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Abstract

Visualizations are frequently used as a means to understand trends and gather insights from 

datasets, but often take a long time to generate. In this paper, we focus on the problem of rapidly 

generating approximate visualizations while preserving crucial visual properties of interest to 

analysts. Our primary focus will be on sampling algorithms that preserve the visual property of 

ordering; our techniques will also apply to some other visual properties. For instance, our 

algorithms can be used to generate an approximate visualization of a bar chart very rapidly, where 

the comparisons between any two bars are correct. We formally show that our sampling 

algorithms are generally applicable and provably optimal in theory, in that they do not take more 

samples than necessary to generate the visualizations with ordering guarantees. They also work 

well in practice, correctly ordering output groups while taking orders of magnitude fewer samples 

and much less time than conventional sampling schemes.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of 
this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.Obtain permission prior to any use beyond those covered by the 
license. Contact copyright holder by info@vldb.org.
†We are free to set κ to any number greater than 1; in our experiments, we set κ = 1. Since this would render logκ infinite, for that 
term, we use loge. We found that setting κ equal to a small value close to 1 (e.g., 1.01) gives very similar results on both accuracy and 
latency since the term that dominates the sum in the numerator is not the log logκ m.
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1. Introduction

To understand their data, analysts commonly explore their datasets using visualizations, 

often with visual analytics tools such as Tableau [24] or Spotfire [45]. Visual exploration 

involves generating a sequence of visualizations, one after the other, quickly skimming each 

one to get a better understanding of the underlying trends in the datasets. However, when the 

datasets are large, these visualizations often take very long to produce, creating a significant 

barrier to interactive analysis.

Our thesis is that on large datasets, we may be able to quickly produce approximate 

visualizations of large datasets preserving visual properties crucial for data analysis. Our 

visualization schemes will also come with tuning parameters, whereby users can select the 

accuracy they desire, choosing less accuracy for more interactivity and more accuracy for 

more precise visualizations.

We show what we mean by “preserving visual properties” via an example. Consider the 

following query on a database of all flights in the US for the entire year:

Q : SELECT NAME, AVG(DELAY) FROM FLT GROUP BY NAME

The query asks for the average delays of flights, grouped by airline names. Figure 1 shows a 

bar chart illustrating an example query result. In our example, the average delay for AA 

(American Airlines) is 30 minutes, while that for JB (Jet Blue) is just 15 minutes. If the FLT 

table is large, the query above (and therefore the resulting visualization) is going to take a 

very long time to be displayed.

In this work, we specifically design sampling algorithms that generate visualizations of 

queries such as Q, while sampling only a small fraction of records in the database. We focus 

on algorithms that preserve visual properties, i.e., those that ensure that the visualization 

appears similar to the same visualization computed on the entire database. The primary 

visual property we consider in this paper is the correct ordering property: ensuring that the 

groups or bars in a visualization or result set are ordered correctly, even if the actual value of 

the group differs from the value that would result if the entire database were sampled. For 

example, if the delay of JB is smaller than the delay of AA, then we would like the bar 

corresponding to JB to be smaller than the bar corresponding to AA in the output 

visualization. As long as the displayed visualizations obey visual properties (such as correct 

ordering), analysts will be able to view trends, gain insights, and make decisions—in our 

example, the analyst can decide which airline should receive the prize for airline with least 

delay, or if the analyst sees that the delay of AL is greater than the delay of SW, they can dig 

deeper into AL flights to figure out the cause for higher delay. Beyond correct ordering, our 

techniques can be applied to other visual properties, including:

• Accurate Trends: when generating line charts, comparisons between neighboring 

x-axis values must be correctly presented.

• Accurate Values: the values for each group in a bar chart must be within a certain 

bound of the values displayed to the analyst.
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We illustrate the challenges of generating accurate visualizations using our flight example. 

Here, we assume we have a sampling engine that allows us to retrieve samples from any 

airline group at a uniform cost per sample (we describe one such sampling engine we have 

built in Section 4.) Then, the amount of work done by any visualization generation 

algorithm is proportional to the number of samples taken in total across all groups. After 

performing some work (that is, after doing some sampling), let the current state of 

processing be depicted as in Figure 2, where the aggregate for each group is depicted using 

confidence intervals. Starting at this point, suppose we wanted to generate a visualization 

where the ordering is correct (like in Figure 1). One option is to use a conventional round-

robin stratified sampling strategy [8], which is the most widely used technique in online 

approximate query processing [25, 27, 28, 37], to take one sample per group in each round, 

to generate estimates with shrinking confidence interval bounds. This will ensure that the 

eventual aggregate value of each group is roughly correct, and therefore that the ordering is 

roughly correct. We can in fact modify these conventional sampling schemes to stop once 

they are confident that the ordering is guaranteed to be correct. However, since conventional 

sampling is not optimized for ensuring that visual properties hold, such schemes will end up 

doing a lot more work than necessary (as we will see in the following).

A better strategy would be to focus our attention on the groups whose confidence intervals 

continue to overlap with others. For instance, for the data depicted in Figure 2, we may want 

to sample more from AA because its confidence interval overlaps with JB, AL, and SW 

while sampling more from UA (even though its confidence interval is large) is not useful 

because it gives us no additional information — UA is already clearly the airline with the 

largest delay, even if the exact value is slightly off. On the other hand, it is not clear if we 

should sample more from AA or DL, AA has a smaller confidence interval but overlaps with 

more groups, while DL has a larger confidence interval but overlaps with fewer groups. 

Overall, it is not clear how we may be able to meet our visual ordering properties while 

minimizing the samples acquired.

In this paper, we develop a family of sampling algorithms, based on sound probabilistic 

principles, that:

1. are correct, i.e., they return visualizations where the estimated averages are 

correctly ordered with a probability greater than a user-specified threshold, 

independent of the data distribution,

2. are theoretically optimal, i.e., no other sampling algorithms can take much fewer 

samples, and

3. are practically efficient, i.e., they require much fewer samples than the size of the 

datasets to ensure correct visual properties, especially on very large datasets. In our 

experiments, our algorithms give us reductions in sampling of up to 50× over 

conventional sampling schemes.

Our focus in this paper is on visualization types that directly correspond to a SQL 

aggregation query, e.g., a bar chart, or a histogram; these are the most commonly used 

visualization types in information visualization applications. While we also support 

generalizations to other visualization types (see Section 2.5), our techniques are not 
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currently applicable to some visualizations, e.g., scatter-plots, stacked charts, timelines, or 

treemaps.

In addition, our algorithms are general enough to retain correctness and optimality when 

configured in the following ways:

1. Partial Results: Our algorithms can return partial results (that analysts can 

immediately peruse) improving gradually over time.

2. Early Termination: Our algorithms can take advantage of the finite resolution of 

visual display interfaces to terminate processing early. Our algorithms can also 

terminate early if allowed to make mistakes on estimating a few groups.

3. Generalized Settings: Our algorithms can be applied to other aggregation functions, 

beyond AVG, as well as other, more complex queries, and also under more general 

settings.

4. Visualization Types: Our algorithms can be applied to the generation of other 

visualization types, such as trend-lines or chloropleth maps [47] instead of bar 

graphs.

2. Formal Problem Description

We begin by describing the type of queries and visualizations that we focus on for the paper. 

Then, we describe the formal problem we address.

2.1 Visualization Setting

Query—We begin by considering queries such as our example query in Section 1. We 

reproduce the query (more abstractly) here:

Q : SELECT X, AVG(Y) FROM R(X, Y) GROUP BY X

This query can be translated to a bar chart visualization such as the one in Figure 1, where 

AVG(Y) is depicted along the y–axis, while X is depicted along the x–axis. While we restrict 

ourselves to queries with a single GROUP BY and a AVG aggregate, our query processing 

algorithms do apply to a much more general class of queries and visualizations, including 

those with other aggregates, multiple group-bys, and selection or having predicates, as 

described in Section 2.5 (these generalizations still require us to have at least one GROUP 

BY, which restricts us to aggregate-based visualizations, e.g., histograms, bar-charts, and 

trend-lines.

Setting—We assume we have an engine that allows us to efficiently retrieve random 

samples from R corresponding to different values of X. Such an engine is easy to implement, 

if the relation R is stored in main memory, and we have a traditional (B-tree, hash-based, or 

otherwise) index on X. We present an approach to implement this engine on disk in Section 

4. Our techniques will also apply to the scenario when there is no index on X — we describe 

this in the extended technical report [34].
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Notation—We denote the values that the group-by attribute X can take as x1 … xk. We let 

ni be the number of tuples in R with X = xi. For instance, ni for X = UA will denote the 

number of flights operated by UA that year.

Let the ith group, denoted Si, be the multiset of the ni values of Y across all tuples in R where 

X = xi. In Figure 1, the group corresponding to UA contains the set of delays of all the flights 

flown by UA that year.

We denote the true averages of elements in a group i as μi: Thus . The goal for 

any algorithm processing the query Q above is to compute and display μi, ∀i ∈ 1 … k, such 

that the estimates for μi are correctly ordered (defined formally subsequently).

Furthermore, we assume that each value in Si is bounded between [0, c]. For instance, for 

flights delays, we know that the values in Si are within [0, 24 hours], i.e., typical flights are 

not delayed beyond 24 hours. Note however, that our algorithms can still be used when no 

bound on c is known, but may not have the desirable properties listed in Section 3.3.

2.2 Query Processing

Approach—Since we have an index on X, we can use the index to retrieve a tuple at 

random with any value of X = xi. Thus, we can use the index to get an additional sample of Y 

at random from any group Si. Note that if the data is on disk, random access through a 

conventional index can be slow: however, we are building a system, called NEEDLETAIL (also 

described in Section 4) that will address the problem of retrieving samples satisfying 

arbitrary conditions.

The query processing algorithms that we consider take repeated samples from groups Si, and 

then eventually output estimates ν1,…, νk for true averages μ1,…, μk.

Correct Ordering Property—After retrieving a number of samples, our algorithm will 

have some estimate νj for the value of the actual average μj for each j. When the algorithm 

terminates and returns the eventual estimates ν1,… νk, we want the following property to 

hold:

for all i, j such that μi > μj, we have νi > νj

We desire that the query processing algorithm always respect the correct ordering property, 

but since we are making decisions probabilistically, there may be a (typically very small) 

chance that the output will violate the guarantee. Thus, we allow the analyst to specify a 

failure probability δ (which we expect to be very close to 0). The query processing scheme 

will then guarantee that with probability 1 – δ, the eventual ordering is correct. We will 

consider other kinds of guarantees in Section 2.5.

2.3 Characterizing Performance

We consider three measures for evaluating the performance of query processing algorithms:
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Sample Complexity—The cost for any additional sample taken by an algorithm from any 

of the groups is the same1. We denote the total number of samples taken by an algorithm 

from group i as mi. Thus, the total sampling complexity of a query processing strategy 

(denoted ) is the number of samples taken across groups:

Computational Complexity—While the total time will be typically dominated by the 

sampling time, we will also analyze the computation time of the query processing algorithm, 

which we denote .

Total Wall-Clock Time—In addition to the two complexity measures, we also 

experimentally evaluate the total wall-clock time of our query processing algorithms.

2.4 Formal Problem

Our goal is to design query processing strategies that preserve the right ordering (within the 

user-specified accuracy bounds) while minimizing sample complexity:

Problem 1 (AVG-Order)—Given a query Q, and parameter values c, δ, and an index on 

X, design a query processing algorithm returning estimates ν1,…, νk for μi,…, μk which is as 

efficient as possible in terms of sample complexity , such that with probability greater than 

1 – δ, the ordering of ν1,…, νk with respect to μi,…, μk is correct.

Note that in the problem statement we ignore computational complexity , however, we do 

want the computational complexity of our algorithms to also be relatively small, and we will 

demonstrate that for all algorithms we design, that indeed is the case.

One particularly important extension we cover right away is the following: visualization 

rendering algorithms are constrained by the number of pixels on the display screen, and 

therefore, two groups whose true average values μi are very close to each other cannot be 

distinguished on a visual display screen. Can we, by relaxing the correct ordering property 

for groups which are very close to each other, get significant improvements in terms of 

sample and total complexity? We therefore pose the following problem:

Problem 2 (AVG-Order-Resolution)—Given a query Q, and values c, δ, a minimum 

resolution r, and an index on X, design a query processing algorithm returning estimates ν1,

…, νk for μ1,…, μk which is as efficient as possible in terms of sample complexity , such 

that with probability greater than 1 – δ, the ordering of ν1,…, νk with respect to μ1,…, μk is 

correct, where correctness is now defined as the following:

for all i, j, i ≠ j, if |μi–μj| ≤ r, then ordering νi before or after νj are both correct, while if |μi – 

μj| > r, then νi < νj if μi < μj and vice versa.

1This is certainly true in the case when R is in memory, but we will describe why this is true even when R in on disk in Section 4.
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The problem statement says that if two true averages, μi, μj satisfy |μi – μj| ≤ r, then we are 

no longer required to order them correctly with respect to each other.

2.5 Extensions

In the technical report [34] we discuss other problem variants:

• Ensuring that weaker properties hold:

– Trends and Chloropleths: When drawing trend-lines and heat maps (i.e., 

chloropleths [47]), it is more important to ensure order is preserved between 

adjacent groups than between all groups.

– Top-t Results: When the number of groups to be depicted in the visualization 

is very large, say greater than 20, it is impossible for users to visually 

examine all groups simultaneously. Here, the analyst would prefer to view 

the top-t or bottom-t groups in terms of actual averages.

– Allowing Mistakes: If the analyst is fine with a few mistakes being made on 

a select number of groups (so that that the results can be produced faster), 

this can be taken into account in our algorithms.

• Ensuring that stronger properties hold:

– Values: We can modify our algorithms to ensure that the averages νi for 

each group are close to the actual averages μi, in addition to making sure that 

the ordering is correct.

– Partial Results: We can modify our algorithms to return partial results as an 

when they are computed. This is especially important when the visualization 

takes a long time to be computed, so that the analyst to start perusing the 

visualization as soon as possible.

• Tackling other queries or settings:

– Other Aggregations: We can generalize our techniques for aggregation 

functions beyond AVG, including SUM and COUNT.

– Selection Predicates: Our techniques apply equally well when we have 

WHERE or HAVING predicates in our query.

– Multiple Group Bys or Aggregations: We can generalize our techniques to 

handle the case where we are visualizing multiple aggregates 

simultaneously, and when we are grouping by multiple attributes at the same 

time (in a three dimensional visualization or a two dimensional visualization 

with a cross-product on the x-axis).

– No indexes: Our techniques also apply to the scenario when we have no 

indexes.
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Algorithm 1
IFOCUS

3. The Algorithm and Its Analysis

In this section, we describe our solution to Problem 1. We start by introducing the new IFOCUS 

algorithm in Section 3.1. We will analyze its sample complexity and demonstrate its 

correctness in Section 3.3. We will then analyze its computational complexity in Section 3.4. 

Finally, we will demonstrate that the IFOCUS algorithm is essentially optimal, i.e., no other 

algorithm can give us a sample complexity much smaller than IFOCUS, in Section 3.5.

3.1 The Basic IFOCUS Algorithm

The IFOCUS algorithm is shown in Algorithm 1. We describe the pseudocode and illustrate the 

execution on an example below.

At a high level, the algorithm works as follows. For each group, it maintains a confidence 

interval (described in more detail below) within which the algorithm believes the true 

average of each group lies. The algorithm then proceeds in rounds. The algorithm starts off 

with one sample per group to generate initial confidence intervals for the true averages µ1,

…, µk. We refer to the groups whose confidence intervals overlap with other groups as 

active groups. Then, in each round, for all the groups whose confidence intervals still 

overlap with confidence intervals of other groups, i.e., all the active groups, a single 

additional sample is taken. We terminate when there are no remaining active groups and 

then return the estimated averages ν1,…, νk We now describe an illustration of the algorithm 

on an example.
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Example 3.1. An example of how the algorithm works is given in Table 1. Here, there are 

four groups, i.e., k = 4. Each row in the table corresponds to one phase of sampling. The first 

column refers to the total number of samples that have been taken so far for each of the 

active groups (we call this the number of the round). The algorithm starts by taking one 

sample per group to generate initial confidence intervals: these are displayed in the first row.

At the end of the first round, all four groups are active since for every confidence interval, 

there is some other confidence interval with which it overlaps. For instance, for group 1, 

whose confidence interval is [60, 90], this confidence interval overlaps with the confidence 

interval of group 4; therefore group 1 is active.

We “fast-forward” to round 20, where once again all groups are still active. Then, on round 

21, after an additional sample, the confidence interval of group 1 shrinks to [66, 84], which 

no longer overlaps with any other confidence interval. Therefore, group 1 is no longer 

active, and we stop sampling from group 1. We fast-forward again to round 58, where after 

taking a sample, group 3's confidence interval no longer overlaps with any other group's 

confidence interval, so we can stop sampling it too. Finally, at round 71, none of the four 

confidence intervals overlaps with any other. Thus, the total cost of the algorithm (i.e., the 

number of samples) is

The expression 21 × 4 comes from the 21 rounds when all four groups are active, (58 − 21) 

× 3 comes from the rounds from 22 to 58, when only three groups are active, and so on.

The pseudocode for the algorithm is shown in Algorithm 1; m refers to the round. We start 

at the first round (i.e., m = 1) drawing one sample from each of S1,…, Sk to get initial 

estimates of ν1,…, νk . Initially, the set of active groups, A, contains all groups from 1 to k. 

As long as there are active groups, in each round, we take an additional sample for all the 

groups in A, and update the corresponding νi. Based on the number of samples drawn per 

active group, we update ε, i.e., the half-width of the confidence interval. Here, the 

confidence interval [νi−ε,νi+ε ] refers to the 1−δ confidence interval on taking m samples, 

i.e., having taken m samples, the probability that the true average µi is within [νi−ε, νi + ε ] 

is greater than 1 − δ. As we show below, the confidence intervals are derived using a 

variation of Hoeffding's inequality.

Discussion—We note several features of the algorithm:

• As we will see, the sampling complexity of IFOCUS does not depend on the number 

of elements in each group, and simply depends on where the true averages of each 

group are located relative to each other. We will show this formally in Section 3.3.

• There is a corner case that needs to be treated carefully: there is a small chance that 

a group that was not active suddenly becomes active because the average νi of 

some other group moves excessively due to the addition of a very large (or very 

small) element. We have two alternatives at this point
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– a) ignore the newly activated group; i.e., groups can never be added back to 

the set of active groups

– b) allow inactive groups to become active.

It turns out the properties we prove for the algorithm in terms of optimality of sample 

complexity (see Section 3.3) hold if we do a). If we do b), the properties of optimality no 

longer hold.

3.2 Proof of Correctness

We now prove that IFOCUS obeys the ordering property with probability greater than 1 − δ. 

Our proof involves three steps:

• Step 1: The algorithm IFOCUS obeys the correct ordering property, as long as the 

confidence intervals of each active group contain the actual average, during every 

round.

• Step 2: The confidence intervals of any given active group contains the actual 

average of that group with probability greater than (1 − δ/k) at every round, as long 

as ε is set according to Line 6 in Algorithm 1.

• Step 3: The confidence intervals of all active groups contains actual averages for 

the groups with probability greater than (1 − δ) at every round, when ε is set as per 

Line 6 in Algorithm 1.

Combining the three steps together give us the desired result.

Step 1: To complete this step, we need a bit more notation. For every m > 1, let Am, εm, and 

ν1,m,…, νk,m denote the values of A, ε, ν1,…, νk at step 10 in the algorithm for the iteration 

of the loop corresponding to m. Also, for i = 1,…, k, recall that mi is the number of samples 

required to estimate νi; equivalently, it will denote the value of m when i is removed from A. 

We define mmax to be the largest mi.

Lemma 1. If for every m ∈ 1… mmax and every j ∈ Am, we have |νj,m − µj| ≤ εm, then the 

estimates ν1,…, νk returned by the algorithm have the same order as µ1,…, µk, i.e., the 

algorithm satisfies the correct ordering property.

That is, as long as all the estimates for the active groups are close enough to their true 

average, that is sufficient to ensure overall correct ordering.

Proof. Fix any i ≠ j ∈ {1,…, k}. We will show that νi > νj iff µi > µj. Applying this to all i, j 

gives us the desired result.

Assume without loss of generality (by relabeling i and j, if needed) that mi ≤ mj. Since mi ≤ 

mj, j is removed from the active groups at a later stage than i. At mi, we have that the 

confidence interval for group i no longer overlaps with other confidence intervals (otherwise 

i would not be removed from the set of active groups). Thus, the intervals [νi,mi − εmi, νi,mi + 

εmi] and [νj,mi − εmi, νj,mi + εmi] are disjoint. Consider the case when µi < µj. Then, we have:
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(1)

(2)

The first and last inequality holds because µi and µj are within the confidence interval around 

νi and νj respectively at round mi. The second inequality holds because the intervals are 

disjoint. (To see this, notice that if the inequality was reversed, the intervals would no longer 

be disjoint.) Then, we have:

(3)

The first equality holds because group j exits the set of active groups at mj; the second 

inequality holds because the confidence interval at j contains µj; the third inequality holds 

because εj ≤ εi (since confidence intervals shrink as the rounds proceed); the next inequality 

holds because of Equation 2; while the last equality holds because group i exits the set of 

active groups at mi. Therefore, we have νi < νj, as desired. The case where µi > µj is 

essentially identical: in this case Equation 1 is of the form:

and Equation 3 is of the form:

so that we now have νi > νj, once again as desired.

Step 2: In this step, our goal is to prove that the confidence interval of any group contains 

the actual average with probability greater than (1 − δ/k) on following Algorithm 1.

For this proof, we use a specialized concentration inequality that is derived from Hoeffding's 

classical inequality [48]. Hoeffding [26] showed that his inequality can be applied to this 

setting to bound the deviation of the average of random numbers sampled from a set from 

the true average of the set. Serfling [44] refined the previous result to give tighter bounds as 

the number of random numbers sampled approaches the size of the set.

Lemma 2 (Hoeffding–Serfling inequality [44]). Let  = y1,…, yN be a set of N values in [0, 

1] with average value . Let Y1,…, YN be a sequence of random variables 

drawn from  without replacement. For every 1 ≤ k < N and ε > 0,
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We use the above inequality to get tight bounds for the value of  for all 1 ≤ m ≤ 

N, with probability δ. We discuss next how to apply the theorem to complete Step 2 of our 

proof.

Theorem 3.2. Let  = y1,…, yN be a set of N values in [0, 1] with average value 

. Let Y1,…, YN be a sequence of random variables drawn from  without 

replacement. Fix any δ > 0 and κ > 1. For 1 ≤ m ≤ N − 1, define

Proof. We have:

The first inequality holds by the union bound [48]. The second inequality holds because εm 

only decreases as m increases. The third inequality holds because the condition that any of 

the sums on the left-hand side is greater than εκr occurs when the maximum is greater than 

εκr.

By the Hoeffding–Serfling inequality (i.e., Lemma 2),

The theorem the follows from the identity .
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Now, when we apply Theorem 3.2 to any group i in Algorithm 1, with εm set as described in 

Line 6 in the algorithm, N set to ni, Yi being equal to the ith sample from the group (taken 

without replacement), and δ set to δ/k, we have the following corollary.

Corollary 3.3. For any group i, across all rounds of Algorithm 1, we have: Pr [∃m, 1 ≤ m ≤ 

mi : |νi,m − µ| > εm] ≤ δ/k.

Step 3: On applying the union bound [48] to Corollary 3.3, we get the following result:

Corollary 3.4. Across all groups and rounds of Algorithm 1: Pr [∃i, m, 1 ≤ i ≤ k, 1 ≤ m ≤ mi : 

|νi,m − µ| > εm] ≤ δ.

This result, when combined with Lemma 1, allows us to infer the following theorem:

Theorem 3.5 (Correct Ordering). The eventual estimates ν1,…, νk returned by Algorithm 1 

have the same order as µ1,…, µk with probability greater than 1 − δ.

3.3 Sample Complexity of IFOCUS

To state and prove the theorem about the sample complexity of IFOCUS, we introduce some 

additional notation which allows us to describe the “hardness” of a particular input instance. 

(Table 2 describes all the symbols used in the paper.) We define ηi to be the minimum 

distance between µi and the next closest average, i.e., ηi = minj≠i |µi − µj|. The smaller ηi is, 

the more effort we need to put in to ensure that the confidence interval estimates for µi are 

are small enough compared to ηi.

In this section, we prove the following theorem:

Theorem 3.6 (Sample Complexity). With probability at least 1 − δ, IFOCUS outputs estimates 

ν1,…, νk that satisfy the correct ordering property and, furthermore, draws

(4)

The theorem states that IFOCUS obeys the correct ordering property while drawing a number 

of samples from groups proportional to the sum of the inverse of the squares of the ηi: that 

is, the smaller the ηi, the larger the amount of sampling we need to do (with quadratic 

scaling).

The next lemma gives us an upper bound on how large mi can be in terms of the ηi, for each 

i: this allows us to establish an upper bound on the sample complexity of the algorithm.

Lemma 3. Fix i ∈ 1…k. Define  to be the minimal value of m ≥ 1 for which εm < ηi/4. In 

the running of the algorithm, if for every , we have , then 

.
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Intuitively, the lemma allows us to establish that , the latter of which (as we show 

subsequently) is dependent on ηi.

Proof. If , then the conclusion of the lemma trivially holds, because . 

Consider now the case where . We now prove that . Note that  if and 

only if the interval  is disjoint from the union of intervals 

.

We focus first on all j where µj < µi. By the definition of ηi, every  for which µj < µi 

satisfies the stronger inequality µj ≤ µi − ηi. By the conditions of the lemma (i.e., that 

confidence intervals always contain the true average), we have that  and 

that . So we have:

• The first and last inequalities follow the fact that the confidence interval for νj 

always contains µj, i.e., ;

• the second and fourth follow from the fact that ;

• and the third follows from the fact that µj ≤ µi−ηi.

Thus, the intervals  and  are disjoint. 

Similarly, for all  that satisfies µj > µi, we observe that the interval 

 is also disjoint from .

We are now ready to complete the analysis of the algorithm.

Proof of Theorem 3.6. First, we note that for i = 1,…, k, the value  is bounded above by

(To verify this fact, note that when , then the 

corresponding value of ε satisfies .)

By Corollary 3.4, with probability at least 1 − δ, for every i ∈ 1,…, k, every m ≥ 1, and every 

j ∈ Am, we have |νj,m−µj| ≤ εm. Therefore, by Lemma 1 the estimates ν1,…, νk returned by 

the algorithm satisfy the correct ordering property. Furthermore, by Lemma 3, the total 
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number of samples drawn from the ith group by the algorithm is bounded above by  and 

the total number of samples requested by the algorithm is bounded above by

We have the desired result.

3.4 Computational Complexity

The computational complexity of the algorithm is dominated by the check used to determine 

if a group is still active. This check can be done in O(log |A|) time per round if we maintain a 

binary search tree — leading to O(k log k) time per round across all active groups. However, 

in practice, k will be small (typically less than 100); and therefore, taking an additional 

sample from a group will dominate the cost of checking if groups are still active.

Then, the number of rounds is the largest value that m will take in Algorithm 1. This is in 

fact:

where η = mini ηi. Therefore, we have the following theorem:

Theorem 3.7. The computational complexity of the IFOCUS algorithm is: 

.

3.5 Lower bounds on Sample Complexity

We now show that the sample complexity of IFOCUS is optimal as compared to any algorithm 

for Problem 1, up to a small additive factor, and constant multiplicative factors.

Theorem 3.8 (LOWER BOUND). Any algorithm that satisfies the correct ordering condition with 

probability at least 1 − δ must make at least  queries.

Comparing the expression above to Equation 4, the only difference is a small additive term: 

, which we expect to be much smaller than . Note that even when  is 

109 (a highly unrealistic scenario), we have that , whereas  is greater than 5 

for most practical cases (e.g., when k = 10, δ = 0.05).
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The starting point for our proof of this theorem is a lower bound for sampling due to Canetti, 

Even, and Goldreich [7].

Theorem 3.9 (CANETTI–EVEN–GOLDREICH [7]). Let  and . Any algorithm that estimates 

μi within error ±ε with confidence 1−δ must sample at least  elements from 

Si in expectation.

In fact, the proof of this theorem yields a slightly stronger result: even if we are promised 

that , the same number of samples is required to distinguish between the 

two cases.

The proof of Theorem 3.8 is omitted due to lack of space, and can be found in the extended 

technical report [34].

3.6 Discussion

We now describe a few variations of our algorithms.

Visual Resolution Extension—Recall that in Section 2, we discussed Problem 2, 

wherein our goal is to only ensure that groups whose true averages are sufficiently far 

enough to be correctly ordered. If the true averages of the groups are too close to each other, 

then they cannot be distinguished on a visual display, so expending resources resolving them 

is useless.

If we only require the correct ordering condition to hold for groups whose true averages 

differ by more than some threshold r, we can simply modify the algorithm to terminate once 

we reach a value of m for which εm < r/4. The sample complexity for this variant is 

essentially the same as in Theorem 3.6 (apart from constant factors) except that we replace 

each ηi with .

Alternate Algorithm—The original algorithm we considered relies on the standard and 

well-known Chernoff-Hoeffding inequality [48]. In essence, the algorithm—which we refer 

to as IREFINE, like IFOCUS, once again maintains confidence intervals for groups, and stops 

sampling from inactive groups. However, instead of taking one sample per iteration, IREFINE 

takes as many samples as necessary to divide the confidence interval in two. Thus, IREFINE is 

more aggressive than IFOCUS. We provide the algorithm, the analysis, and the pseudocode in 

our technical report [34]. Needless to say, IREFINE, since it is so aggressive, ends up with a 

less desirable sample complexity than IFOCUS, and unlike IFOCUS, IREFINE is not optimal. We will 

consider IREFINE in our experiments.

4. System Description

We evaluated our algorithms on top of a new database system we are building, called 

NEEDLETAIL, that is designed to produce a random sample of records matching a set of ad-hoc 

conditions. To quickly retrieve satisfying tuples, NEEDLETAIL uses in-memory bitmap-based 
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indexes. We refer the reader to the demonstration paper for the full description of NEEDLETAIL's 

bitmap index optimizations [35]. Traditional in-memory bitmap indexes allow rapid retrieval 

of records matching ad-hoc user-specified predicates. In short, for every value of every 

attribute in the relation that is indexed, the bitmap index records a 1 at location i when the 

ith tuple matches the value for that attribute, or a 0 when the tuple does not match that value 

for that attribute. While recording this much information for every value of every attribute 

could be quite costly, in practice, bitmap indexes can be compressed significantly, enabling 

us to store them very compactly in memory [36,49,50]. NEEDLETAIL employs several other 

optimizations to store and operate on these bitmap indexes very efficiently. Overall, 

NEEDLETAIL's in-memory bitmap indexes allow it to retrieve and return a tuple from disk 

matching certain conditions in constant time. Note that even if the bitmap is dense or sparse, 

the guarantee of constant time continues to hold because the bitmaps are organized in a 

hierarchical manner (hence the time taken is logarithmic in the total number of records or 

equivalently the depth of the tree). NEEDLETAIL can be used in two modes: either a column-

store or a row-store mode. For the purpose of this paper, we use the row-store configuration, 

enabling us to eliminate any gains originating from the column-store. NEEDLETAIL is written in 

C++ and uses the Boost library for its bitmap and hash map implementations.

5. Experiments

In this section, we experimentally evaluate our algorithms versus traditional sampling 

techniques on a variety of synthetic and real-world datasets. We evaluate the algorithms on 

three different metrics: the number of samples required (sample complexity), the accuracy of 

the produced results, and the wall-clock runtime performance on our prototype sampling 

system, NEEDLETAIL.

5.1 Experimental Setup

Algorithms—Each of the algorithms we evaluate takes as a parameter δ, a bound on the 

probability that the algorithm returns results that do not obey the ordering property. That is, 

all the algorithms are guaranteed to return results ordered correctly with probability 1 − δ, no 

matter what the data distribution is.

The algorithms are as follows:

• IFOCUS (δ): In each round, this algorithm takes an additional sample from all active 

groups, ensuring that the eventual output has accuracy greater than 1 − δ, as 

described in Section 3.1. This algorithm is our solution for Problem 1.

• IFOCUSR (δ,r): In each round, this algorithm takes an additional sample from all 

active groups, ensuring that the eventual output has accuracy greater than 1 − δ, for 

a relaxed condition of accuracy based on resolution. Thus, this algorithm is the 

same as the previous, except that we stop at the granularity of the resolution value. 

This algorithm is our solution for Problem 2.

• IREFINE (δ): In each round, this algorithm divides all confidence intervals by half for 

all active groups, ensuring that the eventual output has accuracy greater than 1 − δ, 

as described in Section 3.6. Since the algorithm is aggressive in taking samples to 
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divide the confidence interval by half each time, we expect it to do worse than 

IFOCUS.

• IREFINER (δ, r): This is the IREFINE algorithm except we relax accuracy based on 

resolution as we did in IFOCUSR.

We compare our algorithms against the following baseline:

• ROUNDROBIN (δ): In each round, this algorithm takes an additional sample from all 

groups, ensuring that the eventual output respects the order with probability than 1 

− δ. This algorithm is similar to conventional stratified sampling schemes [8], 

except that the algorithm has the guarantee that the ordering property is met with 

probability greater than 1 − δ. We adapted this from existing techniques to ensure 

that the ordering property is met with probability greater than 1 − δ. We cannot 

leverage any pre-existing techniques since they do not provide the desired 

guarantee.

• ROUNDROBINR (δ, r): This is the ROUNDROBIN algorithm except we relax accuracy based 

on resolution as we did in IFOCUSR.

System—We evaluate the runtime performance of all our algorithms on our early-stage 

NEEDLETAIL prototype. We measure both the CPU times and the I/O times in our experiments 

to definitively show that our improvements are fundamentally due to the algorithms rather 

than skilled engineering. In addition to our algorithms, we implement a SCAN operation in 

NEEDLETAIL, which performs a sequential scan of the dataset to find the true means for the 

groups in the visualization. The SCAN operation represents an approach that a more traditional 

system, such as PostgreSQL, would take to solve the visualization problem. Since we have 

both our sampling algorithms and SCAN implemented in NEEDLETAIL, we may directly compare 

these two approaches. We ran all experiments on a 64-core Intel Xeon E7-4830 server 

running Ubuntu 12.04 LTS; however, all our experiments were single-threaded. We use 

1MB blocks to read from disk, and all I/O is done using Direct I/O to avoid any speedups we 

would get from the file buffer cache. Note that our NEEDLETAIL system is still in its early stages 

and under-optimized — we expect our performance numbers to only get better as the system 

improves.

Key Takeaways—Here are our key results from experiments in Sections 5.2 and 5.3:

1. Our IFOCUS and IFOCUSR (r=l%) algorithms yield

• up to 80% and 98% reduction in sampling and 79% and 92% in runtime 

(respectively) as compared to ROUNDROBIN, on average, across a range of very 

large synthetic datasets, and

• up to 70% and 85% reduction in runtime (respectively) as compared to 

ROUNDROBIN, for multiple attributes in a realistic, large flight records dataset 

[18].

2. The results of our algorithms (in all of the experiments we have conducted) always 

respect the correct ordering property.
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5.2 Synthetic Experiments

We begin by considering experiments on synthetic data. The datasets we ran our 

experiments on are as follows:

• Mixture of Truncated Normals (mixture): For each group, we select a collection 

of normal distributions, in the following way: we select a number sampled at 

random from {1, 2, 3, 4, 5}, indicating the number of truncated normal 

distributions that comprise each group. For each of these truncated normal 

distributions, we select a mean σ sampled at random from [0, 100], and a variance 

Δ sampled at random from [1, 10]. We repeat this for each group.

• Hard Bernoulli (hard): Given a parameter γ < 2, we fix the mean for group i to be 

40 + γ × i, and then construct each group by sampling between two values {0, 100} 

with bias equal to the mean. Note that in this case, η, the smallest distance between 

two means, is equal to γ. Recall that c2/η2 is a proxy for how difficult the input 

instance is (and therefore, how many samples need to be taken). We study this 

scenario so that we can control the difficulty of the input instance.

Our default setup consists of k = 10 groups, with 10M records in total, equally distributed 

across all the groups, with δ = 0.05 (the failure probability) and r = 1. Each data-point is 

generated by repeating the experiment 100 times. That is, we construct 100 different datasets 

with each parameter value, and measure the number of samples taken when the algorithms 

terminate, whether the output respects the correct ordering property, and the CPU and I/O 

times taken by the algorithms. For the algorithms ending in R, i.e., those designed for a more 

relaxed property leveraging resolution, we check if the output respects the relaxed property 

rather than the more stringent property. We focus on the mixture distribution for most of the 

experimental results, since we expect it to be the most representative of real world 

situations, using the hard Bernoulli in a few cases. We have conducted extensive 

experiments with other distributions as well, and the results are similar. The complete 

experimental results can be found in our technical report [34].

Variation of Sampling and Runtime with Data Size—We begin by measuring the 

sample complexity and wall-clock times of our algorithms as the data set size varies.

Summary: Across a variety of dataset sizes, our algorithm IFOCUSR (respectively IFOCUS) 

performs better on sample complexity and runtime than IREFINER (resp. IREFINE) which 

performs significantly better than ROUNDROBINR (resp. ROUNDROBIN). Further, the resolution 

improvement versions take many fewer samples than the ones without the improvement. In 

fact, for any dataset size greater than 108, the resolution improvement versions take a 

constant number of samples and still produce correct visualizations.

Figure 3(a) shows the percentage of the dataset sampled on average as a function of dataset 

size (i.e., total number of tuples in the dataset across all groups) for the six algorithms 

above. The data size ranges from 107 records to 1010 records (hundreds of GB). Note that 

the figure is in log scale.
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Consider the case when dataset size = 107 in Figure 3(a). Here ROUNDROBIN samples ≈50% of 

the data, while ROUNDROBINR samples around 35% of the dataset. On the other hand, our IREFINE 

and IREFINER algorithms both sample around 25% of the dataset, while IFOCUS samples around 

15% and IFOCUSR around 10% of the dataset. Thus, compared to the vanilla ROUNDROBIN 

scheme, all our algorithms reduce the number of samples required to reach the order 

guarantee, by up to 3×. This is because our algorithms focus on the groups that are actually 

contentious, rather than sampling from all groups uniformly.

As we increase the dataset size, we see that the sample percentage decreases almost linearly 

for our algorithms, suggesting that there is some fundamental upper bound to the number of 

samples required, confirming Theorem 3.6. With resolution improvement, this upper bound 

becomes even more apparent. In fact, we find that the raw number of records sampled for 

IFOCUSR, IREFINER, and ROUNDROBINR all remained constant for dataset sizes greater or equal to 

108. In addition, as expected, IFOCUSR (and IFOCUS) continue to outperform all other algorithms 

at all dataset sizes.

The wall-clock total, I/O, and CPU times for our algorithms running on NEEDLETAIL can be found 

in Figures 4(a), 4(b), and 4(c), respectively, also in log scale. Figure 4(a) shows that for a 

dataset of size of 109 records (8GB), IFOCUS/IFOCUSR take 3.9/0.37 seconds to complete, 

IREFINE/IREFINER take 6.5/0.58 seconds to complete, ROUNDROBIN/ROUNDROBINR take 18/1.2 seconds 

to complete, and SCAN takes 89 seconds to complete. This means that IFOCUS/IFOCUSR has a 23× 

speedup and 241× speedup relative to SCAN in producing accurate visualizations.

As the dataset size grows, the runtimes for the sampling algorithms also grow, but 

sublinearly, in accordance to the sample complexities. In fact, as alluded earlier, we see that 

the run times for IFOCUSR, IREFINER, and ROUNDROBINR are nearly constant for all dataset sizes 

greater than 108 records. There is some variation, e.g., in I/O times for IFOCUSR at 1010 

records, which we believe is due to random noise. In contrast, SCAN yields linear scaling, 

leading to unusably long wall-clock (i.e., 898 seconds at 1010 records.)

We note that not only does IFOCUS beat out ROUNDROBIN, and ROUNDROBIN beat out SCAN for every 

dataset size in total time, but this remains true for both I/O and CPU time as well. Sample 

complexities explain why IFOCUS should beat ROUNDROBIN. It is more surprising that IFOCUS, 

which uses random I/O, outperforms SCAN, which only uses sequential I/O. The answer is 

that so few samples are required the cost of additional random I/O is exceeded by the 

additional scan time; this becomes more true as the dataset size increases. As for CPU time, 

it highly correlated with the number of samples, so algorithms that operate on a smaller 

number of records outperform algorithms that need more samples.

The reason that CPU time for SCAN is actually greater than the I/O time is that for every 

record read, it must update the mean and the count in a hash map keyed on the group. While 

Boost's unordered_map implementation is very efficient, our disk subsystem is able to 

read about 800 MB/sec, and a single thread on our machine can only perform about 10 M 

hash probes and updates / sec. However, even if we discount the CPU overhead of SCAN, we 

find that total wall-clock time for IFOCUS and IFOCUSR is at least an order of magnitude better 

than just the I/O time for SCAN. For 1010 records, compared to SCAN's 114 seconds of 
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sequential I/O time, IFOCUS has a total runtime of 13 seconds, and IFOCUSR has a total runtime 

in 0.78 seconds, giving a speedup of at least 146× for a minimal resolution of 1%.

Finally, we relate the runtimes of our algorithms to the sample complexities with the scatter 

plot presented in Figure 3(b). The points on this plot represent the number of samples versus 

the total execution times of our sampling algorithms (excluding SCAN) for varying dataset 

sizes. As is evident, the runtime is directly proportional to the number of samples. With this 

in mind, for the rest of the synthetic datasets, we focus on sample complexity because we 

believe it provides a more insightful view into the behavior of our algorithms as parameters 

are varied. We return to runtime performance when we consider real datasets in Section 5.3.

Variation of Sampling and Accuracy with δ—We now measure how δ (the user-

specified probability of error) affects the number of samples and accuracy.

Summary: For all algorithms, the percentage sampled decreases as δ increases, but not by 

much. The accuracy, on the other hand, stays constant at 100%, independent of δ. Sampling 

any less to estimate the same confidence intervals leads to significant errors.

Figure 3(c) shows the effect of varying δ on the sample complexity for the six algorithms. 

As can be seen in the figure, the percentage of data sampled reduces but does not go to 0 as 

δ increases. This is because the amount of sampling (as in Equation 4) is the sum of three 

quantities, one that depends on log k, the other on log δ, and another on log log(1/ηi). The 

first and last quantities are independent of δ, and thus the number of samples required is 

non-zero even as δ gets close to 1. The fact that sampling is nonzero when δ is large is 

somewhat disconcerting; to explore whether this level of sampling is necessary, and whether 

we are being too conservative, we examine the impact of sampling less on accuracy (i.e., 

whether the algorithm obeys the desired visual property).

We focus on IFOCUSR and consider the impact of shrinking confidence intervals at a rate 

faster than prescribed by IFOCUS in Line 6 of Algorithm 1. We call this rate the heuristic 

factor: a heuristic factor of 4 means that we divide the confidence interval as estimated by 

Line 6 by 4, thereby ensuring that the confidence interval overlaps are fewer in number, 

allowing the algorithms to terminate faster. We plot the average accuracy (i.e., the fraction 

of times the algorithm violates the visual ordering property) as a function of the heuristic 

factor in Figure 5(a) for δ = 0.05 (other δs give identical figures, as we will see below).

First, consider heuristic factor 1, which directly corresponds to IFOCUSR. As can be seen in 

the figure, IFOCUSR has 100% accuracy: the reason is that IFOCUSR ends up sampling a constant 

amount to ensure that the confidence intervals do not overlap, independent of δ, enabling it 

to have perfect accuracy for this δ. In fact, we find that all our 6 algorithms have accuracy 

100%, independent of δ and the data distributions; thus, our algorithms not only provide 

much lower sample complexity, but also respect the visual ordering property on all datasets.

Next, we see that as we increase the heuristic factor, the accuracy immediately decreases 

(roughly monotonically) below 100%, Surprisingly, even with a heuristic factor of 2, we 

start making mistakes at a rate greater than 2 – 3% independent of δ. Thus, even though our 

sampling is conservative, we cannot do much better, and are likely to make errors by 
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shrinking confidence intervals faster than prescribed by Algorithm 1. To study this further, 

we plotted the same graph for the hard case with γ = 0.1 (recall that γ = η for this case), in 

Figure 5(b). Here, once again, for heuristic factor 1, i.e., IFOCUSR, the accuracy is 100%. On 

the other hand, even with a heuristic factor of 1.01, where we sample just 1% less to 

estimate the same confidence interval, the accuracy is already less than 95%. With a 

heuristic factor of 1.2, the accuracy is less than 70%! This result indicates that we cannot 

shrink our confidence intervals any faster than IFOCUSR does, since we may end up making up 

making far more mistakes than is desirable—even sampling just 1% less can lead to critical 

errors.

Overall, the results in Figures 5(a) and 5(b) are in line with our theoretical lower bound for 

sampling complexity, which holds no matter what the underlying data distribution is. 

Furthermore, we find that algorithms backed by theoretical guarantees are necessary to 

ensure correctness across all data distributions (and heuristics may fail at a rate higher than 

δ).

Rate of Convergence—In this experiment, we measure the rate of convergence of the 

IFOCUS algorithms in terms of the number ofgroups that still need to be sampled as the 

algorithms run.

Summary: Our algorithms converge very quickly to a handful of active groups. Even when 

there are still active groups, the number of incorrectly ordered groups is very small.

Figure 5(c) shows the average number of active groups as a function of the amount of 

sampling performed for IFOCUS, over a set of 100 datasets of size 10M. It shows two 

scenarios: 0, when the number of samples is averaged across all 100 datasets and 3M, when 

we average across all datasets where at least three million samples were taken. For 0, on 

average, the number of active groups after the first 1M samples (i.e., 10% of the 10M 

dataset), is just 2 out of 10, and then this number goes down slowly after that. The reason for 

this is that, with high probability, there will be two groups whose μi values are very close to 

each other. So, to verify if one is greater than the other, we need to do more sampling for 

those two groups, as compared to other groups whose ηi (the distance to the closest mean) is 

large—those groups are not active beyond 1M samples. For the 3M plot, we find that the 

number of samples necessary to reach 2 active groups is larger, close to 3.5M for the 3M 

case.

Next, we investigate if the current estimates vi, …, vk respect the correct ordering property, 

even though some groups are still active. To study this, we depict the number of incorrectly 

ordered pairs as a function of the number of samples taken, once again for the two scenarios 

described above. As can be seen in Figure 6(a), even though the number of active groups is 

close to two or four at 1M samples, the number of incorrect pairs is very close to 0, but often 

has small jumps — indicating that the algorithm is correct in being conservative and 

estimating that the we haven't yet identified the actual ordering. In fact, the number of 

incorrect pairs is nonzero up to as many as 3M samples, indicating that we cannot be sure 

about the correct ordering without taking that many samples. At the same time, since the 
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number of incorrect pairs is small, if we are fine with displaying somewhat incorrect results, 

we can show the current results to to the user.

Variation of Sampling with Number of Groups—We now look at how the sample 

complexity varies with the number of groups.

Summary: As the number of groups increases, the amount of sampling increases for all 

algorithms as an artifact of our data generation process.

To study the impact of the number of groups on sample complexity, we generate 100 

synthetic datasets of type mixture where the number of groups varies from 5 to 50, and plot 

the percentage of the dataset sampled as a function of the dataset size. Each group has 1M 

items. We plot the results in Figure 6(b). As can be seen in the figure, our algorithms 

continue to give significant gains even when the number of groups increases from 5 to 50. 

However, we notice that the amount of sampling increases for IFOCUSR as the number of 

groups is increased, from less than 10% for 5 groups to close to 40% for 50 groups.

The higher sample complexity can be attributed to the dataset generation process. As a 

proxy for the “difficulty” of a dataset, Figure 6(c) shows the average c2/η2 as a function of 

the number of groups (recall that η is the minimum distance between two means, c is the 

range of all possible values, and that the sample complexity depends on c2/η2) The figure is 

a a box-and-whiskers plot with the y-axis on a log scale. Note that the average difficulty 

increases from 10 for 5 to 108 for 50–a 4 orders of magnitude increase! Since we are 

generating means for each group at random, it is not surprising that the more groups, the 

higher the likelihood that two randomly generated means will be close to each other.

Additional Experiments—In the extended technical report [34], we present additional 

experiments, including:

• Dataset Skew: Our algorithms continue to provide significant gains in the presence 

of skew in the underlying dataset.

• Variance: Sample complexities of our algorithms vary slightly with variance; 

sampling increases by 1-2% as variance increases.

5.3 Real Dataset Experiments

We next study the impact of our techniques on a real dataset.

Summary: IFOCUS and IFOCUSR take 50% fewer samples than ROUNDROBIN irrespective of the 

attribute visualized.

For our experiments on real data, we used a flight records data set [18]. The data set contains 

the details of all flights within the USA from 1987–2008, with nearly 120 million records, 

taking up 12 GB uncompressed. From this flight data, we generated datasets of sizes 120 

million records (2.4GB) and scaled-up 1.2 billion (24GB) and 12 billion records (240GB) 

for our experiments using probability density estimation. We focused on comparing our best 

algorithms—IFOCUS and IFOCUSR (r=1%)—versus the conventional sampling—ROUNDROBIN We 

evaluate the runtime performance for visualizing the averages for three attributes: Elapsed 
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Time, Arrival Delay, and Departure Delay, grouped by Airline. For all algorithms and 

attributes, the orderings returned were correct.

The results are presented in Table 3. The first four rows correspond to the attribute Elapsed 

Time. Here, ROUNDROBIN takes 32.6 seconds to return a visualization, whereas IFOCUS takes only 

9.70 seconds (3× speedup) and IFOCUSR takes only 5.04 seconds (6× speedup). We see 

similar speedups for Arrival Delay and Departure Delay as well. As we move from the 108 

dataset to 1010 dataset, we see the run times roughly double for a 100× scale-up in the 

dataset. The reason for any increase at all in the runtime comes from the highly conflicting 

groups with means very close to one another. Our sampling algorithms may read all records 

in the group for these groups with with ηi values. When the dataset size is increased to allow 

for more records to sample from, our sampling algorithms take advantage of this and sample 

more from the conflicting groups, leading to larger run times.

Regardless, we show that even on a real dataset, our sampling algorithms are able to achieve 

up to a 6× speedup in runtime compared to round-robin. We could achieve even higher 

speedups if we were willing to tolerate a higher minimum resolution.

6. Related Work

The work related to our paper can be placed in a few categories:

Approximate Query Processing

There are two categories of related work in approximate query processing: online, and 

offline. We focus on online first since it is more closely related to our work.

Online aggregation [25] is perhaps the most related online approximate query processing 

work. It uses conventional round-robin stratified sampling [8] (like ROUNDROBIN) to construct 

confidence intervals for estimates of averages of groups. In addition, online aggregation 

provides an interactive tool that allows users to stop processing of certain groups when their 

confidence is “good enough”. Thus, the onus is on the user to decide when to stop 

processing groups (if not, stratified sampling is employed for all groups). Here, since our 

target is a visualization with correct properties, IFOCUS automatically decides when to stop 

processing groups. Hence, we remove the burden on the user, and prevent the user from 

stopping a group too early (making a mistake), or too late (doing extra work).

There are other papers that also use round-robin stratified sampling for various purposes, 

primarily for COUNT estimation respecting real-time constraints [28], respecting accuracy 

constraints (e.g., ensuring that confidence intervals shrink to a pre-specified size) without 

indexes [27], and with indexes [23, 37].

Since visual guarantees in the form of relative ordering is very different from the kind of 

objectives prior work in online approximate query processing considered, our techniques are 

quite different. Most papers on online sampling for query processing, including [25, 27, 28, 

37], either use uniform random sampling or round-robin stratified sampling. Uniform 

random sampling is strictly worse than round-robin stratified sampling (e.g., if the dataset is 

skewed) and in the best case is going to be only as good, which is why we chose not to 
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compare it in the paper. On the other hand, we demonstrate that conventional sampling 

schemes like round-robin stratified sampling sample a lot more than our techniques.

Next, we consider offline approximate query processing. Over the past decade, there has 

been a lot of work on this topic; as examples, see [9, 20, 30]. Garofalakis et al. [19] provides 

a good survey of the area; systems that support offline approximate query processing include 

BlinkDB [3] and Aqua [2]. Typically, offline schemes achieve a user-specified level of 

accuracy by running the query on a sample of a database. These samples are chosen a-priori, 

typically tailored to a workload or a small set of queries [1, 4, 5, 10, 29]. In our case, we do 

not assume the presence of a precomputed sample, since we are targeting ad-hoc 

visualizations. Even when pre-computing samples, a common strategy is to use Neyman 

Allocation [12], like in [11, 31], by picking the number of samples per strata to be such that 

the variance of the estimate from each strata is the same. In our case, since we do not know 

the variance up front from each strata (or group), this defaults once again to round-robin 

stratified sampling. Thus, we believe that round-robin stratified sampling is an appropriate 

and competitive baseline, even here.

Statistical Tests

There are a number of statistical tests [8,48] used to tell if two distributions are significantly 

different, or whether one hypothesis is better than a set of hypotheses (i.e., statistical 

hypothesis testing). Hypothesis testing allows us to determine, given the data collected so 

far, whether we can reject the null hypothesis. The t-test [8] specifically allows us to 

determine if two normal distributions are different from each other, while the Whitney-

Mann-U-test [41] allows us to determine if two arbitrary distributions are different from 

each other, None of these tests can be directly applied to decide where to sample from a 

collection of sets to ensure that the visual ordering property is preserved.

Visualization Tools

Over the past few years, the visualization community has introduced a number of interactive 

visualization tools such as ShowMe, Polaris, Tableau, and Profiler [24, 32, 46]. Similar 

visualization tools have also been introduced by the database community, including Fusion 

Tables [21], VizDeck [33], and Devise [40]. A recent vision paper [42] has proposed a tool 

for recommending interesting visualizations of query results to users. All these tools could 

benefit from the algorithms outlined in this paper to improve performance while preserving 

visual properties.

Scalable Visualization

There has been some recent work on scalable visualizations from the information 

visualization community as well. Immens [39] and Profiler [32] maintain a data cube in 

memory and use it to support rapid user interactions. While this approach is possible when 

the dimensionality and cardinality is small (e.g., for simple map visualizations of a single 

attribute), it cannot be used when ad-hoc queries are posed. A related approach uses 

precomputed image tiles for geographic visualization [15].
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Other recent work has addressed other aspects of visualization scalability, including 

prefetching and caching [13], data reduction [6] leveraging time series data mining [14], 

clustering and sorting [22, 43], and dimension reduction [51]. These techniques are 

orthogonal to our work, which focuses on speeding up the computation of a single 

visualization online.

Recent work from the visualization community has also demonstrated via user studies on 

simulations that users are satisfied with uncertain visualizations generated for algorithms 

like online aggregation, as long as the visualization shows error bars [16, 17]. This work 

supports our core premise, that analysts are willing to use inaccurate visualizations as long 

as the trends and comparisons of the output visualizations are accurate.

Learning to Rank

The goal of learning to rank [38] is the following: given training examples that are ranked 

pairs of entities (with their features), learn a function that correctly orders these entities. 

While the goal of ordering is similar, in our scenario we assume no relationships between 

the groups, nor the presence of features that would allow us to leverage learning to rank 

techniques.

7. Conclusions

Our experience speaking with data analysts is indeed that they prefer quick visualizations 

that look similar to visualizations that are computed on the entire database. Overall, 

increasing interactivity (by speeding up the processing of each visualization, even if it is 

approximate) can be a major productivity boost. As we demonstrated in this paper, we are 

able to generate visualizations with correct visual properties on querying less than 0.02% of 

the data on very large datasets (with 1010 tuples), giving us a speed-up of over 60× over 

other schemes (such as ROUNDROBIN) that provide similar guarantees, and 1000× over the 

scheme that simply generates the visualization on the entire database.
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Figure 1. Flight Delays
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Figure 2. Flight Delays: Intermediate Processing
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Figure 3. (a) Impact of data size (b) Scatter plot of samples vs runtime (c) Impact of δ
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Figure 4. (a) Total time vs dataset size (b) I/O time vs dataset size (c) CPU time vs dataset size

Kim et al. Page 32

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. (a) Impact of heuristic shrinking factor on accuracy (b) Impact of heuristic shrinking 
factor for a harder case (c) Studying the number of active intervals as computation proceeds
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Figure 6. (a) Studying the number of incorrectly ordered pairs as computation proceeds (b) 
Impact of number of groups on sampling (c) Evaluating the difficulty as a function of number of 
groups
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Table 2
Table of Notation

k Number of groups.

n1, …, nk Number of elements in each group.

S1, …, Sk The groups themselves. Si is a set of ni elements from [0, 1].

μ1, …, μk Averages of the elements in each group. μi = Ex∈Si[x].

τi,j Distance between averages μi and μj. τi,j = |μi − μj|.

ηi Minimal distance between μi and the other averages. ηi = minj≠i τi,j.

r Minimal resolution, 0 ≤ r ≤ 1.

Thresholded minimal distance; .
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Table 3
Real Data Experiments

Attribute Algorithm 108 (s) 109 (s) 1010 (s)

Elapsed Time

ROUNDROBIN 32.6 56.5 58.6

IFOCUS 9.70 10.8 23.5

IFOCUSR (1%) 5.04 6.64 8.46

Arrival Delay

ROUNDROBIN 47.1 74.1 77.5

IFOCUS 29.2 48.7 67.5

IFOCUSR (1%) 9.81 15.3 16.1

Departure Delay

ROUNDROBIN 41.1 72.7 76.6

IFOCUS 14.3 27.5 44.3

IFOCUSR (1%) 9.19 15.7 16.0
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