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Assessing The Performance of Behind-The-Meter 
Solar+Storage for Short-duration Power Interruptions: A 
Case Study using the PRESTO model
Sunhee Baik1, Juan Pablo Carvallo1, Galen L. Barbose1, Will Gorman1, Cesca Miller1, and Michael 
Spears1

Abstract

The growing interest in onsite solar photovoltaic and energy storage systems (PVESS) is partially 
motivated by customer concerns regarding grid reliability. It is crucial to consider both the 
unpredictability of such events and the location-specific patterns in their timing and duration to accurately 
evaluate the capability of PVESS in alleviating these interruptions. We developed the publicly available 
Power Reliability Event Simulation Tool (PRESTO) that simulates power interruptions at the county level 
to examine PVESS backup performance - the percent of otherwise interrupted load served - during 
simulated short-duration power interruptions in a representative single-family home located in three 
representative U.S. counties. A PVESS with a relatively small amount (10 kWh) of battery storage 
reliably serves essential non-heating and cooling loads in most simulated events, serving an average of 
93% of the energy demand across all events and fully serving loads in 84% of total events. This occurs 
despite the fact that the battery is being used on a near daily basis for time-of-use (TOU) bill 
management, with a minimal reserve setting, and therefore may not be fully charged at the time the 
interruption occurs. In contrast, requiring this PVESS to meet heating and cooling loads significantly 
diminishes its performance, with an average of 70% of load served and only fully serving 43% of total 
events. These findings highlight the challenge of addressing short-duration interruptions and stress the 
importance of understanding factors influencing PVESS backup performance. Our study provides 
valuable insights into potential mitigation strategies, with a focus on grid charging and battery size 
optimization.

Keywords: Electricity reliability; Solar; Storage; Backup-power; Solar Photovoltaic and Energy Storage 
System

1. Introduction

Customer interest in onsite PVESS has been partially driven by reliability and resilience concerns 
(EnergySage, 2021). Over time, concerns about grid reliability could intensify due to increasing climate 
impacts, wildfires, and greater use of variable generation sources (Brockway and Dunn, 2020). 
Understanding the backup power capabilities of PVESS is crucial for guiding investments and early 
adoption as the industry grows. This understanding may also inform grid planning and policy-making, 
including predicting PVESS growth and prioritizing investments.

Applications for customer-sited backup power could serve as a pivotal entry point for the BTM solar and 
storage industry, fostering customer adoption. Despite the potential technical advantages of BTM PVESS 
for both reliability and resilience, a lack of data and complex methodologies hinder a comprehensive 
understanding. For instance, O'Shaughnessy et al. (2017) analyze the value of distributed solar PV solely 
based on bill savings, while Hoff et al. (2007) distribute the value of uninterrupted emergency power from 
an average annual cost of outage-related disruptions across residential and commercial customers to 
estimate the value of uninterrupted emergency power. These approaches fail to capture the full picture of 
BTM PVESS benefits. While previous studies like Prasanna et al. (2021) have explored the reliability and 
resiliency benefits of PVESS systems, they often lack sufficient consideration for the diverse factors 
influencing these benefits. These factors include geographical variations, customer types, interruption 
durations, and the size of the PVESS system itself. Most recent work has focused on comprehensive 

1 Lawrence Berkeley National Laboratory. 1 Cyclotron Road, MS 90-4000, Berkeley, CA, 94720, USA.
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nationwide evaluations of PVESS's ability to mitigate long-duration power interruptions at a granular 
level (Gorman et al. 2023). However, a gap remains regarding PVESS effectiveness in addressing short-
duration and routine interruptions. While long-duration interruptions, often stemming from major weather 
events, can be somewhat anticipated, allowing customers to proactively charge their batteries, short-
duration disruptions present a more intricate challenge. These short-duration disruptions, which can recur 
multiple times throughout the year, exhibit varying durations but often follow discernible patterns. Yet, 
they remain less predictable due to their random frequency and duration, necessitating consideration of 
the battery's initial state of charge (SoC) and its alignment with day-to-day operating schedules. 
Addressing these events requires a thorough examination of interruption patterns and a comprehensive 
analysis of how PVESS responds within specific contextual factors such as battery state of charge, solar 
production availability, and load.

This paper aims to demonstrate the application of the Power Reliability Event Simulation TOol 
(PRESTO), a publicly available model developed by Berkeley Lab, to simulate the occurrence of short-
duration power interruption events at the county level. A separate storage dispatch model, developed in 
our previous research (Gorman et al., 2023) is employed to simulate PVESS operation and backup 
performance for each of the large number of interruption events generated by PRESTO. The initial focus 
is on a typical single-family home in Maricopa County, Arizona, encompassing a limited set of scenarios 
related to system sizing, backup power configuration, and whether the customer charges their battery 
storage system from the grid during normal operating conditions. Comparative results for two counties in 
Massachusetts (Middlesex) and California (Los Angeles) are also presented, illustrating how regional 
differences in climate, interruption patterns, and retail rate structures can affect PVESS performance as a 
backup power source. The conclusions highlight several other important considerations for evaluating 
PVESS backup power capabilities.

2. Literature review

Previous research has extensively examined the potential grid services offered by energy storage systems. 
Balducci et al. (2018), building upon the framework introduced by Akhil et al. (2015), categorized the 
services offered by energy storage into the following segments:

● Bulk energy: Dispatching energy storage services during peak demand events to provide capacity 
and resource adequacy services, reducing the need for new peaking power plants and engaging in 
energy arbitrage by trading in wholesale energy markets, buying during off-peak periods, and 
selling during high-price periods.

● Ancillary services: Balancing generation and load within the system through various services, 
such as regulation, load following, spin/non-spin service, frequency response, flexible ramping, 
voltage support, and black start service.

● Transmission services: Utilizing energy storage to store energy during uncongested periods, 
offering congestion relief, and reducing load on specific sections of the system, thus delaying 
transmission system upgrades

● Distribution services: Employing energy storage to defer distribution system upgrades, provide 
volt-var control, and reduce energy consumption by lowering feeder voltage

● Customer services: Using energy storage to lower customer charges during peak periods (time of 
use charge reduction), enhance reliability by minimizing power outages, and decrease the 
maximum power draw to avoid peak demand (demand charge reduction).

Several studies have evaluated the enhanced value of power system reliability. These assessments 
typically calculate power reliability benefits by multiplying the duration of power interruptions mitigated 
by energy storage with the value of unserved energy. For instance, Eyer and Corey (2010) examined the 
reliability benefits of storage, assuming a 2.5-hour annual outage and a value of $20/MWh for unserved 
energy, resulting in an annual reliability benefit of $50/kW-year. Neubauer et al. (2012) reported a 
combined power quality and reliability benefit of $135/kW-year in California, based on a 200 kW system 
experiencing around five reliability events and 10 power quality events annually. Similarly, Balducci et 
al. (2013) assessed the outage mitigation potential of energy storage systems. Their approach considered 
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the average number of customers affected by outages, historical outage frequency and duration data 
(based on the past two years' outage logs), and the value of lost load (VOLL) estimated for Washington 
state. The estimated benefits vary depending on factors such as energy storage size, the assumed number 
of outages, and the duration of each outage. The range of power reliability benefits assessed in the 
literature spans from $2/kW-year to $283/kW-year in 2015-dollar values (Balducci et al., 2018).

Improving over these assumptions-based results, recent work employs simulation-based optimization 
approaches to estimate the benefits of PVESS, mostly for the resilience benefits. For instance, Benidris et 
al. (2021) introduced resilience valuation metrics aimed at quantifying the value of resilience. These 
metrics entail the creation of an outage cost matrix, which considers outage duration, seasonality, and 
load type (essential, priority, and discretionary). The cost of service interruption resulting from extreme 
events is then estimated by multiplying the amount of load lost with the probability of a service 
interruption, factoring in both duration and season and the associated cost of interruption.  This approach 
was applied to evaluate the resilience value of PVESS in Reno, where historical data were utilized to 
assess the likelihood and duration of extended power outages, augmented by sequential Monte Carlo 
simulations.

In a similar vein, Zhou et al. (2019) utilized a simulation-driven optimization model to examine the 
economic and reliability advantages associated with PVESS. Their study involved simulating power 
disruptions using customer-centric reliability metrics (Customer Average Interruption Duration Index 
(CAIDI) and System Average Interruption Frequency Index (SAIFI)) alongside battery 
charging/discharging behavior during outages at the hourly level. The approach was implemented across 
various case studies involving diverse facilities (e.g., hospitals, hotels, primary schools, and small offices) 
in Islip, Long Island, NY, each characterized by different VOLL. The outcomes encompassed metrics 
such as the proportion of outage hours with met demands based on battery capacity, overall system costs 
corresponding to battery capacity, attained Loss of Load Probability (LOLP), and delved into the effects 
of additional variables, including battery pricing and sensitivity analyses encompassing increased LOLP, 
shifts in overall system costs, and adjustments in battery sizing scales.

While the studies above provide valuable insights into optimal PVESS sizing and resilience benefits, a 
significant challenge persists in comprehending the effects of power outages across diverse geographic 
regions. Outages, particularly short and localized events, can vary significantly in duration but often 
follow recognizable patterns, and simulating events following these patterns is crucial for accurate 
analysis. Previous studies often simplify this by relying on specific distributions with annual reliability 
metrics (e.g., Zhou et al.'s (2019) use of the Poisson distribution) or solely basing outage probabilities due 
to specified types of events (e.g., only considering service interruptions due to extreme events; Benidris et 
al., 2021), which neglects real-world uncertainties. Accurate analysis of the benefits of PVESS requires 
highly detailed power outage profiles along with location-specific solar and load data, enabling the 
calculation of generation and dispatching power during outages at disaggregated temporal and spatial 
levels. Unfortunately, previous studies often lack this critical input data.

More recently, Gorman et al. (2023) assessed the resilience benefits of PVESS for residential customers 
at the FIPS level. They employed stylized scenarios, including a 3-day synthetic interruption event that 
starts at 12 AM on the 50th percentile net-load day, a solar system sized to meet 100% of annual load, and 
10 kWh (5 kW) battery size with a 100% beginning battery SoC. Their key innovation was utilizing 
disaggregated end-use load profiles across the continental US, aligning them with geographically and 
temporally specific solar generation estimates. This allowed them to employ a PVESS dispatch algorithm 
and calculate loads served during outages with realistic solar profiles. The study analyzed performance 
across various customer types, geographic and climate conditions, and outage scenarios, all within a 
county-level framework. 

While not directly linked to PVESS, studies have engaged in simulating power interruptions to evaluate 
system reliability and resilience. There have been resilience assessment studies focused on analyzing 
major outages resulting from extreme events to comprehend system resilience (e.g., Gorman et al., 2023), 
understanding the impacts of such events (Abdelmalak et al., 2023), retrospective analysis of measures 
implemented during these events (Wu et al., 2022), and improving predictive capabilities or uncertainty 
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quantification regarding such events (Arora and Ceferino, 2023). While resilience analysis has garnered 
more attention, there has also been notable research on reliability assessment. Tsianikas et al. (2021) 
employed CAIDI and SAIFI metrics to simulate power interruptions, utilizing a shifted Poisson 
distribution for outage duration and a Poisson process for outage events. Cadini, Agliardi, and Zio (2017) 
took a more sophisticated approach, incorporating weather-related parameters to model random line 
failures under various conditions. Similarly, Adefarati and Bansal (2017) assessed distribution system 
reliability with renewable generation, employing a Markov model for component states. However, these 
studies often rely on single failure rates or metrics, potentially limiting their representation of outage 
patterns. Moreover, they typically utilize region-specific metrics provided directly by utilities or 
collaborators, posing challenges in focusing on specific regions with available information.

In summary, the review of previous studies underscores the ongoing efforts to analyze the reliability and 
resilience benefits of PVESS. Existing studies have been constrained, particularly in terms of 
geographical scope, often focusing solely on specific regions. While Gorman et al. (2023) took steps in 
this direction, it solely focused on long-duration interruption events with non-stochastic interruption start 
times. The efficacy of PVESS backup in mitigating stochastic, short-term interruptions remains 
understudied. This paper fills this gap by developing a thorough examination of short-duration 
interruption patterns, coupled with rigorous simulation and analysis to understand how PVESS responds 
to these events. 

3. Methods
This paper implements two processes in sequence, each with a methodological contribution. First, we 
develop the PRESTO model to generate realistic, county-specific short-duration outage scenarios across 
the continental US. Subsequently, we utilize these interruption datasets to evaluate the mitigation 
potential of PVESS against short outages using a high-resolution temporal analysis. This section provides 
a concise overview of both methodologies.

3.1. Model specifications of PRESTO

It is crucial to employ realistic profiles that accurately represent the timing, duration, and frequency of 
these disruptions to accurately evaluate the effectiveness of PVESS in mitigating short-duration power 
interruptions from a customer's perspective. To achieve this, we utilized PRESTO, a power outage 
simulation tool, and employed carefully curated inputs derived from historical interruption data. Figure 1 
visually outlines the process implemented by PRESTO, which will be further elaborated in the following 
text. 

Figure 1. Schematic illustrating the data curation process for PowerOutage.US (POUS) data to generate 
the default inputs for PRESTO, preparing them for simulation runs for all FIPS regions in the contiguous 
United States.

The foundation of our analysis lies in hourly interruption data for each county in the United States, 
spanning from July 2017 to November 2021. This comprehensive dataset was compiled from 
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PowerOutage.US (POUS), a web scraper that gathers publicly available outage information from various 
utilities. The data is presented in an 8760 format, encompassing hourly counts of affected customers for 
each utility-county combination and hourly records of the maximum number of customers tracked and 
those without power. 

From this rich dataset, we extracted valuable insights into the duration and extent of non-continuous 
interruption events in each county-month combination. Statistical analysis of the historical data played a 
pivotal role in designing and calibrating the inputs for PRESTO. We employed standard time-series 
decomposition techniques for each county to isolate seasonal and time-series trends versus and random 
components. The seasonal component, capturing several years of interruption patterns, reflects the long-
term behavior of county-level interruptions. Using the probabilistic functions to estimate the likelihood 
that an individual customer in a given county would experience an interruption during any given hour of 
the year, PRESTO captures historical patterns in both the timing (e.g., seasonal and diurnal) and duration 
of interruption events at the county-level. However, acknowledging the limitations of our analysis 
timeframe in capturing long-term reliability trends, we also allow users to input System Average 
Interruption Duration Index (SAIDI) and SAIFI values to adjust the likelihood of outages within 
PRESTO’s simulations.

PRESTO stochastically generates interruption events over a large number (1,000-20,000) of simulation 
years, allowing a user to develop probabilistic assessments of the impacts of power interruptions. For 
each simulated year, PRESTO:

● Draws interruption frequency: The interruption frequency is drawn from a truncated normal 
distribution with a mean equal to SAIDI and a standard deviation equal to 2 * SAIFI. This 
ensures that the simulated interruption frequency is consistent with historical observations. 

● Assigns a week: A week is assigned to each event based on weekly likelihoods, which are 
determined from the seasonal decomposition as probability weights. This captures the seasonal 
patterns in interruption frequency. 

● Assigns hour-of-day: An hour-of-day is assigned to each event based on the month for a given 
week, using the corresponding hour-of-day monthly vector of likelihoods. This is also determined 
from the seasonal decomposition and captures the diurnal patterns in interruption frequency. 

● Draws duration: The interruption duration is drawn from a calibrated probability distribution 
based on a truncated normal distribution. The mean of this distribution is equal to the monthly 
CAIDI (monthly SAIDI divided by monthly SAIFI) divided by the number of generated power 
interruptions from the simulation, and the standard deviation is based on the monthly CAIDI. 
This ensures that the simulated interruption durations are consistent with historical observations.

The training dataset for PRESTO is derived from the POUS dataset, compiling outage data from various 
utilities spanning mid-2017 to late 2021, with continuous monitoring for 96% of counties (2,985 out of 
3,106 FIPS regions) for over a year. To address the 3.8% of regions (121 regions) lacking consistent 
POUS tracking, a matching approach is employed, pairing regions with insufficient data with similar 
counties based on factors such as population density, degree of rurality, the Social Vulnerability Index 
(SOVI), and precipitation patterns. 

Figure 2 shows how monthly SAIDI and SAIFI data (top left, Figure 2 Panel A) is used by PRESTO to 
simulate power interruption profiles for a selected county over 1,000 years (top right, Figure 2 Panel B). 
This simulation helps us understand the inherent distribution of interruption characteristics, such as 
duration and frequency (bottom, Figure 2 Panel C). 
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Figure 2. Illustration of how monthly SAIDI and SAIFI, along with other inputs, generate power 
interruption profiles and distribution of interruption characteristics in PRESTO.

By meticulously constructing realistic interruption profiles that faithfully represent the timing, duration, 
and frequency of power outages, we have established a solid foundation for evaluating the effectiveness 
of PVESS in alleviating these disruptions from a customer's perspective. This approach accurately 
captures historical patterns in both the timing (e.g., seasonal and diurnal) and duration of interruption 
events at the county level, providing a comprehensive framework for assessing the impact of PVESS on 
customer experience. In this study, we integrate PRESTO with a storage dispatch model developed in our 
previous research (Gorman et al., 2023) to simulate PVESS operation and backup performance across 
numerous interruption events. However, it is important to emphasize that PRESTO's utility extends 
beyond this particular application, as it can also generate interruption profiles crucial for broader analyses 
like reliability assessments at disaggregated temporal/spatial levels and identifying communities in need 
of additional investments.

3.2. PVESS evaluation during power interruptions

Leveraging the power interruptions simulated using PRESTO, we evaluated the efficacy of PVESS for 
residential customers using the PVESS dispatch algorithm introduced by Gorman et al. (2023).2 Our 
methodology involves utilizing four essential time-series datasets as inputs to the PVESS dispatch model 
during power interruption events: 

● Load profiles are generated using NREL's ResStock model for selected counties. The ResStock 
model generates a comprehensive set of building models by utilizing probabilistic distributions of 
over 100 building stock characteristics, including insulation, HVAC technology, square footage, 
and heating fuel (Wilson et al., 2022). A representative single-family detached home was chosen 
based on the median values for annual energy consumption in each county. Simulated load 

2
 The storage dispatch model utilized to satisfy specific critical loads during power interruptions is described in detail in Section 3.2 of Gorman et 

al. (2023). In line with Gorman et al. (2023), we also adopt a 92% one-way battery efficiency and assume a 2-hour duration battery.

6



profiles for those homes are resolved at a 15-minute interval basis and disaggregated into 
individual end-uses.

● Solar generation profiles are derived for temporal and geospatial alignment, drawing from 
weather data used in the foundational ResStock building simulations. This involves merging 
ground-based measurements with solar radiation data from NREL's National Solar Radiation 
Data Base (NSRDB) (Sengpta et al., 2018). Subsequently, NREL's System Advisor Model 
(SAM) is employed to generate hourly AC solar production profiles that ensure the annual PV 
generation matches the building's overall annual consumption profile (NREL, 2020).

● Power interruption profiles are created with PRESTO. PRESTO utilizes county-level hourly 
outage data (Poweroutage.US for the period of mid-2017 through late 2021) to calibrate 
functions, generating annual outage time series with stochastic attributes. These functions are 
fine-tuned to match real data statistics, ensuring the simulated short-duration interruptions align 
with actual conditions.

● Simulating PVESS operation during power interruptions requires information about the battery’s 
SoC at the beginning of the interruption event.  To generate those initial SoC estimates, we use 
NREL's ReOPT model to simulate battery storage operation under blue-sky conditions, assuming 
that customers take service under the local utility’s existing time-of-use (TOU) rate and operate 
storage in response to TOU rate structures (Anderson et al, 2017). In the baseline set of scenarios, 
grid charging is not permitted, but grid exports are allowed. 

Refer to Figure 3 below for a comprehensive overview of how the primary data sources are integrated 
into the corresponding PVESS evaluation methodology.

Figure 3. Schematic representation of PVESS evaluation methodology

4. Case study design

The primary objective of this paper is to assess the potential of PVESS to mitigate short-duration power 
interruptions in typical residential buildings within specific study regions. We consider residential PVESS 
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systems with a fixed battery size (representing typical sizing observed in the U.S. market today), paired 
with a photovoltaic (PV) system sized to meet 100% of the customer’s annual load (also typical in the 
U.S. market).3 The analysis includes a limited set of scenarios related to storage system sizing, backup 
power configuration, and whether the customer charges the battery storage system from the grid during 
normal operating conditions. The analysis also presents comparative results across several regions to 
illustrate how differences in climate, interruption patterns, and retail rate structures can affect PVESS 
performance as a backup power source.

For the case study presented here, we used the PRESTO model to simulate power outages over 1,000 
representative years for three US counties: Maricopa County, Arizona; Middlesex County, Massachusetts; 
and Los Angeles County, California. The analysis focuses on a typical single-family home in Maricopa 
County, Arizona. For Maricopa County, the model generated 1,520 interruption events over 1,000 
simulation years, corresponding to an average interruption frequency of 1.52 events per year. As shown in 
the top left panel of Figure 4, most of these interruption events were relatively short, with a median of 1.8 
hours and a mean of 2.2 hours. Most of the power interruptions had high beginning SoC with an average 
of 77% and median of 88% (the bottom left panel of Figure 4). As shown in the right panel, most of these 
interruptions occurred during the early morning hours in July and August, aligning with historical trends 
observed in POUS (highlighted in dotted box in the heatmap). 

Figure 4. Histogram of interruption duration for the set of simulated interruption events in Maricopa 
County, Arizona (top left), beginning SoC when the interruption events start (bottom left), and heatmap 
showing the timing of those events (right).

5. Results

In this section, we present our findings regarding the performance of PVESS during short-duration power 
interruptions, examining the following four research questions:

● How well does the PVESS perform across different backup load configurations?
● How does PVESS backup power performance vary in response to event duration, the initial 

battery SoC, and event timing?

3
 In accordance with Gorman et al. (2023), default PV system sizing prioritizes roof constraints over annual load requirements. For each 

representative single-family home, roof area was calculated by dividing the building's square footage by its number of stories. For single-family 
and mobile homes with slanted roofs, a standard panel density of 160 W/m² (0.01486 kW/ft²) and a 98% ground-coverage ratio are assumed. The 
final PV system size for each home was then determined as the minimum of either the roof-limited capacity or the capacity required to meet 
100% of the annual load.
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● How can PVESS backup performance be improved?
● How does the performance of PVESS vary across different regions?

Our base case focuses on a PVESS consisting of a PV system sized to meet the customer’s annual 
electricity consumption paired with a 10-kWh battery – at the smaller end of the size range commonly 
observed in today's market.4  The base case assumes exclusive solar charging of the battery, with no grid 
charging,5 to serve full critical loads which includes refrigeration, nighttime lighting, essential plug-in 
devices, and heating and cooling equipment (full critical load hereafter). The customer manages its 
battery to minimize electricity costs under the local utility's time-of-use rate. Additionally, no battery 
capacity is reserved for potential power interruptions beyond a minimum of 5% SoC.

5.1. How well does the PVESS perform across different backup load configurations?

We considered three backup load configurations: (i) a limited critical load case that powers refrigeration, 
nighttime lighting, and essential plug-in devices; (ii) a full critical load case that additionally powers 
heating and cooling equipment; and (iii) a whole-home backup case that powers all available loads.

Figure 5 illustrates the distribution of backup performance across all 1,520 simulated power interruption 
events in Maricopa County for each of the three critical load configurations described above. As depicted 
in the figure, the system meets less than 100% of backup load in 16% of interruptions for limited critical 
load backup, 48% for full critical load backup, and 57% for whole-home backup. These results assume a 
conservative scenario with no load flexibility during outages. This likely underestimates real-world 
performance. In practice, we can improve backup performance by reducing energy use during outages 
(e.g., lowering thermostats). Additionally, programming the battery to reserve more charge, installing a 
larger battery, or charging it from the grid during off-peak hours can further enhance backup capability. 
We explore those latter two approaches through scenario analyses presented later.

Figure 5. Cumulative distributions of percent load served during short-duration power interruptions in 
Maricopa with 10kWh batteries without grid charging at a 5% reliability threshold for limited critical 
(red), full critical (green), and whole-home loads (blue).

4
 This corresponds to a single LG Chem RESU10H, one of the more common residential batteries, while a Tesla PowerWall has a somewhat 

larger storage capacity of 13.5 kWh.
5
 The assumption of no grid-charging is partially meant to reflect limitations previously imposed by the federal investment tax credit, which was 

available to battery storage only if charged primarily from solar (or other renewables), as well as limitations on grid charging that may be 
imposed by the utility, the battery software, or third-party owners of the system. 
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The cumulative distributions show that a PVESS with a 10 kWh battery cannot fully mitigate the impact 
of short, localized power interruptions in a county in the Southwest U.S., at least under the conservative 
assumptions implicit in our base-case. We examine the factors contributing to these instances of reduced 
load servicing and illustrate the potential efficacy of several mitigation strategies. 

5.2. How does the performance of PVESS vary depending on the duration of power 
interruptions, the initial battery SoC, and the timing of power interruptions?

The effectiveness of PVESS in providing backup power during short-duration power outages may depend 
on when and how long the interruption occurs. We first explored the relationship between the backup 
performance with interruption duration. 

As can be seen from left of Figure 6, the modeled PVESS serves approximately 80% of the full critical 
load on average even for outages lasting less than an hour, signifying the sensitivity to the beginning 
battery SoC and temporal alignment with solar output. However, backup performance declines as outages 
lengthen. While the backup performance generally declines with duration and the percentage of critical 
load served reaches 62% at the 8-hour mark, there is an upturn after 8 hours. By the 10-hour mark, the 
system manages to meet 68% of the full critical load. This upturn at the 8-hour mark is likely due to the 
specific characteristics of this region. As the right panel of Figure 4 shows, many outages were simulated 
during nighttime in July. After several hours, sunrise occurs, and the PV system starts generating power, 
improving backup performance.

The analysis of critical load provision during short-duration power interruptions, categorized by capacity 
(kW) and energy (kWh) limitations, reveals that the backup performance of PVESS is primarily driven by 
energy limits, rather than high power needs of specific appliances (see right of Figure 6).6  Even for brief 
outages, around 11% of remaining critical loads may remain unserved, possibly due to low SoC at the 
onset of the interruptions, and further explored in subsequent sections. The percent load not served due to 
energy constraints steadily increased and reached 30% for outages lasting 7 hours, and then decreased to 
22% at 10 hours. These patterns reveal that PVESS performance depends on energy and capacity needs 
on the load side, as well as characteristics of the interruption itself and the SoC of the battery upon 
interruptions.

6 We would like to acknowledge here that our analysis may not comprehensively address potential capacity constraints because: 1) our data 
resolution was limited to 15-minute intervals, and 2) we did not factor in the high start-up currents that may be required for appliances with 
induction motors.
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Figure 6. Percentage of load lost (left) and percent load lost due to capacity constraints (right, top) and 
energy constraints (right, bottom) in relation to interruption duration for a full critical load backup 
scenario in a median single-family home in Maricopa County, Arizona. Blue lines represent the fitted 
trendlines and gray areas represent the confidence intervals.

We then examined the impact of the initial SoC of the battery on backup performance. As shown from the 
left side of Figure 7, the backup performance remains relatively constant for initial SoC up to 
approximately 50%. Beyond this threshold, the backup performance improves with increasing SoC. 
However, even at 100% initial SoC, the system still falls short of meeting all critical load requirements, 
which stems from either insufficient system capacity or the presence of critical loads exceeding available 
energy. The results also suggest a compounding relationship between interruption duration and initial 
SoC to explain PVESS reliability performance. The right side of Figure 7 illustrates this relationship by 
categorizing events into three groups based on percent load not served: shallow shortfalls (less than 20% 
unserved load, represented in black), moderate shortfalls (20% to 40%, represented in red), and deep 
shortfalls (greater than 40%, represented in blue). The figure shows that shallow and moderate shortfalls 
are driven primarily by the initial SoC, since the curve is relatively flat regardless of duration. In contrast, 
the occurrence of deeper shortfalls depends on the combination of SoC and duration. The blue linear fit 
shows that short-duration interruptions that have ~60% SoC can produce deep shortfalls, and longer 
duration interruptions can produce equally deep shortfalls even when SoC is higher. In other words, 
PVESS ability to mitigate interruptions is driven by SoC, but interruption duration will worsen 
interruptions more than SoC will.
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Figure 7. (Left) Percentage of lost load in relation to the initiating SoC in Maricopa County, Arizona. 
(Right) SoC at the beginning of power interruptions as a function of the duration of simulated power 
interruptions in Maricopa County, Arizona. Black represents the shallow shortfall events with percent 
load served greater than or equal to 80%, red represents the moderate shortfall events with percent load 
served between 60% and 80%, and blue represents the deep shortfall events with percent load served less 
than 60%. The dotted horizontal line represents the reliability threshold of 5%, and the solid lines 
represent the linear relationship between the SoC at the beginning of power interruptions and their 
durations.

Lastly, the results presented in Figure 8 show how backup performance is impacted by the timing of the 
interruption, which itself correlates to a number of underlying performance drivers (critical load levels, 
solar insolation, and battery SoC). As noted previously, most of the simulated power interruptions 
occurred during early morning hours in July and August. As shown in Figure 8, backup performance 
during those hours averaged roughly 75%. While the initial SoC during those interruptions was generally 
low (at least in our base case, with no overnight grid charging), critical loads also tend to be low during 
those hours of the day, leading to relatively high performance. The highest overall performance levels 
tend to occur during midday hours, when solar generation is strong. In contrast, the lowest backup 
performance occurs during early evening hours in warm months of the year. That reflects a confluence of 
high energy demand during early evening hours (due to high air-conditioning load), low SoC (because the 
battery discharged during the peak TOU period, which runs from 3-8 pm), and little or no solar insolation 
available to recharge the battery. 
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Figure 8. Heatmap showing the percent of load served based on the timing of the interruption (critical 
load backup with heating and cooling). Grey boxes signify no interruptions.

In summary, our analysis suggests that duration, initial SoC, and timing all contribute to PVESS backup 
performance. More importantly, these results demonstrate that mitigating short-duration interruptions is 
not trivial, given that the battery is operating at a non-100 % SoC and that the interruption randomness 
prevents customers from taking any demand-side mitigation measure in advance.

Given that the PVESS could not fully meet all critical demands even in short-duration outages, 
implementing strategies such as predictive battery management—allocating reserves for periods with 
higher forecasted loads—or installing larger-size batteries could enhance the effectiveness of PVESS 
during power interruptions. We turn to examine the impact of some of these strategies in the next 
subsection.

5.3. How can the backup performance of PVESS be improved?

As previously outlined, several strategies could be implemented to improve the backup performance of 
PVESS. In this analysis, we examined two of them. Firstly, we assumed that customers have the option to 
install larger batteries, as demonstrated in our consideration of a PVESS equipped with 30 kWh of battery 
storage—representing the upper range of typical residential systems observed in the market today. 
Secondly, we explored a scenario where the customer charges the battery from the grid during normal 
day-to-day operations, deviating from the exclusive reliance on PV generation.7 

As Figure 9 below illustrates, both strategies significantly enhance performance relative to a PVESS 
equipped with 10 kWh battery storage without grid charging. The 10 kWh battery without grid charging 
serves all critical demands for 52% of simulated power interruptions, while the 10 kWh battery with grid 
charging covers 83%. The average percentage of load served increases from 88% (with a 10 kWh battery 
and no grid charging) to 94% when grid charging is allowed. Examining the minimum percentage of load 
served, which represents the most severe event in the simulated power interruptions, allowing grid 
charging with a 10 kWh battery results in a 9% increase in load served.

7
 The feasibility of this approach depends on a utility's net metering or interconnection regulations, as well as whether and when the customer 

qualifies for a federal tax investment credit for the battery.
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Similarly, increasing battery size from 10 kWh to 30 kWh increases the percentage of interruptions where 
all critical demand is served from 52% to 79%. The average percentage of load served with a 30 kWh 
battery reaches 99% from an original 88% with a lower capacity battery. The minimum percentage of 
load served increases from 4.3% in the 10 kWh case to 17% in the 30 kWh case. An interesting finding is 
that performance does not increase in proportion to the size of the battery for percent interruptions with 
full mitigation and for average load served. However, the worst-case scenarios do improve by around the 
same scaling factor for battery capacity. This suggests that a higher battery capacity may not dramatically 
improve load met, but reduce the frequency of poor performance.

Figure 9. Heatmaps of the percentage of load served during simulated power interruptions in Maricopa 
with a 30 kWh battery without grid charging (left) and a 10 kWh battery with grid charging (right). The 
heatmaps show the percentage of load served for each month and starting hour of interruption.

In summary, both strategies substantially improve backup performance. Grid charging allows the system 
to meet critical demands during more outage events by increasing the available energy. On the other hand, 
a larger battery proves more effective in handling all outage scenarios, even the most severe situations. 
However, it's important to acknowledge that even with these improvements, the PVESS system may not 
fully back up heating and cooling in all situations.  Further exploration of strategies like adjusting 
thermostats or selectively turning off high-power appliances during outages could also improve backup 
performance of PVESS.

5.4. How does the performance of PVESS vary across different regions?

The backup performance of PVESS can vary across regions as a result of underlying differences in 
interruption patterns, tariff structures, solar production, and load profiles. To illustrate the potential 
significance regional differences, we analyzed PVESS backup performance in typical single-family 
homes across three counties: Los Angeles (CA) representing marine climate, Maricopa (AZ) embodying 
hot-dry climate, and Middlesex (MA) representing a cold climate. The comparison is based on the same 
base-case assumptions used previously and focuses on a backup configuration that includes critical loads 
with heating and cooling. 

As summarized in Table 2 below, the backup performance across year is higher in Los Angeles and 
Middlesex counties (with full backup provided in 79% and 72% of interruption events, respectively), 
compared to Maricopa (52%).  However, upon closer examination of performance during summer and 
winter months, Middlesex displays less improvement during winter. This discrepancy can be attributed to 
two factors. First, Los Angeles and Middlesex has significantly lower cooling loads during summer. 
Second, despite none of the analyzed homes have electric heating, all regions experience lower solar 
production in winter. Given Middlesex's higher latitude, it is particularly susceptible to this reduced solar 
output, resulting in relatively lower enhancements in backup performance during winter.

Results also differ across counties as a result of interruption patterns. In both Los Angeles and Middlesex 
counties, the PRESTO model produced power interruptions that occur with relatively equal probability 
across hours of the day, and thus the average SoC on the battery at the beginning of the interruption is 
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higher than in Maricopa, where the interruptions are more concentrated in early morning hours, when the 
battery SoC tends to be low (see Figure 10 below). Lastly, TOU rate structures also differ across these 
counties, which can impact the battery SoC when interruptions occur given the optimal bill saving 
PVESS dispatch. In particular, the TOU rate applicable in Middlesex County has a broad peak period 
from 8 am to 9 pm, which leads to more diffuse charging and discharging patterns, compared to the TOU 
structures in the other two counties, where peak period rates are concentrated in a much smaller number 
of hours.

Table 2. Median and 10th to 90th percentiles of percent load served during short-duration power 
interruptions in Maricopa, Los Angeles, and Middlesex. We assumed the critical load backup scenario in 
a median single-family home for a 10 kWh battery storage without grid charging.

Region

Across all year Summer (Jun-Sep) Winter (Dec-Feb)
Percent of 

Load Served
(Median with 

10th-90th 
percentiles)

Fraction of 
events with 

100% 
coverage

Percent of 
Load Served
(Median with 

10th-90th 
percentiles)

Fraction of 
events with 

100% 
coverage

Percent of 
Load Served
(Median with 

10th-90th 
percentiles)

Fraction of 
events with 

100% 
coverage

Maricopa, 
AZ

100%
(21%-100%)

52%
88% 

(20%-100%)
45%

100%
(29%-100%)

89%

Los Angeles, 
CA

100%
(48%-100%)

79%
100%

(41%-100%)
71%

100%
(54%-100%)

92%

Middlesex, 
MA

100%
(46%-100%)

72%
100%

(33%-100%)
71%

100%
(31%-100%)

87%

Figure 10. Histogram of interruption duration for the set of simulated interruption events (left) and 
heatmap showing the timing of those events (right) in Los Angeles (top) and Middlesex (bottom).

6. Discussion
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The presented findings provide a foundational understanding of the backup capabilities of PVESS for 
short-duration power interruptions through a comprehensive analysis drawn from probabilistic functions 
constructed based on the historical outage data. These results are useful for researchers, analysts, and 
electric system planners. Firstly, in a conservative scenario with a 10 kWh battery, PVESS can effectively 
support customers with minimal critical demands in most instances. However, PVESS performance 
during short-duration interruptions to back up critical loads that include heating and cooling loads is much 
lower than when heating and cooling are not considered. Secondly, the performance of PVESS depends 
on geographic location, end-uses, outage occurrence patterns, and battery consumption patterns. This 
highlights the need for regional analysis to accurately assess backup capabilities. Finally, several 
strategies can enhance home resilience against outages. Allowing grid charging - which is disallowed in 
many jurisdictions as a way to incentivize pairing with rooftop solar - greatly enhances mitigation 
performance at a low cost. Higher capacity batteries can achieve slightly better results, but likely at a 
much higher cost. We did not examine demand response approaches, but these are likely to allow for 
improved performance at relatively low costs as well.

This paper focuses on the technical capabilities of PVESS in mitigating short-duration power 
interruptions. However, customer deployment and operation decisions will be driven in part by the 
economic benefits that these reliability enhancements bring to households. Recent surveys show that 
customers’ concerns about grid reliability and resilience are key drivers of PVESS adoption (Energy 
Sage, 2022). We estimate the monetary value of these reliability benefits for the three regions considered 
in this study, to understand how this particular value stream impacts the overall customer-economics of 
PVESS. In this calculation, we focused on whole-home backup scenarios because this aligns with the 
methodology used to derive the residential value of lost load estimates that rely on willingness-to-pay for 
whole-home backup services (Sullivan et al., 2018). We calculated the mitigated power interruption costs 
by multiplying the total loads served in each simulation year by the value of lost load estimates for each 
state, derived from the ICE calculator.8

The regions analyzed in this study mostly experience short and infrequent power interruptions, as 
evidenced by the simulated number and total duration of short-duration power interruptions per year 
(Table 3). These regions experience an average of 3 to 22 hours of power outages per year. For a PVESS 
with a 10 kWh battery and a reliability threshold of 5%, representative households can mitigate 68% to 
83% of the potentially lost demand, on average.

Table 3. Summary of the simulated power interruption durations and the kWh mitigated by installing 
PVESS with a 10kWh battery in the three study regions

County Duration of power interruptions across 
the simulated year

kWh lost load mitigated annually with 
PVESS with 10 kWh battery storage and a 

5% reliability threshold
Min Median Mean Max Min Median Mean Max

Maricopa, 
AZ

0 2.9 3.4 12.5 0 3.4 7.8 60.5

Los Angeles, 
CA

0 5.1 5.5 22 0 3.1 4.2 26.0

Middlesex, 
MA

0 19.8 22.0 95.5 0 12 13.8 63.3

The average cost savings from avoided outages appear modest under the base case (10 kWh battery, no 
grid charging), ranging from $17 to $40 annually. However, a closer examination of the distribution of 
annual reliability benefits reveals a significantly wider range of potential savings, with maximum benefits 
reaching up to $180. In Middlesex, extended outage durations yielded the highest savings, while in 
Maricopa, the peak coincided with periods of high energy demand driven by air conditioning use and 

8
 https://icecalculator.com/interruption-cost. Adjusting for inflation using the Bureau of Labor Statistics' consumer price index, we converted the 

ICE calculator's value of lost load estimates to 2022 dollars. This resulted in estimates of $3.09/kWh, $2.96/kWh, and $4.00/kWh for Maricopa, 
Middlesex, and Los Angeles, respectively.
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limited solar irradiation. Strategies that improve the backup performance of PVESS can increase these 
benefits. Specifically, allowing grid charging increases average savings by 7.5% to 22%, and installing 
larger batteries increases average savings by 17% to 23% with a higher upfront investment in storage 
capacity. Comparing the mitigated value of lost load to PVESS costs9 10 reveals that economic benefits 
from mitigating short-duration interruptions can improve the economics of PVESS by 1.3% to 2.5% of 
the total PVESS costs, or by 2.5 to 5.4% of the storage cost on average. Furthermore, considering the 
mitigation of resilience events like the 2019 Public Safety Power Shutoff, Hurricane Michael, and winter 
storms, strengthens the economic case for PVESS systems (Gorman et al., 2023).

Table 4. Summary of the value of the annual mitigated lost load for PVESS with a 10kWh battery system 
and no grid charging, a PVESS with a 10kWh battery system with grid charging, and a PVESS with a 
30kWh battery system and no grid charging. 

County 10kWh, no grid charging 10kWh, grid charging 30kWh, no grid charging
Media

n
Mean Max Media

n
Mean Max Media

n
Mean Max

Maricopa, AZ $10.5 $24.0 $187 $17.2 $.29.5 $197 $15.6 $40.8 $217

Los Angeles, 
CA

$12.3 $16.7 $103.8 $13.7 $17.9 $105.3 $14.8 $19.5 $121.6

Middlesex, 
MA

$34.3 $39.5 $181 $39.1 $43.1 $206 $43.2 $48.7 $234.6

These findings suggest that expected reliability benefits will not offset the cost of a PVESS system or 
justify the battery addition, which is a relatively expected result. Customers leverage several other value 
streams - most importantly TOU arbitrage - to justify investment in PVESS. However, these results show 
that accounting for the economic benefits of mitigating short-duration interruptions could improve the 
economics of these systems by 5%-15%. Furthermore, for regions experiencing frequent or extended 
power interruptions, particularly during periods of high energy demand and limited solar irradiation or for 
customers with high VOLL, the potential economic value of reliability benefits can become more 
compelling.

7. Conclusion and Future Research Directions

Power disruptions, though often brief, can cause significant disruptions to daily life and business 
operations. To accurately assess the potential of PVESS in mitigating these disruptions, a comprehensive 
understanding of interruption patterns and their statistical properties is crucial. This work develops and 
presents the PRESTO model, a publicly available tool that simulates the occurrence of short-duration 
power interruptions at the county level, to expand our previous analysis of long-duration events (Gorman 
et al., 2023). We analyzed the PTM PVESS performance against a wide variety of simulated power 
interruptions that accurately reflect the statistical characteristics of historical short-duration power 
interruptions.

A primary objective is to highlight PRESTO's potential as a valuable tool for evaluating the performance 
and economic viability of PVESS backup power systems under various scenarios and conditions. The 
paper also aims to bridge a significant knowledge gap by comprehensively examining the capabilities of 
PVESS in providing backup power to residential customers during stochastic, short, and localized 
interruptions. We present an efficient methodology for simulating these interruptions using PRESTO, 
9 To estimate the annual cost of PVESS, we leveraged Berkeley Lab’s Tracking the Sun database for PV and PVESS costs, EnergySage’s 2023 
Solar and Storage Marketplace Report (EnergySage, 2024) for energy storage costs, and NREL’s Annual Technology Baseline (NREL,2021) for 
the cost assumptions.
10

 For a more objective comparison, we solely considered overnight costs, independent of individual creditworthiness. Additionally, we 
incorporated annual fixed operation and maintenance (O&M) expenses across the system's 25-year lifespan. However, we excluded battery 
degradation and potential replacement costs, focusing solely on the initial battery system investment.
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determining the SoC considering tariff structures and load profiles, and assessing the mitigation potential 
of PVESS in a variety of residential contexts. 

This study analyzed the impact of customer battery utilization patterns on the backup performance of 
PVESS, measured by the percentage of critical load served during power outages. Employing a 
conservative scenario with a 10 kWh battery charged solely by solar and maintaining a 5% reserve for 
outages, simulations demonstrated that backup loads were met in 43-84% of the simulated interruptions, 
depending on the specific load selection in a representative household in Maricopa, Arizona. The 
additional analysis highlights the influence of outage duration, initial battery SoC, and interruption timing 
on PVESS backup performance. However, further investigation is necessary to disaggregate the precise 
contributions of these factors, particularly regarding their potential evolution over time. This would 
facilitate the development of a predictive system capable of dynamically adjusting battery management 
strategies based on key determinants and anticipated load and interruption patterns, requiring further 
exploration in future research.

This case study provides valuable insights into the applications of PVESS for backup power. Future 
research could involve a more expansive and robust assessment that would necessitate a broader 
geographical scope, particularly toward regions experiencing frequent and prolonged power interruptions. 
This expansion will allow for a more robust assessment of the technical potential and economic benefits 
achievable through PVESS or storage systems in mitigating power interruptions. Additionally, this 
analysis prioritizes reliability. However, real-world applications involve a trade-off between maximizing 
solar generation for cost savings and reserving capacity for backup power.  Future studies could explore 
the interplay between these benefits, determining the optimal battery operation and sizing strategies 
through a wider range of scenarios.

Beyond bolstering reliability, PVESS offers an array of benefits, including cost savings on bills, the 
potential monetization of renewable energy and carbon reduction credits, and enhanced resilience by 
mitigating widespread and prolonged power interruptions. Future studies - and potentially tools available 
to vendors, customers, and other stakeholders - should also incorporate the monetization of these diverse 
benefit streams to provide a more holistic assessment of PVESS economics and its potential return on 
investment.

8. Acknowledgments

This work was funded by the U.S. Department of Energy’s Solar Energy Technologies Office, under 
Contract No. DE-AC02-05CH11231 (Award Number 38425). The authors thank Ammar Qusaibaty, 
Michele Boyd, and Becca Jones-Albertus from the Solar Energy Technologies Office for their support of 
this work, as well as members of Berkeley Lab’s technical advisory group for their ongoing input on 
research into PVESS backup power applications.

9. Competing Interests

The authors declare no competing interests.

10. Competing Interests

Sunhee Baik: conceptualization, methodology, software, data curation, formal analysis, visualization, 
writing. Juan Pablo Carvallo: supervision, funding acquisition, conceptualization, methodology, data 
curation, formal analysis, writing, project administration. Galen Barbose: supervision, funding 
acquisition, conceptualization, formal analysis, writing, project administration. Will Gorman: 
conceptualization, data curation, writing. Cesca Miller: data curation. Michael Spears: software. 

11. References

18



Abdelmalak, M., Cox, J., Ericson, S., Hotchkiss, E., & Benidris, M. (2023). Quantitative resilience-based 
assessment framework using eagle-i power outage data. IEEE Access, 11, 7682-7697.

Adefarati, T., & Bansal, R. C. (2017). Reliability assessment of distribution system with the integration of renewable 
distributed generation. Applied energy, 185, 158-171.

Akhil, A. Huff, G., Currier, A., Kaun, B., Rastler, D., Chen, S., Cotter, A., Bradshaw, D., & Gauntlett, W. (2015). 
DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA. Albuquerque, NM, 2015, pp.29, 149-
166.

Anderson, K. H., Cutler, D. S., Olis, D. R., Elgqvist, E. M., Li, X., Laws, N. D., ... & Walker, H. A. (2017). REopt: 
A platform for energy system integration and optimization (No. NREL/TP-7A40-70022). National Renewable 
Energy Lab.(NREL), Golden, CO (United States).

Arora, P., & Ceferino, L. (2023). Probabilistic and machine learning methods for uncertainty quantification in power 
outage prediction due to extreme events. Natural Hazards and Earth System Sciences, 23(5), 1665-1683.

Balducci, P. J., Jin, C., Wu, D., Leslie, P., Daitch, C., & Marshall, A. (2013). Assessment of energy storage 
alternatives in the puget sound energy system (No. PNNL-23040). Pacific Northwest National Lab.(PNNL), 
Richland, WA (United States).

Balducci, P. J., Alam, M. J. E., Hardy, T. D., & Wu, D. (2018). Assigning value to energy storage systems at 
multiple points in an electrical grid. Energy & Environmental Science, 11(8), 1926-1944.

Benidris, M., Bhusal, N., Abdelmalak, M., Gautam, M., Egan, M., Groneman, S., & Farkas, T. (2021, October). 
Quantifying resilience value of solar plus storage in city of reno. In 2021 Resilience Week (RWS) (pp. 1-6). 
IEEE.

Brockway, A. M., & Dunn, L. N. (2020). Weathering adaptation: Grid infrastructure planning in a changing climate. 
Climate risk management, 30, 100256.

Cadini, F., Agliardi, G. L., & Zio, E. (2017). A modeling and simulation framework for the reliability/availability 
assessment of a power transmission grid subject to cascading failures under extreme weather conditions. 
Applied energy, 185, 267-279.

EnergySage (2021). Solar Installer Survey - 2021 Results. Available at: https://www.energysage.com/data/#2021-
survey 

EnergySage (2024). 2023 EnergySage Solar and Storage Marketplace Report. 

Eyer, J., & Corey, G. (2010). Energy storage for the electricity grid: Benefits and market potential assessment guide. 
Sandia National Laboratories, 20(10), 5.

Gorman, W., Barbose, G., Carvallo, J. P., Baik, S., Miller, C. A., White, P., & Praprost, M. (2023). County-level 
assessment of behind-the-meter solar and storage to mitigate long-duration power interruptions for residential 
customers. Applied Energy, 342, 121166.

Hoff, T. E., Perez, R., & Margolis, R. M. (2007). Maximizing the value of customer-sited PV systems using storage 
and controls. Solar Energy, 81(7), 940-945.

Kebede, F. S., Olivier, J. C., Bourguet, S., & Machmoum, M. (2021). Reliability evaluation of renewable power 
systems through distribution network power outage modelling. Energies, 14(11), 3225.

National Renewable Energy Laboratory (2020). System Advisor Model. Available at: https://sam.nrel.gov/ 

National Renewable Energy Laboratory (2021). Annual Technology Baseline. Available at: 
https://atb.nrel.gov/electricity/2021/data 

Neubauer, J., Pesaran, A., Williams, B., Ferry, M., & Eyer, J. (2012). Techno-economic analysis of PEV battery 
second use: Repurposed-battery selling price and commercial and industrial end-user value (Vol. 1, No. 
NREL/CP-5400-53799). National Renewable Energy Lab.(NREL), Golden, CO (United States).

O’Shaughnessy, E. J., Ardani, K. B., Cutler, D. S., & Margolis, R. M. (2017). Solar Plus: A Holistic Approach to 
Distributed Solar PV (No. NREL/TP-6A20-68371). National Renewable Energy Lab.(NREL), Golden, CO 
(United States).

Prasanna, A., McCabe, K., Sigrin, B., & Blair, N. (2021). Storage futures study: Distributed solar and storage 
outlook: Methodology and scenarios (No. NREL/TP-7A40-79790). National Renewable Energy Lab.(NREL), 
Golden, CO (United States).

19

https://www.energysage.com/data/#2021-survey
https://www.energysage.com/data/#2021-survey
https://atb.nrel.gov/electricity/2021/data
https://sam.nrel.gov/


Sengupta, M., Xie, Y., Lopez, A., Habte, A., Maclaurin, G., & Shelby, J. (2018). The national solar radiation data 
base (NSRDB). Renewable and sustainable energy reviews, 89, 51-60.

Sullivan, S. C., Barthlott, C., Crosier, J., Zhukov, I., Nenes, A., & Hoose, C. (2018). The effect of secondary ice 
production parameterization on the simulation of a cold frontal rainband. Atmospheric chemistry and physics, 
18(22), 16461-16480.

Tsianikas, S., Yousefi, N., Zhou, J., Rodgers, M. D., & Coit, D. (2021). A storage expansion planning framework 
using reinforcement learning and simulation-based optimization. Applied Energy, 290, 116778.

Wilson, E. J., Parker, A., Fontanini, A., Present, E., Reyna, J. L., Adhikari, R., ... & Li, Q. (2022). End-use load 
profiles for the US building stock: Methodology and results of model calibration, validation, and uncertainty 
quantification (No. NREL/TP-5500-80889). National Renewable Energy Lab.(NREL), Golden, CO (United 
States).

Wu, D., Zheng, X., Xu, Y., Olsen, D., Xia, B., Singh, C., & Xie, L. (2021). An open-source extendable model and 
corrective measure assessment of the 2021 texas power outage. Advances in Applied Energy, 4, 100056.

Zhou, J., Tsianikas, S., Birnie III, D. P., & Coit, D. W. (2019). Economic and resilience benefit analysis of 
incorporating battery storage to photovoltaic array generation. Renewable energy, 135, 652-662.

20


	Assessing The Performance of Behind-The-Meter Solar+Storage for Short-duration Power Interruptions: A Case Study using the PRESTO model



