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ON THE NUMBER OF FEYNMAN DIAGRAMS 

Robert J0 Riddell, Jr. 

Radiation Laboratory and Department of Physics 
University of California, Berkeley, California 

March 5, 1953 

ABSTRACT 

The Feynman-Dyson formulation of a perturbation expansion for quantum field 

theory allows one to give a general combinatorial treatment to the Feynman diagrams 

involved0 A very simple analysis for the total number of such diagrams, T(n,  

in quantum electrodynamics, leads to: 

(If.' 	(Y! 

T (m 	
>? 	()Z( 	

0 	

[ -)]! 

in which n is the order of the perturbation and 	, 	
are the number of external 

electron and photon lines,respectively0 The first factor is the number of different 

diagrams using only the electron lines and the second is that for the photon lines0 

In this total set of diagrams are many undesired ones; these are removed by means 

of generating functions0 Relations which these functions satisfy are obtained, 

and from them one may readily find the exact numbers of diagrams desired, for not 

too large n. The generating functions are also used to find the asymptotic 

dependence on n, and it is found that this dependence is essentially unaffected by 

removing any specific type of graph0 The sign alternations of the matrix elements 

in quantum electrodynamics are also considered in terms of similar generating 

functions0 The generalization of the analysis to other types of interactiOns is 

also discussed0 
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I. Introduction 

The Feynman-Dyson formulation of quantum field theory in terms of the 

Smatrix yields a straightforward method for obtaining the matrix elements 

corresponding to a particular physical process by means of a perturbation 

expansion in powers of the coupling constant0 in this theory it has been 

shown that each matrix element may be uniquely. represented by a 1near graph 

called a Feyninan diagram. The problem of performing a calculation to a given 

order then separates into two parts: (a) the combinatorial problem of 

obtaining the number of Feynman diagrams of a particular type which there are; 

and (b), the actual evaluation of the associated matrix elements. It is the 

purpose of this paper to investigate problem (a) in some detail. In addition 

to finding the exact number of diagrams, one may also ask for the asymptotic 

behavior as the order, n , of the perturbation becomes large0 Evidently it is 

the asymptotic behavior (together with the asymptotic properties of the 

associated matrix elements) whict will be of interest in determining the 

ultimate convergence or divergence of the perturbation expansion. The question 

of the asymptotic behavior has been investigated by Hurst using a different 

C. A. Hurst, Proc0 Roy. Soc. A, 2142 44 (1952). 

method from the one employed here; however, the author feels that the present 

method is somewhat simpler and more conventional, and also that it provides more 

insight into the structure of the graphs than does the former. 
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Due to the fact that certain diagrams may either have matrix elements 

which are equal to zero, or which identically cancel with others, these diagrams 

should, be removed from consideration in the number of contributing diagrams. In 

addition, other graphs have infinite parts which must be removed by the 

renormalization technique, and so these, too, should not be counted. In the 

present study generating functions will be derived from which the desired number 

of the remaining reduced diagrams for any process can readily be obtained, 

II The Feynman-,Pyson Method 

It has been shown by Dyson2  that the S-matrix, which represents the 

2 F. J. Dyson, Phys. Rev, 7, 486 (1949). 

transition probability amplitude from a state at t - 	to one at t oo 

can be written as: 

00 

o 0o 
I rcrf J 

P[W(x1) 

in which li1 (x) is the interaction hamiltonian for the fields involved, and 

P is .Dyson's time ordering operator 9  In general the interaction hamiltonian 

will be a sum of products of field operators, which in turn are sums. of creation 

and annihilation operatprs. In order to obtain the S-matrix for a specific 

process one may convert these time ordered operators into ones in which all of 

the annihilation operators appear to the right of the creation operators by 

multiple permutations 	When this is done, one finds that in addition to the 

3 G. C. Wick, Phys. Rev 9  80, 268 (1950), 
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terms corresponding to the operators present initially in the time ordered 

arrangement, there are also terms with fewer operators than before which are 

produced by the coutation relation of the fields0 The latter simply represent 

the vacuum fluctuations0 Now, in order to obtain the desired portion of the 

S-matrix, we simply choose all those terms which have the proper number -of 

remaining, operators to destroy the particles in the initial state and to create 

those in the final states0 All other parts will have vanishing matrix elements 

between the states of interest0 

To relate this procedure to the Feynman diagrams, we now put, n points 

on a piece of paper, and then for those oierators . ø(xi) which annihilate the 

initial particles or creat,e the final ones we draw lines from the associated 

points, i , off the paper (different lines for each type of particle), and for 

pairs of operators for which we have employed the couunutation relations we draw 

lines between the correspon4ing points0 The total S-matrix is represented by 

all possible graphs drawn in this manner with the given number, of each type of 

external line. For charged fields, as a result of the two degrees of freedom, 

one finds that the lines must be considered to be directed, with pairs of lines 

at each point, one arriving and one leaving to preserve charge conservation0 

Finally, if one has a non-linear coupling, for example, 0 (x) , then the 

permutations of the fields may occur between any of the three fields in the 

product at each point, and, for the purposes of enumeration of graphs each of 

these must be counted0 Thus in drawing the graphs one might consider that for 

such a field each point would have several different places to which a line 

could be drawn, 
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IlL. The Total Number of Diagrams 

As an example, let us now consider quantum electrodynamics, for which 

It will be simple to generalize to other interacions from the results of this 

case0 For the total number of diagrams, the electron and photon lines may 

connect the n points independently of each other, so that each may be 

considered separately and the total number is the'product of the two0 Thus 

we consider: 

(A) The Number of Electron Diagrams0 From the interaction 

haxniltonian we see that each point of the diagram has one electron line coming 

to it s  and one leaving it0 From this it is evident that for each line coming 

onto the paper, there is also one which must leave it. Let the number of such 

free eleàtron lines (at infinity) be 6 	In order to find the total number 

of diagrams, given € , we may,  consider that a line is drawn from each point. 

It is then nedssary to make sure that each line then ends on any other point 

such that only one line goes to a given point. To begin the formation of an 

electron diagram, we simply choose E points from the total of n points 

and let lines proceed to infinity from them. Each remaining point must then 

have a lIne drawn from it to some point on the paper (only one line is allowed 

to go to each point, of course). Then, to complete the diagram each of the 

€ remaining pointa which has no line coming to it must be joined to a 

5  line from off the paper. Thus we find that the total number of ways, N(n, € ) 
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to connect lines to the electrons is: 

N e n E) = 
In 

e! 
'1 ( e, —/) - - - ( C- + / ) 

) 

in which the first factor is the number of ways to choose the E points for 

the external lines, and the second is the number of ways to connect the (n 

points internally to the n points to which they may go. 

This result may also be obtained in a somewhat more illuminating fashion 

by considering the precise ways in which the points are joined by electron line. 

Evidently the electron lines will forn E  open  polygons,  and in addition there 

may be any number of closed loops0 Let f j be the number of open polygons of 

I points, and 	the number of closed loops of j points0 With this 

specification of a diagram, we may form. the electron diagrams in 

(o' 7T 
11 	i! (!)L çr \ji ( j f)) 	L 	 3 

different ways0 The 'first factor is the number of ways that we can choose the 

points to be placed on the various lines, while the second is the number of ways 

that these points can then be arranged on the lines or loops0 Since we have to 

do with directed lines, any pernutation of points on the open polygons is different, 

while for the closed loops cyclic pernutations of a configuration give nothing 

new whereas any other permutation gives a new diagram0 
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To find the total number of diagrams, we must now sum over all possible 

choices of the 	, 2j with the restrictions that the number of external 

lines is G and the total number of points is n. Thus we have 

N e
( 	57 

	

(st) 	) 1T J •i;r 

in whIch the sum is to be taken over all 	, 	with the restrictions 

(indicated by the double prime.) 

) ZL+J J)j 

To remove the restrj,gtjons and allow easier summations we may multiply the 
Eiei 4 cj ? 	Z6i 

equation by .x 	 x 	y 	L 	, after which we can sum 

over all 	, 	independently, choosing only the coefficient of 

in the final result0 Thus: 

N 
e()   

 

Zx'y 

Y 	e 	 (3) 

-g
/  

Coer, 	 rn.' (1-9 c 
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One readily finds that the coefficient of xr . E from this generating function 

agrees with Eq (1) 

(B) The Photon Lines From the interaction hamiltonian we see that 

each point should have one ufldirected photon line connected to it0 To construct 

a diagram for these, we choose 	points for the external Jines while the 

remaining points, of whichthere are n-e,  which must be an even number, are joined 

in pairs0 Thus for the total of the photon diagrams we find 

H 

where the first factor is again the number of ways to choose the p points for 

the external lines, whilethe second is the number.of ways that n- points may be 

joined in pairs0 Thus we have 

N () 
= (

3! (6l21 	

(3) 

The total number of diagrams )  'P(n, 	
, (3 ) is the product of Eqs. (1) and 

(5): 

(f) 

T 
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If one introduces the Sterling approximation into this expression, it is found 

that T (n, 	r )/n' rIv n
n/2 as 
	n - 

It is perhaps worth mentioning that one can form simple generating 

functions for Ne (n, G ) and !? (n, p ) as: 

Z 
N e() 

r 	rn! 

in which L(x) and H(x) are the n'th order Laguerre and Herxnite polynomials, 

respectively4. Usngthe well known generating function for the Laguerre 

Margenau and Murphy, The Mathematics of Physics and Chernistrr. New York, 

D. Van Nostrand Co., 1943. 

polynomials one can easily form the "grand generating function" for the electron 

lines, Eq0 (4)0 

If one wishes to generalize these results to cases in which the interaction 

hainiltonian involves factors of the type 	, it is only necessary to 'bote that, 

as pointed out at the end of Section II, one may consider each point as consisting 

of a set of k subpoints. Thus we need only consider the number of photon-like 

diagrams of kon instead of,  n points in such a case 0  Evidently as k increases 

from one with fixed large n , the number of diagrams increases very rapidly. 
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IV. Removal of Unwanted Diagrams 

The counting scheme of Section III for the total number of diagrams must 

now be modified in order to remove certain graphs for which the matrix elements 

either give no contribution, or must be removed by renormalization. In these 

categories .we have graphs involving: - 

Odd electron loops,. For quantum electrodynamics, Furry's theorem 

states that such matrix elements will cancel in pairs0 

Closed parts. Dyson2  has shown that these only multiply the S-matrix 

by a constant factor0 

Self energy parts for electron or photon lines0 The former must be 

renormalized, the latter give• no contribution0 

Vertex parts. These lead to the self charge divergence and must 

also be renormalized. The removal of (d),. (e) leaves one with the number of 

"irreducible't graphs 5 . 

F. J. Dyson, Phys. Rev. 7, 1736 (1949). 

Separated parts with one eternal electron and one external photon 

line. These matrix elements vanish since energy and momentumeannotbe conserved. 

We will remove these various diagrams in order; however, it will be 

evident that any step may be omitted in case one wishes to retain such elements, 

as, for instance, in a case in which Furry's theorem does not apply so that one 

would like to retain the odd loops. 

In order to remove the odd loops, it is only necessary to sum over the 

even j's in Eq. (2), with the result that 
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e -  
N g  (m€-') 	C'oe. 	y 	'vt! (i -p) 	C 

and so 

N, Cm)  e:) 	Coecc. .x 	 (i+9 

For large n this niy be estimated as follows0 Using the binia1 expansion 

for the two factors, we have 

k:  

and using the expressions for the binomial coefficients, we find 

	

' 	

p( ~k+&) p-) k 
N(m ) G) 

If the integral representation for the gamma functions are introduced and a 

change of integration variables is made one obtains 
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(—i) 	
() LAI 

LL 

'I' 

	

IL 	 - 

	

x 	(,+x) 

The first integral gives n 	Evidently, as n -jCO the major contribution 

to the second integral comes near x = l , and for 	, 0 , we need only 

consider the region about x 	1. If we replace (1 - x) by 2 in this region, 

the remaining integral from 0 to 1 is a beta function so that we find 

N 1e  

evj  

 , €) 	( 	
) 	

() 
P(-ei2 ) 

Using the Stirling approximation, one sees that the order of electron graphs 

is thus reduced by n compared to Eq0 (1)0 

To remove the graphs with closed parts, we note that every diagram will 

consist of a subdiagram (which may be the diagram itself) which has no closed 

parts, and a remainder which is made up of one or more closed parts with no 

external lines0 

Thus we have 

T 	 I 	_ T (,) o)  (0) F(f) 
,! '! 

in which F(n, 	, f ) is the number of, diagrams with no closed parts, and 
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the sum is over all n1, n2 with the restriction that n1 -I-n2 	n. The 

suminand simply represents the number of ways that one can make up diagrams 

from their constituent parts, given n1, n2 	If we again use the generating 

functions, we find: 

( 

I(X) 	) = 	
( 1) 

where: 

() 	Em 
T () 	

) 

• 	
) E) - 	F(1p) 

and in which T  (0, 0, 0) is defined to be : 1 for convenience0 

The next problem to be considered is that of the number of irreducible 

diagramso Before doing this, however, it should be remarked that if one had 

the exact propagation functions for electrons and photons it would only be 

• 	necessary to consider the irreducible diagrams. Nevertheless, for the purposes 

of calculation the renormalized functions are not known, and the only way in 

which they can be obtained is by obtaining the matrix elements related to the 

• 	reducible diagrams, removing the divergent parts order by order0  For this 

purpose it is useful to have those graphs from which only the self energies in 

the external lines have been removed0 To calculate this number, we see that 

a diagram may have a central part of n' points together with flj  external 

electron lines of i points in self energy• graphs:, and flj external photon 

lines of j points in self energy parts. The total number of graphs is then: 
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In 	
41! F (m, 

 

( E) (z E i) (2 e - 114 

/) . 
	

(p - rn  o%, 
1) X 

{ 	O] 	
{ 	

(J )  0, z)] 

The sum is to be carried over all arrangements of points in groups, with the 

restrictions that n 	7 i n+ L i 	n' , ri'1 	 fl , and 

	

G(n' , 	, ) is the number of diagrams with no self 

energy parts in the external lines. The factor8 involving (2&) . ... (2 6 - n" -- 1) 

and 	00 ( - n' 
' 

1- 1) represent the number of ways in which the electron 

and photon self energies may be inserted in the external portions of the lines, 

and 2r 	is due to the fact that each photon self energy may be inserted, in 

two different ways0 Evidently the number of electron self energy diagrams of n 

points is F(n, 1, 0), and the number for photons in F(n, 0, 2). If we introduce 

x to keep track of the first restriction, 	for the second, and >7 for the 

third, we find 

_____ 

- 	9(X))p) 

	

Coe. 	 " i: eq 	o(, 1, 0) 	(.Y, 0'  

so that: 
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	41 "  

[z (X )  o 

Thus: 

(8) 
-[ . I + 	 14 2 	(X )  0 )  Z)j 

To find the number of irreducible diagrams, I(n, 6 , 	), we proceed 
similarly, removing self energy parts in any of the electron or photon lines and 

n addition removing all vertex parts. In this case we construct the reducible 
I 

diagrams y Choosing an irreducibiediagramof no  points and then putting in the 

various possible additional parts at the vertices or in the lines. The number of 

vertex parts of n points is F(n, 1, 1). Thus, we have 

)7
Ill, 

(1v..) e) 7J (r ! 	1 ( ! 
)' 

(me) V !) 

'PIP  

U [f 
); I ) 	iT [ F' (C  i,o)] 	[F(~ ) o) 2  

e 	 P
of 	 (9) 

/ 
(rA O +P- 

('YJ 6  + e)(b+e 1)'' (e1+') 	
(m 

2 
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in which the first two factors represent the number of ways to choose the 

points and form the subgraphs among the set of nv  vertex parts of v 

points, n0  electron self energy parts of e ;points, and n photon self 

energy parts of p points0 The remaining factors represent the number of ways 

that the self energy parts can be inserted in the no  4 	electron lines and 

the no 	photon lines0 The sum is carried over all flj I s, with the 

restrictions that n = 	v n 	en5  Zpnp , no = I n  , 

n0  , and n" = 	Note that all points in the diagram are in 

one of the subgraphs, and the number of ways to put the vertex parts on the 

irreducible graph is just the number that we are seeking0 G(v, 1 1  1) is chosen 

for the vertex parts rather than F(v, 1, 1) in order that we only count a self 

energy subgraph in a line once0 Using the generating function method again, we 

find that Eq0 (9) beàomes 	 . 	 . 

I (, 6) r 	(m
~ €)!, 

.( 	 ) 

m0)')m 	 ( 	- 

Coe. o. 	
b 

and so 

• 	
I(b) ) 

(n4-fl2ofl 	. 

m" I 
I, 

4 (o) z)J 

I( ) 	
9(x 

[+ 	(l)o 	f 42 
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Thus we find for the generating function: 

(10) 
l)0] 	[+ z 

in which 

(x)  1) 0)] 1 1. 	(x o ) )] 

In order to find I(n, € , 	), we must invert the series 0: 0(x) and find 

x x(Ø) 	This is then substituted into the right hand side of Eq. (Ia), and 

a comparison of equal powers in 0 gives the desired result. 

To rerriove the graphs with separated parts of only one external electron 

and one photon line, we again write the equation satisfied by such diagrams: 

In 	 r0 1 
F(,) 	L (m')! fl (!) 	! 	( F(l)i)J 

V. 	
Ir 

in which the restrictions on the. sum are n:  n' 4- Z, vn 	 E + 

and 	 ' 	 This equation is treated as before, and one finds. 

rC (xy  ) 	(xy) ) ep 	 ' i)] 

in which 	(x, y, z) is the "grand generating function" for the number of 

diagramsr 
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and 

Z = y 

= 2: 
	

) IJ- 	y 	. 
#1)  

V. Conclusip 

The generating functions which were derived in Section IV have a 

twofold use0 In the first place, they may be used in conjunction with an 

exact calculation of the matrix, elements for a particular process, as a cheek 

to ensure that all of the elements have been considered. Since the number of 

diagrams increases extremely rapidly with n , such a check is quite useful for 

all but the very low orders0. Secondly, an investigation of the asymptotic 

behavior may yield valuable evidence regarding the overall convergence of 

perturbation expansions In field theories. From Eqs. (7, (8) it is not difficult 

parts and self enerr parts. in external lines to show that the removal of closed  

does not affect the asymptotic behavior of the number of matrix elements. The 

treatment of Eq. (10) is more difficult, but Hurst 1  has shown that the number 

of irreducible diagrams of a particularly simple subset is asymptotically also 

3n/2 
n 	, so that the asymptotic behavior is not effectively changed. 

If one now considers the sum of all the matrix elements, he finds that 

in order that the perturbation expansion converge, the average contribution 

per element to the S-matrix must decrease with n at least as rapidly as 
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, since (nO 	multiplies the n'th term in the expansion. This extremely 

rapid decrease seems to put a severe requirement on any field theorf. One may,  

* It has been shown by Hurst, Proc0 Cambridge Phil0 Soc. 48, 625 (1952), that 

for the simple case of a 	contact coupling of a boson field to itself 

the perturbation expansion is indeed divergent0 

also remark that the magnitude of the coupling constant would seem to have rather 

little to do with the convergence of the theory0 Of course if quantum electra-

dynamics does not converge, the excellent agreement (after renormalization) with 

experiment would lead one to believe that somehow he is dealing with an asymptotic 

expansion0 If this is the case, the size of the coupling constant will be 

essential, since for smalL values the series carried out to a minimum term may 

be an exóelient approximation, while for a larger constant there may not even be 

such a minimum and there may be no good approximation. 

With regard to the convergence of the expansion we must still notice that 

the signs of the various matrix elements are not necessarily alike, and there is 

still the possibility that judicious cancellations could produce a sufficiently 

rapid decrease in the average of the elements, even though the average magnitude 

remains large. For quantum electrodynamics such a sign alternation is associated 

with the various electron diagrams due to the fact that the electron /field 

satisfies anti-commutation relations0 It has been shown by Dyson 2  that each 

matrix element carries an intrinsic sign which is given by (...1)P , in which p 

is the number of free electron lines of an even number of points plus the number 

of even loops0 The sum of the numbers of matrix elements with this sign 

included can readily be obtained, either with all loops allowed or with the odd 

ones removed. In the first case, we multiply the sunnuand in Eq0 (2) by the sign 
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factor and then sum as before. We may let 

since the odd parts in i , j will not contribute to the sign, and due to the 

restrictions on 	6 , 
we find 

If we multiply the terms in Eq. (2) by this factor and then sum, we find: 

e 	
e) 	C0 	f xy E 	

• (_)! ( i-x) cxp( ,i) 

m! / 

where 5e (n, E ) is the sum over all the electron diagrams with the above 

choice of signs. Eq. (ii) differs from Eq. (1) only by the factor 

( E 	l)/n(n - 1) 	If one removes the odd loops, then he finds: 

S, 
	

= Coe 	o 	 ): 

This may be estimated as was N'(n, 	) in Section IV, 
with the result that 

(i-4)! 

fl(e-) P( -- &)Z 
r= 

8 
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which is of order n 	times Eq. (6), These numbers are still exceedingly large, 

and the convergence would seem doubtful0 There is still a difficulty in the signs 

since even with the above choice of sgin, the remaining part of the matrix elements 

is not positive definite, and so one cannot be sure that this will not produce 

additional cancellation. As an argmLent in favor of convergence, it is to be noted 

that since all but a fraction n 2  of the graphs are cancelled by the alternation 

in sign considered, it would only be necessary that the matrix elements be 

changed slightly (though exceedingly judiciously) from a constant value over the 

entire set in order to produce convergence0 That is, it is only necessaryto 

asse that the ratio of the average contribution to the matrix elements of one 

sign compared to those of the other is 1 + O(n" 2) in order to produce complete 

cancellation. Finally, it may be remarked that the Dyson formulation of the 

S.matrix represents an infinite series in which each term is also a series0 

Procedures for obtaining the S-matrix which are basedon a pattern-type of 

approximation essentially are based on a rearrangement of that double series. 

Thus, even though the perturbation theory were to converge due to fortuitous 
at 

cancellations it is not/all necessary that' such rearranged series would converge 

or that they would yield the same results as perturbation theory even if convergent. 

The equivalence of the two expansions would of necessity be based on the absolute 

convergence of the double series, rather than on the far weaker condition of 

ordinary convergence of the original single series. 

The author would like to express his appreciation to Professor G. E. 

Uhienbeck for suggesting this investigation, and to Drs. J. V. Lepore and 

Maurice Neuman for interesting discussions during the course of this study. 
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