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ABSTRACT

The stability of an initially crooked, simply-supported, Efsection
beam-column, subjected to an axial compressive load, is investigated. The
material of the column is taken to behave as a general nonlinear viscoelastic
solid. It is assumed that the constitutive relation of the material can be
represented by a Volterra-Fréchet functional polynomial.

Conditions sufficient to assure instantaneous, short term and long term
(i.e., asymptotic) stability are established. It is shown that complete
knowledge of the material creep functions (i.e., the kKernels appearing in the
functional polynomial representation of the stress-strain relation) is not
required in order to determine stability conditions. A program of experiments
to characterize the material for stability studies is presented.

A formal analogy for instantaneous and short term stability conditions
is established between the column under consideration and an initially
straight, concentrically loaded column fabricated from an imaginary, non-
linearly viscoelastic material. The relationship between the actual visco-
elastic material under consideration and the imaginary viscoelastic material
is explicitly given. A further analogy - this one between the asymptotic
stability of the column under consideration and the stability of a fictitious,

nonlinearly elastic column - is also established.



I. Introduction

y

Investigations of the stability of nonlinear hereditary structural
systems give rise to the consideration of two fundamental problems. Firstly,
there is the need for the development of more potent analytical procedures for
the better representation of the mechanical behavior of structural materials
under a variety of service conditions. (This demands a deeper study of
constitutive equations.) Then, there is the requirement for the application
of more refined methods of analysis to investigate the stability of the
solutions of nonlinear differential, integral and integro-differential
equations. This follows since the problem of the stability of nonlinear
hereditary systems may be reduced to the stability of an equation in terms
of such nonlinear operators.

With regard to the first problem, it may be noted that although the
construction of unidue, comprehensive and fully detailed constitutive
equations for structural materials of significance would seem to be an
important goal, at ﬁfesent it does not appear that such an objective is
practicable. It is perhaps for this reason that most investigations con-
cerned with the stability of particular nonlinear viscoelastic structures --

such as the creep buckling of viscoelastic columns, snap-through of vis-

coelastic arches, etc. -- are based on the use of quite specific nonlinear
differential or quasilinear integral operators. These operators -- whose
coefficients have, in some cases, been experimentally obtained -- hopefully

represent the behavior of the material under conditions similar to those

expected during the life of the structure. This approach may prove to be



useful for the solution of specific problems, but it certainly lacks
generality. Instead of attempting to obtain closed, or nearly closed,
solutions to this type of problem (based on particular stress-strain relation-
ships), it would seem at least as useful to seek pertinent properties of the
solution based on a quite general statement of the material behavior.

In this regard, the use of a general nonlinear stress-strain relation-
ship represented by means of a Volterra-Frechet functional expansion has
proved to be an expedient instrument of analysis. Such a representation
allows for a general and comprehensive treatment of problems of stability.
(See references [1] and [2].) Although increased efforts are being made
to experimentally evaluate the kernel functions appearing in the functional
expansion for a given material [3], it has been shown [1], [2] that a
complete knowledge of the kernel functions is not necessary to establish
the conditions of stability. Indeed, only a relatively limited amount of
information is required. This paper is an example of the application of
previously developeg theory to the problem of creep buckling of an initially
crooked column --or equivalently, a beam~-column. As a matter of convenience,
the column cross-section is taken to be an H-section.

Short term stability is investigated under very general assumptions
of material behavior. A program of experiments to determine the essential
features of material behavior required in an analysis of short term stability
is discussed. Some particular cases of interest are briefly considered.

The last part of the paper deals with the determination of conditions under

which the beam-column is asymptotically stable. A formal analogy between the



conditions for asymptotic stability and instantaneous buckling is stated.
The case of nonaging materials (and the procedure for evaluating asymptotic
deflections in that instance) is briefly discussed.

Finally, it is perhaps useful to clarify the way in which the term

"stability' is employed in this paper: it is used to signify stability in

the sense of Lagrange [4]. Hereafter, "short term stability” will be used
to den&te stability of the mechanical system under consideration for all
finite values of the time t. '"Asymptotic stability" will signify that in
addition to being stable for all finite values of t, the system is also
stable for t -+ e It is noted that for the problem under consideration,
"stability' may be used synonymously for 'boundedness of deflection.” This
is so, because for the crooked column no neutral state of equilibrium is

possible. Such a state could exist only for an initially straight column.



II. Constitutive Equations

An initially crooked, H-section, simply-supported column is subjected
to a compressive load, P(t), varying arbitrarily with time, as indicated in

Figure 1. It is assumed that the load possesses a finite positive limit

1lim P(t) =P < o (L

t 9 @
Dynamic effects will be disregarded in the present analysis. Furthermore,
P(t) will be taken to be zero for t < to.

The material is considered to be a general nonlinear viscoelastic one,
for which the constitutive equation relating the stress g and the strain €

in a uniaxial test is given by

™=t
et = Flon], (2)

T==0

where :;: represents a continuous nonlinear functional. (Herein, for conven-

ience, stresses and strains will be considered positive if they are com-
pressive.) Utilizing the generalized Weierstrass polynomial theorem for
continuous functionals(due to Frechet [5]) equation (2) may be represented

to any desired degree of accuracy by a functional polynomial of the form

+ + +
t t

m
t
e(t) = E: %T I I . [ G(TI)G(TZ)...G(Tn)fn(t;Tl,Tz,...,Tn) dTldTZ...
n=1 o o

.dTn, (3)



where f are the "material creep functions''. The material is assumed to be
in a quiescent state for all t <« to. The kernel functions fn, which include
products of delta functions of argument t-Ti(with i=1,2,...,n) to account
for immediate nonlinear elastic behavior, are identically zero whenever any
of the arguments TS has a value less than the value of the argument t. It
should be noted that in previous analyses of the problem [6], different
explicit expressions were assumed for the material in tension and in com-
pression. Here it is not necessary to do so, because the general constitutive
law (2) already includes the possibility of a different behavior in tension
than in compression.

For the sake of generality, only very mild restrictions will be imposed

on the material functions. For example,

t+ t+ t+
e(n)(t+-t t t) = f J f (t+"r T T ) dT.dT darT
0 LI A d T n 12" ' 'n 172" 'n’
1 t2 tn
n=1,2,...,m, (4)

will be assumed to be piecewise continuous positive functions exhibiting, at
most, step discontinuities at ti=t.

It is evident that bounded asymptotic creep is a necessary - although
not a sufficient - condition for asymptotic stability of viscoelastic

structures. Therefore, when discussing asymptotic stability the following

(n):

further restriction will be imposed on the functions ¢

1im ™ (et t) <o n=l,2,....m, (5)

1,t2,..
t 9



for all values of ti (i=1,2,...,n), including ti 4 .
Moreover it will be assumed that the material ages asymptotically. By
this is meant that after a long period of time the material properties will

be time invariant. This implies that for large values of the variables t and

(n)

Ti (i.e., for t, Ti -+ o, the function ¢ will tend asymptotically to a

limit function of the form

€(n)(t;T (n)(t—T s t-T

cey T [N
’n)-’e:oo 1 2’

17 Tg0 t-Th), n=1,2,...m,
(6)

for large values of t and Ti.




III. Functional Equation Governing the Deflection

Referring to Figure 1, it follows from geometrical considerations
(where attention has been restricted to a geometrically linearized analysis)

that
¢ - € = -h — ., (7

In the above, €1 and 62 are, respectively, the strains at the convex and
concave side of the beam-column, h is the depth of the section, w0 is the

initial crookedness, and w is the deflection measured from w o From equilibrium

it follows that

_P_ 2
9 a2 " An
(8)
o‘=£+2_M
2~2aF An’

where 01 and oé are the stresses in the convex and concave flanges, respectively.

The bending moment, M, is given by
M= P(w+wo) . 9

Eliminating 0,,05,€,€ and M between equations (2), (7), (8) and (9),

2 2

the following functional equation is obtained

=t =t
? { o l:l + % (w+w0)]} -3:{5'[1 —% (w+wo)]}= -h -52—3 , (10)
T=t T=t
o )

P2



where ¢ is the average stress, given by

o(t) = —= . (11)

Assume the initially crooked shape to be of the form

. |

w =asinax, a=7, (12)
where g is the length of the column, and further assume that

w = b(t) sin o x . (13)

"_n

In what follows we shall refer to "a" as the "initial crookedness."
Substituting equations (12) and (13) into equation (10), and, in the
usual manner for problems of this type [7], collocating the solution at the

center of the bar, the following functional equation is obtained

T=t T=t
ZI‘[B (1+W) ] -ZF}& (1-W)] - h q?b =0, (14)
T=t T=¢
o o
where
W(e) = 2 [a+ b(D)]. (15)

In order to investigate the asymptotic stability of the deflection
function b(t), it is convenient to recast equation (14) in the form of a
nonlinear functional expansion. To accomplish this, expand the functional

o
;} appearing in equation (14) as in equation (3), utilizing equation (15)



m n i t+t+ t+
) LY @) neent (52 Gr 2] ] eeappiny virp
n=1 i=1 j=o totO to
n
(1) oCn,) .. o(r) £ (37 7y, ., ) drjdr,...dr - h o2b(t) = 0 . (16)

Grouping terms of equal order, the following mth order nonlinear

integral equation is obtained

t+
- 2
6,0 = [ pr) [otrpe (e5m) - b a’sCt-1) | an +
t
(o]
et
1 -_ -
+ 3 j j b(r)b(1,) 5(1)alr,) Gy(tim 1)) drdry + .on..
t ¢
O
et ¢
1 - - -
1 _ "
I I CR IR R R R SR T S R IT- SR RN CTENE AP
tt ot
[e e} (o]
d'rld'rz...dq'm, 7
where
m n i et et
1 2 i n (i i-r I I I
. — | — —_— —f =
Gr(t,'rl,"rz,...,'rr) = r] z o z (h\) ‘:1 (-1) ]<1> r>a
n=1 i=1 tt ot
\ 0O (o]
n-r
or, Polr e olr) 2 (657, mp,enym) dr pdr o0e.dr,7=0,1,2,...,0, (18)

and & is the Dirac delta function.
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IV. Conditions for Stability

Conditions for the stability of the structure will follow from the
investigation of the stability of the solution of the mth order nonlinear
integral equation (17). In order to carry out this investigation, it is
convenient to invert equation (17) so as to obtain b(t) as an explicit func-
tional. Equation (17) may be inverted by using an algorithm developed by

Volterra [8], giving

1 1
b(t) = Fl(t) + 5T Fz(t) + 3T F3(t) o (19)

where the functions Fi(t) are obtained from the inversion of the following

infinite triangular system of linear integral equations

t+
I Fi(Tl)Kl(t;Tl)dT1 = - Si(t), i=1,2, ..., (20)
t
(o]
with
S (t) =G (B
1 o
et
Sz(t) = j I Fl(Tl)Fl(Tz)Gz(t;71,72)d¢1d72
t t
[o 2]
et et
s, = [ [ [ B (R (P (r) Gy(t5m 1y, 1) dmjdmyary +
ttt
0O 0O O
St
; 21
+ 3 IIFI(TI)FZ(TZ) G, (tir,, T )dr dm, (21)
t t

o O
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and
- 2
K (ti7)) = olr))G (t57) - h a 6 (t-7)) (22)
GL(t5m e e, ) = 0l olry) . ol )G (i), Ty h T,
r=2,3, ..., m (23)

The problem is now reduced to finding conditions for the boundedness
of the functions Fi(t). In the problem under consideration, it is desired
to investigate short term and long term (i.e., asymptotic) stability of the
structure. This requires the investigation of the boundedness of the func-
tions Fi(t) for finite values of t (short term stability) and for t 4 o

(asymptotic stability).

A. Instantaneous and Short Term Stability

It is apparent that the existence of a bounded solution of equations
(20) for finite values of t will depend on the behavior of the singularities
associated with the kernel function Kl(t;Tl). To explicitly separate these

singularities, recall equations (18) and write the function Gl(t;Tl) in the

form
m e ¢
+ 4 1 - = +
N I ol T G R CREN GRS
n=1 tt ot
\ O 0 (o]
n-1
dr dT.... , 24
72 73 dTn (24)
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where

j-

n 1 - -
0e3) @ [ @) 0 [ B (- ) e

i=1

Introducing the function

t+ -
+ h + O’(Tl)
B+ 5y =5 [ 6,675y — ar =
o(t)
v
n thet ¢
-1 LJ‘I () ot olr )E (75 )
—'&(t) o o7 cee ] olmy Tg) e eolT )t Ty Tor e Ty
n=1 vt t
o o
d'rld'rz...d'rn, (26)
the following relation holds
ol T,)
h
2 —1 6 (T = - 2B (27
o(t) 0Ty

Substituting Kl(t;Tl) given by equation (22) in equations (20), and taking

into account equation (27), equations (20) may be rewritten as follows

t+
g F(t)-}(t)JF( y =& B(t ;1 0dr = - = 8.(th
4 i i*T a1 'T79T1 T T2 Py ’
t
(o]

i=1, 2, ... (28)
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Recalling equation (26), and taking into account the delta function

behavior of fn for 1. = t, equations (28) now take the form

1

1;+

2 2
- tyy - B o - - -_h
ESECEREE 1r 0+ 5o [ 2 Bt inpan = - § 5,0,
t

i=1,2, ..., (29)

where the delta function contribution associated with the term %%—B(t;T)
T

has been separated out and explicitly included in the first term on the
left hand side of equations (29). Thus the term gE— appearing in these
T
1

equations exhibits at most a step discontinuity at ™ = t.

The analysis of the solution of equations (29) around the zeros

of the function [a(t) B(t+;t) - % hza?] establishes that if
- + 1.2 2
o'(t) B(t ;t) <Z h o (30)

then the functions Fi(t), and consequently the deflections, remain bounded.

(See reference [1].) If a real, finite, positive value of time, tl’ exists
such that
- + 1 .22
. = = 3
c(tl) B(tl ’tl) 2 h o , (31)
then buckling occurs at t = t . This time will be called the "critical time.”

I1f, for a given material, a complete knowledge of the material creep

+
functions, fn, is available, then, from equation (26), the function B(t ;t)
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may be evaluated for a given average stress history a(t). The problem of
determining the critical time then reduces to the evaluation of the lowest
real, finite, positive root, tl,of equation (31). However, this is not the
case which is most interesting for practical applications. 1In fact, although
the analysis given above entirely solves the short term stability problem
under very general conditions, the complete experimental determination of
the kernel functions fn for a given material is, in general, an extremely
difficult and time-consuming undertaking. (See references [1] and [3].) The
principal aim of this paper is to show how, from a very general point of
view, it is possible to solve specific problems by means of a limited, well-
planned sequence of experiments.

In order to develop this idea, recall equation (26) and write the

condition for buckling given by equation (31) in the form

m thet
- + 1 - - - +
g(t)B(t ;t) =:§E_Oh ~ J I ...I G(Tl)G(TZ)"'G(Tn) fn(t ;71’72""’Tn)
n=1 tt t
o o
d"rld'rz.. .d'rn = -} h2 Q/z. (32)

Consider now an element of the material submitted to a certain
uniaxial stress history a(t). At a certain time ti a small increment of
the axial load is applied and the corresponding instantaneous increment of
strain occurring at ti is recorded. This operation may be repeated a number
of times, utilizing a sequence of different small stress increments §g.,

J

so as to generate a corresponding sequence of small instantaneous strain
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increments 5ej at the time ti. The limit

lim J
E (t,) = —_—
T i . -0 .
6 o5 o€ 5

will be defined as the tangent modulus of the material at time ti. Note
that in general the tangent modulus depends on the stress history a{t).
It is not difficult to prove that the tangent modulus ET(t) of a

material submitted to a uniaxial stress history a(t) is given by

t
- +
cy('r1 cevolm) £ (t Ty Ty)
t

C"‘c—-;d'

m t
E%t)=6(t)z i_.[
t

=]

(o}

c.dr . (33)

In order to simplify the notation, write equation (32) in the form

m
B(t ;) = = }2 o T A_(t) (34)
o(t) o1 ) *
where
tret ¢
An(t) = I I ...I B(Tl)...a(qh) fn(t+;71,...,7n) dTl...dTn . (35)
t tO tO

Let Bi(i=1,2,...,m) be m different real numbers, and let ET (t) be
i
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the tangent modulus of the material submitted to a stress history Bia(t).

The tangent modulus ET (t) is experimentally determined according to the

i
procedure previously outlined. But now, recalling equations (33) and (35),

it is seen that ET (t) is given by the expression

m
1 1 n-1 1 .

}Z ngo T An(t), i=1,2, ..., m. (36)

n=

This system of m linearly independent equations permits the evalua-
tion of the m coefficients An(t) at any desired time, t. This in turn
allows for the determination of B(t+;t) by substitution into equation (34).

In what follows some special cases will be presented and briefly

discussed.

Instantaneous Buckling

Instantaneous buckling will occur provided equation (32) is satis-

fied for t = to. Recalling equation (4), the condition for instantaneous

buckling may be written

m
1 -n (n), + 1.2 2
z G T O (to) e (to,to,to,...,to) =7h o . (37)
n=1
. (n)  + .
The coefficients g (t ;t ,...,t) = A (t) may be obtained by
o’ o o n o

performing the sequence of experiments already discussed. However, in this

specific case it is perhaps more convenient to evaluate the coefficients An
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by observing that the instantaneous response of the material under a

constant uniaxial stress o i is given by
o

m

1 n (n) .
€ ~ §i n! %i € (t ’to""’to)
n=

By performing m experiments at m different stress levels obi(i=1,2,...m)

it is therefore possible to directly evaluate e(n)(tz;to,...,to)

Small Initial Crookedness

If the crookedness parameter %ﬁ is small compared with unity, then
it is seen from equation (25) that o, n. Hence the condition for

buckling in this case will be, if due account is also taken of equations

(31), (33), (34) and (35),

ot _

ET(t) .

n2 a,z . (38)

W] =

This result is essentially equivalent to that obtained in reference [1],
if account is taken that the notations are different, and’that, in this
case, the problem is restricted to the investigation of an H-section.

It is worth noting that comparison of equations (32) and (33) yields
that 1/B(t+;t) is the tangent modulus of a virtual material, submitted to a

uniaxial stress history B(t) whose material creep functions are

on

. . O
- fn(t;Tl,Tz,...,Tn). Since the coefficients . >1, for n > 2, and they
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. . 2

increase with the crookedness parameter Ei’ then the apparent tangent
modulus, 1/B(t+;t), will be smaller than the actual tangent modulus of the
material, ET(t), and it will decrease as the initial crookedness increases.

The coefficients ah play the role, in the problem of the crooked column,

of increasing the contribution of the higher order creep functions fn.

The Linear and the Quadratic Case

When m = 1 the condition for short term buckling is

o'-(t) = %‘ h2 0’2 ET(t) ) (39)

where the tangent modulus

1
ET(t) = e—— (40)

is independent of the load history and the initial crookedness.
When m = 2, (i.e., when the material may be represented by a second
order functional polynomial) al =1 and &, = 2. Then the condition for

2

buckling is

et
- 1 - - +
g(t) e( )(t+;t) + IJ g('rl)c('rz)-fz(t ;Tl’TZ)dTIdTZ =
t t
(o]
- Aﬁ)_— =142, (41)
ET(t,c)

where ET(t,a) symbolizes the tangent modulus of the material submitted to
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a stress history equal to exactly the true average stress history a
acting on the actual column. This interesting result shows that, in
this case also, the apparent tangent modulus 1/B(t+;t) does not depend on

the initial crookedness -- although it does depend on the load history.

B. Asymptotic Stability

Let E(t) be an average stress history acting on a column with an
initial crookedness of amount "a,” and assume that equation (30) remains
satisfied (i.e., that no buckling occurs for any finite value of time).
Suppose -- as was assumed in equation (1) -- that P(t), and consequently
E&t), possesses a finite limit as t 4 « The problem is now to investi-
gate under what conditions the deflection will remain bounded as t 4 o
Hitherto, very mild restrictions were imposed on the functions fn [or on the
functions e(n), related to fn through equations (4)]. To investigate
asymptotic stability, equations (5) and (6) are assumed to be satisfied.
The asymptotic stability of the structure will follow from the investiga-
tion of the asymptotic stability of the mth order nonlinear integral equa-
tion (17). A similar type of investigation has already been performed in
a previous work [2]. It may be shown from that work that if equation (5)
is satisfied, and if a function R(t-Tl) exists such that it approximates

the function Kl(t;Tl) [given by equation (22)] in the sense that

lim

ta

j | I—<(t—T1) K (t57)) | e_n(t_Tl)d'rl =0, Re >0, (42)

t
o



then if

©

JE(T) e Va1 +0 , Re v 20 ,

t
(o]

b(t) is bounded as t =+ o« .

20

(43)

To construct a function ﬁl(t-Tl) which approximates Kl(t;Tl) in the

sense of equation (42), it is natural to utilize the asymptotic form of the

"imperfect" (i.e., time-varying) kernel Kl(t;Tl). Taking into account equa-

tions (4), (6) and (24), it is not difficult to establish that

2

Kl(t—Tl) =0, Gl(t—Tl) -ho & (t-Tl),
where
- _ lim P(t) _Pe
% = t+w A A
and
m . an-l
- 4 3 n, "o (n)
G, (t-1)) = - ¢ 5T, z = oD e (-1, @ @00, ®
n=1

approximates Kl(t;Tl) in the sense of equation (42).

Substitution of equation (44) into equation (43) yields

o0
Ig(T) e Ydr + 1, Re vy =0 ,

t
o

(44)

(45)

(46)

(47)
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where
4 g T st
s 2.3V 1, = (W
g(n) = 22 BTZ n (n-D)! S (T1 ®reces S (48)
o n=1

Consider now that a completely aged sample of the material under con-
sideration is subjected to a uniaxial creep test under the stress G&F(t) where
H is the heaviside unit step function, and am is any stress level. Let the
strain response in this creep test be denoted by €, Now imagine another
completely aged sample of this material to be subjected to a stress history
a;y(t) + 66ay(t-to), where éam is a positive infinitesimal increment of
stress. Denote the strain response in this test by €, + 5€w. Let 1 be the
time increment t - to’ and consider the case when to + o . On physical grounds
it is to be expected that the increment of strain, 56«57)’ due to the incre-
ment of stress, 68@, will be a positive, monotonically increasing function
of 1. 1In what follows, attention will be restricted to materials which behave
in such a manner.

It is easy to establish that, to within higher order terms in the

infinitesimal stress increment §g ,
«©

m a n-l
6600(7) = 6acts y h' e:on) (T’ @y @y ey °°)' -(49)
n=1

From the above discussion, it then follows that

m -
(0}
E _» e(n) (1, ® ..., @) >0, for any G_, (50)
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and

m -

3 O (n) -

37 E -1 ! [ (), © ..., ©) >0, for any a_ - (51)
n=

If equation (48) is rewritten, taking into account equation (25), it takes the

form
25 "5+ 2a/m) 07t
= ® [3 ® (n)
g(p = I {B'T z (-1 ! €m (1, © ..., © )
h o n=1
® [5(1 - 220"t
-l © (n)
T ar z (n-1)! e, (1) o @...) @) } (52)
n=1

It then follows from equation (51), recalling that g >0 , that g(q) >0
(=]

Consequently equation (47) will be satisfied if, and only if,

©

jgu) dr <1, (53)

t
o

or, equivalently,

m - n

c (n) 1.2 2
Z Q/n —% €., (0, @yeue, o) <Zh o - (54)
n=1

This equation provides a sufficient condition for asymptotic bounded-

ness of the deflection. (It may be proved to be a necessary condition
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(n)

provided some further very weak restrictions on the kernels ¢ are
assumed.) The critical value of the asymptotic average stress, aaf, may be
obtained by replacing the inequality sign in equation (54) by an equality
sign, and solving the resulting nonlinear algebraic equation in 6;?. It is
important to note -- as is clearly indicated in equation (54) -- that the
critical load does not depend on a complete knowledge of the material func-
tions e(n) appearing in the constitutive equation (3), but only on their
asymptotic values.

In order to directly determine the values of ei?)(m, ©yesey
experimentally, consider a specimen of the material which has been completely
aged, and submit it to a constant stress A From equation (3), and utilizing
the asymptotic form of e(n) given by equation (6), the expression for the
asymptotic strain ei(ag of the completely aged material under the constant

stress o is given by

m cn
' i (n)
e (o = z 2 e (o @, ®) (55)
n=1

By performing m such experiments at m different stress levels
g (i=1, 2,..., m), the m outputs ei(aQ will be produced. Then the solu-

tion of the system of m linear algebraic equations given by equation (55),

with i =1, 2,..., m, uniquely determines the values of the m coefficients
(n)
€°° (o, ’ °°)’ n=1, 2, , M

A significant physical interpretation of equation (54), which gives
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the condition for asymptotic boundedness of the deflection, follows from
comparison of this equation with the condition for boundedness of the deflec-
tion under instantaneous loading. The condition for instantaneous buckling
was already given by equation (37), and it is immediately recognized that

the condition for boundedness under instantaneous loading is given by

1 -n (n) , .+ 1.2 2
¥ 7O (to) € (to, to,..., to) <3 h o . (56)

1

i

Comparison of equations (54) and (56) shows that the condition for
asymptotic boundedness given by equation (54) is nothing but the condition
for boundedness of the deflection of a nonlinear elastic column for which

the nonlinear elastic stress-strain relationship is

m
n
€=§-\ -g_l' €(n) (°°, Dy o0 0y @ . (57)
n=

Nonaging Materials - Asymptotic Deflections

If the material is nonaging, the creep functions appearing in equation

(3) will be functions of the differences of the arguments -- i.e., they will
have the form fn(t-Tl, t-Tz,..., t—Tn). Then the material functions will
reduce to the form e(n)(t-71, t-Tz,..., t-Tn) . It is now easy to show that

the condition for asymptotic boundedness reduces to

- n
c (n) 1.2 2
o —% e (0, o.cey @ <7h" o . (58)

1

ﬁ[\vq =
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This is essentially equivalent to equation (54), except that the asymptotic

form (for large values of t and Ti) e(n)(m’ ©,..., o of the material
[+ -]
functions e(n)(t;Tl, Tor s Tn) has been replaced by the actual limit
(n) . (n)
[ (oo, g e ¢ sy m) = lim € (t_Tl’ t-'rz,..., t"Tn) ’

t4o

which is independent of the values of TS

An advantage of dealing with nonaging materials is that if the input
of the system is asymptotically bounded then the output of the system will
not depend on the input history. This property, and its consequences, was
studied in detail in reference [2]. If the theory developed in that reference
is applied to the problem under consideration, it may be shown that the
asymptotic deflection of the column may be computed as the deflection of a
nonlinear elastic column submitted to a load P(«), and for which the mechani-
cal behavior of the material is governed by the nonlinear elastic stress-

strain relationshin
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V. Conclusions

An investigation was conducted of the conditions under which a simply-
supported,‘Efsection, nonlinear viscoelastic column is stable. The material
was assumed to be a quite general nonlinear viscoelastic one whose stress-
strain relationship is given by a Volterra-Fréchet functional expansion. The
investigation has shown that if at a certain finite time the axial load P(t)

approaches the value

2B 0] 1

2
£

P(t) =

then buckling occurs. If the function 1/B(t+;t), given by equation (26), is
interpreted as an apparent (or virtual) tangent modulus, then a formal
analogy exists between creep buckling of a column with arbitrary initial
crookedness and inelastic buckling, in the sense of Shanley [9], of an ini-
tially straight column under a concentric load [1]. Further -- and tightening
the analogy -- it has been shown that 1/B(t+;t) may be considered as the
actual tangent modulus of a virtual material which has been submitted to

the given average stress history. For the virtual material, the creep func-
tions appearing in the functional expansion given by equation (3) are P fn
instead of fn. Then -- as was to be expected -- the apparent tangent modulus
depends not only on the stress history but also on the initial crookedness of
the column. It has been demonstrated that if the stress-strain relationship
is not explicitly known for a certain material, then the measurement of the

actual tangent modulus of the real material at m different levels of stress
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history allows for the evaluation of the apparent tangent modulus.

The investigation of the conditions for which the bar is asymptoti-
cally stable was conducted under the further assumptions that the material
exhibits bounded creep, ages asymptotically and the axial load possesses a
finite 1limit as t -+ «. Application of a previously developed theory (2]
allowed for the determination of the condition for asymptotic stability. A
formal analogy is also obtained in this case, between the condition for
asymptotic stability of the real column and the condition for buckling of a

corresponding nonlinearly elastic column.
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FIG. La CROSS SECTION OF IDEALIZED H-SECTION BEAM

2

FIG. 1b PORTION OF BENT BEAM-COLUMN
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FIG.1c DEFLECTIONS OF SIMPLY SUPPORTED COLUMN





