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Building on quantum Monte Carlo simulations, we study the phase diagram of a one-parameter
Hamiltonian interpolating between trivial and topological Ising paramagnets in two dimensions,
which are dual to the toric code and the double semion. We discover an intermediate phase with
stripe order which spontaneously breaks the protecting Ising symmetry. Remarkably, we find evi-
dence that this intervening phase is gapless due to the incommensurability of the stripe pattern and
that it is dual to a U(1) gauge theory exhibiting Cantor deconfinement.

Introduction— At first sight, non-trivial bosonic
symmetry-protected topological (SPT) phases [1-7] look
very similar to their trivial counterparts since they share
the same symmetries, behave in the same way in the
bulk, and do not possess a local order parameter. Sev-
eral tools were proposed to unveil the differences between
these phases, like comparing their edge properties, look-
ing at their entanglement spectrum or their many-body
wave function directly [1-10]. Another way is to gauge
the protecting symmetry [11], since each SPT class is dual
to a different Dijkgraaf-Witten gauge theory [1-3, 11, 12].
As a result, if one attempts to interpolate from one class
to the other, something drastic must happen on the way:
Either a quantum phase transition or an intermediate
phase of matter which breaks spontaneously the protect-
ing symmetry.

Exploring quantum phase transitions featuring SPT's is
therefore a good place to look for exotic quantum critical-
ity. In fact, transitions between different SPT phases [13—
27], and transitions between SPTs and symmetry-broken
states [28-34], have both attracted tremendous attention.
Most of the existing work on transitions between SPTs
has focused on continuous symmetries with “large” sym-
metry groups such as O(N), and relations with decon-
fined quantum criticality have been established in that
context [18-20, 22, 24, 27, 35, 36]. On the other hand,
the study of microscopic models with discrete symmetries
has mostly been limited to one dimension (1D) [21, 23].

In this Letter, we investigate the quantum phase dia-
gram of a one-parameter Hamiltonian interpolating be-
tween trivial and topological Ising (Zs) paramagnets in
2D, which are dual [11] to the toric code (TC) [37] and
the double semion (DS) [38-41], respectively. Unlike
many other transitions between topological phases, this
transition cannot be described in terms of anyon con-
densation [42], and one has to resort to numerical stud-
ies [15, 43-45]. Although the double semion model it-
self has a sign-problem that was proven to be irremedia-
ble [46, 47], we have developed a sign-problem-free quan-
tum Monte Carlo algorithm [48] which takes advantage
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FIG. 1. (a) Phase diagram of the model (1) with interme-
diate stripe phase centered around a = 1/2. Domain walls,
which separate up and down regions of o*, are represented
for typical configurations, in the case of (b) the trivial para-
magnetic phase (PM), (c¢) the stripe ordered phase, and (d)
the topological paramagnetic phase (SPT). The only differ-
ence between the trivial and topological paramagnet is that
the latter has a fugacity of —1 for each domain wall.

of its SPT formulation. This allows us to access system
sizes an order of magnitude larger than previous work,
which relied on exact diagonalization [15]. We find evi-
dence for an intermediate incommensurate stripe phase
which is dual to a deconfined U(1) gauge theory, and
which therefore evades Polyakov’s result on the confine-
ment of compact U(1) gauges theories in (2 4+ 1)D [49].
To the best of our knowledge, this is one of the first ob-
servations of “Cantor deconfinement” in a microscopic
system [50-54].

Model— A conventional Zs paramagnet is described
by the simple Hamiltonian, H¢ = — 37, 07, where o7
are Pauli matrices that live on the sites j of the trian-
gular lattice [55]. It has a single gapped ground state
|thtr), which is an equal superposition of all * configu-
rations. Since domain walls of Ising spins on the trian-
gular lattice form closed non-intersecting domain walls
on the dual honeycomb lattice, we can equally think of
|ty as an equal superposition of all domain wall con-
figurations, see Fig. 1, which we denote symbolically as

(%) = 2o [dW) [56]-



FIG. 2. (a) Stripe structure revealed by (070§) at o = 1/2 for
a periodic system of size N = 10 x 10. (b) Sketch of a spin
configuration displaying 2 non-contractible oriented domain
walls (orange lines). The black arrows are oriented unit length
vectors d orthogonal to the domain wall edges #. (c) Square
of the order parameter ®? defined in Eq. (2) versus « for
increasing system sizes. The data is symmetric around o =
1/2 for a > 1/2.

In 2D, there exists a second type of Zs paramagnet,
which is fundamentally different from the trivial one as
long as the Zs symmetry is preserved [1-3, 11]. A par-
ent Hamiltonian for this topological phase is given by
Hiop = UTH iU, where U = (—1)Nav is a unitary op-
erator giving the parity of the number of domain walls
Naw, see the supplemental material (SM) for an explicit
form of Hiop [55]. This Hamiltonian also has a single
gapped ground state which is a superposition of all do-
main wall configurations. The only difference with the
trivial paramagnet is that each domain wall comes with
a —1 fugacity, i.e., [trop) = Dgy (—1) Vv |dw).

In this work, we interpolate between the two phases
with the following one-parameter Hamiltonian,

H=(1-0a)Hy+ aHiop, «€](0,1]. (1)

Intermediate stripe order.— We investigate the
model (1) by means of quantum Monte Carlo simula-
tions [57]. Since U = UT, the phase diagram is symmet-
ric around o = 1/2, see Fig. 1 (a). It is therefore natural
to start the analysis at @ = 1/2, where the real-space
two-point correlation (oZo§) reveals a stripe structure,
as shown in Fig. 2(a) for a prototypical N = 10 x 10
system size.

We can already give an intuitive explanation for the ap-
parition of these stripes. The Hamiltonian (1) is simply
a transverse field model for which the value of the trans-
verse field on a given site can take two values, depending
on whether flipping that spin changes the parity of Nqy,.
The field amplitude is 1 — 2« if it changes the Ngy-parity,
and 1 if it does not. At o = 1/2, Ngyw-parity-changing
spin flips become thus strictly disallowed, creating a lo-
cal kinetic constraint which bears some similarities with
quantum dimer models [58]. Specifically, one cannot per-
form a spin flip that would create or annihilate a single

domain wall, or that would merge two domain walls into
one. The tendency of the ground state to maximize the
number of flippable spins creates a non-trivial effective
interaction for the domain walls: It is attractive at long
distance (since a large ferromagnetic region has no flip-
pable spins), and repulsive at short distance (since merg-
ing two domain walls is prohibited). In the spin language,
this corresponds to an interaction that is ferromagnetic
at short distance and antiferromagnetic at long distance,
like in the anisotropic next-nearest neighbor Ising model
(which is a textbook model for incommensurate stripe
order) [59] .

We observe that the stripe pattern has a period given
by |Q| ~ 27/5, where Q is the stripe wavevector (we
take the lattice spacing equal to unity). However, the
orientation of @ (given by the polar angle ¢) and the
precise value of the period vary depending on the finite-
size system geometry [55]. Depending on the system size,
the stripe orientation belongs to one of two sets, which
we call “vertical”, with ¢ = Z27/6, and “horizontal”,
with ¢ = (Z + )27/6. Remarkably, these two sets of
orientations are not related by symmetry, which is a good
indication that the stripe order is only weakly pinned by
the lattice. However, this makes a finite-size analysis
based on peaks of the structure factor hazardous.

Instead, we define an order parameter which takes ad-
vantage of the domain wall representation. Whereas a
paramagnetic phase has domain walls of all shapes and
sizes, a perfect stripe phase only has non-contractible do-
main walls (NCDW) wrapping around the same handle
of the torus, see Fig. 1(b,c,d). Let us define an order
parameter ®© that is proportional to the number of non-
contractible domain walls Nycpw. In order to do this,
it is useful to define an integer-valued height field A liv-
ing on the direct lattice which jumps by one unit every
time a domain wall is crossed, and whose winding num-
ber around a given handle of the torus will give Nncpw -
First, we give the same (arbitrary) orientation to each
NCDW: For example, for vertical stripes, we choose an
“upwards” orientation for each of them, see Fig. 2 (b)
and 3(a) [60]. This turns each domain wall strand into
a vector which we call E; in anticipation of a gauge in-
terpretation given later (7 is an edge of the dual lattice).
We can then define the vector field giving the gradient
of h: Vh = d7 = E; X z, where z is the unit vector
perpendicular to the plane.

A macroscopic number of NCDWs translates into a
macroscopic tilt for the height field along the direction
perpendicular to the domain walls. The squared norm of
the tilt, defined as,

o= (15, 2

can thus be used as (the square of) our order parame-
ter [61]. For a perfectly ordered stripe phase, there is



a simple relation with the the stripe wavevector: D2 =
(3/27)2Q*. As shown in Fig. 2(c) at o = 1/2, it takes
a finite value ©2 ~ 0.3 almost independently of the sys-
tem size. Away from that point, our simulations do not
allow us to draw a definite conclusion but from general
arguments developed in the following, we expect a finite
intermediate ordered phase centered around o = 1/2,
albeit very small [55]. In fact, the extrapolation of the
data as N — +o0 is consistent with a jump of ®? around
¢ =~ 0.48 —0.49, suggestive of a first order transition be-
tween the stripe phase and the paramagnetic phase (and
symmetrically at a. =~ 0.51 — 0.52 for the topological
side).

Field theory.— Following previous works on stripe
magnetism [62] and quantum dimer models [51, 58,
63-66], we posit that the coarse-grained height field
gives the phase of the local magnetization, m*(r) =
|m*| cos(mh(r)), and that it is described by the La-
grangian,

L= (0n) +

P2 (Vh)

V[h] 4+ Acos(2mh),

V[ = EL(V2h)" + 2 (V) + L,
where Lg is a term which breaks the full rotational sym-
metry down to the six-fold rotation symmetry of the tri-
angular lattice, and where we have kept implicit the term
which accounts for vortices of h. The stripe phase occurs
for po < 0, for which minimizing V'[h] leads to a tilt of the
height field: h(r,7) = 771Q - » + §h(r,T), where §h are
the fluctuations around the perfectly tilted configuration.

Two different scenarios are possible in order to melt the
stripe order. The first one is to tune py to 0, which contin-
uously tunes @ to 0 until the multicritical Lithistz point
at po = 0 [51, 58, 63—67]; It is also known as Rokhsar-
Kivelson (RK) point in the context of quantum dimer
models [68]. The second one is to fix pa but to increase
the vortex fugacity, whose proliferation should mark the
phase transition to a paramagnetic phase. We propose
that this second scenario is the one at play at ac.

Before discussing the transition, let us analyze the
properties of the stripe phase. In order to find the locus
of @ values minimizing V[h], we need to specify the form
of Lg. The lowest order terms allowed which break the
full rotational symmetry are Lg = —gg|Vh|6 cos(6p) —
g12| Vh|*2 cos(12¢p), where ¢ is the polar angle of Vh.
Since we find both “vertical” and “horizontal” stripes
for finite-size systems, we can conclude that gg is sub-
dominant compared to gi2, leading to two different sets
of 6 minima with almost degenerate values of V[h]. We
expect that only of these two sets survives in the ther-
modynamic limit, but larger systems would be required
to determine which one.

Neglecting A for now, a long wavelength expansion
around one of the minima of V[h] leads to the follow-

FIG. 3. (a) The domain walls, once oriented, become electric
field lines in the gauge description. The orange arrows indi-
cate the direction of the electric field. The surgery process
of going from (b) to (d) merges two non-contractible domain
walls into one contractible one, and only becomes possible
away from a = 1/2 (due to periodic boundary conditions, the
top and bottom of each drawing should be identified). This
process creates an electric dipole with charges ¢ = £2.

ing Goldstone theory,

2 2
= %(aﬂm)z + 2 (0uoh)” + S (000m)”, (@)
where L and T stand for the direction longitudinal and
transverse to Q, respectively [69]. The corresponding
emergent continuous U(1) symmetry is given by h — h+
¢, with ¢ € R and describes the longitudinal translation
of the stripe pattern with respect to the lattice.

We note that Eq. (3) is dual to a compact U(1) gauge
theory for an electric field given by E = z x Vh [51, 63—
66, 70, 71]. Due to p2 being negative, this theory has
an unconventional “Mexican hat” electric energy density
which goes like —E? 4+ E*. This favors a finite density of
electric field lines in the ground state, which correspond
to the non-contractible domain walls of the stripe phase,
see Fig. 3(a). An expansion around this configuration
leads to the photon of Eq. (4). A vertex operator of the
type e”?™" maps to a monopole of charge p, and a vor-
tex for h of vorticity ¢ maps to a charge-q electric charge
[66]. We also provide in the SM a more microscopic justi-
fication for a U(1) gauge theory description of the stripe
phase [55].

We now turn our attention to A, following Ref. 51. This
term imposes discrete values for the height field, and cor-
responds to the addition of p = 1 monopoles in the gauge
theory. When @ is incommensurate, A is irrelevant, and
the gapless mode of Eq. (4) survives. This gapless regime
is therefore dual to a deconfined U(1) gauge theory, in
which test charges experience logarithmic interactions.
By contrast, when @ is commensurate, \ is relevant and
gaps out the photon, leading to a confined phase. As
we will now show, we find good numerical evidence for
a gapless Goldstone boson described by Eq. (4), and we
thus surmise that A is irrelevant — or very weakly rele-
vant [72], leading to a deconfined U(1) gauge theory.

We probe the Goldstone boson by computing numeri-
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FIG. 4. D.y(q) at a = 1/2 for various system sizes (L, X Ly)
leading to vertical (orange) and horizontal (violet) stripes. (a)
Longitudinal correlation Dy (gL, gr = 0) « |qu| for g — 0
and (b) transverse correlation Drr(qr, = 0,¢1) o |gr| for
gr — 0, in good agreement with Eq. (6). (c) Same data as
(b) for the smallest gt value for each system size, highlighting
agreement with the linear prediction.

cally the following two-point function:

Data) = X0 ()~ ()(). 0

which is displayed in Fig. 4 at a = 1/2, see also SM [55].
Identifying di with the height gradient Vh, one can de-
rive from Eq. (4) the following prediction [55]:

_ 9aqb
Dab(q) = 2\/(qu11)2 T (quT)2~ (6)

Note that, in the gauge picture, this is nothing but
an electric field correlator [73]. The linear behavior
D.o(Ga,qp = 0) ~ qo/2v, for g, — 0 is observed in
Fig. 4, and we estimate the velocities to be vy, ~ 1.2
and vy ~ 0.3. Based on this, we extract the following
field theory parameters (3): g12 ~ 6.5, po =~ —0.72 and
ga ~ 2.25 [55].

Melting the stripe order.— Now that we have a good
picture of the stripe order at a = 1/2, we can ask how
this order gives way to a trivial (respectively topological)
paramagnet, when the parameter oo = 1/2 — « is tuned
to positive (respectively negative) values. As discussed
before, terms proportional to d« are the only ones allow-
ing spin flips that change the number of domain walls by
+1. Therefore, at dav = 0, the number of non-contractible
domain walls is almost [74] conserved (see numerical evi-
dence in the SM [55]), and the physics is simply described
by their vibrations with Eq. (4).

By contrast, for da # 0, it becomes possible to cre-
ate non-contractible domain walls, either from the vac-
uum or by doing surgery on two non-contractible domain
walls, see Fig. 3 (b,c,d). As |0« is increased, these con-
tractible domain walls will proliferate, eventually leading
to a condensate of domain walls of all shapes and sizes,
i.e., a paramagnetic phase. The negative sign of da on
the topological side ensures that each contractible do-
main wall occurs with the appropriate —1 factor.
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As seen in Fig. 3(d) (see also SM), in the gauge pic-
ture, a contractible domain wall can be described as a £+2
electric dipole created to screen the background electric
field [75]. This means that da controls the fugacity of +2
electric dipoles and the transition to the paramagnetic
phases occurs when these charges condense, giving rise
to a “Higgs” phase. Since the condensation of charge
¢ particles in a U(1) gauge theory leads to a Z, gauge
theory [76-79], we recover that the paramagnetic phases
are dual to Zy gauge theories, as expected. The conden-
sation of charge-2 matter in a (2 4+ 1)D compact U(1)
gauge theory was studied before in the case of py > 0,
in which case the U(1) gauge theory is confined due
to monopoles [76, 80-83]. However, to the best of our
knowledge, the nature of this transition in the case of
p2 < 0 has not been considered before, and is left for
future work.

To sum up, transitioning from the trivial to the topo-
logical paramagnet requires changing the fugacity of con-
tractible domain walls from +1 to —1 [84]. In order to
do so, the fugacity has to go through zero in the mid-
dle, leading to an intermediate stripe phase with (al-
most) no contractible domain walls. In the gauge pic-
ture, contractible domain walls are described by +2 elec-
tric dipoles, and the intermediate phase is thus described
by a Coulomb phase with (almost) no electric charges.

Note that ¢ = £2 are the smallest dynamical charges
allowed by the Hamiltonian since ¢ = +1 charges would
require a dangling domain wall configuration (called 7-
flux excitation), which are only allowed as static excita-
tions in the TC/DS models. In fact, the ¢ = £1 charge
survives as one of the gapped quasiparticles of the Higgs
phases: It becomes the bosonic e excitation of TC, and
one of the semions of DS [11].

The other excitation to survive in the Higgs phases
is the p = 1/2 monopole, which is dual to cos(wh) in
the height language, and is created by o7 in the origi-
nal microscopic model. The fact that such a fractional
monopole is allowed can be traced back to the non-trivial
mapping between Ising spins and domain walls: Translat-
ing all domain walls by one inter-domain-wall separation
is a good symmetry for the domain walls (h — h + 1),
but not for the spins (since up and down regions are in-
terchanged in the process). The p = 1/2 monopole is
denoted m and is bosonic in both toric code and double
semion [11].

Summary and discussions.— Naively, one might have
expected an intermediate phase which breaks a discrete
symmetry to be gapped, and dual to a confined theory.
This would have been the case for a ferromagnetic phase
for example, for which confinement is a natural conse-
quence of the fact that only short domain walls exist.
We have found instead a phase which breaks the Ising
symmetry but that has nevertheless long, fluctuating do-
main walls which allow for a dual deconfined theory.

The nature of the transition between the stripe phase



and the paramagnetic phases would require further work
to be pinned down. Our current results point towards a
first-order transition, but another possibility would be an
intervening nematic phase, which breaks rotation but not
translation symmetry. Besides, the behavior of entangle-
ment entropy across the transitions could have unique
properties, since both toric code and double semion have
the same topological contribution, but the intermediate
U(1) gauge theory should have a logarithmic contribu-
tion instead [85]. We also expect the stripe phase to
have anomalous edge properties on the topological side,
inspired by previous work on gapless SPTs [29-33].

Finally, our sign-problem-free Monte Carlo algorithm
enables us to add a variety of other terms in the Hamil-
tonian, and to study other classes of SPT protected by
discrete symmetries [48]. This could enable us to tune
po towards the quantum Lifshitz point, and to study
the “Devil’s staircase” of commensurate-incommensurate
transitions predicted to happen on the way [51, 52].
Another potentially nearby multicritical point could be
QED; with Ny = 2, which was predicted to describe the
transition between toric code and double semion in the
presence of SU(2) symmetry [86]. The closely related de-
confined quantum critical point of the J-Q model [87]
was in fact recently shown to appear at the tip of a heli-
cal valence bond phase which resembles the stripe phase
presented in this work [54].

Acknowledgments.— We are grateful to F. Alet, N.
Bultinck, X. Cao, S. Capponi, B. Kang, A. Paramekanti,
D. Poilblanc, F. Pollmann, P. Pujol, A. W. Sandvik, R.
Vasseur, C. Xu and L. Zou for interesting discussions.
M. D. was supported by the U.S. Department of En-
ergy, Office of Science, Office of Basic Energy Sciences,
Materials Sciences and Engineering Division under Con-
tract No. DE-AC02-05-CH11231 through the Scientific
Discovery through Advanced Computing (SciDAC) pro-
gram (KC23DAC Topological and Correlated Matter via
Tensor Networks and Quantum Monte Carlo). S.G. ac-
knowledges support from the Israel Science Foundation,
Grant No. 1686/18. T.S. acknowledges the financial sup-
port of the Natural Sciences and Engineering Research
Council of Canada (NSERC), in particular the Discovery
Grant [RGPIN-2020-05842], the Accelerator Supplement
[RGPAS-2020-00060], and the Discovery Launch Sup-
plement [DGECR-2020-00222]. This research used the
Lawrencium computational cluster resource provided by
the IT Division at the Lawrence Berkeley National Lab-
oratory (Supported by the Director, Office of Science,
Office of Basic Energy Sciences, of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231).
This research also used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S.
Department of Energy Office of Science User Facility op-
erated under Contract No. DE-AC02-05CH11231.

[1] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-

Gang Wen, “Symmetry-protected topological orders in

interacting bosonic systems,” Science 338, 1604-1606

(2012).

Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-

Gang Wen, “Symmetry protected topological orders and

the group cohomology of their symmetry group,” Phys.

Rev. B 87, 155114 (2013).

Xie Chen, Zheng-Xin Liu, and Xiao-Gang Wen, “Two-

dimensional symmetry-protected topological orders and

their protected gapless edge excitations,” Phys. Rev. B

84, 235141 (2011).

Yuan-Ming Lu and Ashvin Vishwanath, “Theory and

classification of interacting integer topological phases in

two dimensions: A chern-simons approach,” Phys. Rev.

B 86, 125119 (2012).

[5] Zhen Bi, Alex Rasmussen, Kevin Slagle, and Cenke
Xu, “Classification and description of bosonic symmetry
protected topological phases with semiclassical nonlinear
sigma models,” Phys. Rev. B 91, 134404 (2015).

[6] Frank Pollmann, Ari M. Turner, Erez Berg, and
Masaki Oshikawa, “Entanglement spectrum of a topolog-
ical phase in one dimension,” Phys. Rev. B 81, 064439
(2010).

[7] Frank Pollmann, Erez Berg, Ari M. Turner, and Masaki
Oshikawa, “Symmetry protection of topological phases
in one-dimensional quantum spin systems,” Phys. Rev.
B 85, 075125 (2012).

[8] Yi-Zhuang You, Zhen Bi, Alex Rasmussen, Kevin Slagle,
and Cenke Xu, “Wave function and strange correlator
of short-range entangled states,” Phys. Rev. Lett. 112,
247202 (2014).

[9] Zohar Ringel and Steven H. Simon, “Hidden order
and flux attachment in symmetry-protected topological
phases: A laughlin-like approach,” Phys. Rev. B 91,
195117 (2015).

[10] Thomas Scaffidi and Zohar Ringel, “Wave functions of
symmetry-protected topological phases from conformal
field theories,” Phys. Rev. B 93, 115105 (2016).

[11] Michael Levin and Zheng-Cheng Gu, “Braiding statistics
approach to symmetry-protected topological phases,”
Phys. Rev. B 86, 115109 (2012).

[12] Robbert Dijkgraaf and Edward Witten, “Topological
gauge theories and group cohomology,” Comm. Math.
Phys. 129, 393-429 (1990).

[13] Tarun Grover and Ashvin Vishwanath, “Quantum phase
transition between integer quantum hall states of
bosons,” Phys. Rev. B 87, 045129 (2013).

[14] Yuan-Ming Lu and Dung-Hai Lee, “Quantum phase tran-
sitions between bosonic symmetry-protected topological
phases in two dimensions: Emergent ged; and anyon su-
perfluid,” Phys. Rev. B 89, 195143 (2014).

[15] Siddhardh C. Morampudi, Curt von Keyserlingk, and
Frank Pollmann, “Numerical study of a transition be-
tween F 2 topologically ordered phases,” Phys. Rev. B
90, 035117 (2014).

[16] Lokman Tsui, Fa Wang, and Dung-Hai Lee, “Topological
versus landau-like phase transitions,” arXiv:1511.07460
(2015).

[17] Lokman Tsui, Hong-Chen Jiang, Yuan-Ming Lu, and
Dung-Hai Lee, “Quantum phase transitions between a

2

3

4


http://dx.doi.org/ 10.1126/science.1227224
http://dx.doi.org/ 10.1126/science.1227224
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.84.235141
http://dx.doi.org/10.1103/PhysRevB.84.235141
http://dx.doi.org/ 10.1103/PhysRevB.86.125119
http://dx.doi.org/ 10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.91.134404
http://dx.doi.org/ 10.1103/PhysRevB.81.064439
http://dx.doi.org/ 10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/ 10.1103/PhysRevLett.112.247202
http://dx.doi.org/ 10.1103/PhysRevLett.112.247202
http://dx.doi.org/10.1103/PhysRevB.91.195117
http://dx.doi.org/10.1103/PhysRevB.91.195117
http://dx.doi.org/10.1103/PhysRevB.93.115105
http://dx.doi.org/ 10.1103/PhysRevB.86.115109
https://projecteuclid.org:443/euclid.cmp/1104180750
https://projecteuclid.org:443/euclid.cmp/1104180750
http://dx.doi.org/10.1103/PhysRevB.87.045129
http://dx.doi.org/10.1103/PhysRevB.89.195143
http://dx.doi.org/10.1103/PhysRevB.90.035117
http://dx.doi.org/10.1103/PhysRevB.90.035117
https://arxiv.org/abs/1511.07460
https://arxiv.org/abs/1511.07460

class of symmetry protected topological states,” Nucl.
Phys. B 896, 330 — 359 (2015).

[18] Yi-Zhuang You, Zhen Bi, Dan Mao, and Cenke Xu,
“Quantum phase transitions between bosonic symmetry-
protected topological states without sign problem: Non-
linear sigma model with a topological term,” Phys. Rev.
B 93, 125101 (2016).

[19] Yuan-Yao He, Han-Qing Wu, Yi-Zhuang You, Cenke

Xu, Zi Yang Meng, and Zhong-Yi Lu, “Bona fide

interaction-driven topological phase transition in corre-

lated symmetry-protected topological states,” Phys. Rev.

B 93, 115150 (2016).

Yi-Zhuang You, Yin-Chen He, Ashvin Vishwanath, and

Cenke Xu, “From bosonic topological transition to sym-

metric fermion mass generation,” Phys. Rev. B 97,

125112 (2018).

[21] Lokman Tsui, Yen-Ta Huang, Hong-Chen Jiang, and
Dung-Hai Lee, “The phase transitions between znxzn
bosonic topological phases in 14-1d, and a constraint on
the central charge for the critical points between bosonic
symmetry protected topological phases,” Nucl. Phys. B
919, 470 — 503 (2017).

[22] Scott Geraedts and Olexei I. Motrunich, “Lattice real-
ization of a bosonic integer quantum hall state—trivial
insulator transition and relation to the self-dual line in
the easy-plane nccpl model,” Phys. Rev. B 96, 115137
(2017).

[23] Ruben Verresen, Roderich Moessner, and Frank Poll-
mann, “One-dimensional symmetry protected topological
phases and their transitions,” Phys. Rev. B 96, 165124
(2017).

[24] Zhen Bi and T. Senthil, “Adventure in topological phase
transitions in 3 4+ 1-d: Non-abelian deconfined quan-
tum criticalities and a possible duality,” Phys. Rev. X
9, 021034 (2019).

[25] Nick Bultinck, “Uv perspective on mixed anomalies
at critical points between bosonic symmetry-protected
phases,” Phys. Rev. B 100, 165132 (2019).

[26] Samuel Gozel, Didier Poilblanc, Ian Affleck, and Frédéric
Mila, “Novel families of su(n) aklt states with arbitrary
self-conjugate edge states,” Nucl. Phys. B 945, 114663
(2019).

[27] Tian-Sheng Zeng, D. N. Sheng, and W. Zhu, “Contin-
uous phase transition between bosonic integer quantum
hall liquid and a trivial insulator: Evidence for decon-
fined quantum criticality,” Phys. Rev. B 101, 035138
(2020).

[28] Tarun Grover and Ashvin Vishwanath, “Quantum crit-
icality in topological insulators and superconductors:
Emergence of strongly coupled majoranas and supersym-
metry,” arXiv:1206.1332 (2012).

[29] Long Zhang and Fa Wang, “Unconventional surface criti-
cal behavior induced by a quantum phase transition from
the two-dimensional affleck-kennedy-lieb-tasaki phase to
a néel-ordered phase,” Phys. Rev. Lett. 118, 087201
(2017).

[30] Thomas Scaffidi, Daniel E. Parker, and Romain Vasseur,
“Gapless symmetry-protected topological order,” Phys.
Rev. X 7, 041048 (2017).

[31] Daniel E. Parker, Thomas Scaffidi, and Romain Vasseur,
“Topological luttinger liquids from decorated domain
walls,” Phys. Rev. B 97, 165114 (2018).

[32] Daniel E. Parker, Romain Vasseur, and Thomas Scaffidi,
“Topologically protected long edge coherence times in

[20

symmetry-broken phases,” Phys. Rev. Lett. 122, 240605
(2019).

[33] Ruben Verresen, Ryan Thorngren, Nick G. Jones,
and Frank Pollmann, “Gapless topological phases
and symmetry-enriched quantum criticality,”
arXiv:1905.06969 (2019).

[34] Carlos M. Duque, Hong-Ye Hu, Yi-Zhuang You, Ruben
Verresen, and Romain Vasseur, “Topological and
symmetry-enriched random quantum critical points,”
arXiv:2008.02285 (2020).

[35] T. Senthil, Ashvin Vishwanath, Leon Balents, Subir
Sachdev, and Matthew P. A. Fisher, “Deconfined quan-
tum critical points,” Science 303, 1490-1494 (2004).

[36] Chong Wang, Adam Nahum, Max A. Metlitski, Cenke
Xu, and T. Senthil, “Deconfined quantum critical points:
Symmetries and dualities,” Phys. Rev. X 7, 031051
(2017).

[37] A.Yu. Kitaev, “Fault-tolerant quantum computation by
anyons,” Ann. Phys. (N. Y.) 303, 2 — 30 (2003).

[38] Michael A. Levin and Xiao-Gang Wen, “String-net con-
densation: A physical mechanism for topological phases,”
Phys. Rev. B 71, 045110 (2005).

[39] Mohsin Igbal, Didier Poilblanc, and Norbert Schuch,
“Semionic resonating valence-bond states,” Phys. Rev.
B 90, 115129 (2014).

[40] Oliver Buerschaper, Siddhardh C. Morampudi, and
Frank Pollmann, “Double semion phase in an exactly
solvable quantum dimer model on the kagome lattice,”
Phys. Rev. B 90, 195148 (2014).

[41] Yang Qi, Zheng-Cheng Gu, and Hong Yao, “Double-
semion topological order from exactly solvable quantum
dimer models,” Phys. Rev. B 92, 155105 (2015).

[42] F.J. Burnell, “Anyon condensation and its applications,”
Annu. Rev. Condens. Matter Phys. 9, 307-327 (2018).

[43] Ching-Yu Huang and Tzu-Chieh Wei, “Detecting and
identifying two-dimensional symmetry-protected topo-
logical, symmetry-breaking, and intrinsic topological
phases with modular matrices via tensor-network meth-
ods,” Phys. Rev. B 93, 155163 (2016).

[44] Mohsin Igbal, Kasper Duivenvoorden, and Norbert
Schuch, “Study of anyon condensation and topological
phase transitions from a F 4 topological phase using the
projected entangled pair states approach,” Phys. Rev. B
97, 195124 (2018).

[45] Wen-Tao Xu and Guang-Ming Zhang, “Tensor network
state approach to quantum topological phase transitions
and their criticalities of F 2 topologically ordered states,”
Phys. Rev. B 98, 165115 (2018).

[46] M. B. Hastings, “How quantum are non-negative wave-
functions?” J. Math. Phys. 57, 015210 (2016).

[47] Adam Smith, Omri Golan, and Zohar Ringel, “Intrin-
sic sign problems in topological quantum field theories,”
arXiv:2005.05343 (2020).

[48] Maxime Dupont, Snir Gazit, and Thomas Scaffidi, “In
preparation,” .

[49] A.M. Polyakov, “Quark confinement and topology of
gauge theories,” Nucl. Phys. B. 120, 429 — 458 (1977).

[50] L. S. Levitov, “Equivalence of the dimer resonating-
valence-bond problem to the quantum roughening prob-
lem,” Phys. Rev. Lett. 64, 92-94 (1990).

[61] Eduardo Fradkin, David A. Huse, R. Moessner,
V. Oganesyan, and S. L. Sondhi, “Bipartite rokhsar—
kivelson points and cantor deconfinement,” Phys. Rev. B
69, 224415 (2004).


http://dx.doi.org/ http://doi.org/10.1016/j.nuclphysb.2015.04.020
http://dx.doi.org/ http://doi.org/10.1016/j.nuclphysb.2015.04.020
http://dx.doi.org/ 10.1103/PhysRevB.93.125101
http://dx.doi.org/ 10.1103/PhysRevB.93.125101
http://dx.doi.org/10.1103/PhysRevB.93.115150
http://dx.doi.org/10.1103/PhysRevB.93.115150
http://dx.doi.org/10.1103/PhysRevB.97.125112
http://dx.doi.org/10.1103/PhysRevB.97.125112
http://dx.doi.org/ https://doi.org/10.1016/j.nuclphysb.2017.03.021
http://dx.doi.org/ https://doi.org/10.1016/j.nuclphysb.2017.03.021
http://dx.doi.org/10.1103/PhysRevB.96.115137
http://dx.doi.org/10.1103/PhysRevB.96.115137
http://dx.doi.org/10.1103/PhysRevB.96.165124
http://dx.doi.org/10.1103/PhysRevB.96.165124
http://dx.doi.org/10.1103/PhysRevX.9.021034
http://dx.doi.org/10.1103/PhysRevX.9.021034
http://dx.doi.org/10.1103/PhysRevB.100.165132
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysb.2019.114663
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysb.2019.114663
http://dx.doi.org/ 10.1103/PhysRevB.101.035138
http://dx.doi.org/ 10.1103/PhysRevB.101.035138
https://arxiv.org/abs/1206.1332
http://dx.doi.org/10.1103/PhysRevLett.118.087201
http://dx.doi.org/10.1103/PhysRevLett.118.087201
http://dx.doi.org/ 10.1103/PhysRevX.7.041048
http://dx.doi.org/ 10.1103/PhysRevX.7.041048
http://dx.doi.org/10.1103/PhysRevB.97.165114
http://dx.doi.org/10.1103/PhysRevLett.122.240605
http://dx.doi.org/10.1103/PhysRevLett.122.240605
https://arxiv.org/abs/1905.06969
https://arxiv.org/abs/2008.02285
http://dx.doi.org/ 10.1126/science.1091806
http://dx.doi.org/10.1103/PhysRevX.7.031051
http://dx.doi.org/10.1103/PhysRevX.7.031051
http://dx.doi.org/ https://doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://dx.doi.org/ 10.1103/PhysRevB.90.115129
http://dx.doi.org/ 10.1103/PhysRevB.90.115129
http://dx.doi.org/10.1103/PhysRevB.90.195148
http://dx.doi.org/ 10.1103/PhysRevB.92.155105
http://dx.doi.org/ 10.1146/annurev-conmatphys-033117-054154
http://dx.doi.org/10.1103/PhysRevB.93.155163
http://dx.doi.org/10.1103/PhysRevB.97.195124
http://dx.doi.org/10.1103/PhysRevB.97.195124
http://dx.doi.org/10.1103/PhysRevB.98.165115
http://dx.doi.org/10.1063/1.4936216
https://arxiv.org/abs/2005.05343
http://dx.doi.org/ https://doi.org/10.1016/0550-3213(77)90086-4
http://dx.doi.org/10.1103/PhysRevLett.64.92
http://dx.doi.org/10.1103/PhysRevB.69.224415
http://dx.doi.org/10.1103/PhysRevB.69.224415

[62] Stefanos Papanikolaou, Kumar S. Raman, and Eduardo
Fradkin, “Devil’s staircases, quantum dimer models, and
stripe formation in strong coupling models of quantum
frustration,” Phys. Rev. B 75, 094406 (2007).

[63] Thiago Schlittler, Thomas Barthel, Grégoire Misguich,
Julien Vidal, and Rémy Mosseri, “Phase diagram of an
extended quantum dimer model on the hexagonal lat-
tice,” Phys. Rev. Lett. 115, 217202 (2015).

[64] Bowen Zhao, Jun Takahashi, and Anders W.
Sandvik, “Multicritical deconfined quantum-criticality
and Lifshitz point of a helical valence-bond phase,”
arXiv:2005.10184 (2020).

[65] See Supplemental Material at [URL will be inserted by

publisher] for the explicit form of the topological Hamil-

tonian, additional numerical data (evidences of incom-
mensurability regarding the stripe order, extrapolation
of the order parameter ®? in the thermodynamic limit,
an extra comparison between the microscopic model and
the field theory predictions and a discussion regarding
the average number of non-contractible domain walls at

a =1/2) as well as additional details regarding the field

theory (tilted phase, a dictionary translating between

height and gauge theories, and a microscopic justification
for a U(1) gauge theory description of the stripe phase).

See also Refs. [1-3, 11, 51, 63-66, 70, 71, 88] therein.

Strictly speaking, since the mapping from spins to do-

main walls is 2 to 1, there should be an extra sum over

the two possible spin orientations for a given domain wall
configuration.

[57] In the ¢* basis, the model (1) is only sign-problem-free
for a < 1/2. However, its spectrum is exactly symmetric
around a = 1/2 because of the unitary transformation U
relating the trivial and topological terms [11]. Therefore
the phase diagram is symmetric around « = 1/2 and we
can restrict the numerical study to o < 1/2. We use both
projective [89] and stochastic series expansion [90, 91]
quantum Monte Carlo to simulate the model. Details will
be available in Ref. [48].

[58] Roderich Moessner and Kumar S Raman, “Quantum
dimer models,” in Introduction to Frustrated Magnetism
(Springer, 2011) pp. 437-479.

[59] Walter Selke, “The annni model — theoretical analysis
and experimental application,” Phys. Rep. 170, 213 —
264 (1988).

[60] We do not need to orient contractible domain walls at this
point since they give no contribution to ®. It will how-
ever be necessary to decide how to orient them in order
to numerically calculate the height gradient correlator of
Eq. (5) at @ = 1/2. As explained in the SM, a proper ac-
counting of the orientation of contractible domain walls
would require the introduction of electric dipoles in the
gauge picture, or equivalently of vortices in the height
field. However, there are very few contractible domain
walls at « = 1/2 anyway [55], so for simplicity we decided
to give the same arbitrary orientation (namely counter-
clockwise) to all contractible domain walls when comput-
ing the correlator of di numerically. We do not expect
this choice to have a substantial effect on the numerical
results.

[61] A similar order parameter, called winding number, was
used for a stripe phase on the triangular lattice in Ref. 92.

[62] G. Grinstein, “Anisotropic sine-gordon model and
infinite-order phase transitions in three dimensions,”
Phys. Rev. B 23, 46154630 (1981).

56

[63] Ashvin Vishwanath, L. Balents, and T. Senthil, “Quan-
tum criticality and deconfinement in phase transitions
between valence bond solids,” Phys. Rev. B 69, 224416
(2004).

[64] Eddy Ardonne, Paul Fendley, and Eduardo Frad-
kin, “Topological order and conformal quantum critical
points,” Ann. Phys. (N. Y.) 310, 493 — 551 (2004).

[65] R. Moessner, S. L. Sondhi, and Eduardo Fradkin,
“Short-ranged resonating valence bond physics, quantum
dimer models, and ising gauge theories,” Phys. Rev. B
65, 024504 (2001).

[66] E. Fradkin, Field Theories of Condensed Matter Physics,
Field Theories of Condensed Matter Physics (Cambridge
University Press, 2013).

[67] S. V. Isakov, P. Fendley, A. W. W. Ludwig, S. Trebst,
and M. Troyer, “Dynamics at and near conformal quan-
tum critical points,” Phys. Rev. B 83, 125114 (2011).

[68] Daniel S. Rokhsar and Steven A. Kivelson, “Supercon-
ductivity and the quantum hard-core dimer gas,” Phys.
Rev. Lett. 61, 23762379 (1988).

[69] Note that the transverse stiffness term (Ordh)? only
arises due to Lg, and the transverse velocity is therefore
parametrically different from the longitudinal one [93].

[70] R. Youngblood, J. D. Axe, and B. M. McCoy, “Correla-
tions in ice-rule ferroelectrics,” Phys. Rev. B 21, 5212—
5220 (1980).

[71] Eduardo Fradkin and Steven Kivelson, “Short range res-
onating valence bond theories and superconductivity,”
Mod. Phys. Lett. B 04, 225-232 (1990).

[72] A possible scenario would be a commensurate order with
a very small gap, since it was shown that the gap is ex-
ponentially small in the weak-tilt regime [51].

[73] Similar correlators of the electromagnetic field were cal-
culated in a classical 3D dimer model [94].

[74] The only process which can change the number of domain
walls is a rare event in which three domain walls come
close and combine into one.

[75] This process of pair creation can be seen as a condensed
matter version of the Schwinger effect [95].

[76] Eduardo Fradkin and Stephen H. Shenker, “Phase dia-
grams of lattice gauge theories with higgs fields,” Phys.
Rev. D 19, 36823697 (1979).

[77] Subir Sachdev and N. Read, “Large n expansion for frus-
trated and doped quantum antiferromagnets,” Int. J.
Mod. Phys. B 05, 219-249 (1991).

[78] Christopher Mudry and Eduardo Fradkin, “Separation of
spin and charge quantum numbers in strongly correlated
systems,” Phys. Rev. B 49, 5200-5219 (1994).

[79] M. de Wild Propitius, Topological interactions in broken
gauge theories, Ph.D. thesis, PhD Thesis, 1995 (1995).

[80] O. I. Motrunich and T. Senthil, “Exotic order in simple
models of bosonic systems,” Phys. Rev. Lett. 89, 277004
(2002).

[81] T. Senthil and O. Motrunich, “Microscopic models for
fractionalized phases in strongly correlated systems,”
Phys. Rev. B 66, 205104 (2002).

[82] J. Smiseth, E. Smgrgrav, F. S. Nogueira, J. Hove, and
A. Sudbg, “Phase structure of (2+41)-dimensional com-
pact lattice gauge theories and the transition from mott
insulator to fractionalized insulator,” Phys. Rev. B 67,
205104 (2003).

[83] The case of po = 0 was also studied by looking at a
dimer model which interpolates between square lattice
and triangular lattice [64].


http://dx.doi.org/ 10.1103/PhysRevB.75.094406
http://dx.doi.org/10.1103/PhysRevLett.115.217202
https://arxiv.org/abs/2005.10184
http://dx.doi.org/ https://doi.org/10.1016/0370-1573(88)90140-8
http://dx.doi.org/ https://doi.org/10.1016/0370-1573(88)90140-8
http://dx.doi.org/10.1103/PhysRevB.23.4615
http://dx.doi.org/10.1103/PhysRevB.69.224416
http://dx.doi.org/10.1103/PhysRevB.69.224416
http://dx.doi.org/ http://doi.org/10.1016/j.aop.2004.01.004
http://dx.doi.org/10.1103/PhysRevB.65.024504
http://dx.doi.org/10.1103/PhysRevB.65.024504
http://dx.doi.org/10.1103/PhysRevB.83.125114
http://dx.doi.org/ 10.1103/PhysRevLett.61.2376
http://dx.doi.org/ 10.1103/PhysRevLett.61.2376
http://dx.doi.org/10.1103/PhysRevB.21.5212
http://dx.doi.org/10.1103/PhysRevB.21.5212
http://dx.doi.org/ 10.1142/S0217984990000295
http://dx.doi.org/ 10.1103/PhysRevD.19.3682
http://dx.doi.org/ 10.1103/PhysRevD.19.3682
http://dx.doi.org/ 10.1142/S0217979291000158
http://dx.doi.org/ 10.1142/S0217979291000158
http://dx.doi.org/10.1103/PhysRevB.49.5200
http://dx.doi.org/ 10.1103/PhysRevLett.89.277004
http://dx.doi.org/ 10.1103/PhysRevLett.89.277004
http://dx.doi.org/10.1103/PhysRevB.66.205104
http://dx.doi.org/ 10.1103/PhysRevB.67.205104
http://dx.doi.org/ 10.1103/PhysRevB.67.205104

[84] Tt is not necessary to change the sign of the fugacity
of non-contractible domain walls, since the parity of
Nnxcpw is always fixed in a given sector.

[85] See Ref. 96 and references therein.

[86] Maissam Barkeshli, “Transitions Between Chiral Spin
Liquids and Z2 Spin Liquids,” arXiv:1307.8194 (2013).

[87] Anders W. Sandvik, “Evidence for deconfined quan-
tum criticality in a two-dimensional heisenberg model
with four-spin interactions,” Phys. Rev. Lett. 98, 227202
(2007).

[88] Mehran Kardar and Yi-Cheng Zhang, “Scaling of di-
rected polymers in random media,” Phys. Rev. Lett. 58,
2087-2090 (1987).

[89] F. Becca and S. Sorella, Quantum Monte Carlo Ap-
proaches for Correlated Systems (Cambridge University
Press, Cambridge, UK, 2017).

[90] Anders W. Sandvik, “Computational studies of quantum
spin systems,” AIP Conf. Proc. 1297, 135-338 (2010).

[91] Anders W. Sandvik, Many-Body Methods for Real Mate-

rials, Modeling and Simulation, edited by Eva Pavarini,
Erik Koch, and Shiwei Zhang, Verlag des Forschungszen-
trum Julich, Vol. 9 (Modeling and Simulation, 2019).

[92] Andrew Smerald, Sergey Korshunov, and Frédéric Mila,
“Topological aspects of symmetry breaking in triangular-
lattice ising antiferromagnets,” Phys. Rev. Lett. 116,
197201 (2016).

[93] Leo Radzihovsky and Ashvin Vishwanath, “Quantum lig-
uid crystals in an imbalanced fermi gas: Fluctuations and
fractional vortices in larkin-ovchinnikov states,” Phys.
Rev. Lett. 103, 010404 (2009).

[94] David A. Huse, Werner Krauth, R. Moessner, and S. L.
Sondhi, “Coulomb and liquid dimer models in three di-
mensions,” Phys. Rev. Lett. 91, 167004 (2003).

[95] Julian Schwinger, “On gauge invariance and vacuum po-
larization,” Phys. Rev. 82, 664-679 (1951).

[96] Dorde Radicevi¢, “Entanglement in weakly coupled lat-
tice gauge theories,” J. High Energy Phys. 2016, 163
(2016).


https://arxiv.org/abs/1307.8194
http://dx.doi.org/ 10.1103/PhysRevLett.98.227202
http://dx.doi.org/ 10.1103/PhysRevLett.98.227202
http://dx.doi.org/ 10.1103/PhysRevLett.58.2087
http://dx.doi.org/ 10.1103/PhysRevLett.58.2087
http://dx.doi.org/ 10.1063/1.3518900
https://arxiv.org/abs/1909.10591
https://arxiv.org/abs/1909.10591
http://dx.doi.org/10.1103/PhysRevLett.116.197201
http://dx.doi.org/10.1103/PhysRevLett.116.197201
http://dx.doi.org/ 10.1103/PhysRevLett.103.010404
http://dx.doi.org/ 10.1103/PhysRevLett.103.010404
http://dx.doi.org/ 10.1103/PhysRevLett.91.167004
http://dx.doi.org/ 10.1103/PhysRev.82.664
http://dx.doi.org/ 10.1007/JHEP04(2016)163
http://dx.doi.org/ 10.1007/JHEP04(2016)163

Supplemental material to “Evidence for deconfined U(1) gauge theory
at the transition between toric code and double semion”

In this supplemental material, we provide the explicit form for the topological Hamiltonian,
additional numerical data as well as additional details regarding the field theory. The numerical
data include evidence for the incommensurability of the stripe order, the extrapolation of the
order parameter ©? in the thermodynamic limit (as N — +o0), an additional comparison
between the microscopic model and the field theory predictions and a discussion regarding the
average number of non-contractible domain walls at «« = 1/2. The field theory section includes
a part regarding the tilted phase, a dictionary translating between height and gauge theories,
and a microscopic justification for a U(1) gauge theory description of the stripe phase.

Appendix A: Explicit form of Hop

(a) On-site term (b) Plaquette term

FIG. S1. The one-parameter model of Eq. (1) in the main text is defined on the triangular lattice and made of two distinct
terms. (a) The first one describes a trivial Ising paramagnet with on-site terms and the second (b) describes a topological Ising
paramagnet protected by the Zs Ising spin-flip symmetry, with plaquette terms involving the six nearest neighbors of a given
lattice site j, see Eq. (S1).

We give an explicit form for the topological Ising paramagnet Hamiltonian H¢op, part of the one-parameter model
of Eq. (1) in the main text, interpolating between trivial and topological phases, and which is studied in this work.
Following [1-3, 11],

z A (—1-0f0f
o= 5, (1L, ), s

where the product runs over the six triangles containing the site j, see Fig. S1(b). This product has a simple
interpretation in terms of domain walls: It gives a minus sign if flipping the spin of ¢; changes the parity of the
number of domain walls Npw.

Appendix B: Additional numerical data

1. Incommensurate stripe order

To probe long-range order, one can look at the structure factor, corresponding to the Fourier transform of the
two-point correlation function (oZo§),

S(q) = % > e—iq"‘<a§o—g>. (S1)

It is displayed in Fig. S2 for various system sizes at « = 1/2. Going from one system size to the next, the position
in the Brillouin zone of the maximum intensity changes, although it always remains at |Q| ~ 27/5. This makes it
difficult to do any consistent finite-size study of what appears to be a putative incommensurate ordered phase.

Denoting the polar angle of @ by ¢, we find “vertical” stripes (with ¢ = Z27/6) when L, is close to a multiple
of 5, and “horizontal” stripes (with ¢ = (Z + £)27/6) when L, is a multiple of 6. Remarkably, these two sets of
orientations are not related by symmetry.
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(e) 12x12

HL?

(a) 4 x4

[ aae— | -:-

0 0.1 0.2
FIG. S2. Structure factor based on the real-space correlation function (o7og), computed from Eq. (S1) at a = 1/2 for system
sizes (a) N =4x4, (b) N=6x6, (c) N=8x8,(d) N =10x 10, and (e) N = 12 x 12. Going from one system size
to the next, the position in the Brillouin zone of the maximum intensity changes, but remains around |Q| ~ 27 /5. Precisely,
(a) Q = (£7/2,0), (b) Q = (£27/3v/3,0), (c) Q = (£7/4,4£7/2V/3), (d) Q = (+27/5,0), and (e) @ = (£27/3V/3,0).

Following the notation explained in the text, these system sizes display “vertical” stripes for (a),(d) and “horizontal” stripes

for (b),(c),(e).

0 0.03 0.06

Increasing Lt Increasing Ly,
10 x Lr 0.4 . . 0.4 . .
(a) b)
ODSD oo o= ®) O LL x 10
0.3k 4 03} ./. | = 10
o = 0.49 a =049 10 x 10
OLL x 10

5x L ‘@ 02F010x Lt 4

O5x Lt Ly, x8
0-1r i ] 18 . 2
o = 0.48 x
0.0 0.0
0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03

1/N 1/N

FIG. S3. Order parameter value ©2 versus the inverse system size 1/N for different values of o. (a) Two different series of
system sizes N = 10 x Lt and N = 5 x L, with increasing length Lt along the stripes direction. (b) Two different series of
system sizes N = Ly, X 10 and N = L1, X 8 with increasing length Ly, transverse to the stripes direction. The order parameter
takes a finite value % ~ 0.3 at o = 0.5 and goes to zero as N — 400 at o = 0.47, but it is difficult to draw any definite
conclusion for intermediate values of a.

2. Thermodynamic extrapolation of D2

Additionally to Fig. 2 (c) of the main text showing the order parameter value ®? versus « for different system sizes,
we display in Fig. S3 the order parameter D2 versus 1/N for different values of v close to a = 1/2. In particular, we
consider two cases corresponding to increasing one length of the system along or perpendicular to the stripes. In each
case, we show that ®2 ~ 0.3 as N — +oo at a = 0.5. We also show that it goes to zero as N — +oo for a = 0.47.
However, it is difficult to draw any definite conclusion for intermediate values of o except that the stripe ordered
phase is relatively small. The data is consistent with a jump of ®? around o, ~ 0.48 — 0.49, indicative of a first order
transition, as discussed in the main text.

3. Field theory comparison

Additionally to Fig. 4 of the main text, aiming at comparing the microscopic model with the field theory predictions,
we display in Fig. S4 the full color map intensity of the correlation functions Dy, and Dyt (see Egs. (5) and (6) of
the main text). There is a good qualitative agreement, and we have used vy, = 1.2 and vt = 0.3 for the field theory
prediction, as estimated from Fig. 4 in the main text.
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FIG. S4. (a,c) Color map intensity of the field theory prediction for the correlation function of Eq. (6) in the main text, using
v, = 1.2 and vt = 0.3. (b, d) Color map intensity of the correlation function of Eq. (5) in the main text computed in quantum
Monte Carlo for a system of size 10 x 10 at a = 1/2 There is a good qualitative agreement between the field theory predictions

and the data of the microscopic model.
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FIG. S5. (a) Expectation value of the number of non-contractible domain walls (Nncpw) for various system sizes at « = 1/2. It
is displayed against the length L of the system that perpendicular to the orientation of the stripes. This number is extremely
close to an integer, meaning that it is almost conserved. (b) Ratio of the number of non-contractible domain walls over the total
number of domain walls (contractible and non-contractible together) (Nncpw)/{Npw) for various system sizes at a = 1/2.
This number is extremely close to 1, which means that the system mostly consists of non-contractible domain walls at o = 1/2,
supporting the microscopic origin of the stripe order of non-contractible domain walls wrapping around the torus. The orange
symbols correspond to system sizes with vertical stripes while the violet symbols correspond to those with horizontal stripes.

4. Number of non-contractible domain walls at « = 1/2

In the quantum Monte Carlo simulations, we compute the expectation value of the number of contractible and
non-contractible domain walls: (Npw) and (Nxcpw), respectively. It is shown in Fig. S5 (a) at o = 1/2 for various
system sizes. We find that the average number of non-contractible domain walls is extremely close to an integer,
meaning that it is almost conserved. Moreover the ratio of the number of non-contractible domain walls over the total
number of domain walls (Nxcpw)/(Npw) is extremely close to 1, as displayed in Fig. S5(b). This means that the
system mostly consists of non-contractible domain walls at & = 1/2, supporting the microscopic origin of the stripe
order of non-contractible domain walls wrapping around the torus.
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Appendix C: Additional details regarding the field theory

1. Tilted phase

In the main text, we put forward the following Lagrangian:
L= %(@h)Q + V[] + Acos(2mh), with V[n] = 22 (vh)* + 2 (92R)" + £ (Vn)" + £, (1)

with Lo = —g6|Vh|®cos(6p) — g12| VR|*? cos(12p). Since we observe both vertical and horizontal stripes, we will
neglect gg in the following. There are therefore 12 minima, at angles ¢ = Z2w/12. We consider a solution with a
uniform tilt and fluctuations around it: h(r,7) = 7*Q -7+ dh(r, 7). First, we find Q which minimizes V'[h]. For the
sake of simplicity, we can make the assumption that gio has a subleading effect (except for choosing the orientation),
and we can work to leading order in g15. This leads to the simple formula,

Q| _ [lp2|
= _,/7294. (S2)
1

2 2
£ = (0:6n)° + L(onon)® + L (oroh)°, (83)

Expanding around one of the 12 minima leads to,

with v3 = 132 ¢12(|Q|/7)'° and v} = 2ps (again, to leading order in g12). We use indices L and T for directions
longitudinal and transverse to @, respectively.

Given the numerically observed values of |Q|/m ~ 2/5, v, >~ 1.2, and vr ~ 0.3, we extract the following field
theory parameters: gi1o2 =~ 6.5, po ~ —0.72, and g4 ~ 2.25. The Goldstone action described by Eq. (S3) leads to the
Matsubara Green’s function G(q,w) = (w? —&—wg)_l for the h field, with wg = \/(quT)2 + (vLgr)?. Height correlation
functions are then computed as,

1 iw(Te—T iq-(ro—mr 1
<(5h(7"1,7‘1)(5h(7"2,7‘2)> = %/dw/dqe (r2=71) gia: (72 1)7002 +w3 s
= l/dq ieiq'(rzf"‘l)e*wqhzfﬁ\
2 Wq ’
and Dgp(gq) of Eq. (6) in the main text is computed by differentiation,
Day(q) = /dr1 /dr2 e_iq'(’"z_”)<8a5h(r1,T)@béh(r2,7)> = oy (S5)
2wq

2. Gauge theory description

The height theory is dual to a U(1) gauge theory [51, 6366, 70, 71] for an electric field given by E = z x Vh, and
the tilt corresponds to a finite density of electric field lines wrapping around the torus. A dictionary between the two
descriptions is given in Tab. I.

Height theory Gauge theory
Vortex of h with vorticity ¢ Electric particle with charge ¢
Operator e*2™P" Monopole with charge p
Incommensurate stripe order with gapless phason Coulomb phase with gapless photon
Paramagnetic phase Higgs phase

TABLE I. Dictionary translating between height and gauge theories.
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FIG. S6. Edges of the honeycomb lattice are given a fixed orientation, given by a unit vector £. The orientation is chosen so that
& always has a positive vertical component. Note that these vectors are fixed, independently of the domain wall configuration.
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FIG. S7. The arrows show the fixed unit vector £ on each edge. On a given edge, the electric field is either E = 0 if there is
no domain wall strand on it (drawn in black), or E = £ if there is a domain wall strand on it (drawn in orange). (a) (b) (c)
(d) (e) (f) (g) (h) Domain walls (i.e. electric field lines) are drawn in orange. Excluding configurations with dangling domain
walls, there are 8 possible vertices. Gauss’s law states that the charge on a given site is given by the number of outgoing electric
field lines minus the number of incoming ones. In (g) and (h), the circle represents the charge, which can be either +2 or —2.

3. Microscopic justification for the U(1) gauge description of the stripe phase

Since Ising domain walls are unoriented, naively one would think they can only describe the electric field lines of
a Zso gauge theory: A Zs electric field can only take two values, 1 or 0. This corresponds to having one domain wall
strand, or no domain wall strand, on a given edge of the dual lattice. In the absence of electric charges, Gauss’s law
is ensured by the fact that domain walls are always closed.

By contrast, the electric field lines of a U(1) gauge theory need to be oriented, since the electric field is now a vector
E. In order to have a U(1) gauge description of an Ising system, it must therefore be possible to orient Ising domain
walls in a local way, in order for the theory to be local. Further, if the goal is to describe a Coulomb phase, this rule
for orienting domain walls should be such that the charge given by Gauss’s law @ = V - E is dilute.

In the Higgs phases, one is dealing with a condensate of domain walls of all shapes and sizes, and it is not possible
to find such a rule. Indeed, these phases are described by Zs, rather than U(1) gauge theories [11]. On the other hand,
in the stripe phase, most domain walls are non-contractible, and it is possible to choose a local rule of orientation
which creates an almost “pure gauge” configuration.

For example, let us consider the case of a phase with vertical stripes. First, we give a fized orientation to each edge
of the honeycomb lattice, see Fig. S6, thereby decorating each edge with a unit vector £. This vector is chosen so
as to always have a positive vertical component. Now, on each edge, the electric field E can only take two possible
values: either E = 0, if there is no domain wall strand on the edge, or E = & if there is one. Finally, a charge variable
is defined on each honeycomb site, and ensures Gauss’s law: ) counts the number of outgoing electric vectors, minus
the number of incoming ones, see Fig. S7.

With this definition, we can see that, as long as non-contractible domain walls go “in the right direction”, there is no
charge needed, see Fig. S8 (a). This means that, deep in the stripe phase, where all domain walls are non-contractible
and their local orientation fluctuates only weakly from the vertical upwards orientation, the configurations will be
pure gauge, i.e., there will be almost no charge. Indeed, if a non-contractible domain walls starts changing its local
orientation too much (corresponding to a overhang or hairpin turn, in the language of directed polymers [88]), this
would create local charges. However, deep in the stripe phase, these configurations are disfavored. This is why the
U(1) gauge theory description becomes warranted in the stripe phase.
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FIG. S8. (a) As long as domain walls have a locally vertical direction, the configuration is pure gauge, i.e. there is no charge.
(b-c) For da # 0, it becomes possible to create these configurations: either a new contractible domain wall, or recombine two
non-contractible domain walls. In both cases, a vertical +2 dipole was created. (c) shows a configuration after the recombination
process showed in Fig. 3 of the main text. (d) A dangling domain wall (i.e. 7 flux) has either charge ¢ = +1 or —1.

On the other hand, when da # 0, it becomes possible to create non-contractible domain walls, which are described
by an electric ¢ = £2 dipole, see Fig. S8 (b,c). Besides, after gauging the Ising symmetry, it becomes possible to
create static excitations called m fluxes which have a dangling domain wall. According to Gauss’s law, they would
have electric charge ¢ = £1, see Fig. S8 (d).
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