Title
Comparing Impact of Time Lag and Item Lag in Relative Judgment of Recency

Permalink
https://escholarship.org/uc/item/1v9795cd

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Maini, Sahaj Singh
Labuzienski, Louis Francis
Gulati, Saurabh
et al.

Publication Date
2022

Peer reviewed
Comparing Impact of Time Lag and Item Lag in Relative Judgment of Recency

Sahaj Singh Maini (sahmaini@iu.edu), Louis Labuzienski (llabuzie@iu.edu), Saurabh Gulati (sagulati@iu.edu), Zoran Tiganj (ztiganj@iu.edu)

Department of Computer Science
Luddy School of Informatics, Computing, and Engineering
Indiana University Bloomington

Abstract

Many memory models suggest self-terminating backward scanning along a memory representation. In these models, time to retrieve a particular item from memory could depend on how far in the past the item was presented or on the number of items presented since that item. To investigate which of these two types of memory representation is more likely, we designed a relative Judgment of Recency (JOR) task with variable presentation rates. The variable presentation rate deconfounded the age of memory and the number of intervening items. Our results favor the hypothesis that memory representation is temporally organized. This result is important for advancing memory models and for building stronger ties between cognitive and neural models of memory.

Keywords: Judgment of Recency; Variable presentation time; Time versus items.

Introduction

In the relative judgment of recency (JOR) task, participants are presented with a sequence of items followed by a probe consisting of two items from the sequence. The participants have to select the item that was presented more recently. Results from previous studies suggest that the response time (RT) grows sublinearly with the lag to the more recent probe and that it does not depend on the lag to the more distant probe (Muter, 1979; Hacker, 1980; Hockley, 1984; Tiganj, Singh, Esfahani, & Howard, in press).

The finding that RT depends only on the lag to the more recent probe was often explained through self-terminating backward scan along a memory representation (Muter, 1979; Hacker, 1980; Hockley, 1984; McElree & Doser, 1993; Howard, 2014). The finding that RT grows sublinearly with the lag to the more recent probe was used to argue that the temporally organized memory is compressed such that the more recent past is represented with higher resolution than the more distant past (Howard, 2014). This is consistent with the knowledge that memory gets worse for events further in the past. While these models rely on backward scan, that scan could be along a temporally organized or ordinarily organized memory representation.

In most JOR experiments, time lag (age of memory) and item lag (the number of intervening items) were confounded. This made it impossible to distinguish whether scanning along a temporally organized or item organized memory representation would better explain the data. Hintzman (2004) studied absolute JOR with variable presentation rate to deconfound time lag and item lag. In Hintzman (2004) subjects did absolute JOR on a long list that was made up of alternating fast and slow blocks with 25 to 50 items each. Hintzman (2004) concluded that response times were a function of time lag with no added contribution from the item lag. While this study provided important insight into recency judgments over relatively long temporal scales (tens of seconds), it remains unclear whether the same account would hold for shorter temporal scales (seconds) that are typically used in relative JOR tasks and that are commonly modeled with different memory models, e.g., Atkinson and Shiffrin (1968).

Studies of serial recall have also made an important contribution for understanding the role of time in short-term memory of serial order. Separating the output interference, rather than output time, was argued to be critical in serial recall (Lewandowsky, Duncan, & Brown, 2004). Also, temporal representation was argued to be unnecessary for short-term memory for serial order (Lewandowsky, Brown, Wright, & Nimmo, 2006; Lewandowsky, Oberauer, & Brown, 2009).

Here we designed a version of relative JOR task that deconfounds item lag and time lag by varying the presentation rate within each list. A varying presentation rate was obtained by inserting “blank” letters which introduced a gap between otherwise consecutive letters, creating longer inter-stimulus intervals. This manipulation allowed us to study response time changes as a function of both item lag and time lag. Our results are consistent with findings from Hintzman (2004) and extend those findings to much shorter temporal scales proving a helpful insight for future memory models and for efforts to better understand the neural underpinnings of memory.

Materials and Methods

Participants were presented with a list of 9, 11, or 13 letters (all consonants) at the rate of 5.5 letters per second or one letter every 0.181 s. At each trial, the presentation order was random. A single letter could be presented at most once in a single list – no repetitions were allowed (Figure 1a).

To introduce variability to the presentation rate and deconfound time lag and item lag, after each letter was presented there was a 40% probability of a gap. A gap was presented for the same duration as a single letter. Only a single consecutive gap was possible. Thus duration of each list was at most 26 \times 0.181\ s = 4.73\ s (Figure 1b).

At the end of the list, two of the last seven letters were chosen randomly, and the participants were asked to indicate
The main objective of our analysis was to evaluate whether RTs are better explained by time lag (the age of the memory)
or item lag (the number of intervening items). Given that previous studies have shown that RT in absolute JOR does not depend on the lag to the more distant probe, we focused our analysis on the lag to the more recent probe.

Figure 3a shows RT as a function of time to the more recent probe, grouped by item lags to the more recent probe (shown in different shades). Figure 3b shows RT as a function of item lag to the more recent probe for different times to the more recent probe. Visual inspection of these two figures suggests that lines in Figure 3a are not parallel to the x-axis, while in Figure 3b they are parallel to the x-axis. If that is the case, it will support the hypothesis that time lag explains RT better than item lag.

Statistical analysis confirmed these visual impressions. Specifically, we conducted two different analyses, one based on linear mixed-effects models and the other one based on a Bayesian t-test of slopes. We compared two linear mixed-effects models in predicting RT. In the first model, item lag to the more recent probe was treated as a fixed effect (i.e., allowing independent intercept for each lag) and within-lag, time to the more recent probe was found to be a significant fixed effect (.044 ± .007 s, t(14) = 6.54, p < 0.001). In contrast, in the second model, time to the more recent probe was a random effect and within-time, the fixed effect of item lag to the more recent probe was non-significant (.017 ± .009 s, t(9) = 12.6, p = 0.11).

To further assess the effect of time lag to the more recent probe on RT, we calculated the slopes of each of the lines in Figure 3a separately for each participant and performed a Bayesian t-test (Rouder, Speckman, Sun, Morey, & Iverson, 2009) on the slopes. This analysis showed “Decisive” evidence (Wetzels & Wagenmakers, 2012; Kass & Raftery, 1995; Jeffreys, 1998) favoring the hypothesis that the slopes are different from zero (JZS Bayes Factor = 557.9). We did an analogous analysis to assess the effect of item lag to the more recent probe on RT. We calculated the slopes of each of the lines in Figure 3b separately for each participant and performed a Bayesian t-test on the slopes. This analysis showed “Barely worth mentioning” evidence (Wetzels & Wagenmakers, 2012; Kass & Raftery, 1995; Jeffreys, 1998) favoring the hypothesis that the slopes are not different from zero (JZS Bayes Factor = 1.7).

Correct RT varied sub-linearly with item lag and time lag to the more recent probe

Previous studies suggested that in relative JOR, RT varies sub-linearly with the item lag. In the context of serial exhaustive search models, this was consistent with the hypothesis that participants scan along a log-compressed representation. Due to item lag and time lag being confounded, previous studies were not able to test if the sub-linear relationship holds for both item lag and time lag. Figure 4 shows RT as a function of log time lag and log item lag. Solid line shows a logarithmic fit.

Statistical analysis confirmed that for both log item lag and log time lag, logarithmic fit is better than linear fit. Specifically, we compared a regression model of median RT onto log lag to a regression model onto the base-2 logarithm of the absolute value of lag. In the time lag case, the model using log |lag| fit better than the model using |lag|, ΔLL = 5.1, implying that the model using the logarithm is more than 150 times more likely. In the item lag case, the model using log |lag| fit better than the model using |lag|, ΔLL = 8.5, implying that the model using the logarithm is more than 6000 times more likely. To quantify the relationship between correct RT and log |lag|, we performed a linear mixed effects models.
RT was better explained by time to the more recent probe than by lag to the more recent probe. a. Shades of gray represent item lag to the more recent probe such that the darkest shade corresponds to the lag of -1 and the lightest to the lag of -6. Time on the x-axis is in units of seconds with a single time lag corresponding to the item presentation time of 0.181 s. Therefore the entire x-axis corresponds to 1.81 s. The slope of the lines illustrates the impact of time lag on RT. The significance of the slope was confirmed in subsequent statistical analysis. b. Shades of gray represent time lag to the more recent probe such that the darkest shade corresponds to the lag of -1 and the lightest to the lag of -11. Lines appear flat, suggesting that when time lag is taken into account, item lag does not have a significant impact on RT. This observation was also consistent with the subsequent statistical analysis.

Discussion

In this study, we found that RT in relative JOR task was better explained by time lag than by item lag. This is consistent with (Hintzman, 2004) who came to the same conclusion in absolute JOR, using much longer lists.

Neuroscience studies have attempted to identify neural substrates for a scannable memory representation. Scannable cognitive maps spanned with bell-shaped receptive fields, such as place cells or time cells, could provide a mechanism for serial search (Behrens et al., 2018; Nieh et al., 2021). In particular, the discovery of time cells, neurons that activate sequentially following a presentation of some salient stimulus (Pastalkova, Itskov, Amarasingham, & Buzsaki, 2008; MacDonald, Lepage, Eden, & Eichenbaum, 2010; Tiganj, Cromer, Roy, Miller, & Howard, 2017) accelerated the development of neural-level models of scannable memory representations (Liu, Tiganj, Hasselmo, & Howard, 2019; Singh, Tiganj, & Howard, 2018; Tiganj, Cruzado, & Howard, 2019).

While time cells naturally support time lag as the most influential variable in accounting for RT in JOR, gating of time cells by changes in the input can give rise to a representation where RT would depend on item lag (Howard, 2014). In other words, if the sequential activation of time cells were paused by a gating mechanism during the inter-stimulus interval, item-lag would become the most influential variable in explaining RT. Our results suggest that such gating does not happen in relative JOR task.

While we focused on discussing models of self-terminating backward scanning, since those are commonly used to explain the results in relative JOR, it is important to note that the results presented in this study do not aim to distinguish between backward scanning and other possible accounts for JOR, such as strength models, e.g., (Hinrichs, 1970; Donkin & Nosofsky, 2012). Strength models are certainly consistent with the result that RT in JOR is primarily impacted by the time lag.

In our study, lists had at most one consecutive gap between letters. This helped to balance the temporal duration of the lists, but it resulted in some missing data points for the statistical analysis. In particular, lines in Figure 3 would be longer if more than one consecutive gap was allowed. This would further strengthen the statistical results since slopes could be estimated using more data points. Future studies could attempt to address this issue by sampling a wider range of gaps.

We kept the presentation rate fixed at 5.5 letters per second. Future studies could explore whether the effects observed here are consistent if the presentation rate changes across lists. Hacker (1980) performed relative JOR at several presentation rates (however, the presentation rates were kept fixed within lists, unlike here) and observed that the overall qualitative pattern of results was robust to changes in the presentation rate. If this holds for the results described here, it would further strengthen our understanding of how the brain
Figure 4: Median RT varied sub-linearly with both time lag to the more recent probe (a.) and item lag to the more recent probe (b.). Error bars represent the 95% confidence interval of the mean across participants normalized using the method described in (Morey, 2008). Solid line represents a linear fit of the data points. In plot a. Time on the x-axis is in units of seconds with a single time lag corresponding to item presentation time of 0.181 s.

might maintain a mental timeline of the past.

References

Nieh, E. H., Schottdorf, M., Freeman, N. W., Low, R. J.,

