.3% of temperature values and 1.1% 

of precipitation values for infilling. 

We then followed regression infilling methods for NWT long-term records 

established by Kittel et al. (2015). Stations were prioritized in infilling based on 

geographic and elevational proximity to Saddle. We applied an overcatch correction 

factor of daily precipitation*0.39 recommended by Williams et al. (1998) for October - 

May and 4 large snow events in the shoulder seasons (e.g., June, September). The most 

frequent source stations for infilling Saddle daily values were the NWT LTER D1 alpine 

station for precipitation (informed 36.4% of infill values) and replicate [HMP] 

instruments at Saddle (77.8%) for temperature. 

After QC and gap-filling, daily temperature data were homogenized to account for 

instrument changes over the electronic record by adjusting temperature data to the most 

recent instrument at Saddle. We used a 1-year overlap period between the outgoing and 

incumbent Saddle temperature electronic instruments, as well as an independent, quality-

controlled, gap-filled record spanning the entire period of instrument changes (AmeriFlux 

US-NR1) to apply conservative mean difference adjustments ranging from -0.96 to -1.5C. 

We performed additional inhomogeneity tests for Saddle temperature and precipitation 
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using R packages RHtestsV4 and RHtests_dlyPrcp (Wang 2008a, Wang 2008b, Wang 

and Fang, 2013), and Climatol (Guijarro 2022). No breaks were detected for the study 

period that warranted further homogenization based on the station history (for full Saddle 

temperature and precipitation datasets see: White et al. 2023a and White et al. 2023b).  

Two primary long-term trends have been detected in Niwot Ridge’s climate 

record: 1) an increase in annual winter precipitation (Figure 1A) and 2) an increase in the 

annual number of growing degree days (Figure 1B, McGuire et al. 2012, Kittel et al. 

2015, Bjarke et al. 2021). We calculated winter precipitation as the sum of all daily 

precipitation measurements recorded between October and May of the following calendar 

year. Annual growing degree days, on the other hand, were calculated as the sum of mean 

temperatures for all days where the mean temperature was greater than 0ºC for each 

“ecological year” (the period starting September 1st and finishing August 31st of the 

following year, hereafter referred to simply as year), as this timeframe is more 

biologically relevant than the calendar year for alpine plant communities which 

experience their growing season between June and August. 

 

Saddle Plot Data 

NWT has conducted long-term monitoring of alpine vegetation using 88 1 m2 plots 

located in the Saddle. For each of these plots, comprehensive data exist on abiotic 

variables (topographic variables, snow-depth), biodiversity (species composition, 

functional traits), and ecosystem function (ANPP) over a 13-year period: 2008 and 2010-

2021. Topography was quantified for each plot using three measures: elevation, aspect, 
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and slope. Elevation was estimated using a Trimble GPS with accuracy of +/- 3m. Aspect 

was measured as the direction of a plot’s downhill slope using a compass with a SIN 

transformation applied for analysis. Slope was quantified using the slope tool in ArcGIS 

10.1. Snow-depth data were collected during irregularly timed snow surveys throughout 

fall, winter, and spring months (September-June) by NWT technicians using snow poles 

which estimate depth at 10cm intervals (Walker, S. et al., 2022). Due to the irregular 

timing of snow-depth measurements throughout the year, we used mean snow-depth 

values for the month of May in our analysis as this month consistently contained at least 

one snow-depth survey (ranging between 1-3) and because May is typically when Niwot 

Ridge reaches peak snowpack (Litaor et al., 2008). Only one year (2008) lacked May 

snow-depth data, and for this year we used snow-depth data collected on April 29th, 2008.  

Plant species composition data for each Saddle plot was collected using point 

intercept methods (Walker, M. et al., 2022a). NWT staff mounted a 1 m2 quadrat 

containing a 10 cm x 10 cm string grid on permanent plot corners and then vertically 

placed a pin flag at each of the 100 grid points, recording the identity of all species 

contacting the pin flag and their relative vertical position within the canopy. For our 

analyses, we only used species composition data from the top-most 'hit' to calculate the 

relative abundance of each species in a plot to remain consistent with previous analyses 

of NWT’s Saddle plot species composition (Spasojevic et al., 2013). 

 Aboveground net primary productivity (ANPP) data were collected by harvesting 

all non-woody vascular biomass within 0.2 m x 0.5 m quadrats located near each Saddle 

plot (Figure 2C). Harvest locations were selected to replicate species composition and 
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biomass distributions in each plot and were rotated annually to prevent over-harvesting 

from any one area (Walker, M. et al. 2022b). From 2008 to 2018, two biomass quadrats 

were harvested per Saddle plot; the mean of these harvests was calculated to produce a 

single measurement per plot. From 2019 to 2021, a single biomass quadrat was harvested 

per plot. 

 

Functional Traits  

NWT maintains a functional trait database (Spasojevic et al. 2022) that has trait data for 

84.4% of species that have been found in the Saddle plots and identified to species level, 

with 55% of those species possessing habitat specific trait measurements (e.g., functional 

traits for Geum rossii measured independently in moist meadow, dry meadow and fell 

field habitats). In total, we have coverage of at least one trait for 98.3% of the total cover 

across the 13 years of our study. Eleven traits were included in this study: height, specific 

leaf area (SLA), leaf area, chlorophyll content, leaf dry matter content (LDMC), foliar 

percent carbon content, foliar percent nitrogen content, foliar carbon to nitrogen ratio, 

foliar carbon isotope values (δ13C), foliar nitrogen isotope values (δ15N), and stomatal 

conductance. Height is indicative of a species’ competitive ability for light (Westoby, 

1998). SLA, LDMC, chlorophyll content, and leaf chemistry traits are related to the leaf 

economics spectrum, which characterizes a species’ capacity for stress tolerance vs 

resource acquisition (Wright et al., 2004; Osnas et al., 2013). Leaf area and stomatal 

conductance are related to a species’ water/energy balance (Ackerly et al., 2002; Pérez-

Harguindeguy et al., 2016). Finally, δ15N is related to nitrogen uptake rates and N source 
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(Craine et al 2015). Trait measurements for each species or species  habitat combination 

were collected from at least 10 individuals in accordance with the protocols outlined in 

Pérez-Harguindeguy et al. (2016).  

 Using the trait values from the NWT functional trait database and the species 

composition data described in the previous section, we then used the “dbfd” function 

from the “FD” package in R version 4.1.1 to calculate single trait FDis, and community 

weighted mean (CWM) trait values for each Saddle plot in every year (Laliberté and 

Legendre 2010, Laliberté et al. 2014, R core team 2021). Critically, we calculated CWM 

and FDis values using trait data weighted by species abundances not biomass to reduce 

circularity in the prediction of ANPP. In alpine systems, species abundance and biomass 

are not likely to be tightly correlated since many highly abundant species are quite small. 

Ten plots were discarded from these calculations in each year because they had either 

greater than 50% shrub or rock cover or were subject to long-term experimental snow 

depth manipulation. Additional plots were discarded if we did not possess trait data for at 

least 80% of the vascular plant cover (plot number varied by specific trait and year; the 

number of plots retained for each SEM can be found in Supplement 3.1).  

 

Structural Equation Modeling 

 To explore links between the abiotic environment, biotic functional composition, and 

ecosystem function, we built structural equation models (SEMs) for each trait  year 

combination (e.g., leaf area SEMs for 2008, 2010, 2011, etc.). SEMs are useful for 

modeling complex ecological phenomena because they allow for the evaluation of both 
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direct and indirect causal relationships among variables by estimating a global variance-

covariance matrix (Grace, 2008). All SEMs in this study used the same meta-model 

design (Figure 2), based on a robust body of research on alpine ecosystem dynamics at 

Niwot Ridge (Walker et al., 1993; Bowman and Seastedt, 2001; Suding et al., 2015; 

Williams et al., 2015). 

 First, a latent variable representing “topography” was constructed using direct 

measurements of elevation, aspect, and slope. Our inclusion of “topography” as a latent 

variable was meant to capture uncertainty around this concept, as all aspects of 

topography (i.e., microtopographic variation) could not be directly measured. 

Topography is a major factor determining where snow deposition occurs on the alpine 

landscape, so we included a direct path from topography to snow depth. Additionally, 

topography may influence biodiversity patterns and ANPP directly via factors 

independent of snow deposition (e.g., exposure to wind, solar radiation, etc.), so we 

included direct paths from topography to CWM and FDis trait values as well as ANPP. 

Next, we connected snow depth directly to both trait metrics and ANPP, as snow 

deposition has been shown to influence levels of soil moisture, nutrient availability, and 

growing season length, which fundamentally control biodiversity and productivity 

patterns (Bowman and Fisk 2001, Walker et al. 2001, (Bowman et al., 2003; Seastedt et 

al., 2004), Litaor et al. 2008). We also added a snow depth2 term, with an identical model 

position to snow depth, to account for snow depth’s quadratic relationship with ANPP 

where both low and high snow depths can produce low levels of ANPP due to moisture 

limitation and energy limitation respectively (Walker et al. 1993, Walker et al. 2001).  
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 We then linked our functional trait indices (CWM and FDis) for each individual 

trait to ANPP, based on fundamental B-EF theory showing that ecosystem functions are 

simultaneously shaped by the average and variation of community trait values (Chiang et 

al., 2016; Cadotte, 2017). While some studies have shown that species niche differences 

are best summarized by multi-trait models and/or metrics (Kraft et al., 2015; Huang et al., 

2020), we chose to build separate SEMs for each trait (i.e., each SEM contains the CWM 

and FDis values for only one trait), for both biological and statistical reasons. 

Biologically, individual traits have been shown to strongly respond to environmental 

gradients in the alpine tundra of Niwot Ridge, while multi-trait metrics (e.g., FDis 

calculated with multiple traits) often show no pattern due to opposing responses in 

individual traits (Spasojevic and Suding 2012). Furthermore, building SEMs containing 

metrics for multiple individual traits is statistically challenging as the inclusion of 

multiple additional parameters would greatly exceed rule-of-thumb estimates for 

acceptable sample size when using SEMs (10 data points per observed variable) (Bentler 

& Chou, 1987; Nunnally, 1967).  

Finally, we included 2 covariation terms – one between snow depth and snow 

depth2 and another between CWM and FDis. These covariation terms account for the fact 

that that these variable pairs are driven by the same causal links within the SEM and are 

likely to be correlated (highly correlated in the case of snow depth and snow depth2) but 

are not causally related to one another. Using this meta-model structure, we built SEMs 

that incorporated the CWM and FDis values of each individual trait for each year. With 

11 traits and 13 years of data, we could generate a total of 143 possible SEMs across all 
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traits and years. All SEMs were constructed using the “lavaan” package in R version 

4.0.2 (Rosseel, 2012).  

 

Statistical Analyses 

To evaluate our first prediction that size related traits would generally best predict ANPP 

but that that this would change during environmentally stressful years, we assessed the 

predictive power of our trait SEMs and how that predictive power changed as function of 

winter precipitation and annual growing degree days. We first filtered out any SEMs 

which did not possess a minimum sample size of at least 70 plots due to low trait 

coverage (12 of 13 SEMs featuring stomatal conductance, all 13 removed for 

consistency). We then eliminated SEMs which did not converge (i.e., no solution for the 

global variance-covariance matrix, 3 SEMs) or contained variables with negative 

variances (i.e., Heywood cases, 13 SEMs). Next, we evaluated several fit measures for 

each SEM including the χ2 statistic, the comparative fit index (CFI), the root mean 

squared error of approximation (RMSEA), and the standardized root-mean squared 

residual (SRMR). SEMs with χ2 P-values greater than 0.05, CFI scores greater than 0.9, 

RMSEA less than 0.1, and SRMR value less than 0.08 were interpreted as providing a 

good fit for the data. Two additional SEMs failed to meet these fit criteria, leaving 112 

SEMs with good fit across all traits and years (Supplement 3.1, Supplement 3.2).  

We then determined which of the SEMs with good fit best explained ANPP in 

each year by filtering for the trait SEM with the highest R2 value for ANPP in each year 

(Figure 3A). Importantly, when selecting the best fitting SEM in each year, we did not 
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compare all 112 SEMs against one another but instead compared different trait SEMs 

within individual years (e.g., comparing 2008 height SEM vs 2008 leaf area SEM, not 

2010 height SEM vs 2008 leaf area SEM). For most years, this meant comparing ~10 

trait SEMs. Furthermore, our SEMs were not assembled using any step-wise process of 

parameter or path deletion/insertion, which has been shown to be a problematic because it 

ignores model selection uncertainty (Whittingham et al., 2006; Mundry and Nunn, 2009). 

Instead, we kept model structure consistent across traits and years and varied only the 

identity of the traits used for the CWM and FDis parameters (Figure 2). Model selection 

approaches with SEMs have been found to be robust to model selection uncertainty, but 

typically involve the comparison of AIC or BIC scores which estimate overall model fit 

and parsimony (Lin et al., 2017; Garrido et al., 2022). Here we focused our model 

selection approach on R2 values for ANPP instead of AIC or BIC scores, as we are 

interested in the identity of trait SEM which best predicts observed ANPP levels not the 

trait which provides the best overall model fit across all pathways. Trait SEMs which 

possessed the highest R2 value for ANPP in at least one year are hereafter referred to as 

“best fitting SEMs”. To determine how changing climate influences our ability to predict 

ANPP, we then performed linear regressions examining how ANPP R2 values in our best 

fitting SEMs varied with annual winter precipitation (Figure 3B-C) and annual growing 

degree days (Supplement 3.4).  

To evaluate our second prediction focused on mass ratio effects vs niche 

complementarity effects and how the relative importance of these functional mechanisms 

might shift with climatic stress, we examined the path coefficients directly linking CWM 
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and FDis to ANPP in our best fitting SEMs (Supplement 3.3). Specifically, we performed 

linear regressions to assess how the strength and magnitude of these path coefficients 

changed as function of annual winter precipitation (Figure 4 A-C) and annual growing 

degree days (Supplement 3.4). 

 To assess our third prediction focused on how biotic mechanisms vs local abiotic 

conditions determine ANPP and how the relative importance of these factors might shift 

with climatic stress, we compared the total effects of biotic mechanisms and local abiotic 

variables in our best fitting SEMs (Supplement 3.3). While the total impacts of CWM and 

FDis on ANPP can be inferred by examining only direct path coefficients, both direct and 

indirect effects must be considered when determining the total impact of local abiotic 

variables on ANPP. Indirect effects are calculated by multiplying the path coefficients of 

two or more direct path coefficients. For example, to calculate the indirect effect of snow 

depth on ANPP via CWM, we multiplied the coefficient of the path linking snow-depth 

to CWM by the coefficient of the path linking CWM to ANPP (i.e., “snow depth to 

CWM to ANPP” = “snow depth to CWM” * “CWM to ANPP”). Total effects are then 

calculated for each abiotic variable by summing all direct and indirect path coefficients 

that lead from snow depth, snow depth2, or topography to ANPP. For example, to 

calculate the total effect of snow depth on ANPP, we summed all direct and indirect 

effects of snow-depth on ANPP (i.e., total effects of snow-depth = “snow-depth to 

ANPP” + “snow-depth to CWM to ANPP” + “snow-depth to FDis to ANPP”). Here we 

use both significant and non-significant path coefficients in the calculation of total effects 

to holistically examine the impact of total abiotic effects. Importantly, excluding non-
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significant path coefficients would bias our interpretation by removing years where either 

direct and/or indirect effects are weak. We then compared the magnitude and sign of each 

abiotic variable’s total effects with the total effects of each biotic mechanism and 

performed linear regressions to assess how the impact of local abiotic variables changed 

as a function of annual winter precipitation (Figure 4 D-F) and annual growing degree 

days (Supplement 3.3). 

Finally, to assess our fourth prediction that considering the interaction between 

annual climatic conditions and biotic/abiotic variables would improve our ability to 

predict ANPP across time, we analyzed our raw data across all years by coupling multi-

model inference using linear mixed effects models with variance partitioning. To do this, 

we built a global linear mixed effects model using the lme4 package (Bates et al., 2014) 

which featured ANPP as the response variable and trait metrics from our best fitting 

SEMs (CWM and FDis), abiotic variables (snow depth, snow depth2, slope, sin(aspect), 

elevation, annual winter precipitation), and interaction effects between each predictor and 

annual winter precipitation as fixed effects. Additionally, we included year and plot as 

random factors to reflect the fact that each plot was repeatedly sampled across years. 

Interaction effects with annual growing degree days were not included in the model 

because neither SEM R2 values nor individual SEM predictors showed significant 

relationships with this climate variable during SEM analysis. We then used the “dredge” 

function in MuMIn package (Barton, 2020) to create all possible subset models of the 

global model and ranked these according to AICc score (Akaike information criterion 

value corrected for sample size). Next, we selected all models that were within 6 AICc 
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points of the lowest AICc model (347 models total) and used a model averaging 

technique known as the “zero method” to calculate average parameter estimates (Grueber 

et al., 2011). This method calculates averages by assigning a 0 value to parameters when 

they are missing from subset models. Once we identified significant predictors, we used 

the “partR2” function in the partR2 package (Stoffel et al., 2021) to assess semi-partial R2 

values, in other words, the amount of variation uniquely explained by significant effects, 

for the global model. This approach allowed us to identify how consideration of 

significant interactions effects between climate and biotic/abiotic variables improved our 

ability to predict ANPP across time. 

 

Results 

Best Fit SEMs for ANPP  

 Of the 112 SEMs which met our filtering criteria, at least one SEM in every year 

exhibited good fit; SEMs featuring 9 different traits (δ15N, LDMC, leaf area, height, 

SLA, percent nitrogen, percent carbon, carbon to nitrogen ratio, chlorophyll content) 

exhibited good fit in at least 10 years (Supplement 3.1). The identity of the trait which 

best predicted ANPP varied across years, with SEMs featuring leaf area, plant height, and 

δ15N best explaining ANPP in 6, 5 and 2 out of 13 years, respectively (Figure 3A). Other 

traits did not meet the criterion for best fit and were thus excluded from all analyses 

discussed below. Importantly, we found that the identity of the trait SEM which best 

predicted ANPP varied with the amount of annual winter precipitation (Figure 3A). First, 

we found that leaf area SEMs exhibited good fit in 12 out of 13 years and explained 18.1 
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to 57.2% of the variation in ANPP (mean = 37.1%). Moreover, we found that ANPP R2 

values in the leaf area SEMs increased with increasing winter precipitation (Figure 3B, 

F1,10=7.128, P=0.024, Adjusted R2=0.36) indicating greater explanatory power in years 

with high winter precipitation. Consequently, leaf area SEMs had the best fit in the two 

highest winter precipitation years (2011, 2017) and failed to converge in the year with the 

lowest winter precipitation (2012). Second, plant height SEMs also exhibited good fit in 

12 out of 13 years and explained a similar amount of ANPP variation as leaf area SEMs 

(mean = 35.5%, range = 18.6 to 54.6%). However, the relationship between ANPP R2 

values and winter precipitation in these SEMs was non-linear, with explanatory power 

reaching its maximum in average winter precipitation years and low explanatory power in 

both low and high winter precipitation years (Figure 3C, quadratic linear regression; 

F2,9=6.35, P=0.019, Adjusted R2=0.49). The plant height SEM also failed to converge in 

the year with the lowest winter precipitation (2012). Finally, δ15N SEMs exhibited good 

fit in all 13 years but had the lowest average predictive power for ANPP of the three traits 

(mean = 30.1%, range = 12.8 to 47.3%). R2 values for the δ15N SEMs were not 

significantly correlated with annual winter precipitation (Figure 3D), however, δ15N 

SEMs had the best fit in the two lowest winter precipitation years (2012, 2013). No trait 

SEMs showed significant relationships between ANPP R2 values and annual growing 

degree days (Supplement 3.4).  

 

SEM Biotic (Trait) Effects on ANPP 

We found that the sign and magnitude of biotic effects inferred from trait-ANPP path 
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coefficients for both CWMs and FDis were consistent among the best fitting SEMs 

outlined above (Figure 4 A-C). All SEMs showed CWM trait values exerting large and 

positive effects on ANPP (leaf area SEM: mean = 0.64, range = 0.35 to 1.17; plant height 

SEM: mean = 0.51, range = 0.23 to 0.80; δ15N SEM: mean = 0.47, range = 0.27 to 0.86). 

In contrast, the influence of FDis values on ANPP was weaker and generally negative 

(leaf area SEM: mean = 0.10, range = -0.25 to 0.01; plant height SEM: mean = -0.32, 

range = -0.61 to 0.11; δ15N SEM: mean = -0.19, range = -0.39 to -0.01). We found that 

some of this variation in the strength of biotic effects (path coefficients), was explained 

by climatic variation among years. In leaf area SEMs, the CWM ANPP path coefficients 

showed a significant, positive relationship with annual winter precipitation (Figure 4A; 

F1,10=10.58, P=0.009, Adjusted R2=0.47), suggesting a stronger relationship in years with 

greater winter precipitation. In contrast, leaf area FDis was not significantly related to 

winter precipitation and neither plant height or δ15N SEMs showed any significant 

relationships between biotic effects (either CWM or FDis – ANPP path coefficients) and 

annual winter precipitation. None of the trait SEMs showed significant relationships 

between biotic effects and annual growing degree days (Supplement 3.4).  

 

SEM Abiotic Effects on ANPP 

We found that the sign and magnitude of the total effects for each abiotic variable on 

ANPP (the sum of all direct and indirect path coefficients for topography, snow-depth, 

and snow-depth2) were relatively consistent across trait SEMs and years (Figure 4D-F). 

Across all best fitting SEMs, topography (which significantly positively covaried with 
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slope and elevation, while aspect was not important) exerted weak and typically negative 

influences on ANPP (leaf area SEM: mean = -0.09, range = -0.47 to 0.06; plant height 

SEM: mean = -0.13, range = -0.49 to 0.11; δ15N SEM: mean = -0.08, range = -0.31 to 

0.10). Snow-depth also exerted weak and typically negative effects on ANPP across all 

trait SEMs (leaf area SEM: mean = -0.09, range = -0.47 to 0.06; plant height SEM: mean 

= -0.10, range= -0.46 to 0.18; δ15N SEM: mean = -0.07, range = -0.43 to 0.28). However, 

in the δ15N SEMs we found a significant negative relationship between the total effect of 

snow-depth on ANPP and annual winter precipitation (Figure 4F; F1,11=5.92, P=0.033, 

Adjusted R2=0.29). Snow-depth2 had the largest and most consistently negative effect on 

ANPP (leaf area SEM: mean = -0.32, range = -0.59 to 0.13; plant height SEM: mean = -

0.32, range = -0.60 to 0.13; δ15N SEM: mean = -0.32, range = -0.58 to 0.14). Total effects 

of snow-depth, snow-depth2, and topography on ANPP were not significantly predicted 

by annual growing degree days (Supplement 3.4). 

 

Climatic Interaction Effects  

In our global linear mixed effects model, total fixed effects (R2
m) explained 22.8% of the 

variation in ANPP while inclusion of random effects (R2
c) boosted the variation 

explained to 54.7%. Multi-model inference revealed that CWM of leaf area (P<0.001), 

CWM of plant height (P=0.04), FDis of plant height (P<0.001), and snow depth 

(P<0.001) were retained as significant fixed effects, with all these factors combining to 

explain a total of 14.3% of the variation in ANPP and trait metrics alone explaining 

13.3%. In addition, interactions between CWM leaf area and annual winter precipitation, 



115 

 

as well as snow depth and annual winter precipitation, were retained as significant, 

explaining an additional 2.5% of the variation in ANPP. These two interaction effects 

were retained in all models within the top 6 AICc subset, indicating that models which 

did not include them received little support. Model coefficients, AICc scores, and weights 

for subset models can be found in Supplement 3.5.  

  

Discussion 

Recent studies demonstrating that functional traits have weak predictive power for 

ecosystem functions through time (van der Plas et al., 2020) may be the result of 

temporal variability in the B-EF relationship, where the individual traits, functional 

mechanisms, and abiotic variables which best predict ecosystem functions change with 

annual variation in climatic conditions. Overall, our results are consistent with the 

hypothesis that traits are dynamics predictors of ecosystem functioning and our analysis 

revealed that, in an alpine tundra system, the identity of the trait which best predicted 

ecosystem function varied dynamically with the amount of annual winter precipitation, 

while the relative importance of the functional mechanisms (CWM vs FDis) and abiotic 

variables underlying the B-EF relationship remained largely stable. Moreover, multi-

model inference with linear mixed effects models reinforced these results, demonstrating 

that interactions between climate and biotic/abiotic variables significantly affect ANPP 

across time. However, including these interactions did not greatly increase our ability to 

predict ANPP and suggests that, in this system, taking these climatic context 

dependencies into account only modestly improves our understanding of the B-EF 
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relationship. Taken together, our results suggest that that future B-EF research should 

consider temporal variability in the B-EF relationship, particularly how the predictive 

power of individual functional traits and abiotic variables may fluctuate as climatic 

conditions shift due to climate change or in highly variable ecosystems. 

 

Best Fit SEMs for ANPP 

Our finding that trait SEMs related to plant size (leaf area and plant height) best 

explained ANPP in 11 of 13 years adds to a growing body of research showing that, 

across a wide variety of experimental and natural systems, traits related to plant size are 

often the best predictors of ANPP (Lavorel and Grigulis, 2012; Chiang et al., 2016; 

Cadotte, 2017; Gustafsson and Norkko, 2019).  While leaf area SEMs performed well on 

average, the predictive power of these SEMs showed a strong relationship with annual 

winter precipitation (Figure 3B). Since leaf area values reflect a species’ ability to 

maintain water/energy balance (Parkhurst and Loucks, 1972; Miller and Stoner, 1979; 

Ackerly et al., 2002), a sustained summer snowpack resulting from higher levels of 

winter precipitation could provide a source of consistent growing season soil moisture, 

allowing larger-leaved species to achieve higher levels of stomatal conductance and/or 

photosynthesis (Pattison and Welker, 2014). Thus, in high winter precipitation years, 

communities composed of large-leaved species would be able to fix more carbon and 

produce more biomass than normal, exaggerating the already strong relationship between 

CWM leaf area and ANPP (Figure 4A). Low winter precipitation years, on the other 

hand, may produce the opposite phenomenon, where large leaved species are forced to 
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close their stomata more often due to moisture limitation and thus produce 

uncharacteristically low levels of ANPP (Bowman et al., 1995; Wentz et al., 2019). This 

minimizes the normally predictive pathway between CWM leaf area and ANPP, leading 

to failed model convergence in 2012, the year with the lowest amount of winter 

precipitation. 

 In contrast to leaf area SEMs, the predictive power of plant height SEMs was 

maximized in average winter precipitation years and minimized in both low and high 

winter precipitation years.  In these SEMs, predictive power seemed to change due to 

small increases in the magnitude of both CWM and FDis effects, where the mean and 

dispersion of plant height exerted slightly larger magnitude effects on ANPP in average 

precipitation years (Figure 4B). In low winter precipitation years, marginally lower 

magnitude CWM and FDis effects may result from moisture limitation reducing ANPP in 

normally productive plots, a similar mechanism to what we inferred for leaf area SEMs. 

However, in contrast to leaf area SEMs, high winter precipitation years also dampen 

plant height CWM and FDis effects on ANPP. This could result from high winter 

precipitation leading to a larger, later melting snowpack reducing ANPP in normally 

productive plots via energy limitation. Thus, height SEMs perform best in average winter 

precipitation years when neither moisture nor energy are limiting plots where 

communities have high mean heights and low height dispersion. 

In the two years with the lowest amount of winter precipitation (2012 and 2013), 

the SEMs which best explained ANPP switched from size related traits to δ15N. This 

suggests that while winter precipitation may control the relationship between size related 
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traits and ANPP via moisture and energy limitation, δ15N trait distributions are shaping 

patterns of ANPP through a different mechanism which is not as strongly affected by 

interannual variation in climate. While the ecological interpretation of δ15N trait values is 

complex, they are broadly thought to reflect the availability of total nitrogen and variation 

in nitrogen source (abiotic vs. biotic sources) and have been found to vary along 

gradients of N availability on Niwot Ridge (Miller and Bowman, 2002; Craine et al., 

2015; Spasojevic and Weber, 2021). Since a large fraction of nitrogen in the alpine zone 

comes from melting snow, long-term patterns of snow deposition set the template for the 

location and type of nitrogen found across the landscape (Bowman, 1992). Thus, even in 

years with abnormally high or low winter precipitation, nitrogen availability and source 

are likely to remain relatively constant. The longer time scale of response for nitrogen 

availability may be the reason that δ15N SEMs continue to be reasonably predictive of 

ANPP regardless of annual winter precipitation levels, while the predictive power of 

height and leaf area SEMs varies more directly with the moisture and energy limitations 

imposed by fluctuating levels of winter precipitation.  

 

SEM Biotic (Trait) Effects on ANPP 

In all best fitting trait SEMs, CWMs exerted a large, positive influence on ANPP 

indicating that communities with high average leaf area, plant height, and/or δ15N have 

the highest levels of ANPP. FDis effects on the other hand, were lower magnitude and 

usually negative, indicating that communities which contain a greater diversity of trait 

values for height, leaf area, and δ15N had lower levels of ANPP. Taken together, our 
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results offer partial support for our second prediction and add to a growing body of 

research demonstrating that mass ratio effects are generally more important than niche 

complementarity effects in determining individual ecosystem functions (i.e., not multi-

functionality), particularly in natural systems (Chiang et al. 2016, Cadotte 2017, Fotis et 

al. 2018, Needham et al. 2022, Brun et al. 2019, van der Plas 2019).  

However, the stability of these two functional mechanisms across trait SEMs and 

temporally varying climatic conditions, conflicts with our second prediction that niche 

complementarity effects would become more important during climatically stressful 

years. Moreover, this finding contradicts research from experimental grassland and forest 

systems suggesting that niche complementarity effects tend to exert a more positive 

impact on ecosystem functions when environmental conditions become harsher (Wang et 

al. 2013, Mori 2018; but see Jucker et al. 2016 who found strong spatial but weak 

temporal B-EF context dependency). This may indicate that niche partitioning among 

species (i.e., niche differences) is relatively unimportant in determining ANPP in this 

alpine ecosystem, and instead, ANPP is primarily shaped by the presence of dominant 

species possessing traits which provide a competitive advantage (i.e., hierarchical fitness 

differences) in a specific environmental context (e.g., species with high leaf area trait 

values, especially in high winter precipitation years) (Cadotte, 2017).  Alternatively, 

because our plots are distributed across a fairly large area with high beta-diversity 

(Spasojevic and Suding, 2012; Spasojevic et al., 2013), differences in CWM and FDis 

trait values among habitat types could be so large that they mask the positive effects of 

niche complementarity, which are acting at finer spatial scales. Our cross-community 



120 

 

analysis may show negative effects of FDis on ANPP because plots positioned in energy-

limited snowbank communities possess high FDis for size related traits and very low 

ANPP, while plots in abiotically mild moist meadow communities possess low FDis for 

size related traits and high ANPP. If instead we were to examine the B-EF relationship at 

a smaller spatial scale by only using plots within an alpine habitat type, the effects of 

niche complementarity might appear to be positive and relatively more important. For 

example, facilitation is known to be an important process in dry, wind-swept fellfield 

communities where dominant cushion plants ameliorate micro-climatic conditions for 

subordinate species (Butterfield et al., 2013; Kikvidze et al., 2015), perhaps generating a 

positive relationship between functional dispersion and ANPP within this community 

type.  

 

SEM Abiotic Effects on ANPP 

The relatively low magnitude of total effects for abiotic variables in our best fitting SEMs 

likely results from direct and indirect effects often displaying opposing signs. For 

example, in leaf area SEMs the direct pathway linking snow depth and ANPP was 

strongly negative, but the indirect pathway through the CWM of leaf area was positive 

(Supplement 3.1, Supplement 3.2). These contradictory effects confirm previous research 

showing that snow depth plays an important but complicated role in determining ANPP 

and species composition (Walker et al., 1993), with high snow depth values lowering 

ANPP directly, while simultaneously driving an increase in leaf area CWM values which 

then have strong, positive knock-on effects for ANPP. This example highlights the 
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usefulness of SEMs for B-EF research, as they are able to disentangle complex 

relationships which might be obscured when using other methods like generalized linear 

modeling or variance partitioning which do not consider indirect effects (Grace et al., 

2014, 2016).  

 Only in the δ15N SEMs did the total effect of an abiotic variable vary 

significantly with winter precipitation, with snow depth exerting a negative effect on 

ANPP in high winter precipitation years but a positive effect in low winter precipitation 

years. This result suggests that the impacts of snow depth on ANPP are context 

dependent. In years when winter precipitation is high, increasing snow depth likely 

restricts ANPP by limiting the length of the growing season, while in low winter 

precipitation years increasing snow depth boosts ANPP by alleviating moisture 

limitation. Importantly, this significant trend may only be visible in δ15N SEMs because 

they are the only SEMs which converged in all 13 years and possesses a path coefficient 

value for the lowest precipitation year (2012) in which snow-depth exerted a strong 

positive effect on ANPP. Overall, our SEMs indicate that local abiotic conditions, 

particularly snow depth, play an important and context-dependent role in driving ANPP, 

but that the combination of strongly opposed direct and indirect effects lead to small total 

effects.  

 

Climatic Interaction Effects  

Multi model inference using data across all years largely reinforced our conclusions from 

SEM analysis, with ANPP once again significantly correlated with CWM leaf area, 
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CWM height, FDis height, and snow depth. While δ15N trait metrics did not appear as 

significant, this is expected given that δ15N SEMs did not perform particularly well at 

predicting ANPP and only became the model of best fit in 2012 and 2013 due to poor 

performance for leaf area and height SEMs in the two lowest precipitation years. 

Furthermore, the two variables we found had context dependent effects with winter 

precipitation during SEM analysis, CWM leaf area and snow depth (in δ15N SEMs), also 

showed up as significant interaction effects in multi-model inference. However, inclusion 

of these two interaction effects did not greatly increase our ability to predict ANPP across 

time, and total fixed effects in the global model still explained much less variation in 

ANPP than the within-year SEMs (van der Plas, 2020). The inability of interaction 

effects to substantially improve predictive power may result from the fact that this alpine 

system is composed of hardy, long-lived species which may not quickly respond to 

annual variation in climatic conditions. While species composition is changing at Niwot 

and the Rocky Mountains more broadly (Huxley and Spasojevic, 2021), these changes 

are occurring at the scale of decades (Spasojevic et al., 2013; Scharnagl et al., 2019) and 

effects on the B-EF relationship may not be clearly visible over the 13-year period of our 

study. Temporal shifts in the B-EF relationship may be larger in annual communities 

where species composition can more quickly change in response to local and/or regional 

changes in climatic conditions, leading to immediate cascading impacts on ecosystem 

function (Felton et al., 2021; Shaw et al., 2022). 
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Study Limitations 

Though our results suggest that the explanatory power of the functional traits 

underpinning ecosystem functions can vary dynamically through time, it is important to 

acknowledge limitations with our observational approach. First, NWT’s Saddle plots do 

not equally represent the diversity of community types found on Niwot Ridge. Certain 

community types (e.g., fellfield, N = 8 plots; wet meadow, N = 4 plots) are under-

represented, potentially biasing our interpretations of which traits and mechanisms are 

most important across the alpine tundra as whole. The low number of fellfield plots is 

especially problematic given that facilitation and resource partitioning are known to play 

an important role in this high stress/low resource community type (Bertness and 

Callaway, 1994; Butterfield et al., 2013). More data from under-represented community 

types should be collected so that analyses of the B-EF relationship can be conducted 

within community types as well as across them. Second, more detailed trait data could 

improve our ability to explain ANPP across the alpine landscape.  Specifically, 

incorporating temporal changes in intraspecific trait variation could be a major way to 

improve the power of trait-based approaches for predicting the B-EF relationship through 

time. Several studies have found that climatic variation can induce large shifts in 

intraspecific trait values, with subsequent impacts on community-level trait distributions 

sometimes exceeding the impact of species composition change (Jung et al., 2014; Henn 

et al., 2018). In this study, we used habitat-specific trait means to capture a degree of 

spatial intra-specific variation; however, more detailed trait data collection (e.g., 

measurements in each year) could reveal how temporal intra-specific variation might 
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generate trait-ecosystem function relationships even stronger than those reported here.  

 

Conclusion 

In our alpine tundra system, productivity was generally best explained by traits related to 

plant size (leaf area and plant height), however, this trend changed during low winter 

precipitation years when δ15N instead best predicted productivity. Without exception, 

productivity was better explained by the community average values of these traits rather 

than their variation, suggesting that, while both mechanisms operate simultaneously, 

mass ratio effects are relatively more important than niche complementarity in 

determining productivity in this system. The total effects of local abiotic variables on 

ANPP were relatively small, however, this was due to complex and contradictory direct 

and indirect (via trait composition) effects. Lastly, some biotic and abiotic variables 

showed context dependent relationships with winter precipitation, and consideration of 

these climatic context dependencies marginally improved our ability to predict ecosystem 

function through time. Taken together, our results suggest that consideration of temporal 

variation in environmental conditions and the dynamic nature of trait-environment 

relationships can improve our understanding of the traits and functional mechanisms 

underpinning the biodiversity-ecosystem function relationship. 
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Figures 

 

Figure 1: Climatic variables and aboveground net primary productivity measured in the 

Saddle region of Niwot Ridge from 2008 to 2021. Orange points indicate years included 

in our study (2008, 2010-2021). A) Annual winter precipitation (between October and 

May) measured in centimeters; B) Annual growing degree days (GDD; between 

September – August), measured as the sum of daily temperatures for days where mean 

daily temperature is greater than zero; C) Mean aboveground net primary productivity 

(ANPP) measured in grams across all 78 plots; error bars display standard error of ANPP. 
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Figure 2: The SEM meta-model used as the basis for SEMs across all traits and years. 

All pathways are based on research demonstrating causal pathways between topography, 

snow deposition, functional composition, and aboveground net primary productivity in 

the alpine zone. “Topography” is a latent variable constructed from elevation, aspect 

(sine transformed), and slope. Snow depth is measured as average snow depth for the 

month of May. All SEMs also included a snow-depth2 term (omitted here for visual 

clarity) to account for the quadratic relationship between snow-depth and ANPP. Snow-

depth2 occupies the same model position as snow-depth; a covariation pathway was 

included between the two terms. Community weighted mean trait values were used as a 

proxy for mass ratio effects (MR effects), while functional dispersion values were used as 

a proxy for niche complementarity effects (NC effects). A covariation term was included 

between the community weighted means and functional dispersion parameters. 

Aboveground net primary productivity was measured as the total annual aboveground 

vascular biomass harvested in 0.2m x 0.5m quadrats adjacent to each Saddle plot.  
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Figure 3: A) Annual winter precipitation (Oct-May) from 2008-2021, shapes show the 

identity of the trait SEM which best predicted ANPP in each year. Panel two shows the 

relationship between ANPP R2 values and annual winter precipitation for trait SEMs 

incorporating leaf area (B), height (C), and δ15N (D). Lines of best fit from linear 

regressions between winter precipitation and ANPP are shown for B-D. Solid lines 

indicate a significant relationship while dashed lines indicate a non-significant 

relationship. For height, quadratic linear regression (shown in red) is also included, as 

this model provided a better fit than simple linear regression.  
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Figure 4: The total effects (sum of all direct and indirect path coefficients) of biotic and 

abiotic predictors on ANPP regressed against annual winter precipitation (mm) for leaf 

area (A/D), height (B/E), and δ15N (C/F) SEMs. Different colors indicate the specific 

predictor variable influencing ANPP; total biotic influences (community weighted means 

and functional dispersion, A/B/C) and total abiotic influences (snow-depth, snow-depth2, 

and topography D/E/F) on top and bottom respectively. Solid lines indicate a significant 

relationship between winter precipitation and ANPP, while dashed lines indicate a non-

significant relationship. 
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Synthesis 

Climate change is reshaping patterns of biodiversity around the world, with mountain 

ecosystems suffering disproportionate effects. To improve our understanding of climate 

impacts on mountain ecosystems, we investigated the causes and consequences of 

biodiversity change in the alpine sky islands of the Colorado Rocky Mountains. We 

found that alpine biodiversity patterns are rapidly changing, with increases in species 

richness, phylogenetic diversity, and the abundance of stress tolerant species (e.g., 

chapter 1). Many of these changes were mitigated in larger sky islands, suggesting that 

these sites are likely to serve as more effective climatic refugia for alpine species and 

should be prioritized for conservation action. Additionally, we found that species 

interactions and co-occurrence patterns in the alpine tundra are mediated by traits related 

to plant size (height and leaf area), but that these traits acted through different 

mechanisms depending on abiotic conditions (chapter 2). Changing patterns of height and 

leaf (chapter 1) are likely to impact these mechanisms, affecting how species compete, 

facilitate, and partition niche space with one another. Lastly, we found that net primary 

productivity in alpine tundra was also best predicted by plant size traits (chapter 3). 

However, in years with low winter precipitation this normally predictive relationship 

collapsed, demonstrating the strong effect of temporal variation in climate on the 

biodiversity-ecosystem function relationship. Taken together, the research outlined in this 

dissertation advances our understanding of shifting biodiversity patterns, the processes 

which drive those patterns, and the functioning of the ecosystems in a rapidly changing 

world.  




