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ABSTRACT

The Feynman-Dyson formulation of a perturbation expansion for quantum field
theory allows one to give a general combinatorial treatment to the Feynman diagrams
involved. A very simple analysis for the total number of such diagrams, T(n, € , P )

- in quantum e;ectrodynamics, leads to:

T ( m, ,€,‘r) =  (m') M.' .

(1)* (m- e)l (o!['z<m-f>]p2ifm-f>

in which n is the order of the perturbation and € , f’ are the number of external
;'Qlectron and photon linés,'respectivelyo The first factor is the number of different
| diagrams using oniy the electron lines and the second is that for the photon lines.
In this total set 6f diagrams are mény undesired ones; these are removed by means

of generating functions. Relations which these functions satisfy are obtained,

_and from them one may readily find the exact numbers of diagrams desired, for not
too large n. The generating functions are also used to find the asymptotic

- dependence on n, and it is found that this dependence is essentially unaffected by

. femoving any specific type of graph. The sign.alternations of the matrix elements
in quantum electrodynamics are also considered in terms of similar generating
functions. The generalization orvthe analysis to other types of interactions is

- also discussed.
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I, Introduction ' .

The Feynman-Dyson formulation of quantum field theofy‘in.terms of the
S-—matrix yields a straightforward method for obtaining the matrix e1ements |
édrreaponding to a particular physical process by means of a perturbation
expansion in bowérs of the coupling const.ant° In this theory it has been
shown that each matrix element may be uniquely represented by a linear graph
called a Feynman diagram., The problem of performing a calculation to a given
order then separates into two parts: (a) the combinatorial problem of
| obtaining the nuhber of Feynman diagrams of a particular type which there are;
and (b), the actnal evaluation of the associated matrix elements.J It is the
: purpose of this paper to investigate problem (a) in some detail. In addition
to finding the exact number of diagrams, one may also ask for the asyﬁptotic
behavior as the order, n , of the perturbation becomes large. ‘Evidently it is
the asymptotic behavior (together Qith the asymptotic properties of the’
agsociated matrtx elements) whicii will be of interest in determining the
ultimate cbnvergence or divergence of the perturbation exﬁansion, The question

’ ' 1l
of the asymptotic behavior has been investigated by Hurst using a different

1 C. A. Hurst, Proc. Roy. Soc. A, 2l4, &k (1952).

method from the one employed here; however, the author feels that the present
method is somewhat simpler and more conventional, and also that it provides more

insight into the structure of the graﬁhs than does the former,
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Due to the fact that certain diagrams may eithgr have matrix elements
which are equal to zero, or which identically cancel with others, these diagramg
should be’ removed from consideration in the number of contributing diagrams. In
4addition, other graphs have infinita parts which must be removed by the
renormalization technique, and 30 these, too, should not be counted. In the
| presen£ study generating functions will Ee derived from which ﬁhe desired number

of the remaining reduced diagrams for any process can readily’be 6btaihed°

II. The Feynman-Dyson Method .

. 2. | - |
It has been shown by Dyson that the S-matrix, which represents the

p : v ,
F. J. Dyson, Pnys,,_nev. 75, 486 (1949).

transition probability amplitude from a stateat t = -~ 00 toone at t = R

can be written as:

Sfere)= 2 (3 et P‘EH‘(*»-'-H?owl

- 00

in which HI(x) is the interaction hamiltonian'fér'the fields involved, and

P is Dyson's timebordering operator, In general the interaction hamiltonian
will_be a sum of products of field operators, which in turn are sums_of creation
and annihilation operators. In order to obtain the S-matrix for a spécific
process one méy convert these timé ordered operators into onés in which all of
the annihilatioh'operators aﬁpear to the right of the creation operators by

bmultiplé permutationsB° When this is done; one finds that in addition to the

3 . C. Wick, Phys. Rev, 80, 268 (1950).
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terms correspoﬁding to the operatore present’initialiy in the time ordered
errengement, there afe also terms with fewer operators thaﬁ before which are
prodﬁced by the commutatioﬁ relation of ﬁhe fiéldsD The latter simply represent
the vacuﬁm flucfuations, Now, in order to obtain the desired portion'of the |
Samatrix, we simply choose all those terms which have the proper number -of
ramainlng operators to destroy the particles in the inltial state and to create
those in the final stat.es° A1l other parts will have vapishlng matrix elements
between the states of interes£° | |

To relate this procedﬁre to the Feynman diagrams, we now puti n points
on a piece of paper, and then for those oﬁerators ‘¢(xi) whieh\annihilate the
initial particles or create the final ones we draw lines frem the associated
. points, i , off the paper (different lines for each type of particle), and for
pairs ef operators for which we have employed the commutation relations we'draw‘
| lines between theecorresponding poiﬁts; The total S-matrix is represented by
allvpossible'graphs drawn in this maﬁner with the given_nﬁmber.of_eaeh type of
external lins. | ?or charged fields, as a result of the two degrees of ffeedom,
one finds that the lines must Be considered to be directed, with pairs of linesl
at each point, one arriving and one 1eaving to preserve charge conservationo
Finally, if one has a non-linear coupling, for example, ¢ (x) , then the
permutations of the fields may occur between any of the three fields in the
preoduct at_each point, and for the purposes of enumeration of graphs each of
theee muet be counted. Thus in drewing'ﬂhe graphs one might eonsidei that for
such a field each point would have several different places to ﬁhich a line

. could be.drawn°
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III. The Total Number of Diagrams

As an example, let'us now consider quantum electrodynamics, for which
- T A
A

It wili.be simple to generalize to othérvinteractious from the results of this
case. For the total number of diagrams, the electron and photon lines may
;connect the n points 1ndependent1y of each other, so- that each may be
considered separately and the total number is the/product of the two. Thus
we consider~

(A) Tha Number of Electron Diagra;ms° From the interaction '

v‘hamiltonian we see that each point of the diagram has one electron line coming
to it; and one leaving it. From this 1t 48 evident that for each line ccm;ng
onto the paper, there isialso one which mﬁst leave it. ‘Let the numher'of such
free electron iines (at infinity) be € . In order to find the total number -
of diagrams, given € , we may consider that a line is drawn from each point.
It‘is then nedessary.to make sure that each iine then ends 6n‘any other point
such that only one line goes to a given point. To begin the fdrﬁatioﬁ of-an
'electron diagram, we simply choose € points from the total of n points |
and 1et lines proceed to infinity from them. Each remaining point must then
have a line drawn from it to some point on the paper (only one 1ine is allowed
to go to each point, of course)° Then, to complete the diagram each of the
€ remaining points which has no line coming to it must be joined to a

. e
‘line from off the paper., Thus we find that the total number of ways, N (n, € )
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to connect lines to the electrons is:

| (é.’)t (M-é)‘.’ (])
in which the first factor ié the number of ways to choose the & points for
the external lines, and the second is_the'nnmber of Qayslto connect the (n - € )
points internally to the n points to which they may go.

This reéult may also be obtaihéd in é somewhat more illuminating fashion
by considering the precise ways in which the points are joined by electron lineu.
Evidently the electron lines will form €& openvpolygons, and in addition there
may.be any number of closed loops. Let € ; be the number of open polygons of
i ﬁbints, and ) j the number of closed loops of j points. With this

specification of a diagram, we may form the electron diagrams in

A

"l I
Ter e T oo L Tl

different ways. ‘The first factor is the number of wéys that‘we can choose the
points to be placed on the various lines, while the second is the number of ways
that these points can then be arranged on the lines or loops., Since we have to
&o with directed lines, any permutation of points on the open polygons is different,
while for the closed loops cyclic permutations of a conriguration give nothing

new whereas any other permutation gives a new diagram.
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To find the total nuniber of diagrams, we must now sum over all possible

choices of the & g ' >\ 3 with the restrictions that the number of external |

. lines is € and the total number of points is n. Thus we have

| _ o " 'l / . -
NS (mEe)= L i = ,
(e,2) Telt (o) !

X

in which the sum is to be taken over all € s A ; with the restrictions
. (indicated by the double prime)s .. | |

Z,ecce, T+ 9N m.

. To remove the restrictions and allow easier summations we may multiply the

Zoterr B33y oy

equation by x o X , after which we can sum

 over all & i A 4 independently, choosing only the coefficient of = vy €

in the rfinal result. Thus:

S | e
N () = CoefS ™y S ins i 2 T (Y] ,) T A7 ()
. . ’ o ' éil J )\J!
- X'y zxy
= Coeff x ye in: m! € e & (3)
| | ' X Y/(1-x)
= COCQ"C. meé wn ! m,’ (/—X)V c- . (or)
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e

One readily finds that the coefficient of x 'j]e from this generating function
agrees with Eq. (1). o | '

(B) The Photon Lines. From the interaction hamiltonian we see that

each point should have one undirected photon line connected to it, To construct
a diagram for these, we choose f> points for the axternal lines while the ‘
remaining points, of which there are nre, which must be an even number, are joined

in pairs. Thus for the total of the photon dlagrams we find

p! <- ‘-(’Yv_@ ] | |

N (M(’)

where the first factor is again the number of wayé to choose the f> points for
the external lines,_while_the,seéond is the humber.pf ways that n-p points may bé'

Joined in pairs. Thus we have

N(np) s )

The total number of diagrams

(5):

, qj(n; € , f ))'is the product of Egqs. (1) and

T (mye,p) - (1)
P et ()



UCRL-2134
-G
iIf one intrdduces the Sberling gpprbximation into this éxpression, it is found
that T (n, Aé , 'D Y/nt v nn/? as n —» 00 .
It is perhaps worth mentioning that one can form simple generating
functions for N (n, € ) and i (n, /0 ) as:

m |

Z N (m 6? y - VLM<_7))

Z N (M,F)

Lt ‘M__) H(\Jiz)

in which L (x) and H n(x) are t.he n'th order Laguerre and Hermite polynomiala,

.respectivelyho Using the well known generating function for the Laguarre

Margenau and Murphy. The Mathematics of Physics and Chemiétry. :New York,

D. Van Nostrand Co., 1943.

polynomials onhe can éas;lly form the "grand generating functic;n" for the electron
lines, Eq. (4). | R

If one wishes to generalize these results to cases in which the interaction
hamiltonian involves factors of the type ¢k , it is only necessary to ‘hote that,
‘as pointed out at the end of Sectioﬁ II, one may consider eaéh point as consisting
of a set of -k subpoints, Thus we need only consider the number of"photovn-like
diagrams of k°n 4instead of n points in such A case, Evidently as k increases

from one with fixed large n , the number of diagrams increases very rapidly.
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"IV, Removal of Unwanted Diagrams

Ihe counting séheme of Section iII for the total number of diagrams must
now bé modified in order to remove certain graphs for which the matrix elements
eithef give no contribution, or must be removed by fénormaliza.tion° In these
categories ,we have graphs involving: |

(a) 0dd electron loops. For quantum electrodynamics, Furry's theorem
states that such matrix elements will cancel in péirs°

(b) Closed pérts. Dyson2 has shown that these only multiply the S-matrix
by a cdnstant factor. | -

(¢) Self energy parts.fér electron or photon lines. The former must be
.rehormalized, the latter give no contribution,

(d) Vertex parts. These lead to the self charge divergence:and must
also be renormalized. The removal of (d), (e) leaves one with the number of

"irreducible” graphs5,

2 F. J. Dyéon, Phys. Rev. 75, 1736 (1949).

(e) Separated'parts with one external electron and one external photon
line. These matrix elements vanish since energy and momentum cannot be conserved,
We will remove these various diagrams in order; however, it will be
evident that any step mayvbe omitted in case‘one wishes to retain such elements,
as, for.insténce, in a case in which Furry's theorem does not apply so ﬁhat one

would.like to retain the odd loops.
In order to remove the odd loops, it is only necessary to sum over the

even Jj's in Eq. (2), with the result that
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. . _ . U/
Nﬂ (M, 6-) = Coe-g:g. mee in: m! (l-‘%z)'/ c |
and éd
e '\ . ' m-€& | '-(6""; S
N, (’“)e) = Coeff. % tn : (/ x) (I+-)<) T

For large n this may be estimated as follows. Using the binomial expansion

for the two factors, we have

Nlc'.(u‘,me)': _m__'_ i <é§+t-'/1)‘{'nmée )1 /,_) (_/) ‘é‘j‘

and using the expressions for the binomial coefficients, we find

Ne(m,e) = £1) ’2: Zk [(e+k+1) F(%-é-k+j/,)€l)k
: KIP(e+ ) (m-e-k)! T (%)

If the integral representation for the gamma functions are introduced and a

change of intégration variables 1s made one obtains
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m- € M 0o

e . .

| (2) ]

NI ('n\ 6) = ( ) ; <€ n %J

: : ’ T eo) Uu e w X |
M(e+m)r(h)25" ~% »

: €- L m-€ -

jdx (I1-x) /+><)

'The first integral gives n! , Evidently, as n —»o0 the major‘contribution

to 't.he_ secgnd integral comes near X = ;{:1 , and for & 2 0 , we need only

consider the region about x = - 1. If we replace (1 - x) by 2 in this region,

the remaining integral from O to 1 is a beta function so that we find

NS (m, @) % ( M) Tl (Ol
“lple+'h) Tim-e+3)’

Using thé Stirlihg approximation; one sees that the order of electfon graphs -
is thus rednced by né compared to Eq. (1)

To remove the graphs with closed parts, we note that every diagram will
consist of a subdiagram (which may be the diagram itself) which has no closed
parts, and a femainder which is made up of one or more closed parts with no
external lines. |

Thus we have -

T (me,p) = )

m,my om, !t m, |

T (fn) 0, O) F(M,)_) é,f)

in which F(n, ¢ , P ) is the number of diagrams with no closed parts, and
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“ the sum is over all m, n, with the restriction that ny +n2 = n The
summand simply represents the number of ways'that one can make up diagrams
from their constituent parts, given M, Ny o If we again use the generating

functions, we find:

V j(X) e:ﬂ) : ' |
= - T P (7>
F(x, €,p) Tno o)

- where:

J (%, é,,/o)'-:" ZM‘ T (M)'éi)'xw\

m!

}(X) 6,/0) - Z,W F-('::’Ié)f')x'h

s
and in which T (O, 0, 0) is ciéfined ﬁo' be = 1. for convenience. -.

- The next problemlto be considered is that of the number of irreducible
diagrams; Before doing thie, h@wever,:it should be remarked that iifone had
thé exactIpropagation_functions for electrons and photons it would only be i
nqcessary to consider the ifraducible diagrémé. Nevertheless;<f;r £he purposes
of calculation the renormalized functions are not known, and the only way in
which they can be obtained is by obtaining the matrix elements related to the
reducible diagrams, removing the divergent parts order hy order° For this
purpose it is useful to have those graphs from which only the self energies in |

‘the external lines havg been removed. To calculate this number, we see that
a diagram may have a central part of " n points together with ny external
electron lines of i points in selfvenergy_graphs; and ny external photon

lines of j points in self energy parts. The total number of graphs is then:
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F(M)e)(o) = Z.m , | ! . . X
m'l 7“7-(,;‘/)”%,”& AT (6™ m,

«(2€)(z€-1).. (26—%”+/> P (f_l) (f_ m "'4_,)

K[F(c,ho)]““ [F(J 0, 2):] 2 C—(ry) 3 )

The sum is to be carried over all arrangements of points in groups, with the
. : N : "
restrictions that n = Zi in + FER I U >, my ,and

240y . ®a' ,€ ,P) is the number of diagrams with no self
energy parts in the external lines. The factors involving (26) : ‘(2 €-n"+1)
and F voo ( (3 -n 1) represent the number of ways in which the electron
and phot.on self energies may be inserted in t.he external portions of the lines,
and 2"1 is due to the fact that each photon self energy may be inserted in
two different ways. Evidently the number of electron self energy diagrams of n
' points is F(n, 1, 0), and tﬁe number fof photbné in F(n, 0, 2). If we. introduce
x to keep track of the first restrict.ion, §° 'for fc.he second, and | N for the
third, we f£ind o o - |
/ !
Hxep) = L A o Glxey)
v BV mnm" ( )/ (f

Conbh ok €7 capls 102y 303]

so that:
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F(x€,p) = 9(x ¢p) ,,,Zm ( ié) [}(X’ & o‘)]”’x
B () [eF0002)

i

M

Thus:

J(x,‘é?f) |

—— . ®
[l + 3‘(><.) l,o]'?fé [H R S‘(x,_ 0, Z)Jﬁ.

G (%, €,p) =

To find the number of irredﬁcibie diagrams, I(n, € , (’ )s we proceed
simiiarly, removing self energy parts in any of the electron or photon lines and
in addition removing all vertex parts. in thia case we construct the reducible
diagr#ﬁe bj,éhoosing.an irreducible diagram of ng, points and then putting in the
various possible addiﬁional parts at ﬂhe'vertices.or in the lines. The number of

vertex parts of n points is. F(n, 1, 1). Thus, we have

.' i |
F< m, e) ) = A “’n me — " X
oo a T (1) V! T 0™ T

(m"r) me) MP) v

< Tloep) T Lot 0] T [r(e .,al“v[”f""’”]:i
9

b€ o) £ (22) (B2 (25207
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in which the first two factors represent the number of ways to 6h_oos_e the
points and fom the subgraphé among the set of} n, vertex parts of v
points, ‘ng electron self energy parts of e points, and n, photon self
ehergy parts of p péinﬁs; The Aremaini‘ng factors represent the number of ways\
thaﬁ t.he self energj parts can be inserbed in the n, + é electroh lines and
the g photon lines. The sum 13 carrled over all ny 's, with the
restrictions t.hat ns= Z vV ny +2: ene" Z pnp y DNy = Z “v s

| Z xie 5 and . n" = Z np » Note thgt all points in the diagram are in
one of the subgraphs, and the number of wa.js to put the vertex parts on the
,irreducible' graph is just the number that we are seeking. G(v, 1, 1) is chosen
for the vertex parts rather than F(v, 1, 1) in order that we only count a self

energy subgraph in a line once, Using the generating function method again, we

find that Eq. (9) becomes

4 C Llmc) (mee) (M)l
“3‘(&6 f) Z L( o>€-f’)‘ . ,:)' ( : )' «2
mmm)”) (’Y\ + €=~ ’V)) (—-h——-ﬁ mM ) .

‘Coe” o¥ g 7 C in ex,p[§ S(X) ) /)i.;z-.?.:?(x,/,oﬁ C}(x,o,z)]

and so

F(x,¢p) y > I(%;q,é,,g)<’“o,:‘é)(@"{ﬂf>,

g (‘x) ; ,)]%[;(x, ) o)']m'[zif(x,o,z)]
| Z I(”‘“éf)) g g(x N[+ %(x)/,o)]['+2"7("'°'2)]v?%
| ]m

<o m,m] [ 1+2 F(x0,2)



UCRL-2134
-17-

Thus we find for the generating function:

Fx,¢p)
(4 #(x |)o)]'6 [u 2 51(x,o,z)]f/

3( $(x), e,f\) 5 (10)

i.n"‘which.
P G [ e a na] [1ez # (4 °>2‘)'}VL-

In order to find I(n, € , f’ ), we must invert thé series # - #(x) and find
x = x(#) . This is then substituted into the right hand side of Eq. (10), and
a comparison of egual powers in § gives the desired result, |

 To remove the graphs with separated parts of only one external electron

and one photon line, we again write the equation sa.tisfiéd by such diagrams:

I o .
Flme, ) <Z> (m")! ﬂ’?rr’)m’” H (mep) T [Fiwn)]

# ' 1
in which the restrictions on the sum are n = n' +Z' o, € =€ +2,

and (3 lD "+ Z n, . This equation is treated as before, and one finds

Fe(x,y, 2) = \f“(xy,i‘) e"P[ JEO\Z(’“'"")]

in which } (x, y, 2) is the "grand generating function" for the number of

diagrams:
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F (xy,2) ) F(x, ,e)/)' y‘ezf

©f

and

g (%y,2) = Z " (o G'Q-x'“y “2f

", €,p m!

V. Conclusion

The generating functions which were derived in Section IV have a
twofold use.. In the first place, they may be used in conjunction with an
exact Qalculation of the matrix elements for a particular process, as a check
to ensure that all of the elements have been considered. Since the number of
diagrams incteases extremely rapidly_with ﬁ , such a check is quite useful for
all but the very low orders. . .Secondly, an investigatién of the asymptotig
behavior may>yield'valuable evidence regarding the overall conférgence of
' perturbation expansions in field theories. From Egs. (7), (8) it is not difficult
to show that the removal of closed parts and self energy parts in external lines
does not affe;t the asymptotic behavior of the number of matrix elements. The
treatment of Eq. (10) is more difficult, but Hurst.1 has shown that the number
of irreducible diagrams of a particularly simple subset is asymptotically also
~ an/zv’ so that the asymptotic behavior is not eff;ctiveiy changéd.

If one now considers the sum of all the matrix elements, he finds that
in order that thé perturbation gxpahsion converge, the average contribution

per element to the S-matrix mist decrease with n at least as rapidly as
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n”n/z , since (n!) 1 multiplies the n'th term in the expansion. This extremely

rapid decrease seems to put a severe requirement on any field theoryﬁ. One may

It has been shown by Hurst, Proc. Cambridge Phil. Soc. 48, 625 (1952), that
for the simple case of a ¢3 contact coupling of a boson field to.itself
the perturbation expansion is indeed divergent.

also remark that the magnitude of the coupling constant would seem to have réther
little_to do with the cogvergencevof the theory. Of coursebif quantum eiectro-
dynamics does not con§erge, the excellen@ agreement (éfter renormalization) with
.experiment would lead one to believe that somehowzhe'is dealing with an asymptotic
’;éxpansiono If this ié the case, the size of the céupling constant will be
essential, since for small values the series carried out to a minimum term may
be an excellent approximation, while for a larger constant there may not even be
such a minimum and there may bé no good approximation.

With regard to the convergence of the expansion we must still notice that
‘thé signs of the various matrix elements are not necessarily alike,,ahd there ié
| still the possibility thaﬁljudicious canééllations couid produce a sﬁfficiently
rapid decrease in the average of the elements, even though the average magnitude
remains large. For quantum electrodynamics such a sign alternation is associated
‘with the various electron diagrams due to the fact that the electron field
satisfies anti-commutation relations. It has been shown by Dyson2 thaﬁ each
matrix element carries an intrinsic sign which is given by (-1)p ,vin_whiéh )
is the number of free electron lines of an even hymber of points plus the number
of even loops. The sum of the numbers of matrix elements with this sign
included can readily be obtained, either with all loops allowed or with the odd

ones removed, In the first case, we multiply the summand in Eq, (2) by the sign
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factor and then sum as before.. We may let

p= D (i-De + 2 (3-D A5,

since the odd parts in i , J will not contribute to the sign, and due to the

restrictions on € ; , )\j we find

Pj: ’V\“'e+'Z >\J‘

If we multiply the terms in Eq. (2) by this factor and then sum, we find:
. - . . | )
. S ‘(M)é) = Coefyf, omt X )/ ‘n : (—1)' ,n./ (/—X) exp/ I——%))

'2(‘1)‘ 1’—I< ,:’__?;)

¢!

where Se (n, € ) 4is the sum over all the electron diagrams with the above
choice of signs. Eq. (11) differs from Eq. (1) only by the factor '

€ (€ = l)/n(n -1) . If one removes the odd loops, then he finds:

e s A
S,e(m,e)= Coe £§ oF ¢ y e m!l ) “(0) exp (12

This may bé estimated as was N'(e)(n, € ) in Section IV, with the result that

Sc(”be) = (_’)%-6 “I‘ n- 41 s
| =y, r(e-h) F(’"-G?'/l)z/l




UCRL-2134

-21-

which is of order nfz times Eq. (6). fﬂese numbers are still exceedingly large,
and the convergence would seem‘douﬁtfulo' There.is still a difficulty in the signs
since even with the above choice of sgin, the remaining part of the matrix elements
is not positive definite, and so one cannot be sure that this wil; not‘produce
additional cancellation., As an argument in favor of convergence, it is to be noted
that'sinée all but a fraction n°2 of the graphé are cancelled by the alternation
in sign considered, it would only be necessary that the matrix elements be

changed slightly (though exceedingly'judiciéusly) from a constant value over the
entire set in order to produce convergence. That is, it is only necessary to
assume that the ratio of the avérage contribution to the maﬁrix elements of one
sign éompared to those of the other is 1 +-O(n'2) in order to produce complete
cancellation, Finally, it>may be remarked ﬁhat the'Dyson formulation of the
Sumatrix represents an inflnlte series in which each term is also a series,
Procedures for obtaining the S-matrix which are based on a pattern-type of
appraximation»essentlally are baséd on a rearrangement of that double series.
Thus, even though the perturbation theory>weré to converge due to fortﬁitous
cancellations it is not/zgl necessary that' such rearranged series would converge

or that they woﬁld yield the samé resulté as pertﬁrbation thgory.even if convergent.
The equivalence of the two expansions would of necessity be based on thé absolute
: convergence of the double series, rather than on the far weaker conditien of
ordinary convergence of the original single series.
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