
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
New Classes of Moving Anchor Extragradient Algorithms for Saddlepoint Problems

Permalink
https://escholarship.org/uc/item/1v86p77d

Author
Alcala, James Kenneth

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, available at https://creativecommons.org/licenses/by-sa/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1v86p77d
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

New Classes of Moving Anchor Extragradient Algorithms for Saddlepoint Problems

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

by

James K. Alcala

June 2024

Dissertation Committee:

Dr. Yat Tin Chow, Chairperson
Dr. Weitao Chen
Dr. Heyrim Cho



Copyright by
James K. Alcala

2024



The Dissertation of James K. Alcala is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

First and foremost, I am grateful to my advisor Yat Tin Chow, whose guidance, patience,

understanding, wisdom, humor, and scientific expertise have guided this project since the

beginning and seen it to its fruition. Similarly, I am grateful to Mahesh S., our collaborator,

for his insights regarding TeX, expertise in MATLAB, knowledge in common mathematical

writing practices, guidance during the seemingly endless hours working in the trenches on

the specifics of this work, and friendliness in working alongside me. I am also grateful to

Ernest K. R. and his students TaeHo Y., Jongmin L., Jisun P., and Jaewok S. whose works

have greatly inspired this project, as well as for their friendliness and continued support.

I am grateful to Donghwan K., whose work and discussion have also been significant driv-

ing forces in the present work. I am grateful to Wotao Y., whose optimization research

introduced me to the field, and who graciously has assisted me in these early stages in my

career. I am in debt to Stanley J. O. and his group, especially Siting L., for their invitation

to present on this work in its early stages and for their discussion. I am thankful for Yat Sun

P. inviting me to join the Microtutorials Project, and for the continued guidance in these

early stages of my career. I would like to acknowledge Zhenghe Z., whose undergraduate real

analysis course was one of the defining points in my choice to pursue a mathematical career,

and for his enjoyable reading course. I am forever grateful to Marlén R.-H. for so much,

but most of all, her friendship. Jamal M., Liz H., and Chris J., for their early guidance

and mentorship. Lastly, I must acknowledge Fernando L.-G., my first mathematical mentor

who took me in as a new math major and within a year, had me confidently presenting on
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ABSTRACT OF THE DISSERTATION

New Classes of Moving Anchor Extragradient Algorithms for Saddlepoint Problems

by

James K. Alcala

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2024

Dr. Yat Tin Chow, Chairperson

This work introduces a moving anchor acceleration technique to extragradient al-

gorithms for smooth structured minimax problems. The moving anchor is introduced as

a generalization of the original algorithmic anchoring framework, i.e. the EAG method

introduced in [46], in hope of further acceleration. We show that the optimal order of con-

vergence in terms of worst-case complexity on the squared gradient, O(1/k2), is achieved by

our new method (where k is the number of iterations). We also extend the moving anchor

to a more general nonconvex-nonconcave class of saddle point problems using the frame-

work of [23], which generalizes [46]. We obtain similar order-optimal complexity results

in this extended case. A preconditioned version of our algorithms is also introduced and

analyzed to match optimal theoretical convergence rates. Our final theoretical contribution

is the development and analysis of a moving anchor with a stochastic oracle, which matches

accelerated convergence rates for convex-concave problems. Underlying these theoretical

contributions is a selection of robust new Lyapunov/energy functional techniques that ac-

count for the moving anchor structure while maintaining the optimal order of complexity
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under minimal assumptions. Various numerical experiments demonstrate the efficacy of the

moving anchor extragradient algorithms compared to their fixed anchor variants, and in

many cases suggest a more optimal constant in the big O notation that may surpass the

traditional fixed anchor methods. We conclude by discussing current challenges and future

directions this work may lead.
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Chapter 1

Introduction

1.1 Background

Minimax, min-max, or saddle point problems of the form

min
x∈Rn

max
y∈Rm

L(x, y) (1.1)

have received considerable attention from optimization researchers and, in particular, ma-

chine learning practitioners because of applications including but not limited to Game The-

ory, Online Learning, GANs [15], [5], adversarial learning [28], and reinforcement learning

[12]. Measuring the duality gap supy∗∈Rm L(x, y∗)− infx∗∈Rn L(x∗, y) on averaged (ergodic)

iterates or last-iterates of algorithms is one natural way to measure the suboptimality of

methods designed to solve (1.1). This is a clear analog to measuring suboptimality for

algorithms for minimization problems. On the other hand, such a measurement is not as

natural to consider when (1.1) is nonconvex-nonconcave, and the convergence guarantees

for this measure may be limiting.
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When problem (1.1) is differentiable, another meaningful measure of suboptimality

is the squared gradient norm or Hamiltonian of L, HamL(x, y) = ∥∇L(x, y)∥2. (Sometimes

this includes an extra factor of 1
2 , which is not included in this paper. No physical in-

terpretation of this quantity is used here.) This suboptimality measure retains meaning

for nonconvex-nonconcave problems and convergence rates on the squared gradient-norm

have only recently attained order-optimal convergence rates in these problem settings. This

is especially important, as many machine learning settings involve neural networks which

result in problems that are inherently nonconvex-nonconcave - and as our results indicate,

there may still be room for numerical improvements.

The EAG (extra-anchored gradient) class of algorithms, first introduced in [46],

combines extragradient and the more recently developed anchoring methods in a single

framework to tackle smooth-structured convex-concave minimax problems. With the pri-

mary assumptions being R−smoothness and convexity-concavity of (1.1), EAG achieved

O(1/k2) = Ω(1/k2) convergence rates on the squared gradient-norm; that is, the algorithm

is order-optimal. This achievement has inspired a flurry of research activity in recent years

[22], [42], [46]. To show optimality, the authors of [46] adapt arguments from [33], [34] to

construct a worse-case analysis for a large class of algorithms that contain EAG.

As anchoring is relatively new compared to extragradient, much of the literature

written as a direct consequence of these results emphasizes anchoring and other Halpern

adjacent techniques [24], [44], [43]. However, the EAG class is not without limitations. The

two sub-variants of EAG, EAG-V with varying step-size and EAG-C with constant step-

size, have difficult convergence analyses and are both relegated to the convex-concave class
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of smooth functions. Addressing some of these issues, the authors of [23] introduced the

Fast ExtraGradient Method, or FEG. This method generalizes the results of EAG and EG

+ [11] to introduce the order-optimal pairing of the extragradient anchor to the setting of

certain nonconvex-nonconcave problems (specifically, negative comonotone) and introduces

an analysis dependent on terms that are less difficult to work with. Furthermore, their work

improves upon the bounding constant attained by EAG in convex-concave problems while

retaining optimal convergence rates for a broader class of problems that are of particular

importance to machine learning practitioners, among many others.

In the spirit of these previous works, our contributions are as follows.

1. We introduce a new technique, called the ‘moving anchor,’ into the algorithmic set-

tings of EAG-V and FEG under minimal assumptions. We demonstrate that in both

settings, introducing the moving anchor retains order-optimal O(1/k2) convergence

rates across a range of parameter choices that using the moving anchor gives one ac-

cess to. One may recover the original fixed-anchor algorithms via parameter tuning,

so our algorithms generalize much of the current anchoring literature.

2. We develop a theoretical version of the moving anchor algorithms (in both the convex-

concave EAG-V and nonconvex-nonconcave FEG) with a proximal anchoring step with

fruitful implications for future research.

3. We develop a stochastic moving anchor EAG-V variant that retains order-optimal

convergence guarantees for this problem setting. Many modern optimization prob-

lems involve computations in very high dimensions, so this development is especially

valuable for many applications.
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4. For both the EAG-V moving anchor and the FEG moving anchor, we run a variety

of numerical examples by comparing multiple versions of our moving anchor algo-

rithms with their fixed anchor counterparts. We also perform some experiments in

the stochastic setting. These numerical examples demonstrate the efficacy of our al-

gorithms, as in all deterministic cases, one of the moving anchor algorithm versions in

each example is the fastest algorithm by a constant. The stochastic algorithms also

demonstrate favorable convergence behavior across anchor variants.

1.2 Literature Review

1.2.1 Halpern Iteration and Anchoring

Introduced in 1967 and inspired by Browder’s classical fixed point theorem, the

Halpern iteration [18] is an algorithm built for approximating fixed point(s) of nonexpanding

maps in a Hilbert space. Its convergence has been studied in [25], and it is extensively used

in monotone inclusion-type problem settings [10], [44], [4]. A recent paper [43] draws an

explicit connection between Halpern-inspired methods and Nesterov’s AGM [35], linking

two very active strains of acceleration literature.

Directly inspired by Halpern, algorithmic anchoring was recently introduced in the

literature [40] and has since been utilized to establish optimal O(1/k2) convergence rates for

smooth-structured convex-concave minimax problems [46]. Since then, these methods have

been extended to the nonconvex-nonconcave, negative comonotone problem setting [23] and

analogous settings for composite problems in a multi-step framework [24]. Interestingly, this

latter framework introduces ‘semi’-anchoring, where only one part of the descent-ascent step
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is anchored, and a unique anchor occurs at each step of the multi-step. To our knowledge,

this is the first instance of an anchoring method that goes beyond a single fixed anchor. In

[44], the authors develop an anchored Popov’s scheme and a splitting version of the EAG

developed in [46], with a similar analysis.

1.2.2 Extragradient Methods

The extragradient method first appeared in [21] and has since been an important

acceleration method extensively studied in the optimization literature [2], [45], [27], espe-

cially in the context of generative adversarial networks [15], [5] and adversarial training

[28]. A classical result regarding these methods is that if X ∈ Rn, Y ∈ Rm are compact

domains, then for the duality gap maxy∗∈Y L(x, y∗) − minx∗∈X L(x∗, y), the ergodic iter-

ate of extragradient-type methods [30], [36] have an O(1/k) rate, which is order-optimal

[37], [32]. Recently, it was shown that the last iterate convergence rate for extragradient

also attains O(1/k) convergence [17], with only monotonicity and Lipschitz assumptions.

This closes the gap between the last-iterate and ergodic-iterate convergence rates for ex-

tragradient discussed in [14]. Another recent interesting result was attained in [11], where

the authors developed the Extragradient+ method, a variant of extragradient extended to

various nonconvex-nonconcave problem settings.

On the other hand, when the problem at hand has certain smoothness properties,

the squared gradient norm ∥∇L∥2 for extragradient-type algorithms recently achieved order-

optimal convergence of O(1/k2) [46], [23], thanks in part to the synthesis with anchoring.

This breaks the bound of the SCLI class of algorithms discussed in [14], which contains

the unmodified extragradient, because EAG is not SCLI, but specifically 2-CLI or in an
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extended class of 1-CLI algorithms. See Appendix D.2 of [46] for a best-iterate (NOT last

iterate, at the time of writing this quantity doesn’t seem to be known) convergence analysis

of extragradient and Appendix E of [46] and [14] for more details on the relationships

between these classes of algorithms. We conclude this discussion by remarking that for

smooth problems, the bound on the squared gradient norm is meaningful in nonconvex-

nonconcave problem settings, and as demonstrated in this work and these recent works, has

room for numerical improvement.

1.2.3 Stochastic Algorithms

Stochastic methods in optimization have a long and celebrated history owing to

their ability to reduce the computational bottlenecks commonly encountered in modern,

high-dimensional problems [3], and the literature regarding such methods in closely aligned

fields is rich [23], [19], [20], [29], [31], [40], [41], [48]. We remark that [23] and [40] presented

the first results regarding stochastic anchoring algorithms. [4] studies monotone inclusions

with a stochastic Halpern iteration, combining these techniques with variance reduction

to achieve optimal results in terms of stochastic oracle complexity. Crucially, the former

work develops deterministic methods for certain nonmonotone operators, however, it de-

velops stochastic methods for monotone operators associated to convex-concave problems

only. Whereas [4] attains stronger stochastic oracle complexity results, but only in the

case of monotone operators. In general, developing theory for the accelerated stochastic

versions of algorithms in these nonconvex-nonconcave settings (and the associated non-

monotone operators) seems to be a hard problem. In [48] the authors develop stochastic

methods for a class of nonconvex minimization problems referred to as variationally co-
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herent, equivalent to the Minty Variational Inequality condition, which includes convexity

and other interesting problem classes as sub-classes. Referring to this problem class as

coherent non-monotone variational inequalities, the authors in [41] develop similarly pow-

erful stochastic methods in the variational inequality setting (ie, a problem setting that

contains saddle point problems). Until fairly recently, the most prominent article on the

subject of stochastic nonconvex-nonconcave saddle point problems was [10], which develops

the Extragradient+ method for a large class of nonmonotone problems, up to and includ-

ing the very broad weak Minty Variational Inequaltiy class of problems. More recently,

[13] provides an analysis of stochastic extragradient algorithms in the strongly monotone,

affine, and monotone settings when random reshuffling, a popular computational technique

for stochastic algorithms, is involved. [16] provides a very general framework to analyze

stochastic extragradient algorithms and their variants. To conclude this section on a more

optimistic note, both [7] and [26] have very recently developed stochastic extragradient

methods with robust analyses for settings beyond monotone operators.
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1.3 Notation and Basic Results

A saddle function L : Rn×Rm → R is (non)convex-(non)concave if it is (non)convex

in x for any fixed y ∈ Rm and (non)concave in y for any fixed x ∈ Rn. A saddle point

(x̂, ŷ) ∈ Rn × Rm is any point such that the inequality L(x̂, y) ≤ L(x̂, ŷ) ≤ L(x, ŷ) for all

x ∈ Rn and y ∈ Rm. Solutions to (1.1) are defined as saddle points. Throughout this paper,

we assume the differentiability of L, and we are especially interested in the so-called saddle

operator associated to L,

GL(z) =

 ∇xL(x, y)

−∇yL(x, y)

 (1.2)

where the L subscript is omitted when the underlying saddle function is known. When

our problem is convex-concave, the operator (1.2) is known to be monotone [39], meaning

⟨GL(z1) − GL(z2), z1 − z2⟩ ≥ 0 ∀z1, z2 ∈ Rn × Rm. We assume that this operator GL is

R-Lipschitz, or has certain stronger Lipschitz properties we detail later; this is sometimes

referred to as L being R-smooth. With these properties in mind, one may introduce an

assumption that generalizes monotonicity: let ρ ∈ (− 1
2R ,+∞). In this paper, we assume

that when GL is not monotone, it satisfies

⟨GL(z1)−GL(z2), z1 − z2⟩ ≥ ρ∥GL(z1)−GL(z2)∥2 ∀z1, z2 ∈ Rn × Rm.

When ρ > 0, this is called co-coercivity; when ρ = 0, this recovers monotonicity; when

ρ < 0, this is called negative comonotonicity. This latter condition on (1.2) allows one

to consider certain nonconvex-nonconcave problems L, and is also going to be a central

focus of this work. Note, however, that these assumptions need not cover all smooth

nonconvex-nonconcave problems of interest. Figure 1, Table 1, and Example 1 of [23]
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illustrate broader problem classes than negative comonotonicity that retain smoothness

while being nonconvex-nonconcave. Finally we state that although ∇L ̸= GL, we have

∥∇L∥ = ∥GL∥, so we may use these expressions interchangeably.
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Chapter 2

Previous Fixed Anchor Methods

In this chapter, we outline the specifications and convergence results of the two

original fixed anchor methods, the Extra Anchored Gradient (EAG) [46] and Fast Extra-

Gradient (FEG) [23].

2.1 The Extra Anchored Gradient

The Extra Anchored Gradient Algorithm, or EAG with varying step size (EAG-V)

has a simple statement and a relatively simple proof of convergence:

zk+1/2 = zk + βk(z
0 − zk)− αkG(zk) (2.1)

zk+1 = zk + βk(z
0 − zk)− αkG(zk+1/2) (2.2)

αk+1 =
αk

1− α2
kR

2

(
1− (k + 2)2

(k + 1)(k + 3)
α2
kR

2

)
= αk

(
1− 1

(k + 1)(k + 3)

α2
kR

2

1− α2
kR

2

)
(2.3)

10



with α0 ∈ (0, 1/R), and R a predetermined constant. Here, G is the so-called saddle

operator, G := (∇xL,−∇yL) and L is a convex-concave saddle function in a minimax

optimization problem. It is a nontrivial fact that G is monotone [46]. The structure of the

αk’s and βk’s are detailed below alongside auxiliary sequences Ak and Bk. We state the

convergence of this algorithm as a theorem and relay the details of its convergence via a

specific Lyapunov functional as a lemma. For more details, including a version of EAG with

a non-varying step size, see [46].

Theorem 1 (EAG-V convergence rate [46]) Assume L : Rn×Rm → R is an R-smooth

convex-concave function with a saddle point z∗. Assume further that α0 ∈ (0, 3
4R) and define

α∞ = limk→∞ αk. Then EAG-V converges, with rate

||∇G(zk)||2 ≤ 4(1 + α0α∞R2)

α2
∞

||z0 − z∗||2

(k + 1)(k + 2)

where G = (∇L|x∈Rn ,−∇L|−y∈−Rm).

Since z∗ is the saddle point, this theorem demonstrates O(1/k2) convergence of

the algorithm. To derive this order of convergence, the following lemma is necessary.

Lemma 2 (EAG Lyapunov Functional [46]) Let {βk}k≥0 ⊆ (0, 1) and α0 ∈ (0, 1
R) be

given. Consider the following sequences defined by the given recurrence relations for k ≥ 0 :

Ak =
αk

2βk
Bk (2.4)

Bk+1 =
Bk

1− βk
(2.5)

αk+1 =
αkβk+1(1− α2

kR
2 − β2

k)

βk(1− βk)(1− α2
kR

2)
(2.6)
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where B0 = 1. Assume that αk ∈ (0, 1
R) holds for all k ≥ 0, and that L is R−smooth and

convex-concave. Then the sequence {Vk}k≥0 (2.7) defined below is nonincreasing in k.

Vk := Ak∥G(zk)∥2 +Bk⟨G(zk), zk − z0⟩ (2.7)

Remark 3 Within (2.7), choosing βk = 1
k+2 yields Bk = k + 1, Ak = αk(k+2)(k+1)

2 , and the

construction of αk+1 in (2.6).

We also need the clarify the behavior of (2.6), as this will be needed in multiple analyses

later.

Lemma 4 If α0 ∈ (0, 3
4R), then the sequence {αk}∞k=0 of (2.6) monotonically decreases to

a positive limit.

Proof. This is proved as a corollary of Theorem 23.

2.2 The Fast Extra Gradient

In [23], the methods in [46] are expanded to a broader class of smooth structured

nonconvex-nonconcave minimax problems, bringing an O(1/k2) rate of convergence rate to

a larger class of problems in the setting of minimax games. This algorithm class is called

the FEG, or Fast Extra Gradient method.

zk+1/2 = zk + βk(z
0 − zk)− (1− βk)(αk + 2ρk)G(zk) (2.8)

zk+1 = zk + βk(z
0 − zk)− αkG(zk+1/2)− (1− βk)2ρkG(zk) (2.9)

12



First, we remark that each update (2.8), (2.9) is mostly very similar to the corresponding

updates in EAG-V, (2.1), (2.2). The reuse of the term G(zk) is useful for handling the

negative comonotonicity that is represented by the parameter ρk; in (strongly) monotone

problems, ρk(>) = 0. To obtain the accelerated convergence results, one may choose

αk = 1
R , βk = 1

k+1 , ρk = ρ for all k ≥ 0, and we have the following theorem resulting.

Theorem 5 (Fixed Anchor FEG Convergence) For the R−Lipschitz continuous and

ρ-comonotone operator G with ρ ≥ 0 and for any z∗ in the set of points fixed by G, the

sequence {zk}k≥0 generated by FEG satisfies, for all k ≥ 1,

∥G(zk)∥2 ≤ 4∥z0 − z∗∥2

( 1
R + 2ρ)2k2

.

Notably, this bound given by [23] is a significant improvement over the bound in [46], and

the authors also provide a stochastic version with analogous convergence guarantees. The

analysis of this algorithm is also completed using a powerful Lyapunov descent lemma. We

direct interested readers to Section 7 of [23] to see its details, in particular Lemma 7.1, and

to Theorem 12 for the more general moving anchor version of this descent lemma.
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Chapter 3

Moving Anchor EAG-V

In this section, we construct and analyze a new version of the EAG-V algorithm.

Here, the anchoring point moves at each time step. We call this the moving anchor algo-

rithm; it utilizes a similar extragradient step. Further down, we demonstrate comparable

rates of convergence to the original EAG algorithm with varying step-size. For the k − th

iterate of z0 ∈ Rn × Rm, the EAG-V with moving anchor is defined as

z0 = z̄0

zk+1/2 = zk +
1

k + 2
(z̄k − zk)− αkG(zk) (3.1)

zk+1 = zk +
1

k + 2
(z̄k − zk)− αkG(zk+1/2) (3.2)

z̄k+1 = z̄k + γk+1G(zk+1) (3.3)

The major structural difference is the introduction of the regularly-updating z̄k, analogous

to the role of z0 in the EAG-V detailed in the previous section. (3.3) is the regular update

for this anchor; it depends on the algorithm update (3.2) rather than exclusively on itself.

However, the fact that the anchor is now moving requires some additional machinery to
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ensure that a new, more general Lyapunov functional is still nonincreasing. To these ends,

the previously defined sequences remain the same, with new additions in the following

sequences.

ck+1 ≤
ck

1 + δk
, (3.4)

γk+1 ≤
Bk+1

ck+1(1 +
1
δk
)
. (3.5)

We choose δk so that
∞∑
k=0

log(1 + δk) < ∞. The ck terms are part of the definition of the

Lyapunov functional we use in our analysis; these come in handy when we use γk to absolve

terms. Let c∞ := limk→∞ ck = c0
∏∞

k=0
1

1+δk
. As a general rule, one wishes to choose c0

so that c∞ satisfies some specified convergence constraint; these constraints will appear

throughout the major convergence theorems in this chapter and the chapters relating to

the moving anchor FEG and the stochastic moving anchor EAG-V. While the choice of c0

is therefore limited to according to certain problem/algorithm constraints, in general there

seems to be much freedom in choosing c0 and the sequence {δk}. For the rest of this work,

we take (3.4) and (3.5) to be given with equal signs instead of inequalities. As in the fixed

anchor case, we will take βk = 1
k+2 , resulting in similar sequences (2.4), (2.5), (2.6) for

the moving anchor. Before we proceed with the analysis, we emphasize that the original

EAG-V algorithm may be recovered simply by setting γk+1 := 0 for all k.

Now, we give the definition of the Lyapunov functional and show that it is nonin-

creasing:

Lemma 6 The Lyapunov functional

Vk := Ak∥G(zk)∥2 +Bk⟨G(zk), zk − z̄k⟩+ ck∥z∗ − z̄k∥2, (3.6)
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corresponding to the moving anchor EAG-V algorithm (3.1) through (3.3) with constants

Ak, Bk, ck, βk defined as in (2.4), (2.5), (2.6), and Theorem 2, along with sequences ck, γk

defined in (3.4), (3.5), is non increasing.

Proof.

First we reorganize some of the algorithm statements and label them for use later.

zk − zk+1 = βk(z
k − z̄k) + αkG(zk+1/2) (3.7)

zk+1/2 − zk+1 = αk(G(zk+1/2)−G(zk)) (3.8)

z̄k − zk+1 = (1− βk)(z̄
k − zk) + αkG(zk+1/2) (3.9)

z̄k − z̄k+1 = −γk+1G(zk+1) (3.10)

(3.7) comes from rearranging (3.2), (3.8) comes from taking the difference between (3.1)

and (3.2), (3.9) is z̄k minus (3.2), and (3.10) is (3.3) rearranged. The overall goal of this

proof is to show that the difference Vk − Vk+1 is nonnegative.

Vk − Vk+1

≥Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2+Bk⟨zk − z̄k, G(zk)⟩︸ ︷︷ ︸
I

−Bk+1⟨zk+1 − z̄k+1, G(zk+1)⟩︸ ︷︷ ︸
II

+ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2

−Bk

βk
⟨zk − zk+1, G(zk)−G(zk+1)⟩︸ ︷︷ ︸

III

Notice that the last term above, III, is not part of the definition of Vk nor Vk+1. It has been

introduced to aid in the proof and is nonnegative by the monotonicity of G. We would like

to absolve any terms containing the z̄k, z̄k+1 terms. To accomplish this, our next goal is to
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focus on turning the labeled parts (I, II, III) of the above line into IV below. We may take

advantage of the previously established identities (3.7) through (3.10).

αkBk+1⟨G(zk+1/2, G(zk+1)⟩+ Bk+1

γk+1
∥z̄k − z̄k+1∥2 − αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩︸ ︷︷ ︸

IV

.

We now detail this process. The term I does not change. For II, on the other hand, we have

−Bk+1⟨zk+1 − z̄k+1, G(zk+1)⟩︸ ︷︷ ︸
II

= Bk+1⟨z̄k − zk+1, G(zk+1)⟩ −Bk+1⟨z̄k − z̄k+1, G(zk+1)⟩ (3.11)

= Bk+1⟨(1− βk)(z̄
k − zk) + αkG(zk+1/2), G(zk+1)⟩ −Bk+1⟨−γk+1G(zk+1), G(zk+1)⟩

(3.12)

where the first equality comes from recognizing zk+1 − z̄k+1 = zk+1 − z̄k + z̄k − z̄k+1 and

the second comes from substituting in equality (3.9) and (3.10). For III,

−Bk

βk
⟨zk − zk+1, G(zk)−G(zk+1)⟩︸ ︷︷ ︸

III

= −Bk

βk
⟨zk − zk+1, G(zk)⟩+ Bk

βk
⟨zk − zk+1, G(zk+1)⟩ (3.13)

= −Bk

βk
⟨βk(zk − z̄k) + αkG(zk+1/2), G(zk)⟩+ Bk

βk
⟨βk(zk − z̄k) + αkG(zk+1/2), G(zk+1)⟩,
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where the last equality is a result of substituting in (3.7) in each of the first arguments of

the two terms in (3.13). Now, we can begin simplify everything we’ve done to obtain IV.

⟨zk − z̄k, G(zk)⟩︸ ︷︷ ︸
I

(3.14)

⟨(1− βk)(z
k − z̄k)− αkG(zk+1/2)− γk+1G(zk+1), G(zk+1)⟩︸ ︷︷ ︸

II

(3.15)

−Bk

βk
⟨βk(zk − z̄k) + αkG(zk+1/2), G(zk)⟩︸ ︷︷ ︸

III

(3.16)

+
Bk

βk
⟨βk(zk − z̄k) + αkG(zk+1/2), G(zk+1)⟩︸ ︷︷ ︸

III

(3.17)

From here, we’ll use two facts. First, Bk+1 = Bk
1−βk

. This allows us to combine and cancel

the very first component of (3.15) with the βk(z
k − z̄k) component of (3.17). Additionally,

(3.14) cancels with the βk(z
k − z̄k) component of (3.16). This leaves us with

=αkBk+1⟨G(zk+1/2), G(zk+1)⟩+Bk+1⟨γk+1G(zk+1), G(zk+1)⟩︸ ︷︷ ︸
II

−Bkαk

βk
⟨G(zk+1/2), G(zk)⟩+ Bkαk

βk
⟨G(zk+1/2), G(zk+1)⟩︸ ︷︷ ︸

III

=αkBk+1⟨G(zk+1/2), G(zk+1)⟩+ Bk+1

γk+1
∥z̄k − z̄k+1∥2︸ ︷︷ ︸

IV

−αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩︸ ︷︷ ︸

IV

,

where the last equality is a result of applying the anchor update to get the norm squared

term, and combining the latter two terms while leaving G(zk+1/2) fixed. Thus, we’ve shown
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Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2

+Bk⟨zk − z̄k, G(zk)⟩ −Bk+1⟨zk+1 − z̄k+1, G(zk+1)⟩

+ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2 − Bk

βk
⟨zk − zk+1, G(zk)−G(zk+1)⟩

=Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 + αkBk+1⟨G(zk+1/2), G(zk+1)⟩ (3.18)

−αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩ (3.19)

+ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2 + Bk+1

γk+1
∥z̄k − z̄k+1∥2 (3.20)

Now, we continue on with our goal of absolving terms. From Cauchy, we have that

||z∗ − z̄k+1∥2 ≤ (1 + δk)∥z∗ − z̄k∥2 + (1 +
1

δk
)∥z̄k − z̄k+1∥2 (3.21)

and from the algorithm definition,

ck+1 =
ck

1 + δk
, γk+1 =

Bk+1

ck+1(1 +
1
δk
)
. (3.22)

We apply (3.21) to (3.20) to obtain

≥Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 + αkBk+1⟨G(zk+1/2), G(zk+1)⟩

− αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩+ ck∥z∗ − z̄k∥2

− ck+1

(
(1 + δk)∥z∗ − z̄k∥2 + (1 +

1

δk
)∥z̄k − z̄k+1∥2

)
+

Bk+1

γk+1
∥z̄k − z̄k+1∥2

and now we apply (3.22):
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≥Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 + αkBk+1⟨G(zk+1/2), G(zk+1)⟩

− αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩+ ck∥z∗ − z̄k∥2

− ck∥z∗ − z̄k∥2 − Bk+1

γk+1
∥z̄k − z̄k+1∥2 + Bk+1

γk+1
∥z̄k − z̄k+1∥2

=Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 + αkBk+1⟨G(zk+1/2), G(zk+1)⟩

− αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩+ 0.

At this point, showing that the remaining terms are nonnegative is nontrivial, but

directly follows the arguments made in the proof of Lemma 2 in [46]. Specifically, following

(29) onwards in [46], one will find that

Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 + αkBk+1⟨G(zk+1/2), G(zk+1)⟩

−αkBk

βk
⟨G(zk+1/2), G(zk)−G(zk+1)⟩

≥0,

which completes the proof.

Now we have the primary result of this section.

Theorem 7 The EAG-V algorithm with moving anchor (3.1), (3.2), and (3.3) together

with the Lyapunov functional Vk (3.6) described in Theorem 6, has convergence rate

∥G(zk)∥2 ≤ 4(α0R
2 + c0)∥z0 − z∗∥22V0

α∞
4 (k + 1)(k + 2)

(3.23)

as long as we assume c∞α∞ ≥ 1.
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Proof. For the most part, this argument parallels the analogous argument found in [46].

We use the Lyapunov functional to isolate and bound ∥G(zk)∥2.

Vk ≤ V0 = α0∥G(z0)∥2 + c0∥z0 − z∗∥2 (3.24)

≤ (α0R
2 + c0)∥z0 − z∗∥2

by R−smoothness. On the other hand,

Vk = Ak∥G(zk)∥2 +Bk⟨G(zk), zk − z̄k⟩+ ck∥z∗ − z̄k∥2

≥ Ak∥G(zk)∥2 +Bk⟨G(zk), z∗ − z̄k⟩+ ck∥z∗ − z̄k∥2

≥ Ak

2
∥G(zk)∥2 + (ck −

B2
k

2Ak
)∥z∗ − z̄k∥2

=
αk(k + 1)(k + 2)

4
∥G(zk)∥2 + (ck −

k + 1

αk(k + 2)
)∥z∗ − z̄k∥2

≥ α∞
4

(k + 1)(k + 2)∥G(zk)∥2 + (c∞ − 1

α∞
)∥z∗ − z̄k∥2

≥ α∞
4

(k + 1)(k + 2)∥G(zk)∥2

As long as c∞ ≥ 1
α∞

, the second to last line above is positive, and we may focus on the

inequality given to us by the last line above:

α∞
4

(k + 1)(k + 2)∥G(zk)∥2 ≤ (α0R
2 + c0)∥z0 − z∗∥2.

Dividing both sides by the constant α∞
4 (k + 1)(k + 2) gives the desired result.

We next show that, for a slightly restricted choice of γk, our proof works for −γk

in place of γk. This is of interest as numerical results indicate that certain problem settings

favor −γk in terms of convergence speed by a constant, while +γk seems to be favored in

other settings.
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Lemma 8 Replacing γk with −γk in the definition of the EAG-V algorithm with moving

anchor (3.1), (3.2), (3.3), and suppose γk+1 = min
Bk+1

ck+1(1 +
1
δk
)
,

ek+1

2Bk+1∥G(zk+1)∥2
, where∑

ek < ∞. Then the Lyapunov functional (3.6) is nonincreasing, and has the same order

of convergence O(1/k2) as in the positive γk moving anchor EAG-V algorithm (3.23).

Proof. First, note that the anchor update (3.3) has been modified to become

−γk+1 = − Bk+1

ck+1(1 +
1
δk
)
, (3.25)

resulting in the following modification to (3.10):

z̄k − z̄k+1 = γk+1G(zk+1). (3.26)

We see the first adjustment in the previous lemma in the transition from line (3.11) to

(3.12); note that we focus only on the terms dependent on (3.26):

−Bk+1⟨z̄k − z̄k+1, G(zk+1)⟩

= −Bk+1⟨γk+1G(zk+1), G(zk+1)⟩

= −Bk+1⟨(2γk+1 − γk+1)G(zk+1), G(zk+1)⟩

= −Bk+1⟨2γk+1G(zk+1), G(zk+1)⟩+Bk+1⟨γk+1G(zk+1), G(zk+1)⟩. (3.27)

The latter term in line (3.27) will go on and cancel in a quadratic form as in the proof of the

original lemma. We are left with the term −Bk+1⟨2γk+1G(zk+1), G(zk+1)⟩. At this point,

if we proceed as in Theorem 6, we end up with the inequality
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Vk − Vk+1 ≥ −2γk+1Bk+1∥G(zk+1)∥2 ⇐⇒

Vk − Vk+1 + 2γk+1Bk+1∥G(zk+1)∥2 ≥ 0.

By construction, the left-hand side of the inequality should remain nonnegative. Now, by

the new construction of γk we have

γk+1 ≤
ek+1

2Bk+1∥G(zk+1)∥2
,

when we proceed as in the proof of Theorem 7 to show convergence, getting to the line

(3.24), we get the chain of inequalities

Vk ≤V0 +
k−1∑
j=1

2γjBj∥G(zj)∥2

≤V0 +
k−1∑
j=1

ej ≤ V0 +
∞∑
j=1

ej

=CV0,

where C is a constant. This completes the proof that our algorithm has both a nonincreasing

Lyapunov functional and the O(1/k2) convergence under the assumption of a (slightly

restricted) negative γk term. It is worth noting that zk+1 is computed before γk+1

within the algorithm, so the restriction in Theorem 8 may not be too restrictive to work

with. Our numerical tests allowed us to simply put a negative sign in front of the γk terms

to attain convergence matching the optimal rate, and which is in some cases markedly

faster. Unfortunately, these results do not give much of an indication as to how the tuning

of γk benefits numerical convergence rates. We leave the theoretical exploration of this

phenomena to future work.
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Chapter 4

Moving Anchor FEG

We introduce the moving anchor to the expanded framework of [23] involving cer-

tain nonconvex-nonconcave objective functions with associated negative comonotone saddle

gradients. We show that a moving anchor with the same conditions to the convex-concave

setting is a feasible approach in this broader class of problems. Below we give the explicit

definition of this FEG modified via a moving anchor, and state its convergence results via

a nonincreasing Lyapunov functional and a theorem bounding the squared gradient norm.

The FEG with moving anchor, following [23], is given as
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zk+1/2 = zk + βk(z̄
k − zk)− (1− βk)(αk + 2ρk)G(zk) (4.1)

zk+1 = zk + βk(z̄
k − zk)− αkG(zk+1/2)− (1− βk)2ρkG(zk) (4.2)

z̄k+1 = z̄k + γk+1G(zk+1) (4.3)

ck+1 =
ck

1 + δk
(4.4)

γk+1 =
Bk+1

ck+1(1 +
1
δk
)

(4.5)

where {δk} is chosen so that
∞∑
i=0

log(1 + δi) < ∞, with {γk}, and {ck}, and c∞ chosen in

the same method given in the EAG-V with moving anchor, and, as before, z̄0 = z0. Before

we state the results, two remarks are in order:

Remark 9 An additional assumption on the saddle-gradient operator G is needed: for some

ρ ∈
(
− 1

2R ,∞
)
, ⟨G(z)−G(z′), z− z′⟩ ≥ ρ∥G(z)−G(z′)∥2 ∀z, z′ ∈ Rm×Rn. (Note z, z′ are

vectors, not matrices.) This is known as ρ−comonotonicity, and has three sub-conditions.

For ρ > 0, we have cocoercivity; for ρ = 0, we have monotonicity; and with ρ < 0 we have

(negative) comonotonicity. This condition will hold whenever any FEG variant is discussed

throughout this work.

Remark 10 As in the EAG with moving anchor, one may recover the original fixed anchor

FEG by setting γk = 0 for all k. This allows us to state our algorithm while also offering

an easy reference point for the original fixed anchor version.

Remark 11 Many of the sequences defined in the following lemma have similar naming

conventions to those defined in Theorem 6. However, the instance of the moving anchor
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FEG class (4.1), (4.2), (4.3) for which we state convergence results utilizes αk = 1
R , βk =

1
k+1 , ρk = ρ,Rk = R for k ≥ 0. To be clear, Theorem 12 is more general and does NOT

require these definitions, while Theorem 13 uses these definitions for explicit convergence

results.

Lemma 12 Suppose that the sequences {ck}k≥0, {γk}k≥0, are defined as in (4.4), (4.5),

and the sequences {αk}k≥0, {βk}k≥0, and {Rk}k≥0 ⊂ (0,∞), and {ρk}k≥0 ⊂ R satisfy

α0 ∈ (0,∞), αk ∈ (0, 1
Rk

), β0 = 1, {βk}k≥1 ⊆ (0, 1) for all k. Additionally, assume that the

following bound, Lipschitz conditions, and comonotonicity conditions respectively hold for a

sequence {ρk} ⊂ R for all k ≥ 0 :

(1− βk+1)

2βk+1
(αk+1 + 2ρk+1)− ρk ≤ 1

2βk
(αk + 2ρk)− ρk

∥G(z1)−G(z0)∥ ≤ R0∥z1 − z0∥

∥G(zk+1)−G(zk+1/2)∥ ≤ Rk∥zk+1 − zk+1/2∥

⟨G(zk+1)−G(zk), zk+1 − zk⟩ ≥ ρk∥G(zk+1)−G(zk)∥2.

If also A0 =
α0(L

2
0α

2
0 − 1)

2
, B0 = 0, B1 = 1, and

Ak =
Bk(1− βk)

2βk
(αk + 2ρk)−Bkρk, Bk+1 =

Bk

1− βk
,

then the Lyapunov functional

Vk := Ak∥G(zk)∥2 −Bk⟨G(zk), z̄k − zk⟩+ ck∥z∗ − z̄k∥2, (4.6)

where z∗ is a saddle point, is nonincreasing.
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Proof. This proof proceeds similarly to that of the convex-concave, monotone

case in the previous section. First, we write out some relations which will be used shortly:

zk+1 − zk =
βk

1− βk
(z̄k − zk+1)− αk

1− βk
G(zk+1/2)− 2ρkG(zk) (4.7)

zk+1 − zk = βk(z̄
k − zk)− αkG(zk+1/2)− 2ρk(1− βk)G(zk) (4.8)

zk+1 − zk+1/2 = αk((1− βk)G(zk)−G(zk+1/2)) (4.9)

z̄k − z̄k+1 = −γk+1G(zk+1) (4.10)

As in the proof in the convex-concave case of EAG-V with moving anchor, we introduce a

term to the difference of two arbitrary consecutive functionals in our sequence:

V k − Vk+1

≥Ak∥G(zk)∥2 −Bk⟨G(zk), z̄k − zk⟩ −Ak+1∥G(zk+1)∥2 +Bk+1⟨G(zk+1), z̄k+1 − zk+1⟩

+ ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2

− Bk

βk

(
⟨G(zk+1)−G(zk), zk+1 − zk⟩ − ρk∥G(zk+1)−G(zk)∥2

)
=Ak∥G(zk)∥2 −Bk⟨G(zk), z̄k − zk⟩ (4.11)

−Ak+1∥G(zk+1)∥2 +Bk+1⟨G(zk+1), z̄k+1 − zk+1⟩ (4.12)

+ ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2

− Bk

βk
⟨G(zk+1), zk+1 − zk⟩+ Bk

βk
⟨G(zk), zk+1 − zk⟩+ Bkρk

βk
∥G(zk+1)−G(zk)∥2

From here, we first simplify the introduced term further and then substitute (4.7) into the

inner product which has a Bk out front, and then substitute (4.8) into the inner product with

a Bk+1 out front; these are in lines (4.11) and (4.12), respectively. After some computation,
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Vk − Vk+1

≥
(
Ak −

2Bkρk(1− βk)

βk

)
∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 + αkBk

βk(1− βk)
⟨G(zk+1), G(zk+1/2)⟩

+
2ρkBk

βk
⟨G(zk+1), G(zk)⟩ − αkBk

βk
⟨G(zk), G(zk+1/2)⟩+Bk+1⟨G(zk), z̄k+1 − z̄k⟩

+
Bkρk
βk

∥G(zk+1)−G(zk)∥2 + ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2

=
(
Ak −

Bkρk(1− 2βk)

βk

)
∥G(zk)∥2

−
(
Ak −

Bkρk
βk

)
∥G(zk+1)∥2 + αkBk

βk(1− βk)
⟨G(zk+1), G(zk+1/2)⟩ (4.13)

−αkBk

βk
⟨G(zk), G(zk+1/2)⟩+Bk+1⟨G(zk+1), z̄k+1 − z̄k⟩+ ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2.

(4.14)

Next, let’s focus on the last three terms in (4.14): Bk+1⟨G(zk+1), z̄k+1− z̄k⟩+ck∥z∗− z̄k∥2−

ck+1∥z∗ − z̄k+1∥2. By Cauchy-Schwartz,

∥z∗ − z̄k+1∥2 ≤ (1 + δk)∥z∗ − z̄k∥2 + (1 +
1

δk
)∥z̄k − z̄k+1∥2.

Second, by construction

Bk+1⟨G(zk+1), z̄k − z̄k+1⟩ = Bk+1

γk+1
∥z̄k − z̄k+1∥2

and

ck+1 ≤
ck

1 + δk
, γk+1 ≤

Bk+1

ck+1(1 +
1
δk
)
.

Now we may judiciously apply these facts to the three terms in (4.14) under consideration

in the following manner.
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Bk+1⟨G(zk+1), z̄k+1 − z̄k⟩+ ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2

≥Bk+1

γk+1
∥z̄k+1 − z̄k∥2 + ck∥z∗ − z̄k∥2 − ck+1

(
(1 + δk)∥z∗ − z̄k∥2 + (1 +

1

δk
)∥z̄k − z̄k+1∥2

)
≥Bk+1

Bk+1
ck+1(1 +

1

δk
)∥z̄k − z̄k+1∥2 + ck∥z∗ − z̄k∥2

− ck+1(1 + δk)∥z∗ − z̄k∥2 − ck+1(1 +
1

δk
)∥z̄k − z̄k+1∥2

≥ck∥z∗ − z̄k∥2 − ck+1(1 + δk)∥z∗ − z̄k∥2 ≥ ck∥z∗ − z̄k∥2 − ck∥z∗ − z̄k∥2 ≥ 0.

While this takes care of the latter three terms in lines (4.13) to (4.14), that every-

thing else is nonnegative is a nontrivial argument. However, it directly follows the proof of

Lemma 7.1 in [23], so as before we refer to their proof, and then our Lyapunov functional

is also nonincreasing.

Theorem 13 (O(1/k2) convergence rate for FEG with moving anchor)

For the R−Lipschitz continuous and ρ−comonotone operator G where ρ > − 1
2R , and z∗ ∈

Z∗(G), Z∗(G) := {z∗ ∈ Rd : G(z∗) = 0}, and c∞− 1
1
R
+2ρ

≥ 0, the sequence {zk}k≥0 generated

by FEG with moving anchor satisfies

∥G(zk)∥2 ≤ 4c0∥z0 − z∗∥2

k2( 1
R + 2ρ)

for all k ≥ 1.

Proof. Under the same assumptions as Theorem 12, we take αk = 1/R, βk =

1
k+1 , Rk = R, ρk = ρ, which satisfy the conditions in the statement for all k greater than or

equal to 0. These give us Bk = k,Ak = k2

2 (
1
R + 2ρ)− kρ. From here,
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c0∥z∗ − z0∥2 = V0 ≥ Vk =

(
k2

2
(
1

R
+2ρ)− kρ

)
∥G(zk)∥2 − k⟨G(zk), z̄k − zk⟩+ ck∥z∗ − z̄k∥2,

so then

k2

2
(
1

L
+ 2ρ)∥G(zk)∥2 + ck∥z∗ − z̄k∥2

≤k⟨G(zk), z̄k − zk⟩+ kρ∥G(zk)∥2 + c0∥z∗ − z0∥2

≤k⟨G(zk), z̄k − z∗⟩+ c0∥z∗ − z0∥2 (by comonotonicity condition)

≤k∥G(zk)∥∥z̄k − z∗∥+ c0∥z∗ − z0∥2

≤k2

2δ
∥G(zk)∥2 + δ

2
∥z̄k − z∗∥2 + c0∥z∗ − z0∥2.

From here, define 1
δ = 1

2R + ρ. Then we have that

k2

2

(
1

R
+ 2ρ− 1

2R
− ρ

)
∥G(zk)∥2 +

(
c∞ − 1

1
R + 2ρ

)
∥z̄k − z∗∥2 ≤ c0∥z∗ − z0∥2,

and as long as the constant c∞ − 1
1
R
+2ρ

≥ 0, we obtain the desired result by dividing both

sides of the inequality

k2

2

(
1

2R
+ ρ

)
∥G(zk)∥2 ≤ c0∥z∗ − z0∥2

by k2

2

(
1
2R + ρ

)
. See [23]’s proof of Theorem 4.1 for the analogous result with a fixed

anchor. Next, we show that having −γk+1 in place of γk+1 may also, with some additional

assumptions, provide a convergent algorithm.

Lemma 14 In the setting of Theorem 12, replace γk with −γk in the definition of the FEG

algorithm with moving anchor, and suppose γk+1 = min
Bk+1

ck+1(1 +
1
δk
)
,

ek+1

2Bk+1∥G(zk+1)∥2
,

where
∑

ek < ∞. Then the Lyapunov functional described in Theorem 12 is nonincreasing,

and we attain the same order of convergence for the FEG with moving anchor and −γk.
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Proof. The proof proceeds in exactly the same manner as that in Theorem 8.

As in the EAG-V with moving anchor case, we suspect this restriction is not too

major a restriction based off of numerical results, and that there is a ‘better’ way to show

that the −γk version of our algorithm converges.
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Chapter 5

Preconditioned Versions of Moving

Anchor Algorithms

In this chapter, we introduce a sort of ‘preconditioned’ version of the previously

developed moving anchor algorithms. The insight here is that the algorithms developed in

previous chapters may utilize a proximal update for the anchoring step without any major

modifications to the convergence theory. In particular, the descent lemmas and optimal

order of convergence may be retained. The motivation for doing this is twofold: first,

introducing a proximal update breaks these algorithms out of the class of deterministic

algorithms where optimal complexity results are well-established. This motivates these

preconditioned algorithms as objects of interest for both theoretical and computational

purposes in future study.
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5.1 Modified EAG-V with moving anchor

We begin with developing the proximal version of the EAG-V with moving anchor.

Definition 15 (Modified EAG-V with moving anchor) In the setting of EAG-V with

moving anchor, consider equation (3.10) from the proof of Theorem 6:

z̄k − z̄k+1 = −γk+1G(zk+1)

and now let us consider the same equation with an additional term introduced:

z̄k − z̄k+1 = −γk+1G(zk+1)− tk(H(z̄k)−H(z̄k+1)), (5.1)

where H is a monotone operator and tk is nonnegative. This only modifies the anchor

update within the algorithm itself, and it does so in the following way:

z̄k+1 = (I + tkH)−1(z̄k + γk+1G(zk+1) + tkH(z̄k)). (5.2)

This is the modified EAG-V with moving anchor.

Lemma 16 Under the same conditions as Theorem 6 and with H any monotone operator,

tk a nonnegative parameter, the Lyapunov functional for the modified EAG-V algorithm

with moving anchor is nonincreasing. Specifically, replacing the previous z̄k+1 update in the

unmodified EAG-V moving anchor algorithm with equation (5.2) still results in a nonin-

creasing Lyapunov functional.

Proof. Within the proof of Theorem 6 recall the following line:

−Bk+1⟨zk+1 − z̄k+1, G(zk+1)⟩

= Bk+1⟨z̄k − zk+1, G(zk+1)⟩ −Bk+1⟨z̄k − z̄k+1, G(zk+1)⟩.
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Within this proof that the functional is nonincreasing, the primary change is that we must

use equation (5.1) for substituting G(zk+1). This results in

−Bk+1⟨z̄k − z̄k+1, G(zk+1)⟩

= −Bk+1

〈
z̄k − z̄k+1,

z̄k − z̄k+1 + tk(H(z̄k)−H(z̄k+1))

−γk+1

〉
=

Bk+1

γk+1

(
∥z̄k − z̄k+1∥2 + tk⟨z̄k − z̄k+1, H(z̄k)−H(z̄k+1⟩

)
.

The term
Bk+1

γk+1
∥z̄k − z̄k+1∥2 will be utilized elsewhere (see Theorem 6) so we don’t need to

worry about it here, and the term
Bk+1

γk+1
tk⟨z̄k − z̄k+1, H(z̄k) − H(z̄k+1⟩ is nonnegative by

monotonicity and the fact that tk is also nonnegative. This completes the proof.

Theorem 17 The modified EAG-V algorithm with moving anchor has convergence rate

O(1/k2).

Remark 18 While H may be any monotone operator, in practice one may wish to take

H = G.

5.2 Modified FEG with moving anchor

Definition 19 (Proximal FEG with moving anchor) In the setting of FEG with mov-

ing anchor, consider (4.10) from the proof of Theorem 12:

z̄k − z̄k+1 = −γk+1G(zk+1)

and now let’s consider the same term with a proximal term introduced:

z̄k − z̄k+1 = −γk+1G(zk+1)− tk(H(z̄k)−H(z̄k+1)),
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where H is a monotone operator just as before. This modification affects the anchor update

in the same way as in the previous case:

z̄k+1 = (I + tkH)−1(z̄k + γk+1G(zk+1) + tkH(z̄k)) (5.3)

Lemma 20 Under the same conditions as Theorem 12 and with H any monotone opera-

tor, tk nonnegative for all k, the Lyapunov functional for the modified FEG algorithm with

moving anchor is nonincreasing. Specifically, replacing the previous z̄k+1 update in the un-

modified FEG moving anchor algorithm with (5.3) still results in a nonincreasing Lyapunov

functional.

Proof. The proof proceeds in the same manner as in that of Theorem 16. The

only minor difference is that in this case, we begin with Bk+1⟨G(zk+1), z̄k+1 − z̄k⟩. We still

obtain from this the terms

Bk+1

γk+1
∥z̄k − z̄k+1∥2 + Bk+1

γk+1
tk⟨z̄k − z̄k+1, H(z̄k)−H(z̄k+1⟩,

where the first term is utilized elsewhere in the larger proof of the functional being nonin-

creasing and the latter term is monotone, thus nonnegative.

Theorem 21 The modified FEG algorithm with moving anchor has convergence rate O(1/k2).
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Chapter 6

Stochastic Moving Anchor EAG-V

Let G be an R−Lipschitz, monotone operator on Rn × Rm, and let N = n +

m. To develop the stochastic moving anchor EAG-V algorithm, the following additional

clarifications and assumptions are necessary.

1.
1

N

N∑
i=1

Gi(z) = E[Gθ(z)|z] = G(z), or the expectation of G(z) given z is G(z) for θ iid

on 1, . . . , N.

2. G has condition number CG(z) which depends on the point z currently being evaluated

by G, such that
1

N

N∑
i=1

∥Gi(z)∥2 ≤ CG(z)∥G(z)∥2 and 1 ≤ CG(z) ≤ N are true for

all z ∈ Rn × Rm, with the constant KG(z) := NCG(z) resulting in 1 ≤ KG(z) ≤ N2.

Note that this also gives us an a priori bound on certain variance terms. Additionally,

given three indices i, j, k, (whose meaning will become apparent below), we have
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V ar(z) := E[⟨G(z)−Gikj
(z), G(z)−Gikj

(z)⟩|z]

=
1

N

N∑
i=1

∥Gi(z)∥2 − ∥G(z)∥2

≤ (CG(z)− 1)∥G(z)∥2 (6.1)

no matter what values i, j, k, may take. Note that the condition number, as defined,

has this property (6.1) that holds for any z; however, we are particularly interested in

the behavior of V ar(zk), V ar(zk+1/2), where zk is the k−th iteration of a stochastic

algorithm and zk+1/2 is a sort of half-way, ‘interpolation’ step. Therefore, we impose

one other useful bound regarding this condition number CG(z) as it relates to the

stochastic iterates and half-iterates in the stochastic algorithm we define below.

Condition 22 The function CG depends on the local value z being evaluated by the

operator G in such a way that the following inequalities hold for all k, where k is the

iteration count of a stochastic algorithm:

(
CG(z

k)− 1
)
∥G(zk)∥2 ≤ C1

(k + 1)4
(6.2)

E[
(
CG(z

k+1/2)− 1
)
∥G(zk+1/2)∥2|z̄k, zk] ≤ C2

(k + 1)4
, (6.3)

where C1, C2 are fixed positive constants.

With Theorem 22 in mind, we will henceforth use the notation CG(z
k),KG(z

k) to indi-

cate two nonnegative, real-valued functions from Rn×Rm to R that behave according

to (6.2), (6.3).
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In particular, we note that for any zk coming from a stochastic algorithm, we have

that eventually,

CG(z
k) ≤ CG, (6.4)

where we define CG as the supremum of appropriate condition numbers, independent

of z.

3. For all z1, z2 ∈ Rn × Rm, ∥Gi(z1)−Gi(z2)∥2 ≤ R2
i ∥z1 − z2∥2 with R =

√∑
Ri.

Furthermore, define {i1k, i2k, i3k}∞k=1 to be uniformly iid random on {1, . . . , N}. Then the

stochastic EAG-V with moving anchor is defined as

zk+1/2 = zk +
1

k + 2
(z̄k − zk)− αkGi1k

(zk) (6.5)

zk+1 = zk +
1

k + 2
(z̄k − zk)− αkGi2k

(zk+1/2) (6.6)

z̄k+1 = z̄k + γ̃k+1Gi3k
(zk+1) (6.7)

γ̃k+1 =
Bk+1

ck+1KG(1 +
1
δk
)

(6.8)

where each G
ijk
, j = 1, 2, 3, is assumed to be an unbiased estimator of G(z), meaning that

for ξi,j,k(z) := G(z)−G
ijk
(z), E[ξi,j,k(z)|z] = 0. With these modifications, we may keep the

update (3.4) the same as in the stochastic setting. First, we offer a lemma that clarifies the

behavior of αk; our primary modification to the original version of this lemma, due to [46],

is an updated bound for α0.

Lemma 23 The sequence αk (2.6) starting at α0 ∈ (0, η), η := min{ 3

4R
√

KG

, 1√
2R

}, mono-

tonically decreases to a positive limit. In particular, when
√
KG = 1, we recover Theorem 4.

Remark 24 Squeezing down the interval where α0 may start is a choice made to force the

positivity of the term (1−α2
kR

2−βk) in (6.43) for ease of analysis. With a different choice
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of βk, one may wish to modify the upper bound η by choosing the second term to be

√
1− β̂

R
,

where β̂ := supβk is not equal to 1.

Proof. We assume R = 1 and
√

KG = 1 without loss of generality. We may

rewrite (2.6) as

αk − αk+1 =
α3
k

(k + 1)(k + 3)(1− α2
k)
. (6.9)

Suppose that we have established that for some N ≥ 0, 0 < αN < ρ for some ρ ∈ (0, 1)

that satisfies

η :=
1

2

( 1

N + 1
+

1

N + 2

) ρ2

1− ρ2
< 1. (6.10)

(6.10) holds for all N ≥ 0 if ρ < 3
4 . We now show that with (6.10),

αN > αN+1 > · · · > αN+k > (1− η)αN for all k > 0,

allowing us to obtain αk as a monotonically decreasing sequence to some α such that

α ≥ (1− η)αN . It suffices to prove (1− η)αN < αN+k < ρ for all k ≥ 0, as (6.9) indicates

that {αk}∞k=0 is decreasing. Use induction on k to prove that αN+k ∈ ((1− η)αN , ρ). The

case k = 0 is trivial. Now suppose that (1− η)αN < αN+j < ρ holds true for j = 0, . . . , k.

Then by (6.9), for each 0 ≤ j ≤ k we have

0 < αN − αN+k+1 <
k∑

j=0

1

(N + j + 1)(N + j + 3)

ρ2αN

1− ρ2

<
ρ2αN

1− ρ2

∞∑
j=0

1

(N + j + 1)(N + j + 3)

=
ρ2αN

1− ρ2
1

2

( 1

N + 1

1

N + 2

)
= ηαN ,

which gives (1− η)αN < αN+k+1 < αN < ρ, completing the induction.
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We need a careful Lyapunov analysis to handle the newly introduced stochasticity.

Rather than focusing on making a nonincreasing Lyapunov functional as was previously

the goal, we aim to control how negative the differences between subsequent terms may be

via variances. The analysis here is inspired by the analogous stochastic Lyapunov lemma

in [23].

Lemma 25 (Stochastic Lyapunov Functional, Moving Anchor EAG-V) Consider

the stochastic EAG-V with moving anchor (6.5), (6.6), (6.7), (6.8), (3.4) along with condi-

tions 1, 2, 3, and {i1k, i2k, i3k}∞k=1 as previously described. Suppose we are given the sequences

{Ak}∞k=0, {Bk}∞k=0 as described in Theorem 2 and the sequence {αk}∞k=0 described in Theo-

rem 23. Define the stochastic Lyapunov functional as

Vk = Ak∥G(zk)∥2 +Bk⟨G(zk), zk − z̄k⟩+ ck∥z∗ − z̄k∥2, (6.11)

Then, (6.11) satisfies the following:

E[Vk − Vk+1|z̄k, zk] ≥

−2AkαkRV ar(zk)− 2Ak

1− βk
αkRE[V ar(zk+1/2)|z̄k, zk]

Proof. With our Lyapunov functional (6.11) in mind, we derive the following useful rela-

tions:

zk − zk+1 = βk(z
k − z̄k) + αkGi2k

(zk+1/2) (6.12)

zk+1/2 − zk+1 = αk

(
Gi2k

(zk+1/2)−Gi1k
(zk)

)
(6.13)

z̄k − zk+1 = (1− βk)(z̄
k − zk) + αkGi2k

(zk+1/2) (6.14)

z̄k − z̄k+1 = −γ̃k+1Gi3k
(zk+1). (6.15)
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(6.12) is zk subtract (6.5), (6.13) is (6.6) subtract (6.5), (6.14) is z̄k subtract (6.6), and

(6.15) is (6.7) rearranged. As already evidenced, much of this proof will parallel the previous

descending Lyapunov lemmas from the deterministic cases, but our end goal is to capture

how negative the differences can be rather than force positivity. We introduce a nonnegative

inner product to begin the process of simplifying:

Vk − Vk+1 ≥

Ak∥G(zk)∥2 +Bk⟨G(zk), zk − z̄k⟩ −Ak+1∥G(zk+1)∥2

−Bk+1⟨G(zk+1), zk+1 − z̄k+1⟩ − Bk

βk
⟨zk − zk+1, G(zk)−G(zk+1)⟩

+ ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2

After some additional computation utilizing (6.12) through (6.15), we obtain

Vk − Vk+1 ≥

Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 − αkBk

βk
⟨Gi2k

(zk+1/2), G(zk)−G(zk+1)⟩︸ ︷︷ ︸
I

+αkBk+1⟨G(zk+1), Gi2k
(zk+1/2)⟩︸ ︷︷ ︸

I

+ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2︸ ︷︷ ︸
II

+Bk+1γ̃k+1⟨Gi3k
(zk+1), G(zk+1)⟩︸ ︷︷ ︸
II

.

From here, we will deal with I and II separately. We will deal with II first. To begin, let’s

analyze the inner product contained within II under expectation:

41



E[Bk+1γ̃k+1⟨Gi3k
(zk+1), G(zk+1)⟩|z̄k, zk] (6.16)

=Bk+1γ̃k+1E
[
E[⟨Gi3k

(zk+1), G(zk+1)⟩|zk+1, z̄k, zk]
∣∣z̄k, zk] (6.17)

=Bk+1γ̃k+1E[∥G(zk+1)∥2|z̄k, zk] (6.18)

≥Bk+1γ̃k+1E
[∥Gi3k

(zk+1)∥2

KG(zk+1)
|z̄k, zk

]
(6.19)

=Bk+1E
[ ∥z̄k − z̄k+1∥2

γ̃k+1KG(zk+1)
|z̄k, zk

]
. (6.20)

From (6.16) to (6.17) to (6.18), we apply the law of iterated expectation to get G(zk+1).

Knowing zk+1, we recall that Gi3k
is an unbiased estimator of G to get (6.18). The inequality

(6.19) results from 2, and (6.20) results from (6.15).

Thus after taking expectation, II changes into the following:

E[II|z̄k, zk] (6.21)

≥E[ck∥z∗ − z̄k∥2 − ck+1∥z∗ − z̄k+1∥2 + Bk+1

γ̃k+1KG
∥z̄k − z̄k+1∥2|z̄k, zk] (6.22)

≥E[ck∥z∗ − z̄k∥2 − ck+1

(
(1 + δk)∥z∗ − z̄k∥2 + (1 +

1

δk
)∥z̄k − z̄k+1∥2

)
+

Bk+1

γ̃k+1KG(zk+1)
∥z̄k − z̄k+1∥2|z̄k, zk] (6.23)

where (6.23) is an application of Cauchy-Schwartz to ∥z∗ − z̄k+1∥. Because

γ̃k+1 =
1

KG

Bk+1

ck+1(1+
1
δk

)
, we find

E[II|z̄k, zk] ≥ 0,

and now we are left with I:

42



E[Vk − Vk+1|z̄k, zk] ≥ E[I|z̄k, zk]

=E
[
Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 − αkBk

βk
⟨Gi2k

(zk+1/2), G(zk)−G(zk+1)⟩

+ αkBk+1⟨G(zk+1), Gi2k
(zk+1/2)⟩

∣∣z̄k, zk].
First, we note that

∥G(zk+1/2)−G(zk+1)∥2 ≤ R2∥zk+1/2 − zk+1∥2

= R2α2
k∥Gi2k

(zk+1/2)−Gi1k
(zk)∥2 (6.24)

⇔

−Ak∥Gi2k
(zk+1/2)−Gi1k

(zk)∥2+ Ak

R2α2
k

∥G(zk+1/2)−G(zk+1)∥2 ≤ 0 (6.25)

by R−smoothness, so that

E[I|z̄k, zk] ≥

E
[
Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 − αkBk

βk
⟨Gi2k

(zk+1/2), G(zk)−G(zk+1)⟩

+ αkBk+1⟨G(zk+1), Gi2k
(zk+1/2)⟩ −Ak∥Gi2k

(zk+1/2)−Gi1k
(zk)∥2

+
Ak

R2α2
k

∥G(zk+1/2)−G(zk+1)∥2
∣∣z̄k, zk] (6.26)

=E
[
Ak∥G(zk)∥2 −Ak+1∥G(zk+1)∥2 − αkBk

βk
⟨Gi2k

(zk+1/2), G(zk)−G(zk+1)⟩

+ αkBk+1⟨G(zk+1), Gi2k
(zk+1/2)⟩

−Ak

(
∥Gi2k

(zk+1/2)∥2 − 2⟨Gi2k
(zk+1/2), Gi1k

(zk)⟩+ ∥Gi1k
(zk)∥2

)
+

Ak

R2α2
k

(
∥G(zk+1/2)∥2 − 2⟨G(zk+1/2), G(zk+1)⟩+ ∥G(zk+1)∥2

)∣∣z̄k, zk] (6.27)

To be clear, (6.26) is I subtract (6.25), and (6.27) is (6.26) with the terms introduced from

(6.25) expanded. Rearrange (6.27) to visualize cancellations and groupings of terms:
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E
[
Ak∥G(zk)∥2 −Ak∥Gi1k

(zk)∥2 −Ak+1∥G(zk+1)∥2 + Ak

R2α2
k

∥G(zk+1)∥2

+(
αkBk

βk
+ αkBk+1)⟨Gi2k

(zk+1/2), G(zk+1)⟩ − αkBk

βk
⟨Gi2k

(zk+1/2), G(zk)⟩

−Ak∥Gi2k
(zk+1/2))∥2 + Ak

R2α2
k

∥G(zk+1/2)∥2 + 2Ak⟨Gi2k
(zk+1/2), Gi1k

(zk)⟩

− 2Ak

R2α2
k

⟨G(zk+1/2), G(zk+1)⟩
∣∣z̄k, zk] (6.28)

≥ E
[
(

Ak

R2α2
k

−AkKG(z
k+1/2))∥G(zk+1/2)∥2 + (

Ak

R2α2
k

−Ak+1)∥G(zk+1)∥2

+2Ak⟨Gi2k
(zk+1/2), Gi1k

(zk)⟩ − αkBk

βk
⟨Gi2k

(zk+1/2), G(zk)⟩

+(
αkBk

βk
+ αkBk+1)⟨Gi2k

(zk+1/2), G(zk+1)⟩ − 2Ak

R2α2
k

⟨G(zk+1/2), G(zk+1)⟩
∣∣z̄k, zk],

(6.29)

where the first two terms of (6.28) cancel by the law of iterated expectation applied to

∥Gi1k
(zk)∥2 and the first term in (6.29) comes from applying 2 to −Ak∥Gi2k

(zk+1/2))∥2 +

Ak

R2α2
k
∥G(zk+1/2)∥2. Now, we may apply the law of iterated expectation to modify the two

terms in the second line of (6.29):

E
[
2Ak⟨Gi2k

(zk+1/2), Gi1k
(zk)⟩ − αkBk

βk
⟨Gi2k

(zk+1/2), G(zk)⟩
∣∣z̄k, zk]

=E
[
E[2Ak⟨Gi2k

(zk+1/2), Gi1k
(zk)⟩ − αkBk

βk
⟨Gi2k

(zk+1/2), G(zk)⟩|z̄k, zk, i1k]
∣∣z̄k, zk]

=E
[
2Ak⟨G(zk+1/2), Gi1k

(zk)⟩ − αkBk

βk
⟨G(zk+1/2), G(zk)⟩

∣∣z̄k, zk]. (6.30)

With observation (6.30) under our belts, we continue by introducing some terms at the tail

end of an updated (6.29):
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E
[
(

Ak

R2α2
k

−AkKG(z
k+1/2))∥G(zk+1/2)∥2 + (

Ak

R2α2
k

−Ak+1)∥G(zk+1)∥2

+ 2Ak⟨G(zk+1/2), Gi1k
(zk)⟩ − αkBk

βk
⟨G(zk+1/2), G(zk)⟩

+ (
αkBk

βk
+ αkBk+1)⟨Gi2k

(zk+1/2), G(zk+1)⟩ − 2Ak

R2α2
k

⟨G(zk+1/2), G(zk+1)⟩

+ 2Ak⟨G(zk+1/2), G(zk)⟩ − 2Ak⟨G(zk+1/2), G(zk)⟩

+ (
αkBk

βk
+ αkBk+1)⟨G(zk+1), G(zk+1/2)⟩

− (
αkBk

βk
+ αkBk+1)⟨G(zk+1), G(zk+1/2)⟩

∣∣z̄k, zk]
≥E

[
(

Ak

R2α2
k

−AkKG(z
k+1/2))∥G(zk+1/2)∥2 + (

Ak

R2α2
k

−Ak+1)∥G(zk+1)∥2 (6.31)

+ (2Ak −
αkBk

βk
)⟨G(zk+1/2), G(zk)⟩ (6.32)

+ (
αkBk

βk
+ αkBk+1 −

2Ak

R2α2
k

)⟨G(zk+1), G(zk+1/2)⟩ (6.33)

+ 2Ak⟨G(zk+1/2), Gik1
(zk)−G(zk)⟩ (6.34)

+ (
αkBk

βk
+ αkBk+1)⟨G(zk+1), Gi2k

(zk+1/2)−G(zk+1/2)⟩
∣∣z̄k, zk] (6.35)

Let us momentarily ignore the latter two terms (6.34), (6.35). Note (6.32) is zero by the

definition of Ak, and for the other coefficients,
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Ak

R2α2
k

−AkKG(z
k+1/2) =

Ak(1− α2
kR

2KG(z
k+1/2))

α2
kR

2
(6.36)

Ak+1 =
Ak(1− α2

kR
2 − β2

k)

(1− α2
kR

2)(1− βk)2

=⇒ Ak

α2
kR

2
−Ak+1 =

Ak(1− α2
kR

2 − βk)
2

α2
kR

2(1− α2
kR

2)(1− βk)2
(6.37)

αkBk+1 +
αkBk

βk
− 2Ak

α2
kR

2
=

2Ak

1− βk
− 2Ak

α2
kR

2

= −
2Ak(1− α2

kR
2 − βk)

α2
kR

2(1− βk)
(6.38)

which, if we continue ignoring (6.34) and (6.35) while substituting in (6.36), (6.37), and

(6.38), yields

Vk − Vk+1 ≥

E[I|z̄k, zk] ≥

E
[(Ak(1− α2

kR
2KG(z

k+1/2))

α2
kR

2

)
∥G(zk+1/2)∥2 +

( Ak(1− α2
kR

2 − βk)
2

α2
kR

2(1− α2
kR

2)(1− βk)2
)
∥G(zk+1)∥2

(6.39)

−
2Ak(1− α2

kR
2 − βk)

α2
kR

2(1− βk)
⟨G(zk+1), G(zk+1/2)⟩

∣∣z̄k, zk]. (6.40)

Our aim is to complete the square via Young’s inequality to demonstrate the nonnegativity

of these terms. A slight complicating factor exists in the extra KG(z
k+1/2) in a coefficient

within (6.39), which we deal with in the following way.
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(Ak(1− α2
kR

2KG(z
k+1/2))

α2
kR

2

)
∥G(zk+1/2)∥2 +

( Ak(1− α2
kR

2 − βk)
2

α2
kR

2(1− α2
kR

2)(1− βk)2
)
∥G(zk+1)∥2

−
2Ak(1− α2

kR
2 − βk)

α2
kR

2(1− βk)
⟨G(zk+1), G(zk+1/2)⟩

=
(
1− α2

kR
2KG(z

k+1/2)
)
∥G(zk+1/2)∥2 +

(1− α2
kR

2 − βk)
2

(1− α2
kR

2)(1− βk)2
∥G(zk+1)∥2

−
2(1− α2

kR
2 − βk)

(1− βk)
⟨G(zk+1), G(zk+1/2)⟩ (6.41)

=∥
√

1− α2
kR

2KG(zk+1/2)G(zk+1/2)∥2 +
(1− α2

kR
2 − βk)

2

(1− α2
kR

2)

∥∥∥G(zk+1)

(1− βk)

∥∥∥2
−2

〈 (1− α2
kR

2 − βk)

(1− βk)
√

1− α2
kR

2KG(zk+1/2)
G(zk+1),

√
1− α2

kR
2KG(zk+1/2)G(zk+1/2)

〉

+(1− α2
kR

2 − βk)
2
∥∥∥ G(zk+1)

(1− βk)
√

1− α2
kR

2KG(zk+1/2)

∥∥∥2

−(1− α2
kR

2 − βk)
2
∥∥∥ G(zk+1)

(1− βk)
√

1− α2
kR

2KG(zk+1/2)

∥∥∥2

≥
(1− α2

kR
2 − βk)

2

(1− α2
kR

2)

∥∥∥G(zk+1)

(1− βk)

∥∥∥2 − (1− α2
kR

2 − βk)
2

(1− α2
kR

2KG(zk+1/2))

∥∥∥G(zk+1)

(1− βk)

∥∥∥2 (6.42)

=(1− α2
kR

2 − βk)
∥∥∥G(zk+1)

(1− βk)

∥∥∥2((1− α2
kR

2 − βk)

(1− α2
kR

2)
−

(1− α2
kR

2 − βk)

(1− α2
kR

2KG(zk+1/2))

)
(6.43)

where at (6.41), we drop the common factor of Ak

α2
kR

2 since it is positive and won’t affect

the latter computations. The inequality (6.42) is due to the ‘Peter-Paul’ variant of Young’s

inequality. Continuing on, we see that
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=(1− α2
kR

2 − βk)
∥∥∥G(zk+1)

(1− βk)

∥∥∥2
·
(
1−

(1− α2
kR

2)

(1− α2
kR

2KG(zk+1/2))
+ βk

( 1

(1− α2
kR

2KG(zk+1/2))
− 1

(1− α2
kR

2)

))
=(1− α2

kR
2 − βk)

∥∥∥G(zk+1)

(1− βk)

∥∥∥2
·
(
α2
kR

2(1−KG(z
k+1/2))

(1− α2
kR

2KG(zk+1/2))
+

α2
kR

2βk(KG(z
k+1/2)− 1)

(1− α2
kR

2KG(zk+1/2))(1− α2
kR

2)

)
>(1− α2

kR
2 − βk)

∥∥∥G(zk+1)

(1− βk)

∥∥∥2
·
(
α2
kR

2βk(1−KG(z
k+1/2))

(1− α2
kR

2KG(zk+1/2))
+

α2
kR

2βk(KG(z
k+1/2)− 1)

(1− α2
kR

2KG(zk+1/2))(1− α2
kR

2)

)
(6.44)

>(1− α2
kR

2 − βk)
∥∥∥G(zk+1)

(1− βk)

∥∥∥2(α2
kR

2βk(1−KG(z
k+1/2))

(1− α2
kR

2KG(zk+1/2))
+

α2
kR

2βk(KG(z
k+1/2)− 1)

(1− α2
kR

2KG(zk+1/2))

)
(6.45)

=0,

and we note (6.44) and (6.45) are due to 0 < βk < 1 and 1 <
1

(1− α2
kR

2)
, respectively.

For clarity, the term (1 − α2
kR

2 − βk) is positive because of the starting point of α0 in

Theorem 23, so there are no issues with bringing this factor to the front of the expression

for our analysis. Bringing back our other terms, this demonstrates that
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Vk − Vk+1 ≥

E[I|z̄k, zk] ≥

+ 2Ak⟨G(zk+1/2), Gik1
(zk)−G(zk)⟩ (6.46)

+ (
αkBk

βk
+ αkBk+1)⟨G(zk+1), Gi2k

(zk+1/2)−G(zk+1/2)⟩
∣∣z̄k, zk] (6.47)

= + 2Ak⟨G(zk+1/2), Gik1
(zk)−G(zk)⟩

+
2Ak

1− βk
⟨G(zk+1), Gi2k

(zk+1/2)−G(zk+1/2)⟩
∣∣z̄k, zk]

For (6.46), we note that

0 = ⟨−G
(
zk + βk(z̄

k − zk)− αkG(zk)
)
,E[Gi1k

(zk)−G(zk)|z̄k, zk]⟩, (6.48)

which allows us to compute

∣∣E[⟨G(zk+1/2), Gi1k
(zk)−G(zk)⟩|z̄k, zk]

∣∣
=
∣∣E[⟨G(zk+1/2)−G

(
zk + βk(z̄

k − zk)− αkG(zk)
)
, Gi1k

(zk)−G(zk)⟩|z̄k, zk]
∣∣

≤E
[∥∥G(zk+1/2)−G

(
zk + βk(z̄

k − zk)− αkG(zk)
)∥∥ ·

∥∥Gi1k
(zk)−G(zk)

∥∥||z̄k, zk]
≤E

[
R
∥∥zk+1/2 −

(
zk + βk(z̄

k − zk)− αkG(zk)
)∥∥ ·

∥∥Gi1k
(zk)−G(zk)

∥∥||z̄k, zk]
=E[Rαk∥Gi1k

(zk)−G(zk)∥2|z̄k, zk]

=RαkV ar(zk), (6.49)

via an application of Cauchy-Schwartz, the Lipschitz property, and the definition of the

algorithm, where Vi(z) := E[⟨Gi(z)−G(z), Gi(z)−G(z)⟩|z] is the variance of the difference.

Similarly, for (6.47) we obtain
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∣∣E[⟨G(zk+1), Gi2k
(zk+1/2)−G(zk+1/2)⟩|z̄k, zk]

∣∣
=
∣∣E[⟨G(zk+1)−G

(
zk + βk(z̄

k − zk)− αkG(zk+1/2)
)
, Gi2k

(zk+1/2)−G(zk+1/2)⟩|z̄k, zk]
∣∣

≤E
[∥∥G(zk+1)−G

(
zk + βk(z̄

k − zk)− αkG(zk+1/2)
)∥∥ ·

∥∥Gi2k
(zk+1/2)−G(zk+1/2)

∥∥|z̄k, zk]
≤E

[
R
∥∥zk+1 −

(
zk + βk(z̄

k − zk)− αkG(zk+1/2)
)∥∥ ·

∥∥Gi2k
(zk+1/2)−G(zk+1/2)

∥∥|z̄k, zk]
=E

[
E
[
R
∥∥zk+1 −

(
zk + βk(z̄

k − zk)− αkG(zk+1/2)
)∥∥

·
∥∥Gi2k

(zk+1/2)−G(zk+1/2)
∥∥|zk+1/2, z̄k, zk

]
|z̄k, zk

]
=E[Rαk∥Gi2k

(zk+1/2)−G(zk+1/2)∥2|zk+1/2, z̄k, zk]

=RαkE[V ar(zk+1/2)|z̄k, zk] (6.50)

by the law of iterated expectation and reasoning similar to that of (6.46). Equipped with

(6.49) and (6.50), we get

Vk − Vk+1 ≥ −2AkαkRV ar(zk)− 2Ak

1− βk
αkRE[V ar(zk+1/2)|z̄k, zk] (6.51)

and the lemma is proved.

To proceed towards convergence, we need the following.

Definition 26 The filtration

Fk = σ(z0, z̄0, z1, z̄1, . . . , zk, z̄k, i01, i
0
2, i

0
3, . . . , i

k
1, i

k
2, i

k
3)

represents the history of of iterates, anchors, and choices of component i up through the

current step k.
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Theorem 27 (Supermartingale Convergence Theorem [8]) Let P k, Jk, and W k be

positive sequences adapted to Fk, and suppose W k is summable with probability 1. If

E[P k+1|Fk] + Jk ≤ P k +W k,

then with probability 1, P k converges to a [0,∞)−valued random variable and
∑∞

j=1 J
k < ∞.

Now, we may apply Theorem 22 to satisfy the conditions of Theorem 27.

Lemma 28 (Summability of Variances) Consider the stochastic Lyapunov functional

Vk (6.11) discussed in Theorem 25 along with conditions (1), (2), (3), the choice βk = 1
k+2

made in Theorem 3, and Theorem 22. Given (6.51), the extraneous sequence of terms

2AkαkR
(
V ar(zk) +

E[V ar(zk+1/2)|z̄k, zk]
1− βk

)
is summable.

Proof. Because of (6.1) in (2) and Theorem 22, it is sufficient to demonstrate

that

∞∑
k=0

2AkαkR
(
(CG(z

k)−1)∥G(zk)∥2+ 1

1− βk
E[
(
CG(z

k+1/2)−1
)
∥G(zk+1/2)∥2|z̄k, zk]

)
(6.52)

is finite. By construction, αk is a nonnegative term bounded above by the choice α0, so the

following bound for each summand exists if we substitute in the definition of Ak made in

Theorem 3:
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α2
0R(k + 1)(k + 2)

(
(CG(z

k)− 1)∥G(zk)∥2

+
1

1− βk
E[
(
CG(z

k+1/2)− 1
)
∥G(zk+1/2)∥2|z̄k, zk]

)
≤α2

0R(k + 1)(k + 2)
( C1

(k + 1)4
+

C2

(k + 1)4(1− βk)

)
(6.53)

=
α2
0R(k + 1)(k + 2)

1− βk

(C1(1− βk) + C2

(k + 1)4

)
(6.54)

<2α2
0R(k + 1)(k + 2)

(C1 + C2

(k + 1)4

)
(6.55)

where (6.53) results from Theorem 22, (6.54) results from rationalizing the denominator

with (1−βk), and the last inequality (6.55) is a result of the facts that 1−βk < 1, 1
1−βk

< 2.

For the summation, these facts result in

∞∑
k=0

2AkαkR
(
(CG(z

k)− 1)∥G(zk)∥2 + 1

1− βk
E[
(
CG(z

k+1/2)− 1
)
∥G(zk+1/2)∥2|z̄k, zk]

)
<2α2

0R(C1 + C2)
∞∑
k=0

k2 + 3k + 2

(k + 1)4

=2α2
0R(C1 + C2)

∞∑
k=0

k2

k4
+ other terms more summable than

1

k2
< ∞.

Theorem 29 (Stochastic Lyapunov Functional Convergence)

Consider the stochastic Lyapunov functional Vk (6.11) along with conditions (1), (2), (3),

the choice βk = 1
k+2 made in Theorem 3, and Theorem 22. Then with probability 1, Vk

converges to a nonnegative, finite-valued random variable.
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Proof. Apply Theorem 27 and Theorem 28 with

W k = 2AkαkR
(
V ar(zk) + E[V ar(zk+1/2)|z̄k,zk])

1−βk

)
, P k = Vk, J

k = 0. Equipped with these

results, we may now state the convergence of stochastic moving anchor methods.

Theorem 30 (Stochastic Moving Anchor EAG-V Convergence)

Consider the stochastic moving anchor EAG-V algorithm (6.5), (6.6), (6.7) along with con-

ditions (1), (2), (3), the choice βk = 1
k+2 made in Theorem 3, and Theorem 22 for the

Lyapunov function (6.11). If c∞ ≥ 1
α∞

, then the stochastic moving anchor EAG-V algo-

rithm converges with rate

∥G(zk)∥2 ≤
4
[
(α0R

2 + c0)∥z0 − z∗∥2 + sum(k − 1)
]

α∞(k + 1)(k + 2)
,

where sum(k − 1) :=

k−1∑
j=0

2AjαjR
(
V ar(zj) +

E[V ar(zj+1/2)|z̄j , zj ]
1− βj

)
.

Proof. By (6.51), we see that

Vk ≤ Vk−1 + 2Ak−1αk−1RV ar(zk−1) +
2Ak−1

1− βk−1
αk−1RE[V ar(z(k−1)+1/2)|z̄k−1, zk−1]

≤ V0 + sum(k − 1)

= α0∥G(z0)∥2 + c0∥z0 − z∗∥2 + sum(k − 1)

≤ (α0R+ c0)∥z0 − z∗∥2 + sum(k − 1).
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Going in the opposite direction, we see that

Vk = Ak∥G(zk)∥2 +Bk⟨G(zk), zk − z̄k⟩+ ck∥z∗ − z̄k∥2

≥ Ak∥G(zk)∥2 +Bk⟨G(zk), z∗ − z̄k⟩+ ck∥z∗ − z̄k∥2 (monotonicity of G)

≥ Ak

2
∥G(zk)∥2 + (ck −

B2
k

2Ak
)∥z∗ − z̄k∥2 (Young’s inequality)

=
αk(k + 1)(k + 2)

4
∥G(zk)∥2 + (ck −

k + 1

αk(k + 2)
)∥z∗ − z̄k∥2

≥ α∞
4

(k + 1)(k + 2)∥G(zk)∥2 + (c∞ − 1

α∞
)∥z∗ − z̄k∥2

≥ α∞
4

(k + 1)(k + 2)∥G(zk)∥2 (c∞ dominates
1

α∞
)

As long as c∞ ≥ 1
α∞

, the second to last line above is positive, and we may focus on the

inequality given to us by the last line above:

α∞
4

(k + 1)(k + 2)∥G(zk)∥2 ≤ (α0R
2 + c0)∥z0 − z∗∥2 + sum(k − 1).

Finally, one divides both sides by the constant α∞
4 (k + 1)(k + 2) to achieve the result.
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Chapter 7

Numerical Experiments

7.1 Deterministic Examples

In this section we detail several numerical experiments. First, we visualize two

thousand iterations of EAG-V and FEG, each moving anchor versus the fixed anchor, on

a toy ‘almost bilinear’ example. Next, we look at the log of the grad norm squared versus

the log of iterations for the EAG examples. Note that this error graph is an example in the

monotone convex-concave case. We then run a nonconvex-nonconcave negative comonotone

example for FEG variants, where some interesting convergence behaviors among the moving

anchor variants are exhibited. Finally, we study monotone FEG variants (moving and fixed

anchor) on a nonlinear two player game. Throughout all of these examples, c1 = π2/6,

ck =
ck−1

1+δk−1
(k = 2, 3, ...), and in all except for the negative comonotone FEG example, δk

is chosen to be exp(k2)− 1.
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Figure 7.1: The first two thousand iterations of the EAG algorithm with varying step-size,
or EAG-V, compared to the first two thousand iterations of the moving anchor EAG-V
algorithm.

Figure 7.1 compares the iterations of EAG-V with a fixed anchor to the iterations

for the moving anchor EAG-V. Figure 7.1, Figure 7.2, and Figure 7.3 all display iterations

where the function used is the ‘almost bilinear’ function f : R2 → R, f(x, y) = ϵ∥x∥
2

2 +

⟨x, y⟩ − ϵ∥y∥
2

2 . Here, ϵ is small, for these experiments set to 0.01, and the straightforward

nature of the example allows for ease of visualizing the iterations as well as their differences

when it comes to comparing convergence rates. In particular, the unique saddle-point is

(0, 0).

Figure 7.2: The two moving anchor EAG-V variants compared in red, along with their
anchors in green.
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Figure 7.2 compares, via the same function as Figure 7.1, the two moving anchor

variants of EAG-V. When the γk parameter is positive, the anchor iterations moves away

from the saddle and the algorithm updates very rapidly. When γk has only its sign changed

to negative, the anchor (seen in green) seems to stay much closer to the iterations and the

saddle-point. The iterations appear to converge at a markedly faster rate (by a constant)

for this latter case over both the fixed anchor and the positive γk setting, an observation

that is confirmed below.

Figure 7.3: The two moving anchor FEG variants compared in red, along with their anchors
in green.

Figure 7.3 compares the two moving anchor versions of the FEG method, in the

same manner as the comparison shown in Figure 7.2: red dots are the algorithm updates,

green dots are the anchor updates, and the function is the ‘almost bilinear’ one previously

described. In [23], the authors established that even on convex-concave problems, FEG

performs at the same optimal order of convergence as EAG, but at a significantly faster

rate. This behavior seems to have carried over to our algorithm where we introduce the

moving anchor to these frameworks.
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Figure 7.4: Comparison of the grad-norm squared of three EAG-V variants of interest on a
toy ‘almost bilinear’ problem.

Figure 7.4 captures the behavior of ∥G(zk)∥2 across all three convex-concave al-

gorithms of interest: EAG-V, moving anchor EAG-V with positive γk, and moving anchor

EAG-V with negative γk. Each algorithm attains the optimal order of convergence, while

the negative γk algorithm is markedly faster than both algorithms by a constant. Identical

behavior occurrsed under the same problem setting with the FEG and FEG with moving

anchors (positive and negative γk), with the negative γk algorithm again being the fastest,

so we do not include this figure here.

Figure 7.5 captures the error of FEG across all three anchor variants in a numerical

example that is explicitly negative comonotone with a nonconvex-nonconcave objective:

L(x, y) =
ρR2

2
x2 +R

√
1− ρ2R2xy − ρR2

2
y2

with L : R2 → R, R = 1, ρ = −1/3 1−smooth and −1/3-negative comonotone. Interestingly,

in this scenario a variant of the positive γk moving anchor algorithm is the fastest when δk is
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Figure 7.5: Comparison of the errors of three FEG variants in a nonconvex-nonconcave
setting. Note the positive γ with δ scaled by 1/25 converges fastest.

scaled by 1/25, in sharp contrast to the result displayed in Figure 7.4. The fixed anchor and

the negative γk values seem to almost coincide. This result suggests that different problem

settings offer different optimal anchoring choices.

Finally, Figure 7.6 and Figure 7.7 compare three different monotone FEG variants

on a particular nonlinear game that was studied extensively in [6]:

min
x∈∆n

max
y∈∆m

1

2
⟨Qx, x⟩+ ⟨Kx, y⟩

where Q = ATA is positive semidefinite for A ∈ Rk×n which has entries generated indepen-

dently from the standard normal distribution, K ∈ Rm×n with entries generated uniformly

and independently from the interval [−1, 1], and ∆n,∆m are the n− and m−simplices,

respectively:
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∆n :=
{
x ∈ Rn

+ :
n∑

i=1

xi = 1
}
, ∆m :=

{
y ∈ Rm

+ :
m∑
j=1

yj = 1
}
.

One may interpret this as a two person game where player one has n strategies to choose

from, choosing strategy i with probability xi (i = 1, ..., n) to attempt to minimize a loss,

while the second player attempt to maximize their gain among m strategies with strategy j

chosen with probability yj (j = 1, . . . ,m). The payoff is a quadratic function that depends

on the strategy of both players. This was implemented following the 3 operator splitting

scheme in [9], with parameter λ = 0.25

For this example, we used FEG fixed and moving anchor variants in the monotone

(that is, ρ = 0) setting of the algorithm. For the high dimensional setting, we compute

20, 000 iterations and view the log of the grad norm squared of the fixed anchor versus the

positive and negative γk moving anchor variants. Here, m = 2500, n = 500, resulting in

an operator with 9 million entries. For the low dimensional setting, we compare the same

algorithms but only compare this on 8, 000 iterations, as the convergence behavior in this

lower dimensional setting is more quickly distinguished. In the lower dimensional setting,

m = 25, n = 5. In both settings, the positive γk variant is the fastest (ie, most accelerated)

algorithm by a significant margin, even with different random seeds selected across test runs.

This is a significant contrast to the EAG-V toy example, also a convex-concave problem,

where the −γk variant of the moving anchor is the fastest algorithm. Taken together, both

results are promising for the moving anchor framework, but suggest that more theoretical

work is necessary to understand the acceleration mechanism offered by anchoring variants,

and what variant will be fastest in a given problem.
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Figure 7.6: High dimensional nonlinear game.

Figure 7.7: Low dimensional nonlinear game.
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7.2 Stochastic Examples

In this section, the choices made for α0 and c0 change significantly to accommodate

our stochastic theory. Specifically, we choose α0 = 0.9(3/4)(1/R)(1/
√
KG) and then c0 =

(1.01)(4/3)e
π2

6 R
√
KG.

Figure 7.8: Comparison of the grad-norm squared of three stochastic EAG-V variants of
interest on a toy ‘almost bilinear’ problem.

In Figure 7.8, one observes that, on a toy example, the behavior of the −γk and

+γk variants of the moving anchor seem to parallel the deterministic setting of the same

problem [1], in that the negative version is the fastest and the positive version is the slowest.

Next, Figure 7.9 showcases a stochastic moving anchor on a smooth nonconvex

nonconcave operator that results in a negative comonotone operator [1], [23] using the theory

we develop in this work. While this example is outside the scope of the theory developed,
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Figure 7.9: Comparison of the grad-norm squared of three negative comonotone stochastic
FEG variants of interest on a test problem.

we note that the starting constants c0 and α0 were informed by the stochastic theory and

across all three variants, this still seems to result in the average of the squared gradient

norm decreasing significantly. Our numerical result is significant, then, as it suggests that

our framework hints at a theory for such problems, even with a fixed anchor, despite the

obvious noise.

In Figure 7.10, the 2 player nonlinear game studied in Figure 7.6 and Figure 7.7 is

studied with our stochastic moving anchor EAG-V algorithm and compared to a stochastic

fixed anchor EAG-V algorithm. We set m = 2 and n = 48, for a more moderately sized

problem with a well-behaved condition number.

A few remarks are in order. This game was previously studied in both [6] and

[1], where in the latter case the authors encountered favorable results using deterministic

moving anchor algorithms. However, in both high and low dimensional examples, the choice
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Figure 7.10: Comparison of the grad-norm squared of three stochastic EAG-V anchoring
variants on a nonlinear game.

of positive γk resulted in the most significant acceleration beating the fixed anchor in the

deterministic case. Here in our stochastic variant, we encounter the opposite behavior: a

moving anchor variant indeed provides the most significant acceleration, but it is the nega-

tive γk that does so. One possibility is that the EAG-V algorithm structure somehow favors

the negative γk variant of moving anchor algorithms, while the FEG algorithm structure

- whether on a convex-concave problem or a nonconvex-nonconcave problem Secondly, al-

though our theory calls for setting KG to be the operator’s condition number times the

dimensions in the domain of the objective function, setting KG = 1 resulted in significant

numerical improvements, especially as even with m = 2, n = 48, the condition number in

this type of problem can be very large. Finally, the choice of the parameter λ relating to

the three operator splitting structure differs a large amount from that used in [1], and it is

unclear why this is the case.
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Chapter 8

Conclusion

The moving anchor variants of anchored acceleration methods retain optimal con-

vergence rates and also demonstrate superior-to-comparable numerical performance with

parameter tuning. The optimal order of convergence is obtained across different problem

settings, from convex-concave to negative co-monotone problems and also in stochastic

convex-concave problems. Interestingly, across numerous problem settings there exists a

version of the moving anchor algorithm, parametrized by γk, that demonstrates superior

numerical performance compared to other state-of-the-art algorithms. However, future work

may explore further the exact conditions and parameters for optimal choice of anchor in

one’s anchored extragradient algorithm. The variety of numerical examples demonstrates

a wide array of applications for our algorithms in both theoretical and applied settings.

In addition, we develop a moving anchor with a sort of preconditioned anchoring step in

both the convex-concave and negative co-monotone problem settings and demonstrate its

convergence. The last theoretical contribution made in this work is the development and
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implementation of a stochastic moving anchor algorithm, developed for convex-concave func-

tions but with some numerical indications of a theory for nonconvex-nonconcave functions.

Some immediate considerations for future work are the following:

• Numerical examples exploring the ‘proximal’ moving anchor variants;

• More practical numerical experiments such as image processing or neural network

performance;

• Parallelized/asynchronous implementations of moving anchor algorithms for further

computational ease;

• Tighter analyses of the convergence of −γk variants of the moving anchor;

• Extensions of the moving anchor algorithmic framework to other anchoring and Halpern

adjacent techniques such as [44], [43];

• Theoretical analyses that determine what problem/algorithm settings enable the fastest

convergence of anchored algorithms;

• Analyses that clarify the discrepancy between the behavior of the various moving

anchor variants parametrized by γk and δk.

More ambitious, long-term goals may include extending these methods (and their associated

convergence guarantees) to broader classes of problems such as the (weak) Minty Variational

Inequality classes, and their stochastic extensions to such problem classes.
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