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Department of Computer Science
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Abstract
Many memory models suggest self-terminating backward
scanning along a memory representation. In these models,
time to retrieve a particular item from memory could depend
on how far in the past the item was presented or on the num-
ber of items presented since that item. To investigate which
of these two types of memory representation is more likely,
we designed a relative Judgment of Recency (JOR) task with
variable presentation rates. The variable presentation rate de-
confounded the age of memory and the number of intervening
items. Our results favor the hypothesis that memory represen-
tation is temporally organized. This result is important for ad-
vancing memory models and for building stronger ties between
cognitive and neural models of memory.
Keywords: Judgment of Recency; Variable presentation time;
Time versus items.

Introduction
In the relative judgment of recency (JOR) task, participants
are presented with a sequence of items followed by a probe
consisting of two items from the sequence. The participants
have to select the item that was presented more recently. Re-
sults from previous studies suggest that the response time
(RT) grows sublinearly with the lag to the more recent probe
and that it does not depend on the lag to the more distant
probe (Muter, 1979; Hacker, 1980; Hockley, 1984; Tiganj,
Singh, Esfahani, & Howard, in press).

The finding that RT depends only on the lag to the more
recent probe was often explained through self-terminating
backward scan along a memory representation (Muter, 1979;
Hacker, 1980; Hockley, 1984; McElree & Dosher, 1993;
Howard, 2014). The finding that RT grows sublinearly with
the lag to the more recent probe was used to argue that the
temporally organized memory is compressed such that the
more recent past is represented with higher resolution than
the more distant past (Howard, 2014). This is consistent with
the knowledge that memory gets worse for events further in
the past. While these models rely on backward scan, that scan
could be along a temporally organized or ordinally organized
memory representation.

In most JOR experiments, time lag (age of memory) and
item lag (the number of intervening items) were confounded.
This made it impossible to distinguish whether scanning
along a temporally organized or item organized memory rep-
resentation would better explain the data. Hintzman (2004)
studied absolute JOR with variable presentation rate to de-
confound time lag and item lag. In Hintzman (2004) subjects

did absolute JOR on a long list that was made up of alternat-
ing fast and slow blocks with 25 to 50 items each. Hintzman
(2004) concluded that response times were a function of time
lag with no added contribution from the item lag. While this
study provided important insight into recency judgments over
relatively long temporal scales (tens of seconds), it remains
unclear whether the same account would hold for shorter tem-
poral scales (several seconds) that are typically used in rela-
tive JOR tasks and that are commonly modeled with different
memory models, e.g., Atkinson and Shiffrin (1968).

Studies of serial recall have also made an important con-
tribution for understating the role of time in short-term mem-
ory of serial order. Separating the output interference, rather
than output time, was argued to be critical in serial recall
(Lewandowsky, Duncan, & Brown, 2004). Also, temporal
representation was argued to be unnecessary for short-term
memory for serial order (Lewandowsky, Brown, Wright, &
Nimmo, 2006; Lewandowsky, Oberauer, & Brown, 2009).

Here we designed a version of relative JOR task that decon-
founds item lag and time lag by varying the presentation rate
within each list. A varying presentation rate was obtained by
inserting “blank” letters which introduced a gap between oth-
erwise consecutive letters, creating longer inter-stimulus in-
tervals. This manipulation allowed us to study response time
changes as a function of both item lag and time lag. Our re-
sults are consistent with findings from Hintzman (2004) and
extend those findings to much shorter temporal scales prov-
ing a helpful insight for future memory models and for efforts
to better understand the neural underpinnings of memory.

Materials and Methods
Participants were presented with a list of 9, 11, or 13 letters
(all consonants) at the rate of 5.5 letters per second or one
letter every 0.181 s. At each trial, the presentation order was
random. A single letter could be presented at most once in a
single list – no repetitions were allowed (Figure 1a).

To introduce variability to the presentation rate and decon-
found time lag and item lag, after each letter was presented
there was a 40% probability of a gap. A gap was presented
for the same duration as a single letter. Only a single consec-
utive gap was possible. Thus duration of each list was at most
26×0.181 s = 4.73 s (Figure 1b).

At the end of the list, two of the last seven letters were
chosen randomly, and the participants were asked to indicate
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Figure 1: Schematic of relative JOR task with fixed and variable presentation rate a. JOR task with fixed presentation rate.
Participants are shown a list of letters (such as RYT. . . ) followed by a probe containing two letters from the list (here, G and T).
Participants are asked to select the probe item that was experienced more recently. In this example, the probe G is the correct
answer. Lag for each probe is defined as the number of steps backward in the list necessary to find the probe. In this case, item
lag (the number of intervening items) and time lag (age of memory) are the same because the presentation rate was fixed. b.
JOR task with variable presentation rate. Gaps are introduced to the list such that the duration of a single gap is equal to the
duration of a single letter. Gaps occur with a probability of 40% such that at most one consecutive gap is possible. Time lag is
defined as the number of steps backward in the list necessary to find the probe counting both gaps and letters, while item lag is
defined as the number of steps backward in the list necessary to find the probe but counting only the letters and not the gaps.

using the left or right arrow key which of the two letters had
appeared more recently. In Figure 1, G and T are presented as
the probe items. Because G was presented more recently than
T, the correct answer is G. If the participant did not make a
response within 2 s, the trial was terminated.

The distance to the more recent probe stimulus varied from
item lag −1 to −6. The item lag of the less recent probe var-
ied from −2 to −7. This gave us 21 possible combinations of
lags, which were presented in random order. Each participant
completed 200 trials.

The participants were selected using the Amazon Mechan-
ical Turk platform and they completed the task via an online
interface designed using jsPsych (De Leeuw, 2015). Partici-
pants were compensated for their time. Each participant spent
about 20 minutes performing the task. Prior to the begin-
ning of the experiment, participants were given written in-
structions. They were also given three demo trials where let-
ters were presented at a slower pace in order to illustrate the
structure of the task. Participants were required to complete
those three trials successfully before proceeding with the ex-
periment. If they made an error in any of the three trials, that
trial was repeated. The three demo trials were not used in the
analysis.

The study materials and protocol were approved by the In-
stitutional Review Board. A total of 33 participants signed
up for the study. Two participants withdrew from the study.
Data from additional two participants were excluded because
their overall accuracy was no better than chance. The results
below present the analysis of the data from the remaining 29
participants.

The procedure of this experiment was similar to the proce-

dure of the Experiment 2 of Hacker (1980) and JOR exper-
iment in Tiganj et al. (in press), with the main difference in
that here we used a variable presentation rate. Other than the
variable presentation rate, unlike the Hacker (1980) study, in
this experiment participants were never given foils that did
not appear in the list and unlike in Tiganj et al. (in press)
study, participants were not given the option to respond indi-
cating that they did not remember either of the probes. Also,
unlike the previous studies, this study was conducted online.

Results
Accuracy was similar to that in the previous studies
The probability that participants selected the more recent
probe was .69± .02. The accuracy was .82± .01 when the
time lag of the more recent probe was −1 and dropped to
.52± .04 when the time lag was −6. For time lags −6 and
−5 the probability of choosing the more recent probe was
not different from chance (for lag −6: Chi-squared prop test,
χ2(29) = 37.24, p-value=.14; for time lag −5: Chi-squared
prop test, χ2(29) = 42.55, p-value=.05 and accuracy was
.57± .02). Time lag −4 had an accuracy of 0.59± 0.02 and
was significantly higher than chance (Chi-squared prop test,
χ2(29) = 64.10, p < 0.01). These values are similar to those
in previous studies (Tiganj et al., in press). Figure 2 shows
accuracy as a function of time lag and item lag to the less and
to the more recent probe.

RT was better explained by time lag than by item
lag
The main objective of our analysis was to evaluate whether
RTs are better explained by time lag (the age of the memory)
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Figure 2: Accuracy in JOR as a function of more and less recent probe. a. Shades of gray represent time lag to the more
recent probe such that the darkest shade corresponds to lag of -1 and the lightest to the lag of -11. Time on the x-axis is in units
of seconds with a single time lag corresponding to item presentation time of 0.181 s. Therefore the entire x-axis corresponds to
1.81 s. b. Shades of gray represent item lag to the more recent probe such that the darkest shade corresponds to lag of -1 and
the lightest to the lag of -6.

or item lag (the number of intervening items). Given that
previous studies have shown that RT in absolute JOR does
not depend on the lag to the more distant probe, we focused
our analysis on the lag to the more recent probe.

Figure 3a shows RT as a function of time to the more recent
probe, grouped by item lags to the more recent probe (shown
in different shades). Figure 3b shows RT as a function of item
lag to the more recent probe for different times to the more
recent probe. Visual inspection of these two figures suggests
that lines in Figure 3a are not parallel to the x-axis, while in
Figure 3b they are parallel to the x-axis. If that is the case,
it will support the hypothesis that time lag explains RT better
than item lag.

Statistical analysis confirmed these visual impressions.
Specifically, we conducted two different analyses, one based
on linear mixed-effects models and the other one based on
a Bayesian t-test of slopes. We compared two linear mixed-
effects models in predicting RT. In the first model, item lag
to the more recent probe was treated as a random effect (i.e.,
allowing independent intercept for each lag) and within-lag,
time to the more recent probe was found to be a significant
fixed effect (.044± .007 s, t(14) = 6.54, p < 0.001). In con-
trast, in the second model, time to the more recent probe was
a random effect and within-time, the fixed effect of item lag
to the more recent probe was non-significant (.017± .009 s,
t(9) = 12.6, p = 0.11).

To further assess the effect of time lag to the more recent
probe on RT, we calculated the slopes of each of the lines
in Figure 3a separately for each participant and performed
a Bayesian t-test (Rouder, Speckman, Sun, Morey, & Iver-
son, 2009) on the slopes. This analysis showed “Decisive”
evidence (Wetzels & Wagenmakers, 2012; Kass & Raftery,
1995; Jeffreys, 1998) favoring the hypothesis that the slopes

are different from zero (JZS Bayes Factor = 557.9). We did
an analogous analysis to assess the effect of item lag to the
more recent probe on RT. We calculated the slopes of each of
the lines in Figure 3b separately for each participant and per-
formed a Bayesian t-test on the slopes. This analysis showed
“Barely worth mentioning” evidence (Wetzels & Wagenmak-
ers, 2012; Kass & Raftery, 1995; Jeffreys, 1998) favoring the
hypothesis that the slopes are not different from zero (JZS
Bayes Factor = 1.7).

Correct RT varied sub-linearly with item lag and
time lag to the more recent probe
Previous studies suggested that in relative JOR, RT varies
sub-linearly with the item lag. In the context of serial ex-
haustive search models, this was consistent with the hypothe-
sis that participants scan along a log-compressed representa-
tion. Due to item lag and time lag being confounded, previ-
ous studies were not able to test if the sub-linear relationship
holds for both item lag and time lag. Figure 4 shows RT as a
function of log time lag and log item lag. Solid line shows a
logarithmic fit.

Statistical analysis confirmed that for both log item lag and
log time lag, logarithmic fit is better than linear fit. Specif-
ically, we compared a regression model of median RT onto
lag to a regression model onto the base-2 logarithm of the
absolute value of lag. In the time lag case, the model us-
ing log |lag| fit better than the model using |lag|, ∆LL = 5.1,
implying that the model using the logarithm is more than
150 times more likely. In the item lag case, the model us-
ing log |lag| fit better than the model using |lag|, ∆LL = 8.5,
implying that the model using the logarithm is more than
6000 times more likely. To quantify the relationship between
correct RT and log |lag|, we performed a linear mixed effects
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Figure 3: RT was better explained by time to the more recent probe than by lag to the more recent probe a. Shades of
gray represent item lag to the more recent probe such that the darkest shade corresponds to the lag of -1 and the lightest to the
lag of -6. Time on the x-axis is in units of seconds with a single time lag corresponding to the item presentation time of 0.181 s.
Therefore the entire x-axis corresponds to 1.81 s. The slope of the lines illustrates the impact of time lag on RT. The significance
of the slope was confirmed in subsequent statistical analysis. b. Shades of gray represent time lag to the more recent probe
such that the darkest shade corresponds to the lag of -1 and the lightest to the lag of -11. Lines appear flat, suggesting that when
time lag is taken into account, item lag does not have a significant impact on RT. This observation was also consistent with the
subsequent statistical analysis.

analysis allowing for independent intercepts for each partic-
ipant. In time lag case, this analysis showed that every dou-
bling of |lag| increased RT by .11± .01 s, t(230) = 14.14,
p < 0.001. In item lag case, this analysis showed that every
doubling of |lag| increased RT by .12± .01 s, t(143) = 13.99,
p < 0.001.

Discussion
In this study, we found that RT in relative JOR task was better
explained by time lag than by item lag. This is consistent
with (Hintzman, 2004) who came to the same conclusion in
absolute JOR, using much longer lists.

Neuroscience studies have attempted to identify neural
substrates for a scannable memory representation. Scannable
cognitive maps spanned with bell-shaped receptive fields,
such as place cells or time cells, could provide a mechanism
for serial search (Behrens et al., 2018; Nieh et al., 2021). In
particular, the discovery of time cells, neurons that activate
sequentially following a presentation of some salient stim-
ulus (Pastalkova, Itskov, Amarasingham, & Buzsaki, 2008;
MacDonald, Lepage, Eden, & Eichenbaum, 2010; Tiganj,
Cromer, Roy, Miller, & Howard, 2017) accelerated the de-
velopment of neural-level models of scannable memory rep-
resentations (Liu, Tiganj, Hasselmo, & Howard, 2019; Singh,
Tiganj, & Howard, 2018; Tiganj, Cruzado, & Howard, 2019).

While time cells naturally support time lag as the most in-
fluential variable in accounting for RT in JOR, gating of time
cells by changes in the input can give rise to a representa-
tion where RT would depend on item lag (Howard, 2014).
In other words, if the sequential activation of time cells were

paused by a gating mechanism during the inter-stimulus in-
terval, item-lag would become the most influential variable
in explaining RT. Our results suggest that such gating does
not happen in relative JOR task.

While we focused on discussing models of self-terminating
backward scanning, since those are commonly used to ex-
plain the results in relative JOR, it is important to note that
the results presented in this study do not aim to distinguish
between backward scanning and other possible accounts for
JOR, such as strength models, e.g., (Hinrichs, 1970; Donkin
& Nosofsky, 2012). Strength models are certainly consistent
with the result that RT in JOR is primarily impacted by the
time lag.

In our study, lists had at most one consecutive gap between
letters. This helped to balance the temporal duration of the
lists, but it resulted in some missing data points for the statis-
tical analysis. In particular, lines in Figure 3 would be longer
if more than one consecutive gap was allowed. This would
further strengthen the statistical results since slopes could be
estimated using more data points. Future studies could at-
tempt to address this issue by sampling a wider range of gaps.

We kept the presentation rate fixed at 5.5 letters per sec-
ond. Future studies could explore whether the effects ob-
served here are consistent if the presentation rate changes
across lists. Hacker (1980) performed relative JOR at several
presentation rates (however, the presentation rates were kept
fixed within lists, unlike here) and observed that the overall
qualitative pattern of results was robust to changes in the pre-
sentation rate. If this holds for the results described here, it
would further strengthen our understanding of how the brain
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Figure 4: Median RT varied sub-linearly with both time lag to the more recent probe (a.) and item lag to the more recent
probe (b.). Error bars represent the 95% confidence interval of the mean across participants normalized using the method
described in (Morey, 2008). Solid line represents a linear fit of the data points. In plot a. Time on the x-axis is in units of
seconds with a single time lag corresponding to item presentation time of 0.181 s.

might maintain a mental timeline of the past.
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