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ABSTRACT OF THE DISSERTATION

Aspects of nonequilibrium quantum many-body system: quantum entanglement dynamics,
decoherent quantum quench, and one-particle perspective under dissipative and

decoherent dynamics

by

Wei-Ting Kuo

Doctor of Philosophy in Physics

University of California San Diego, 2022

Professor Daniel Arovas, Chair

In this dissertation, we study multiple nonequilibrium many-body systems from different

aspects. We begin with a brief introduction to nonequilibrium system and general discussions

of terminology. In Chapter 2, we study locally scrambled quantum evolution and develop a

novel formalism to describe entanglement dynamics. In Chapter 3, we examine quantum quench

across quantum phase transition in the presence of decoherence. We found a new scaling law in

strong decoherence limit. In Chapter 4, we investigate multiple one-particle probes to diagnose

the properties of steady states under dissipative and decoherent dynamics.
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Chapter 1

Introduction

Physics is the branch of science which studies the nature and properties of matter. Matter

is any substance with masses, including fundamental particles, materials around our daily life,

and the largest galaxy in universe. The wide range of spatial scales and number of particles

involved in matter match along with different branches in physics. Note that this scale hierarchy

does not imply any subordinance or superiority between these branches. As Philip Anderson

mentioned in his well-known article, ”More is different”[2], new generalization and concepts are

required in different scales.

One significant example is the many-particle system with an enormously large number

of particles, a typical number scale being the Avogadro’s Number (∼ 6.02×1023). Studying a

generic many-particle system is a challenging problem. However, under equilibrium assumption,

we could simplify the many-particle system and utilize a relatively small number of thermody-

namic variables to characterize it. This characterization does not allow complete and detailed

descriptions of the system, such as the exact velocity of a certain particle. Instead, it means

that the physical quantities could be described by a statistical ensemble average. The type of

the statistical ensembles depends on system nature. For the classical system, the particles are

distinguishable and the particle statistics is Maxwell-Boltzmann statistics. As for quantum

systems, two types of spins along with indistinguishable particles give two different particle

statistics, Bose-Einstein statistics and Fermi-Dirac statistics [3]. In addition, different conserved
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quantities in the system would lead to different ensembles, including micro-canonical, canonical,

and grand-canonical ensembles. These tools in statistical mechanics enable us to describe a many-

body system in equilibrium and compute physical quantities of interest from the well-established

protocols.

By contrast, a nonequilibrium system fails to provide such universal protocols, which not

only increases the difficulty in modeling nonequilibrium systems but also triggers much interest

in exploring unique physical phenomena in nonequilibrium systems. In this thesis, I focus on

several nonequilibrium systems and study their physical properties and behaviors. In Chap. 2,

the target nonequilibrium system is a multi-qubit system under locally scrambled quantum

dynamics which are realized by local random circuits. To characterize how this system arrives at

equilibrium, we study the dynamics of quantum entanglement. Entanglement represents how

separate portions in the system are correlated and dependent on each other. This correlation

could exhibit differently in classical and quantum systems. To elaborate this dependence and the

difference between classical and quantum systems, I would use a two-qubit system as an example.

The qubit is a quantum-mechanical system with two states which are labeled by | ↑〉, | ↓〉. To

quantitatively compute the dependence between these two qubits, I would use the information

measure, mutual information, I(A,B), defined as

I(A,B) = H(A)+H(B)−H(A,B) (1.1)

where A,B represent different regions and H(X) is the information entropy of region X . To

compute the information entropy, I would first define reduced density matrix ρX . Suppose the

density matrix for the full system is ρ , the reduced density matrix of the region X is ρX = TrX̄ ρ

where X̄ is the complement of the region X . The information entropy of the region X is defined

as

H(X) =−TrρX logρX . (1.2)
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In the following, I would compute the mutual information for three different two-qubit

systems. The region A is the first qubit, whereas the region B is the second qubit. The first system

is that these observed states of these two qubits are independent. The corresponding density

matrix is

ρ =
1
4
| ↑↑〉〈↑↑ |+ 1

4
| ↑↓〉〈↑↓ |+ 1

4
| ↓↑〉〈↓↑ |+ 1

4
| ↓↓〉〈↓↓ |. (1.3)

The reduced density matrices are

ρA =
1
2
| ↑〉〈↑ |+ 1

2
| ↓〉〈↓ |,ρB =

1
2
| ↑〉〈↑ |+ 1

2
| ↓〉〈↓ | (1.4)

The mutual information is zero since H(A) = H(B) = 1
2H(A,B) = log2. The second system is

that these two qubits are perfectly correlated. The density matrix is

ρ =
1
2
| ↑↑〉〈↑↑ |+ 1

2
| ↓↓〉〈↓↓ |. (1.5)

The reduced density matrices are equal to the first example,

ρA =
1
2
| ↑〉〈↑ |+ 1

2
| ↓〉〈↓ |,ρB =

1
2
| ↑〉〈↑ |+ 1

2
| ↓〉〈↓ |. (1.6)

However, the information entropy for the full system is different, H(A,B) = log2. Hence, the

mutual information is I(A,B) = log2. The third system is a quantum maximally entangled

system. One typical example is the Bell state, |φ〉= 1√
2
(| ↑,↑〉+ | ↓,↓〉). Then, we can construct

the density matrix as

ρ =
1
2
| ↑↑〉〈↑↑ |+ 1

2
| ↑↑〉〈↓↓ |+ 1

2
| ↓↓〉〈↑↑ |++

1
2
| ↓↓〉〈↓↓ |. (1.7)

Since this density matrix is constructed from a pure state, the corresponding information entropy

is simply zero. As for the reduced density matrices, they are equal to the previous examples.
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Hence, the resultant mutual information is 2 log2. This simple example quantitatively presents

the difference between classical correlation and quantum entanglement (quantum correlation).

Since quantum entanglement builds on quantum nature of the system, quantum entanglement

dynamics is an unique and useful tool to diagnose nonequilibrium quantum many-body systems.

In this work, we developed a new formalism to describe entanglement dynamics under locally

scrambled quantum dynamics. This new framework provided us with a novel perspective to view

the entanglement dynamics with an imaginary-time Schrödinger equation.

In Chap. 3, the nonequilibrium system is a quantum many-body system under quantum

quench dynamics across a critical point with decoherence. In a quantum quench, the system is

prepared at the ground state of the initial Hamiltonian (H0). Then, the system evolves with a

different Hamiltonian (He). Typically, these two Hamiltonians have the same format but with

different parameters (m0/me). Based on how the Hamiltonian is tuned between H0 and He, the

quantum quench can be divided into two types: sudden quenches and continuous quenches.

The sudden quenches indicated a sudden change of parameter from m0 to me at t = 0. As for

continuous quenches, the parameter would gradually change from m0 to me with a quench rate

1/τ. The sudden quenches can be also considered as a limiting case as τ → 0. This quench rate

serves a source which drives the system out of equilibrium, whereas another important time scale,

the intrinsic relaxational time scale, would try to bring system back to equilibrium. This intrinsic

relaxational time scale is determined by the inverse of energy gap. For any nonzero energy gap,

it’s always possible to find a slow enough quench rate to maintain system equilibrium. However,

the equilibrium could not be achieved with the existence of critical point during continuous

quench. The gap-closing behavior at the critical point leads to a divergent relaxational time scale.

Hence, the final state of the system fails to arrive equilibrium regardless of the quench rate. Even

though the final state is a non-equilibrium system, its universal length scale can still be predicted

from Kibble-Zurek scaling[4, 5, 6, 7], which contains correlation length exponent and dynamical

critical exponent of the critical point. This Kibble-Zurek scaling serves as a strong tool under

nonequilibrium dynamics. In this work, we incorporate the environmental decoherence during
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the continuous quench, which leads to a new scaling relation in strong decoherent limit. We

perform numerical simulation to verify our analytical prediction.

In Chap. 4, the non-equilibrium system is the quasi-periodic system under dissipative and

dephasing dynamics. Our quasi-periodic system is the one-dimensional Aubry-Andre-Harper

model which could exhibit extended and localized phases under different relative strengths

between nearest-neighboring and incommensurate on-site potential. In this work, we cou-

ple Aubry-Andre-Harper model with the environment and aim at studying the corresponding

non-equilibrium steady states. The probes are participation ratio, one-particle von Neumann

entropy and one-particle logarithmic negativity. Our results suggest their ability to capture

phase properties and potential future application to investigate different phases in open quantum

system.
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Chapter 2

Markovian entanglement dynamics under
locally scrambled quantum evolution

2.1 Synopsis

We study the time evolution of quantum entanglement for a specific class of quantum

dynamics, namely, the locally scrambled quantum dynamics, where each step of the unitary

evolution is drawn from a random ensemble that is invariant under local (on-site) basis transfor-

mations. In this case, the average entanglement entropy follows a Markovian dynamics, such

that the entanglement property of the future state can be inferred from the entanglement property

of the unitary operator of the underlying quantum dynamics. We introduce the entanglement

feature formulation to concisely organize the entanglement entropies over all subsystems into

a many-body wave function, which allows us to describe the entanglement dynamics using an

imaginary-time Schrödinger equation, such that various tools developed in quantum many-body

physics can be applied. The framework enables us to investigate a variety of random quantum

dynamics beyond Haar random circuits and Brownian circuits. We perform numerical simula-

tions for these models and demonstrate the validity and prediction power of the entanglement

feature approach.
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2.1.1 Contribution of the author

The author has contributed in developing the main formalism and in writing the paper.

He has performed the numerical calculations together with A. A. Akhtar.

2.2 Introduction

Quantum entanglement dynamics[8, 9, 10, 11, 12] is an emerging field that ties several

interesting topics together, including non-equilibrium and driven quantum systems[13, 14,

15], many-body localization and thermalization[16, 17, 18, 19, 20, 21], quantum chaos and

holography[22, 23, 24, 25, 26]. The central theme is to understand the production and propagation

of quantum entanglement in quantum many-body systems. For pure states, the amount of

quantum entanglement between a subsystem A and its environment Ā can be quantified by

the (Rényi) entanglement entropy (EE) S(n)(A) = 1
1−n logTrA ρn

A where ρA = TrĀ |Ψ〉〈Ψ| is the

reduced density matrix of subsystem A. Various quantum information measures (such as mutual

and tripartite information) can be constructed from the EE over different regions. Here, we

would like to focus on the 2nd Rényi entropies S(2)(A) and establish their dynamic equations

under quantum evolution.

As a quantum state |Ψ〉 evolves in time, its EE’s S(2)(A) over different regions A will

also change with respect to time in general. It is desired to understand how the unitary evolution

of the quantum state induces the dynamics of quantum entanglement. There have been several

works on the entanglement growth in quantum many-body systems[27, 28, 29, 12, 24, 30, 31, 32,

33, 34, 35, 36, 37]. The main focus has been on the half-system (or a single region) EE. To gain

more resolution of the many-body entanglement structure, we extend our scope to all possible

bipartitions of the system (including multiple disconnected entanglement regions). The question

we would like to address is that given S(2)(A) at initial time over all possible subsystems A, what

will be the equation of motion governing the evolution for all of them jointly in later time?

However, EE’s over all regions contain a large amount of data, because the number of
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possible bipartitions 2L grows exponentially in system size L. We need a conceptually concise

way to organize these entropy data, in order to make progress in describing their dynamics. In

Ref. [38], it was proposed that all these EE’s can be organized into “entanglement features”,

which admit compact representations in terms of Boltzmann weights of Ising models. The key

idea is to label each entanglement region A by a set of Ising variables σσσ = (σ1,σ2, · · ·), such that

σi =↓ (or ↑) corresponds to i ∈ A (or i ∈ Ā) for each site i. Then the EE S(2)(A)≡ S(2)[σσσ ] can be

treated as a free energy associated to the Ising configuration σσσ , and the entanglement feature

(EF) refers to the corresponding Boltzmann weight W [σσσ ] = e−S(2)[σσσ ] = Trρ2
A, which is simply

the purity for the 2nd Rényi case. Its time evolution can be related to the Loschmidt echo on

the duplicated system,[12] which could be of experimental relevance. In this work, we further

develop the Ising formulation by encoding the EF as a fictitious spin state |W 〉= ∑σσσ W [σσσ ]|σσσ〉,

which we called the EF state. This rewriting packs the exponentially many entanglement data

into a single EF state (as a many-body wave function). This conceptual simplification enables

us to formulate the entanglement dynamics in a concise form of imaginary-time Hamiltonian

evolution of the EF state

∂t |W 〉=−ĤEF|W 〉, (2.1)

which can be further analyzed using powerful tools that have been developed in quantum many-

body physics. Our development is along the line of mapping entanglement dynamics to statistical

mechanical problems, as discussed in a few recent works [39, 28, 30, 40, 32, 33, 41, 42]. Given

the equivalence between statistical mechanics and imaginary-time quantum mechanics, it is not

surprising that the entanglement dynamics could admit a quantum mechanical formulation as

Eq. (2.1).

Treating the EF W [σσσ ] as an (unnormalized) probability distribution of entanglement

regions σσσ , the proposed dynamic equation in Eq. (2.1) could be interpreted as a Markov equation.

The assumption behind this equation is that the future EF of a many-body state can be entirely

determined based on the current EF without the need to know about the past EF or about other
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information beyond the EF. Unfortunately, this assumption does not hold in general! In fact, the

entanglement dynamics is generally non-Markovian, meaning that knowing the present EE’s

even for all possible regions is still insufficient to determine their evolution in the future,1 so

we should not expect Eq. (2.1) to work in general. In this work, we point out a specific yet rich

enough class of quantum dynamics, called the locally scrambled quantum dynamics, whose

entanglement dynamics can be described by Eq. (2.1) (or some discrete version of it). Quantum

dynamics can always be formulated as a unitary evolution U = ∏t Ut that can be chopped up

into products of simpler unitaries Ut at each time slice t following a time ordering. A quantum

dynamics is said to be locally scrambled, if for every time step, the unitary Ut is drawn from a

random unitary ensemble that is invariant under local (on-site) basis transformations, and Ut

at different time t are sampled independently. Such dynamics can be constructed by inserting

local scramblers (product of on-site Haar random unitaries) between every time step, as if the

system constantly forget about the choice of local basis from one time step to another. It can

be used to model those quantum many-body systems with fast and random dynamics on each

site, such that the quantum information is scrambled on each site quickly and sufficiently during

each step of the time evolution. One famous example in this class is the Haar random unitary

circuit[28, 40, 31, 32]. We will provide more examples of locally scrambled quantum dynamics

in this work.

The reason that the future EE can be uniquely determined by the present EE under the

locally scrambled quantum dynamics is related to the fact that the EE is a local-basis-independent

quantity. As the local scramblers constantly remove the local-basis-dependent information in

the quantum many-body state, only the local-basis-independent information can survive in time

to govern the future evolution. Such local-basis-independent information can be captured by

EE’s over all possible entanglement regions, which are summarized as the EF of the quantum

many-body state. In this work, we develop the theoretical framework to derive the dynamic

1One can easily construct examples like | ↑↑〉 and | ↑↓〉, which are both product states, but their evolution under
the same Hamiltonian H = SSS1 ·SSS2 will result in states of different entanglements.
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equation governing the evolution of the EF under locally scrambled quantum dynamics. We

establish a systematic approach to construct the EF Hamiltonian ĤEF based on the entanglement

properties of the physical Hamiltonian or unitary operators that describe the quantum dynamics.

We also carry out numerical simulations to justify the assumptions made in the theoretical

development, and demonstrate the prediction power of the EF approach.

The paper is organized as follows. In Sec. 2.3, we first develop the theoretical framework

for the EF and its application to the locally scrambled quantum dynamics. We start with the

definition of EF for both quantum many-body state and quantum unitary circuits in Sec. 2.3.1.

We then promote these notions to their quantum mechanical versions, introducing the EF

states and EF operators in Sec. 2.3.2. With this setup, in Sec. 2.3.3, we prove an important

relation between the the state and the unitary EF’s, thereby mapping the unitary evolution of the

quantum state to the dissipative evolution of the EF state under the corresponding entanglement

dynamics in Sec. 2.3.4. Taking the continuum limit, we obtain the Schrödinger equation for

EF state and derived the most generic form of the EF Hamiltonian in Sec. 2.3.5. We analyze

the spectral properties of the EF Hamiltonian and their consequences on the universal behavior

of entanglement dynamics in Sec. 2.3.6. We investigate the excitation spectrum of the EF

Hamiltonian and obtain the quasiparticle dispersion in Sec. 2.3.7, which allows us to predict

the long-time saturation behavior of the entanglement. We will provide numerical evidences in

Sec. 2.4 to demonstrate the validity of the EF approach. We first introduce two models of locally

scrambled quantum dynamics in Sec. 2.4.1, namely the locally scrambled quantum circuit and the

locally scrambled Hamiltonian dynamics, which are further discussed in details in Sec. 2.4.2 and

Sec. 2.4.3 separately. We sum up in Sec. 2.5 making connections to related topics and potential

future development.

2.3 Theoretical framework
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2.3.1 Definition of entanglement features

Let us consider a quantum many-body system consisting of L qudits, where each qudit

(d-dimensional quantum system) has a d-dimensional physical Hilbert space, such that the total

Hilbert space dimension is dL. To define the 2nd Rényi entropy, we will need to duplicate the

system and evaluate the expectation value of swap operators within a subsystem A of interest.

There are altogether 2L possible choices of a subsystem A, as each qudit can independent decide

to be included in A or not. To label the 2L different bipartitions of the system, we introduce a set

of classical Ising variables σσσ = (σ1,σ2, · · · ,σL), such that the Ising variable σi determines if the

ith qudit belongs to region A or its complement Ā, following

σi =

 ↑ i ∈ Ā,

↓ i ∈ A.
(2.2)

These Ising variables do not correspond to any degrees of freedom of the underlying quantum

many-body system. Instead, they represent the identity or swap operator supported on the

duplicated system, which are used to define the 2nd Rényi entropy. To be more specific, we

define a permutation operator Xσi acting on the duplicated Hilbert space of the ith qudit,

Xσi =

 i ≡ ∑
d
α,β=1 |αβ 〉i〈αβ |i if σi =↑,

i ≡ ∑
d
α,β=1 |αβ 〉i〈βα|i if σi =↓,

(2.3)

which is assigned to the identity operator i or the swap operator i depending on the Ising

variable σi. Assembling these permutation operators together, we define Xσσσ =
⊗L

i=1 Xσi for

the duplicated L-qudit system, which implements swap operations in the region A specified by

the Ising configuration σσσ .

With these notation setup, we can define the entanglement feature (EF) of quantum

many-body states and time-evolution unitary circuits[43, 38]. The EF of a many-body pure state
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σ1 σ2 σ3 σL

〈Ψ⊗2

Ψ〉⊗2

…

(a)
σ1

τ1

σ2

τ2

σ3

τ3

σL

τL

U⊗2

U†⊗2

…

…

Tr

(b)

Figure 2.1. Diagrammatic representation of (a) the state EF W|Ψ〉[σσσ ] and (b) the unitary EF
WU [σσσ ,τττ]. The Tr operator contracts the dangling bottom legs with the corresponding dangling
top legs.

|Ψ〉 is defined as

W|Ψ〉[σσσ ]≡ e−S(2)[σσσ ] = Tr
(
Xσσσ (|Ψ〉〈Ψ|)⊗2), (2.4)

which resembles Boltzmann weights for Ising configurations σσσ labeling different entanglement

regions. In terms of the tensor network representation, the state EF can be depicted as Fig. 2.1(a).

Not only for quantum states, the EF can also be defined for unitary circuits under the state-

operator correspondence.[23, 44, 45] The EF of a unitary circuit U is defined as

WU [σσσ ,τττ] = Tr
(
XσσσU⊗2XτττU†⊗2), (2.5)

which depends on two sets of Ising configurations σσσ and τττ that separately specifies the entangle-

ment regions on the past (input) and the future (output) sides of the unitary circuit, as illustrated

in Fig. 2.1(b). The state EF W|Ψ〉[σσσ ] provides a comprehensive description of the entanglement

properties of the pure state |Ψ〉, which contains the information about EE, mutual information

and multipartite information among different subsystems. Similarly, the unitary EF WU [σσσ ,τττ]
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characterizes the entanglement properties of the unitary circuit U , including the EE and mutual

information between past and future degrees of freedoms, which are also closely related to

the operator-averaged out-of-time ordered correlator (OTOC)[23, 46, 47] under the quantum

dynamics U .

It worth mention that entanglement features are invariant under local basis transforma-

tions. A generic local basis transformation takes the form of V =
⊗L

i=1Vi with Vi being a unitary

operator acting on the ith qudit. It is easy to see that both the state EF and the unitary EF are

independent of the choice of local basis, i.e.

WV |Ψ〉 =W|Ψ〉, WV †UV =WU . (2.6)

In this way, the EF forgets about the local basis dependent information in quantum states or

unitary circuits, and only captures the entanglement properties that are universal to local basis

choices.

2.3.2 Operator formalism of entanglement features

To make our notation more concise, let us introduce a set of Ising basis |σσσ〉, then we can

pack W|Ψ〉 to an entanglement feature state (EF state) |WΨ〉 as

|WΨ〉= ∑
σσσ

W|Ψ〉[σσσ ]|σσσ〉, (2.7)

and WU to an entanglement feature operator (EF operator) ŴU as

ŴU = ∑
σσσ ,τττ

|σσσ〉WU [σσσ ,τττ]〈τττ|. (2.8)

The Ising basis |σσσ〉 span a 2L-dimensional Hilbert space of L qubits, called the entanglement

feature Hilbert space (EF Hilbert space). It should not be confused with the dL-dimensional

physical Hilbert space of the underlying quantum many-body system. Each Ising basis state |σσσ〉
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in the EF Hilbert space simply corresponds to a bipartition of the L physical qudits following

Eq. (2.2).

Given the EF state |WΨ〉, the EE S(2)[σσσ ] over all regions can be retrieved from the inner

product of |WΨ〉 with the corresponding Ising basis state

e−S(2)[σσσ ] =W|Ψ〉[σσσ ] = 〈σσσ |WΨ〉. (2.9)

In particular, a product state |Ψprod〉=
⊗

i |ψi〉 has zero EE in any region (∀σσσ : S(2)[σσσ ] = 0), so

its EF state is therefore a equal weight superposition of all Ising configurations,

|Wprod〉= ∑
σσσ

|σσσ〉 (product state), (2.10)

which corresponds to the (ideal) paramagnetic state of Ising spins. On the other hand, a Page

state[48] |ΨPage〉 exhibits the maximal volume-law EE, whose EF state is given by

|WPage〉= ∑
σσσ

cosh(η ∑
L
i=1 σi)

cosh(ηL)
|σσσ〉 (Page state), (2.11)

where η = 1
2 logd and we have adopted σi = ±1 in the formula to represent ↑,↓ spins. This

result follows from the definition. Its detailed derivation can be found in Appendix A.1. The

state |WPage〉 contains extensive ferromagnetic correlations among Ising spins. In this picture, the

process of quantum state thermalization corresponds to the process of building up ferromagnetic

correlations in the EF state (until saturation to the Page state).

Let us also provide some examples for the EF of unitary gates which will be useful later.

The EF of a single-qudit identity operator is straightforward to calculate based on the definition

in Eq. (2.5),

Ŵ1 = d2(| ↑〉〈↑ |+ | ↓〉〈↓ |)+d(| ↑〉〈↓ |+ | ↓〉〈↑ |),

= d(d +X),

(2.12)
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where X denotes the Pauli-X operator acting on the qudit site (acting in the EF Hilbert space, not

in the qudit Hilbert space), and d is the qudit dimension. A more non-trivial example is the EF

of a two-qudit Haar random unitary gate Ui j (averaged over Haar ensemble) that acts on qudits i

and j,

ŴHaar =d2(d +Xi)(d +X j)

− d2(d2−1)
d2 +1

1−ZiZ j

2
(d2−XiX j),

(2.13)

where Xi and Zi are Pauli-X and Z operators acting on site i. The derivation can be found in

Appendix A.2.

Ux Ux′

U

Physical Hilbert space

W

 W


Ux W


Ux′ W




W

U

EF Hilbert space

Figure 2.2. The mapping from the unitary operator in the physical Hilbert space to the corre-
sponding EF operator in the EF Hilbert space. Locality is preserved under the mapping, enabling
us to factorize the operators in the same manner on both sides.

Unitary gates are the building blocks to construct more complicated unitary circuits.

One nice property of the EF operator is that it preserves the locality in space, meaning that if a

unitary U operator can be factorized to smaller unitaries Ux over the space x, its corresponding

EF operator ŴU is also factorized in the same manner

U =
⊗

x
Ux ⇒ ŴU =

⊗
x

ŴUx , (2.14)

as examplified in Fig. 2.2. This property allows us to assemble the local EF operators together.

For example, the EF operator Ŵ1 of the identity operator for a L qudit system be obtained by
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assembling the single-qudit result in Eq. (2.12) together

Ŵ1 =
L

∏
i=1

d(d +Xi) = (cothδ cschδ )L
L

∏
i=1

eδXi, (2.15)

where we have introduced the constant δ

δ ≡ arccothd =
1
2

log
d +1
d−1

(2.16)

to exponentiate the operator. The exponential form allows us to take the operator inverse easily,

such that

Ŵ−1
1 =

L

∏
i=1

1−d−1Xi

d2−1
= (tanhδ sinhδ )L

L

∏
i=1

e−δXi. (2.17)

These results will be useful in later discussions. In the following, we will show how the evolution

of the EF state can be inferred from the EF operator of the unitary circuit.

2.3.3 Relation between state and unitary entanglement features

Suppose U describes a unitary circuit that evolves an initial quantum many-body state

|Ψ〉 to the final state U |Ψ〉. This quantum dynamics will induce a corresponding entanglement

dynamics, under which the EF of the initial state W|Ψ〉 evolves to that of the final state WU |Ψ〉.

Can we predict the final state EF WU |Ψ〉 based on our knowledge about the initial state EF W|Ψ〉

and the EF WU of the unitary evolution?

In general, this problem is not well-posed. Because U and |Ψ〉 contain many “non-

universal” features that are specific to the choice of local basis, such features may affect the

final state entanglement, but they are not captured by the EF, as the EF is invariant under local

basis transformations. Therefore, the final state EF can not be inferred from the initial state EF

and the unitary EF in general. However, instead of dealing with a specific unitary circuit U , we

consider an ensemble of unitary circuits U ′ =V †UV related to U by local basis transformations
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V , denoted by

EU =
{

V †UV
∣∣∣V =

L⊗
i=1

Vi,Vi ∈ Haar
}
, (2.18)

where each Vi is independently drawn from the Haar random unitary ensemble defined on the ith

qudit. We will call EU the locally scrambled unitary ensemble associated with U . According

to Eq. (2.6), one immediately sees that all unitary operators U ′ ∈ EU in the ensemble share the

same entanglement feature as that of U , i.e. WU ′ =WU . Rather than asking about the EF of a

specific final state U |Ψ〉, if we are allowed to consider the ensemble average of the EF over

all final states U ′|Ψ〉 with U ′ ∈ EU , the final state EF WU ′|Ψ〉 will indeed be constructable from

the initial state EF W|Ψ〉 and the unitary EF WU ′ =WU on the average level. Using the operator

formalism, the relation can be written in a concise form as

E
U ′∈EU

|WU ′Ψ〉= ŴUŴ−1
1 |WΨ〉, (2.19)

where Ŵ1 is the EF operator for the identity evolution 1 and Ŵ−1
1 is its inverse, which was

given in Eq. (2.17) explicitly. One can derive Eq. (2.19) using tensor network diagrams, see

Appendix A.3 for details. To simplify the notation, we may suppress spelling out the ensemble

average EU ′∈EU explicitly in later discussions, with the understanding that in this work any

unitary operator appearing in the subscript of the EF operator will be implicitly averaged over

local basis transformations. Eq. (2.19) establishes an important relation between the state and

the unitary EF’s, which enables us to compute the evolution of the state EF induced by the

underlying quantum dynamics, given the EF of the corresponding unitary evolution U . A special

case of Eq. (2.19) has been discussed in Ref. [38, 47], where the initial state is restricted to

product states.

As a side remark, we would like to provide some justifications for the use of locally

scrambled unitary ensembles EU . Technically speaking, working with these ensembles enables

us to predict the future evolution of EE’s purely based on their current data, because the

17



local-basis-dependent features of a quantum state are removed by local scrambling and the

remaining local-basis-independent features are captured by the EF2. This setup allows us to

make progress in understanding the entanglement dynamics with a tractable theoretical limit.

Physically speaking, we can imagine systems with separating time scales between the on-site

and the inter-site quantum dynamics. Suppose the on-site dynamics is fast and random, then

the quantum information would be sufficiently scrambled on every site, before it can spread

out to other sites at a longer time scale. So the overall unitary evolution will constantly be

interrupted by the insertion of local scramblers Vi ∈ Haar, making the evolution effectively

local-basis-independent. In fact, many well explored random unitary ensembles in the field of

entanglement dynamics are local-basis-independent (or “locally scrambled” in our language),

including random unitary dynamics[49, 50, 28], random Hamiltonian dynamics[38, 51, 52, 53]

and random Floquet dynamics[54, 55]. This strategy has also been adopted in the discussion of

operator dynamics[30, 31, 32, 35, 36] and random tensor networks[39, 43, 56, 42]. Historically,

the study of these models has advanced our understanding about the universal behavior of

entanglement dynamics, so we would like to carry on this line of research.

2.3.4 Markovian entanglement dynamics

As long as we know how to construct the EF operator ŴU for any unitary evolution

U of interest, we can apply the operator formalism in Eq. (2.19) to compute the entanglement

dynamics. However, calculating the EF for a large and deep unitary circuit is a difficult many-

body problem, hence the relation Eq. (2.19) is still hard to apply. But if all unitary gates in the

unitary circuit are independently drawn from locally scrambled unitary ensembles, they will be

decoupled in time, such that we can apply the EF operator iteratively to drive the evolution of

the EF state.

To be more concrete, let us consider the case where the full unitary evolution can be

2Strictly speaking, all the local-basis-independent features are capture by the full set of Rényi entropy to all
Rényi orders. But here we only focus on a subset described by the 2nd Rényi entropy.

18



⋮ ⋮ ⋮ ⋮ ⋮

Ψ0〉

U0

U1

Ut-1

Ut

Ψt+1〉 =

Quantum
dynamics

⋮ ⋮ ⋮ ⋮ ⋮

WΨ0 〉

T

0

T

1

T

t-1

T

t

WΨt+1 〉 =

Entanglement
dynamics

T

t =W


Ut W



-1

tim
e

Figure 2.3. Quantum dynamics induces entanglement dynamics, assuming each unitary Ut is
drawn from local basis invariant ensemble independently. The operator entanglement property
of Ut determines the transfer matrix T̂t that evolves the EF state via Eq. (2.25), and the EF state
|WΨt 〉 encodes the entanglement properties of the quantum state |Ψt〉.
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broken up into discrete time steps (or layers), and each single-step unitary evolution at time t is

described by Ut , as illustrated on the left of Fig. 2.3. Then the quantum many-body state |Ψt〉

evolves from step to step following

|Ψt+1〉=Ut |Ψt〉. (2.20)

Suppose Ut at different time t are independently drawn from random unitary ensembles (not

necessary Haar random) which are invariant under local basis transformation, then the full unitary

evolution

U = ∏
t

Ut =UtUt−1 · · ·U1U0 (2.21)

will form a random unitary circuit that defines a locally scrambled quantum dynamics. If we

spell out the local basis transformations Vt that has been made at each time step, i.e. Ut =V †
t U ′t Vt ,

U =V †
t U ′t VtV

†
t−1 U ′t−1 Vt−1 · · · , (2.22)

we can see that the neighboring transformations VtV
†

t−1 can merge into a single layer of local

scramblers. Therefore a locally scrambled quantum dynamics can also be viewed as repeatedly

applying the on-site scrambling VtV
†

t−1 followed by the inter-site unitary U ′t . In this way, the

quantum many-body state is always sufficiently scrambled on each qudit and the scrambling

is uncorrelated in time, such that the information about local basis choice does not pass on

from step to step. Separating each step of the unitary evolution by local scramblers is our key

assumption about the quantum dynamics, which enables us to proceed.

The entanglement dynamics induced by the locally scrambled quantum dynamics is

Markovian, and admits a simple transfer matrix description. To see this, we evaluate the final

state EF averaging over all locally scrambled unitary ensembles at different steps

|WΨt+1〉= E
Ut

E
Ut−1

· · · |WUtUt−1···Ψ0〉. (2.23)
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Applying Eq. (2.19), we arrive at the recurrent equation for the ensemble averaged EF state

|WΨt+1〉= T̂t |WΨt 〉, (2.24)

where we have introduced the transfer matrix

T̂t = ŴUtŴ
−1
1 (2.25)

to evolve the EF state |WΨt 〉 according to the EF of the single-step unitary Ut . As summarized

in Fig. 2.3, Eq. (2.25) is the key equation that bridges the quantum dynamics and entanglement

dynamics, allowing us to predict the evolution of entanglement properties of a quantum state

based on the entanglement properties of the unitary operator applied at each time step. If we

further assume locality of the quantum dynamics such that Ut =
⊗

xUt,x can be decomposed into

products of non-overlapping local unitary gates Ut,x (each gate only acts on a few qudits and

its spatial position is labeled by x), the EF operator ŴU can be factorized in the same manner

following Eq. (2.14)

ŴUt =
⊗

x
ŴUt,x , (2.26)

where ŴUt,x is the EF operator for each local unitary gate, which can be easily computed (as it

only involves a few qudits). Along this line, the transfer matrix T̂t can be constructed purely

based on our knowledge about the EF of each unitary gate involved in the quantum dynamics.

Using Eq. (2.24), we can evolve the EF of any initial quantum state in time, given the

locally scrambled quantum dynamics. The time evolution of the (2nd Rényi) EE can be read out

from the EF by

S(2)[σσσ ](t) =− log〈σσσ |WΨt 〉, (2.27)

following Eq. (2.9). Strictly speaking, there is a subtle issue about exchanging the order of the

logarithm with all the ensemble average in Eq. (2.23). We are typically more interested in the
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ensemble average of the EE other than the EF. So the correct average for the EF should be

the geometric mean exp(E logW [σσσ ]), but we are replacing it by the algebraic mean EW [σσσ ] in

Eq. (2.23), which always overestimates the EF and hence underestimates the EE. So the EE

obtained in Eq. (2.27) only serves as a lower bound of the ensemble averaged EE. We may

treat this lower bound as an approximation, but we can not claim that it is always a good

approximation, because there are known scenarios where this approximation is problematic. For

example, near the entanglement transition[42, 57, 58] where critical fluctuation is important, this

approximate treatment gives wrong answers about the universality class and critical exponents.

There have been more rigorous treatments developed in Ref. [42, 59] using replica tricks, but we

will not pursuit that direction in this paper. For thermalizing dynamics and volume-law states,

we believe that the lower bound estimation in Eq. (2.27) will provide a decent approximation,

because the EF of thermalizing state contains strong ferromagnetic correlation to suppress the

spin fluctuation, which allows us to replace the geometric mean by the algebraic mean as the

fluctuation is small. We will rely on numerical simulations in Sec. 2.4 to justify this assumption.

To conclude, the EF formalism provides a concise description for the entanglement

dynamics, when the underlying quantum dynamics is locally scrambled. However, there are also

several limitations of locally scrambled quantum dynamics. First of all, the dynamics is not trans-

lation invariant in time, because the local scrambles at each step must be sampled independently.

As a result, energy is not conserved under such dynamics. Secondly, global symmetry[35, 60]

can not be implemented in the current scheme, because symmetry representations on each site

will all be scrambled together, such that the symmetry can not be preserved. Finally, in lack

of the local-basis-specific information, we can not discuss the operator dynamics for specific

local operators[61] (but we can discuss operator averaged behaviors). To go beyond the local

scrambling assumption, one idea could be to gradually introduce the correlation of unitary gates

in time. But we will leave that for future study. We believe that our discussion of the locally

scrambled quantum dynamics will set a cornerstone for future developments.
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2.3.5 Entanglement feature Hamiltonian

In the previous section, we have derived the dynamic equation Eq. (2.24) for EF states

under discrete time dynamics. We can also consider the continuum limit of the dynamics, where

we refine the time step and take Ut to be close to identity (up to local basis transformation).

For example, we can consider generating Ut by a local Hamiltonian for a short amount of

“time” ε � 1 with the local basis scrambled

Ut =V †
t e−iεHVt , (2.28)

where Vt =
⊗L

i=1Vt,i is a layer of local scramblers and each scrambler Vt,i is an on-site unitary

operator independently drawn from Haar random ensemble. The full unitary evolution U = ∏t Ut

is given by the time-ordered product. The onsite scrambling does not generate entanglement

(among different sites). The entanglement generation and propagation all depend on the inter-site

couplings in the Hamiltonian H. As ε is small, the entanglement dynamics will be slow (smooth)

enough that it admits a continuum time description. We will study this model in more details

later, but the goal here is to first establish a Hamiltonian formulation for the evolution of EF state

in the continuum limit.

When Ut is close to an identity operator (up to local basis transformations), its EF operator

ŴUt will approach Ŵ1, hence the transfer matrix T̂t = ŴUtŴ
−1
1 will also be close to the identity

operator 1̂ (in the EF Hilbert space). It turns out that the difference between T̂t and 1̂ is of the

order ε2 (not ε as one may expect). A general argument for this property is as follows. Given Ut

in Eq. (2.28), its EF is described by

WUt [σσσ ,τττ] = Tr(Xσσσ e−iεHXτττeiεH), (2.29)

with H= H⊗1+1⊗H. It can be shown that WUt [σσσ ,τττ] must be even in ε , because it is real by

definition but ε comes with the imaginary unit in Eq. (2.29), thus the odd-power expansions of
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WUt [σσσ ,τττ] in ε could only be imaginary, and must therefore vanish altogether. So the operators

ŴUt and T̂t are even in ε , hence the leading order deviation of T̂t from 1̂ is of the order ε2.

Given this, we expand T̂t around the identity operator 1̂ and define the entanglement

feature Hamiltonian (EF Hamiltonian)

ĤEF =
1
ε2 (1̂− T̂t) =

1
ε2 (1̂−ŴUtŴ

−1
1 ), (2.30)

such that the recurrent equation Eq. (2.24) transforms to an imaginary-time Schrödinger equation

in the continuum limit of ε � 1,

∂t |WΨt 〉=−ĤEF|WΨt 〉. (2.31)

The differentiation ∂t |WΨt 〉 should be considered as the limit of (|WΨt+ε2 〉− |WΨt 〉)/ε2, where

ε2 serves as the infinitesimal time step. In general, ĤEF can be time-dependent, but let us omit

the explicit time dependence for simplicity. The locality of the EF operator ŴUt as discussed

in Eq. (2.26) translates to the locality of the EF Hamiltonian ĤEF, which allow us to write

ĤEF = ∑x Ĥx as sum of local terms. In principle, the specific form of these local terms Ĥx can

be derived from the terms in the quantum many-body Hamiltonian H that drives the quantum

dynamics, which we will demonstrate later in Sec. 2.4.3. However, even if we have no specific

knowledge about H, we can already learn a lot about ĤEF based on the general properties

of entanglement dynamics. In the following, we will show how the physical constraint of

entanglement dynamics can pin down the general form of the EF Hamiltonian.

Let us consider the two-local EF Hamiltonian, meaning that the local terms Ĥx span

over two sites at most. We find that the most general two-local EF Hamiltonian should take the

following form

ĤEF = ∑
i, j

gi j
1−ZiZ j

2
e−βi jXiX j−δ (Xi+X j), (2.32)

where gi j ≥ 0 and βi j ∈ R are model parameters and the constant δ is fixed by the qudit dimen-
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sion d via cothδ = d. Here Xi,Zi are Pauli operators acting on the ith Ising spin (that labels the

entanglement region). Each local term in the Hamiltonian consists of a term e−βi jXiX j−δ (Xi+X j)

that fluctuates Ising spins, followed by a ferromagnetic projection operator (1−ZiZ j)/2. Al-

though we call ĤEF a Hamiltonian, it is not a Hermitian operator as expected in conventional

quantum mechanics, because fluctuation term and the projection term do not commute. As a

result, the left- and the right-eigenstates of ĤEF could be different. The coupling strength gi j

describes the entangling power of the quantum dynamics, i.e. the velocity that the entanglement

builds up between sites i and j if initialized from a product state.

The derived form of ĤEF in Eq. (2.32) is constrained by the following physical require-

ments (or assumptions).

• Pure state remains pure under quantum dynamics (i.e. a Z2 Ising symmetry),

[ĤEF,∏
i

Xi] = 0. (2.33)

An important entanglement property of pure states is that the EE of a region A should

be the same as that of its complement Ā, therefore the pure state EF must be invariant

under Ising symmetry, i.e. W|Ψ〉[σσσ ] = W|Ψ〉[−σσσ ], which can be equivalently written as

|WΨ〉= ∏i Xi|WΨ〉. Since any quantum dynamics (described by a unitary evolution) will

preserve the purity of the quantum state, the entanglement dynamics should also respect

this Ising symmetry, such that the EF Hamiltonian ĤEF must commute with the symmetry

operator ∏i Xi as asserted in Eq. (2.33).

• EE must vanish for empty entanglement regions,

〈↑↑↑ · · · |ĤEF = 0. (2.34)

By empty entanglement region, we mean A = /0 is an empty set, which correspond to the

Ising configuration σσσ = ↑↑↑ · · · ≡ ⇑ (i.e. ∀i : σi = +1). Hereinafter we use the symbol

25



⇑ to denote the all-up configuration to simplify the notation. When the entanglement

region is empty, the EE must be zero, i.e. S(2)[⇑] = 0. This requires 〈⇑ |WΨ〉 = W|Ψ〉[⇑

] = e−S(2)[⇑] = 1 to remain constant under any entanglement dynamics. Now suppose

|WΨt 〉 is time dependent under the entanglement dynamics. Taking the time derivative on

both sides of 〈⇑ |WΨt 〉= 1 and applying the dynamic equation Eq. (2.31), we can see that

〈⇑ |∂t |WΨt 〉 = −〈⇑ |ĤEF|WΨt 〉 = 0 must hold for any EF state |WΨt 〉, therefore we must

require 〈⇑ |ĤEF = 0 as claimed in Eq. (2.34).

• Statistical time-reversal symmetry of random unitary ensembles,

Ŵ1Ĥᵀ
EF = ĤEFŴ1. (2.35)

We assume that the random unitary gates in the circuit are statistically invariant under

time-reversal, meaning that Ut and U†
t will appear with equal probability in the unitary

ensemble. Then according to the definition of unitary EF in Eq. (2.5), the time-reversal

symmetry implies to WU [σσσ ,τττ] = WU [τττ,σσσ ], i.e. Ŵᵀ
U = ŴU . As a special case, we also

have Ŵᵀ
1 = Ŵ1 by definition. Transposing both sides of ŴUŴ−1

1 = 1̂− ε2ĤEF, we obtain

Ŵ−1
1 ŴU = 1̂− ε2Ĥᵀ

EF. Therefore Ĥᵀ
EF and ĤEF must be related by Ŵ1Ĥᵀ

EF = ĤEFŴ1 as

stated in Eq. (2.35). One known scenario that the statistical time-reversal symmetry is

broken is that the unitary operators cyclically permute the qudit along one direction, which

describes a quantum dynamics that has dynamic anomaly.[62, 63] We conjecture that

the statistical time-reversal symmetry effectively restricts the quantum dynamics to be

anomaly free.

With these conditions, we can start from a generic two-local Hamiltonian ĤEF = ∑i, j Ĥi j

and derive the generic form of Eq. (2.32). First of all, the Ising symmetry in Eq. (2.33) restricts

Ĥi j to be a linear combination of the following operators Ĥi j = x1 + x2X j + x3Xi + x4XiX j +

x5YiYj + x6YiZ j + x7ZiY j + x8ZiZ j, which contains all the two-local operators that commute with
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XiX j. Then the left-null-state requirement in Eq. (2.34) further requires x1 =−x8,x2 = ix7,x3 =

ix6,x4 = x5, which reduce Ĥi j to (1−ZiZ j)(x1 + x2X j + x3Xi + x4XiX j). Finally, the statistical

time-reversal symmetry in Eq. (2.35) requires

x2 = x3 =−
d(x1 + x4)

d2 +1
, (2.36)

leaving only two independent parameters x1 and x4. This relation can be resolved by introducing

another two parameters g and β to parametrize x1 + x2X j + x3Xi + x4XiX j =
g
2e−βXiX j−δ (Xi+X j)

with cothδ = d fixed, such that

x1 =
g(d2 coshβ − sinhβ )

2(d2−1)
,

x2 = x3 =−
gde−β

2(d2−1)
,

x4 =
g(coshβ −d2 sinhβ )

2(d2−1)
,

(2.37)

automatically satisfies Eq. (2.36). The resulting local term reads Ĥi j = g1−ZiZ j
2 e−βXiX j−δ (Xi+X j),

which matches the form of Eq. (2.32).

2.3.6 Universal behaviors of entanglement dynamics

The generic form of the EF Hamiltonian ĤEF in Eq. (2.32) is already useful to illustrate

several universal behaviors about the entanglement dynamics. Suppose the EF Hamiltonian

admits the following spectral decomposition

ĤEF = ∑
a
|Ra〉λa〈La|, (2.38)

where |Ra〉 and 〈La| are respectively the right- and left-eigenstate of the eigenvalue λa. The right-

eigenstate is related to the corresponding left-eigenstate by |Ra〉 ∝ (〈La|Ŵ1)
ᵀ, which follows
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from Eq. (2.35). Then the Schrödinger equation for EF state Eq. (2.31) can be formally solved as

|WΨt 〉= ∑
a

e−λat |Ra〉〈La|WΨ0〉. (2.39)

The dynamics of the EE can be inferred from Eq. (2.27) as

S(2)[σσσ ](t) =− log〈σσσ |WΨt 〉

=− log∑
a

e−λat〈σσσ |Ra〉〈La|WΨ0〉.
(2.40)

Independent of the choice of model parameters gi j,βi j, the EF Hamiltonian ĤEF has the

following spectral properties:

• ĤEF is positive semi-definite (all its eigenvalues λa ≥ 0 are real and non-negative),

• ĤEF always has (at least) a zero eigenvalue λ0 = 0 in the Z2 (Ising parity) even sector,

whose left- and right-eigenstates are

〈L0|=
〈⇑ |+ 〈⇓ |

2
,

|R0〉= |WPage〉.
(2.41)

The left zero mode 〈L0| is the Ising symmetric superposition of the all-up and the all-down

states. The right zero mode |R0〉 is the Page EF state given in Eq. (2.11).

The proof can be found in Appendix A.4. With these results, we can obtain several universal

behaviors of entanglement dynamics with local scrambling in the short-time and long-time limit.

In the short-time limit (t→ 0), expanding the solution of EF state in Eq. (2.40) to first

order in t, we can show that the EE grows linearly in time,

S(2)[σσσ ](t) = S(2)[σσσ ](0)+ v(2)E [σσσ ]× t +O(t2), (2.42)
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where the linear-time coefficient v(2)E [σσσ ] is the entanglement growth rate, which is related to the

entanglement velocity introduced in Ref. [64, 65]

v(2)E [σσσ ] = ∂tS(2)[σσσ ](0) =
〈σσσ |ĤEF|WΨ0〉
〈σσσ |WΨ0〉

. (2.43)

The entanglement velocity v(2)E [σσσ ] characterizes how fast the EE grows in a given entanglement

region specified by σσσ . It is proportional to the matrix element of the EF Hamiltonian ĤEF, as can

be seen in Eq. (2.43), because ĤEF is the time-evolution generator that drives the entanglement

dynamics. In particular, if the initial state is a generic product state, i.e. |WΨ0〉= |Wprod〉=∑σσσ |σσσ〉

as given in Eq. (2.10), the entanglement velocity v(2)E [σσσ ] admits an explicit formula

v(2)E [σσσ ] = ∑
〈i j〉

g̃i j
1−σiσ j

2
, (2.44)

where g̃i j = gi je−βi j−2δ ≥ 0 is the effective coupling. Eq. (2.44) describes how the entanglement

velocity v(2)E depends on the choice of the entanglement region σσσ . It is obvious that the entangle-

ment velocity v(2)E [σσσ ]≥ 0 is non-negative for all choices of entanglement regions, because the EE

can only grow from an unentangled product state. If g̃i j = g̃ is uniform through out the system,

v(2)E [σσσ ] will simply be proportional to the number of domain walls in the Ising configuration σσσ ,

which is also the area |∂A| of the entanglement region A. Therefore the entanglement velocity

follows the area-law scaling,

v(2)E = g̃|∂A|, (2.45)

which can be expected from the locality of the entanglement dynamics in our setup.

In the long-time limit (t→ ∞), the EF state is dominated by the zero mode (assuming

the zero mode is unique) and all the other modes decays exponentially with time. The positive

semi-definite property of the EF Hamiltonian, i.e. λa ≥ 0, ensures that all modes (except the zero
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mode) will decay exponentially in time. As t→ ∞, Eq. (2.39) reduces to

|WΨ∞
〉= |R0〉〈L0|WΨ0〉, (2.46)

with the left and right zero modes given by Eq. (2.41). Given that the EE vanishes in trivial

regions, 〈⇑ |WΨ〉= 〈⇓ |WΨ〉= 1, so 〈L0|WΨ〉= 1 for any EF state |WΨ〉. Then Eq. (2.46) results

in

|WΨ∞
〉= |R0〉= |WPage〉, (2.47)

meaning that the EF always converge to that of the Page state in the long-time limit regardless

what the initial state is. All states are doomed to thermalize under the quantum dynamics with

local scrambling. The Page state will be their final destiny, whose EE reads

S(2)[σσσ ] =− log
cosh(η ∑

L
i=1 σi)

cosh(ηL)
, (2.48)

which follows from Eq. (2.11). For |A| � L, the EE exhibits the volume-law scaling

S(2)(A) = 2η |A|, (2.49)

with the volume law coefficient given by 2η = logd. It worth mention that the above conclusion

is based on the assumption that the zero mode is unique. If there are other degenerated zero

modes (other than |WPage〉), the final state may not converge to the Page state and the system can

evade thermalization. We will discuss such a possibility later with a more concrete model in

Sec. 2.4.2.

2.3.7 Excitation spectrum of the entanglement feature Hamiltonian

Having discussed the ground state property of the EF Hamiltonian ĤEF, let us turn

to the low-lying excited states of ĤEF. According to Eq. (2.39), every eigenmode with finite
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eigenenergy λa will decay exponentially in time as e−λat . Eventually, only the ground state with

zero eigenenergy (λ0 = 0) would survive, and the system thermalizes to Page states. Hence the

low-energy excitation spectrum determines how the EE approaches to its thermal limit in the

late-time regime. Here we will focus on the spectrum of two kinds of excitations, namely the

two-domain-wall excitation and the single spin-flip excitation, which dominate the low-energy

excitations. We obtain the analytical expression of their dispersion relations, from which we

can estimate the excitation gap and determine the relaxation time. In Sec. 2.4.3, we further

compare the analytically estimated relaxation time with the numerical fitted one, and find good

consistency.

For simplicity, we assume the parameters gi j,βi j in the EF Hamiltonian ĤEF are spatially

homogeneous (i.e gi j = g,βi j = β ). For the parameter β , any unitary evolution generated from

Hamiltonian e−iεH would have nonzero β only at the order of O(ε2) in small ε limit (see

Appendix A.7 for details). Hence, we will take β = 0 in the following. More general results for

β 6= 0 can be found in Appendix A.5 and Appendix A.6. To first gain some intuitions about the

excitation spectrum, we start with the exact diagonalization (ED) of EF Hamiltonian. The result

is shown in Fig. 2.4. Apart from the eigenenergy λa, every state |Ra〉 is also label by its crystal

momentum ka, which is defined through its translation eigenvalue as T|Ra〉= eika|Ra〉, where the

translation operator T is defined by its action on the Ising basis T|σ1σ2 · · ·σL〉= |σLσ1 · · ·σL−1〉.

Note that the periodic boundary is assumed in our system. One can see that above the ground

state at λ0 = 0 and k0 = 0, there is a continuum of excited states.

To better understand these excited states, we look into their wave function. We realize

that the excitation can be classified based on the number of domain walls in the left-eigenstate.

For instance, 〈↑ · · · ↑↓ · · · ↓↑ · · · ↑ | is an example of two-domain-wall states. As mentioned in

Eq. (2.41), the left ground state 〈L0| = (〈⇑ |+ 〈⇓ |)/2 contains no domain wall and hence no

excitation. Other excited left-eigenstates will be a superposition of states of different domain-wall

number. Note that the corresponding right eigenstates can be obtained from |R〉 = (〈L|Ŵ1)
ᵀ.

Fig. 2.5 shows the weights of different domain-wall states in the lowest-energy excited state of
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Figure 2.4. We perform exact diagonalization for the EF Hamiltonian ĤEF with β = 0,L = 10.
Each small circle represents an eigenstate label by its eigenenergy λ and its crystal momentum k.
The blue curve is the analytical result of two-domain-wall ansatz Eq. (2.52). The red curve is the
analytical result of single spin-flip ansatz Eq. (2.54).

various momenta. The ED result indicates that the lowest-energy excited state mainly consists of

two-domain-wall states, so we will focus on them in the following.

Based on the numerical observation, we approximate low energy excitation by the

two-domain-wall (2DW) ansatz state as follows,

〈k| ∝ ∑
i1,i2

eik i1+i2
2 φ

∗
i2−i1〈i1, i2|, (2.50)

where 〈i1, i2|= 〈⇑ |∏i2−1
i=i1 Xi is a two-domain-wall state with domain walls located at i1 and i2.

k labels the center of mass momentum of the pair of domain walls. φ∆i is a variational wave

function that describes the relative motion between the domain walls. We can then evaluate the

energy expectation value λ (k) on the ansatz state 〈k|,

λ2DW(k) =
〈k|ĤEFŴ1|k〉
〈k|Ŵ1|k〉

, (2.51)
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Figure 2.5. We perform exact diagonalization for the EF Hamiltonian ĤEF with g = 1,β =
0,L = 6. The weight is defined as follows: the left excited state 〈L| can be expressed as the
linear combination of two-, four- and six-domain-wall states with the coefficient (c2,c4,c6). The
weight of individual type is equal to |cn|2. For k = 0, zero-domain wall states take half of the
weight in the lowest-energy excited state. However, they have no contribution in dispersion
relation since their eigenenergy is zero.
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where Ŵ1|k〉 is understood as the corresponding right-state of the ansatz left-state 〈k|. Two

assumptions are made to derive the analytical expression of the dispersion relation. The first

assumption is that these domain walls have no interaction with each other and thus φ∆i can be

approximated by plane waves. The second assumption is the thermodynamic limit L→∞, which

would simplify the calculation but suppress the contribution from short two-domain-wall states

(see Appendix A.5 for details). Based on these assumptions, the dispersion relation for β = 0

can be derived as,

λ2DW(k) = 2g
(

1+
1
d2

)
− 4g

d
cos

k
2
+O(d−3). (2.52)

The band minimum is at k = 0, which defines the excitation gap

∆ = min
k

λ (k) = 2g
(

1− 1
d

)2
+O(d−3). (2.53)

It turns out that the gap remains open (i.e. ∆ > 0) for any finite g > 0.
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Figure 2.6. Comparison of the excitation gap between the finite-size ED result and the analytical
result of two-domain-wall ansatz in the thermodynamic limit for the qudit dimension d = 2. The
analytical result ∆ = g/2 is given by Eq. (2.53).

The comparison between ED result (black circles) and our analytical expression (blue
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curve) is shown in Fig. 2.4. The lower-edge of the excitation spectrum is pretty well captured by

the two-domain-wall ansatz. The comparison also reveals a finite-size-effect in the spectrum. In

Fig. 2.6, we show how the gap at k = 0 (from ED) approaches to the analytic result of Eq. (2.53)

with increasing system size L. We also observe a systematic deviation of our analytical result

from the excitation edge near k = π . The reason is that the eigenstate around k = π is dominated

by single-site excitations, where the domain-walls are next to each other such that their interaction

can not be ignored. To capture the interaction effect, we switch to another ansatz state, which

describes the motion of a tightly-bound domain-wall pair, or equivalently a single spin-flip (SSF)

excitation (see Appendix A.6 for details). The dispersion of the SSF excitation reads

λSSF(k) = 2g, (2.54)

which turns out to be independent of the qudit dimension d and the momentum k. This dispersion

relation basically passes a series of points in Fig. 2.4 and only becomes the lowest excited state

around k = π .

2.4 Applications and numerics

2.4.1 Models of locally scrambled quantum dynamics

In the following, we will apply the entanglement feature formalism to several scenarios

of locally scrambled quantum dynamics. We will consider two types of models: random circuit

models with discrete time as in Fig. 2.7(a), and Hamiltonian generated evolutions with local

scramblers in the limit of continuous time as in Fig. 2.7(b). For the discrete time models,

namely locally scrambled random circuits, we will adopt the transfer matrix method to study the

entanglement dynamics. For the continuous time models, namely locally scrambled Hamiltonian

dynamics, we will apply the EF Hamiltonian approach.

The random circuit we consider will be of the “brick wall” structure as shown in

Fig. 2.7(a). The entire unitary circuit U = ∏t Ut is constructed by stacking layers of unitary gates.
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(a) (b)

Figure 2.7. (a) Locally scrambled random circuit. The gates are drawn independently in both
space and time (as indicated by different colors). (b) Locally scrambled Hamiltonian dynamics.
The unitary operators generated by the local Hamiltonian are overlapping gray ovals in each
layer. The on-site scramblers are uncorrelated in both space and time (as indicated by different
colors).
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Each layer Ut is described by

Ut =


⊗

xUt;2x−1,2x t ∈ odd,⊗
xUt;2x,2x+1 t ∈ even,

(2.55)

where Ut;i j denotes the two-qudit unitary gate acting on sites i and j at time t. Each gate Ut;i j is

independently sampled from a locally scrambled unitary ensemble, so the quantum circuit U will

be dubbed as a locally scrambled random circuit. In fact, any gate can be made locally scrambled

by symmetrizing over local basis transformations as constructed in Eq. (2.18). The construction

here is more general than the Haar random unitary circuit[28], as the unitary gate here does not

need to be Haar random. As the quantum state evolves by |Ψt+1〉=Ut |Ψt〉, the corresponding

EF state evolves by |WΨt+1〉= T̂t |WΨt 〉. The transfer matrix T̂t follows the same structure as Ut ,

T̂t =


⊗

x T̂2x−1,2x t ∈ odd,⊗
x T̂2x,2x+1 t ∈ even.

(2.56)

According to Eq. (2.25), T̂i j is fully determined by the EF of Ut;i j via

T̂i j = ŴUt;i jŴ
−1
1i j

. (2.57)

Here we have assumed that Ut;i j are drawn from identical unitary ensembles, such that T̂i j is time-

independent (despite of the time-dependence in Ut;i j). In the following, we will provide examples

of the locally scrambled two-qudit unitary ensemble. We will use the transfer matrix approach

to calculate the entanglement dynamics. The result will be compared with exact numerics by

explicitly constructing the random circuit and average the final state EE over random realizations.

Another type of locally scrambled quantum dynamics that we will consider is generated

by a local Hamiltonian H = ∑〈i j〉Hi j, which is a sum of local terms Hi j defined on nearest

neighboring bonds 〈i j〉 along a 1D chain. Each step of the unitary evolution Ut is independently
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drawn from the locally scrambled unitary ensemble Ee−iεH generated by the Hamiltonian H,

Ee−iεH = {V †e−iεHV |V =
L⊗

i=1

Vi,Vi ∈ Haar}, (2.58)

which may be simply denoted by Ut =V †
t e−iεHVt , as in Eq. (2.28). Combining the adjacent local

scramblers following Eq. (2.22), the unitary evolution can be considered as repeatedly applying

a short-time unitary evolution e−iεH followed by a layer of local scramblers, as illustrated in

Fig. 2.7(b). Such dynamics will be called the locally scrambled Hamiltonian dynamics. It is

similar to the Brownian random circuit model[66] in that each step of the evolution is driven

by a different random Hamiltonian, but our construction is more general in that the random

Hamiltonian ensemble only needs to be invariant under local basis transformations other than the

full basis transformation of the many-body Hilbert space. For small ε , we can take the continuous

time approach to calculate the entanglement dynamics by solving the imaginary-time Schrödinger

equation ∂t |WΨt 〉 = −ĤEF|WΨt 〉 in Eq. (2.31). It worth mentioning that the locally scrambled

quantum dynamics we considered here should be distinguished from Trotterizing a Hamiltonian

dynamics. Here, the short-time evolutions e−iεH are interrupted by local scramblers, such that

they do not combine to a coherent long-time evolution generated by the same Hamiltonian

H. The local scramblers destroy the original notion of time. In the quantum dynamics, e−iεH

advances the quantum state by ε in time, but after the insertion of layers of local scramblers,

the entanglement dynamics only progress by ε2, which is much slower. This phenomenon is

analogous to the quantum Zeno effect due to the insertion of measurement. We conjecture that

the local scramblers play a similar role as random local measurement in implementing random

local basis transformations, such that the quantum dynamics is no longer coherent.

2.4.2 Locally scrambled random circuits

Let us first consider the locally scrambled random circuit as in Fig. 2.7(a). The building

blocks of the random circuit are two-qudit unitary gates. Each gate is independently drawn
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from local basis-independent random ensembles. The EF of a two-qudit unitary operator Ui j is

completely characterized by two parameters: the cross channel mutual information I×i j and the

tripartite information IOi j . Let us label the input and output channels of the two-qudit unitary by

A,B,C,D as shown in Fig. 2.8(a), then I×i j and IOi j are defined as follows

I×i j = I(2)(A : D) = I(2)(B : C),

IOi j = I(2)(A : C)+ I(2)(A : D)− I(2)(A : CD).

(2.59)

The mutual information, such as I(2)(A : D) = S(2)A +S(2)D −S(2)AD, is understood by treating the

unitary gate as a quantum state by bending the input and output legs to the same side, and

calculating the operator EE following the definition in Ref. [23, 44].

A B

C D

Ui j

τi τj

σi σj

input
(past)

output
(future)

(a)

Identity

(b)

Swap

(c)

Haar
random

(d)

+ local scrambling

Figure 2.8. (a) A generic two-qudit gate acting on qudits i and j. The input channels are labeled
by A and B, and the output channels are labeled by C and D. The EF of the gate will be labeled
by the Ising configuration σσσ = (σi,σ j) on the input side and τττ = (τi,τ j) on the output side. (b-d)
Examples of local basis independent ensembles of two-qudit gates: (b) identity gate with local
scrambling, (c) swap gate with local scrambling, (d) Haar random unitary gate acting on both
qudit (local basis automatically scrambled).

In terms of these information measures I×i j and IOi j of the unitary gate Ui j, the EF operator
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ŴUi j is given by

ŴUi j = d2(d +Xi)(d +X j)

− 1−ZiZ j

2
(Ai j−Bi jXiX j),

Ai j = d4(1− eIOi j−I×i j ),

Bi j = d2(eI×i j −1).

(2.60)

The cross channel mutual information I×i j ≥ 0 is non-negative by the subadditivity[67] of entropy.

It describes the entanglement propagation, as it measures the amount of information transferred

between site i and j. The tripartite information IOi j must be negative for unitary gates[23], and

therefore I×i j − IOi j ≥ 0 holds. The negative tripartite information (−IOi j ) is proposed[23] to be a

description of information scrambling, since it measures the amount of information about A that

is encoded in C and D jointly but can not be told by local measurements exclusively performed

on C or D.

To gain more intuition about I×i j and IOi j , let us provide a few examples of local basis

independent ensembles of two-qudit gates, as pictured in Fig. 2.8(b-d).

• Identity gate with local scrambling, i.e. two on-site Haar random unitary gates direct

product together, as Fig. 2.8(b). In this rather trivial case, we have

I×i j = IOi j = 0, (2.61)

such that the EF operator in Eq. (2.60) reduces to Ŵ1 = d2(d +Xi)(d +X j), consistent

with the previous result in Eq. (2.15) by direct evaluation.

• Swap gate with local scrambling, i.e. two on-site Haar random unitary gates followed by

an inter-site swap operator, as Fig. 2.8(c). In this case,

I×i j = 2logd, IOi j = 0, (2.62)
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such that the EF operator in Eq. (2.60) reduces to

Ŵswap = d2(d +Xi)(d +X j)

−d2(d2−1)
1−ZiZ j

2
(1−XiX j).

(2.63)

The swap gate can generate and propagate quantum entanglement due to the non-vanishing

cross channel information I×i j . But there is no information scrambling happening between

the qudits (despite of the sufficient on-site scrambling), because the qubits are simply

interchanged by the swap gate, such that local operators do not spread out other than being

moved around in the space. The zero scrambling power of the swap gate is reflected in the

zero tripartite information IOi j .

• Haar random unitary gate acting on the two qudits, as Fig. 2.8(d). In this case,

I×i j = log
2d2

d2 +1
, IOi j = log

4d2

(d2 +1)2 , (2.64)

such that the EF operator in Eq. (2.60) reduces to ŴHaar given in Eq. (2.13), see Ap-

pendix A.2 for derivation. The Haar random unitary gate not only propagates quantum

entanglement, but also scrambles the quantum information efficiently, as it has a negative

tripartite information IOi j (as long as d > 1).

The above are examples of locally scrambled random unitary ensembles. Unitary gates

drawn from such ensembles serve as the building block of locally scrambled random circuits.

The entanglement dynamics of locally scrambled random circuits can be universally described

by the transfer matrix approach as has been discussed in Sec. 2.4.1. On the level of EF, the

formulation is exact: the evolution of the average state EF can be precisely calculated from

|WΨt+1〉 = ŴUtŴ
−1
1 |WΨt 〉 given the EF of the unitary. However, when applying the result to

predict the EE, we rely on the assumption that the average EE can be approximated by the

negative log of average EF following Eq. (2.27), where we effectively switch the order between
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the ensemble average and the logarithm. One major goal of the following is to provide numerical

evidences to check this assumption in various different cases. It turns out that the negative log

of EF generally provides a good estimate of the averaged EE, which makes our EF formulation

useful in describing the entanglement dynamics for a broad class of random unitary circuits.
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Figure 2.9. The finial state EE of the Haar random circuit on a 10-site system for different
choices of the entanglement regions: (a) single site, (b) half-system, (c) alternating[1]. The qudit
dimension is d = 2 and the entropy is measured in unit of bit (= log2).

Our first example is the standard Haar random unitary circuit, where each two-qudit gate

is drawn from Haar random unitary ensemble independently. The model has be extensively
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studied in the literature,[28, 31, 35, 32] and the statistical mechanical model description has

been developed by Zhou and Nahum in their pioneering work Ref. [40]. We revisit this model

to show that our formalism is equivalent to the Zhou-Nahum approach and can reproduce the

known behaviors. Let us first calculate the transfer matrix T̂i j of a single Haar random unitary

gate Ui j from its EF. Based on Eq. (2.13) and Eq. (2.17), we obtain

T̂i j = ŴHaarŴ−1
1 =

(
1+

d(Xi +X j)

d2 +1

)1+ZiZ j

2
. (2.65)

Using the Ising basis |σiσ j〉, Eq. (2.65) can be expressed as

T̂i j = | ↑↑〉〈↑↑ |+
d

d2 +1
(| ↑↓〉〈↑↑ |+ | ↓↑〉〈↑↑ |)

+ | ↓↓〉〈↓↓ |+ d
d2 +1

(| ↓↑〉〈↓↓ |+ | ↑↓〉〈↓↓ |),
(2.66)

which is equivalent to the triangle weights = 1 and = = d/(d2 +1) that defines the Ising

model in Ref. [40]. An equivalent form of the transfer matrix Eq. (2.65) was previously obtained

in Ref. [68]. Plugging Eq. (2.65) into Eq. (2.56), we obtain the transfer matrix T̂t that describes

the EF state evolution under the quantum dynamics of the Haar random circuit. We assume the

initial state is a product state, s.t. |W0〉= |Wprod〉. We evolve the EF state by Eq. (2.24). We can

then compute the EE following Eq. (2.27) and compare the result with the numerical simulation.

In the simulation, we applied randomly sampled unitary gates to an initial product state and

measured the final state EE, then performed the ensemble average of the EE. As shown in Fig. 2.9,

the EF approach provides pretty precise prediction of the EE that matches the numerical result.

Now let us turn to a new example of locally scrambled random circuits, namely the swap

gate circuit, which is designed to mimic the entanglement dynamics in integrable conformal field

theories (CFT) where entanglement spreads with the propagation of quasi-particles.[8, 44, 45]

The circuit takes the architecture of the brick wall circuit in Fig. 2.7(a) with gates drawn from

the locally scrambled swap gate ensemble in Fig. 2.8(c), the resulting circuit is equivalent to
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Figure 2.10. (a) Swap gate circuit. Gray blocks mark out the swap gates. (b) Locally scrambled
fractional swap gate circuit. Each swap gate is powered by the fraction 0 < α < 1.
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an interweaving network as shown in Fig. 2.10(a). The local scramblers in different layers

can commute through the swap gates and combine to a single scrambling layer acting on the

initial state, which can further be dropped as long as the initial state ensemble is already local

basis invariant. For this model, we use a different initial state other than the product state. As

illustrated in Fig. 2.10(a), the initial state is chosen to be a product of Einstein-Podolsky-Rosen

(EPR) pairs arranged along a one-dimensional chain, whose EF can be described by

|W0〉= ∏
x

(
1+

1
d

X2x−1 +
1
d

X2x +X2x−1X2x

)
| ⇑〉. (2.67)

For each EPR pair, the qudit labeled by L (or R) will travel to the left (or right) in the swap gate

circuit, which mimics the behaviors of left (or right) moving quasi-particles in an integrable

CFT. In this way, entanglement spread out along the chain as EPR pairs stretch out, following

the steps depicted in Fig. 2.11. On a finite-sized chain with periodic boundary condition, we

expect to observe the half-system entanglement entropy to first grow and then decrease in time,

and continue to oscillate like this. This recurrent behavior can be perfectly produced by the EF

formulation, because, based on Eq. (2.63), the transfer matrix for a single swap gate turns out to

be

T̂i j = ŴswapŴ−1
1 =

1
2
(1+XiX j +YiYj +ZiZ j), (2.68)

which is precisely the swap operator for Ising spins. In this way, the permutation of entangled

qudits under the quantum dynamics is equivalently modeled by the permutation of correlated

Ising spins in the EF formulation.

The recurrent (periodically oscillating) behavior of the half-system EE is demonstrated

in Fig. 2.12(a), where the EF approach matches the numerical simulation perfectly. The periodic

recurrence of the low-entanglement state in the swap gate circuit seems to contradict with our

previous conclusion in Sec. 3.3 that locally scrambled quantum dynamics generally thermalize.

The swap gate circuit evades thermalization because its corresponding EF transfer matrix admits
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Figure 2.11. Evolution of EPR pairs under the swap gate circuit on a 12-site chain with
periodic boundary condition. The entanglement entropy between the left- and right-half system
is proportional to the EPR pairs across the cut (indicated by dotted vertical line).

more than one leading eigenstate. Let T̂ =
⊗

x T̂2x−1,2x
⊗

x T̂2x,2x+1 be two steps (one period) of

the transfer matrix that translates the L (or R) sublattice to the left (or right) by one unit-cell.

On a chain of 2n sites, the operator T̂ has n−1
∑d|n ϕ(d)4n/d fold degenerated eigenstates of

eigenvalue 1, with ϕ(d) being the Euler totient function and d running over all divisors of n.

These eigenstates can be constructed by taking any Ising basis state and symmetrizing over

the cyclic group generated by T̂ . Their degeneracy can be counted by mapping the problem to

the number of n-bead necklaces with four colors,[69] where the four colors correspond to the

four choices of ↑↑,↑↓,↓↑,↓↓ configurations in each unit-cell. Therefore the Page state is not the

unique state that can survive in the long-time limit, and thermalization is not the ultimate fate.

The swap gate circuit model can be generalized by introducing the fractional swap gate

that interpolates between the identity gate and the swap gate. The fractional swap gate can be

written as a fractional power α of the swap gate with 0 < α < 1

SWAPα =
1+ eiαπ

2
+

1− eiαπ

2
. (2.69)

The fractional swap gate reduces to the identity gate (or the swap gate) at α = 0 (or α = 1).

But unlike both identity and swap gates which do not scramble quantum information between

the two qudits, the fractional swap gate does have finite scrambling power. We can construct a

locally scrambled fractional swap gate circuit by starting from the architecture of the random
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Figure 2.12. Half-system entanglement entropy of the locally scrambled fractional swap gate
circuit on a 12-site system with different fraction α: (a) α = 1, (b) α = 3/4, (c) α = 1/2, (d)
α = 1/4. The model is realized on a 12-site chain with periodic boundary condition. The
entanglement region is chosen to be the first 6 sites. The qudit dimension is d = 2 and the entropy
is measured in unit of bit (= log2).
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circuit in Fig. 2.7(a) and sampling every gate independently from local basis invariant fractional

swap gate ensemble, as illustrated in Fig. 2.10(b). The EF operator of the fractional swap gate

follows the general form of Eq. (2.60) with parameters Ai j and Bi j given by

Ai j = d2(d2−1)
3+ cosαπ

2
sin2 απ

2
,

Bi j = d2(d2−1)sin4 απ

2
.

(2.70)

Based on this result, the corresponding transfer matrix T̂i j can be constructed by Eq. (2.57) and

the evolution of the EF state can be calculated following the transfer matrix approach described

in Eq. (2.56). In Fig. 2.12(b-d), we compare the EE calculated based on the EF approach with

the ensemble averaged EE from numerical simulation. They match perfectly for different values

of α . Because the fractional swap gate has finite scrambling power, the recurrence behavior no

longer persist and the system can now thermalize. The entanglement dynamics is somewhat

between that of the swap gate circuit and the Haar random circuit, in that the EE grows mostly

linearly in time with small oscillations, until the EE eventually saturates to the thermal limit.

As α becomes small, the system will take longer time (more steps) to thermalize. As shown

in Fig. 2.12(d), the oscillation of EE is suppressed and its growth curve is more smooth. In the

α → 0 limit, the entanglement dynamics approaches the continuum limit that can be described

by the EF Hamiltonian, which is the topic of the following discussion.

2.4.3 Locally scrambled Hamiltonian dynamics

Now we turn to the locally scrambled Hamiltonian dynamics as illustrated in Fig. 2.7(b).

We consider the local Hamiltonian H = ∑〈i j〉Hi j and assume that Hi j on every bond is drawn

from a local-basis-independent ensemble of two-qudit Hermitian operators. Equivalently, we can

choose H to be a fixed Hamiltonian and construct a locally scrambled unitary ensemble Ee−iεH by

applying local basis transformations following Eq. (2.58). The quantum dynamics is described
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by the unitary

U = ∏
t

(
Vte−iεH), (2.71)

where Vt describe the layer of local scramblers at time t, as illustrated in Fig. 2.7(b). The

corresponding entanglement dynamics is described by the imaginary-time Schrödinger equation

Eq. (2.31), where the EF Hamiltonian takes the form of

ĤEF = ∑
〈i j〉

gi j
1−ZiZ j

2
e−βi jXiX j−δ (Xi+X j). (2.72)

It turns out that the parameters βi j ∼ O(ε2) always vanish in the ε → 0 limit. The parameters

gi j are the only non-trivial parameters to the leading order of ε , which are determined by the

local terms Hi j in the Hamiltonian

gi j =
2

d2(d2−1)
(
(TrHi j)

2 +d2 Tr(H2
i j)

−d Tr j(Tri Hi j)
2−d Tri(Tr j Hi j)

2). (2.73)

The detailed derivation of these results can be found in Appendix A.7.

One well-studied example of the locally scrambled Hamiltonian dynamics is the Brow-

nian random circuit,[66] where each step of the time evolution is generated by a random

Hamiltonian drawn from the Gaussian unitary ensemble (GUE). The Hamiltonian can be written

as a random U(d) spin model,

Ht = ∑
〈i j〉

Jab
t,i jT

a
i T b

j , (2.74)

where T a
i (for a = 1,2, · · · ,d2) are U(d) generators on site i with TrT a†

i T b
i = δ ab. The coupling

Jab
t,i j are independently drawn for each time t and indices i, j,a,b from the Gaussian distribution

with zero mean and d−2 variance. The quantum dynamics is described by U = ∏t e−iεHt . The

operator growth dynamics and the spectral form factor of the Brownian random circuit has been

investigated in Ref. [70, 71, 72, 73] recently, where differential equations governing the evolution
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of operator weight distribution were derived. Our approach also applies to the Brownian circuit

model and results in similar differential equations for the evolution of EF state, whose EF

Hamiltonian reads (see Appendix A.7 for derivation)

ĤEF =
2(d2−1)

d2 ∑
〈i j〉

1−ZiZ j

2
e−δ (Xi+X j). (2.75)

We will not discuss this model in further details, given the extensive study of Brownian circuits in

the literature. Instead, we will consider a new type of locally scrambled Hamiltonian dynamics.

We start with a fixed Hamiltonian on the one dimensional chain of qudits

H =−∑
〈i j〉

TiTj, (2.76)

where Ti is one particular traceless Hermitian operator on site i that squares to identity (i.e. TrTi =

0 and T 2
i = 1). For the qubit case (d = 2), Eq. (2.76) reduces to an Ising model. Note that there is

no randomness in the Hamiltonian H. The randomness will be introduced by the local scramblers,

when we use H to generate the locally scrambled Hamiltonian dynamics following Eq. (2.71).

The entanglement dynamics will be described by the following EF Hamiltonian

ĤEF =
2d2

d2−1 ∑
〈i j〉

1−ZiZ j

2
e−δ (Xi+X j), (2.77)

which takes the same form as Eq. (2.75) but with a different parameter g. We can test the

EF approach with numerical simulation on a 12-qubit system with the choice of ε = 0.01.

We start with a product state |WΨ0〉 = |Wprod〉, evolve the EF state by Eq. (2.31) and calculate

the EE from Eq. (2.27). The result is shown in Fig. 2.13. We can see that the averaged EE

obtained from numerics matches well with the result of the EF approach over different choices

of the entanglement regions. These numerical evidences suggest that exchanging the order

between taking ensemble average and taking logarithm does not seem to matter much, so the
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evolution equation we established for the EF in this work can provide reliable descriptions for

the entanglement dynamics under locally scrambled quantum dynamics. Comparing Fig. 2.13

with Fig. 2.9, one can see that the entanglement dynamics of the locally scrambled Hamiltonian

dynamics closely resembles that of the Haar random unitary circuit. Thus the former can be

considered as a continuum limit of the later.
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Figure 2.13. The final state EE of the locally scrambled Hamiltonian dynamics on a 12-site
system for different choices of the entanglement regions: (a) single site, (b) half-system, (c)
alternating [1]. The qudit dimension is d = 2 and the entropy is measured in unit of bit (= log2).

We also notice that, in agreement with the imaginary time EF Schrödinger equation, the
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EE always approaches to its final thermalized value exponentially with the same relaxation time

τ independent of the choice of the entanglement region,

S(2)[σσσ ](t)→ S(2)[σσσ ](∞)−A[σσσ ]e−t/τ . (2.78)

The relaxation time τ is intrinsically related to the excitation gap ∆ of the EF Hamiltonian ĤEF,

which can be estimated by Eq. (2.53) in the thermodynamic limit,

τ
−1 = ∆ = 2g

(
1− 1

d

)2
=

4
3
, (2.79)

where the coupling g, according to Eq. (2.77), is given by g = 2d2/(d2− 1) = 8/3 for qubits

(d = 2). To check this prediction, we fit the numerical simulation data using Eq. (2.78) in the

late-time regime to extract the excitation gap ∆. As shown in Fig. 2.14, the EE approaches to

the thermal value with the same rate (within error bars) regardless of the different choice of

entanglement regions. The numerically fitted gap is around ∆ = 1.48, which is close to the

thermodynamic-limit analytic prediction ∆ = 4/3 = 1.33. The small discrepancy mainly arises

from the finite-size effect. If we use the finite-size gap formula ∆ = 0.56g based on the ED result

in Fig. 2.6 at the system size L = 12, we will obtain a better prediction of the gap ∆ = 1.49,

which matches the simulation result perfectly.

2.5 Summary and discussions

In this work, we introduced the concept of locally scrambled quantum dynamics, where

each step of the unitary evolution is randomized by local scramblers (on-site Haar random unitary

gates). Surrounding each unitary gate in a quantum circuit by local scramblers effectively blocks

the local-basis-specific quantum information from propagating in the circuit and decouples the

gates from each other under ensemble average. In this way, the average EF of the entire circuit

can be constructed piece-by-piece from the EF of each gate, which makes the entanglement
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Figure 2.14. The difference between the EE and its final saturation value, i.e. A[σσσ ]e−t/τ , plot in
the logarithmic scale vs time t. Different colors correspond to different choices of entanglement
region (labeled by σσσ ). The shaded region indicates the error interval. The excitation gap ∆ = τ−1

is extracted by fitting the decay rate.

dynamics Markovian and enables us to write down the evolution equation for the EF of quantum

states. The framework provides us the freedom to design the EF for each gate, such that we

can go beyond the conventional Haar random gates and build the random circuit with more

general random gates as long as their ensemble is local-basis-independent. This enables us to

define and explore the continuum limit of locally scrambled quantum dynamics, under which

the evolution of the EF state will be governed by an EF Hamiltonian. We obtained the general

form of the EF Hamiltonian on symmetry ground and discussed the implication of its spectral

properties on the entanglement dynamics. When the EF Hamiltonian is gapped, the excitation

modes in the EF state will decay exponentially in time W|Ψ〉 = e−S ∼ e−t/τ , which corresponds

to a linear growth of EE in time, i.e. S ∼ t/τ , as the system thermalizes. What has not been

much discussed previously is the possibility that the EF Hamiltonian can become gapless under

fine-tuning, then the EF will decay in a power-law manner W|Ψ〉 = e−S ∼ t−α , which corresponds

to a logarithmic growth of EE, i.e. S ∼ α log t. Such scenario could happen at entanglement

transitions,[42, 58, 57] where the entanglement scaling of the long-time final state switches from
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volume-law to area-law. The transition can be interpreted as an order to disorder phase transition

of the EF Hamiltonian. One interesting future direction is to explore different models of the EF

Hamiltonian and to map out the phase diagram using analytical and numerical tools developed in

quantum many-body physics.

Although we focused on the entanglement dynamics of pure states in this work, the

EF formulation can be easily generalized to describe mixed state or operator entanglement.

Following Eq. (2.4), it is straight forward to define the EF WO[σσσ ] for any many-body operator O

(including the density matrix ρ as a special case),

WO[σσσ ] = Tr(Xσσσ O⊗2), (2.80)

and quantize the EF to a state |WO〉 = ∑[σσσ ]WO[σσσ ]|σσσ〉. Suppose the operator evolves in time

under a locally scrambled quantum dynamics O′ =UOU†, the average EF will still be described

by the same set of equation |WO′〉= ŴUŴ−1
1 |WO〉 as Eq. (2.19). Based on this, all the dynamic

equation that we developed in this work applies directly, such that we do not need to derive a

new set of equations for operator dynamics. The EF state |WO〉 encodes the operator EE[29]

over all possible regions, which can be used to construct various quantities characterizing

the operator size. To name a few, let us first assume O to be a traceless Hermitian operator

normalized to TrO2 = dL. We can decompose the operator O = ∑[a]O[a]T [a] in the operator basis

T [a] = ∏i T ai
i (where T a

i denotes the SU(d) generator on the ith qudit), and define the operator

weight p[a] = O2
[a].[32, 35, 70, 72] The fraction of the operator in a subsystem A then reads

pA = ∑[a]∈A p[a],3 which can be extracted from the EF state |WO〉 by taking its inner product with

a state |PA〉 that labels the subsystem A:

pA = 〈PA|WO〉, |PA〉=
1

d2L ∏
i∈A

(dXi−1)| ⇑〉. (2.81)

3The notation ∑[a]∈A =∏i∈A ∑
d2−1
ai=1 denotes the summation over the operator configuration [a] which is non-trivial

in region A.
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The fraction pA can be further used to characterize the average operator size `O = ∑A pA|A|.

The evolution equation for pA under Brownian dynamics is recently discussed in Ref. [70, 72].

Another way to probe |WO〉 is to consider the variance of the expectation value of O on random

mixed states ρ , i.e. varρ〈O〉ρ = Eρ(TrρO)2. Suppose ρ is drawn from a local-basis-independent

ensemble characterized by its EF state |Wρ〉, then the variance of operator expectation value is

given by

varρ〈O〉ρ = 〈Wρ |Ŵ−1
1 |WO〉. (2.82)

It was recently pointed out by Ref. [74] that varρ〈O〉ρ = ∑A pA(d +1)−|A| can be expressed in

terms of pA, if ρ is uniformly sampled from the ensemble of pure product states. The fact that

varρ〈O〉ρ and pA are related to each other is less surprising in the EF formulation, because they

are simply two different ways to probe the same EF state |WO〉. The evolution equation of |WO〉

under locally scrambled quantum dynamics is identical to that of |WΨ〉, from which the evolution

equations of pA, `O or varρ〈O〉ρ follow automatically. In this way, the EF formulation developed

in our work provides a unified framework to discuss various aspects of the operator dynamics.

Another immediate generalization of the framework is to extend the unitary evolution

to generic quantum channels allowing measurements to take place. The recent observation

of measurement-induced entanglement transition in random unitary circuits [75, 76, 59] has

attracted much research interest.[77, 78, 79, 58, 57, 80] In these models, the quantum circuit

is doped with local measurements (which can be either weak measurements or projective

measurements performed with some probability), and the final state EE is studied conditioned

on the measurement outcome. If each measurements basis is randomly chosen each time, or if

the local measurement take place only after the local basis has been sufficiently scrambled by

the unitary evolution, the whole quantum channel still falls in the scope of locally scrambled

quantum dynamics, which can be described by the EF approach developed in this work. In this

case, each measurement, described by the Kraus operator M, is also a local-basis-independent
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component in the quantum circuit, and has its own EF similar to Eq. (2.5)

WM[σσσ ,τττ] = Tr
(
Xσσσ M⊗2XτττM†⊗2), (2.83)

from which the EF operator

ŴM = ∑
σσσ ,τττ

|σσσ〉WM[σσσ ,τττ]〈τττ| (2.84)

can be constructed. The EF state will evolve under measurement by |WΨ′〉= ŴMŴ−1
1 |WΨ〉, such

that the approaches developed in this work seamlessly apply. The EF provides a finer resolution

of the entanglement structure of a quantum many-body state beyond the single region scaling of

EE, which turns out to be useful in diagnosing the error correction capacity[79] in the volume-law

states prepared by the measurement-doped quantum circuits. We will leave this topic to future

works[81]. More generally, the EF formulation can be further generalized to locally scrambled

tensor networks, which does not even need to have a preferential time direction. As long as each

tensor in the tensor network is independently drawn from local-basis-independent ensembles,

the entanglement structured of the random tensor network can be described by the EF approach.

The freedom to design the EF for each separate tensor in the tensor networks opens up a large

space of models to explore in the future.

There are also a few more challenging future directions that are worth further investigation.

The first direction is to generalize the 2nd Rényi EF to arbitrary Rényi index. As a consequence,

the Ising variable on each site will be promoted to a permutation group element σi ∈ Sn. Such

generalization will also allow us to access other measures of entanglement, such as Rényi

negativity[45, 82, 83], as the moment of the partial transposed density matrix ρᵀA[84, 85, 86, 87,

88, 89] can be expressed in terms of the nth Rényi EF,

Tr(ρᵀA)n =Wρ [ggg], gi =

 (n · · ·21) i ∈ A,

(12 · · ·n) i ∈ Ā.
(2.85)
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The nth Rényi generalization of EF states |WΨ〉 and EF operators ŴU can still be defined,

but it will be more difficult to perform explicit calculations given that the number of group

elements n! grows quickly with n. Perhaps the most subtle issue is how to take the n→ 1 replica

limit systematically, which has been identified[42, 57, 58] as an important step to understand

the nature of entanglement transitions. The second direction is to include global symmetries

and conservation laws[35, 60] into the discussion. This amounts to refining the generic local

scramblers to symmetry-preserving local scramblers, which only performs basis transformations

within each irreducible representations of the symmetry group. The formulation to describe the

interference between the entanglement dynamics and the flow of symmetry representations in

the quantum circuits still need to be developed. The third direction is to go beyond the locally

scrambled quantum dynamics and to gradually introduce correlations among random gates in

the spacetime. Can the current EF formulation serves as a good starting point to construct

phenomenological descriptions for weakly correlated random gates? Can we eventually approach

the limit of coherent quantum evolution for Hamiltonian or Floquet dynamics? There are many

interesting open question awaiting us to explore.

Chapter 2 is, in part, a reprint of material from published work done in collaboration

with A. A. Akhtar, Daniel P. Arovas, and Yi-Zhuang You, as it appears in Physical Review B.

Wei-Ting Kuo, A. A. Akhtar, Daniel P. Arovas, and Yi-Zhuang You, ”Markovian Entanglement

Dynamics under Locally Scrambled Quantum Evolution,” Phys. Rev. B 101, 224202 (2020).

The dissertation author was the primary investigator and author of this material.
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Chapter 3

Decoherent quench dynamics across quan-
tum phase transitions

3.1 Synopsis

We present a formulation for investigating quench dynamics across quantum phase

transitions in the presence of decoherence. We formulate decoherent dynamics induced by

continuous quantum non-demolition measurements of the instantaneous Hamiltonian. We

generalize the well-studied universal Kibble-Zurek behavior for linear temporal drive across the

critical point. We identify a strong decoherence regime wherein the decoherence time is shorter

than the standard correlation time, which varies as the inverse gap above the groundstate. In

this regime, we find that the freeze-out time t̄ ∼ τ2νz/(1+2νz) for when the system falls out of

equilibrium and the associated freeze-out length ξ̄ ∼ τν/(1+2νz) show power-law scaling with

respect to the quench rate 1/τ , where the exponents depend on the correlation length exponent ν

and the dynamical exponent z associated with the transition. The universal exponents differ from

those of standard Kibble-Zurek scaling. We explicitly demonstrate this scaling behavior in the

instance of a topological transition in a Chern insulator system. We show that the freeze-out time

scale can be probed from the relaxation of the Hall conductivity. Furthermore, on introducing

disorder to break translational invariance, we demonstrate how quenching results in regions

of imbalanced excitation density characterized by an emergent length scale which also shows

universal scaling. We perform numerical simulations to confirm our analytical predictions and
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corroborate the scaling arguments that we postulate as universal to a host of systems.

3.1.1 Contribution of the author

The author has contributed in developing the main formalism and in writing the paper.

He has performed the numerical calculations together with Prof. Yi-Zhuang You.

3.2 Introduction

Nonequilibrium properties associated with quenches across a continuous phase transition

are exhibited in a range of physical systems, from quantum magnets at the nanoscale to the

cosmos itself. Close to the critical point separating the two phases, the intrinsic relaxation time,

equivalently, the correlation time diverges. In this regime, no matter how slow the tuning rate for

the quench, the system is driven faster than it can respond, and thus plunges out of equilibrium.

Universal properties of the phase transition have powerful implications for the nonequilibrium

dynamics associated with the quench. A paradigm example is Kibble-Zurek scaling[4, 5, 6, 7],

which states that both the time scale of the out-of-equilibrium dynamics and the length scale of

the post-quench nonequilibrium region scale as power laws with the quench rate. The power

law exponent depends only on universal properties of the equilibrium phase transition and is

independent of microscopic details of the system.

The combined effects of quantum measurement and decoherence on quantum critical

quenches largely remains uncharted ground, despite the growing research interest in open

quantum systems and measurement-impacted quantum dynamics[75, 78, 79, 90, 76, 59, 57, 80,

58, 81]. Unitary evolution combined with intermittent measurement can generate nontrivial

quantum dynamics by repeatedly collapsing the quantum state to the measured basis, following

Born’s rule. Such processes generally modify the quantum state drastically and create high-energy

excitations in the system. However, if the measurement observable commutes with the system

Hamiltonian, while the system becomes entangled with its environment, no such high energy

excitations are produced, a state of affairs known as a quantum non-demolition measurement[91,
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92, 93, 94, 95, 96, 97]. In particular, the quantum non-demolition measurement of the system

Hamiltonian itself has recently been proposed in Ref. [98, 99] for trapped-ion systems, as an

indirect measurement realized by coupling the system with an environment through the energy

channel. The process also can be interpreted as the environmental monitoring of the system

energy, under which the system will decohere in the energy basis. It was further demonstrated

in Ref. [100, 101, 102] that repeatedly measuring local terms of the many-body Hamiltonian

during the quantum dynamics can stabilize different quantum phases in the final steady state.

One can even drive quantum phase transitions by varying the measurement strength of different

Hamiltonian terms. This provides us an opportunity to consider the critical quench dynamics

driven by quantum non-demolition measurement of the system energy, and to investigate its

effect on universal scaling behaviors.

In this work, we present a formulation for integrating the physics of quantum measure-

ment and decoherence with that of quantum critical quench dynamics. The formulation provides

a description of continuous measurement of the system Hamiltonian, while the Hamiltonian itself

is dynamically driven across the quantum phase transition. Averaging over energy measurement

outcomes leads to decoherence in the energy basis. The decoherence time enters the dynamics

as a time scale distinct from that set by the correlation time. As the system is tuned through

the critical point, both the decoherence time τdec and the correlation time ξt diverge, such that

the quantum dynamics slows down and the system is unable to equilibrate in the face of the

parameter tuning. As a result, the system is effectively frozen near the critical point and falls

out of equilibrium after the quantum quench. The freeze-out time is set by the choice of time

scale between ξt and τdec that remains shorter at the moment. As the two time scales ξt and τdec

diverge with different exponents near the critical point, they lead to different scaling behaviors of

the freeze-out time (also known as the Kibble-Zurek scaling in the coherent limit). In the strong

decoherence regime, we derive the critical quench scaling exponents for both length and time

scales, and demonstrate how they differ from the standard Kibble-Zurek predictions.

We apply our formulation to topological transitions in Chern insulators and show how
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these strong-decoherence scaling laws become manifest. Our choice of system stems from the

surge of interest in these materials, the plethora of experiments, the ability to tune through these

transitions, and the straightforward theoretical formulation that enables adding the complexity of

the decoherent aspects. Given that much of Kibble-Zurek physics has focused on systems having

spontaneous symmetry breaking and local order, we focus on an alternate set of observables

for probing our predicted novel scaling behavior in the case of topological order. In particular,

we propose that the out-of-equilibrium time scale can be obtained from the relaxation of Hall

conductivity across the topological transition. We also propose the extraction of the post-quench

correlation length from the autocorrelation function of excitation density in the presence of weak

disorder.

While this work offers a framework for describing decoherent quantum critical quenches

and applies it to a specific example, we believe its scope is very broad1. The formulation itself

can be applied to vast and diverse systems ranging from symmetry broken phase in cosmology,

solid state, and cold atomic gases to topological systems in the latter two settings. Almost

invariably, decoherence goes hand in hand with quenching, and in the case of ultracold gases, it

can even be engineered. In general, its effects can be murky. But for universal regimes defined

by critical points, not only are the effects much more clear-cut, the interplay between the two

distinct time scales allows demarcating a testable strong decoherence regime showing entirely

new scaling.

In what follows, in Sec. 3.3, we introduce the general formulation of quantum dynamics

with energy-basis decoherence, realized by quantum non-demolition measurement of the system

Hamiltonian. We derive the master equation that governs the decoherent dynamics. Based on the

master equation, having recapitulated standard Kibble-Zurek scaling in quantum quenches, we

analyze its behavior in the presence of decoherence.We discuss the regimes of weak versus strong

decoherence and associated scaling. In Sec. 3.4, we demonstrate our treatment for quenches in

1The general behavior of quantum systems undergoing decoherence remains an open question. Our formalism
applies to any model so long as the decoherence mechanism can be modeled by continuously measuring the system’s
energy.
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Chern insulators tuned through topological phase transitions. We present the corresponding non-

interacting fermionic Hamiltonian and describe the dynamics in terms of associated pseudo-spin

degrees of freedom for each momentum sector. We next derive our predicted scaling behavior in

the relaxation of Hall conductivity. We adapt numerical techniques to describe quenches and

further corroborate our results. We introduce weak disorder to break translational invariance

and extract correlation lengths and related scaling behavior via post-quench correlation of

emergent regions having high excitation densities. In Sec. 3.5, we summarize our work, consider

ramifications, and make connections with possible experiments.

3.3 Universal scaling of decoherent critical quench

We begin with the overarching set-up for describing the decoherent system at hand and

its dynamics. We then show how even in the simplest case of a two-level system, one can

extract a decoherence time that is intimately tied to the gap between states. Our formulation

immediately enables us to study the general scenario of quenching through a quantum critical

point. We therefore then proceed to derive the universal argument for a competition between

three timescales–the inverse quench rate, the intrinsic coherent timescale of the system (the

correlation time), and the decoherence time. Based on the competition, we are able to identify

strong and weak decoherence regimes and the different associated scaling behavior of the critical

quench.

3.3.1 Decoherent Quantum Dynamics

The decoherence of a quantum system in its energy eigenbasis can be effectively mod-

eled by an environment that monitors the energy of the quantum system through continuous

measurements[103, 104]. Under this protocol, the dynamics of the quantum system is non-

unitary and can be formulated as a quantum channel[105]. The quantum channel formulation

provides a unified description of the effect of both unitary evolution and quantum measurement
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on the density matrix ρ of an open quantum system,

ρ(t +δ t) = ∑
j

K j(t)ρ(t)K†
j (t) , (3.1)

specified by a set of Kraus operators[106] Ki(t) satisfying ∑ j K†
j (t)K j(t) = 1. Unitary evolution

corresponds to the presence of a single unitary Kraus operator K(t) =U(t) = e−iH(t)δ t (setting

}= 1); in this case, one has the familiar behavior

ρ(t +δ t) = ρ(t)− iδ t
[
H(t),ρ(t)

]
+O(δ t2), (3.2)

where H(t) is the Hamiltonian of the quantum system that generates the coherent time-evolution.

The environmental monitoring of the energy of a quantum system can be described by a

set of measurement operators K j(t), where the index j labels the possible measurement outcomes.

We consider an indirect (or ancilla) weak measurement[107] scheme, in which the system couples

to some ancilla qubits in the environment via the interaction term Hint(t) = H(t)⊗A. Here,

H(t) is the Hamiltonian of the quantum system and A is some Hermitian operator acting on the

ancilla qubits. Suppose the ancilla qubits start in a random initial state |φ〉 and evolve jointly

with the quantum system under Hint(t) for a short period of time, after which they collapse to

the measurement basis | j〉 via a projective measurement. The effect on the quantum system is

described by the following Kraus operator

K j(t) = 〈 j|φ〉I− iε H(t)
〈

j
∣∣A ∣∣φ 〉− 1

2 ε
2 H(t)2 〈 j

∣∣A2 ∣∣φ 〉+O(ε3) (3.3)

where ε is proportional to the coupling time and can be viewed as a parameter controlling

the measurement strength. Here I is the identity operator acting on the Hilbert space of the system.

This procedure weakly measures the energy of the quantum system because the observable being
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measured in a quantum measurement is determined by the particular operator that couples the

system to the environment[108, 109], which in this case is the system Hamiltonian H(t) itself.

Such a measurement protocol will gradually decohere the system to disperse among different

energy levels. Applying the Kraus operator to the density matrix, we obtain

∑
j

K j(t)ρ(t)K†
j (t) = ρ(t)− iε

[
H(t),ρ(t)

]〈
φ
∣∣A ∣∣φ 〉

− 1
2 ε

2[H(t), [H(t),ρ(t)]
]〈

φ
∣∣A2 ∣∣φ 〉+O(ε3) . (3.4)

We assume that the ancilla state |φ〉 and the ancilla operator A satisfy
〈

φ
∣∣A ∣∣φ 〉= 0, such that

the measurement process will not bias the energy of the system. Typically this is true if |φ〉 and A

are random, as we have no prior knowledge of how the environment will monitor the energy. We

also ignore the memory effect of the environment, and assume that the dynamics is Markovian.

With this assumption, the density matrix evolves under the environmental measurement as

ρ(t +δ t) = ρ(t)− γ δ t
[
H(t), [H(t),ρ(t)]

]
+O(δ t2) , (3.5)

where a new parameter γ =
〈

φ
∣∣A2
∣∣φ 〉ε2/(2δ t) is introduced to represent the quantum non-

demolition measurement strength (or the decoherence rate). To approach the limit of continuous

measurement, we should take the δ t→ 0 limit keeping the ratio ε2/δ t held fixed so as to respect

the quadratic time scaling[110, 111, 112] required by the quantum Zeno effect.

Combining Eq. (3.2) with Eq. (3.5), and taking the continuum limit δ t→ 0, we arrive at

the master equation for decoherent quantum dynamics

∂ρ(t)
∂ t

=−i
[
H(t),ρ(t)

]
− γ
[
H(t), [H(t),ρ(t)]

]
. (3.6)

This is the Lindblad equation (in double-commutator form)[113, 114, 115] for the Lindblad

operator being the Hamiltonian itself. Note that we derive this result from the time evolution
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of density matrix (Eq. (3.2)) with continuum limit. It describes how an open quantum system

evolves under a time-dependent Hamiltonian as it continues to decohere among the instantaneous

energy eigenstates.

If H is time-independent, then it is easy to see that the off-diagonal elements of ρ(t)

expressed in the eigenbasis of H all collapse to zero provided they are between states of different

energy, i.e. ρmn(t)→ 0 if Em 6= En. For time-dependent H(t), however, as we shall see, the

dynamics is nontrivial.

3.3.2 Decoherence time and excitation energy

To gain more intuition regarding the decoherent quantum dynamics described by Eq. (3.6),

we consider a quantum system close to its ground state. As a toy model, we focus on the low-

energy subspace spanned by the ground state (energy E0) and the first-excited state (energy E1),

in which H and ρ can be represented as

H =

E0 0

0 E1

 , ρ =

ρ00 ρ01

ρ10 ρ11

 . (3.7)

Within this two-level subspace, Eq. (3.6) implies

∂ρ01
∂ t

= i(E1−E0)ρ01− γ(E1−E0)
2
ρ01, (3.8)

which indicates that the off-diagonal density matrix element (i.e. the quantum coherence between

the ground state and the excited state) decays exponentially in time as |ρ01| ∝ exp(−t/τdec).

Here, the decoherence time is given by

τdec =
1

γ∆2 , (3.9)
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where ∆ = E1− E0 denotes the excitation energy. This demonstrates that Eq. (3.6) indeed

describes the energy level decoherence in which the decoherence time τdec is set by the energy ∆

(or more generally, the level spacing).

3.3.3 Kibble-Zurek scaling under decoherent quench

With the general formulation of the decoherent quantum dynamics now in place, captured

by the master equation in Eq. (3.6), we can now investigate quenches in the presence of decoher-

ence. Specifically, we analyze the effect of introducing decoherence to the universal behavior

exhibited by quantum systems dynamically tuned between two phases through a continuous

quantum phase transition. Quantum quenches, in general, form a fertile and currently active

field of study (see e.g., Ref. [116]), encompassing condensed matter physics, atomic, molecular

and optical physics (AMO), cosmology, and quantum information. Quenches near quantum and

thermal critical points exhibit Kibble-Zurek behavior[4, 5, 6, 7], which reflects the universal

non-equilibrium power-law scaling of several quantities, such as quench-induced density of

defect. Note that here we focus on quantum quenches, as opposed to thermal. The source of the

non-equilibrium behavior is that the intrinsic relaxational timescale of the system diverges as a

universal power-law close to the critical point, and thus, no matter how slow the quench rate, the

system cannot relax fast enough in a certain window. The size ξ̄ of the local equilibrium domain

after the quench scales with the quench rate 1/τ as

ξ̄ ∼ τ
ν/(1+νz) , (3.10)

where ν and z are the correlation length exponent and dynamic critical exponent associated with

the quantum critical point. We will show that the same scaling holds under decoherence as long

as the decoherence rate γ scales together with the quench rate as γ ∼ τνz/(1+νz). However, in the
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strong decoherence limit (γ → ∞), we find a new combined scaling

ξ̄ ∼ (γτ)ν/(1+2νz) , (3.11)

which is unique to the decoherent dynamics.

These trends in scaling behavior can be derived from an analysis of the dynamic equation

Eq. (3.6). Here, we generalize the standard approach for Kibble-Zurek physics in absence of

dissipation to include and pinpoint its effects. We assume the quantum critical point can be

describe by a critical Hamiltonian Hcritical. Quenching through the critical point corresponds to

tuning the relevant perturbation Hpert (which drives the phase transition) through zero, which can

be formally described by

H(t) = Hcritical +δ (t)Hpert , (3.12)

where δ (t) = α(t)−αc measures the deviation of the driving parameter α away from its critical

point αc. In the vicinity of the critical point, we focus on the most general quench case where

the deviation is tuned linearly with time δ (t) = t/τ , which introduces the quench rate 1/τ (or

equivalently the quench time scale τ). However, the linear tuning of the driving parameter does

not tune the excitation energy linearly. Near the quantum critical point, low-energy collective

properties of the system, such as the correlation length ξ or the excitation energy ∆, scale with

the deviation δ according to power laws set by universal relations

ξ ∼ δ
−ν ∼ (t/τ)−ν , ∆∼ ξ

−z ∼ (t/τ)νz . (3.13)

The many-body excitation energy ∆ will be the only relevant energy scale that enters Eq. (3.6) in

the replacement of H(t) near the critical point.

Following the form of Eq. (3.8), we ignore all the level-specific details, which are

secondary to universal behavior, and put forth a heuristic dynamic equation for the purpose of
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scaling analysis, viz.

∂ρ

∂ t
∼
(

i∆− γ∆
2
)

ρ

∼
{

i
( t

τ

)νz
− γ

( t
τ

)2νz
}

ρ .
(3.14)

We can eliminate the τ-dependence in Eq. (3.14) by rescaling t and γ jointly as follows:

t→ τ
νz/(1+νz) t ′ , γ → τ

νz/(1+νz)
γ
′ , (3.15)

implying that the quantum quench dynamics is universal if the time t and the decoherence rate γ

scale accordingly. In the large γ regime, Eq. (3.14) is dominated by the decoherence dynamics

(i.e. the γ-term only), viz.

∂t ρ ∼−γ∆
2
ρ ∼−γ

( t
τ

)2νz
ρ . (3.16)

It is then possible to simultaneously eliminate both the γ- and the τ-dependences in Eq. (3.16)

by the following rescaling of time:

t→ (γ−1
τ

2νz)1/(1+2νz) t ′ , (3.17)

which gives a different, but consistent, scaling of time in the strong decoherence limit as compared

to Eq. (3.15), which holds for all decoherence rates.

Underlying the different scaling behaviors is the competition between two distinct time

scales: the correlation time ξt and the decoherence time τdec (defined in Eq. (3.9)),

ξt ∼
1
∆
∼
( t

τ

)−νz
, τdec ∼

1
γ∆2 ∼

1
γ

( t
τ

)−2νz
. (3.18)

As we quench through a quantum critical point, the many-body excitation energy ∆ closes and

reopens. As the critical point is approached, namely ∆→ 0, both the correlation time ξt and the
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Figure 3.1. The divergent correlation time ξt and decoherence time τdec near the critical point
under (a) weak decoherence (quantum regime) and (b) strong decoherence (classical regime).
The first intersection point marks the freeze-out time t̄ when the system loses/restores adiabaticity.
Thus, during the quench process, the freeze-out time in (a) is determined by ξt and in (b) by τdec
.

decoherence time τdec diverge, as shown in Fig. 3.1. The system effectively freezes due to the

critical slowing down and falls out of equilibrium. The freeze-out time t̄ is set by the smaller

time scale min(ξt ,τdec). These time scales correspond to two different mechanisms to maintain

adiabaticity: beyond the correlation time ξt , the system can respond to the parameter tuning by

unitary evolution, while beyond the decoherence time τdec, the system can follow the energy

level by the quantum Zeno effect (the effect that frequent measurements can slow down the

quantum evolution).

The competition between ξt and τdec is dependent upon the decoherence rate γ , as can be

seen from Eq. (3.18). When the decoherence rate γ is small, the system is in the coherent quantum

regime, where ξt is the shorter time scale, and the freeze-out time t̄ is set by t̄ ' ξt(t̄)∼ (t̄/τ)−νz.

The solution then conforms to standard Kibble-Zurek behavior and reads

t̄ ∼ τ
νz/(1+νz) , ξ̄ ∼ (t̄/τ)−ν ∼ τ

ν/(1+νz) , (3.19)
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which is consistent with Eq. (3.15) and Eq. (3.10). When the decoherence rate γ is large, the

system is in the decoherent ”classical” regime, where τdec is the shorter time scale, and the

freeze-out time t̄ is set by t̄ ' τdec(t̄) ∼ γ−1(t̄/τ)−2νz. The term ”classical” here means that

the density matrix is diagonal in the energy basis. The off-diagonal terms vanish in the strong

decoherence regime, and information about the relative phase is washed out. Thus, we called

this strong decoherence limit as “classical” limit. The solution then reads

t̄ ∼ (γ−1
τ

2νz)1/(1+2νz) , ξ̄ ∼ (t̄/τ)−ν ∼ (γτ)ν/(1+2νz), (3.20)

which is consistent with Eq. (3.17) and Eq. (3.11). The crossover between the two regimes occurs

at a decoherence rate γc = τνz/(1+νz) when all the time scales meet t ' ξt ' τdec, as indicated by

Eq. (3.15).

Regarding the new scaling found in the strong decoherence regime (Eq. (3.20)), we wish

to stress the following: The exponent in the strong decoherence regime can be obtained by

replacing the dynamical exponent z in conventional Kibble-Zurek scaling (Eq. (3.19)) with 2z.

This simple replacement results from the peculiar excitation energy dependence in decoherence

time (τdec ∼ ∆−2 in Eq. (3.9)). Note that the time scale ξt in standard Kibble-Zurek scaling

is inversely proportional to the excitation energy ξt ∼ ∆−1. This crucial difference leads to a

doubling of the conventional KZ dynamical exponent in strong decoherence regime.

This new scaling is expected to emerge due to the introduction of decoherence rate γ.

Similar change of scaling by introducing new parameter can be achieved by coupling the system

with thermal bath with tuning parameter temperature[117]. The main difference between our

decoherent formulation and regular thermal coupling is the interaction term, in that we choose

an interaction which commutes with the system Hamiltonian. In the strong decoherence regime,

the final density matrix becomes diagonal in the energy basis, but does not belong to any thermal

ensemble. This leads to the new scaling form in this regime of strong decoherence.

In conclusion, our analysis shows that, depending on the ratio γ/γc = γ/τ−νz/(1+νz),
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the quench dynamics can cross over from the quantum limit (γ/γc � 1) to the ”classical”

limit (γ/γc� 1). A combined scaling behavior Eq. (3.20) emerges in the strong decoherence

”classical” regime, which is different from (but consistent with) the Kibble-Zurek behavior of

Eq. (3.19).

3.4 Decoherent quench through topological transitions

In order to demonstrate our arguments and explore new terrain in decoherent dynamics,

we now apply the general framework developed above to investigate quantum quenches in

topological insulators. We focus mainly on quenches across the topological transition separating

a Chern insulator from a trivial insulator. Most of our results can be easily generalized to

topological insulators in other dimensions and they demonstrate the principles behind a diverse

range of systems, both topological and non-topological.

In what follows, we first introduce the model Hamiltonian parametrized by a pseudo-

magnetic field in momentum space. We then formulate the related density matrix in terms of

the pseudo-spin vector. By applying the master equation for decoherent quantum dynamics

developed in the previous section, we obtain the effective dynamical equation for the pseudo-spin,

based on which we analyze the universal scaling behavior for the topological transition.

3.4.1 Model Hamiltonian and band topology

Consider a two-band Hamiltonian of spinless fermions in (2+1) dimensions having a

time-dependent band structure

H(t) =
1
2 ∑

kkk
c†

kkk hhhkkk(t) ·σσσ ckkk , (3.21)

where ckkk is the fermion annihilation operator in momentum space, σσσ = (σx,σy,σz) represents

the pseudo-spin operators as Pauli matrices, and hhhkkk(t) is the time-dependent pseudo-magnetic

field defined for each momentum kkk = (kx,ky). As opposed to actual spins in magnetic fields,
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the pseudo-spin describes orbital degrees of freedom of spinless fermions. The (instantaneous)

band dispersions are given by ±|hhhkkk|. The two bands are separated by a gap so long as |hhhkkk| 6= 0

throughout the Brillouin zone. We assume that the number of fermions is such that they can

fully fill a single band, and that the fermion number does not change with the ensuing quantum

dynamics.

Depending on the winding number of ĥhhkkk ≡ hhhkkk

/
|hhhkkk| in momentum space

w =
1

4π

∫
d2k ĥhhkkk ·

∂ ĥhhkkk

∂kx
× ∂ ĥhhkkk

∂ky
(3.22)

the band structure can be classified as trivial (if w = 0) or topological (if w 6= 0). Our quench

consists of tuning the band structure between the trivial and the topological phases. Such

quenches have been studied extensively in the literature[118, 119, 120, 121, 122, 123, 124, 125,

126, 127, 128, 129, 130, 131, 132, 133, 134, 135], but the effect of decoherence is still largely

not understood. Our goal is thus to examine the interplay between critical quench dynamics and

quantum decoherence in topological insulators.

To analyze the critical behavior, we invoke the linearized band structure near the Dirac

point,

hhhkkk(t) =
(
kx , ky , t/τ

)
, (3.23)

which describes the low-energy Dirac Hamiltonian with linearly tuned mass term. We assume

that the mass term m = t/τ is tuned linearly across the phase transition.

3.4.2 Quench protocol and density matrix

For the quench protocol, we start with the ground state of an initial Hamiltonian H(t0)

(t0 < 0), where the bottom band is filled and the upper band is empty. We then tune the band

structure through a topological transition, where the band gap closes and reopens. We define

our time origin such that the critical point is always reached at t = 0. The time evolution of

the system is governed by the dynamical equation Eq. (3.6). True to a free fermion system, the
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quantum dynamics takes place at each momentum point independently. Since the initial state is

a product state over momentum states, the density matrix of the system continues to take the

product form throughout the evolution

ρ(t) = ∏
kkk

c†
kkk |0〉ρkkk(t) 〈0|ckkk , (3.24)

where ρkkk(t) is the single-particle density matrix at momentum kkk,

ρkkk(t) =
1
2
(
1+nnnkkk(t) ·σσσ

)
. (3.25)

The pseudo-spin vector nnnkkk(t) = Trρ(t)c†
kkk σσσ ckkk is introduced in momentum space to parameterize

the density matrix. The ”purity” of the density matrix is given by Tr(ρ2) = ∏kkk
1
2(1+ |nnnkkk|2), such

that the system is pure if and only if |nnnkkk|2 = 1 for all kkk, i.e. when the pseudo-spin vector lies

on the unit sphere. Due to the non-unitary decoherent dynamics, the density matrix in general

becomes mixed under the time-evolution such that the pseudo-spin vectors shrink toward the

origin, i.e. nnnkkk → 0. In this limit, the density matrix for each kkk is proportional to the identity,

corresponding to ‘infinite temperature’.

3.4.3 Dynamics of pseudo-spin vectors

To describe the pseudo-spin dynamics, we substitute the Hamiltonian H(t) from Eq. (3.21)

and the density matrix ρ(t) from Eq. (3.24) into the master equation Eq. (3.6). Note that each

momentum sector is decoupled in the free fermion model. In terms of the pseudo-magnetic field

hhhkkk(t) and the pseudo-spin nnnkkk(t), the dynamic equation reads

∂nnnkkk

∂ t
= hhhkkk×nnnkkk + γ hhhkkk× (hhhkkk×nnnkkk) . (3.26)
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Figure 3.2. Comparison of the effects of (a) the damping term λ in the LLG equation and (b)
the decoherence term γ in Eq. (3.26).The contribution to the rate of change of the pseudo-vector
is denoted by the green arrow. The dynamics in (a) preserves the norm of the pseudo-vector but
it does not in (b).

Note that Eq. (3.26) is different from the Landau-Lifshitz-Gilbert (LLG) equation,

∂nnn
∂ t

= hhh×nnn+λ nnn× (hhh×nnn) , (3.27)

used to describe the damping of spin precession in a magnetic field. The LLG equation is

nonlinear in nnn and preserves the norm of nnn. In contrast, Eq. (3.26) is linear in nnnkkk with the norm of

nnnkkk generally decreasing under evolution, which reflects the non-unitary nature of the decoherent

dynamics. Their differences are clearly demonstrated in Fig. 3.2. Under the decoherent dynamics,

the pseudo-spin nnnkkk tends to be projected onto the direction of the pseudo-magnetic field hhhkkk, which

precisely describes the decoherence of off-diagonal density matrix elements in the diagonal basis

set by the Hamiltonian hhhkkk ·σσσ . Similar decoherence term was also studied in Ref. [136].

As the system equilibrates to the ground state, the pseudo-spin nnnkkk anti-aligns with the
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pseudo-magnetic field hhhkkk, i.e. nnnkkk→−ĥhhkkk, so as to minimize the energy

E = Tr(Hρ) = 1
2 ∑

kkk
hhhkkk ·nnnkkk . (3.28)

When the pseudo-magnetic field hhhkkk flips between topological and trivial configurations, there are

two mechanisms to maintain the pseudo-spin in alignment with the field. In the weak deoherence

regime (γ � γc), as the pseudo-spin precesses about the pseudo-magnetic field it is also driven

by the damping towards its new equilibrium position, as shown in Fig. 3.3(a). In the strong

decoherence regime (γ� γc), the pseudo-spin is driven by the quantum Zeno effect to follow the

field, as shown in Fig. 3.3(b), since it is constantly being measured by the environment along the

field direction. The crossover decoherence rate γc scales as γc ∼ τ1/2 with the quench rate 1/τ .

In the vicinity of the Dirac point at kkk = 0, where the band gap closes, the pseudo-magnetic

field vanishes as the system is driven through criticality. In this case, the pseudo-magnetic

field ceases to provide the alignment impetus to the pseudo-spin. Therefore, both alignment

mechanisms fail in this region, and the system falls out of equilibrium as the pseudo-spin loses

track of the pseudo-magnetic field. The above argument can be confirmed by the numerical

Figure 3.3. Pseudo-spin dynamics under (a) weak decoherence γ = 0.1τ1/2 and (b) strong
decoherence γ = 10τ1/2. The rainbow colors (from blue to red) trace the time evolution.
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simulation of the pseudo-spin dynamics Eq. (3.26) using the linearized model Eq. (3.23),

∂

∂ t


n1

n2

n3

=


0 −t/τ ky

t/τ 0 −kx

−ky kx 0




n1

n2

n3

 (3.29)

− γ


k2

y +(t/τ)2 −kxky −kxt/τ

−kxky k2
x +(t/τ)2 −kyt/τ

−kxt/τ −kyt/τ k2
x + k2

y




n1

n2

n3

 .

A typical result (at γ = γc ∼ τ1/2) is shown in Fig. 3.4. As hz
kkk flips across the critical point, nz

kkk

is expected to follow the sign change if the dynamics were the adiabatic. However, due to the

gap closing at the Dirac point kkk = 0, the system can not maintain adiabaticity in the vicinity of

the Dirac point, no matter how slow the driving parameter is tuned. As a result, a portion of the

pseudo-spins fails to flip after the quench, which leads to an emergent nonequilibrium region in

the momentum space within the momentum range k̄ in Fig. 3.4(e).

3.4.4 Universal scaling for topological transition

To understand how the nonequilibrium momentum range k̄ scales with the quench rate

1/τ , we perform a scaling analysis of the dynamic equation Eq. (3.29). It is straightforward

to check that rescaling variables t → τ1/2 t ′, kkk→ τ−1/2 kkk′, and γ → τ1/2 γ ′ eliminates the τ-

dependence in the equation entirely. This implies that the quench dynamics is universal if the

time t, the momentum kkk and the decoherence rate γ scale with the quench time τ accordingly.

Therefore, we conclude that the freeze-out time t̄, the nonequilibrium momentum range k̄ and

the local equilibrium domain size ξ̄ scale as

t̄ ∼ τ
1/2 , k̄ ∼ τ

−1/2 , ξ̄ ∼ τ
1/2 , (3.30)
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Figure 3.4. Evolution of pseudo-spin vectors in momentum space at (a) t = −5τ1/2, (b)
t =−τ1/2, (c) t = 0, (d) t = τ1/2, (e) t = 5τ1/2. The black arrow indicates the in-plane component
(nx

kkk,n
y
kkk) and the background color indicates the nz

kkk component.

which is consistent with the Kibble-Zurek scaling given in Eq. (3.19), with ν = 1 and z = 1 for

the topological transition of Dirac fermions. The scales k̄ and ξ̄ are dual to each other: the system

falls out of equilibrium within k̄ in momentum space, which translates to the non-adiabaticity

beyond ξ̄ in the real space.

To quantify the nonequilibrium region in the momentum space, we define the excitation

density

pexc(kkk) = lim
t→∞

1
2

(
1+ ĥhhkkk(t) ·nnnkkk(t)

)
, (3.31)

and the thermal entropy density

Sth(kkk) =− lim
t→∞

∑
s=±

1+ s |nnnkkk(t)|
2

log2

(
1+ s |nnnkkk(t)|

2

)
, (3.32)

in the late time limit. The late time limit is defined to be long enough for the energy-basis

decoherence to have effect but short enough for other possible relaxation mechanism to influence
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the system. The excitation density pext(kkk) measures the probability that the fermion at momentum

kkk is found to be excited in the upper band after quench. The thermal entropy density Sth(kkk)

reflects the distribution of thermal entropy in momentum space after the quench. Our results

are shown in Fig. 3.5 for different decoherence rates γ . Separated by a crossover decoherence

rate γc ∼ τ1/2, the weak decoherence (γ � γc) and the strong decoherence (γ � γc) regimes

clearly exhibit different behaviors. In the coherent limit (γ → 0), the nonequilibrium momentum

range k̄ ∼ τ−1/2 is simply set by the quench rate 1/τ . As decoherence sets in, k̄ will continue to

shrink with γ , because decoherence helps drive the system back to equilibrium. In the strong

decoherence regime, a new set of scaling emerges,

t̄ ∼ γ
−1/3

τ
2/3 , k̄ ∼ (γτ)−1/3 , ξ̄ ∼ (γτ)1/3 , (3.33)

which describes how the momentum range k̄ shrinks with the decoherence rate γ (see the dashed

0 0.5 1
pexc

0.0 0.5 1.0 1.5 2.0
10-2
10-1
1
10
102
103
104

k τ1/2

γ
τ-
1/
2

γc

k
~
(γ
τ) -1/3

γ ≪ γc

γ ≫ γc

(a)

0 0.5 1
Sth

0.0 0.5 1.0 1.5 2.0

k τ1/2

γc

k
~
(γ
τ) -1/3

γ ≪ γc

γ ≫ γc

(b)

Figure 3.5. (a) Excitation density and (b) thermal entropy distribution in momentum space
for different decoherence rates γ . The line γc demarcates the weak versus strong decoherence
regimes in both plots. The dashed black lines indicate emergent new scaling in the strong
decoherence limit.
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curves in Fig. 3.5). These scaling behaviors are consistent with the general result in Eq. (3.20)

with ν = 1 and z = 1. They may also be obtained by a scaling analysis of the dynamical

equation Eq. (3.29). In the limit γ → ∞, Eq. (3.29) is dominated by its second term, which

allows us to simultaneously remove both γ and τ dependences by rescaling t→ γ−1/3τ2/3t ′ and

kkk→ (γτ)−1/3kkk′, which in turn leads to the scaling as claimed above.

3.4.5 Numerical demonstration of temporal scaling

To test the above universal scaling behaviors, we propose to monitor the topological

response of the fermion system as it is tuned between the topological and trivial phases. The

topological response that typically characterizes Chern insulators is the Hall conductivity, which

can be measured in transport experiments.

To define the instantaneous Hall conductivity for nonequilibrium systems, we consider

perturbing the system by a weak electric field EEE(t) cranked up over a short time scale T ,

EEE(t) =


EEE e(t−t0)/T for t ≤ t0

0 for t > t0 .

(3.34)

We assume that the probe time scale T is much smaller than the quench time τ , i.e. T � τ , so

that H(t) remains almost unchanged during this period, and can be approximated by H(t0). In

response to the perturbation, the current can be calculated from the current-current correlation

function Π(t0, t), using −∂tAAA(t) = EEE(t), viz.

〈JJJ(t0)〉=
t0∫
−∞

dt Π(t0, t)AAA(t)

=−EEE T
0∫

−∞

dt ′ Π(t0, t0 + t ′) et ′/T .

(3.35)
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Π(t0, t) is given by standard linear response theory as

Π(t0, t) =−iTr
([

JJJ(t0) , JJJ(t)
]

ρ(t0)
)

, (3.36)

where JJJ(t0) = ∂AAAH(t0) and at a later time, we have

JJJ(t) =U†(t− t0)JJJ(t0)U(t− t0) (3.37)

with U(t− t0)' e−iH(t0)(t−t0). The Hall conductivity σH(t0) can be read off from Eq. (3.35),

σH(t0) = iT
0∫

−∞

dt ′ et ′/T Tr
([

Jx(t0) , Jy(t0 + t ′)
]

ρ(t0)
)

. (3.38)

Here, we assume that ρ(t0) does not significantly vary during the short time scale T . Employing

H(t0) and ρ(t0) from Eq. (3.21) and Eq. (3.24), we obtain the instantaneous Hall conductivity

σH(t0) in terms of the pseudo-spin vector nnnkkk(t0) and pseudo-magnetic field hhhkkk(t0),

σH =
1
2

∫
d2k

nnnkkk ·
(
∂kxhhhkkk×∂kyhhhkkk

)
hhh2

kkk +T−2
. (3.39)

As a special case, when the system equilibrates to the ground state, i.e. nnnkkk = −ĥhhkkk, Eq. (3.39)

then reduces to σH =−2πw in the static limit T → ∞, where w ∈ Z is the band winding number

defined in Eq. (3.22), as expected in the quantum Hall effect. However, away from equilibrium,

the Hall conductivity does not need to be quantized.

From Eq. (3.39), we calculate the behavior of the Hall conductivity as the system is

quenched from a topological band structure (w =−1) to a trivial band structure (w = 0). The

result is shown in Fig. 3.6. The Hall conductivity deviates from the original quantized value

and relaxes to a new quantized value after the quench. It is worth mentioning that several prior

studies[119, 124] have stressed that the Chern number of the fermion state, which is defined only
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Figure 3.6. Hall conductivity across the quench (from topological to trivial phase) with the
decoherence rate (a) γ = 0, (b) γ = τ1/2, (c) γ = 10τ1/2. The arrows indicate the time scale th at
which the Hall conductivity relax to halfway between the initial and final quantized values.

for pure states under coherent evolution, and is given by

C =
1

4π

∫
d2k nnnkkk ·

∂nnnkkk

∂kx
× ∂nnnkkk

∂ky
(3.40)

remains unchanged across the quantum quench, simply because the continuous time evolution of

nnnkkk is a smooth deformation that can not change the topological index. While this is a correct

statement, its meaning may be misinterpreted. The conservation of Chern number does not

imply that the system remains in the original phase, because the Chern number is not a physical

observable and can not be used to characterize the topological property of a system. Topological

properties must be characterized by physical responses, such as the Hall conductivity, which

does switch between different quantized values across the quench (as shown in Fig. 3.6(a)), even

if the Chern number remains the same under coherent evolution.

To further understand the relaxation of Hall conductivity and its associated universal

scaling near the critical point, we invoke the linearized model Eq. (3.23), for which the Hall
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consistent with Eq. (3.42).

conductivity becomes2

σH(t) =
1
2

∫
d2k

nz
kkk(t)

kkk2 +(t/τ)2 +T−2
. (3.41)

After the quench, in the long time limit, the denominator is dominated by the (t/τ)2 term, and

the numerator nz
kkk becomes concentrated about the Dirac point within the momentum range k̄, as

shown in Fig. 3.4(e). So the integral scales as σH(t)∼ k̄2/(t/τ)2 ∼ (t/t̄)−2, where the time scale

t̄ ∼ k̄τ is introduced according to Eq. (3.30) and Eq. (3.33) in both weak and strong decoherence

regimes. Thus we conclude that the Hall conductivity relaxes to the new equilibrium with a

power-law tail behaving as ( t/t̄ )−2.

We can estimate the time scale t̄ from the Hall conductivity data. One possibility is to

consider the time th at which the Hall conductivity relaxes to halfway between the initial and

final value, i.e. σH(th) =
1
2 (see Fig. 3.6). Because t̄ is the only time scale governing the critical

quench, the halfway time th is expected to scale in the same way as t̄. If we fix the decoherence

2The Hall conductivity should be regularized by an additional factor of 1
2 in the case of the linearized model.

This regularization is due to the Brillouin zone boundary. We ignore the regularization here, as it does not affect any
scaling analysis.
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rate γ by controlling the temperature and the environmental coupling and perform the quench

experiment with different quench rates 1/τ , we should expect the following scaling behavior of

t̄:

t̄ ∼

 τ2/3 for τ � γ2,

τ1/2 for τ � γ2 .
(3.42)

This behavior is verified in Fig. 3.7 by our numerical simulations. It provides a testable prediction

for the scaling behavior of the decoherent critical quench. Observation of the crossover from

the 1
2 to the 2

3 power laws will then serve as an indicator of decoherence in quantum quench

dynamics.

3.4.6 Numerical demonstration of spatial scaling

To demonstrate the universal scaling of the length scale ξ̄ after the quench, we break

space-translational symmetry by weak disorder, and investigate the disorder-induced inhomo-

geneous spatial distribution of the excitation density in the final state. For this purpose, we

study the spinless Bernevig-Hughes-Zhang (BHZ) model[137] with bond disorder. Following a

similar quench protocol to that described above, we can elicit the decoherence-driven crossover

of scaling behaviors in real space.

Our purpose of introducing disorder is merely to provide some randomness to seed the

spatial inhomogeneity after the critical quench. However, introducing disorder at a quantum

critical point can sometimes alter the universal properties, as the disorder can be relevant, which

then drives the system to a strong disorder fixed point that is distinct from the clean limit[138].

To prevent the disorder from affecting the universality, we add irrelevant disorder, such as bond

disorder (i.e. random modulation of bond strengths)3.

We consider the following lattice model, with static randomness in the hopping amplitude

3Although mass disorder is marginally irrelevant for (2+1)D Dirac fermions, given the finite system size in our
numerics, mass disorder would still have a considerable effect. For this reason, we do not consider it.
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and the time-dependent on-site potential:

H(t) = ∑
rrr

∑
µ∈{x,y}

{
trrr c†

rrr+êµ

(
σ

z− iσ
µ
)

crrr +h.c.
}

+
(
m(t)−2

)
∑
rrr

c†
rrr σ

z crrr ,

(3.43)

where crrr = (crrr1 , crrr2)
ᵀ, crrrα annihilates a fermion at site rrr in orbital α , and êµ is a unit vector

in the µ ∈ (x,y) direction. The mass term m(t) = t/τ is linear in time. The hopping term

trrr = 1+δ trrr fluctuates with δ trrr, independently drawn from uniform distribution over [−δ t ,+δ t].

The disorder strength δ t is irrelevant to the critical behavior and fixed at δ t = 0.1 in our

simulation.

The quench dynamics is described by the master equation of Eq. (3.6). Although a Gaus-

sian state does not remain Gaussian under this evolution in general, we make the approximation

to project the density matrix to the single particle subspace Pab = Tr
(
cb c†

a ρ
)
. Then, given the

quadratic Hamiltonian H = ∑a,b Hab c†
a cb , one can derive the equation

∂P

∂ t
=−i [H ,P]− γ

[
H , [H ,P]

]
. (3.44)

Our quench protocol starts with the disordered spinless BHZ Hamiltonian H(t0) given in

Eq. (3.43) having m(t0) =−0.5 and a random profile of δ trrr. We use 30×30 site square lattice

in which the chemical potential is chosen to yield a half-filled band. The initial density matrix in

its first quantization form can be expressed as the projection operator onto the states below the

Fermi level, viz.

P(t0) = ∑
n
|ψn(t0)〉〈ψn(t0)|Θ

(
−En(t0)

)
, (3.45)

where |ψn(t0)〉 is the instantaneous eigenstate of H(t0) with the eigenenergy En(t0), and Θ(x) is

a step function guaranteeing that only negative energy states are included in the sum. The time

evolution of the density matrix P follows Eq. (3.44) until tf such that m(tf) = 0.5. The spatial
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distribution of any physical observable O can be computed as O(rrr) = ∑α

〈
rrr,α

∣∣OP(tf)
∣∣rrr,α 〉

for each random realization. We average the disorder over 50 different random realizations.

Following the recent study of Kibble-Zurek behavior in disordered Chern insulators[139],

we utilize the spatial excitation density as a physical observable and extract the correlation length

scale from the spatial autocorrelation function. The operator for the excitation density is the

projector onto the positive energy bands of the final Hamiltonian H(tf), viz.

Pex,f = ∑
n
|ψn(tf)〉〈ψn(tf)|Θ

(
En(t f )

)
, (3.46)

and the spatial excitation density is given by

fex(rrr) = ∑
σ

〈
rrr,σ

∣∣Pex,f P(tf)
∣∣rrr,σ 〉 . (3.47)

The time evolution of the spatial excitation density in a specific random realization is shown

in Fig. 3.8. Initially, the spatial excitation pattern is determined by the bond disorder. In the

earliest stage of the evolution, the system evolves adiabatically, and the spatial excitation pattern

remains almost unchanged until the freeze-out time t/τ =−0.2. After t/τ =−0.2, the evolution

becomes diabatic and the spatial excitation pattern reshapes significantly. After passing the

second freeze-out time t/τ =+0.2, the evolution is again quasi-adiabatic and the pattern of the

spatial excitation density again remains mostly unchanged.

To extract the length scale from the spatial excitation density fex(rrr), we compute the

auto-correlation function A(r),

A(r) = ∑
rrr,rrr′

δ fex(rrr)δ fex(rrr′)δ|rrr−rrr′|,r

/
∑
rrr

(
δ fex(rrr)

)2
, (3.48)

where f̄ex = V−1
∑rrr fex(rrr) is the average excitation density and δ fex(rrr) ≡ fex(rrr)− f̄ex . We

collect the auto-correlation A(r) for each random realization separately, which typically exhibits
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Figure 3.8. Time evolution of the excitation density distribution fex(rrr) across the critical quench.

an exponentially decaying behavior in r. We define the correlation length ξ as the length scale

when A(ξ )→ 0. For each quench rate 1/τ, we compute the disorder-averaged correlation length
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ξ̄ . From the scaling behavior mentioned above, we expect the following scaling behavior of ξ̄ :

ξ̄ ∼

 τ1/3 for τ � γ2,

τ1/2 for τ � γ2.
(3.49)

This behavior is supported by our numerical simulations, as shown in Fig. 3.9. Thus we have

demonstrated that the scaling of the freeze-out length scale ξ̄ can be extracted from the excitation

density profiles after the quench, which provides another experimental scheme to test the

proposed scaling behavior.
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Figure 3.9. The correlation length scale ξr in each trial is defined by the spatial decay of
auto-correlation function A(ξr) defined inEq. (3.48). The disorder averaged ξ̄r is obtained from
50 trials. The critical exponents in the strong and weak decoherence limits are consistent with
Eq. (3.49).
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3.5 Summary and outlook

In conclusion, we have offered a framework for studying the quantum critical quench

dynamics in the presence of decoherence in the energy basis, corresponding to the system

energy being continuously monitored by its environment. In the strong decoherence limit, we

have found a cross-over to a scaling regime (Eq. (3.20)) that differs from that on the standard

Kibble-Zurek form and is governed by the freeze-out time t̄ ∼ τ2νz/(1+2νz) and the freeze-out

length ξ̄ ∼ τ2ν/(1+2νz). This scaling behavior would be universal and manifest in a slew of

observables, such as defect densities. We have applied our formulation to the case of quenching

through a topological phase transition in a Chern insulating system and shown scaling in the

relaxation of the Hall conductivity and in post-quench autocorrelations of post-quench spatial

domains of excitation densities.

Immediate further work would involve analyses of scaling behavior in other measurable

quantities, such as residual energies and entanglement entropy. While this work has been

confined to global quenches, it can also provide a starting point for local quenches across

topological transitions. In this case, we expect a highly interesting interplay between propagation

of boundary modes and decoherence. As another direction of study, while the topological system

in consideration here is two-dimensional, the analysis for such free fermionic models is very

easily extendable to other dimensions. In three-dimensions, scaling analyses can be applied

and contrasted for observables that target the bulk versus the surface. In one-dimension, the

Kitaev chain would offer a beautiful prototype for studying much sought-after Majorana fermion

physics and the crucial role of decoherence in topological qubits.

Our results apply to decoherent quench dynamics through generic quantum phase tran-

sitions, and is not limited to the topological transition examined in this work. For example,

our analysis could be applied to symmetry breaking transitions in spin models of different

dimensions, where the post-quench magnetic domain size will follow the scaling behavior of ξ̄ .

In superconductors and Bose-Einstein condensates, our analyses would apply to the generation
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and dynamics of vortices, now with the twist of having decoherence present. In the presence of

more complex order parameters, Kibble-Zurek physics has probed more exotic defects; here too,

dissipation effects would give rise to new dynamics and possibly even stabilization of some of

these defects.

The discussion of critical quench dynamics in open systems has also been emphasized

within other scenarios[140, 141, 142, 143, 144, 145]. Specifically, Ref. [143] studied a critical

quench as the system weakly couples to a thermal bath. Ref. [145] studied a critical quench in

the presence of dissipation due to the system-environment interaction. The coherent unitary

dynamics will compete with dissipative dynamics to determine the time scale when the system

falls out of equilibrium. The scaling behavior will cross over from the weak dissipation to the

strong dissipation regimes in the vicinity of a crossover temperature Tc [143] or a crossover

dissipation rate uc [145] which scale with the quench rate 1/τ as

kBTc ∼ τ
−νz/(1+νz) or uc ∼ τ

−νz/(1+νz) . (3.50)

In these cases, the system-environment coupling term generally does not commute with the

system Hamiltonian, which allows the system to exchange both energy and quantum information

with its environment (in the static limit). However, in this work, we considered a different

class of system-environment interaction, where the interaction term commutes with the system

Hamiltonian, such that the system only exchanges quantum information with the environment,

with energy preserved (again in the static limit). In particular, we focused on decoherence in

the energy eigenbasis, which can be realized by a quantum non-demolition measurement of

the system Hamiltonian. In this case, the coherent dynamics will compete with the decoherent

dynamics. Because the correlation time and the decoherence time scale differently with the

excitation energy as the system approaches the critical point, their competition leads to the

crossover from weak to strong decoherences regimes at a crossover decoherence rate (quantum

non-demolition measurement strength) γc that scales as γc ∼ τνz/(1+νz) , which resembles the

89



case of dissipation in Eq. (3.50).

Finally, turning to experiments, the range of systems in which quantum Kibble-Zurek

physics has been explored provides a very fertile arena for studying the effect of decoherence,

both in terms of it being integral to physics systems as well as in accessing the new strong

decoherence regime predicted in this work. Controlled tuning and state-of-the-art probes are

enabling access to rich non-equilibrium regimes. Critical quantum quench dynamics and as-

sociated Kibble-Zurek behavior have been actively studied in superconductors[146, 147, 148]

and a variety of ultracold atomic[149, 150, 151, 152, 153] and ionic systems[154, 155, 156].

Kibble-Zurek scaling has been recently applied to identify universality classes of quantum

critical points in experiments[157, 158, 159]. While any of these systems could perhaps form

candidates for probing decoherence effects, the specific instance of Chern insulators studied

here could potentially be realized in cold atom systems[124, 125, 160] and Moire superlattice

systems[161, 162, 163, 164, 165, 166, 167]. With regards to settings where decoherence is

naturally present, perhaps the most germane situations involve qubits, and quantum simulators

and annealers[168, 169, 170, 171, 172]; with the increasing focus on quantum information

and computation, and the need to harness speed and efficient switching of quantum states,

understanding the interplay between quantum quenching and decoherence is now crucial.

Chapter 3 is, in part, a reprint of material from published work done in collaboration

with Daniel P. Arovas, Smitha Vishveshwara,and Yi-Zhuang You, as it appears on Scipost. Wei-

Ting Kuo, Daniel P. Arovas, Smitha Vishveshwara, and Yi-Zhuang You, ”Decoherent Quench

Dynamics across Quantum Phase Transitions,” SciPost Phys. 11, 084 (2021). The dissertation

author was the primary investigator and author of this material.
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Chapter 4

One particle perspective of nonequilib-
rium steady state property for Aubry-
Andre-Harper model under dissipative
and decoherent dynamics

4.1 Synopsis

We investigate the one-dimensional Aubry-André-Harper model of fermion hopping in a

quasiperiodic potential and coupled to an external environment. The dynamics of the system’s

density matrix are modeled by the Gorini-Kossakowski-Sudarshan-Lindblad (GKLS) master

equation, with jump operators corresponding to random dissipative and decohering processes.

While the Liouvillian itself is non-Hermitian and has a complex eigenspectrum, the NESS

itself is Hermitian and may be written as ρ = exp(−K). We investigate the properties of the

resulting non-equilibrium steady state (NESS) density matrices, including participation ratio,

von Neumann entropy, logarithmic negativity, and adjacent gap ratios for K. Our results indicate

that there is one phase for the NESS, which undergoes a crossover behavior between regimes of

small and large localization length.
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4.1.1 Contribution of the author

The author has contributed in developing the formalism and in writing this paper. He has

performed numerical analysis together with Jyotsna Gidugu.

4.2 Introduction

Identifying and investigating multiple phase properties under different theoretical or

experimental settings is a key topic in condensed matter field. One important and common

example is the delocalized phase which could result from periodic lattice structure[173]. The

breaking of periodicity, by adding disorder or quasi-periodic potential, leads to the localization

phase. In low dimensions (d = 1,2), any non-vanishing disorder drives the system to the

localization phase, also known as Anderson localization[174, 175]. As for the quasi-periodic

potential, the delocalization-localization phase transition occurs at finite potential strength[176,

177, 178]. The localized and delocalized phases can be characterized by the static and dynamical

probes. The static probes study the wave function distribution (e.g. localization length[179]

and inverse participation ratio) or the spectral statistics of the Hamiltonian (e.g. adjacent gap

ratio[180]); whereas the dynamical probe focuses on how the initial localized wave function

spreads out over the system volume. These multiple probes help us identify and reveal different

phase properties in closed system.

In open system, similar dynamical probes can be realized in boundary-driven system

which couples the system boundaries with two reservoirs with different temperature/chemical

potential. The energy/particle gradient created by the reservoirs leads to a persistent steady current

j∞ with the resistance R = 1/ j∞. The size-dependent resistance in one dimension is R∼ Lβ and

reveals diffusive (β = 1), subdiffusive (β > 1) and localization (divergent β ) behaviors. The

different transport properties are highly sensitive to the disorder[181, 182, 183, 184, 185], the

incommensurate potential[186, 187, 188], many-body interaction term[189, 190, 191, 192], and

recently studied on-site dephasing term[193, 194, 195]. The transport properties characterized
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by steady currents lead to rich discoveries of phases. However, if the system fails to maintain a

conserved current, could we utilize different probes to diagnose the non-equilibrium system ?

Here, we would like to address this problem by utilizing multiple one-particle probes to study the

non-equilibrium steady state under dissipative and dephasing dynamics. One particle probes can

be computed from the one particle correlation matrix alone. The reason for using one-particle

probes is two-fold. First, the commonly used dynamical probe is also a one-particle probe.

The off-diagonal entries of the one-particle correlation matrix were required to compute the

dynamical probe. Its ability to distinguish different phases motivates us to use other one-particle

probes. With more information from the one-particle correlation matrix, we expect to obtain

richer information about different phases in open system. Second, one-particle probes can

provide potential connections between open and closed system where many one-particle probes

have provided much understanding of different phases. Using similar probes enables us to learn

the similarity and difference between phases in open and closed system. The rest of this paper is

organized as follows. In Sec. 4.3, we introduce our formalism to describe the dissipative and

dephasing dynamics and define all the one-particle probes used in our study. Their results and

further discussion are also provided. Sec. 4.4 summarizes our work and points out potential

future directions.

4.3 Model and result

We start with the Lindblad master equation which describes the nonunitary dynamics of

the system coupled to a Markovian environment[196] and is given by,

dρ(t)
dt

=−i[H,ρ(t)]+∑
µ

(
Lµρ(t)L†

µ −
1
2
{L†

µLµ ,ρ(t)}
)

(4.1)

where ρ(t) and H are the density matrix and Hamiltonian of the system. Lµ is the Lindblad

operator which represents how environmental coupling affects the system. To explore how

one-dimensional localized and extended states evolve under environmental coupling, we consider
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the one-dimensional Aubry-Andre-Harper (AAH) Hamiltonian,

H = ∑
n

c†
n+1cn + c†

ncn+1 +2∆cos(2πnβ )c†
ncn. (4.2)

where n labels the site index and β is an irrational number. The first term represents the nearest-

neighboring hopping, and the second term stands for the quasi-periodic incommensurate potential.

The competition between these two terms leads to the delocalization-localization phase transition

at ∆ = 1 [176, 177, 178]. In our model setup, we apply open boundary condition and choose β

as the inverse of the golden ratio (β = (
√

5−1)/2).

We consider three kinds of on-site Lindblad operators, the gain operator (Lg), the loss

operator (Ll), and the dephasing operator (Lde),

Lg,n =
√

W+
n c†

n,Ll,n =
√

W−n cn,Lde,n =
√

Γnc†
ncn. (4.3)

The gain and loss operators add and remove particles in our system, which couple different

particle number sectors and represent the dissipative dynamics. These two operators would be

also called the dissipative Lindblad operators in our work. As for the dephasing operator, it

adds dephasing noise to the system without changing the number of particles. In this work, we

study the interplay between the strength of the incommensurate potential (∆) and the strength

of the dissipative (W+
n ,W−n ) and dephasing (Γn) Lindblad operators. We consider two kinds of

non-unitary evolutions: purely dissipative evolution and dissipative-dephasing evolution. In both

cases, we sample the amplitude of the corresponding Lindblad operators (W+
n ,W−n )/(Γn) from a

uniform distribution ranging from zero to W/Γ.

To probe the persistent feature under the dissipative and dephasing dynamics, we focus

on the density matrix for the non-equilibrium steady state (NESS) ρness. To extract essential

features from ρness, we utilize the one-particle correlation matrix of the NESS to compute several
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one-particle probes. The one-particle correlation matrix can be constructed as

Cxy,ness = Tr(ρnessc†
xcy). (4.4)

To obtain Cxy,ness, we explicitly compute Cness in purely dissipative dynamics (details in Ap-

pendix B.1). As for the dissipative-dephasing dynamics, we utilize iterative algorithm to obtain

Cness (details in Appendix B.1) [193, 194, 195].
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log W

<latexit sha1_base64="jQaosVPNqeQrQ0x3q9XnSIkww6s=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVX8egF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTAXXxvO+ncLK6tr6RnGztLW9s7tX3j9o6CRTDOssEYlqhVSj4BLrhhuBrVQhjUOBzXB4O/WbT6g0T+SjGaUYxLQvecQZNVZ68N2Lbrniud4MZJn4OalAjlq3/NXpJSyLURomqNZt30tNMKbKcCZwUupkGlPKhrSPbUsljVEH49mpE3JilR6JEmVLGjJTf0+Maaz1KA5tZ0zNQC96U/E/r52Z6DoYc5lmBiWbL4oyQUxCpn+THlfIjBhZQpni9lbCBlRRZmw6JRuCv/jyMmmcuf6le35/Xqne5HEU4QiO4RR8uIIq3EEN6sCgD8/wCm+OcF6cd+dj3lpw8plD+APn8wdeAI01</latexit>

1.5

<latexit sha1_base64="tPveg5Rv5nWmh5lcp/CI0kqqHtU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqMeiF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB9/1euWK53pzkFXi56QCOeq98le3n7As5gqZpMZ0fC/FYEI1Cib5tNTNDE8pG9EB71iqaMxNMJmfOiVnVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6G0XUwESrNkCu2WBRlkmBCZn+TvtCcoRxbQpkW9lbChlRThjadkg3BX355lTQvXP/Srd5XK7WbPI4inMApnIMPV1CDO6hDAxgM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBWbI0w</latexit>

1.0

<latexit sha1_base64="8zr4QMrJpWmocvWy3jgcr6lZP8U=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVX8egF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTAXXxvO+ncLK6tr6RnGztLW9s7tX3j9o6CRTDOssEYlqhVSj4BLrhhuBrVQhjUOBzXB4O/WbT6g0T+SjGaUYxLQvecQZNVZ68NyLbrniud4MZJn4OalAjlq3/NXpJSyLURomqNZt30tNMKbKcCZwUupkGlPKhrSPbUsljVEH49mpE3JilR6JEmVLGjJTf0+Maaz1KA5tZ0zNQC96U/E/r52Z6DoYc5lmBiWbL4oyQUxCpn+THlfIjBhZQpni9lbCBlRRZmw6JRuCv/jyMmmcuf6le35/Xqne5HEU4QiO4RR8uIIq3EEN6sCgD8/wCm+OcF6cd+dj3lpw8plD+APn8wdceo00</latexit>

0.5

<latexit sha1_base64="KJlmga6X63HWyrQZFsRaS/z+wMs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyGRoh6LXjxWsB/QhrLZbtqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwoQzbTzv2ymtrW9sbpW3Kzu7e/sH1cOjto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5C73O09UaRbLRzNNaCDwSLKIEWxy6cJ3vUG15rneHGiV+AWpQYHmoPrVH8YkFVQawrHWPd9LTJBhZRjhdFbpp5ommEzwiPYslVhQHWTzW2fozCpDFMXKljRorv6eyLDQeipC2ymwGetlLxf/83qpiW6CjMkkNVSSxaIo5cjEKH8cDZmixPCpJZgoZm9FZIwVJsbGU7Eh+Msvr5L2petfufWHeq1xW8RRhhM4hXPw4RoacA9NaAGBMTzDK7w5wnlx3p2PRWvJKWaO4Q+czx/AD41n</latexit>�1.0
<latexit sha1_base64="mq5Y2a0pxUTqRt6djwjW0Wd96bw=">AAAB63icbVDLSsNAFL3xWeur6tLNYBHcGBKpj2XRjcsK9gFtKJPppB06MwkzE6GE/oIbF4q49Yfc+TdO2iy09cCFwzn3cu89YcKZNp737aysrq1vbJa2yts7u3v7lYPDlo5TRWiTxDxWnRBrypmkTcMMp51EUSxCTtvh+C73209UaRbLRzNJaCDwULKIEWxy6dxzL/uVqud6M6Bl4hekCgUa/cpXbxCTVFBpCMdad30vMUGGlWGE02m5l2qaYDLGQ9q1VGJBdZDNbp2iU6sMUBQrW9Kgmfp7IsNC64kIbafAZqQXvVz8z+umJroJMiaT1FBJ5ouilCMTo/xxNGCKEsMnlmCimL0VkRFWmBgbT9mG4C++vExaF65/5dYeatX6bRFHCY7hBM7Ah2uowz00oAkERvAMr/DmCOfFeXc+5q0rTjFzBH/gfP4Axh2Naw==</latexit>�0.5

<latexit sha1_base64="ROu+pif5hVFRVcA6MARljJU/uhM=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh6LXjxWtB/QLiWbzrah2eySZIWy9Cd48aCIV3+RN/+NabsHbX2Q8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSg1t1++WK/ecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n81Wn5MwqAxLGyj5pyFz93ZHRSOtJFNjKiJqRXvZm4n9eNzXhtZ9xmaQGJVsMClNBTExmd5MBV8iMmFhCmeJ2V8JGVFFmbDolG4K3fPIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawGAIz/AKb45wXpx352NRWnDynmP4A+fzB1TmjS8=</latexit>

0.0

<latexit sha1_base64="v39eYqclYP/MavlovDrhVl/rZeI=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4MSSlqMeiF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dtbWNza3tks75d29/YPDytFxW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa5dFlzvUGl6rneHGiV+AWpQoHmoPLVH8YkFVQawrHWPd9LTJBhZRjhdFbup5ommEzwiPYslVhQHWTzW2fo3CpDFMXKljRorv6eyLDQeipC2ymwGetlLxf/83qpiW6CjMkkNVSSxaIo5cjEKH8cDZmixPCpJZgoZm9FZIwVJsbGU7Yh+Msvr5J2zfWv3PpDvdq4LeIowSmcwQX4cA0NuIcmtIDAGJ7hFd4c4bw4787HonXNKWZO4A+czx/BlY1o</latexit>�2.0

<latexit sha1_base64="KJlmga6X63HWyrQZFsRaS/z+wMs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyGRoh6LXjxWsB/QhrLZbtqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwoQzbTzv2ymtrW9sbpW3Kzu7e/sH1cOjto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5C73O09UaRbLRzNNaCDwSLKIEWxy6cJ3vUG15rneHGiV+AWpQYHmoPrVH8YkFVQawrHWPd9LTJBhZRjhdFbpp5ommEzwiPYslVhQHWTzW2fozCpDFMXKljRorv6eyLDQeipC2ymwGetlLxf/83qpiW6CjMkkNVSSxaIo5cjEKH8cDZmixPCpJZgoZm9FZIwVJsbGU7Eh+Msvr5L2petfufWHeq1xW8RRhhM4hXPw4RoacA9NaAGBMTzDK7w5wnlx3p2PRWvJKWaO4Q+czx/AD41n</latexit>�1.0

<latexit sha1_base64="ROu+pif5hVFRVcA6MARljJU/uhM=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh6LXjxWtB/QLiWbzrah2eySZIWy9Cd48aCIV3+RN/+NabsHbX2Q8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSg1t1++WK/ecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n81Wn5MwqAxLGyj5pyFz93ZHRSOtJFNjKiJqRXvZm4n9eNzXhtZ9xmaQGJVsMClNBTExmd5MBV8iMmFhCmeJ2V8JGVFFmbDolG4K3fPIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawGAIz/AKb45wXpx352NRWnDynmP4A+fzB1TmjS8=</latexit>

0.0<latexit sha1_base64="l7VjG60+6RnV1d5eQII6YRNtlOw=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSqyfUELf75YpX9ebAq8TPSQVyNPrlr95A0TRm0lJBjOn6XmKDjGjLqWDTUi81LCF0TIas66gkMTNBNr92is+cMsCR0q6kxXP190RGYmMmceg6Y2JHZtmbif953dRG10HGZZJaJuliUZQKbBWevY4HXDNqxcQRQjV3t2I6IppQ6wIquRD85ZdXSeui6l9Wa/e1Sv0mj6MIJ3AK5+DDFdThDhrQBAqP8Ayv8IYUekHv6GPRWkD5zDH8Afr8ARmWjtQ=</latexit>

log W

<latexit sha1_base64="LQxUP5vN33bpXHfjKZ3JmROFUHE=">AAAB7XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNRDx4r2A9oQ9lsJ+3aTTbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNCrVHBpcSaXbATMgRQwNFCihnWhgUSChFYxupn7rCbQRKn7AcQJ+xAaxCAVnaKVm9xYksl654lbdGegy8XJSITnqvfJXt694GkGMXDJjOp6boJ8xjYJLmJS6qYGE8REbQMfSmEVg/Gx27YSeWKVPQ6VtxUhn6u+JjEXGjKPAdkYMh2bRm4r/eZ0Uwys/E3GSIsR8vihMJUVFp6/TvtDAUY4tYVwLeyvlQ6YZRxtQyYbgLb68TJpnVe+ien5/Xqld53EUyRE5JqfEI5ekRu5InTQIJ4/kmbySN0c5L8678zFvLTj5zCH5A+fzB2N6jwU=</latexit>

�

<latexit sha1_base64="ROu+pif5hVFRVcA6MARljJU/uhM=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh6LXjxWtB/QLiWbzrah2eySZIWy9Cd48aCIV3+RN/+NabsHbX2Q8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSg1t1++WK/ecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n81Wn5MwqAxLGyj5pyFz93ZHRSOtJFNjKiJqRXvZm4n9eNzXhtZ9xmaQGJVsMClNBTExmd5MBV8iMmFhCmeJ2V8JGVFFmbDolG4K3fPIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawGAIz/AKb45wXpx352NRWnDynmP4A+fzB1TmjS8=</latexit>

0.0
<latexit sha1_base64="v39eYqclYP/MavlovDrhVl/rZeI=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4MSSlqMeiF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dtbWNza3tks75d29/YPDytFxW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa5dFlzvUGl6rneHGiV+AWpQoHmoPLVH8YkFVQawrHWPd9LTJBhZRjhdFbup5ommEzwiPYslVhQHWTzW2fo3CpDFMXKljRorv6eyLDQeipC2ymwGetlLxf/83qpiW6CjMkkNVSSxaIo5cjEKH8cDZmixPCpJZgoZm9FZIwVJsbGU7Yh+Msvr5J2zfWv3PpDvdq4LeIowSmcwQX4cA0NuIcmtIDAGJ7hFd4c4bw4787HonXNKWZO4A+czx/BlY1o</latexit>�2.0

<latexit sha1_base64="KJlmga6X63HWyrQZFsRaS/z+wMs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyGRoh6LXjxWsB/QhrLZbtqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwoQzbTzv2ymtrW9sbpW3Kzu7e/sH1cOjto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5C73O09UaRbLRzNNaCDwSLKIEWxy6cJ3vUG15rneHGiV+AWpQYHmoPrVH8YkFVQawrHWPd9LTJBhZRjhdFbpp5ommEzwiPYslVhQHWTzW2fozCpDFMXKljRorv6eyLDQeipC2ymwGetlLxf/83qpiW6CjMkkNVSSxaIo5cjEKH8cDZmixPCpJZgoZm9FZIwVJsbGU7Eh+Msvr5L2petfufWHeq1xW8RRhhM4hXPw4RoacA9NaAGBMTzDK7w5wnlx3p2PRWvJKWaO4Q+czx/AD41n</latexit>�1.0

<latexit sha1_base64="ROu+pif5hVFRVcA6MARljJU/uhM=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh6LXjxWtB/QLiWbzrah2eySZIWy9Cd48aCIV3+RN/+NabsHbX2Q8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSg1t1++WK/ecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n81Wn5MwqAxLGyj5pyFz93ZHRSOtJFNjKiJqRXvZm4n9eNzXhtZ9xmaQGJVsMClNBTExmd5MBV8iMmFhCmeJ2V8JGVFFmbDolG4K3fPIqaV1Uvctq7b5Wqd/kcRThBE7hHDy4gjrcQQOawGAIz/AKb45wXpx352NRWnDynmP4A+fzB1TmjS8=</latexit>

0.0

<latexit sha1_base64="EV86/mtZs7VOZntQCq0bY4NuoGI=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mkqMeiBz1WsB+QhLLZbtqlu9mwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzolRwA6777ZTW1jc2t8rblZ3dvf2D6uFRx6hMU9amSijdi4hhgiesDRwE66WaERkJ1o3GtzO/+8S04Sp5hEnKQkmGCY85JWAlPxBqiIM7IiXpV2tu3Z0DrxKvIDVUoNWvfgUDRTPJEqCCGON7bgphTjRwKti0EmSGpYSOyZD5liZEMhPm85On+MwqAxwrbSsBPFd/T+REGjORke2UBEZm2ZuJ/3l+BvF1mPMkzYAldLEozgQGhWf/4wHXjIKYWEKo5vZWTEdEEwo2pYoNwVt+eZV0LureZb3x0Kg1b4o4yugEnaJz5KEr1ET3qIXaiCKFntErenPAeXHenY9Fa8kpZo7RHzifP8QlkO4=</latexit>

log �<latexit sha1_base64="mq5Y2a0pxUTqRt6djwjW0Wd96bw=">AAAB63icbVDLSsNAFL3xWeur6tLNYBHcGBKpj2XRjcsK9gFtKJPppB06MwkzE6GE/oIbF4q49Yfc+TdO2iy09cCFwzn3cu89YcKZNp737aysrq1vbJa2yts7u3v7lYPDlo5TRWiTxDxWnRBrypmkTcMMp51EUSxCTtvh+C73209UaRbLRzNJaCDwULKIEWxy6dxzL/uVqud6M6Bl4hekCgUa/cpXbxCTVFBpCMdad30vMUGGlWGE02m5l2qaYDLGQ9q1VGJBdZDNbp2iU6sMUBQrW9Kgmfp7IsNC64kIbafAZqQXvVz8z+umJroJMiaT1FBJ5ouilCMTo/xxNGCKEsMnlmCimL0VkRFWmBgbT9mG4C++vExaF65/5dYeatX6bRFHCY7hBM7Ah2uowz00oAkERvAMr/DmCOfFeXc+5q0rTjFzBH/gfP4Axh2Naw==</latexit>�0.5

<latexit sha1_base64="KJlmga6X63HWyrQZFsRaS/z+wMs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyGRoh6LXjxWsB/QhrLZbtqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwoQzbTzv2ymtrW9sbpW3Kzu7e/sH1cOjto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5C73O09UaRbLRzNNaCDwSLKIEWxy6cJ3vUG15rneHGiV+AWpQYHmoPrVH8YkFVQawrHWPd9LTJBhZRjhdFbpp5ommEzwiPYslVhQHWTzW2fozCpDFMXKljRorv6eyLDQeipC2ymwGetlLxf/83qpiW6CjMkkNVSSxaIo5cjEKH8cDZmixPCpJZgoZm9FZIwVJsbGU7Eh+Msvr5L2petfufWHeq1xW8RRhhM4hXPw4RoacA9NaAGBMTzDK7w5wnlx3p2PRWvJKWaO4Q+czx/AD41n</latexit>�1.0 <latexit sha1_base64="EV86/mtZs7VOZntQCq0bY4NuoGI=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mkqMeiBz1WsB+QhLLZbtqlu9mwOxFK6M/w4kERr/4ab/4bt20O2vpg4PHeDDPzolRwA6777ZTW1jc2t8rblZ3dvf2D6uFRx6hMU9amSijdi4hhgiesDRwE66WaERkJ1o3GtzO/+8S04Sp5hEnKQkmGCY85JWAlPxBqiIM7IiXpV2tu3Z0DrxKvIDVUoNWvfgUDRTPJEqCCGON7bgphTjRwKti0EmSGpYSOyZD5liZEMhPm85On+MwqAxwrbSsBPFd/T+REGjORke2UBEZm2ZuJ/3l+BvF1mPMkzYAldLEozgQGhWf/4wHXjIKYWEKo5vZWTEdEEwo2pYoNwVt+eZV0LureZb3x0Kg1b4o4yugEnaJz5KEr1ET3qIXaiCKFntErenPAeXHenY9Fa8kpZo7RHzifP8QlkO4=</latexit>

log �

<latexit sha1_base64="jQaosVPNqeQrQ0x3q9XnSIkww6s=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVX8egF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTAXXxvO+ncLK6tr6RnGztLW9s7tX3j9o6CRTDOssEYlqhVSj4BLrhhuBrVQhjUOBzXB4O/WbT6g0T+SjGaUYxLQvecQZNVZ68N2Lbrniud4MZJn4OalAjlq3/NXpJSyLURomqNZt30tNMKbKcCZwUupkGlPKhrSPbUsljVEH49mpE3JilR6JEmVLGjJTf0+Maaz1KA5tZ0zNQC96U/E/r52Z6DoYc5lmBiWbL4oyQUxCpn+THlfIjBhZQpni9lbCBlRRZmw6JRuCv/jyMmmcuf6le35/Xqne5HEU4QiO4RR8uIIq3EEN6sCgD8/wCm+OcF6cd+dj3lpw8plD+APn8wdeAI01</latexit>

1.5

�
��
��

��
�
ξ �

�
/�

� ���� ��� ξ�� /�
<latexit sha1_base64="mZZt6LVkjIwjS2SoraIHjJ10wbw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hKUY9FLx4r2lpoQ9lsJ+3SzSbsboRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG8/7dgpr6xubW8Xt0s7u3v5B+fCopZNMMWyyRCSqHVKNgktsGm4EtlOFNA4FPoajm5n/+IRK80Q+mHGKQUwHkkecUWOle8+t9soVz/XmIKvEz0kFcjR65a9uP2FZjNIwQbXu+F5qgglVhjOB01I305hSNqID7FgqaYw6mMxPnZIzq/RJlChb0pC5+ntiQmOtx3FoO2NqhnrZm4n/eZ3MRFfBhMs0MyjZYlGUCWISMvub9LlCZsTYEsoUt7cSNqSKMmPTKdkQ/OWXV0mr6voXbu2uVqlf53EU4QRO4Rx8uIQ63EIDmsBgAM/wCm+OcF6cd+dj0Vpw8plj+APn8wdX7o0x</latexit>

0.2
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Figure 4.1. Participation ratio for purely dissipative and dissipative-dephasing dynamics. The
color plots show the participation ratio under different parameter regimes. The curve plots show
different scaling behaviors in the extended and localized phases.

Next, we use the one-particle correlation matrix to compute the following one-particle

probes, the averaged participation ratio (PR)[197], von Neumann entropy, and logarithmic

negativity. Note that von Neumann entropy and logarithmic negativity computed from the

one-particle correlation matrix are exact when the density matrix of the NESS is Gaussian. In our

cases, the density matrix would remain Gaussian during the purely dissipative evolution. As for

the dissipative-dephasing dynamics, we still compute these quantities based on the one-particle

correlation matrix and aim at exploring the phase structure from the one-particle perspective.
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First, we start with defining the average participation ratio (PR) and presenting the corre-

sponding results in both dissipative and dissipative-dephasing dynamics. The main ingredients

in computing PR from Cxy,ness are the eigenvalues {nα} of Cxy,ness and their corresponding eigen-

vectors {ψα} which are called natural orbitals. The α-th eigenvalue nα represents the occupation

number at the α-th natural orbital ψα . Effectively, these natural orbitals represent the eigenstates

of the one-particle Hamiltonian Hone which can be defined from the one-particle density matrix

as ρone ∼ exp(−Hone,i jc
†
i c j). These are the orbitals where the particles would naturally live.

To quantify the property of each natural orbital, we can use the usual definition of the

inverse participation ratio (IPR), ∑i |ψα,i|4. Hence, the average IPR would be the sum of the IPR

weighted by their respective particle number. The average PR (ξ̄PR) is simply the inverse of the

average IPR,

ξ̄PR = (∑
α

nα

L

∑
i=1
|ψα,i|4/(∑

α

nα))
−1. (4.5)

When all natural orbitals are strictly localized/extended coherently, the average PR arrives at

the value of one/the system size L. This size-dependence of the extended state enables us to

distinguish the extended and localized states by computing the PR for multiple system sizes.

Before presenting our average PR results for different strengths of W and Γ, we first

discuss the result when the dynamics only contain the dissipative operators and their strengths

(W+
n ,W−n ) are spatially uniform. One can show that the resultant correlation matrix of the NESS

is an identity matrix multiplied by a factor ν . This factor ν represents the expectation value of

the particle number per site and is controlled by the strength of the gain and loss operators.

The PR result of the NESS under random on-site dissipative and dephasing dynamics

is presented in Fig. 4.1. The first row in Fig. 4.1 shows the phase diagram of the average PR

when the time evolution is purely dissipative. When the random dissipative strength is weak

(W ∼ 10−2), the system seems to preserve the eigenstate properties in the original AAH model.

When ∆ < ∆c, the PR scales with the system size, which serves as a signature of the extended

system. As for ∆ > ∆c case, the system-size independent PR represents the localized system.
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The main distinction is that the crossover occurs between these two phases instead of the phase

transition in the AAH model. This crossover can be verified by both smoothly converging PR

and the invariant order of the system size in PR when the system transits between two phases.

Similar crossovers can be found if we increase the random dissipative strength such as the path

B in Fig. 4.1. This similarity implies that the random on-site dissipation would drive the system

to the localized NESS. The second row in Fig. 4.1 shows the phase diagram of the average PR

when the time evolution is dissipative-dephasing dynamics. When the on-site potential strength

and random dissipative strength are both small (∆ = 0.2 and W ∼ 10−2), the NESS of the system

also tends to cross from the extended phase to the localized phase as the random dephasing

amplitude increases. This property suggests that the random on-site dephasing term would also

lead to a localized NESS.

Here, we would like to comment the physical meaning of the localization in PR. The

PR stands for the spatial coherence length. Since our setup has local dissipative and dephasing

Lindbladian operators which lead to quantum decoherence in the positional basis, the system

ultimately arrives at the localization in PR when the dissipation and dephasing are strong

enough. This conclusion seems to contradict the previous studies which state that the dephasing

noise leads to an enhanced transport and destroys the localization [193, 194, 195]. However,

the ”localization” in the transport property is different from the ”localization” in PR. Here,

we would like to demonstrate a simple example which shows a nonzero steady current and

strong localization in PR. This example contains the tight-binding model with the gain and loss

operators located on the opposite boundaries and uniform on-site dephasing operators. The

hopping amplitude and the boundary couplings W+
1 ,W−L are set to be one. We choose four

different uniform dephasing amplitudes, Γn = 0.01,0.1,1,10. In this setup, the steady current

exists for all dephasing amplitudes. Fig. 4.2 show the diagonal entries of the correlation matrix at

NESS and the PR for different dephasing amplitudes. The increasing dephasing amplitude drives

the on-site particle number from mostly uniform distribution to a linear gradient distribution

across the one-dimensional chain. Besides, the PR decreases with the increasing dephasing
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amplitude. This results from that the linearly decreasing gradient makes the eigenvectors of

the one-particle correlation matrix more localized. Physically, this localization occurs due to

the decoherence at the positional basis. This simple example demonstrates the possibility of

non-vanishing steady current with localized PR.
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Figure 4.2. The on-site particle number and the PR result for the boundary-driven system under
uniformly dephasing coupling.

In addition to the study of PR, we also investigated the spectral statistics of the one-

particle Hamiltonian (the results and details are in Appendix B.2). Their results show similar
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phase structure with that of PR. To further explore the properties of the extended and lo-

calized phases in open system, we utilize two quantum information probes, the one-particle

von-Neunmann entropy and logarithmic negativity. Typically, their scaling relation with respect

to the system size reveals the nature of the phase. The one-particle von Neumann entropy (Sone)

is defined as

Sone =−∑
i
[ni,sub logni,sub +(1−ni,sub) log(1−ni,sub)] (4.6)

where ni,sub are the eigenvalues of the nsub × nsub submatrix of the full correlation matrix

at NESS. For the mixed density matrix, the von Neumann entropy measures the classical

correlations between the system and environment. Since our dissipative and dephasing Lindblad

operators couples the system with environment locally, the von Neumann entropy would increase

linearly with the sub-system size. This linear behavior can be also seen in the one-particle

von Neumann entropy for both dissipative and dissipative-dephasing dynamics (in Fig. 4.3).

Moreover, the extended and localized phases exhibit different entropy slopes in the plot of

entropy versus system size. To better quantify this difference, we define the von Neumann

entropy density, sone = Sone/N, which represents the increment of classical correlation between

system and environment when one extra site is added. The phase with larger entropy density

(e.g. the extended phase) implies a stronger classical correlation. In purely dissipative dynamics,

increasing the strength of the quasi-potential and dissipative operator both lead to decreasing

entropy densities (shown in the first row in Fig. 4.4). Under the dephasing and dissipative

dynamics, however, the entropy density increases with the dephasing amplitudes (shown in the

second row in Fig. 4.4), especially in large quasi-potential strength regime. This dephasing-

enhanced classical correlation resonates with the previous studies of the dephasing-enhanced

transport phenomena.

The last probe is the one-particle logarithmic negativity [198, 199, 200, 201]. The

logarithmic negativity is used as a probe to capture quantum correlation in the mixed state. To

define the one-particle logarithmic negativity, we first define the covariance matrix (Ξ) from the
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Figure 4.3. The plot of the one-particle entropy versus the subsystem size under purely dissipative
and dissipative-dephaing dynamics.

one-particle correlation matrix (C) as Ξ = I−2C. Next, we divide the full system into two parts,

A, Ā and construct the transformed matrix (CΞ) as

CΞ =
1
2

[
I− (I+Ξ+Ξ−)

−1 (Ξ++Ξ−)
]

(4.7)
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Figure 4.4. The slope of the one-particle entropy volume-law curve for different parameter
regimes.

where Ξ± can be constructed from the covariance matrix,

Ξ± =

 −ΞAA ±iΞAĀ

±iΞĀA ΞĀĀ

 (4.8)

Suppose the eigenvalues of the correlation matrix (C) and the transformed matrix (CΞ) are {ni}

and {ξi}, the one-particle logarithmic negativity (E) is defined as

E = ∑
i

ln
[
ξ

1/2
i +(1−ξi)

1/2
]
+

1
2 ∑

i
ln
(
(1−ni)

2 +n2
i

)
. (4.9)

Due to the widespread dissipative and dephasing operators in the system, the long-range quantum
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correlation would fail to persist and only live on the boundary, which would give us the area-law

relation between the negativity and sub-system size. The one-particle logarithmic negativity (the

panel (a) in Fig. 4.5) quickly increases for small sub-system sizes and then arrives at the plateau

with a constant negativity value. This behavior appears in the extended and localized phases

but with different plateau values. When both dephasing and dissipative strengths are weak, the

plateau value for half-system size would cross from the extended value to the localized one as the

quasi-potential strength increases. In strong dephasing limit, the plateau values stays small (the

panel (b) in Fig. 4.5). This suggests that the on-site dissipative and dephasing Lindblad operators

reduce the quantum correlation existing in the system.
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Figure 4.5. (a) The plot of the one-particle logarithmic negativity versus the subsystem size
under purely dissipative and dissipative-dephaing dynamics. (b,c) The one-particle logarithmic
negativity of the half-system size for different parameter regimes.

102



4.4 Summary and outlook

Here, we presented results from several one-particle probes for the non-equilibrium

steady state of the Aubry-Andre model under dissipative and dephasing dynamics. For strong

enough dissipative and dephasing Lindblad operators, the system would ultimately arrive at the

localized NESS; whereas in the weak dissipative and dephasing cases, the system exhibits a

delocalization-localization crossover when we tune the strength of the quasi-periodic potential.

We also discussed and compare the difference between the localization in participation ratio

and that in transport property. Both extended and localized phases show volume-law classical

correlation and area-law quantum correlation but with different slopes and saturation plateau

values. Our results show the ability of one-particle probes to identify fruitful phase structure in

open system.

One potential future direction is to study whether the original fractal property still persists

under dissipative and dephasing dynamics. One common probe to detect the fractal property in

closed system is the generalized inverse participation ratio (GIPR) which computes different

moments of the wave function. Following similar idea, we can compute GIPR of the natural

orbitals around ∆ = 1 in weak dissipative and dephasing Lindblad operators to study whether the

fractal critical point still exists.

Chapters 4 is, in part, a reprint of material from work done in collaboration with Jyotsna

Gidugu and Daniel P. Arovas, as it will appear on the arXiv. The dissertation author was the

primary investigator and author of this material.
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Appendix A

Appendix for Chapter 2

A.1 Entanglement feature of page state

The Page state can be considered as a single random tensor. According to Ref. [39], the

2nd Rényi entanglement feature of a random tensor network can be calculated as the partition

function of an Ising model,

WRTN[σσσ ] =
1
Z ∑

τττ

e−ERTN[σσσ ,τττ], (A.1)

where each random tensor is mapped to an Ising spin τi coupled together via the network, and

the boundary condition pinned by external Zeeman field along the direction specified by σσσ .

Applying this result to the Page state,

WPage[σσσ ] =
1
Z ∑

τ

eη ∑
L
i=1 σiτ , (A.2)

where there is only one Ising spin τ because the Page state is only a single random tensor. The

τ spin couples to the boundary condition σσσ via uniform field strength η = 1
2 logd, which is

determined by the qudit Hilbert space dimension d (see Ref. [39] for derivation). Completing the

summation over Ising spin τ , we obtain

WPage[σσσ ] =
2
Z

cosh
(

η

L

∑
i=1

σi

)
. (A.3)
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The normalization constant Z is determined by the condition that WPage[⇑]≡ 1, such that Z =

2cosh(ηL), hence

WPage[σσσ ] =
cosh(η ∑

L
i=1 σi)

cosh(ηL)
, (A.4)

which can be rewritten as the EF state |WPage〉 in Eq. (2.11).

A.2 Entanglement feature of two-qudit Haar random
unitary

Here we derive the ensemble averaged EF operator for two-qudit Haar random unitary

gate. We start with the definition

WUi j [σσσ ,τττ] = Tr(XσσσU⊗2
i j XτττU†⊗2

i j ). (A.5)

Ui j is a two-qudit gate acting on qudits labeled by i and j. Focusing on these two qudits, the Ising

variables σσσ = (σi,σ j) and τττ = (τi,τ j) both contain only two components. Consider averaging

the EF WUi j over unitary gates Ui j in the Haar random unitary ensemble,

EUi j∈HaarWUi j [σσσ ,τττ] = EUi j∈Haar Tr(XσσσU⊗2
i j XτττU†⊗2

i j )

= ∑
g,h∈S2

Wg(g−1h,d2)Tr(XgXσ1)Tr(XgXσ2)Tr(XhXτ1)Tr(XhXτ2),

(A.6)

where Wg is the Weingarten function[202, 203] and g,h are S2 group elements

Wg(g−1h,d2) =


1

d4−1 g−1h =

− 1
d2(d4−1) g−1h =

. (A.7)
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The cycle counting function Tr(XgXh) follows

Tr(XgXh) =

 d2 gh =

d gh =
. (A.8)

Substituting Eq. (A.7) and Eq. (A.8) into Eq. (A.6), we can evaluate EUi j∈HaarWUi j [σσσ ,τττ] for all

configurations of σσσ ,τττ . In terms of Ising variables (following the identification ⇔↑ and ⇔↓),

we can summarize the result as the following matrix in the Ising basis σσσ ,τττ =↑↑,↑↓,↓↑,↓↓

EUi j∈HaarŴUi j =



d4 d3 d3 d2

d3 2d4

d2+1
2d4

d2+1 d3

d3 2d4

d2+1
2d4

d2+1 d3

d2 d3 d3 d4


, (A.9)

which is also the matrix representation of the (ensemble averaged) EF operator ŴUi j . The matrix

can as well be written in terms of Pauli operators as

EUi j∈HaarŴUi j = d2(d +Xi)(d +X j)−
d2(d2−1)
2(d2 +1)

(1−ZiZ j)(d2−XiX j), (A.10)

as claimed in Eq. (2.13). For simplicity, we have omitted EUi j∈Haar notation in Eq. (2.13), with

the understanding that the EF for an ensemble of unitaries is implicitly averaged.

A.3 Relation between state and unitary entanglement
features

Here we prove Eq. (2.19). Consider a many-body state (multi-qudit) state |Ψ〉 and an

unitary operator Ut in the same Hilbert space. Suppose that |Ψ′〉=Ut |Ψ〉, our goal is to derive

the time evolution of the corresponding EF state. In general, this is not tractable since the unitary

operator Ut contains many non-universal features that are specific to the choice of local basis.
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Such features may affect the entanglement of the final state but such features are not captured in

EF formalism. To keep track of universal features, we instead consider an ensemble of unitary

operator U ,

EU =
{

V †UV
∣∣∣V =

L⊗
i=1

Vi,Vi ∈ Haar
}
, (A.11)

where each Vi independently follows Haar random unitary distribution on the ith qudit. Our goal

is to compute EU ′∈EU WU ′|Ψ〉[σσσ ],

E
U ′∈EU

WU ′|Ψ〉[σσσ ] = E
U ′∈EU

Tr[Xσσσ (U ′|Ψ〉〈Ψ|U ′†)⊗2]

= E
V∈Haar

Tr[Xσσσ (V †UV |Ψ〉〈Ψ|V †U†V )⊗2]

= E
V∈Haar

〈Ψ|⊗2V †⊗2U†⊗2V⊗2XσσσV †⊗2U⊗2V⊗2|Ψ〉⊗2

= E
V∈Haar

〈Ψ|⊗2V †⊗2U†⊗2XσσσU⊗2V⊗2|Ψ〉⊗2

= ∑
τττ,τττ ′

Tr(Xτττ |Ψ〉〈Ψ|⊗2)Tr(Xτττ ′U
†(t)⊗2XσσσU⊗2

t )∏
i
Wg(τ ′−1

i τi,d)

= ∑
τττ,τττ ′

W|Ψ〉[τττ]WU [σσσ ,τττ ′]∏
i
Wg(τ ′−1

i τi,d),

(A.12)

where Wg denotes the Weingarten function[202, 203] originated from the Haar ensemble average

of V †⊗2V⊗2, and τττ,τττ ′ are new set of Ising variables. The derivation in Eq. (A.12) can also be

diagrammatically represented as Fig. A.1.

By definition, the Weingarten function, when viewed as a matrix indexed by τττ and τττ ′, is

the inverse of the Gram matrix TrXτττXτττ ′ = 〈τττ ′|Ŵ1|τττ〉, which is simply the matrix representation

of the EF operator Ŵ1 of the identity operator. So the Weingarten function is given by the matrix

element of Ŵ−1
1 as

∏
i
Wg(τ ′−1

i τi,d) = 〈τττ ′|Ŵ−1
1 |τττ〉. (A.13)
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
V∈Haar

σ1

V1†⊗2

V1⊗2

V1†⊗2

V1⊗2

σ2

V2†⊗2

V2⊗2

V2†⊗2

V2⊗2

σ3

V3†⊗2

V3⊗2

V3†⊗2

V3⊗2

σL

VL
†⊗2

VL⊗2

VL
†⊗2

VL⊗2

〈Ψ⊗2

U†⊗2

U⊗2

Ψ〉⊗2

…

…

…

…

…

= 
V∈Haar

σ1

V1†⊗2

V1⊗2

σ2

V2†⊗2

V2⊗2

σ3

V3†⊗2

V3⊗2

σL

VL
†⊗2

VL⊗2

〈Ψ⊗2

U†⊗2

U⊗2

Ψ〉⊗2

… = 

τ,τ′

τ1 τ2 τ3 τL

〈Ψ⊗2

Ψ〉⊗2

… Tr

σ1

τ1
′

σ2

τ2
′

σ3

τ3
′

σL

τL
′

U⊗2

U†⊗2

…

…


i

��τi
′-1 τi

Figure A.1. Diagrammatic proof of Eq. (2.19)

Therefore, in operator form, we have

EU ′∈EU |WU ′Ψ〉= ∑
σσσ

WU ′|Ψ〉[σσσ ]|σσσ〉

= ∑
σσσ ,τττ ′,τττ

(
|σσσ〉WU [σσσ ,τττ ′]〈τττ ′|

)
Ŵ−1
1

(
W|Ψ〉[τττ]|τττ〉

)
= ŴUŴ−1

1 |WΨ〉,

(A.14)

as stated in Eq. (2.19).

A.4 Spectral properties of entanglement Hamiltonian

Let us start with the most general form of the EF Hamiltonian ĤEF given in Eq. (2.32)

and investigate its spectral properties.

ĤEF = ∑
i, j

Ĥi j, Ĥi j = gi j
1−ZiZ j

2
e−βi jXiX j−δ (Xi+X j), (A.15)
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with cothδ = d. Our first goal is to show that ĤEF is positive semi-definite. The trick is to first

deform ĤEF to a Hermitian version Ĥ ′EF, given by

Ĥ ′EF = Ŵ−1/2
1 ĤEFŴ 1/2

1 . (A.16)

Because ĤEF and Ĥ ′EF are related by similarity transformation, they share the same set of

eigenvalues. So the positivity of the original EF Hamiltonian ĤEF is equivalent to the positivity

of the transformed Hermitian version Ĥ ′EF. The later turns out to be easier to prove. By the

way, to see that Ĥ ′EF is Hermitian (or real symmetric to be more precise), we use Ŵᵀ
1 = Ŵ1 and

Eq. (2.35) that Ŵ1Ĥᵀ
EF = ĤEFŴ1, then

Ĥ ′ᵀEF = Ŵ 1/2
1 Ĥᵀ

EFŴ−1/2
1 = Ŵ−1/2

1 (Ŵ1Ĥᵀ
EF)Ŵ

−1/2
1 = Ŵ−1/2

1 (ĤEFŴ1)Ŵ
−1/2
1 = Ŵ−1/2

1 ĤEFŴ 1/2
1

= Ĥ ′EF,

(A.17)

meaning that Ĥ ′EF is transpose symmetric. Moreover Ĥ ′EF is real by definition, so Ĥ ′EF is real and

symmetric and therefore Hermitian. As a real symmetric operator, Ĥ ′EF admits the following

spectral decomposition

Ĥ ′EF = ∑
a
|Va〉λa〈Va|, (A.18)

with |Va〉= 〈Va|ᵀ being the eigenvector corresponding to the eigenvalue λa. If we can show that

the expectation value 〈V |Ĥ ′EF|V 〉 ≥ 0 is non-negative on any state |V 〉 in the EF Hilbert space

(including the eigenstates |Va〉), we will be able to prove that all eigenvalues λa = 〈Va|Ĥ ′EF|Va〉≥ 0

are non-negative, hence Ĥ ′EF will be positive semi-definite.

We can show 〈V |Ĥ ′EF|V 〉 ≥ 0 by finding the Cholesky decomposition for each terms in

Ĥ ′EF. A useful trick is to note that d(d +Xi) = eδXi/(tanhδ sinhδ ) given d = cothδ , so Ŵ1 can
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be rewritten as

Ŵ1 =
L

∏
i=1

d(d +Xi) =
L

∏
i=1

eδXi

tanhδ sinhδ
=

1
(tanhδ sinhδ )L

L

∏
i=1

eδXi, (A.19)

such that any Ŵ α
1 can be simply calculated,

Ŵ α
1 = (tanhδ sinhδ )−αL

L

∏
i=1

eαδXi. (A.20)

With this, and substitute Eq. (A.15) in Eq. (A.16), we can show that

Ĥ ′EF = ∑
i, j

Ĥ ′i j,

Ĥ ′i j = Ŵ−1/2
1 Ĥi jŴ

1/2
1

=
L

∏
i=1

e−
δ

2 XiĤi j

L

∏
i=1

e
δ

2 Xi

= e−
δ

2 (Xi+X j)Ĥi je
δ

2 (Xi+X j)

= gi je−
δ

2 (Xi+X j)
1−ZiZ j

2
e−βi jXiX je−

δ

2 (Xi+X j)

= gi je−
δ

2 (Xi+X j)
1−ZiZ j

2
e−βi jXiX j

1−ZiZ j

2
e−

δ

2 (Xi+X j).

(A.21)

In the last step, we use the fact that 1−ZiZ j
2 is a projection operator, so (

1−ZiZ j
2 )2 =

1−ZiZ j
2 . Also

1−ZiZ j
2 and e−βi jXiX j commute with each other, so we are free to move e−βi jXiX j through 1−ZiZ j

2 .

The final form of Ĥ ′i j admits the following Cholesky decomposition explicitly

Ĥ ′i j = Âᵀ
i jÂi j, Âi j = g1/2

i j e−
βi j
2 XiX j

1−ZiZ j

2
e−

δ

2 (Xi+X j). (A.22)

For any state |V 〉 in EF Hilbert space, the expectation value 〈V |Ĥ ′i j|V 〉 = 〈V |Âᵀ
i jÂi j|V 〉 ≥ 0

is non-negative, therefore Ĥ ′i j is positive semi-definite. In consequence, the transformed EF

Hamiltonian Ĥ ′EF = ∑i, j Ĥ ′i j is also positive semi-definite, as it is the sum of positive semi-

definite terms Ĥ ′i j. Recall that the similarity transformation does not affect the eigenvalues, so

110



ĤEF = Ŵ 1/2
1 Ĥ ′EFŴ−1/2

1 is also positive semi-definite.

We can further show that ĤEF always has two zero modes: one is even under Z2 Ising

symmetry, and the other is odd. Using the left-null-state property 〈⇑ |ĤEF = 0 given in Eq. (2.34),

it is ensured that 〈⇑ | is an left-eigenstate of ĤEF with zero eigenvalue. Since ĤEF is Z2 symmetric,

the Z2 related state 〈⇓ | = 〈⇑ |∏i Xi is also a left zero mode. So by explicit construction, we

have shown that ĤEF has at least two zero eigenvalues. The left zero mode subspace is spanned

by 〈⇑ | and 〈⇓ |. Using the relation between left- and right-eigenstate |Ra〉 ∝ (〈La|Ŵ1)
ᵀ, the

corresponding right zero mode subspace is spanned by Ŵ1| ⇑〉 and Ŵ1| ⇓〉.

Since we are most interested about the EF of pure states, we should focus on the Z2 even

state in the zero mode subspace. In that regard, the left and right zero modes in the Z2 even

sector are given by

〈L0|=
〈⇑ |+ 〈⇓ |

2
,

|R0〉 ∝ Ŵ1
| ⇑〉+ | ⇓〉

2

=
1
2

( L

∏
i=1

d(d +Xi)

)
(| ⇑〉+ | ⇓〉)

=
1
2

d3L/2
( L

∏
i=1

(eη + e−ηXi)

)
(| ⇑〉+ | ⇓〉) (η ≡ 1

2 logd)

=
1
2

d3L/2
∑
σσσ

( L

∏
i=1

eησi|σσσ〉+
L

∏
i=1

e−ησi|σσσ〉
)

= d3L/2
∑
σσσ

cosh
(

η

L

∑
i=1

σi

)
|σσσ〉.

(A.23)

The normalization of |R0〉 is determined by the condition 〈L0|R0〉= 1, such that

|R0〉= ∑
σσσ

cosh
(
η ∑

L
i=1 σi

)
cosh(ηL)

|σσσ〉= |WPage〉. (A.24)

In summary, we have shown that in the Z2 even sector, the EF Hamiltonian ĤEF has at least one
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zero eigenvalue λ0 = 0, whose left- and right-eigenstates are given by

〈L0|=
〈⇑ |+ 〈⇓ |

2
, |R0〉= |WPage〉, (A.25)

as claimed in Eq. (2.41).

A.5 Derivation of the dispersion relation for two-domain-
wall ansatz

Here, we show the derivation of Eq. (2.52). Our goal here is to obtain the analytical

expression of excited state energy, namely dispersion relation, ω(k). Note that the left and right

eigenstates are not simply each other’s conjugate transpose due to the non-hermitian nature

of EF Hamiltonian (Eq. (2.32)). For simplicity, we focus on the excitation of left eigenstates

and construct the corresponding right eigenstate with |R〉= (〈L|Ŵ1)
ᵀ. From the discussion in

Sec. 3.3, the universal left ground state for any parameters gi j,β is the linear combination of all

spin-up and spin-down state,

〈L0|=
〈⇑ |+ 〈⇓ |

2
. (A.26)

Based on our ED result in Fig. 2.5, the low energy left excited state mainly consists of two-

domain-wall states. The generic form of two-domain-wall state can be expressed as

〈k| ≡Ck ∑
n,a
〈kn,a| ≡Ck ∑

n,a
eikn

φ
∗(a)〈⇑ |

n+a

∏
i=n

Xi (A.27)

where Ck is the normalization constant and 〈kn,a| represents the two-domain-wall state ranging

from n to n+a.

We start by deriving the normalization constant.

〈k|k〉= |Ck|2 ∑
n,m,a,b

eik(n−m)
φ
∗(a)φ(b)〈⇑ |

n+a

∏
i=n

XiŴ1

m+b

∏
i=m

Xi| ⇑〉= 1. (A.28)
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The next step is to evaluate 〈⇑ |∏n+a
i=n XiŴ1∏

m+b
j=m X j| ⇑〉. The physical meaning is the transition

amplitude between two Bethe string states with evolution as Ŵ1. There are two possibilities

for each site. When both Bethe strings have/do not have excitation at site i, the answer would

be 〈⇑ |(Ŵ1)i| ⇑〉 = d2. When either Bethe string has excitation on site i, the result becomes

〈⇑ |Xi(Ŵ1)i| ⇑〉= d. To evaluate this quantity, we perform perturbative expansion as 1/d series.

To obtain analytical expression of |Ck|2, we also approximate φ(a) as plane wave ∼ e−ika/2.

Physical intuition is that we assume these domain walls have little interaction with each other

and thus they can move through each other almost freely. Consequently, plane wave solution

is assumed and a/2 represents the center location of domain wall. Let’s start evaluating the

normalization constant up to the order of 1/d2,

〈⇑ |
n+a

∏
i=n

XiŴ1

m+b

∏
j=m

X j| ⇑〉= δn,mδa,bd2N

+(δn,mδa,b+1 +δn,mδa,b−1 +δn,m+1δa,b−1 +δn,m−1δa,b+1)d2N−1

+(δn,mδa,b+2 +δn,mδa,b−2 +δn,m−2δa,b+2 +δn,m+2δa,b−2

+δn,m+1δa,b +δn,m+1δa,b−2 +δn,m−1δa,b +δn,m−1δa,b+2)d2N−2

+O(d2N−3)

(A.29)

For b = 0,1, we would have different terms,

〈⇑ |
n+a

∏
i=n

XiŴ1Xm| ⇑〉= δn,mδa,0d2N +(δn,mδa,1 +δn,m−1δa,1)d2N−1

+(δn,mδa,2 +δn,m−2δa,2 +δn,m+1δa,0 +δn,m−1δa,0 +δn,m−1δa,2)d2N−2

+O(d2N−3)

(A.30)
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〈⇑ |
n+a

∏
i=n

XiŴ1XmXm+1| ⇑〉= δn,mδa,1d2N +(δn,mδa,2 +δn,mδa,0 +δn,m+1δa,0 +δn,m−1δa,2)d2N−1

+(δn,mδa,3 +δn,m−2δa,3 +δn,m+1δa,1 +δn,m−1δa,1 +δn,m−1δa,3)d2N−2 +O(d2N−3)

(A.31)

Put them back to Eq. (A.28) and we can obtain

|Ck|2d2NN2{N−2
N

[1+
4
d

cos
k
2
+

1
d2 (2+6cosk)]+

1
N
[1+

2
d

cos
k
2
+

1
d2 (1+4cosk)]

+
1
N
[1+

4
d

cos
k
2
+

1
d2 (1+4cosk)]+O(d−3)}= 1

(A.32)

To simplify the whole calculation, the thermodynamics limit is taken N→ ∞. The main

effect of thermodynamic limit is that the contribution from short two domain wall states (e.g.

single-site or two-site excitations) is fully suppressed. Thus, up to O( 1
d2 ), we have

|Ck|2d2NN2[1+
4
d

cos
k
2
+

1
d2 (2+6cosk)] = 1 (A.33)

Now, we are ready to evaluate the energy expectation value of our two-domain-wall state,

〈k|HEF |k〉. For simplicity, we assume gi j = 1,βi j = β and reorganize the EF Hamiltonian

ĤEF = ∑
i, j

1−ZiZ j

2
e−βXiX j−δ (Xi+X j)

= ∑
i, j

1−ZiZ j

2
d2

d2−1
[coshβ − sinhβXiX j][1−

1
d
(Xi +X j)+

1
d2 XiX j]

= ∑
i, j

1−ZiZ j

2
d2

d2−1
[coshβ − sinhβ

d2 − 1
d
(coshβ − sinhβ )(Xi +X j)+(

coshβ

d2 − sinhβ )XiX j]

≡∑
i

1−ZiZi+1

2
[
a(β ,d)+b(β ,d)(Xi +Xi+1)+ c(β ,d)XiXi+1

]
(A.34)
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where

a(β ,d) =
d2

d2−1
(coshβ − sinhβ

d2 ) = coshβ +
coshβ − sinhβ

d2 +O(
1
d4 )

b(β ,d) =− d
d2−1

(coshβ − sinhβ ) =−1
d
(coshβ − sinhβ )+O(

1
d3 )

c(β ,d) =
d2

d2−1
(
coshβ

d2 − sinhβ ) =
coshβ − sinhβ

d2 − sinhβ +O(
1
d4 ).

(A.35)

The first term in 〈k|HEF |k〉 is

|Ck|2a(β ,d) ∑
n,m,a,b

eik(n−m)eik(a−b)/2〈⇑ |
n+a

∏
i=n

Xi ∑
l

1−ZlZl+1

2
Ŵ1

m+b

∏
j=m

X j| ⇑〉

= 2a(β ,d)|Ck|2 ∑
n,m,a,b

eik(n−m)eik(a−b)/2〈⇑ |
n+a

∏
i=n

XiŴ1

m+b

∏
j=m

X j| ⇑〉= 2a(β ,d)

(A.36)

As for the second term, since b(β ,d) already contains 1/d power, we just compute the terms up

to 1/d order and the result is

|Ck|2b(β ,d) ∑
n,m,a,b

eik(n−m)eik(a−b)/2〈⇑ |
n+a

∏
i=n

Xi ∑
l

1−ZlZl+1

2
(Xl +Xl+1)Ŵ1

m+b

∏
j=m

X j| ⇑〉

= |Ck|2b(β ,d) ∑
n,m,a,b

eik(n−m)eik(a−b)/2

× [h(n−1,m,a+1,b)+h(n+1,m,a−1,b)+h(n,m,a+1,b)+h(n,m,a−1,b)]

(A.37)

where

h(n,m,a,b) = 〈⇑ |
n+a

∏
i=n

XiŴ1

m+b

∏
j=m

X j| ⇑〉. (A.38)

For each h(n,m,a,b), the boundary terms would have different result. For example, the results
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of h(n−1,m,a+1,b) are as follows

h(n−1,m,a+1,0) = (δn,m+1δa,0 +δn,mδa,0)d2N−1 +O(d2N−2)

h(n−1,m,a+1,1) = δn,m+1δa,0d2N +(δn,m+1δa,1 +δn,mδa,1)d2N−1 +O(d2N−2)

h(n−1,m,a+1,2) = δn,m+1δa,1d2N

+(δn,m+1δa,2 +δn,m+1δa,0 +δn,m+2δa,0 +δn,mδa,2)d2N−1 +O(d2N−2)

h(n−1,m,a+1,b 6= 0,1,2) = δn,m+1δa,b−1d2N

+(δn,m+1δa,b +δn,m+1δa,b−2 +δn,m+2δa,b−2 +δn,mδa,b)d2N−1 +O(d2N−2).

(A.39)

Since the thermodynamics limit would be taken (N → ∞), the ”boundary effect” from short

two-domain-wall states would be suppressed. Consequently, we only keep the last term in our

calculation. Combine these four terms and compute the sum with thermodynamic limit,

|Ck|2b(β ,d)d2NN2[4cos
k
2
+

8
d
(1+ cosk)]+O(

1
d2 )

= b(β ,d)[4cos
k
2
− 16

d
cos2 k

2
+

4
d
(2+2cosk)]+O(

1
d2 )

(A.40)

For the third term, the following quantity is computed

|Ck|2c(β ,d) ∑
n,m,a,b

eik(n−m)eik(a−b)/2〈⇑ |
n+a

∏
i=n

Xi ∑
l

1−ZlZl+1

2
XlXl+1ŴI

m+b

∏
j=m

X j| ⇑〉. (A.41)

The EF Hamiltonian would give extra XiXi+1 term. In most two-domain-wall states

(length > 1), the two-domain-wall structure would destroyed. However, for single site excitation,

this XiXi+1 term would only shift the position of excitation with one site. Due to the suppression

of thermodynamic limit, we would also drop this term. Eventually, we obtain

c(β ,d)
[4

d
cos

k
2
+

1
d2 (8+8cosk)

]
(1− 4

d
cos

k
2
)+O(

1
d3 ) =

c(β ,d)
[4

d
cos

k
2
+

1
d2 (8+8cosk)− 16

d2 cos2 k
2
]
+O(

1
d3 ).

(A.42)
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Combining Eq. (A.36), Eq. (A.40) and Eq. (A.42) and keeping terms up to O( 1
d3 ), 〈k|HEF |k〉 is

〈k|HEF |k〉= 2[coshβ +
coshβ − sinhβ

d2 ]

− 1
d
(coshβ − sinhβ )[4cos

k
2
− 16

d
cos2 k

2
+

4
d
(2+2cosk)]

− sinhβ
[4

d
cos

k
2
+

1
d2 (8+8cosk)− 16

d2 cos2 k
2
]
+O(

1
d3 )

(A.43)

A.6 Derivation of the dispersion relation for single-site
excitation ansatz

This appendix is similar with the calculation in Appendix A.5. The only difference is the

ansatz state we use. The single-site excitation ansatz is defined as

〈k|=Ck〈⇑ |∑
n

Xneikn, |k〉= Ŵ1∑
n

Xne−ikn| ⇑〉. (A.44)

First, we start from the normalization condition 〈k|k〉= 1,

〈k|k〉= 1 =Ck〈⇑ |∑
n,m

eik(n−m)XnŴ1Xm| ⇑〉=Ck[Nd2(N−1)(d2−1)+N2
δk,0d2(N−1)]. (A.45)

Following the expression in Eq. (A.46),

ĤEF = ∑
i

1−ZiZi+1

2
[
a(β ,d)+b(β ,d)(Xi +Xi+1)+ c(β ,d)XiXi+1

]
(A.46)

where

a(β ,d) =
d2

d2−1
(coshβ − sinhβ

d2 ),

b(β ,d) =− d
d2−1

(coshβ − sinhβ ),

c(β ,d) =
d2

d2−1
(
coshβ

d2 − sinhβ ).

(A.47)
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The first term is

a(β ,d)〈k|∑
l

1−ZlZl+1

2
WI|k〉= a(β ,d)Ck ∑

m,n
eik(n−m)〈n|∑

l

1−ZlZl+1

2
Ŵ1|m〉

= a(β ,d)Ck ∑
m,n

eik(n−m)〈n|∑
l
(δl,n−1 +δl,n)Ŵ1|m〉

= 2a(β ,d)Ck ∑
m,n

eik(n−m)〈n|Ŵ1|m〉

= 2a(β ,d)Ck ∑
m,n

eik(n−m)[δn,md2N +(1−δn,m)d2(N−1)]

= 2a(β ,d)Ck[Nd2(N−1)(d2−1)+N2
δk,0d2(N−1)] = 2a(β ,d).

(A.48)

The second term is

b(β ,d)〈k|∑
l

1−ZlZl+1

2
(Xl +Xl+1)WI|k〉

= b(β ,d)Ck ∑
m,n

eik(n−m)〈n|∑
l

1−ZlZl+1(Xl +Xl+1)

2
Ŵ1|m〉

= b(β ,d)Ck ∑
m,n

eik(n−m)〈n|(Xn−1 +2Xn +Xn+1)Ŵ1|m〉

= b(β ,d)Ck ∑
m,n

eik(n−m)(〈n,n−1|WI|m〉+ 〈n,n+1|Ŵ1|m〉+2〈⇑ |Ŵ1|m〉)

= b(β ,d)Ck ∑
m,n

eik(n−m)[d2N−3(1−δm,n)(1−δm,n−1)+d2N−3(1−δm,n)(1−δm,n+1)

+d2N−1(δm,n +δm,n−1)+d2N−1(δm,n +δm,n+1)+2d2N−1]

= b(β ,d)Ck ∑
m,n

eik(n−m)[2d2N−3 +2d2N−1 +(d2N−1−d2N−3)(δm,n−1 +2δm,n +δm,n+1)]

= b(β ,d)Ck[N2
δk,02d2N−3(d2 +1)+2d2N−3(d2−1)N(1+ cosk)].

(A.49)
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For single-site excitation, we focus on the region which k 6= 0. The result would be

2b(β ,d)
1+ cosk

d
×Ck[Nd2(N−2)(d2−1)] =

2b(β ,d)
d

(1+ cosk). (A.50)

The third term is

c(β ,d)〈k|∑
l

1−ZlZl+1

2
XlXl+1Ŵ1|k〉= c(β ,d)Ck ∑

m,n
eik(n−m)〈n|∑

l

(1−ZlZl+1)XlXl+1

2
Ŵ1|m〉

= c(β ,d)Ck ∑
m,n

eik(n−m)〈n|∑
l
(δl,n−1 +δl,n)XlXl+1Ŵ1|m〉

= c(β ,d)Ck ∑
m,n

eik(n−m)(〈n−1|Ŵ1|m〉+ 〈n+1|Ŵ1|m〉)

= c(β ,d)Ck ∑
m,n

eik(n−m)(2d2(N−1)+(δm,n−1 +δm,n+1)(d2N−d2(N−1))

= 2c(β ,d)Ck[Nd2(N−1)(d2−1)cosk+N2d2(N−1)
δk,0] = 2c(β ,d)cosk

(A.51)

The overall result would be

〈k|ĤEF |k〉= 2a(β ,d)+
2b(β ,d)

d
(1+ cosk)+2c(β ,d)cosk

= 2a(β ,d)+
2b(β ,d)

d
+ cosk[2c(β ,d)+

2b(β ,d)
d

]

=
2d2

d2−1
(coshβ − sinhβ

d2 )− 2
d2−1

(coshβ − sinhβ )

+ cosk[
2d2

d2−1
(
coshβ

d2 − sinhβ )− 2
d2−1

(coshβ − sinhβ )]

(A.52)

119



A.7 Diagrammatic expansion of entanglement feature
Hamiltonian

In this appendix, we derive the EF Hamiltonian for the locally scrambled Hamiltonian

dynamics. We start from the definition of the EF for e−iεH following Eq. (2.5),

We−iεH [σσσ ,τττ] = Tr
(
Xσσσ (e−iεH)⊗2Xτττ(eiεH)⊗2)= Tr

(
Xσσσ e−iεHXτττeiεH), (A.53)

where we have introduced H = H⊗1+1⊗H to denote the double Hamiltonian. Given the

locality of H = ∑x Hx, the double Hamiltonian H is also a sum of local terms H= ∑xHx with

Hx = Hx⊗1+1⊗Hx being the doubled version of Hx. Expanding around ε → 0 to the order of

ε2, we obtain

We−iεH [σσσ ,τττ] = Tr(XσσσXτττ)− ε
2 Tr(XσσσXτττH2−XσσσHXτττH)+O(ε4),

=W1[σσσ ,τττ]− ε
2
∑
x,x′

Tr(XσσσXτττHxHx′−XσσσHxXτττHx′)+O(ε4),

=W1[σσσ ,τττ]− ε
2
∑
x

Tr(XσσσXτττH2
x−XσσσHxXτττHx)+O(ε4)

(A.54)

where the first order term in ε vanishes by the cyclic identity of trace, confirming the argument

in Sec. 2.3.5 that WU(ε) will be even in ε . The last equality in Eq. (A.54) relies on the fact that

Tr(XσσσXτττHxHx′−XσσσHxXτττHx′) = 0 as long as x 6= x′. To prove this, we first consider the case
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when x = 〈i j〉 and x′ = 〈kl〉 do not overlap,

TrXσσσH〈i j〉XτττH〈kl〉 = TrXσσσH〈i j〉
(
XτiXτ jXτkXτl

⊗
m 6=i, j,k,l

Xτm

)
H〈kl〉

= TrXσσσ

(
XτkXτl

⊗
m6=i, j,k,l

Xτm

)
H〈i j〉H〈kl〉(XτiXτ j)

= Tr(XτiXτ j)Xσσσ

(
XτkXτl

⊗
m 6=i, j,k,l

Xτm

)
H〈i j〉H〈kl〉

= TrXσσσ

(
XτiXτ jXτkXτl

⊗
m 6=i, j,k,l

Xτm

)
H〈i j〉H〈kl〉

= TrXσσσXτττH〈i j〉H〈kl〉,

(A.55)

where we have used the fact that [H〈i j〉,XτkXτl ] = 0 for i, j 6= k, l, and [Xσi,Xτ j ] = 0 for any

i, j as the S2 group is Abelian. We then consider the case when x = 〈i j〉 and x′ = 〈 jk〉 overlaps

on a single site j,

TrXσσσH〈i j〉XτττH〈 jk〉 = TrXσσσH〈i j〉
(
XτiXτ jXτk

⊗
m 6=i, j,k

Xτm

)
H〈 jk〉

= TrXσσσ

(
Xτk

⊗
m6=i, j,k

Xτm

)
H〈i j〉Xτ jH〈 jk〉Xτi.

(A.56)

At this point, it seems that Xτ j is caught between H〈i j〉 and H〈 jk〉. The solution is to make use of

the property that H〈 jk〉 = X −1
α j

X −1
αk

H〈 jk〉XαkXα j for any α j = αk ∈ S2, due to the permutation

symmetry to exchange the two replicas of the double Hamiltonian. Now we choose α j = αk = τ j,
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such that Xτ jX
−1

α j
= 1, then

TrXσσσH〈i j〉XτττH〈 jk〉 = TrXσσσ

(
Xτk

⊗
m 6=i, j,k

Xτm

)
H〈i j〉Xτ jX

−1
α j

X −1
αk

H〈 jk〉XαkXα jXτi

= TrXσσσ

(
Xτk

⊗
m 6=i, j,k

Xτm

)
H〈i j〉X

−1
αk

H〈 jk〉XαkXα jXτi

= TrXσσσ

(
XτiXα jXαkXτkX

−1
αk

⊗
m 6=i, j,k

Xτm

)
H〈i j〉H〈 jk〉

= TrXσσσ

(
XτiXτ jXτk

⊗
m 6=i, j,k

Xτm

)
H〈i j〉H〈 jk〉

= TrXσσσXτττH〈i j〉H〈 jk〉.

(A.57)

Hence we have shown that TrXσσσH〈i j〉XτττH〈kl〉 = TrXσσσXτττH〈i j〉H〈kl〉 as long as 〈i j〉 6= 〈kl〉,

meaning that Tr(XσσσXτττHxHx′−XσσσHxXτττHx′) = δxx′ Tr(XσσσXτττH2
x−XσσσHxXτττHx). Thus the

derivation of Eq. (A.54) is justified.

If we consider the difference between We−iεH and W1, denoted as δW ,

δW [σσσ ,τττ]≡We−iεH [σσσ ,τττ]−W1[σσσ ,τττ] =−ε
2
∑
x

Tr(XσσσXτττH2
x−XσσσHxXτττHx)+O(ε4). (A.58)

δW [σσσ ,τττ] = ∑x δWx[σσσ ,τττ]W1x̄ [σσσ ,τττ] can be expressed as a sum of terms on each bond x (at least

to the order of ε2). To carry out the ε expansion more systematically, we choose to focus on a

single bond, and define the EF difference

δWx[σσσ ,τττ]≡We−iεHx [σσσ ,τττ]−W1x [σσσ ,τττ] = Tr
(
Xσσσ e−iεHxXτττeiεHx

)
−Tr

(
XσσσXτττ

)
, (A.59)

where σσσ = (σi,σ j) is restricted to the two sites i, j connected by the bond x and similarly for

τττ . δWx[σσσ ,τττ] = 0 vanishes as long as σi = σ j or τi = τ j, because in that case, Xσσσ or Xτττ will

commute with Hx and hence the two traces will cancel with each other. Therefore there are only
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two independent non-trivial components of δW [σσσ ,τττ], which we denote as u and v:

u = δW [ i j, i j] = δW [ i j, i j],

v = δW [ i j, i j] = δW [ i j, i j].

(A.60)

So we only need to focus on these terms and perform the ε expansion following the definition

δWx[σσσ ,τττ] = Tr
(
Xσσσ e−iεHx⊗ e−iεHxXτττeiεHx⊗ eiεHx

)
−Tr

(
XσσσXτττ

)
=

∞

∑
k=1

ε
2k

∑
n1+n2+n3+n4=2k

i−n1−n2+n3+n4

n1!n2!n3!n4!
Tr
(
Xσσσ Hn1

x ⊗Hn2
x XτττHn3

x ⊗Hn4
x
)
.

(A.61)

The ε odd power terms must vanish because δWx[σσσ ,τττ] must be real. To the ε4 order, we found

u = ε
2
(
−2 +

(
2d +2d

)
− 1

2!

(
4d2 ))

+ ε
4
(

+ 1
2!

(
4 −4 −4

)
+ 1

(2!)2

(
2 +2d +2d

)
+ 1

3!

(
4 −4d −4d

)
+ 1

4!

(
4d2

))
+O(ε6)

=−ε
2(2R(1)(2)

(1)(2)−2d
(
R(12)

(1)(2)+R(1)(2)
(12)

)
+2d2R(12)

(12))

+ ε
4(R(13)(24)

(12)(34)+2
(
R(124)(3)

(123)(4)−R(12)(34)
(123)(4)−R(123)(4)

(12)(34)

)
+ 1

2

(
R(12)(34)

(12)(34)+dR(1234)
(12)(34)+dR(12)(34)

(1234)

)
+ 2

3

(
R(123)(4)

(123)(4)−dR(1234)
(123)(4)−dR(123)(4)

(1234)

)
+ 1

6d2R(1234)
(1234))+O(ε6),

v = ε
4
(

+ 4−8
2! +

(
6

(2!)2 +
4−8
3! + 4

4!

) )
+O(ε6)

= ε
4(R(1432)

(1234)−2R(1243)
(1234)+R(1234)

(1234)

)
+O(ε6).

(A.62)

In the diagrams, each small red block represents a copy of the bond Hamiltonian Hx. Their

legs are contracted according to the assignment of the permutations σσσ and τττ . The result can

be expressed in terms of the generalized spectral form factor Rg j
gi , labeled by two permutations

gi,g j ∈ Sn acting separately on sites i and j,

Rg j
gi = Tr(H⊗n

i j Xgig j). (A.63)
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where Xgig j = XgiXg j is the representation of gi and g j in the n-replicated Hilbert space. For

example, R(1)(2)
(1)(2) = (TrHi j)

2, R(12)
(1)(2) = Tr j(Tri Hi j)

2 (where Tri denotes the partial trace over site i),

and R(12)
(12) = Tr(H2

i j).

Given the components u and v, we can rewrite δWx[σσσ ,τττ] in the operator form

δŴx =
1−ZiZ j

2
(u+ vXiX j)

1−ZiZ j

2
, (A.64)

therefore the EF operator reads

Ŵe−iεH = Ŵ1+∑
x

δŴx⊗Ŵ1x̄ = Ŵ1+∑
i j

1−ZiZ j

2
(u+ vXiX j)

1−ZiZ j

2
⊗Ŵ1ī j

. (A.65)

The EF Hamiltonian is therefore given by

ĤEF =
1
ε2 (1−Ŵe−iεHŴ−1

1 )

=− 1
ε2 ∑

i j

1−ZiZ j

2
(u+ vXiX j)

1−ZiZ j

2
Ŵ−1
1i j

=− 1
ε2 ∑

i j

1−ZiZ j

2
(u+ vXiX j)

1−ZiZ j

2
1

d2(d2−1)
e−δ (Xi+X j)

=−∑
i j

1−ZiZ j

2
u+ vXiX j

ε2d2(d2−1)
e−δ (Xi+X j)

(A.66)

Therefore the EF Hamiltonian generally take the form of

ĤEF = ∑
i j

g
1−ZiZ j

2
e−βXiX j−δ (Xi+X j), (A.67)

consistent with the general form in Eq. (2.32). Comparing Eq. (A.66) with Eq. (A.67), we should

identify

ge−βXiX j =− u+ vXiX j

ε2d2(d2−1)
, (A.68)
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which indicates

gcoshβ =− u
ε2d2(d2−1)

=
1

d2(d2−1)
(u2−u4ε

2 +O(ε4))

gsinhβ =
v

ε2d2(d2−1)
=

1
d2(d2−1)

(v4ε
2 +O(ε4)),

(A.69)

where the coefficients u2,u4,v4 are defined in terms of generalized spectral form factors Rg j
gi as

u2 = 2R(1)(2)
(1)(2)−2d

(
R(12)

(1)(2)+R(1)(2)
(12)

)
+2d2R(12)

(12),

u4 = R(13)(24)
(12)(34)+2

(
R(124)(3)

(123)(4)−R(12)(34)
(123)(4)−R(123)(4)

(12)(34)

)
+ 1

2

(
R(12)(34)

(12)(34)+dR(1234)
(12)(34)+dR(12)(34)

(1234)

)
+ 2

3

(
R(123)(4)

(123)(4)−dR(1234)
(123)(4)−dR(123)(4)

(1234)

)
+ 1

6d2R(1234)
(1234),

v4 = R(1432)
(1234)−2R(1243)

(1234)+R(1234)
(1234).

(A.70)

For specific model of Hi j, we can evaluate the generalized spectral form factors, then we can

determine the parameters g and β as well as the EF Hamiltonian. In the following, we will

perform the calculation for random U(d) spin model and the locally scrambled Ising model.

For two-qudit GUE Hamiltonians, the generalized spectral form factors, defined in

Eq. (A.63), can be evaluated under the GUE average using the basic property that

E
GUE

H⊗2
i j ≡ E

GUE
Hi j⊗2

=
1
d2 hi hj ≡ 1

d2 X(12)i(12) j ,

(A.71)

the GUE average of n-replicated Hamiltonian Hi j can be obtained by summing over Wick

contractions

E
GUE

H⊗n
i j =

 d−n
∑hi=h j∈Pn Xhih j n ∈ even,

0 n ∈ odd,
(A.72)

where Pn denotes all possible pair-wise exchange of n replicas. Then the generalized spectral
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form factor reads

E
GUE

Rg j
gi =

1
dn ∑

h∈Pn

Tr(XgiXh)Tr(Xg jXh), (A.73)

whose results are enumerated in Tab. A.1. Substituting these results to Eq. (A.70), we find

u2 = 2(d2− 1)2, u4 = 11
6 (d

2− 1)2, and v4 = 2(d2− 1)2/d2. By solving Eq. (A.69), we can

determine the parameters g and β to the order of ε2,

g = 2(1−d−2)
(
1− 11

12ε
2 +O(ε4)

)
,

β = ε
2/d2 +O(ε4).

(A.74)

In conclusion, as we consider the locally scrambled quantum dynamics by alternatively applying

the small unitary e−iεH and the local scramblers, the evolution of the corresponding EF state will

be governed by ∂t |WΨt 〉=−ĤEF|WΨt 〉, with the EF Hamiltonian ĤEF given by Eq. (A.67). The

random U(d) spin model H in Eq. (2.74) corresponds to the set of parameters in Eq. (A.74) for

ĤEF.

Table A.1. Spectral form factor of two-qudit GUE Hamiltonian

R(1)(2)
(1)(2) 1 R(12)

(1)(2) d R(1)(2)
(12) d

R(123)(4)
(123)(4) 3 R(124)(3)

(123)(4) 3 R(1234)
(123)(4) 2d + 1

d

R(12)(34)
(123)(4) d2 +2 R(1243)

(1234) d2 +2 R(123)(4)
(12)(34) d2 +2

R(1234)
(1234) 2d2 + 1

d2 R(1432)
(1234) 2d2 + 1

d2 R(12)(34)
(1234) d3 +d + 1

d

R(12)(34)
(12)(34) d4 +2 R(12)

(12) d2 R(123)(4)
(1234) 2d + 1

d

R(13)(24)
(12)(34) 2d2 +1 R(1234)

(12)(34) d3 +d + 1
d
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Appendix B

Appendix for Chapter 4

B.1 Detailed calculations of the two-point correlation
matrix of the non-equilibrium steady state

B.1.1 Dissipative Lindblad operator

Liouville space

In this section, we define the original Hilbert space H spanned by the ket vectors

|n1, · · · ,nL〉. These basis ket vectors are generated by applying creation operators c†
i (i = 1, · · · ,L)

on the vacuum state |0〉. The creation and annihilation operators c†
i ,ci satisfy the following

anti-commutation relation,

{ci,c j}= {c†
i ,c

†
j}= 0,{c†

i ,c j}= δi j. (B.1)

The Liouville space HL is defined as a linear space spanned by all the linear operators acting on

H . For a general linear operator A(c†,c) acting on in H , we can define a ket vector |A〉 in HL.

The orthonormal basis in HL can be constructed from the orthonormal basis in H . Suppose

|n1, · · · ,nL〉 ∈H and satisfies

∑
n
|n1, · · · ,nL〉〈n1, · · · ,nL|= ∑

n
|n〉〈n|= 1L,〈n′1, · · · ,n′L|n1, · · · ,nL〉= 〈n′|n〉= δn′n, (B.2)
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the orthonormal basis in HL can be constructed as |n,m〉 which satisfies

∑
n,m
|n,m〉〈n,m|= 1L2,〈n′,m′|n,m〉= δn′nδm′m. (B.3)

Thus, we can express the ket vector |A〉 as

|A〉= ∑
n,m
|n,m〉〈n,m|A〉 (B.4)

where 〈n,m|A〉 ≡ 〈n|A(c†,c)|m〉. Henceforth, we will use the eigenstate of the number operator

ni = c†
i ci to be the orthonormal basis. Each ni can be either 0 or 1. Besides, we define the

superoperators c†
i ,ci,d

†
i ,di as

c†
i |n,m〉= c†

i |n〉〈m|

ci|n,m〉= ci|n〉〈m|

d†
i |n,m〉= (−1)F |n〉〈m|ci

di|n,m〉= (−1)F |n〉〈m|c†
i .

(B.5)

From these superoperators, we can explicitly write down the identity state |I〉 as

|I〉= ∑
m
|m,m〉= exp(∑

i
c†

i d†
i )|0,0〉=

L

∏
i=1

(1+ c†
i d†

i )|0,0〉 ⇒ 〈I|= 〈0,0|
L

∏
i=1

(1+dici). (B.6)

The ensemble average of the operator A(c†,c) can be expressed as

Tr(ρA) = 〈I|A(c†,c)|ρ〉= 〈0,0|
L

∏
i=1

(1+dici)A(c†,c)|ρ〉. (B.7)

Before we plug in our target operators, we need to command normalization on the density matrix,

Tr(ρ) = 1⇒ 〈I|ρ〉= 1. (B.8)
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This condition is very important to determine the correct normalization condition for the eigen-

vector.

Formalism for the quadratic Hamiltonian under dissipative dynamics[204]

The Lindblad master equation of the density matrix ρ is written as

dρ(t)
dt

=−i[H,ρ(t)]+∑
µ

(
Lµρ(t)L†

µ −
1
2
{L†

µLµ ,ρ(t)}
)

(B.9)

where Lµ represents the µth Lindblad operator. The generic density matrix can be written as

ρ(t) = ∑m,n ρmn(t)|m〉〈n| where |m〉 is the complete orthonormal basis which spans the Hilbert

space H . First, we perform the vectorization of the density matrix as |ρ(t)〉=∑m,n ρmn(t)|m,n〉.

The Lindblad master equation can be recast as i∂t |ρ(t)〉= M |ρ(t)〉 where M is non-Hermitian

superoperator, |ρ(t)〉,

M = H⊗1−1⊗H + i∑
µ

(
Lµ ⊗L†

µ −
1
2
(L†

µLµ ⊗1+1⊗L†
µLµ)

)
. (B.10)

Hereinafter, we focus on the quadratic fermionic Hamiltonian and the Lindblad operators which

involves the linear combination of gain and loss operators,

H = ∑
x,y

Hx,yc†
xcy,L+

µ = ∑
α

l+α,xc†
x ,L
−
µ = ∑

α

l−α,xcx. (B.11)

For convenience, we define P+
x,x′ = ∑µ l+µ,xl+∗

µ,x′ and P−x,x′ = ∑µ l−∗µ,xl−µ,x. One can derive the corre-

sponding non-Hermitian superoperator M as

M = ∑
x,y

[
c†

x d†
x

]M11 M12

M21 M22


cy

dy

−∑
x

(
Hx,x +

i
2
(P+

x,x +P−x,x)
)

(B.12)
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where

M11 = Hx,y +
i
2
(P+

x,y−P−x,y),M22 = Hx,y +
i
2
(P−x,y−P+

x,y),M12 = iP+
x,y,M21 = iP−x,y. (B.13)

Solving the one-particle correlation matrix at NESS from the eigenvectors of the
non-Hermitian superoperator M

Here, we would like to investigate the eigenvalues and eigenvectors of the non-Hermitian

superoperator M which can be recast as

M =

[
c† d†

]iΛ+ iP+ iP+

iP− iΛ+ iP−


c

d

+ iTrΛ
+ =

[
c† d†

]
M

c

d

+ iTrΛ
+ (B.14)

where c†,d†,c,d are all L dimensional vectors. Let’s analyze the eigenvector and eigenvalue

of M. Suppose the eigenvector of M can be written as
[

φ ,ψ

]t

, we can derive the following

equations,

i(Λ+P+)φ + iP+
ψ = ωφ , i(Λ+P−)ψ + iP−φ = ωψ (B.15)

where ω is the corresponding eigenvalue. By setting φ = −ψ , we can obtain iΛφ = ωφ . If

we add two equations in Eq. (B.15) together, we would obtain −iΛ†(φ +ψ) = ω(φ +ψ). This

suggests that the eigenvalues of M must come in pairs, (iλα ,−iλ ∗α). This motivates us to rewrite

M as

M = i∑
α

(
λα |R−α 〉〈L−α |−λ

∗
α |R+

α 〉〈L+
α |
)
. (B.16)

By defining |χ〉=
[

c d

]t

,〈χ|=
[

c† d†

]
, the eigen-fermionic operators can be defined

fα,± = 〈L±α |χ〉, f ‡
α,± = 〈χ|R±α 〉. (B.17)
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Therefore, the superoperator M would become

M = ∑
α

(
iλα f ‡

α,− fα,−− iλ ∗α f ‡
α,+ fα,+

)
+ i∑

α

λ
∗
α . (B.18)

Note that the NESS state is the state with zero eigenvalue. Thus, the NESS ket vector can

be constructed as |ρness〉 = ∏α f ‡
α,+|0〉. The normalization condition for |ρness〉 is to demand

〈I|ρness〉= 1. One way to obtain the 〈I| in terms of f ‡
α,+, fα,+ operators is to start with 〈I|M = 0.

Thus, we can easily see the left identity vector is simply 〈0|∏α fα,+. To compute the correlation

matrix,

〈I|c†
xcy|ρness〉= Sx,αVy,β 〈I| f ‡

α fβ |ρness〉= ∑
λ ∗α

Sx,αVy,α . (B.19)

Note that S,V can be constructed from the transformation matrix which transforms the original

basis to the diagonal basis. The transformation matrices are

fα = Rα, jc j, f ‡
β
= Lβ , jc

†
j ⇒ S = L−1,V = R−1. (B.20)

Thus, the one-particle correlation matrix can be computed by

Gxy = ∑
λ ∗α

L−1
x,αR−1

y,α (B.21)

B.1.2 Dephasing Lindblad operator

The generic dephasing Lindblad operator is defined as

Lα = ∑
x

mα,xc†
xcx. (B.22)
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The dynamics of the two-point correlation matrix Gxy can be derived as

d
dt

Gxy = Tr
[
(∂tρ)c†

xcy

]
,∂tρ =−i[H,ρ]+∑

α

(
LαρL†

α −
1
2

L†
αLαρ− 1

2
ρL†

αLα

)
. (B.23)

The only difference between the dissipative and dephasing Lindblad operators is the second term.

By plugging the dephasing Lindblad operator (Eq. (B.22)), one can obtain

∑
u,v,α

mα,um∗α,v Tr
[
c†

ucuρc†
vcvc†

xcy−
1
2

c†
vcvc†

ucuρc†
xcy−

1
2

ρc†
vcvc†

ucuc†
xcy
]

= ∑
u,v,α

mα,um∗α,v Tr
[
ρ(c†

vcvc†
xcyc†

ucu−
1
2

c†
xcyc†

vcvc†
ucu−

1
2

c†
vcvc†

ucuc†
xcy)

]
.

(B.24)

Let’s move the fermonic operators explicitly,

c†
vcvc†

xcyc†
ucu−

1
2

c†
xcyc†

vcvc†
ucu−

1
2

c†
vcvc†

ucuc†
xcy

= c†
vcvc†

xcyc†
ucu−

1
2

δyvc†
xcvc†

ucu−
1
2

c†
vc†

xcycvc†
ucu−δux

1
2

c†
vcvc†

ucy−
1
2

c†
vcvc†

uc†
xcycu

=−1
2

δyvc†
xcvc†

ucu +
1
2

δxvc†
vcyc†

ucu−
1
2

δuxc†
vcvc†

ucy +
1
2

δyuc†
vcvc†

xcu.

=
1
2

δxvc†
vcyc†

ucu−
1
2

δuxδuvc†
vcy−

1
2

δuxc†
uc†

vcvcy +
1
2

δyuc†
vcvc†

xcu−
1
2

δyvδuvc†
xcu−

1
2

δyvc†
uc†

xcvcu

=
1
2

δxvc†
vcyc†

ucu−
1
2

δuxδuvc†
vcy−

1
2

δuxc†
ucyc†

vcv +
1
2

δuxδvyc†
ucv

+
1
2

δyuc†
vcvc†

xcu−
1
2

δyvδuvc†
xcu−

1
2

δyvc†
ucuc†

xcv +
1
2

δyvδxuc†
ucv

=
1
2

δxvc†
vcyc†

ucu−
1
2

δuxc†
ucyc†

vcv +
1
2

δyuc†
vcvc†

xcu−
1
2

δyvc†
ucuc†

xcv

− 1
2

δuxδuvc†
vcy +

1
2

δuxδvyc†
ucv−

1
2

δyvδuvc†
xcu +

1
2

δyvδxuc†
ucv

(B.25)

Let’s define Muv = ∑α mα,um∗α,v and one can combine the first four terms together as

∑
u,v
(Muv−Mvu)(Tr

[1
2

ρ(δxvc†
vcyc†

ucu)
]
+Tr

[1
2

ρ(δyuc†
vccc†

xcu)
]
). (B.26)
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If we assume that Muv = Mvu, the four-point correlation functions would not appear in the

dynamics of the two-point correlation function. The last four terms in the last line of Eq. (B.25)

can be combined as

1
2
(Mxy +Myx−Mxx−Myy)Gxy = MxyGxy−

1
2
(Mxx +Myy) (B.27)

The dynamical equation of two-point correlation function becomes

d
dt

Gxy =−i∑
u
(GxuHT

uy +HT
xuGuy)+

1
2
(2Mxy−Mxx−Myy)Gxy. (B.28)

For the on-site dephasing Lindblad operator, we have mα,u =
√

γαδα,u⇒Mxy = δxyγx. Thus,

one can derive

d
dt

Gxy =−i∑
u
(GxuHT

uy +HT
xuGuy)+

1
2
(2∑

α

δα,xδα,yγα − γx− γy)Gxy

=−i∑
u
(GxuHT

uy +HT
xuGuy)+δxyγxGxy−

1
2

Γx,x′Gx′y−
1
2

Gxy′Γy′y.

(B.29)

where Γx,x′ = γxδx,x′. The dynamical equation can be recast in matrix form,

d
dt

G =−i[G,HT ]− 1
2
{Γ,G}+Γ∗G (B.30)

where ∗ represents the element-wise multiplication. Combined with the dynamical equation with

the dissipator, one can derive

d
dt

G =−i[G,HT ]− 1
2
{P++P−+Γ,G}+Γ∗G+P+

⇒ d
dt

GT = i[GT ,H]− 1
2
{P++P−+Γ,GT}+Γ∗GT +P+

(B.31)
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The two-point correlation matrix for the non-equilibrium steady state can be obtained from

i[GT ,H]− 1
2
{P++P−+Γ,GT}+Γ∗GT +P+ = 0. (B.32)

The solution of GT for the long time limit can be constructed from

GT (t = ∞) =
∫

∞

0
dsesW P̃esW †

,W ≡−iH− 1
2
(P++P−+Γ), P̃ = Γ∗GT +P+. (B.33)

To compute this integral, we express W/W † in terms of their left/right eigenvectors,

W = ∑
α

λα |Rα〉〈Lα |,W † = ∑
β

νβ |L̄β 〉〈R̄β | ⇒ esW = ∑
α

esλα |Rα〉〈Lα |,esW †
= ∑

β

esνβ |L̄β 〉〈R̄β |.

(B.34)

With assumption for Re(λα +νβ )> 0 for any α,β , one can derive

GT (t = ∞) =−∑
α,β

Dαβ

λα +νβ

|Rα〉〈R̄β |,Dαβ ≡ 〈Lα |Γ∗GT +P+|L̄β 〉. (B.35)

To solve this equation, we iteratively update the two-point correlation function until |∑k(Gkk(t +

1)−Gkk(t))|< 10−5.

B.2 Spectral statistics of the one-particle Hamiltonian

The second probe is the adjacent gap ratio 〈rn〉 of the one-particle Hamiltonian. The

adjacent gap ratio is defined as: let En−1,En,En+1 be three successive eigenvalues of Hone. Then,

the adjacent gap ratio can be computed from

rn =
min{En−En−1,En+1−En}
max{En−En−1,En+1−En}

. (B.36)

The adjacent ratio reflects the spectral statistics of the one-particle Hamiltonian. The two most

common examples are the ergodic phase and localized phase. The ergodic phase gives the value
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of Gaussian Unitary Ensemble statistics (∼ 0.599), whereas the localization phase would be the

value of Poisson statistics (∼ 0.386). Our results for both dissipative and dissipative-dephasing

dynamics are shown in Fig. B.1, which shares a similar structure with the phase diagram of PR.

In addition, the extended/localized phase exhibit GUE-like/Poisson values, which suggests that

the localization/delocalized phase under non-unitary dynamics behave more similarly with those

in the disordered Hamiltonian instead of quasi-periodic Hamiltonian.
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Figure B.1. The adjacent gap ratio for the one-particle Hamiltonian of the NESS

B.3 Detailed calculations of one-particle von Neumann
entropy

To calculate the one-particle von Neumann entropy, we divide the system into two

subsystems A and Ā of sizes LA and LB respectively. Let ρness,A be the NESS density matrix
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corresponding to the subsystem A. We can construct the one-particle correlation matrix as

Cxy,ness = Tr(ρness,Ac†
xcy). (B.37)

This correlation matrix contains all the one-particle correlation functions within region A. Our

goal is to use this one-particle correlation matrix to construct the corresponding Gaussian density

matrix,

ρA,one =
1
Z

exp

(
− ∑

x,y∈A
Kx,yc†

xcy

)
(B.38)

The one-particle von Neumann entropy can be defined as

SA,one =−TrρA,one lnρA,one (B.39)

With ni,A being the eigenvalues of Cxy,ness,

SA,one =−∑
i

(
ni,A lnni,A +(1−ni,A ln(1−ni,A))

)
(B.40)
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kibble–zurek mechanism and critical dynamics on a programmable rydberg simulator.
Nature, 568(7751):207–211, 2019.

[160] Matthias Tarnowski, F. Nur Ünal, Nick Fläschner, Benno S. Rem, André Eckardt, Klaus
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