
UC San Diego
UC San Diego Previously Published Works

Title
Online PV Smart Inverter Coordination using Deep Deterministic Policy Gradient

Permalink
https://escholarship.org/uc/item/1v62w7mw

Authors
Li, Changfu
Chen, Yi-An
Jin, Chenrui
et al.

Publication Date
2022-08-01

DOI
10.1016/j.epsr.2022.107988

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1v62w7mw
https://escholarship.org/uc/item/1v62w7mw#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Acc
ep

ted

1

Online PV Smart Inverter Coordination using Deep
Deterministic Policy Gradient

Changfu Li, Yi-An Chen, Chenrui Jin, Ratnesh Sharma, and Jan Kleissl

Abstract—Fast and frequent solar power variations present1

new challenges to modern power grid operation with increasing2

adoption of photovoltaic (PV) energy. PV smart inverters (SIs)3

provide a fast-response method to regulate voltage by modulating4

active and/or reactive power at the connection point. In this5

paper, a deep reinforcement learning (DRL) based algorithm6

is proposed to coordinate multiple SIs. A reward scheme is7

designed to balance voltage regulation and SI reactive power8

utilization. The proposed DRL agent for voltage control learns9

its policy through massive offline simulations and adapts to10

load and solar variations. The DRL agent results are compared11

against autonomous Volt-Var control and optimal power flow12

(OPF) on the IEEE 37 bus feeder and IEEE 123 bus feeder for13

8760 different scenarios. The results demonstrate that a properly14

trained DRL agent can intelligently coordinate different SIs to15

satisfy grid voltage limits despite large solar and load variations.16

The DRL agent achieves nearly the optimal performance of17

OPF by mitigating all voltage violations, while reducing PV18

production curtailment by 88% compared to the autonomous19

Volt-Var scheme. Contrary to OPF, the DRL agent can provide20

a coordination signal in milliseconds without load and solar21

forecasts and without explicit knowledge of the distribution22

network model.23

Keywords-Deep Reinforcement Learning; Distribution Net-24

work; Photovoltaics; Voltage Regulation; Smart Inverter25

NOMENCLATURE26

∆Ik current mismatch at node k27

γ future reward discount factor28

|Vk| voltage magnitude of node k29

A action space30

S state space31

µ actor function32

π agent policy33

θµ parameters of actor function34

θQ parameters of critic function35

θk voltage angle of node k36

at action at time step t37

Bkj susceptance between node k and j38

C positive constant in the term of RQ39

E environment of reinforcement learning40

Gkj conductance between node k and j41

Icalck calculated current injection at node k42
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Ispk specified current injection at node k43

Ik current phasor of node k44

M dimension of action space45

N total number of non-slack nodes46

P pv
i active power generation of ith PV47

P calc
k calculated active power injection at node k48

P l
k active load power at node k49

P sp
k specified active power injection at node k50

Pk net active power injection at node k51

Q(s, a) critic function52

qi reacive power utilization ratio of ith SI53

Qpv
i reactive power generation of ith PV/SI54

Qcalc
k calculated reactive power injection at node k55

Ql
k reactive load power at node k56

Qsp
k specified reactive power injection at node k57

Qk net reactive power injection at node k58

RQ reward associated with reactive power usage59

Rt total discounted future reward from time step t and60

onwards61

rt scalar reward for time step t62

RV reward associated with voltage63

Si power rating of ith SI64

st state of the environment at time step t65

V sp
slack specified voltage for slack bus nodes66

Vk voltage phasor of node k67

V nom
k nominal voltage of node k68

Vslack voltage of slack bus nodes69

I. INTRODUCTION70

Renewable distributed generation (DG) adoption has seen71

significant increases recently due to the associated technical,72

economic, and environmental benefits [2]. DG adoption also73

presents various new challenges to grid operators. For instance,74

voltage violations can become a problem due to increasing75

penetration of variable DGs such as solar photovoltaic (PV)76

generators [3, 4].77

Conventionally, distribution network operators rely on on-78

load tap changers (OLTCs) and fixed or switched shunt ca-79

pacitors/reactors to maintain appropriate voltages across the80

network. OLTCs typically work in autonomous mode, fol-81

lowing simple pre-defined rules based on local measurements.82

This simple voltage regulation scheme is effective for conven-83

tional centralized power supply with monotonously decreasing84

voltage profile along the feeder and slow voltage changes.85

However, the presence of large amount of renewable DGs on86

the distribution network can cause reverse power flow, leading87

to voltage increases along the feeder and possible voltage88

violations [5]. Due to their electro-mechanical nature, OLTCs89
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are limited in the number of tap changes before preventive90

maintenance or overhaul is required. To reduce the number of91

tap changes, OLTCs are programmed to act with delays of 10s92

of seconds and therefore respond slowly. Therefore, OLTCs93

are less effective in controlling voltage with sub-minute PV94

variability. On the contrary, smart inverters (SIs) can rapidly95

respond to voltage regulation by modulating active and/or96

reactive power of PV systems at the point of common coupling97

(PCC) [6]. The commonly used SI Volt-Var functions, as98

defined in [7–9], are based on local droop curves, which define99

the SI absorption/injection of reactive power according to the100

local bus voltage. Local droop curves result in sub-optimal101

system performance due to lack of coordination.102

Various studies have aimed to improve basic rule-based103

autonomous local voltage control schemes [10–12]. Reference104

[10] improve the sensitivity of voltage control to downstream105

voltage using feeder end measurements instead of local bus106

voltage for the control of tap switching. Voltage estimates from107

a sensitivity matrix are adopted to dynamically adjust OLTC108

voltage set points to accommodate SI outputs in [11]. OLTC109

and SIs are coordinated by iteratively updating their settings110

to achieve target voltages at the SIs in [12].111

These improved rule-based voltage control methods are112

relatively simply to implement and can achieve partial co-113

ordination between different devices. However, optimization-114

based approaches can realize optimal voltage regulation to115

combat complicated voltage profiles caused by renewable116

DGs. Some previous works focus on coordination of SIs [13–117

16]. Optimal power flow (OPF) is formulated as a second118

order cone program to optimize SI reactive power for line loss119

reduction while meeting voltage requirements [13]. Reference120

[14] adopts the alternating direction method of multipliers121

(ADMM) to solve the OPF problem and find the optimal122

SI reactive power to reduce losses. ADMM-based algorithms123

are also employed in [15] to determine SI active and reactive124

power set points for voltage regulation. Reference [16] applies125

dynamic weight-based collaborative optimization to dispatch126

SI reactive power for voltage deviation minimization.127

Other works optimize cooperation between other devices as128

well as SIs [17–22]. Reference [17] proposed a linearization129

model to optimize multiple OLTCs to minimize voltage de-130

viations. OLTC tap positions and SI outputs (reactive power131

in [18, 19]; active and reacive power in [20]) are optimized132

concurrently to minimize voltage deviations. DGs and OLTCs133

are coordinated through optimization to minimize voltage134

deviations and network losses in [21]. SIs, OLTCs, and shunt135

capacitors are coordinated in [22] to meet voltage operation136

limits.137

Despite optimization-based approaches and OPF methods138

accomplishing optimal voltage regulation, there are two major139

limitations. First, they require accurate distribution network140

models including resistances and reactances, and the network141

topology, which are not necessarily available [23]. Second,142

non-linear power flow constraints render the optimization143

problem computationally intensive, especially for large net-144

works. Long run times limit the methods’ practical application145

to address fast PV disturbances caused by moving clouds.146

The success of reinforcement learning (RL), especially147

deep reinforcement learning (DRL) in various fields including148

AlphaGo [24] and robotics [25], has attracted interest in149

the power and energy community. Numerous works have150

applied RL/DRL for intelligent control and operation in power151

grids. Deep Q network (DQN) and Deep Deterministic Policy152

Gradient (DDPG) are used in [26, 27] for controlling discrete153

generator voltage set points to maintain acceptable system154

voltages in response to load variations and line outages. The155

double Deep Q network (DDQN) is applied to optimal active156

power dispatch to achieve operation cost reduction in [28].157

DDQN is also adopted in [29] to control grid topology changes158

to maximize available transfer capabilities. Reference [30] uses159

a multi-agent DDPG method to adjust generator voltage set160

points continuously to solve the classic autonomous voltage161

control problem in the transmission grid. Reference [31]162

dispatches SIs, OLTCs, and capacitors at two timescales for163

distribution network voltage control: An optimization is used164

for fast dispatch of SIs while slow OLTCs and capacitors are165

handled by DQN. Batch RL is applied to achieve cooperation166

of OLTCs for voltage regulation [32]. Coordination between167

OLTCs and capacitors [33–35] and SI reactive power dispatch168

[36] are studied with the policy gradient method for voltage169

violation mitigation and operation cost reduction. Multi-agent170

DRL is used in [37, 38] to dispatch SI reactive power and static171

Var compensators to address voltage violations. Reference172

[39] coordinates OLTCs, capacitors, and generators to meet173

operation limits with Q-learning.174

Of the works that use RL for power grid applications,175

references [31–39] focus on distribution voltage regulation.176

Within those, [31–35, 39] use RL/DRL only for control of177

legacy voltage regulation devices with discrete settings (i.e.178

generator voltage set points, OLTC tap positions, capacitor179

switches).180

SIs are more suitable for mitigating frequent PV generation181

fluctuations due to their continuous outputs and fast response182

in comparison to legacy voltage regulation devices. While183

references [36–38] coordinate SIs with DRL, PV active power184

curtailment is not considered in the reward function design in185

[37, 38], which can lead to excessive curtailment. Reference186

[36] balances active power curtailment and voltage regulation.187

However, instead of directly determining optimal active and188

reactive power set points, incremental changes are employed,189

which can lead to insufficient responses to large PV ramps.190

Moreover, the performance is not validated against OPF.191

In this paper, we propose a DDPG-based algorithm to192

coordinate multiple SIs with continuous outputs. The reward193

is carefully designed to balance voltage regulation and active194

power curtailment, in contrast to [37, 38]. Unlike OPF ap-195

proaches, the proposed DDPG agent is data-driven and relies196

on little to no knowledge of the distribution network. The197

DDPG approach can reach decisions in milliseconds, fully198

leveraging the fast-response speed of SIs to deal with frequent199

and fast solar ramps. The DDPG method is validated against200

the autonomous Volt-Var scheme [8] and OPF (contrary to201

[36]) on the modified IEEE 37 bus feeder and the IEEE 123202

bus feeder. Comprehensive tests are carried out for a full year203

(8760 different scenarios) to demonstrate the effectiveness and204

robustness of the well-trained DDPG agent.205
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The rest of the paper is organized as follows. Section II206

introduces preliminaries of the distribution network and SIs.207

The OPF formulation and DDPG implementation for coor-208

dination of SIs is presented in Section III. Case studies are209

detailed in Section IV. Results and discussion are presented210

in Section IV-C, followed by conclusions in Section VI.211

II. PRELIMINARIES212

A. Distribution System213

From the graph theory perspective, a distribution network
with N+1 nodes can be represented by a graph G := (N0, ξ),
where N0 := {0, ..., N} is the collection of all nodes, and ξ :=
{(m,n) ⊂ N0 × N0} is the collection of edges representing
distribution lines. The distribution network typically operates
radially as a tree and is served by a substation (a.k.a. the
root) indexed by n = 0. The primary side of substation can
be treated as a slack bus, where voltage magnitude |V0| and
angle θ0 can be modeled as constants. The voltage for all N+1
nodes is governed by the power flow equations:
N∑
j=0

|Vk||Vj |
(
Gkjcos(θk − θj) +Bkjsin(θk − θj)

)
− Pk = 0

(1)
N∑
j=0

|Vk||Vj |
(
Gkjsin(θk − θj)−Bkjsin(θk − θj)

)
−Qk = 0

(2)

where |Vk| and θk are the voltage magnitude and voltage angle214

at node k, respectively; Gkj and Bkj are the conductance and215

susceptance of the electrical line connecting nodes k and j;216

Pk and Qk are the net active and reactive power injections at217

node k.218

B. Smart Inverter for Voltage Regulation219

A PV inverter is a type of electrical device that converts220

the direct current (DC) output of solar panels into alternating221

current (AC), which can then be fed into the AC grid through222

the point of common coupling (PCC). Under the new stan-223

dards/rules [7–9], PV inverters are required to contribute to224

grid regulation via defined functions; this type of PV inverter225

is referred to as a smart inverter (SI). A SI supports voltage226

regulation by modulating active and/or reactive power at the227

PCC; in other words, the SI at node k can change the Pk228

and/or Qk in (1,2) affecting the voltage for node k as well as229

other nodes, per (1,2).230

A commonly used smart function is the Volt-Var droop231

curve, as shown in Fig. 1. Six unique points specify the shape232

of the curve, according to which the SI will absorb or inject233

the corresponding amount of reactive power (var) based on234

the voltage at the PCC. The PV active power production can235

be curtailed to make headroom for var generation if the SI236

reaches its capacity limit as shown in Fig. 2. This scheme is237

called Volt-Var with var priority. With a Volt-Var droop curve,238

every SI operates autonomously (i.e. without coordination with239

other inverters) based on its local PCC voltage only. While this240

simplifies the implementation, it can also lead to undesired241

system performance. For example, since not all nodes of the242

power network are equipped with SIs, some nodes may suffer243

from voltage violations. Some SIs may use excessive reactive244

power due to a lack of coordination with other SIs, resulting245

in unnecessary PV production curtailment.246

Fig. 1: A typical Volt-Var droop curve of a smart inverter.

Fig. 2: Smart inverter (SI) output: the complex power output of the
SI is SSI = PSI + iQSI. SSI is constrained by the inverter rating
S, meaning P 2

SI +Q2
SI ≤ S2. Ppv is the available PV active power

production determined mostly by solar irradiance, ±Qmax1 is the
corresponding maximum reactive power injection or absorption. If
the active power is curtailed to Pcurt, more headroom is created for
modulating reactive power (±Qmax2).

III. PROBLEM FORMULATION247

A. Reinforcement Learning Formulation248

1) Reinforcement Learning: RL, especially DRL, has been249

shown to be capable of learning by interacting with compli-250

cated environments and achieve good performances on difficult251

control tasks, such as robot manipulation.252

The overall RL idea is presented in Fig. 3. An agent learns253

through interacting with an environment, E. At each time step,254

the agent receives the state of the environment st, takes an255

action at, and receives a scalar reward rt. The agent learns256

a policy π, which maps states to a probability distribution257

over the actions π : S → P(A). This can be modeled258

as a Markov decision process with a state space S, action259

space A = IRM , an initial state distribution p(s1), transition260

probability p(st+1|st, at), and reward function r(st, at). M is261

the dimension of the action space.262

The agent uses the policy to explore the environ-263

ment and generate states, rewards, and actions tuples,264

(s1, a1, r1, ...., st, at, rt). The return of a state is calculated265
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as the total discounted future reward from time step t and266

onwards, Rt =
∑T

i=t γ
(i−t)r(si, ai), where γ ∈ [0, 1] is the267

discount factor quantifying the importance attached to future268

rewards. The goal of the agent is to learn a policy that results269

in maximization of cumulative discounted reward from the270

start distribution J = Eri,si∼E,ai∼π[R1].271

The action value function is defined as the expected total
discounted reward after taking an action at in state st and
thereafter following policy π:

Qπ(st, at) = Eri≥t,si≥t∼E,ai≥t∼π[Rt|st, at] (3)

If the target policy is deterministic, it can be described as
a function µ : S → A. The Bellman equation in Q-learning
[40] can be expressed as:

Qµ(st, at) = Ert,st+1∼E [rt(st, at) + γQµ(st+1, µ(st+1))]
(4)

Parameterizing the function approximators with θQ, the
weights can be optimized by minimizing the loss:

L(θQ) = E
[
(yt −Q(st, at|θQ))2

]
(5)

where yt = r(st, at) + γQ(st+1, µ(st+1)|θQ).272

2) Deep Deterministic Policy Gradient Algorithm: Apply-
ing Q-learning (Eq. (4)) to a continuous action space is
problematic, as the greedy policy requires global optimization
during policy improvement. The deterministic policy gradient
(DPG) is more computationally tractable for problems over a
continuous action space [41]. The DPG parameterizes the actor
with a function µ(s|θµ). The critic Q(s, a) is learned based
on the Bellman equation as in Q-learning. Fig. 4 shows the
structure of the deterministic actor critic network. The actor is
updated via gradient descent to maximize the expected return
from the start distribution J :

∇θµ ≈ E[∇θµQ(s, a|θQ)|s = st, a = µ(st|θµ)] (6)

Fig. 3: Schematic overview of reinforcement learning.

In this paper, a similar approach is adapted from [42], which273

uses deep neural networks as function approximators for DPG.274

This approach is referred as deep deterministic policy gradient275

(DDPG).276

B. Design DDPG Agent for Smart Inverter Coordination277

The goal of a well-trained DDPG agent for SI coordination278

is to provide fast and effective actions for maintaining voltage279

limits and minimizing PV production curtailment. The actions280

are determined based on real-time measurements (states) of the281

power grid from the supervisory control and data acquisition282

(SCADA) system or phasor measurement units (PMUs). In283

Fig. 4: Deep deterministic policy gradient network. The actor suggests
actions based on states. The critic evaluates the actions provided the
current states.

this paper, AC power flow (PF) is used to simulate the284

measurements from SCADA or PMUs. Each node of the285

feeder is assumed to be equipped with one measurement unit286

and the PF solution of all nodes are included as states. In287

actual field applications, to reduce costs, a subset of nodes288

can be chosen for measurement unit deployment.289

The key concepts of episode, states, actions, and rewards290

are defined below:291

1): Episode292

The episode is a sequence of interactions between the293

agent and the environment in response to a specific grid294

condition/scenario (a combination of PV and load profiles).295

During an episode, the agent explores by suggesting actions296

and receiving resultant states and rewards until termination297

due to convergence or reaching the maximum number of steps.298

Each exploration step is also referred to as iteration.299

2): State Space300

The state s is defined as a vector containing power system301

information, including voltage magnitudes of each node as302

well as active and reactive power generation/consumption of303

PVs and loads. The state s belongs to the state space S.304

3): Action Space305

SI reactive power outputs are actions. Each SI can adjust its306

reactive power output continuously from −S to S (Fig. 2) or307

[-1,1] p.u. after normalization, although that may require PV308

active power curtailment. The action space A is spanned by309

action combinations of all SIs.310

4): Reward311

When applying RL to control, the reward scheme needs to312

be carefully designed to achieve proper system performance.313

Since the objectives are mitigating voltage violations and314

minimizing PV generation curtailment, the reward scheme is315

composed of two parts: (i) A large penalty for violating voltage316

limits; and (ii) a negative reward proportional to total reactive317

power dispatched by SIs. The reward associated with total318

reactive power is used to achieve regulation for both day time319

(possible curtailment) and night time (no curtailment).320

The first part of the reward is assigned according to all node321

voltages. Several voltage operation zones are defined (Fig. 5):322

a normal zone (0.95 - 1.05) p.u., a violation zone 1 (0.9 - 0.95323

or 1.05 - 1.1 ) p.u., and a violation zone 2 (< 0.9 or > 1.1) p.u..324

These zones are defined according to the grid operation limits325
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in ANSI standards [43]. Assuming |Vk|norm = |Vk|
V nom
k

is the326

normalized voltage magnitude at node k, where |Vk| is the327

voltage magnitude at node k and V nom
k is the nominal voltage328

of node k. The voltage reward associated with |Vk|norm for329

node k in the jth iteration is:330

RV (j, k) =


0, if |Vk|norm ∈ normal zone
Penalty1 if |Vk|norm ∈ violation zone 1
Penalty2, if |Vk|norm ∈ violation zone 2

(7)

In other words, the corresponding voltage reward is zero if the331

node voltage is in the normal zone, and large penalties (i.e.332

negative rewards) will be assigned if the node voltage is out333

of the operation limits. In this paper, Penalty1 and Penalty2334

are set to be -400 and -600 for the IEEE 37 bus case, while335

-450 and -650 are used for the IEEE 123 bus case. The values336

are chosen empirically. Larger penalties will generally result337

in better voltage regulation performance at a cost of more338

reactive power utilization and therefore possible higher PV339

active power curtailment.

Fig. 5: Definition of voltage profile zones. Each dot represents the
voltage of one node. The corresponding total voltage reward for this
example is 2× Penalty1 + 2× Penalty2.

340

The second part of the reward is assigned based on reactive
power utilization. The objective is to minimize PV production
curtailment, which is achieved by minimizing reactive power
utilization. The reward for reactive power utilization is defined
as:

RQ(j) =

M∑
i=1

C × (1− qi) (8)

where qi = |Qpv
i |/Si is the reactive power utilization ratio of

the ith SI (i.e. the absolute value of action for the SI); M
is the total number of SIs/dimension of action space; C is a
positive constant chosen to scale the reward.The value of C
should be tuned to fit different power system configurations
for balancing voltage regulation and reactive power utilization.
In this paper, C is empirically set to be 200 and 300 for the
IEEE 37 bus and IEEE 123 bus cases, respectively. The total
reward for jth iteration/exploration step of the episode is:

R(j) =

N∑
k=0

RV (j, k) +RQ(j) (9)

where {0, ..., N} are the indexes for all nodes.341

C. Training of DDPG342

DDPG is trained according to the procedures displayed in343

Fig. 6 with the following key steps:344

Step 1: Initialize and solve power flow and assemble state345

vector: At the beginning of an episode, a new grid operation346

condition (a combination of PV and load profiles) is randomly347

generated. The PF is solved to obtain the system information348

and assemble the state vector. The PF is performed by the349

AC power flow solver OpenDSS [44], which takes in load350

consumption and PV generation, solves the corresponding PF351

equations (1,2), and finds voltages at each node.352

Step 2: DDPG agent suggests actions: The state vector353

containing the system information (node voltage, active and354

reactive power consumption/generation of SIs and loads) is355

fed into the DDPG agent. The agent suggests actions, which356

are SI reactive power outputs.357

Step 3: Execute actions and evaluate rewards: The358

environment (the SI in OpenDSS) take the suggested actions,359

producing the resultant state by solving another PF. The corre-360

sponding reward for that state is evaluated. If the termination361

criteria defined below are met, the training for this episode is362

terminated and the trained DDPG is stored for later use. If the363

termination criteria is not met, we return to Step 2, update364

the agent policy, and repeat the process until the termination365

is reached.366

The training for one episode terminates if: 1) the reward for367

the exploration/iteration step converges, meaning the reward368

difference between the current iteration and the last iteration369

is within 0.5% of the highest reward (C×M according to (9),370

i.e. the reward if the agent uses zero reactive power and there371

are no voltage violations) for five consecutive iterations. To372

ensure exploration of the search space, at least 200 iterations373

are performed for each episode independent of whether the374

convergence criterion is met; or 2) the maximum number of375

iterations (1,000) is reached.376

D. Optimal Power Flow Formulation377

To benchmark the performance of the DDPG approach,
an equivalent OPF problem is solved. Since the goal is
to minimize SI reactive power usage and subsequently PV
generation curtailment, the OPF objective is defined as:

min
M∑
i=1

(−P pv
i + wQpv

i ) (10)

where M is the total number of PVs/SIs, P pv
i is the PV active378

power generation, Qpv
i is the reactive power generation, and379

w is a weighting factor. As shown in Fig. 1, the constraint380

for every SI is: (P pv
i )2 + (Qpv

i )2 <= S2
i , where Si is the381

SI power rating. While in theory minimizing either negative382

active power or reactive power would achieve the goal of383

minimizing curtailment, in Eq. 10 both terms are included as384

doing so was found to improved convergence.385

The current mismatch equations are used to relate nodal
voltages with active and reactive power injections from each
load and PV unit. The current mismatch equations are [45]:

∆Ik = Icalck − Ispk (11)
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Fig. 6: Flowchart of training a DDPG agent.

P sp
k = Re(Vk)Re(I

sp
k ) + Im(Vk) Im(Ispk ) (12)

Qsp
k = Im(Vk)Re(I

sp
k )− Re(Vk) Im(Ik)

sp (13)

Re(Icalck ) =

N∑
j=1

[Gki Re(Vi)−Bki Im(Vi)] (14)

Im(Icalck ) =

N∑
j=1

[Gki Im(Vi) +Bki Re(Vi)] (15)

where ∆Ik is the mismatch between the calculated current386

injection Icalck and the specified current injection Ispk at node k;387

Vi and Ii are the voltage phasor (complex) and current phasor388

for node i; P sp
k and Qsp

k are the specified active and reactive389

power injections, and Gki and the Bki are the conductance390

and susceptance from the nodal admittance matrix.391

The specified nodal active and reactive power injections at392

node k are defined by:393

P sp
k = P pv

k − P l
k (16)

Qsp
k = Qpv

k −Ql
k (17)

where P pv
k is the PV active power injection; P l

k is the load394

active power consumption; Qpv
k is the PV reactive power395

injection, and Ql
k is the load reactive power consumption.396

The OPF formulation forces the current mismatches from
(11) to equal zero by imposing the constraint

∆Ik = 0 (18)

The source bus is modeled as a slack bus by constraining its
voltage magnitude and angle to be constants determined by
the voltage at the primary side of the substation:

Vslack = V sp
slack (19)

The voltage constraints at the other nodes are the [0.95,
1.05] p.u. ANSI limits [43]:

0.95 ≤ |Vk|
V nom
k

≤ 1.05 (20)

where V nom
k is the nominal voltage of node k. The OPF397

solution yields the decision values (P pv , Qpv) to dispatch the398

SIs.399

IV. CASE STUDY400

A. Case Study401

The proposed DDPG agent is tested on the modified IEEE402

37 bus feeder and modified IEEE 123 bus feeder. The prop-403

erties of the IEEE 37 bus feeder are summarized in Table I.404

There are 25 loads with a peak load of 2.74 MVA. Five 1.2405

MW PVs are randomly deployed with SI AC ratings of 1406

MVA, representing a 20% oversizing of the solar array [46].407

The resultant PV penetration is around 180%. The IEEE 123408

bus feeder (Table II) contains 85 loads with a peak demand409

of 7.7 MVA. Ten 1.2 MW DC / 1.0 MVA AC PV systems410

are added at randomly selected locations, achieving 130% PV411

penetration.412

Four different control strategies are tested (Table III): 1)413

No Control: The SI operates at unity power factor without414

any reactive power generation. 2) Volt-Var: Each SI operates415

autonomously according to the pre-specified local droop curve416

(Fig. 1) without coordination. 3) OPF: All SIs cooperate417

following the optimal solutions of the OPF problem ((10)).418

4) DDPG: SIs are coordinated following the decisions made419

by the trained DDPG agent, as described in Section III.420

B. DDPG Agent Training Result421

The DDPG agent is trained following Fig. 6. In the training422

stage, combinations of PV generation and load consumption423

are randomly generated to present a mix of grid operation con-424

ditions/scenarios with low to high loading and PV generation.425

Table. IV summarizes neural network topologies used for426

the IEEE 37 bus and IEEE 123 bus cases. For the IEEE 37427

bus case, two hidden layers are used for both actor and critic428

(Fig. 4) with 200 and 300 neurons. There are 153,210 param-429

eters in total. For the IEEE 123 bus case, a neural network430

with three hidden layers with 300, 400, and 400 neurons is431

used. The total number of parameters is 710,020. In general,432

a larger feeder with more SIs will need larger neural networks433

(more parameters) to learn a good policy.The neural network434

topology is customized for the configurations of the feeder.435

Modifications of neural network topology and retraining are436

needed if the feeder changes (feeder toplogy, load numbers,437

PV numbers, etc. Transfer learning [47] techniques can be438

leveraged to significantly reduce retraining costs.)439

Training is performed for 1,500 episodes for the IEEE440

37 bus feeder case with 500,000 number of iterations in441
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TABLE I: Properties of modified IEEE 37 bus feeder.
# of Nodes 37
Peak Load (MVA) 2.74
# of Loads 25
# of PVs 5
Total PV DC Rating (MW) 6
Total PV SI AC Rating (MVA) 5

TABLE II: Properties of modified IEEE 123 Bus feeder.
# of Nodes 128
Peak Load (MVA) 7.7
# of Loads 85
# of PVs 10
Total PV DC Rating (MW) 12
Total PV SI AC Rating (MVA) 10

total (i.e. each episode terminates after approximately 330442

iterations, on average). The IEEE 123 bus case is trained443

for 800 episodes with around 387,000 iterations (i.e. each444

episode terminates/converges after 484 iterations, on average).445

For each training episode, a combination of PV and load446

profiles is randomly generated to represent a grid operation447

scenario. After training, real PV and load profiles are used to448

test the trained DDPG agent. No PV and load profile data is449

shared across training and test stages. Due to the larger and450

more powerful neural networks (710,020 parameters in total)451

used for the IEEE 123 bus case, the IEEE 123 bus requires452

less iterations/data samples to learn a good policy.453

The training reward of 5 random experiments for the IEEE454

123 bus case is plotted in Fig. 7. The reward R is normalized455

by the highest possible reward C × M , therefore the reward456

upper limit here is 1. The reward starts at negative values,457

given that the grid experiences a large number of voltage vio-458

lations and the DDPG agent has no prior knowledge on how to459

perform grid voltage regulation. The DDPG obtains an average460

reward greater than 0.8 after just 150 episodes, showing that461

the agent is learning efficiently. As learning progresses further462

after episode 150, the average rewards remains greater than 0.5463

and almost always greater than 0.8 with small swings across464

different episodes. The episode reward fluctuations are due to465

differences in grid operation conditions for each episode. Since466

the grid operation condition/scenario is randomly generated467

for each episode, some episodes experience grid operation468

conditions with more violations. Since voltage violations occur469

in the beginning of these episodes and more reactive power470

needs to be used to correct voltage violations, lower average471

episode rewards result.472

TABLE III: Summary of smart inverter control strategies.
SI Reactive Power SI Dispatch Scheme

No Control No N/A
Volt-Var Yes local droop curve (Fig. 1)
OPF Yes coordinated by OPF solution
DDPG Yes coordinated by DDPG agent

TABLE IV: Summary of neural network topologies.
Case Name # of Hidden Layers # of Neurons Total Parameters

IEEE 37 Bus 2 200, 300 153,210
IEEE 123 Bus 3 300, 400, 400 710,020

Fig. 7: Normalized reward during the training process for the IEEE
123 bus feeder. The dark blue line represents the average reward
of 5 experiments with different random seeds, and the shaded light
blue area displays the range of episode-averaged rewards of those 5
experiments.

C. Case study setup473

The trained DDPG agent is used to perform grid voltage474

control for one year with 1 hour resolution (8760 different475

scenarios). The PV generation and load consumption profiles476

for the test are from public data and are plotted in Fig. 8.477

The 8760 test scenarios cover a wide variety of realistic478

operation conditions (over-voltages, under-voltages, and no479

voltage violation) the DDPG agent can experience if deployed480

online. A desirable DDPG agent needs to respond to all481

possible power system voltage conditions properly during482

online operation. While randomly generated data is used in483

training stage, the test stage uses real PV and load profiles484

and no test data is used in traing. To test the robustness of a485

DDPG that was trained solely on randomly generated episodes,486

online training is not applied. In other words, reward feedbacks487

after taking the suggested actions are not used to retrain and488

improve the DDPG agent during the test. Therefore, the DDPG489

agent makes decision solely based on the past experiences490

learned during the training phase. Contrary to the iterative491

process in the training stage, where the DDPG could iterate492

many times to reach an action with a high reward, in the test493

stage the agent has to provide effective actions within one494

iteration.495
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Fig. 8: Normalized PV (top) and load (bottom) profiles used for
tests. The PV generation profile is from public solar power datasets
maintained by NREL [48]. The load profile is from the OpenDSS
installation directory [44]. The same profile is used for all PVs and
loads. 1 year (365 profiles) are shown.
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TABLE V: Summary of test results for IEEE 37 bus feeder. The values shown are the cumulative quantities of each parameter for 1 year.

# of Under-voltages # of Over-voltages Max Volt [p.u.] Min Volt [p.u.] PV Curtailment (kWh)
No Control 1,797 6,998 1.067 0.921 0
Volt-Var 0 0 1.040 0.966 15,252
OPF 0 0 1.050 0.950 1,291
DDPG 0 0 1.046 0.961 1,854

V. RESULTS AND DISCUSSION496

A. IEEE 37 Bus Feeder497

The node voltages of the IEEE 37 bus feeder are presented498

in Fig. 9. For the no control case (i.e. no reactive power genera-499

tion from PVs), the feeder experiences both over-voltages and500

under-voltages. The total number of over-voltage violations,501

where one node voltage out of ANSI limits at any time step502

(a new scenario is applied at each time step) counts as one503

violation, is 6,998 with the maximum voltage equaling to504

1.067 p.u. (Table V). The total under-voltage occurrence is505

1,797 with a minimum voltage of 0.921 p.u.. With Volt-Var506

droop control (Fig. 1), all voltage violations are mitigated.507

The maximum voltage is brought down to 1.040 p.u. while508

the minimum voltage is increased to 0.966 p.u.. The OPF also509

eliminates all voltage violations. The maximum voltage and510

minimum voltage are 1.050 and 0.950 p.u., respectively, re-511

flecting the voltage constraints imposed in (20). The proposed512

DDPG also solves all voltage issues, reducing the maximum513

voltage to 1.046 p.u. while boosting the minimum voltage to514

0.961 p.u.. The results demonstrate that a DDPG agent is not515

only effective in voltage regulation but also robust in various516

operation conditions.517

Reactive power generation by SIs to resolve voltage issues518

could lead to PV production curtailment due to the capacity519

limit as shown in Fig. 2. The normalized total PV curtailments520

due to reactive power utilization are plotted in Fig. 10.521

Since reactive power usage is prohibited in the no control522

case, the corresponding curtailment is always zero. For the523

Volt-Var, OPF, and DDPG cases, the active power of the524

SI needs to be curtailed to make room for reactive power525

generation. However, OPF and DDPG coordinate different SIs526

for voltage regulation, ensuring that reactive power is used527

more efficiently and less curtailment is incurred in comparison528

to Volt-Var. Relative to the Volt-Var case, DDPG reduces529

the curtailment by 88% (from Volt-Var 15,252 to DDPG530

1,854 kWh) while OPF provides the optimal solution of most531

efficiently dispatching reactive power for voltage regulation532

and reduces the curtailment by 92% (from Volt-Var 15,252533

to OPF 1,291 kWh). The difference in curtailment between534

DDPG and OPF is only 563 kWh for the 1 year test period,535

i.e. only 1.54 kWh per day. Therefore, DDPG approaches536

the optimal solution in minimizing reactive power to resolve537

voltage issues.538

The non-linear and non-convex nature of the OPF problem539

renders it computationally intensive, limiting its practical ap-540

plication. On the contrary, a trained DDPG agent can map grid541

state information directly to SI actions, which requires only542

one feed-forward step of the neural network and is extremely543

efficient. Table VI compares the solution time of OPF and544

DDPG. The solution time is defined as the mean value of545

TABLE VI: Solution time comparison on the IEEE 37 bus feeder.
Method OPF DDPG
Solution Time (s) 27.6 1.5×10−3

solving 8,760 different scenarios. For OPF, this is the time546

needed to solve the optimization problem. For DDPG, this is547

the time the DDPG agent takes to make decisions on SI actions548

after receiving grid state information. The solution time is not549

shown for the Volt-Var method, as it is an autonomous local550

control scheme that acts essentially instantaneously.551

The simulations are carried out on a PC with Intel (R)552

Core(TM) i7-4700MQ 2.8-GHz processor using Python 3.7.553

The OPF is formulated and solved using the KNITRO solver554

[49] with Pyomo interface [50]. The DDPG averages only555

1.5 ms (CPU time) to make decisions while the OPF needs556

27.6 s (CPU time) to get the solution (Table VI).557

B. IEEE 123 Bus Feeder558
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Fig. 9: Boxplot of node voltages of the 1 year test with 8760 scenarios
on the IEEE 37 bus test feeder. For each case, the boxplot contains
voltages of all nodes of all 8760 test scenarios (324,120 data points).
The red dashed lines represent the [0.95,1.05] p.u. ANSI limits [43].

The proposed DDPG is also tested on the larger IEEE 123559

bus feeder. Since the academic license of the KNITRO [49]560

solver is limited to 300 variables and 300 constraints, the OPF561

is not compared here.562

Fig. 11 displays nodal voltage distributions of the three563

remaining cases. Numerous voltage violations can be observed564

for no control case with a maximum voltage of 1.066 p.u.565

and a minimum voltage of 0.906 p.u.. There are 19,865566

over-voltage and 7,832 under-voltage occurrences for the no567

control case (Table VII). The autonomous Volt-Var control568

eliminates all over-voltages, reducing the maximum voltage569

to 1.040 p.u.. However, there are still 100 under-voltages570

(Table VII) and the minimum voltage is 0.946 p.u.. With the571

proposed DDPG control, all voltage violations are resolved:572

the maximum voltage observed is 1.0497 p.u. and the min-573

imum voltage is 0.9503 p.u.. The DDPG agent successfully574
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TABLE VII: Summary of test results for IEEE 123 bus feeder. The violations and curtailment numbers are the cumulative quantities for 1
year.

# of Under-voltages # of Over-voltages Max Volt [p.u.] Min Volt [p.u.] PV Curtailment (kWh)
No Control 7,832 19,865 1.066 0.906 0
Volt-Var 100 0 1.040 0.946 58,703
DDPG 0 0 1.0497 0.9503 7,277
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Fig. 10: Normalized total energy curtailed during the 1 year test
with 8,760 scenarios for four different control cases on the IEEE
37 bus feeder. The energy curtailed is normalized with the energy
curtailed of the Volt-Var case. The PV curtailment here is defined as
the PV active power generation deficit between no control case (no
reactive power utilization) and the other three cases (with reactive
power generation), providing a direct comparison of Volt-Var, OPF,
and DDPG on effective usage of SI reactive power.

learned a delicate strategy to utilize the minimal amount of575

reactive power to keep the voltage just within the ANSI limits.576

This demonstrates that enforcing voltage limits through large577

voltage violation penalties (Section III-B) is effective.578

The curtailment of PV production due to reactive power579

utilization is displayed in Fig. 12. Since DDPG coordinates580

different SIs to utilize reactive power more efficiently, much581

less curtailment is incurred in comparison to the Volt-Var case.582

The total energy curtailed for the DDPG case represents a 88%583

reduction in curtailment (from Volt-Var 58,703 to DDPG 7,277584

kWh, as shown in Table VII).585

The average decision making time of the DDPG on the586

IEEE 123 bus feeder is 1.6 × 10−3 s (CPU time), which587

is almost the same as for the IEEE 37 bus feeder. This588

again demonstrates the solution speed advantage of the DDPG589

approach.590

VI. CONCLUSIONS591

In this paper, a DDPG-based method is proposed to coordi-592

nate multiple SIs for distribution network voltage regulation.593

Comprehensive tests with thousands of realistic scenarios are594

conducted on the IEEE 37 bus feeder and the IEEE 123 bus595

feeder to evaluate the trained DDPG agents. The proposed596

DDPG approach is compared against autonomous Volt-Var597

control and OPF. The results demonstrate that even without598

online reward feedbacks, a well-trained DDPG agent can rely599

solely on the knowledge accumulated in the training phase600

to make robust decisions under various operation conditions.601

As DDPG can coordinate different SIs, it is more effective in602
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Fig. 11: Boxplot of node voltages of 1 year test with 8,760 scenarios
on the IEEE 123 bus feeder. For each case, the boxplot consists of
voltages of all nodes of all 8,760 scenarios (1,121,280 data points).
The red dashed lines represent the [0.95,1.05] p.u. ANSI limits [43].
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Fig. 12: Total PV generation curtailment for each scenario for the
IEEE 123 bus feeder for no control (zero curtailment), Volt-Var, and
DDPG.

mitigating voltage issues and does so with much less reactive603

power compared to autonomous Volt-Var control, achieving604

significant reduction in PV production curtailment. The DDPG605

decisions are as effective as the optimal solutions from OPF606

in terms of resolving voltage problems; however, the DDPG607

results in a marginal increase in PV curtailment over OPF due608

to slightly more reactive power usage.609

The OPF approach relies on accurate forecasting of future610

conditions, due to its large computation time, which would611

significantly increase for larger networks. While this paper612

assumes perfect forecasts for the OPF, forecast errors in613

actual applications can lead to performance deterioration for614

OPF including a failure to maintain ANSI voltage limits. On615

the contrary, (assuming fast communications), the DDPG is616

independent of forecasts, as it is capable of reaching decisions617

instantaneously.618
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