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Abstract of the DISSERTATION

Automated Machine Learning in the Era of Large Foundation Models

by

Ruochen Wang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Cho-Jui Hsieh, Co-Chair

Professor Wei Wang, Co-Chair

Intelligence, one of the most profound phenomena on Earth, has evolved over

600 million years, transforming from simple neural systems into human cogni-

tion capable of unraveling universal mysteries and creating silicon-based intel-

ligence. This evolutionary process, with its inherent drive towards increasing

complexity, seemingly defies thermodynamic principles, suggesting the existence

of self-evolving mechanisms in life. Recreating such mechanisms within artificial

systems is a crucial milestone on the path toward Artificial General Intelligence

(AGI).

Automated Machine Learning (AutoML) represents a significant step in this

direction. By enabling AI systems to optimize their own design processes, Au-

toML reformulates machine learning pipeline construction as a search problem,

automating the selection of architectures, optimizers, hyperparameters, and even

reasoning paths from an expansive search space. Despite its current limitations,

AutoML has already demonstrated remarkable success in advancing machine
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learning across diverse applications.

This thesis delves into the synergistic interplay between AutoML and large

foundation models, particularly the recent breakthroughs in large-scale generative

models like large language models (LLMs) and diffusion models. These models

exhibit emergent behaviors, highlighting machine learning systems as complex

entities where scaling produces unpredictable and potentially transformative ca-

pabilities. We emphasize the application of AutoML in automating the design of

training and inference processes, crucial for the continued advancement of these

models.

Ultimately, we aspire that this research contributes a meaningful step towards

the ambitious pursuit of Artificial General Intelligence (AGI).
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CHAPTER 1

Introduction

Intelligence, and how it arises, is arguably one of the most fascinating phenomena

taking place on planet Earth. Within 600 million years of real physical simula-

tion, intelligence has evolved from the most basic neuro-system that only handles

basic coordination of movements, to the vastly more intricate human brains that

can unravel the mystery of the universe, build spaceships for interplanetary explo-

ration, and even create silicon-based intelligence that surpasses ourselves. Such

a process of increasing complexity seems rather unorthodox, as the second law

of thermodynamics suggests the inevitable increase of entropy in a closed sys-

tem [Sch44]. This ”paradox” implies the existence of a self-evolving mechanism

in life forms, which, once the start button is hit, will not stop sucking negative

entropy from the environment to maintain and increase its order. Re-creating

this self-evolving mechanism is a potential milestone on the path to Artificial

General Intelligence (AGI), assuming that AGI is ever possible.

Automated machine learning (AutoML) provides one of the first practical

steps toward building such a self-evolving mechanism. At the core, AutoML

aims to leverage the power of AI to develop itself. It formulates the design of

machine learning pipeline into a search problem, where the goal is to identify

the best-performing architectures [CWC21, WCC20, HWL21, WCC21], optimiz-

ers [BZV17], hyperparameters [XLC22] and inference processes [WAC24, WLH24,

WSY24] for various models and tasks, from a vast pool of candidates. Although
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existing formulation of AutoML is far from ”self-evolving”, it still witnessed

numerous real-world applications in advancing the design of machine learning

pipelines, until the recent breakthrough in large language models.

Recent advancements in large-scale text-based generative models have trans-

formed how we approach many problems in deep learning. Noticeably, large

language models (LLM) prove that the current paradigm of machine learning is

a specific complex system, where, by merely increasing the number of its basic

units (model and dataset size), unpredictable features emerge [Mit09].

This thesis explores the interplay between AutoML and large foundation mod-

els, focusing on how search-based methods can automate the design of architec-

tures, optimizers and inference processes. We re-examine the role of AutoML in

this new era, demonstrating its resurgence in the form of prompt optimization.

We argue that prompt optimization is a form of ”model selection” where different

prompts effectively select different ”submodels” within a pretrained LLM.

The rest of the paper is organized as two part. In Part I, we discuss method-

ology for developing efficient search algorithms (Chapter 2) and generic search

spaces (Chapter 3) that enable automated design of novel architectures and op-

timizers. In Part II, we discuss how search-based techniques can unleash the

potential of large foundation models through prompt optimization. We discuss

prompt optimization methods for LLM in Chapter 5, and diffusion models in

Chapter 6.
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Part I

Training: Search for

Architectures and Optimizers
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CHAPTER 2

Efficient and Robust Search Algorithm for

Architectures

2.1 Problem Statement

Neural Architecture Search (NAS) has been drawing increasing attention in both

academia and industry for its potential to automatize the process of discover-

ing high-performance architectures, which have long been handcrafted. Early

works on NAS deploy Evolutionary Algorithm [SM02, RMS17, LSV17] and Rein-

forcement Learning [ZL17, PGZ18, ZYW18] to guide the architecture discovery

process. These pioneering methods require training a large number of discrete

architectures, and hence incur significant amount of computation costs. In the at-

tempt to improve the efficiency of NAS, several one-shot weight-sharing methods

have been proposed that dramatically cut down the search cost [BLR18, GZM19,

BKZ18].

As a particularly popular instance of one-shot methods, DARTS [LSY19b]

enables the search process to be performed with a gradient-based optimizer in

an end-to-end manner. It applies continuous relaxation that transforms the cat-

egorical choice of architectures into continuous architecture parameters α. The

resulting supernet can be optimized via gradient-based methods, and the opera-

tions associated with the largest architecture parameters are selected to form the
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final architecture. Despite its simplicity, several works cast doubt on the effec-

tiveness of DARTS. For example, a simple randomized search [LT19] outperforms

the original DARTS; [ZES20] observes that DARTS degenerates to networks filled

with parametric-free operations such as the skip connection or even random noise,

leading to the poor performance of the selected architecture.

While the majority of previous research attributes the failure of DARTS to its

supernet optimization [ZES20, CH20a, CWC21], little has been discussed about

the validity of another important assumption: the value of α reflects the strength

of the underlying operations. In this paper, we conduct an in-depth analysis of this

problem. Surprisingly, we find that in many cases, α does not really indicate the

operation importance in a supernet. Firstly, the operation associated with larger

α does not necessarily result in higher validation accuracy after discretization.

Secondly, as an important example, we show mathematically that the domination

of skip connection observed in DARTS (i.e. αskip becomes larger than other

operations.) is in fact a reasonable outcome of the supernet’s optimization but

becomes problematic when we rely on α to select the best operation.

If α is not a good indicator of operation strength, how should we select the

final architecture from a pretrained supernet? We discuss two lines of solu-

tions. The first line bypasses α and directly measures the operation strength

based on its contribution to the supernet performance in an adversarial fashion.

Concretely, we propose an alternative perturbation-based architecture selection

method. Given a pretrained supernet, the best operation on an edge is selected

and discretized based on how much it perturbs the supernet accuracy; The fi-

nal architecture is derived edge by edge, with fine-tuning in between so that the

supernet remains converged for every operation decision. The second line aims

at aligning the architecture selection with differentiable architecture search, by

5



formulating architecture search as a distribution learning problem, which induces

implicit hessian regularization [CWC21]. Empirical evaluations show that both

lines of methods are able to drastically improve the search performance and the

robustness of differentiable NAS.

To make the picture a bit more complete, the remaining chapters of the pa-

per discusses an alternative architecture search paradigm that does not rely on

weight-sharing supernet to make search decisions, called predictor-based NAS.

Predictor-based methods use a tiny subset of architectures to train a surrogate

model to predict the accuracy of each individual architecture. This line of meth-

ods do not rely on a weight-sharing one-shot supernet, and thus is free from the

various inductive biases of differentiable NAS methods.

2.2 Understanding Differentiable NAS

Despite the search efficiency of Differentiable Neural Architecture Search (DARTS),

several work finds that it generalizes poorly to a wide range of search spaces (Sec-

tion 2.4). For example, [ZES20] observes that DARTS degenerates to networks

filled with parametric-free operations such as the skip connection or even ran-

dom noise, leading to the poor performance of the selected architecture. While

previous analysis attributes the poor generalization of DARTS to the failure of

supernet optimization, we show both empirically and mathematically that it is in

fact caused by the magnitude-based architecture selection method (Section 2.5).

2.3 Differentiable Architecture Search Framework

We start by reviewing the formulation of DARTS. DARTS’ search space consists

of repetitions of cell-based microstructures. Every cell can be viewed as a DAG

6



with N nodes and E edges, where each node represents a latent feature map xi,

and each edge is associated with an operation o (e.g. skip connect, sep conv 3x3 )

from the search space O. Continuous relaxation is then applied to this search

space: Concretely, every operation on an edge is activated during the search

phase, with their outputs mixed by the architecture parameter α to form the

final mixed output of that edge m̄(xi) =
∑

o∈O
expαo∑
o′ expαo′

o(xi). This particular

formulation allows the architecture search to be performed in a differentiable

manner: DARTS jointly optimizes α and model weight w with the following

bilevel objective via alternative gradient updates:

min
α

Lval(w
∗, α) s.t. w∗ = arg min

w
Ltrain(w, α). (2.1)

We refer to the continuous relaxed network used in the search phase as the su-

pernet of DARTS. At the end of the search phase, the operation associated with

the largest αo on each edge will be selected from the supernet to form the final

architecture. An important implicit assumption here is that the magnitude of

α = (αo)o represents the strength of the underlying operation.

2.4 Failure Mode Analysis of DARTS

Several works cast doubt on the generalization of DARTS. [ZES20] tests DARTS

on four different search spaces and observes significantly degenerated perfor-

mance, resulting in architectures filled with skip connections. They empirically

find that the selected architectures perform poorly when DARTS’ supernet falls

into high curvature areas of validation loss (captured by large dominant eigen-

values of the Hessian ∇2
α,αLval(w, α)). While [ZES20] relates this problem to the

failure of supernet training in DARTS, we examine it from the architecture se-
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lection aspects of DARTS, and show that much of DARTS’ robustness issue can

be alleviated by a better architecture selection method.

2.5 The pitfall of magnitude-based architecture selection

in DARTS

In this section, we put forward the opinion that the architecture parameter α does

not necessarily represent the strength of the underlying operation in general, in

direct contradiction to the claim made in DARTS. As an important example,

we mathematically justify that the skip connection domination phenomenon ob-

served in DARTS is reasonable by itself, and becomes problematic when combined

with the magnitude-based architecture selection.

2.5.1 α may not represent the operation strength

Figure 2.1: α vs discretization accuracy at convergence of all operations on 3
randomly selected edges from a pretrained DARTS supernet (one subplot per
edge). The magnitude of α for each operation does not necessarily agree with its
relative discretization accuracy at convergence.

Following DARTS, existing differentiable NAS methods use the value of archi-

tecture parameters α to select the final architecture from the supernet, with the

implicit assumption that α represents the strength of the underlying operations.

In this section, we study the validity of this assumption in detail.
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Figure 2.2: Operation strength on each edge of S2 (skip connect, sep conv 3x3).
(a). Operations associated with the largest α. (b). Operations that result in the
highest discretization validation accuracy at convergence. Parameterized opera-
tions are marked red.

Consider one edge on a pretrained supernet; the strength of an operation on

the edge can be naturally defined as the supernet accuracy after we discretize to

this operation and fine-tune the remaining network until it converges again; we

refer to this as ”discretization accuracy at convergence” for short. The operation

that achieves the best discretization accuracy at convergence can be considered

as the best operation for the given edge. Figure 2.1 shows the comparison of

α (blue) and operation strength (orange) of randomly select edges on DARTS

supernet. As we can see, the magnitude of α for each operation does not neces-

sarily agree with their relative strength measured by discretization accuracy at

convergence. Moreover, operations assigned with small αs are sometimes strong

ones that lead to high discretization accuracy at convergence. To further verify

the mismatch, we investigate the operation strength on search space S2, where

DARTS fails dramatically due to excessive skip connections [ZES20]. S2 is a

variant of DARTS search space that only contains two operations per edge (

skip connect, sep conv 3x3 ). Figure 2.2 shows the selected operations based on α

(left) and operation strength (right) on all edges on S2. From Figure 2.2a, we can

see that αskip connect > αsep conv 3x3 on 12 of 14 edges. Consequently, the derived

child architecture will lack representation ability and perform poorly due to too

many skip connections. However, as shown in Figure 2.2b, the supernet benefits
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more from discretizing to sep conv 3x3 than skip connect on half of the edges.

There are several reason why α fails to capture the operation strength. Firstly,

consider the second order approximation of the validation loss of a pretrained

supernet:

Lval(α̂, w) ≈ Lval(α,w) + (α̂− α)T∇αLval(α,w) +
1

2
(α̂− α)T∇2

α2Lval(α,w)(α̂− α)

(2.2)

= Lval(α,w) +
1

2
(α̂− α)T∇2

α2Lval(α,w)(α̂− α) (2.3)

(∇αLval(α,w) = 0 at convergence)

Where α̂ is the perturbed architecture parameters and α is the current instance.

We can see that the influence of α̂ on the supernet’s validation loss depends not

only on α̂ itself but also the curvature ∇2
α2Lval(α,w). However, in magnitude-

based architecture selection, the Hessian term is completely ignored, which cor-

responds to the case when ∇2
α2Lval(α,w) = I. Secondly, architecture parameters

are interdependent: selecting and discretizing one edge to an operation modifies

the supernet, thereby affecting subsequent selection.

2.5.2 A case study: skip connection

Several works point out that DARTS tends to assign large α to skip connections,

resulting in shallow architectures with poor generability [ZES20, LZS19, BHX19].

This ”skip connection domination” issue is generally attributed to the failure of

DARTS’ supernet optimization. In contrast, we draw inspiration from research on

ResNet [HZR16] and show that this phenomenon by itself is a reasonable outcome

while DARTS refines its estimation of the optimal feature map, rendering αskip

ineffective in the architecture selection.
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Table 2.1: Test accuracy before and after layer (edge) shuffling on CIFAR-10.
For ResNet and VGG, we randomly swap two layers in each stage (defined as
successive layers between two downsampling blocks. For DARTS supernet, we
randomly swap two edges in every cell.

VGG ResNet DARTS
Before 92.69 93.86 88.44
After 9.83 ± 0.33 83.2015 ± 2.03 81.09 ± 1.87

In vanilla networks (e.g., VGG), each layer computes a new level of feature

map from the output feature map of the predecessor layer; thus, reordering layers

at test time would dramatically hurt the performance [VWB16]. Unlike vanilla

networks, [GSS17] and [VWB16] discover that successive layers in ResNet with

compatible channel sizes are in fact estimating the same optimal feature map

so that the outputs of these layers stay relatively close to each other at conver-

gence; As a result, ResNet’s test accuracy remains robust under layer reordering.

[GSS17] refers to this unique way of feature map estimation in ResNet as the

”unrolled estimation.”

DARTS’ supernet resembles ResNet, rather than vanilla networks like VGG,

in both appearance and behavior. Appearance-wise, within a cell of DARTS’

supernet, edges with skip connection are in direct correspondence with the suc-

cessive residual layers in ResNet. Behavior-wise, DARTS’ supernet also exhibits

a high degree of robustness under edge shuffling. As shown in Table 2.1, ran-

domly reordering edges on a pretrained DARTS’ supernet at test time also has

little effect on its performance. This evidence indicates that DARTS performs

unrolled estimation like ResNet as well, i.e., edges within a cell share the same

optimal feature map that they try to estimate. In the following proposition, we

apply this finding and provide the optimal solution of α in the sense of minimizing

the variance of feature map estimation.

Proposition 1. 1 Without loss of generality, consider one cell from a simplified

1Proposition 1 unfolds the optimal α in principle and does not constraint the particular
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search space consists of two operations: (skip, conv). Let m∗ denotes the optimal

feature map, which is shared across all edges according to the unrolled estimation

view [GSS17]. Let oe(xe) be the output of convolution operation, and let xe be the

skip connection (i.e., the input feature map of edge e). Assume m∗, oe(xe) and

xe are normalized to the same scale. The current estimation of m∗ can then be

written as:

me(xe) =
exp(αconv)

exp(αconv) + exp(αskip)
oe(xe) +

exp(αskip)

exp(αconv) + exp(αskip)
xe, (2.4)

where αconv and αskip are the architecture parameters defined in DARTS. The op-

timal α∗
conv and α∗

skip minimizing var(me(xe)−m∗), the variance of the difference

between the optimal feature map m∗ and its current estimation me(xe), are given

by:

α∗
conv ∝ var(xe −m∗) (2.5)

α∗
skip ∝ var(oe(xe) −m∗). (2.6)

We refer the reader to the original paper of DARTS-PT [WCC20] for a detailed

proof. From eq. (2.5) and eq. (2.6), we can see that the relative magnitudes of

αskip and αconv come down to which one of xe or oe(xe) is closer to m∗ in variance:

• xe (input of edge e) comes from the mixed output of the previous edge.

Since the goal of every edge is to estimate m∗ (unrolled estimation), xe is

also directly estimating m∗.

• oe(xe) is the output of a single convolution operation instead of the complete

optimization method (i.e., bilevel, single-level, or blockwise update) to achieve it. Moreover,
this proposition can be readily extended to various other search spaces since we can group all
non-skip operations into a single oe(·).
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mixed output of edge e, so it will deviate from m∗ even at convergence.

Therefore, in a well-optimized supernet, xe will naturally be closer to m∗ than

oe(xe), causing αskip to be greater than αconv.

Figure 2.3: mean(αskip − αconv) (softmaxed) v.s. supernet’s validation accuracy.
The gap of (αskip − αconv) increases as supernet gets better.

Our analysis above indicates that the better the supernet, the larger the

(αskip − αconv) gap (softmaxed) will become since xe gets closer and closer to

m∗ as the supernet is optimized. This result is evidenced in Figure 2.3, where

mean(αskip − αconv) continues to grow as the supernet gets better. In this case,

although αskip > αconv is reasonable by itself, it becomes an inductive bias to

NAS if we were to select the final architecture based on α.

2.6 Improving the Effectiveness and Robustness of Dif-

ferentiable NAS

In the previous chapter, we identify that the poor generalization of DARTS,

including skip connection domination, is caused by the failure of magnitude-

based architecture selection. Inspired by this analysis, we introduce two lines of

methods to solve this problem: 1) A perturbation-based architecture selection
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that bypasses architecture parameter α and measures the operation strength in

an adversarial fashion (Section 2.7), and 2) improve the alignment between α and

operation strength via Hessian Regularization.

2.7 Perturbation-based architecture selection

Instead of relying on the α value to select the best operation, we propose to

directly evaluate operation strength in terms of its contribution to the supernet’s

performance. The operation selection criterion is laid out in section 2.7.1. In

section 2.7.2, we describe the entire architecture selection process.

2.7.1 Evaluating the strength of each operation

In section 2.5.1, we define the strength of each operation on a given edge as how

much it contributes to the performance of the supernet, measured by discretiza-

tion accuracy. To avoid inaccurate evaluation due to large disturbance of the

supernet during discretization, we fine-tune the remaining supernet until it con-

verges again, and then compute its validation accuracy (discretization accuracy

at convergence). The fine-tuning process needs to be carried out for evaluating

each operation on an edge, leading to substantial computation costs.

To alleviate the computational overhead, we consider a more practical mea-

sure of operation strength: for each operation on a given edge, we mask it out

while keeping all other operations, and re-evaluate the supernet. The one that

results in the largest drop in the supernet’s validation accuracy will be considered

as the most important operation on that edge. This alternative criterion incurs

much less perturbation to the supernet than discretization since it only deletes

one operation from the supernet at a time. As a result, the supernet’s validation
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accuracy after deletion stays close to the unmodified supernet, and thus it allevi-

ates the requirement of tuning the remaining supernet to convergence. Therefore,

we implement this measurement for the operation selection in this work.

2.7.2 The complete architecture selection process

Our method operates directly on top of DARTS’ pretrained supernet. Given a

supernet, we randomly iterate over all of its edges. We evaluate each operation

on an edge, and select the best one to be discretized based on the measurement

described in section 2.7.1. After that, we tune the supernet for a few epochs

to recover the accuracy lost during discretization. The above steps are repeated

until all edges are decided. The cell topology is decided in a similar fashion. This

simple method is termed ”perturbation-based architecture selection (PT)” in the

following sections.

2.7.3 Experimental Evaluation

In this section, we demonstrate that the perturbation-based architecture selection

method is able to consistently find better architectures than those selected based

on the values of α. The evaluation is based on the search space of DARTS and

NAS-Bench-201 [DY20], and we show that the perturbation-based architecture

selection method can be applied to several variants of DARTS.

2.7.3.1 Results on DARTS’ CNN search space

We keep all the search and retrain settings identical to DARTS since our method

only modifies the architecture selection part. After the search phase, we perform

perturbation-based architecture selection on the pretrained supernet. We tune
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the supernet for 5 epochs between two selections as it is enough for the supernet

to recover from the drop of accuracy after discretization. We run the search and

architecture selection phase with four random seeds and report both the best and

average test errors of the obtained architectures.

As shown in Table 2.2, the proposed method (DARTS+PT) improves DARTS’

test error from 3.00% to 2.61%, with manageable search cost (0.8 GPU days).

Note that by only changing the architecture selection method, DARTS performs

significantly better than many other differentiable NAS methods that enjoy care-

fully designed optimization process of the supernet, such as GDAS [DY19] and

SNAS [XZL18]. This empirical result suggests that architecture selection is cru-

cial to DARTS: with the proper selection algorithm, DARTS remains a very

competitive method.

Our method is also able to improve the performance of other variants of

DARTS. To show this, we evaluate our method on SDARTS(rs) and SGAS

[CH20a, LQD20]. SDARTS(rs) is a variant of DARTS that regularizes the search

phase by applying Gaussian perturbation to α. Unlike DARTS and SDARTS,

SGAS performs progressive search space shrinking. Concretely, SGAS progres-

sively discretizes its edges with the order from most to least important, based

on a novel edge importance score. For a fair comparison, we keep its unique

search space shrinking process unmodified and only replace its magnitude-based

operation selection with ours. As we can see from Table 2.2, our method consis-

tently achieves better average test errors than its magnitude-based counterpart.

Concretely, the proposed method improves SDARTS’ test error from 2.67% to

2.54% and SGAS’ test error from 2.66% to 2.56%. Moreover, the best archi-

tecture discovered in our experiments achieves a test error of 2.44%, ranked top

among other NAS methods.
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Table 2.2: Test error of architectures discovered by perturbation-based selection
on DARTS Space and CIFAR-10.

Architecture
Test Error

(%)
Params
(M)

Search Cost
(GPU days)

Search
Method

DenseNet-BC [HLM17] 3.46 25.6 - manual
NASNet-A [ZVS18] 2.65 3.3 2000 RL
AmoebaNet-A [RAH19] 3.34 ± 0.06 3.2 3150 evolution
AmoebaNet-B [RAH19] 2.55 ± 0.05 2.8 3150 evolution
PNAS [LZN18]⋆ 3.41 ± 0.09 3.2 225 SMBO
ENAS [PGZ18] 2.89 4.6 0.5 RL
NAONet [LTQ18] 3.53 3.1 0.4 NAO
SNAS (moderate) [XZL18] 2.85 ± 0.02 2.8 1.5 gradient
GDAS [DY19] 2.93 3.4 0.3 gradient
BayesNAS [ZYW19] 2.81 ± 0.04 3.4 0.2 gradient
ProxylessNAS [CZH19]† 2.08 5.7 4.0 gradient
NASP [YXT20] 2.83 ± 0.09 3.3 0.1 gradient
P-DARTS [CXW19] 2.50 3.4 0.3 gradient
PC-DARTS [XXZ20] 2.57 ± 0.07 3.6 0.1 gradient
R-DARTS (L2) [ZES20] 2.95 ± 0.21 - 1.6 gradient
DARTS [LSY19b] 3.00 ± 0.14 3.3 0.4 gradient
SDARTS-RS [CH20a] 2.67 ± 0.03 3.4 0.4 gradient
SGAS (Cri 1. avg) [LQD20] 2.66 ± 0.24 3.7 0.25 gradient
DARTS+PT (avg)∗ 2.61 ± 0.08 3.0 0.8‡ gradient
DARTS+PT (best) 2.48 3.3 0.8‡ gradient
SDARTS-RS+PT (avg)∗ 2.54 ± 0.10 3.3 0.8‡ gradient
SDARTS-RS+PT (best) 2.44 3.2 0.8‡ gradient
SGAS+PT (Crit.1 avg)∗ 2.56 ± 0.10 3.9 0.29‡ gradient
SGAS+PT (Crit.1 best) 2.46 3.9 0.29‡ gradient
† Obtained on a different space with PyramidNet [HKK17] as the backbone.
‡ Recorded on a single GTX 1080Ti GPU.
∗ Obtained by running the search and retrain phase under four different seeds and

computing the average test error of the derived architectures.

2.7.3.2 Performance on NAS-Bench-201 search space

To further verify the effectiveness of the proposed perturbation-based architec-

ture selection, we conduct experiments on NAS-Bench-201. NAS-Bench-201 pro-

vides a unified cell-based search space similar to DARTS. Every architecture in

the search space is trained under the same protocol on three datasets (cifar10,

cifar100, and imagenet16-120), and their performance can be obtained by query-

ing the database. As in section 2.7.3.1, we take the pretrained supernet from

DARTS and apply our method on top of it. All other settings are kept unmodi-

fied. Figure 2.4 shows the performance trajectory of DARTS+PT compared with

DARTS. While the architectures found by magnitude-based selection degenerates

over time, the perturbation-based method is able to extract better architectures
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Figure 2.4: Trajectory of test accuracy on space NAS-Bench-201 and three
datasets (Left: cifar10, Middle: cifar100, Right: Imagenet16-120). The test
accuracy of our method is plotted by taking the snapshots of DARTS’ supernet
at corresponding epochs and run our selection method on top of it.

from the same underlying supernets stably. The result implies that the DARTS’

degenerated performance comes from the failure of magnitude based architecture

selection.

2.8 Aligning architecture parameter with operation strength

via distribution learning

Recall that in Section 2.5, we show that the misalignment between α and op-

eration strength is caused by the existence of the Hessian term ∇2
α2Lval(α,w)

(eq. 2.2). When this hessian is ill-conditioned, the magnitude of alpha deviates

from the operation strength. Therefore, another way to improve the robustness

of DARTS is to regularize this Hessian. In this section, we propose a principled

method by formulating differentiable NAS as a distribution learning problem.

2.8.0.1 Neural Architecture Search as distribution learning

Bilevel-Optimization with Simplex Constraints In DARTS, the uncon-

trained architecture parameters are mapped to the operation mixing weight via

softmax function, allowing it to lie in the probability simplex. To motivate
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our method, we first generalize the bilevel formulation of DARTS by using θ

to simplex-constrained represent the operation mixing weight:

min
θ

Lval(w
∗, θ) s.t. w∗ = arg min

w
Ltrain(w, θ),

|O|∑
o=1

θ(i,j)o = 1, ∀ (i, j), i < j,

(2.7)

where the simplex constraint
∑|O|

o=1 θ
(i,j)
o = 1 can be either solved explicitly via

Lagrangian function [LKB20], or eliminated by substitution method (e.g., θ =

Softmax(α), α ∈ R|O|×|E|) [LSY19b].

Learning a Distribution over Operation Mixing Weight Previous dif-

ferentiable architecture search methods view the operation mixing weight θ as

learnable parameters that can be directly optimized [LSY19b, XXZ20, LKB20].

This has been shown to cause θ to overfit the validation set and thus induce large

generalization error [BKZ18, ZSH20, CH20a]. We recognize that this treatment is

equivalent to performing point estimation (e.g., MLE/MAP) of θ in probabilistic

view, which is inherently prone to overfitting [Bis16, GCS04]. Based on this in-

sight, we formulate the differentiable architecture search as a distribution learning

problem. The operation mixing weight θ is treated as random variables sampled

from a learnable distribution. Formally, let q(θ|β) denote the distribution of θ

parameterized by β. The bi-level objective is then given by:

min
β

Eq(θ|β)
[
Lval(w

∗, θ)
]

+ λd(β, β̂) s.t. w∗ = arg min
w

Ltrain(w, θ). (2.8)

where d(·, ·) is a distance function. Since θ lies on the probability simplex,

we select Dirichlet distribution to model its behavior, i.e., q(θ|β) ∼ Dir(β),

where β represents the Dirichlet concentration parameter. Dirichlet distribu-
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tion is a widely used distribution over the probability simplex [JLP19, Dav03,

LHZ20, KNZ19], and it enjoys nice properties that enables gradient-based train-

ing [Mar18].

2.8.1 The implicit Regularization on Hessian

The objective in (2.8) can be viewed as a Lagrangian function of the following

constraint objective:

min
β

Eq(θ|β)
[
Lval(w

∗, θ)
]

s.t. w∗ = arg min
w

Ltrain(w, θ) , d(β, β̂) ≤ δ, (2.9)

Here we derive an approximated lower bound based on (2.9), which demonstrates

that our method implicitly controls the conditional number of the Hessian matrix

∇2
θL̃val(w, θ).

Proposition 2. Let d(β, β̂) = ∥β− β̂∥2 ≤ δ and β̂ = 1 in the bi-level formulation

(2.9). Let µ denote the mean under the Laplacian approximation of Dirichlet. If

∇2
µL̃val(w

∗, µ) is Positive Semi-definite, the upper-level objective can be approxi-

mated bounded by:

Eq(θ|β)(Lval(w, θ)) ≳ L̃val(w
∗, µ) +

1

2
(

1

1 + δ
(1 − 2

|O|
) +

1

|O|
1

1 + δ
)tr

(
∇2

µL̃val(w
∗, µ)

)
(2.10)

with:

L̃val(w
∗, µ) = Lval(w

∗, Softmax(µ)), µo = log βo −
1

|O|
∑
o′

log βo′ , o = 1, . . . , |O|.

This proposition is driven by the Laplacian approximation to the Dirichlet

distribution [Mac98, Aka17]. The lower bound (2.10) indicates that minimizing

20



Table 2.3: Test error of the architectures discovered by DrNAS on DARTS Space
and CIFAR-10.

Architecture
Test Error

(%)
Params
(M)

Search Cost
(GPU days)

Search
Method

DenseNet-BC [HLM17]⋆ 3.46 25.6 - manual
NASNet-A [ZVS18] 2.65 3.3 2000 RL
AmoebaNet-A [RAH19] 3.34 ± 0.06 3.2 3150 evolution
AmoebaNet-B [RAH19] 2.55 ± 0.05 2.8 3150 evolution
PNAS [LZN18]⋆ 3.41 ± 0.09 3.2 225 SMBO
ENAS [PGZ18] 2.89 4.6 0.5 RL
DARTS (1st) [LSY19b] 3.00 ± 0.14 3.3 0.4 gradient
DARTS (2nd) [LSY19b] 2.76 ± 0.09 3.3 1.0 gradient
SNAS (moderate) [XZL18] 2.85 ± 0.02 2.8 1.5 gradient
GDAS [DY19] 2.93 3.4 0.3 gradient
BayesNAS [ZYW19] 2.81 ± 0.04 3.4 0.2 gradient
ProxylessNAS [CZH19]† 2.08 5.7 4.0 gradient
PARSEC [CGF19] 2.81 ± 0.03 3.7 1 gradient
P-DARTS [CXW19] 2.50 3.4 0.3 gradient
PC-DARTS [XXZ20] 2.57 ± 0.07 3.6 0.1 gradient
SDARTS-ADV [CH20a] 2.61 ± 0.02 3.3 1.3 gradient
GAEA + PC-DARTS [LKB20] 2.50 ± 0.06 3.7 0.1 gradient
DrNAS 2.54 ± 0.03 4.0 0.4‡ gradient
DrNAS + progressive learning 2.46 ± 0.03 4.1 0.6‡ gradient
⋆ Obtained without cutout augmentation.
† Obtained on a different space with PyramidNet [HKK17] as the backbone.
‡ Recorded on a single GTX 1080Ti GPU.

the expected validation loss controls the trace norm of the Hessian matrix. We

refer the reader to the DrNAS paper [CWC21] for the detailed proof.

2.8.1.1 Experimental Results

Empirically, DrNAS significantly outperforms DARTS and comparable methods

on CIFAR-10 (Table 2.3) and ImageNet (Table 2.4).

2.9 Beyond Differentiable NAS - Predictor-based Archi-

tecture Search

While previous sections mainly focus on analyzing and improving differentiable

NAS methods, in this section we introduce an alternative paradigm of NAS called

predictor-based architecture search. Unlike Differentiable NAS, Predictor-based

methods do not rely on building weight-sharing supernets to estimate the perfor-
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Table 2.4: Test error of architectures discovered by DrNAS on DARTS Space and
ImageNet under mobile setting.

Architecture
Test Error(%) Params

(M)
Search Cost
(GPU days)

Search
Methodtop-1 top-5

Inception-v1 [SLJ15] 30.1 10.1 6.6 - manual
MobileNet [HZC17] 29.4 10.5 4.2 - manual
ShuffleNet 2× (v1) [ZZL18] 26.4 10.2 ∼ 5 - manual
ShuffleNet 2× (v2) [MZZ18] 25.1 - ∼ 5 - manual
NASNet-A [ZVS18] 26.0 8.4 5.3 2000 RL
AmoebaNet-C [RAH19] 24.3 7.6 6.4 3150 evolution
PNAS [LZN18] 25.8 8.1 5.1 225 SMBO
MnasNet-92 [TCP19] 25.2 8.0 4.4 - RL
DARTS (2nd) [LSY19b] 26.7 8.7 4.7 1.0 gradient
SNAS (mild) [XZL18] 27.3 9.2 4.3 1.5 gradient
GDAS [DY19] 26.0 8.5 5.3 0.3 gradient
BayesNAS [ZYW19] 26.5 8.9 3.9 0.2 gradient
DSNAS [HXZ20]† 25.7 8.1 - - gradient
ProxylessNAS (GPU) [CZH19]† 24.9 7.5 7.1 8.3 gradient
PARSEC [CGF19] 26.0 8.4 5.6 1 gradient
P-DARTS (CIFAR-10) [CXW19] 24.4 7.4 4.9 0.3 gradient
P-DARTS (CIFAR-100) [CXW19] 24.7 7.5 5.1 0.3 gradient
PC-DARTS (CIFAR-10) [XXZ20] 25.1 7.8 5.3 0.1 gradient
PC-DARTS (ImageNet) [XXZ20]† 24.2 7.3 5.3 3.8 gradient
GAEA + PC-DARTS [LKB20]† 24.0 7.3 5.6 3.8 gradient
DrNAS† 24.2 7.3 5.2 3.9 gradient
DrNAS + progressive learning† 23.7 7.1 5.7 4.6 gradient
† The architecture is searched on ImageNet, otherwise it is searched on CIFAR-10 or CIFAR-

100.

mance of child architectures. Instead, they build a surrogate predictor to infer

the performance of child architectures; The predictor can be trained using a tiny

selected subset of all architectures (usually in hundreds of architectures), and sub-

sequently deployed for architecture evaluation the efficiently. This way, predictor-

based methods are free from the inductive biases of weight-sharing differentiable

NAS. However, search efficiency becomes a major bottleneck for predictor-based

NAS: To label the training pool for the surrogate predictor, we now need to train

and evaluate hundreds of architecture fully from scratch. To improve the search

efficiency, previous works mainly focus on developing more sample-efficient pre-

dictors. We tackle this challenge from different perspective: pause and resume the

training of poor architectures to save budget. The resulting framework, RANK-

NOSH, reduces the search budget of the best predictor-based algorithm by 5

folds, while achieving competitive performance.
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2.10 Predictor-based NAS

2.10.1 Framework

Starting from a pool of randomly selected architectures, previous methods iter-

atively conduct the following steps: 1) train and evaluate all the architectures

in the pool fully; 2) fit a surrogate performance predictor; 3) use the predic-

tor to propose new architectures and add them to the pool for the next round

[DCA20, WNS19, YZA20]. Compared with previous RL and evolution-based

NAS methods, using a performance predictor can reduce the number of networks

evaluated from scratch. However, training all the architectures in the candidate

pool fully is still extremely computationally expensive. Most complementary ad-

vances alone this line focus on developing better predictors that require a smaller

training pool [DCA20, WNS19, YZA20], but the potential to further cut down

the search cost by reducing the training length of individual architectures in the

pool has not drawn much attention.

2.10.2 Improving the efficiency of predictor-based NAS with early

termination and learning to rank

Inspired by successive halving [JT16], our key idea is that the learning process of

poor architectures can be terminated early to avoid wasting budgets. However,

it is non-trivial to integrate successive halving to predictor-based NAS formu-

lations. Firstly, predictor-based algorithms iteratively add new architectures to

the candidate pool [DCA20, WNS19, YZA20], whereas regular successive halving

only removes underperforming candidates from the initial pool. Secondly, with

successive halving, architectures in the pool will be trained for different number

of epochs, so their validation accuracy are not directly comparable in a semanti-
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cally meaningful way. Standard regression-based predictor fitting, which requires

the exact validation accuracy for each architecture when fully trained, will be

problematic in this setting.

To tackle those challenges in a unified way, we introduce RANK-NOSH, an

efficient predictor-based framework with significantly improved search efficiency.

RANK-NOSH consists of two parts. The first part is NOn-Uniform Successive

Halving (NOSH), which describes a multi-level scheduling algorithm that allows

adding new candidates and resuming terminated training process. It is non-

uniform in the sense that NOSH maintains a pyramid-like candidate pool of

architectures trained for various epochs without discarding any candidates. For

the second part, we construct architecture pairs and use a pairwise ranking loss

to train the performance predictor. The predictor is essentially a ranking network

and can efficiently distill useful information from our candidate pool consisting

of architectures trained for different epochs. Moreover, the proposed framework

naturally integrates recently developed proxies that measure architecture perfor-

mance without training [AMD21, CGW21, MTS20], which allows more architec-

tures to be included in the candidate pool at no cost.

2.10.2.1 Experimental Results

On DARTS Space, RANK-NOSH achieves an average test error of 2.53% on

CIFAR-10 with over 5x search budget reduction than previous SOTA predictor-

based NAS method arch2vec, which obtains an average test error of 2.56%.
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2.11 Limitations of differentiable architecture search

While Differentiable Architecture Search (DARTS) offers a promising framework

for efficient neural architecture search, its practical application is significantly

hampered by limitations in the search space. Currently, the search space in

DARTS is defined by a set of high-level operations (e.g., convolution, skip con-

nection, pooling). This restricts the candidate architectures to human-designed

concepts, primarily CNNs. Consequently, recent innovations like transformers

cannot emerge from this limited search space. This raises a crucial question: how

can we define a search space that is both compact and generic enough to gener-

ate truly novel networks? Our key inspiration comes from modern deep learning

libraries, where architectures are internally represented as computation graphs.

By constructing a search space of computation graphs, we can represent a broader

range of architectures. This approach transcends architecture design and extends

to any machine learning module representable as a computation graph. In the

next section, we delve into a concrete application of this idea: optimizer search.
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CHAPTER 3

Generic Search Space

3.1 Problem settings of optimizer search

Motivated by a vision of democratizing machine learning, the central objective for

automated machine learning (AutoML), such as automated architecture [ZL17,

LSY19b, WCC20] / optimizer [BZV17, ADG16, ZCH21, LM16, CCC21, CHC17]

/ loss [LYL19] / augmentation search [LSY19a], lies in reducing the need for

expert design on a diverse set of tasks. To achieve this goal, it is critical for

AutoML systems to exhibit a high level of efficiency, so that they can be directly

applied to a variety of tasks without consuming a humongous amount of comput-

ing resources. A widely successful example of such an effort is DARTS [LSY19b]

in Neural Architecture Search (NAS), which reduces the search cost from thou-

sands of GPU days of early RL-based algorithms to a single digit, enabling direct

application of NAS systems to a wide range of tasks [CLQ20].

Inspired by the success of efficient NAS methods, we turn our attention to

another important but much less studied area of AutoML - Automated opti-

mizer search, where an efficient, scalable and generalizable framework

is still absent. Optimizer search aims to automatically design a suitable update

function that takes gradients as inputs and produces update directions for the op-

timizee’s parameters. Pioneering work in this area, coined Learning to Optimize

(L2O), adopts a data-driven approach by replacing human-designed update rules
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with a learnable parametric function [ADG16, LM16, CHC17, CCC21]. However,

parametric optimizers are fundamentally not scalable to large models or datasets,

as inferring its parameters typically requires expensive meta-learning steps such

as backpropagating through gradient descent [BZV17, ADG16, ZCH21]. More-

over, the learned optimizer often generalizes poorly to even minor variants of its

training task (Figure 3.3) [ADG16, ZCH21]. Poor scalability and generalization

prevent L2O from being served as a general-purpose optimizer search framework

that can be directly applied to tasks of interest.

The aforementioned limitations of parametric optimizers bring our attention

to another line of method that searches over the discrete space of non-parametric

update functions, which generally exhibit the same level of scalability and gener-

ality as human-designed optimizers [BZV17, RLS20]. NOS-RL [BZV17] extends

early RL-based NAS framework [ZL17] to optimizer search, proposing to learn a

sequential controller to produce optimizer update rules according to a predefined

pattern. However, NOS-RL is sample inefficient, requiring over 10k evaluations to

find good candidates. More recently, AutoML-Zero [RLS20, CLH22] proposes to

search over the vast space of computer codes for the entire ML pipeline (including

the optimizer). The excessive generality of its search space makes it even more

costly to run than RL-based method. The search cost of existing non-parametric

optimizer search frameworks makes them computationally prohibitive not only

for practitioners to apply but also for researchers to analyze.

With the goal of democratizing research and practical applications of auto-

mated optimizer design, we introduce the first efficient, scalable, and generaliz-

able optimizer search framework that can be directly applied to a wide range

of tasks. We observe that non-parametric update rules are essentially mathe-

matical expressions, with an innate tree structure where nodes are elementary
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math operators and edges represent their I/Os. Consequently, generating an up-

date rule can be viewed as progressively appending nodes to the expression tree

until it is complete. Inspired by this observation, we re-imagine the optimizer

search space as a super-tree of mathematical expressions. Each leaf node on the

super-tree contains an optimizer, and the path towards it represents the genera-

tion process of that optimizer’s underlying expression. With the tree-structured

search space, optimizer search can be naturally formulated as a path-finding

problem, allowing a wide range of well-established tree-traversal methods to be

used as the search algorithm. We show that a simple adaptation of Monte Carlo

Sampling [ENP19, SZS20], equipped with our proposed rejection sampling and

equivalent-form detection, can already produce remarkable results on our search

space within a fraction of budgets compared with NOS-RL (∼ 1%).

We extensively evaluate the proposed framework on a diverse set of learn-

ing tasks: digit classification with MNISTNET [ADG16], image classification

with ConvNet [BZV17], graph learning with (Cluster-)GAT [VCC17, CLS19],

norm-bounded adversarial attack on robustly trained models [MMS17a, CH20b,

CAS20], and BERT fine-tuning on NLP datasets [KT19, WDS20]. These tasks

cover both constraint and unconstrained optimizations and span over a large va-

riety of models and datasets. Despite the simplicity, the proposed framework is

able to discover update rules that surpass human-designed optimizers and prior

optimizer search methods, with a budget of only 128 evaluations. We hope the

proposed framework could lower the barrier of entry to practical non-parametric

optimizer search, thereby providing an entry point for researchers and practition-

ers from ML community and beyond to study and utilize automated optimizer

search systems.
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3.2 Efficient, scalable and generalizable framework for op-

timizer search

3.2.1 Optimizer design space

Notations and problem formulation Deep learning tasks are frequently

expressed as optimizing a loss function L(·) defined over parameter domain

θ ∈ Θ. The minimizer of L can thus be obtained by θ∗ = arg minθ∈Θ L(θ).

For differentiable functions, a standard optimizer typically takes the form of it-

erative gradient descent: θt+1 = θt − γ ∗ ϕ(∇θL(θt)), where t is the current

iteration, γ is the learning rate and ϕ denote the update function. Existing

optimizers primarily differ in their design of update function ϕ; For example,

vanilla gradient descent uses identity mapping ϕ(x) = x as the update func-

tion, whereas Adam adopts a momentum-based dynamic learning rate schema:

ϕ(∇θL(θt)) = m(∇θL(θt))/
√
m((∇θL(θt))2), where m(·) denotes the momentum

function with an internal state.

The goal of optimizer search is to automatically find a suitable update func-

tion ϕ over some hypothesis space Φ. The hypothesis spaces used in prior work

can be divided into two categories: non-parametric and parametric spaces. Most

human-designed optimizers belong to the first category, where the update func-

tion ϕ is not trainable. Learnable optimizers, such as L2LGD2 [ADG16] and

SymbolicL2O [ZCH21], fall into the second category. Our work mainly focuses

on non-parametric optimizer search, with the goal of providing an efficient, scal-

able and generalizable optimizer search framework that can be directly apply to

various tasks.
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Optimizer update rules as expression trees The first step toward such

a framework is to understand the structure of non-parametric optimizers. We

realize that, fundamentally, optimizers are mathematical expressions consisting

of elementary operators (+, −, sign(), inputs, e.t.c.). Math expressions have

an inherent tree structure that preserves its order of execution, where nodes are

operators and edges represent their I/Os. For instance, Diagram 3.1 shows the

expression tree of Adam [KB14]:

/
√

m2

m1

Diagram 3.1: Adam optimizer

log(| · |)

+

decay()sign()

g

Diagram 3.2: Our discovered Optimizer
for adversarial attack

where m1 and m2 denote the first and second order momentum (which can

also be broken down into their own expression trees).

Therefore, the generation of an update rule, as a mathematical expression,

can also be conducted via top-down node selection: Take Adam as an example,

we first select division (/) as the root node. For its left child, we pick m1, which

is a leaf node and thus ends the branch. For the right child, we select
√

, and

subsequently pick m2 to follow it. At this point, there is no empty branches left,

and we obtain the complete update rule for Adam.

root(<>)

g (SGD)· · ·· · ·< L > / < R >

m1/ < R >

m1/
√
<>

m1/
√
m2 (Adam)

<>→ m2

< R >→
√

· · ·
< L >→ m1

<>→ / <>→ g

Figure 3.1: An illustration of travers-
ing the super-tree to discover Adam and
SGD.

A tree-structured search space In-

spired by the completion process of up-

date rules, we rearrange all expressions

into a super-tree, where each leaf node

contains an update rule and each path

represents its completion process. The

super-tree can be generated in a top-
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down manner: Starting from the root

node with an empty update rule, we generate each of its child nodes by in-

serting a different operator into the update rule, and repeat this process for the

generated nodes. Consequently, an optimizer can be sampled by traversing the

super-tree until a leaf node is reached. Since the super-tree can grow infinitely

deep, it is often desirable to restrict the tree to a predefined depth N , where

only the paths that can be completed within depth N are included. Figure 3.1

provides an instantiation of our super-tree, where the paths leading to Adam and

SGD optimizers are displayed as an example.

The benefit of arranging the optimizer space into a tree is two folds. Firstly,

the tree-based search space is tight:

Proposition 3. Define the length of an update rule as the number of operators

it includes, then the above tree-based search space is tight: a super-tree with a

maximum depth of N covers all update rules of length no greater than N .

In a tight search space, all optimizers can be represented at the right level of

complexity, allowing them to be visited by the search algorithm without exploring

unnecessarily deep into the super-tree. Although tightness is a fairly obvious

result for our space, it is not the case for the previous search space defined in

NOS-RL, as we will explain later. Secondly, with our super-tree, optimizer search

can be naturally formulated as a path-finding problem, allowing a variety of well-

established tree traversal methods to be deployed as search algorithms.

Contents To concretize the content of the search space, we allow three types

of operators in the optimizer update rule:

• a set of p1 unary operators (e.g. log(| · |), exp(·),
√

| · |, sign(·), drop(·))
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• a set of p2 binary operators (e.g. +, −, ×, /, pow(·, ·))

• a set of L leaf values (input operators) containing gradient-based terms (e.g.

g, m1), decays (e.g. cosine decay), and constants (e.g. 1, 2)

This categorization of mathematical operators is not new, as it is also adopted

in symbolic math solver [LC19] and NOS-RL [BZV17].

Comparison with NOS-RL’s search space Although both NOS-RL [BZV17]

and our framework use elementary math operators as building blocks for optimiz-

ers, they have little in common in terms of the arrangement of the search spaces.

Optimizers in NOS-RL’s search space are formed by a chain of predefined motifs:

b(u(I), u(I)), where b, u, I denote binary, unary and input operators. Due to the

fixed structure of such motifs, NOS-RL’s search space is not tight: there exist

many optimizers that take extra longer sequences to express, potentially lowering

their chance of being discovered by the search algorithm. For instance, Diagram

3.2 shows an optimizer of length 5, but it takes (10 − 1) nodes (two chained mo-

tifs) to represent it under NOS-RL’s arrangement; Moreover, NOS-RL’s search

space also requires extra bypass operators (e.g. u(x) = x and b(x, y) = x) to

cover even human-design optimizers such as Adam and PGD, further increasing

the complexity. In contrast, our representation of optimizers is directly inspired

by the innate structure of its underlying mathematical expressions, resulting in

a tight tree-based search space. In our search space, optimizer search can be

naturally formulated as a form of top-down path-finding problem. In the next

sections, we will detail our choice of algorithms for traversing the super-tree, as

well as several techniques that leverage the characteristics of optimizer update

rules to boost the sample efficiency.
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3.2.2 Monte Carlo Sampling for tree traversal

We adopt a simple adaptation of Monte Carlo Sampling to tree traversal [Shr14,

ENP19, SZS20] (MCT) as the search algorithm. The idea is to assign scores to

the nodes in the super-tree (Figure 3.1), and use these scores to guide the tree

traversal. We define the score of a node v as a Monte Carlo estimation over

unrolling steps from v: If v is an internal node, we randomly generate a set of

unrolled paths from v to the corresponding leaf nodes, and take the average score

of the resulting optimizers as the score for v; If v is a leaf node, we set its score

to 0 as it cannot be expanded. The search can thus be conducted as follows:

1). Starting from the root node v(0) at level 0, we generate all child nodes {v(1)}

of v(0) by inserting each operator from the candidate pool to the update rule in

v(0); 2). From there, we select the child node v∗(1) with the highest MC score

to expand, and move on to the next level; 3). The process is repeated until a

predefined maximum search level is reached.

Directly applying the MCT algorithm to optimizer search would not perform

well under limited search budgets, due to two unique characteristics of optimizer

update rules that challenge the sample efficiency of the Monte Carlo estimates.

Firstly, the majority of mathematical expressions, when deployed as optimizer

update rules, perform poorly or even would not converge. This is usually not the

case for other AutoML tasks such as neural architecture search, as most networks

in the search space perform reasonably well. The large body of poor-performing

optimizers not only consumes precious search budget, but also causes the MC

estimation to be unstable. Secondly, there exists many mathematical redundan-

cies in the expression space, for example: sign(sign(sign(x))) can be reduced to

sign(x), and
m1+

√
m2√

m2
is equivalent to m1√

m2
+ 1. Identifying and eliminating these

redundancies would not only save budget, but also prevent the sampling distri-
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bution from biasing toward mathematically simple and shallow update rules. To

address these issues and further boost the sample efficiency, we propose two sets

of techniques - rejection sampling and equivalent-form detection. When combined

with these techniques, the simple MCT algorithm becomes particularly effective

for the optimizer search task. We will discuss them in detail in the following

sections.

3.2.3 Rejection sampling

Figure 3.2: Performance distribu-
tion of optimizers after applying de-
scent test, under λd = 0.15 and a
batch size of 25.

Eliminating poor optimizers with a

train-free task-agnostic test Inspired

by the characteristics of optimizer update

rules, we develop a train-free task-agnostic

test to eliminate poor optimizers without

evaluating them. We propose a necessary

condition for a valid optimizer: it must pro-

duce an acute angle with steepest descent di-

rection (i.e. gradients). We check the valid-

ity of optimizers against this condition and

only evaluate those that pass the test. For the test to be task-agnostic, we feed the

optimizer with a batch of random Gaussian vectors in place of actual gradients.

Formally, the descent test can be written as:

Eu∼N (0,1)

[
cos(ϕ(∇θL),∇θL)

]
> λd

where λd is a predefined threshold. Although our descent test is by-no-mean

comprehensive, it can effectively rule out a large chunk of poor optimizers with

negligible false-negative rates, as demonstrated in Figure 3.2.
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Reducing the variance of MC estimates via score thresholding After

applying the descent test, there still remains a non-negligible portion of poor

optimizers. When sampled during the unrolling step, these optimizers would

drastically lower the Monte Carlo score of the stem node, causing the MC esti-

mation to exhibit high variance and thus become unreliable. This adverse effect is

especially severe under the efficient setting when the sample size is small. There-

fore, we propose to simply reject candidates with scores lower than a predefined

threshold, thereby removing them from the MC scores of the corresponding stem

nodes.

3.2.4 Detecting and handling redundancies in mathematically equiv-

alent forms

On-the-fly constraint tree-traversal for redundant path pruning One

benefit of formulating the search problem as top-down path-finding is that we

can easily apply constraints on-the-fly to eliminate undesirable branches - those

that lead to mathematically redundant expressions in our case. We identify three

main categories of such constraints:

• child operator that nullifies its parent’s operator. e.g. −(−x) = x, ln(ex) =

x

• child operator that is redundant under its parent. e.g. clip(clip(x)) =

clip(x)

• sequence of operators that reduces to a constant in the search space. e.g.√
|sign(x)| = 1

Enforcing these constraints during the traversal can effectively trim down the

search tree, allowing the algorithm to explore branches that lead to more diverse

35



and complex expressions.

Hashing mathematically equivalent expressions Besides enforcing con-

straints during the traversal, it is also important to detect mathematically equiv-

alent optimizers to avoid duplicated evaluations. One can always apply off-the-

shelf symbolic solvers to identify the equivalence of two expressions, ϕ and ϕ′, by

checking if (ϕ−ϕ′) can be reduced to 0. However, it could become extremely slow

as the pool of evaluated optimizers {ϕi}N1 gets larger and larger, since we need to

solve N pair of equations every time a new update rule is sampled. Instead, we

apply hashing to efficiently query the evaluated candidate pool for mathemati-

cally equivalent optimizers. Concretely, we assign each optimizer a hash code,

obtained by feeding a fixed probing vector as input to the optimizer and recording

its output. The probing vector is pre-sampled from Gaussian distribution. When

a newly sampled optimizer arrives, we only need to compare its code with the

hash table to check the existence of its equivalent form. Empirically, it is much

faster to run the proposed hashing-based checker than symbolic solvers.

3.3 Empirical evaluations on a diverse set of tasks

We extensively evaluate the proposed framework on a suite of tasks, covering

a variety of models and datasets. On standard benchmark tasks for optimizer

search, our method is able to discover optimizers that outperform its human-

designed and automatically searched counterparts. In addition, we also show

that the proposed framework enables automated optimizer design for many other

popular learning tasks, such as adversarial attack, GNN training, and BERT

finetuning.
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3.3.1 General setting

MCT algorithm Across all experiments, we limit the maximum level of MCT

traversal to 4, and set the number of Monte Carlo samples to 32 (a multiple of

8 for parallelism on 8-GPU servers) for each level. This amounts to a fixed total

budget of 128 evaluations. The maximum depth for the super-tree is set to 10,

which already covers many top-performing optimizers for various tasks. We use

a similar set of elementary operations as NOS-RL to build the optimizers, with

only minor adjustments for some tasks.

Optimizer evaluation We follow the default settings and hyperparameters for

each task, and only swap out the optimizer; This potentially puts our algorithm

at a disadvantage, as the hyperparameters are usually tuned around the default

optimizers. Before optimizer evaluation, we perform grid search on a small proxy

task (fewer steps) to find a proper learning rate. During the grid search, we

also aggressively terminate optimizers if their performance falls under a certain

threshold. Since early stopped optimizers consume fewer resources than a full

evaluation, we do not count them into the budget (number of evaluations).

3.3.2 Hand-written digit classification

Figure 3.3: Training loss trajectory on hand-written digit classification task (log
scaled). Each optimizer is evaluated for 4 random seeds. Our method is marked
in red.
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We first compare our method with the LSTM-based optimizer (L2LGD2) on

hand-written digit classification. Following L2LGD2 [ADG16], the goal is to

minimize the cumulative training loss of a single-hidden-layer MLP with Sigmoid

activation (MNISTNET) on the MNIST dataset; The search is conducted on

MNISTNET for 100 steps with a batch size of 128, and the discovered optimiz-

ers are subsequently transferred to three variants of MNISTNET with different

activations (MNISTNET-ReLU), number of hidden layers (MNISTNET-2Layer),

and dimensions (MNISTNET-Big). Under this setting, our method finishes in

0.92h on RTX 2080ti, much faster than L2LGD2 (2.62h).

As shown in Figure 3.3, our discovered optimizer (e.g. m1 + RMSprop ∗

exp(Adam)) achieves the lowest training loss under both direct search and trans-

fer settings. Notable, the LSTM-based parametric update function indeed con-

verges faster when the number of steps is close to the search phase (black-dotted

vertical line on Figure 3.3). However, it extrapolates poorly to longer trajectories.

As the training proceeds, all other non-parametric optimizers eventually catch-

up, achieving much lower training loss. Moreover, LSTM-based optimizer also

generalizes poorly to other model variants (most noticeably MNISTNET-ReLU),

revealing its tendency to overfit the search task.

3.3.3 Image classification with ConvNet

We proceed to evaluate our method on the CIFAR-10 classification task proposed

in NOS-RL [BZV17]. The model of choice is a 2-layer ConvNet. Each layer of

this network contains a 32-filter 3x3 convolution with ReLU activation and batch

normalization. Following NOS-RL’s setting, for every optimizer, the best learning

rate is searched over a grid of {1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1} with 1 epoch of

training, and the discovered learning rate is subsequently used to train the model
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Table 3.1: Performance of automated search algorithms on CIFAR-10.

Optimizer
Test Accuracy

(%)
Search
Method

Search Budget
(#evaluations)

SGD 70.99% ± 2.12 manual -
SGD + Momentum 74.12% ± 0.44 manual -
Nesterov 74.15% ± 0.52 manual -
Adam 73.42% ± 0.56 manual -
RMSprop 71.42% ± 1.42 manual -
PowSign-ld 75.48% ± 0.45 RL on hand-crafted patterns ¿10,000
PowSign-cd 76.21% ± 0.16 RL on hand-crafted patterns ¿10,000
AddSign-ld 75.54% ± 0.39 RL on hand-crafted pattern space ¿10,000
AddSign-cd 76.07% ± 0.59 RL on hand-crafted pattern space ¿10,000
Ours 77.02% ± 0.19 MCT on super-tree space 128

for a longer period of time (5 epochs). Since NOS-RL’s implementation is not

open-sourced, we reproduce and compare with the two families of discovered

optimizers described in NOS-RL paper: AddSign and PowSign.

The results are summarized in Table 3.1. For NOS-RL, we display the per-

formance of the top 4 variants of PowSign and AddSign, which are obtained

after training the controller for over 10k evaluations (Figure 4 in the NOS-RL

paper [BZV17]). With only a fraction (∼1%) of the search budget, our frame-

work is able to discover optimizers (e.g. cos decay∗drop0.1(g)/linear decay) that

reach a test accuracy of 77.02%, topping both PowSign and AddSign optimiz-

ers and also human-designed ones by a sizable margin. The sheer reduction in

search cost and the improvement in search performance evince the efficiency and

effectiveness of the proposed framework for discovering better optimizers.

3.3.4 Adversarial attack

Next, we apply our framework to discover optimizers for constraint optimization.

We select adversarial attack, which aims at finding norm-bounded perturbations

in the input space that alter the model’s predictions. The de facto optimizer

used in adversarial attack is Projected Gradient Descent (PGD) [MMS17a]. We

consider the most popular l∞-norm setting. For l∞-norm bounded attack, PGD

takes the form of: x = ProjB∞
ϵ (xo)(x + γsign(∇xL(x)))), where B∞

ϵ (xo) rep-
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resents a ϵ ball around the original image xo w.r.t. l∞-norm. The models of

choice come from the AutoAttack library [CH20b], which holds a leaderboard

of top defense methods. Following their settings, we set ϵ = 8/255, and run

each optimizer once for 100 steps on every image from the test split [CH20b].

Table 3.2: Attack success rate of differ-
ent optimizers on top defense methods
on CIFAR-10.
Defense Models PGD APGD Ours

Carmon2019 (WRN-28-10) [CRS19] 37.83% 38.22% 38.35%

Gowal2020‡ (WRN-70-16) [GQU20] 31.10% 32.00% 32.00%

Gowal2020‡ (WRN-34-20) [GQU20] 40.05% 40.46% 40.50%

Gowal2020‡ (WRN-28-10) [GQU20] 33.65% 34.33% 34.34%

Sehwag2020‡ (WRN-28-10) [SWM20] 40.00% 40.43% 40.46%

Wu2020‡ (WRN-28-10) [WXW20] 36.41% 36.70% 36.78%

Wang2020‡ (WRN-28-10) [WZY19] 37.78% 38.16% 38.27%

Engstrom2019 (RN-50) [EIS19] 47.76% 48.25% 48.32%

Wong2020Fast (RN-18) [WRK20] 53.69% 54.11% 54.19%

‡ Methods that explore extra data during robust training.

On this task, we mainly search for

the update rule inside the projection

operator (e.g. sign() for PGD). The

search is conducted on the pretrained

Carmon2019 model [CRS19], and the

proposed optimizer is subsequently eval-

uated on other top defense meth-

ods for WideResNet (WRN-¡depth¿-

¡width¿) and ResNet (RN-¡depth¿). As

shown in Table 3.2, our discovered optimizer consistently outperforms PGD by a

sizable margin. Surprisingly, we found that the algorithm tends to pick log(| · |)

rather than sign(·) as the first operator, resulting in many log-based optimizers

that surpass sign-based PGD (e.g. log(|cos decay + sign(G)|)).

In addition to PGD, we also compare our log-based optimizer with the best

handcrafted and tuned optimizer for adversarial attack: Adaptive PGD (APGD) [CH20b];

The design of APGD is packed with domain expertise: it combines a well-tuned

momentum update rule with a conditional learning rate decay based on a hand-

crafted schedule and sophisticated decay conditions. However, the performance

of our automatically discovered optimizer rivals APGD across various defense

methods, despite of having a much simpler form. This result demonstrates the

potential of applying our framework to reduce the need of human expertise in
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designing optimizers for diverse tasks.

3.3.5 Node classification on graphs

Table 3.3: Performance of our discovered
optimizers against Adam on GATs on
five commonly used Graph datasets of
diverse size. Results that use the same
GAT implementations are grouped to-
gether.

Dataset Adam Ours

Products 77.49% ± 0.56† 80.15% ± 0.16

Cora 84.72% ± 0.32 85.20% ± 0.19

Citeseer 71.70% ± 1.03 73.10% ± 0.43

PubMed 78.20% ± 0.22 79.25% ± 0.70

PPI 97.53% ± 0.45‡ 98.13% ± 0.10‡

† Our reproduced accuracy using ogbn-

leaderboard’s implementation is lower than

the displayed number (79.23% ± 0.78).

‡ F1 Score

We next test our framework for opti-

mizing graph neural networks to clas-

sify nodes on graphs. The model

of interest is Graph Attention Net-

work (GAT) [VCC17], one of the most

widely used architectures in graph learn-

ing tasks. We compare our method

against Adam [KB14] - the standard

optimizer for optimizing GATs - on

five commonly used graph datasets:

OGBN-Product [HFZ20], Cora, Cite-

seer, PubMed, and PPI. Among them,

OGBN-Product is the largest in scale,

consisting of 2,449,029 nodes. Since standard GATs cannot scale to this dataset,

we instead adopt an adaptation of cluster-GCN [CLS19] to GAT as the testbed,

termed Cluster-GAT. Cluster-GAT trains standard GAT on smaller partitions of

the original graph, thereby allowing the model to be applied to large-scale graphs.

The results are summarized in Table 3.3. On all datasets, our search al-

gorithm is able to discover optimizers that outperform Adam. An interesting

observation is that the top-performing optimizers discovered for this task almost

always contain sign(·) operators (e.g. linear decay ∗ (sign(m1) − RMSprop)),

revealing the potential of adopting sign-based optimizers to improve the training

of graph neural networks.
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3.3.6 BERT fine-tuning on NLP datasets

Table 3.4: Performance of our dis-
covered optimizers for BERT fine-
tuning on GLUE tasks.

Dataset AdamW Ours

Cola 59.56 ± 2.04⋆ 60.89 ± 1.33⋆

MRPC 82.84 ± 0.57‡ 86.64 ± 0.94‡

STS-B 87.80 ± 1.14† 88.91 ± 0.30†

RTE 65.97 ± 1.56‡ 68.50 ± 1.93‡

WNLI 53.17 ± 5.49‡ 56.34 ± 0.00‡

⋆ Mathews Correlation.

† Spearman Correlation.

‡ Accuracy (%).

We also evaluate the proposed framework

on BERT finetuning task on GLUE bench-

mark [WSM18]. For this task, we follow

all configurations of the HuggingFace imple-

mentations: we finetune a pretrained BERT

(base cased) model for 3 epochs on Cola,

STS-B and RTE dataset, and 5 epochs on

MRPC and WNLI dataset. The batch size

is set to 32. We compare our discovered op-

timizers with the default AdamW. As shown in Table 3.4, our automatically

discovered optimizers (e.g. drop0.1(clip0.003(m1 −
√
|drop0.1(g3)| ∗ sign(m1))))

outperform AdamW on all datasets.

3.4 Conclusion

Despite the recent advancement of practical AutoML systems in automatizing

the design of architectures, data augmentation policies, and hyperparameters,

progress in automated discovery of optimizers is still inadequate due to the lim-

itations of prior methods in terms of 1). efficiency, 2). generalization, and 3).

scalability. In this paper, we introduce the first optimizer search framework that

meets all these criteria, allowing it to be directly applied to the tasks of interest.

The proposed framework demonstrates promising results across a variety of tasks,

from image classification, adversarial attack, to graph learning and BERT fine-

tuning. Our method by-no-mean solves the optimizer search problem, as there is

plenty of room for improvement on the algorithm and search space; Rather, our
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goal is to open up a new possibility for future development in non-parametric

optimizer search methods. We hope the proposed framework could democratize

research and applications of automated optimizer search, and stimulate interest

among researchers and practitioners.
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Part II

Inference: From Model Selection

to Prompt Optimization
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CHAPTER 4

When Model Selection Becomes Prompt

Optimization

4.1 Introduction

From Bayesian perspective, architecture and optimizer search performs model se-

lection: picking the best pretrained model for a given set of tasks. We show that

for Large Language Models, it transforms into prompt optimization. Our key

insight is that LLMs encompass a variety of powerful, conditional probabilistic

sub-models. These models share a unified parametric architecture with the un-

conditional parent LLM (Super Model), yet distinctive defined by their respective

prompts. Therefore, crafting prompts (by either Human or meta-LLMs) for LLM

is equivalent to searching over the hypothesis space spanned by these submodels.

The next section provides a theoretical justification for this connection.

4.2 Connection between model selection and prompting

optimization

LLMs pretrained on the next-token prediction task model the following joint

distribution of a sequence of tokens {wt}Tt=1

P (w1, w2, . . . , wT ) =
∏T

t=1
P (wt | wt−1, wt−2, . . . , 1) = fθ(wt | w1, w2, . . . , wt−1),
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where the conditional probabilities are parameterized by an auto-regressive model

f(·; θ) (e.g. Transformer) and each word wt is predicted given all the preceding

tokens. The pretraining objective minimizes the following negative log-likelihood:

min
θ

L(θ) = −
∑T

t=1
log fθ(wt | wt−1, . . . , w1). (4.1)

A key observation from Eq. equation 4.1 is that the training process optimizes

a “SuperNet” of conditional probabilistic models (CPM), each defined by an

instruction s: fs,θ(y|x) = fθ(y | x, s), where x is the input and s is the instruction

for a particular task. Therefore, with a fixed LLM, the set of natural language

prompts, denoted as S, provides a massive set of submodels for the user to select

from. For a given dataset {(xi, yi)}ni=1, finding the best prompt to minimize the

empirical loss,

min
s∈S

n∑
i=1

L((fs,θ(yi | xi))),

which essentially selects the best submodels from the pretrained ”SuperNet”.
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CHAPTER 5

Prompt Optimization for (Multimodal) Large

Language Models

5.1 Problem setting

Learning interpretable predictive models from annotated data remains a key chal-

lenge in human-centric AI. Given input-output pairs {(xi, yi)}, the objective is

to learn a function f : x → y that not only fits the data accurately but is also

interpretable. tIn this context, a strong form of ”interpretable” means that indi-

viduals with no prior domain knowledge can understand and apply the decision

rules demonstrated by f , facilitating the transfer of knowledge from AI to hu-

mans. This is crucial not only for enhancing the transparency of AI systems

but also for enabling humans to learn from these models, empowering various

human-in-the-loop applications such as scientific discovery, material synthesis,

and automatic data annotation [PMS16].

Consider an exemplar task of classifying species in Palworld [Pai24] - a newly

released Pokemon-style game - based on a few image-label pairs, as illustrated in

Figure 5.1. The ultimate goal is that even humans unfamiliar with Palworld can

replicate AI’s decisions by following the same predictive rules after examining

the model trained on the data. This task effectively represents the challenge

of extracting interpretable knowledge, such as species characteristics, from data.

The algorithm we propose in this paper learns a model following the decision rule
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illustrated in Figure 5.1, which is designed to be easily understood and reproduced

by humans. In essence, this problem can be viewed as discovering interpretable

knowledge (e.g., the properties of a species in Palworld) from the data.

Despite extensive research, the problem of developing a fully interpretable

predictive model has not been fully addressed. Traditional methods often face a

trade-off between expressiveness and interpretability: Deep neural networks, for

instance, are powerful yet operate as ”black boxes”. Although post-hoc expla-

nation methods attempt to make these models more transparent by identifying

influential features [ZCA17, PDS18, DG17, SGK17, STY17, ACO17], they do

not clarify the underlying decision-making processes and have no control over

the learning process. Directly learning interpretable models like (locally) lin-

ear [RSG16], tree-based [Lun17] often falls short in expressiveness, especially

with complex inputs like images.

To address this challenge, Neurosymbolic Programs (NSPs) [PMS16,

SZS20, CZ21, NVS21] offer a promising solution by modeling the decision rule as

a program incorporating both symbolic operations and neural network modules.

Despite this, the inherent trade-off between expressiveness and interpretability

persists. While the integration of neural modules enhances expressiveness, it

also compromises the program’s overall interpretability. Additionally, designing

effective symbolic operators requires significant expertise and is critical for the

performance of the resulting program, necessitating careful customization for each

specific dataset [PMS16, SZS20, CZ21].

Is it possible to harness the power of neural networks within Neurosymbolic

Programs without compromising interpretability? This paper presents an affir-

mative answer. Our key insight is that (Multimodal) LLMs encompass a variety

of powerful, conditional probabilistic sub-models defined by various prompts; and
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the learning of those models can be achieved via prompt optimization techniques.

This yields an infinite set of neural network-based operations that are inherently

interpretable and can serve as fundamental “learnable” building blocks within

Neurosymbolic Programs.

Building on this insight, we introduce a novel framework termed LLM-

Symbolic Programs (LSPs), defined and learned through LLMs. Our ap-

proach leverages a minimal Domain-Specific Language (DSL) set with only two

operators: prompted-LLM and conditional branching, yielding a classic decision-

making process structured as trees. We then propose a learning algorithm to

incrementally learn the tree using LLMs with prompt optimization. To thor-

oughly evaluate the efficacy of LSPs, we construct the Interpretable-Learning-

Benchmark of diverse predictive tasks, containing both synthetic and real-world

data across vision and text modalities. Our empirical findings show that LSPs

surpass the accuracy of both traditional XAI methods and LLMs prompted with

automatically learned instructions, all while maintaining human interpretabil-

ity. These results highlight the potential of LSPs to significantly enhance the

performance and utility of Multimodal LLMs in various applications.

5.2 Related Work

Prompt Optimization The essence of utilizing a generative language model

lies in crafting effective prompts. Recent advancements have aimed to auto-

mate this process, reducing the need for human effort through prompt opti-

mization [SRL20, ZMH22]. While pioneering efforts were mainly directed to-

wards various discrete optimization algorithms [SRL20, DWH22, ZWZ22], it has

been noted that advanced LLMs can revise prompts similarly to human engi-

neers [ZMH22, PIL23]. Since these initial efforts, a significant body of research
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has emerged, exploring various search algorithms including Monte Carlo Sam-

pling [ZMH22], beam search [PIL23], evolutionary search [YWL23a, FBM23,

XCD22, GWG23a, HSY23], and tree search [WLW23]. However, existing meth-

ods often treat the prompt as a single entity without explicit structure. From this

perspective, prompt optimization methods can be seen as simplified instances of

LSPs, where the program consists solely of one LLM module. While this simpli-

fication has shown promising results, as task complexity increases, the explicit

structuring within LSPs allows them to encode knowledge from data. This pro-

vides substantial advantages over conventional prompt optimization methods.

5.3 IL-Bench: 1st Interpretable-Learning Benchmark for

(M)LLMs

To address the lack of suitable benchmarks for evaluating the interpretable learn-

ing capabilities of (M)LLMs, we introduce the Interpretable-Learning Bench-

mark (IL-Bench). This new benchmark comprises a series of challenging tasks

that are not solvable through zero-shot methods by even the most advanced

(M)LLMs, such as GPT-4 and Gemini-1.5. IL-Bench includes 16 new symbolic

and real-context tasks unseen to the current model lineup. These tasks range

across vision and language modalities, providing a comprehensive and extensible

evaluation framework. Below, we provide a high-level summary of the key data

curation methods.

Symbolic tasks Drawing inspiration from language-independent IQ tests, we

generate set of synthetic datasets to evaluate the interpretable learning capabili-

ties of the models. These datasets utilize symbols to denote input variables and

their values; The input values are randomly assigned, and mapped to their labels
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based on a predefined set of rules. We also vary the number of variables, values,

and labels to generate datasets of increasing complexity. These symbolic tasks

enjoy several key benefits: 1. Known oracle rules, enabling precise evaluation

of learning ability. 2. Context independence, forcing the models to depend

solely on learned rules, without relying on external context. 3. Scalability, al-

lowing for the automated creation of an unlimited number of tasks with arbitrary

difficulty levels.

Textual classification tasks: converting vision dataset to text inputs

To evaluate model proficiency in intricate real-world scenarios, we utilize Fine-

Grained Visual Classification (FGVC) datasets [MRK13, WBW11, KP20, NZ08,

VBF15], such as CUB commonly used in XAI research. These datasets comprise

of objects within narrowly-defined, visually-similar categories that are particu-

larly challenging for the model to distinguish. To adapt these visual datasets for

textual evaluation, we convert them into text-based datasets using a captioning

model. In order for the task to be well-defined, the generated caption must cover

all visual features required for classification, which are usually very subtle for

FGVC datasets (e.g. the particular shape of a bird’s beak). To ensure the cap-

tions capture all essential visual features, we also provide contrastive examples

to the captioner (details in Appendix). The class names (e.g. Sea Albatross) are

also anonymized by symbols (e.g., class 1) to prevent the model from using label

names to “shortcut” the prediction process. Empirical results indicate that the

performance of existing text-based LLMs approximates that of random guessing

in zero-shot setting.

Visual classification Tasks: distinguishing novel visual concepts Due

to the extensive coverage of (M)LLM training data, evaluating models in a multi-
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Figure 5.1: Illustration of LLM-Symbolic vs. Neuro-Symbolic Program on
interpretable learning task. The goal is to develop a model that allows humans
with no prior knowledge to replicate AI’s decisions by following the same rules as the
model. While NSP (Top right) offers a certain level of interpretability, it heavily
relies on manually designing operators, and the inclusion of neural operators often re-
duces interpretability. In contrast, LSP (Bottom right) generates fully interpretable
programs with the help of versatile LLM modules.

modal setting presents a unique challenge. Despite our best efforts, all existing

image classification datasets we tested were already seen by at least one (M)LLM,

which can predict labels in a zero-shot manner. To address this, we curate seven

new datasets using screenshots from ”Palworld,” a recently released regional game

featuring various creature species similar to Pokémon. As this game was released

after the knowledge cut-off dates of the tested (M)LLMs, the models lack prior

information about these creatures, requiring them to rely solely on the knowledge

extracted from the dataset for predictions.

5.4 Interpretable Learning with LLM-Symbolic Program-

ming

This section explains our proposed framework: LLM-Symbolic Programs. Sec-

tion 5.4.1 reviews Neurosymbolic Learning method. Section 5.4.2 discusses uti-

lizing LLM to implement interpretable programs, including the Domain Specific
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Language (Section 5.4.2.1) and learning algorithm (Section 5.4.2.2).

5.4.1 Preliminaries on classical Neurosymbolic Learning

NeuroSymbolic Programming (NSP) [PMS16, SZS20, CZ21, FH17] represents

an innovative method for combining classical symbolic learning with contem-

porary neural networks, with the goal of building expressive and interpretable

models. NSP often consists of two main components: (1) a Domain Specific

Language (DSL) that specifies available operations of the program (akin to a

”search space”) and (2) a learning algorithm for finding the best program. The

resulting programs are structured, neuro-symbolic terms that follow the syntax

specified by the DSL.

Domain-Specific Language (DSL) DSL in NSPs comprises manually de-

fined operators, including interpretable symbolic (e.g. if-then-else) and expres-

sive neural components (e.g. cnn(x, θ)). These operators can be chained to

construct various tree-structured programs, a.k.a. computation graphs. equa-

tion 5.1 presents an example DSL used to construct the program for predicting

the creature species in Figure 5.1. Here, x and c represents inputs and constants,

and α denotes a sub-program:

α ::= x | c | Add(α1, α2) | Mul(α1, α2) | If α1 Then α2 Else α3 | cnn(x, θ) | Dist(α1, α2).

(5.1)

Co-optimization of program structure and learnable parameters In

NSPs, the construction of a program involves solving a combinatorial optimiza-

tion problem for both the program structure and the parameters of its learnable

operators (e.g. neural components). As the number of DSL operators increases,
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the complexity of this task grows exponentially. To make the search process

more tractable, existing research employs various approximation techniques to

efficiently identify viable candidates, including greedy tree search [SZS20], con-

tinuous relaxation [CZ21], distillation [FH17] and meta-learning [PMS16].

Limitations While the integration of symbolic and neural components in NSPs

represents a promising innovation, the incorporating of neural modules inevitably

introduces black-box components and makes the program non-interpretable. Re-

searchers have attempted to address this issue through two primary approaches:

restricting the DSL to only interpretable operators [SZS20, CZ21], or employ-

ing prototype learning to derive relatively interpretable neural modules [NVS21,

MXQ19, NJP21]. However, the DSL approach is not automatic, heavily relies on

domain expertise, and potentially overlooking crucial information not identified

by experts; Conversely, prototype learning aims to represent the concept of each

neural module by a set of representative samples, which is not guaranteed to

success.

5.4.2 LLM-Symbolic Programs

This section explores how LLMs can effectively be utilized to implement NSPs’

modules that are expressive, interpretable, and straightforward to learn with

LLMs.

5.4.2.1 Domain-Specific Language of LSPs

Traditional NSPs require manually designing a comprehensive DSL. However,

with LLM’s ability to represent a wide range of functions via different prompts,

we can significantly streamline the grammar required to build expressive and
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interpretable models. Specifically, for predictive models, we can build powerful

LSPs from a minimalist DSL with only three components: the input, conditional

branching, and LLM module:

α ::= x | switch({α == yi : αi}ki=1) | LLM(x, s). (5.2)

Here, input x represents the input data (text, image, etc); the conditional

branching switch({yi : αi}ki=1) forms the backbone of the program structure.

Each switch can be viewed as a node in a decision tree tree with k branches. It

will branch to αi if the sub-program α predicts yi. The LLM Module LLM(x, s)

serves as the inference engines. It means to prompting LLM to make a prediction

on input x under the instruction s.

Figure 5.1 (Bottom Right) shows an example program generated from above

DSL. During inference time, given a test query, we traverse the tree-structured

program in a top-down manner, assigning data to specific child node based on the

parent node’s predictions, until the leaf node is reached and the final response is

returned.

5.4.2.2 Learning algorithm

After defining the search space for program construction, we proceed to describe

the algorithm used to identify the optimal program. Similar to Neuro-Symbolic

Programming (NSP), our approach involves optimizing two key components:

• (1) LLM module optimization: Generating the rules from data for each

LLM module.

• (2) Program structure search: Determining how to expand the program

tree.
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Program Structure Search

LLM Module

LLM Module
LLM Module

Placeholder

Switch

Switch

Switch

Placeholder Placeholder

Placeholder Node with largest potential to improve

Learning LLM modules

<Instruction to Learner LLM>
First explain the patterns you observe from the above 
examples; Then provide 1 high-quality rule that can correctly 
predict the labels of those examples based on the patterns.

<Examples for learner LLM>
Input: "x1=A1; x2=B1; x3=C2"
Label: bar

Input: "x1=A2; x2=B1; x3=C2"
Label: han

Input: "x1=A2; x2=B1; x3=C2"
Label: han

Input: "x1=A1; x2=B1; x3=C2"
Label: bar

Input: "x1=A1; x2=B1; x3=C2"
Label: bar

<Response from Learner LLM>
Patterns:
- The label "bar" is associated with the input where x1=A1.
- The label "han" is associated with the input where x1=A2.

Rule:
If x1=A1, then the label is "bar"; if x1=A2, then the label is 
"han".

Dataset

Figure 5.2: Learning Algorithm for LSPs. The learning algorithm for LSPs con-
tains two parts: (1) program structure search (Left): This process is akin to
constructing a traditional decision tree. Starting from the root, the algorithm tra-
verses down the tree, iteratively splitting the training dataset based on the current
node’s predictions and expanding the leaf node with the highest prediction errors. (2)
LLM module optimization (Right): Here, a learner LLM is instructed to summa-
rize rules based on the observed data at its node.

Figure 5.2 illustrates the entire search process. The following sections will de-

scribe these two components respectively.

LLM modules optimization via summarizing predictive rules In Large

Symbolic Programs (LSPs), each LLM module is responsible for making decisions

on its designated data subset. While traditional NSPs optimize neural modules

through empirical risk minimization, LSPs can derive predictive rules directly

from observed data, a method we termed RuleSum. To achieve this, we leverage

the LLM’s powerful summarization capabilities [AFL23, GLD22, ZLD24, PD23],

and instruct a learner LLM to observe patterns from the data samples and sum-

marize them into concrete rules. The process is visualized in Figure 5.2 (right).

Program Structure Search LSP produces a tree-structured program where

each path represents a complete decision-making process. To discover the optimal

program, we employ a top-down tree traversal approach to expand the tree from

scratch. Starting from the root node of an empty program with the entire training

dataset:

• Step 1: Add an LLM(x, s) module to the root node.
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• Step 2: Optimize LLM(x, s) using the RuleSum algorithm.

• Step 3: Create child nodes for the root by adding a switch operator to the

program.

• Step 4: Assign training data to child nodes based on LLM(x, s)’s predictions.

• Step 5: Move to the highest-scoring child node, and repeat Steps 1–4 until

max iter is reached.

In essence, this search algorithm uses a divide-and-conquer strategy: it pro-

gressively partitions the training dataset into sub-branches based on the parent

node’s predictions, enabling the child LLM modules to further refine the pre-

diction. This approach simplifies the learning process for each LLM module and

makes the overall system more error-tolerant: the RuleSum algorithm only needs

to derive rules for a subset of the data, and any inaccuracies can be corrected by

subsequent child nodes.

Node scoring function for node selection During program structure search,

we prioritize the expansion of the node with the highest potential for program

improvement. Since nodes with a higher frequency of errors have greater room

for enhancement, we use error count as the scoring function. This metric, which

considers both the error rate and the size of the data subset handled by each

node, offers a straightforward yet empirically effective approach. Section 5.6

provides empirical evidence demonstrating the efficacy and robustness of this

metric against alternatives.

Complete Algorithm The above outline the learning process of a single pro-

gram (visualized in Figure 5.2. To enhance the full search pipeline, we integrate

beam search [PIL23] to avoid getting trapped in local minima. Specifically, each

iteration of the learning algorithm maintains and expands B trees, where B rep-
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resents the beam size.

5.5 Experimental Results

We adopt a comprehensive approach to extensively evaluate the effectiveness of

LSPs against various baselines under different settings. Our empirical study is

designed to validate the benefits of LSPs over alternative methods by addressing

the following research questions:

• Q1: How does LSP compare against traditional NSPs in expressive-

ness and interpretability? We assess this through both quantitative and

qualitative evaluations (human studies). (Section 5.5.2)

• Q2: Does LSP generalize better than traditional NSPs under domain

shifts? This question is explored in detail in (Section 5.5.2).

• Q3: Is the incorporation of explicit structures beneficial to LSPs?

We compare the structured LSP with vanilla prompt optimization, which ex-

emplifies a special case of LSP with a single LLM module. (Section 5.5.3)

• Q4: How effective are different LLMs in implementing LSP? We con-

duct cross-model experiments to evaluate the performance of various LLMs as

the computational backbone for learning and inference in LSP.

5.5.1 General settings

Evaluation For language tasks, we test popular LLMs, including GPT-3.5

(turbo-1104) [Dal21], GPT-4 (1106-preview) [Ope23], and Gemini-M (1.0-pro) [TAB23].

For vision tasks, GPT-4V (1106-vision-preview) and Gemini-Vision (1.5-flash) are

utilized. All experiments are repeated with 3 seeds.
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Table 5.1: Classification accuracy comparison with XAI methods on IL-
Bench-Vision. Here, all numbers for LSP are obtained with Gemini-Vision as the
learner and inference LLM, except for LSP (GPT-4V) which uses the larger GPT-4V
as the learner; Decision Tree, operating directly on pixel data, lacks human inter-
pretability. Key findings include: (1) Our method outperforms XAI baselines with an
average accuracy of 95.67%, which is over 10% higher than the nearest competitor. (2)
The program generated by LSP also demonstrates superior transferability to human
raters, as they are able to reproduce the predictions following rules learned by LSP.

IL-Bench-Vision Palworld

MLLM Method Mean Fire-1 Fire-2 Dragon-1 Dragon-2 Electric-1 Electric-2 Water-1

Gemini-M

Decision Tree [CG16] 68.20 91.11 ± 12.57 32.00 ± 9.80 68.33 ± 10.27 48.33 ± 20.95 82.67 ± 6.80 65.33 ± 13.60 66.67 ± 8.50

ProtoTree [NVS21] 84.33 100.00 ± 0.00 62.67 ± 12.36 98.33 ± 2.36 85.00 ± 4.08 100.00 ± 0.00 82.67 ± 9.98 61.67 ± 25.93

LSP 96.83 93.33 ± 0.00 92.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 95.00 ± 5.00 97.50 ± 2.50

LSP (GPT-4V) 95.67 96.67 ± 3.33 90.00 ± 6.00 90.00 ± 10.00 97.50 ± 2.50 100.00 ± 0.00 98.00 ± 2.00 97.50 ± 2.50

Human Rater
ProtoTree [NVS21] 72.74 83.33 ± 16.67 50.0 ± 10.0 100.0 ± 0.0 75.0 ± 0.0 83.33 ± 16.67 80.0 ± 0.0 37.5 ± 12.5

LSP (GPT-4V) 90.36 100.00 ± 0.00 70.00 ± 10.00 100.00 ± 0.00 87.5 ± 12.5 100.00 ± 0.00 100.00 ± 0.00 75.00 ± 25.00

Implementation details of LSP Our default model of choice is GPT-3.5

for language tasks and Gemini-Vision for vision tasks for cost efficiency, but

also examine cross-(M)LLM performance in Appendix. All LLM modules are

initialized with an empty instruction “none”.

5.5.2 Comparison with traditional interpretable learning methods

0.4 0.6 0.8 1.0
Percentage of Accuracy Pertained

DT

ProtoTree

LSP

LSP-GPT4

Figure 5.3: Accuracy reten-
tion rate on Out-Of-Distribution
variants of IL-Bench-Vision test-
sets. We compute the ratio of test
accuracy evaluated on OOD datasets
to the original test accuracy. LSP
shows strong transferability to OOD
data. Notably, the version using
GPT-4V as the learner retains 90-
100% of the original test accuracy.

We compare LSP with two established models

- ProtoTree [NVS21] and Decision Tree [CG16]

- both organize prediction process in tree-

structured formats. Among existing NSP

methods, the closest to ours is ProtoTree -

a highly interpretable NSP that learns a dis-

crete binary tree end-to-end, where each node

stores an image patch (”prototype”) and the

edges determine whether the prototype exists

within the query image. Note that ProtoTree

does not rely on an explicit DSL - we could not
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compare with methods based on explicit DSL since they require domain experts

to design those operation, while our goal is to automate the whole process. Since

ProtoTree only implements image tasks, this comparison also focus on the vision

tasks in IL-Bench.

Expressiveness The expressiveness of the learned programs is evaluated in

Table 5.1. LSP (GPT4) outperforms ProtoTree with an average accuracy of

95.67% - over 10% gain. Considering that GPT/Gemini has never observed the

images in our datasets before (curated after their knowledge cutoff), this result

suggests LSP is capable of formulating effective predictive rules from previously

unseen examples.

Interpretability We measure the interpretability of LSPs and NSPs by having

human raters make predictions based on visualizations of the learned programs

(See Appendix for evaluation protocols). This process essentially ”transfers”

knowledge from models back to human. Notably, many XAI methods fall short

of achieving this level of interpretability, with ProtoTree being a rare exception.

As summarized in Table 5.1, the program generated by LSP also demonstrates

stronger transferability to human raters, as they are able to largely reproduce

the predictions following rules learned by LSP.

Generalization under Domain Shift In contrast to traditional NSP models

that rely on parametric memory, LSP utilizes language instructions to encode

knowledge. This strategy significantly enhances robustness against variations

in visual attributes (domain shifts). To verify this advantage, we examine the

transferability of the learned programs to Out-of-Distribution (OOD) data, con-

structed using GPT-4V (See Appendix for details) As shown in Figure 5.3, LSP
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Table 5.2: Classification accuracy comparison with Prompt Optimization
methods on IL-Bench-Language. Key findings include: (1) LSP achieves ∼ 6%
accuracy gain over the second best method, PromptAgent, with comparable search and
inference costs. (2) Across synthetic Decision Tree datasets categorized by increasing
complexity of oracle decision rules (Easy, Medium, Hard), LSP consistently outperforms
other methods in maintaining high accuracy levels, demonstrating its superior ability
to reverse-engineer complex rules from observed data.

Text Benchmark Symbolic Caption

Method Mean Acc Search Cost Infer Cost DT-Easy DT-Medium DT-Hard Waxwing Waterthrush Jaeger Albatross Blackbird Swallow

APE [ZMH22] 67.42 270.60s 0.11s 100.00 ± 0.00 85.00 ± 4.42 75.67 ± 4.52 50.00 ± 2.72 45.00 ± 3.60 66.11 ± 2.83 48.89 ± 3.14 80.00 ± 3.12 56.11 ± 2.39

OPRO [YWL23a] 55.48 257.86s 0.14s 50.00 ± 1.08 50.17 ± 3.06 30.33 ± 2.62 57.22 ± 2.08 57.22 ± 4.16 76.67 ± 4.71 40.37 ± 3.43 78.06 ± 2.83 55.28 ± 1.04

APO [PIL23] 70.67 270.85s 0.08s 100.00 ± 0.00 96.67 ± 4.71 77.83 ± 11.90 56.11 ± 4.78 48.89 ± 4.16 70.00 ± 5.93 54.07 ± 9.70 74.17 ± 2.97 58.33 ± 1.36

TreePrompt†[SMR23] 65.64 301.52s 0.34s 100.00 ± 0.00 83.50 ± 6.68 57.83 ± 5.89 55.00 ± 7.20 53.33 ± 4.91 73.89 ± 1.57 47.78 ± 1.57 65.56 ± 0.39 53.89 ± 2.08

PromptAgent [WLW23] 72.40 220.95s 0.11s 97.67 ± 3.30 88.50 ± 8.44 64.33 ± 20.27 60.56 ± 4.78 56.67 ± 6.24 75.00 ± 3.60 74.44 ± 6.54 74.17 ± 1.36 57.22 ± 0.79

LSP (Ours) 78.53 232.54 0.13s 99.83 ± 0.24 99.00 ± 0.82 96.83 ± 0.85 65.83 ± 4.17 62.50 ± 0.83 80.00 ± 1.67 61.11 ± 1.11 78.75 ± 0.42 62.92 ± 0.42

† TreePrompt is a pre-LLM era prompt optimization methods. We adapt this method to support LLMs.

Table 5.3: Classification accuracy comparison with Prompt Optimization
methods on IL-Bench-Vision. LSP achieves an average accuracy of 96.83%, which
is ∼ 20% higher than the 2nd best method (APO).

Vision Benchmark Palworld

Method Mean Fire-1 Fire-2 Dragon-1 Dragon-2 Electric-1 Electric-2 Water-1

APE [ZMH22] 47.45 60.00 ± 0.00 38.00 ± 18.00 43.33 ± 3.33 42.50 ± 7.50 53.33 ± 0.00 25.00 ± 15.00 70.00 ± 15.00

OPRO [YWL23a] 28.09 13.33 ± 0.00 20.00 ± 0.00 30.00 ± 10.00 25.00 ± 0.00 53.33 ± 20.00 25.00 ± 0.00 30.00 ± 0.00

APO [PIL23] 76.38 70.00 ± 16.67 58.00 ± 10.00 96.67 ± 3.33 77.50 ± 2.50 90.00 ± 10.00 67.50 ± 2.50 75.00 ± 5.00

TreePrompt [SMR23] 67.20 60.00 ± 0.00 50.00 ± 6.00 93.33 ± 6.67 77.50 ± 2.50 53.33 ± 0.00 65.00 ± 20.00 70.00 ± 0.00
PromptAgent [WLW23] 66.33 53.33 ± 40.00 56.00 ± 4.00 96.67 ± 3.33 72.50 ± 17.50 63.33 ± 16.67 55.00 ± 20.00 67.50 ± 27.50

LSP (Ours) 96.83 93.33 ± 0.00 92.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 95.00 ± 5.00 97.50 ± 2.50

demonstrates exceptional resilience to domain shifts, compared with ProtoTree.

5.5.3 Comparison with prompt optimization methods

Since there exists a variety of PO method that primarily differ in the search

algorithm, we select one most representative method from each major category:

Monte Carlo sampling (APE) [ZMH22], evolutionary search (ORPO) [YWL23a],

beam search (APO) [PIL23], and tree search (PromptAgent) [WLW23]. We also

adapt TreePrompt [SMR23] - a pre-LLM method that fits a classic decision tree

to a set of pre-defined prompts - to LLMs. Since the main bottleneck for PO

methods is the candidate evaluation, we follow existing works and set the same

maximum number of candidate proposals for all methods (100 candidates).
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Results The empirical results indicate that incorporating explicit structures

significantly enhances performance of the programs on predictive tasks: LSP

consistently outperforms all vanilla prompt optimization methods, with a con-

siderable margin of 20.09% and 4.89% over the 2nd best methods on vision and

language tasks respectively. The advantages of integrating structured learning

are twofold: (1) It simplifies the learning process: LSP benefits from a divide-

and-conquer approach where each LLM-module node focuses solely on extracting

predictive rules for a specific subset of the data. (2) It streamlines the inference

process: We observe that LLMs tend to exhibit hallucination as the complexity

of the instructions increases (e.g., multiple conditional clauses. In contrast, LSP

mitigates this issue by ensuring that each LLM module contains simpler, more

manageable instructions.

Search cost analysis A key advantage of the structured prediction approach

in LSP is that theoretically, it can reduce inference costs when executing oracle

decision rules. This efficiency arises because, during prediction, only a small

subset of branches is executed for a given test input, and the prompt on each

branch is also much simpler due to divide-and-conquer. Consequently, we observe

empirically that LSP’s search and inference costs are comparable to those of

various prompt optimization baselines (Table 5.2).

5.6 Ablation Study

Convergence of LLM-Symbolic Program LSP LSP organizes instructions

into a tree-based structure. Such divide-and-conquer strategy simplifies the learn-

ing process. To verify this, we also plot the training trajectories for LSP across

various tasks. The training trajectory indicates the how fast a model fits the
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Figure 5.4: (a, b): Stronger LLMs as better LSP learners. In these experiments,
we keep the inference LLM fixed (GPT-3.5 for text and Gemini-V for images) while
swapping the learner LLM with GPT-4. With its larger parameter count, GPT-4
consistently achieves better performance in learning LSPs. (c, d): Statistics of
discovered programs. Averaged from the IL-Bench-Language tasks, the resulting
LSPs are generally shallow and sparse, indicating that the final prediction can be
reached within only a few steps.

observed examples. As Figure 5.5 demonstrates, LSP not only converges faster

but also achieves higher final accuracy compared to models that use unstructured

prompting techniques.

Different node scoring functions Table 5.4 summarizes the performance of

LSP using three different node scoring functions: (1). Error count. (2). Pre-

diction accuracy. (3). Random scoring. The results suggest that error count

performs more consistently across different tasks.

Robustness to meta-prompts LLM’s behavior is highly sensitive to prompt

formulation, where even minor variations in prompts might lead to significantly

different outcomes. To assess the robustness of LSP’s performance against vari-

ations in the meta-prompt - the prompt used by the learner LLM to generate

rules - we conducted experiments with three alternative prompts. These prompts

were paraphrased versions generated by distinct LLMs. The results, presented in

Table 5.4, indicate that LSP’s performance remains consistent across all meta-
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Figure 5.5: Convergence of different algorithms across time. We plot the
trajectory of training accuracy against the number of optimization rounds. The API
model is GPT-3.5. (1). LSP converges substantially faster than vanilla prompting; (2).
The search process does not introduce extra variances.

prompt variants, demonstrating robustness to prompt formulation.

Table 5.4: Comparison of Different
Node Scoring Functions on three tasks
from IL-Bench-Language. Despite its sim-
plicity, error count achieves more consistent
performance compared to alternative met-
rics.

Node Scoring DT-Hard Waxwing Waterthrush

Random 70.50 ± 11.01 62.22 ± 4.78 61.67 ± 1.36

Accuracy 80.33 ± 18.27 66.11 ± 7.86 54.44 ± 0.70

Error Count (LSP) 96.83 ± 0.85 65.83 ± 4.17 62.50 ± 0.83

Meta Prompt DT-Hard Waxwing Waterthrush

Paraphrase-1 97.50 ± 2.12 65.00 ± 4.91 66.11 ± 3.14

Paraphrase-2 98.50 ± 0.71 61.67 ± 2.36 62.22 ± 3.93

Paraphrase-3 99.33 ± 0.62 62.78 ± 2.83 63.89 ± 0.79

Original (LSP) 96.83 ± 0.85 65.83 ± 4.17 62.50 ± 0.83

Complexity of discovered programs

Our analysis of the statistics of learned

programs indicates that the complexity

of programs developed by LSP is quite

manageable: Most programs can reach a

final prediction within just three steps,

as illustrated in Figure 5.4c, and the tree

structures tend to be sparse, as shown in

Figure 5.4d. These observations confirm

that although theoretical maximum tree

expansion could grow exponentially with depth, in practice, LSPs operate effec-

tively without requiring overly complex structures.
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CHAPTER 6

Prompt Optimization for Diffusion Models

6.1 Problem settings

Large-scale text-based generative models exhibit a remarkable ability to gener-

ate novel content conditioned on user input prompts [OWJ22, TLI23, RBL22,

RDN22, SCS22, HCS22, YXK22, CZB23]. Despite being trained with huge cor-

pora, there still exists a substantial gap between user intention and what the

model interprets [ZMH22, FHF22, RBL22, RKH21, LLY23, OWJ22, RDN22].

The misalignment is even more severe in text-to-image generative models, as

they often rely on much smaller and less capable text encoders [RKH21, CBW23,

CHL22] than large language models (LLMs). As a result, instructing a large

model to produce intended content often requires laborious human efforts in

crafting the prompt through trials and errors (a.k.a. Prompt Engineering) [Artar,

WMM22, WA22, LC22, ZMH22, HCD22]. To automate this process for language

generation, several recent attempts have shown tremendous potential in utiliz-

ing LLMs to enhance prompts [PIL23, ZMH22, CCG23, GWG23b, YWL23b,

HCD22]. However, efforts on text-to-image generative models remain scarce and

preliminary, probably due to the challenges faced by these models’ relatively small

text encoders in understanding subtle language cues.
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DPO-Diff. This paper presents a systematic study of prompt optimization

for text-to-image diffusion models. We introduce a novel optimization framework

based on the following key observations. 1) Prompt engineering can be formulated

as a Discrete Prompt Optimization (DPO) problem over the space of natural lan-

guages. Moreover, the framework can be used to find prompts that either improve

(prompt enhancement) or destroy (adversarial attack) the generation process, by

simply reversing the sign of the objective function. 2) We show that for diffusion

models with classifier-free guidance [HS22], improving the image generation pro-

cess is more effective when optimizing “negative prompts” [And23, Woo22] than

positive prompts. Beyond the problem formulation of DPO-Diff, where “Diff”

highlights our focus on text-to-image diffusion models, the main technical contri-

butions of this paper lie in efficient methods for solving this optimization problem,

including the design of compact domain spaces and a gradient-based algorithm.

Compact domain spaces. DPO-Diff’s domain space is a discrete search space

at the word level to represent prompts. While this space is generic enough to

cover any sentence, it is excessively large due to the dominance of words irrelevant

to the user input. To alleviate this issue, we design a family of dynamically

generated compact search spaces based on relevant word substitutions, for both

positive and negative prompts. These subspaces enable efficient search for both

prompt enhancement and adversarial attack tasks.

Shortcut gradients for DPO-Diff. Solving DPO-Diff with a gradient-based

algorithm requires computing the text gradient, i.e., backpropagating from the

generated image, through all inference steps of a diffusion model, and finally to the

discrete text. Two challenges arise in obtaining this gradient: 1) This process in-

curs compound memory-runtime complexity over the number of backward passes
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through the denoising step, making it prohibitive to run on large-scale diffusion

models (e.g., a 870M-parameter Stable Diffusion v1 requires ∼750G memory to

run backpropagation through 50 inference steps [RBL22]). 2) The embedding

lookup tables in text encoders are non-differentiable. To reduce the computa-

tional cost in 1), we provide the first generic replacement for the text gradient

that bypasses the need to unroll the inference steps in a backward pass, allowing it

to be computed with constant memory and runtime. To backpropagate through

the discrete embedding lookup table, we continuously relax the categorical word

choices to a learnable smooth distribution over the vocabulary, using the Gumbel

Softmax trick [GSJ21, JGP16, DY19]. The gradient obtained by this method,

termed Shortcut Gradient, enables us to efficiently solve DPO-Diff regardless

of the number of inference steps of a diffusion model.

To evaluate our prompt optimization method for the diffusion model, we

collect and filter a set of challenging prompts from diverse sources including

DiffusionDB [WMM22], COCO [LMB14], and ChatGPT [OWJ22]. Empirical

results suggest that DPO-Diff can effectively discover prompts that improve (or

destroy for adversarial attack) the faithfulness of text-to-image diffusion models,

surpassing human-engineered prompts and prior baselines by a large margin. We

summarize our primary contributions as follows:

• DPO-Diff: A generic framework for prompt optimization as a discrete opti-

mization problem over the space of natural languages, of arbitrary metrics.

• Compact domain spaces: A family of dynamic compact search spaces,

over which a gradient-based algorithm enables efficient solution finding for

the prompt optimization problem.

• Shortcut gradients: The first novel computation method to enable backprop-

agation through the diffusion models’ lengthy sampling steps with constant
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memory-runtime complexity, enabling gradient-based search algorithms.

• Negative prompt optimization: The first empirical result demonstrating

the effectiveness of optimizing negative prompts for diffusion models.

6.2 Related work

Text-to-image diffusion models. Diffusion models trained on a large cor-

pus of image-text datasets significantly advanced the state of text-guided im-

age generation [RBL22, RDN22, SCS22, CZB23, YXK22]. Despite the success,

these models can sometimes generate images with poor quality. While some

preliminary observations suggest that negative prompts can be used to improve

image quality [And23, Woo22], there exists no principled way to find negative

prompts. Moreover, several studies have shown that large-scale text-to-image

diffusion models face significant challenges in understanding language cues in

user input during image generation; Particularly, diffusion models often generate

images with missing objects and incorrectly bounded attribute-object pairs, re-

sulting in poor “faithfulness” or “relevance” [HCD22, FHF22, LLY23, LLD22].

Existing solutions to this problem include compositional generation [LLD22], aug-

menting diffusion model with large language models [YWL23b], and manipulating

attention masks [FHF22]. As a method orthogonal to them, our work reveals that

negative prompt optimization can also alleviate this issue.

Prompt optimization for text-based generative models. Aligning a pre-

trained large language model (LLM) with human intentions is a crucial step to-

ward unlocking the potential of large-scale text-based generative models [OWJ22,

RBL22]. An effective line of training-free alignment methods is prompt opti-

mization (PO) [ZMH22]. PO originated from in-context learning [Dal21], which
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is mainly concerned with various arrangements of task demonstrations. It later

evolves into automatic prompt engineering, where powerful language models are

utilized to refine prompts for certain tasks [ZMH22, PIL23, YWL23b, PIL23,

HCD22]. While PO has been widely explored for LLMs, efforts on diffusion mod-

els remain scarce. The most relevant prior work to ours is Promptist [HCD22],

which finetunes an LLM via reinforcement learning from human feedback [OWJ22]

to augment user prompts with artistic modifiers (e.g., high-resolution, 4K) [Artar],

resulting in aesthetically pleasing images. However, the lack of paired contextual-

aware data significantly limits its ability to follow the user intention (Figure 6.2b).

Backpropagating through the sampling steps of diffusion models. Text-

to-image diffusion models generate images via a progressive denoising process,

making multiple passes through the same network [HJA20]. When a loss is

applied to the output image, computing the gradient w.r.t. any model com-

ponent (text, weight, sampler, etc.) requires backpropagating through all the

sampling steps. This process incurs compound complexity over the number of

backward passes in both memory and runtime, making it infeasible to run on

regular commercial devices. Existing efforts achieve constant memory via gradi-

ent checkpointing [WCH21] or solving an augmented SDE problem [NGH22], at

the expense of even higher runtime. In this paper, we propose a novel solution to

compute a “shortcut” gradient, resulting in constant complexity in both memory

and runtime.

6.3 Preliminaries on diffusion model

We provide a brief overview of relevant concepts in diffusion models, and refer

the reader to [Luo22] for detailed derivations.
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Denoising diffusion probablistic models. On a high level, diffusion mod-

els [HJA20] are a type of hierarchical variational autoencoder [SRM16] that gen-

erates samples by reversing a progressive noising process. Let x0 · · ·xT be a series

of intermediate samples at increasing noise levels, the noising (forward) process

can be expressed as the following Markov chain:

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI) t = 1 ∼ T, (6.1)

where β is a scheduling variable. Using Gaussian reparameterization, sampling

xt from x0 can be completed in a single step:

xt =
√
ᾱtx0 +

√
1 − ᾱtϵ, αt = 1 − βt and ᾱt =

∏t

i=1
αi, (6.2)

where ϵ is a standard Gaussian error. The reverse process starts with a standard

Gaussian noise, xT ∼ N (0, I), and progressively denoises it using the following

joint distribution:

pθ(x0:T ) = p(xT )
∏T

t=1
pθ(xt−1|xt) where pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σ).

While the mean function µθ(xt, t) can be parameterized by a neural network

(e.g., UNet [RBL22, RFB15]) directly, prior studies found that modeling the

residual error ϵ(xt, t) instead works better empirically [HJA20]. The two strate-

gies are mathematically equivalent as µθ(xt, t) = 1√
αt

(xt − 1−αt√
1−ᾱt

ϵ(xt, t)).

Classifier-free guidance for conditional generation. The above formu-

lation can be easily extended to conditional generation via classifier-free guid-

ance [HS22], widely adopted in contemporary diffusion models. At each sampling

step, the predicted error ϵ̃ is obtained by subtracting the unconditional error from
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the conditional error (up to a scaling factor w):

ϵ̃θ(xt, c(s), t) = (1 + w)ϵθ(xt, c(s), t) − wϵθ(xt, c(“”), t), (6.3)

where c(s) is the conditional signal of text s, and the unconditional prior c(“”) is

obtained by passing an empty string to the text encoder. If we replace this empty

string with an actual text, then it becomes a “negative prompt” [And23, Woo22],

indicating what to exclude from the generated image.

6.4 DPO-Diff: Discrete Prompt Optimization for diffu-

sion models

This section lays out the components of DPO-Diff framework. Section 4.1 ex-

plains how to formulate the problem into optimization over the text space. This is

followed by the full algorithm for solving this optimization, including the compact

search space in Section 4.2, and the gradient-based search algorithm in Section

4.3.

6.4.1 Framework Overview

Our main insight is that prompt engineering can be formulated as a discrete

optimization problem in the language space, called DPO-Diff. Concretely, we

represent the problem domain S as a sequence of M words wi from a predefined

vocabulary V : S = {w1, w2, . . . wM |∀i, wi ∈ V}. This space is generic enough

to cover all possible sentences of lengths less than M (when the empty string is

present). Let G(s) denote a text-to-image generative model, and suser, s denote

the user input and optimized prompt, respectively. The optimization problem
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can be written as

min
s∈S

L(G(s), suser) s.t. d(s, suser) ≤ λ, (6.4)

where L can be any objective function that measures the effectiveness of the

learned prompt when used to generate images, and d(·, ·) is an optional constraint

function that restricts the distance between the optimized prompt and the user

input. Following previous works [HCD22], we use clip loss CLIP(I, suser) [o22] to

measure the alignment between the generated image I and the user prompt suser

— the Faithfulness of the generation process. Like any automatic evaluator

for generative models, the clip score is certainly not free from errors. However,

through the lens of human evaluation, we find that it is mostly aligned with

human judgment for our task.

This DPO-Diff framework is versatile for handling both prompt improvement

and adversarial attack. Finding adversarial prompts can help diagnose the failure

modes of generative models, as well as augment the training set to improve a

model’s robustness via adversarial training [MMS17b]. We define adversarial

prompts for text-to-image generative models as follows.

Definition 6.4.1. Given a user input suser, an adversarial prompt sadv is a text

input that is semantically similar to suser, yet causes the model to generate images

that cannot be described by suser.

Intuitively, Definition refadv aims at perturbing the user prompt without

changing its overall meaning to destroy the prompt-following ability of image

generation. Formally, the adversarial prompt is a solution to the following prob-
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lem,

min
s∈S

−L(G(s), suser) s.t. d(s, suser) ≤ λ (6.5)

where the first constraint enforces semantic similarity.

To apply DPO-Diff to adversarial attack, we can simply add a negative sign

to L, and restrict the distance between s and suser through d. This allows equa-

tion 6.5 to produce an s that increases the distance between the image and the

user prompt, while still being semantically similar to suser.

6.4.2 Compact search space design for efficient prompt discovery

While the entire language space facilitates maximal generality, it is also unnec-

essarily inefficient as it is popularized with words irrelevant to the task. We

propose a family of compact search spaces that dynamically extracts a subset of

task-relevant words to the user input.

6.4.2.1 Application 1: Discovering adversarial prompts for model di-

agnosis

Synonym Space. In light of the first constraint on semantic similarity in equa-

tion 6.5, we build a search space for the adversarial prompts by substituting each

word in the user input suser with its synonyms [ASE18], preserving the meaning

of the original sentence. The synonyms can be found by either dictionary lookup

or querying ChatGPT.
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6.4.2.2 Application 2: Discovering enhanced prompts for image gen-

eration

While the Synonym Space is suitable for attacking diffusion models, we found that

it performs poorly on finding improved prompts. This is in contradiction to LLMs

where rephrasing user prompts can often lead to substantial gains [ZMH22]. One

plausible reason is that contemporary diffusion models often rely on a small-scale

clip-based text encoders [RKH21, CBW23, CHL22], which are weaker than LLMs

with many known limitations in understanding subtle language cues [FHF22,

LLD22, YWL23b].

Inspired by these observations, we propose a novel solution to optimize for

negative prompts instead — a unique concept that rises from classifier-free guid-

ance [HS22] used in diffusion models (Section 6.3). To the best of our knowledge,

we provide the first exploratory work on automated negative prompt optimiza-

tion.

Antonym Space. We propose to build the space of negative prompts based on

the antonyms of each word, as opposed to the Synonym Space for adversarially

attacking the model. Intuitively, the model’s output image can safely exclude the

content with the opposite meaning to the words in the user input, so it instead

amplifies the concepts presented in the positive prompt. Similar to synonyms,

the antonyms of words in a user prompt can be obtained via dictionary lookup

or ChatGPT.

Negative Prompt Library (NPLib). We further crawl and filter a library

of human-crafted generic negative prompts to augment the antonym space. This

augmentation enhances the image generation quality and provides a safeguard
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Figure 6.1: Computational procedure of Shortcut Gradient (Bottom) v.s. Full
Gradient (Top) on text.

when a user input has a small number of high-quality antonyms. We term our

library NPLib, which will be released with our codebase.

6.4.3 A Gradient-based algorithm as a DPO-Diff solver

Due to the query efficiency of white-box algorithms leveraging gradient informa-

tion, we also explore a gradient-based method to solve equation 6.4 and equa-

tion 6.5. However, obtaining this text gradient is non-trivial due to two major

challenges. 1) Backpropagating through the sampling steps of the diffusion in-

ference process incurs high complexity w.r.t. memory and runtime, making it

prohibitively expensive to obtain gradients. 1 2) The embedding lookup ta-

ble used in the text encoder is non-differentiable. Section 6.4.3.1 introduces the

Shortcut Gradient, a replacement for text gradient with constant memory and

runtime. Section 6.4.3.2 discusses how to backpropagate through the embedding

lookup table via continuous relaxation. Section 6.4.3.3 describes how to sample

from the learned distribution via evolutionary search.

1The text gradient is completely different from “Textual Inversion” [GAA22], as the later
can be obtained in the same way as regular gradients used in diffusion training, requiring only
a single backward pass.
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6.4.3.1 Backpropagating through diffusion sampling steps

Shortcut gradient. Backpropagating through the diffusion model inference

process requires executing multiple backward passes through the generator net-

work [WCH21, NGH22]; For samplers with 50 inference steps (e.g., DDIM [SME20]),

it raises the runtime and memory cost by 50 times compared to a single diffusion

training step. To alleviate this issue, we propose Shortcut Gradient, an efficient

replacement for text gradients that can be obtained with constant memory and

runtime.

The key idea behind the Shortcut Gradient is to reduce gradient computation

from all to K sampling steps, resulting in a constant number of backward passes.

The entire pipeline (Figure 6.1) can be divided into three steps:

(1) Sampling without gradient from step T (noise) to t. In the first step, we

simply disable gradients up to step t. No backward pass is required for this step.

(2) Enable gradient from t to t−K. We enable the computational graph for

a backward pass for K step starting at t.

(3) Estimating x0 from xt−K through closed-form solution. To bypass the

gradient computation in the remaining steps, simply disabling the gradient like

(1) is no longer valid because otherwise the loss applied to x0 could not propagate

back. Directly decoding and feeding the noisy intermediate image xt−K to the

loss function is also not optimal due to distribution shift [DN21]. Instead, we

propose to use the current estimate of x0 from xt−K to bridge the gap. From the

forward equation of the diffusion model, we can derive a connection between the

final image x̂0 and xt−K as x̂0 = 1√
ᾱt−K

(xt−K −
√

1 − ᾱt−Kϵt−K). In this way,

the Jacobian of x̂0 w.r.t. xt−K can be computed analytically, with complexity

independent of t.
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• Remark 1: The estimation is not a trick — it directly comes from a mathe-

matically equivalent interpretation of the diffusion model, where each inference

step can be viewed as computing x̂0 and plugging it into q(xt−K |xt, x̂0) to ob-

tain the transitional probability.

• Remark 2: The computational cost of the Shortcut gradient is controlled by

K. Moreover, when we set t = T and K = T , it becomes the full-text gradient.

Strategy for selecting t. At each iteration, we select a t and compute the gra-

dient of the loss over text embeddings using the above mechanism. Empirically,

we found that setting it around the middle point and progressively reducing it

produces the most salient gradient signals.

6.4.3.2 Backpropagating through embeddings lookup table

In diffusion models, a tokenizer transforms text input into indices, which will

be used to query a lookup table for corresponding word embeddings. To allow

further propagating gradients through this non-differentiable indexing operation,

we relax the categorical choice of words into a continuous probability of words.

It can be viewed as learning a “distribution” over words. We parameterize the

distribution using Gumbel Softmax [JGP16] with uniform temperature (η = 1):

ẽ =

|V|∑
i=1

p(w = i;α)ei , p(w = i;α) =
exp ((logαi + gi)/η)∑|V|
i=1 exp ((logαi + gi)/η)

, (6.6)

where α (a |V|-dimensional vector) denotes the learnable parameter, g denotes

the Gumbel random variable, ei is the embedding of word i, and ẽ is the mixed

embedding.
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6.4.3.3 Efficient sampling with Evolutionary Search

After learning a distribution over words, we can further sample candidate prompts

from it via random search. However, random search is sample inefficient, as

evidenced in AutoML literatures [WDZ19]. We thus adopt an evolutionary al-

gorithm [Gol89] to search for the best candidate instead, which is simple to

implement yet demonstrates strong performance. We view sentences as DNAs

and the word choices as nucleotides; To initiate the evolution process, we fill the

population with samples from the learned distribution and apply a traditional

Evolution Algorithm to find the best one.

Remark: Blackbox Optimization. When the internal state of the model is

accessible (e.g., the model owner provides prompt suggestions), gradient infor-

mation can greatly speed up the search process. In cases where only forward API

is available, our Evolutionary Search (ES) module can be used as a stand-alone

black-box optimizer, thereby extending the applicability of our framework. We

ablate this choice in Section 6.6.1, where ES archives descent results given enough

queries.

6.5 Experiments

6.5.1 Experimental Setup

Dataset preparation. To encourage semantic diversity, we collect a prompt

dataset from three sources: DiffusionDB [WMM22], ChatGPT generated prompts [OWJ22],

and COCO [LMB14]. For each source, we filter 100 “hard prompts” with a

clip loss higher (lower for adversarial attack) than a threshold, amounting to 600

prompts in total for two tasks.
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User Input DPO-Diff

A vibrant sunset casting hues of orange and pink. The vibrant sundown casting tones of orange plus blush.

A group of friends gather around a table for a meal. A party of friends cluster around a surface for a food

oil painting of a mountain landscape grease picture illustrating one mountain view

(a) Adversarial Attack

User Input Promptist - Modifiers Negative Prompts by

DPO-Diff

The yellow sun was descending beyond

the violet peaks, coloring the sky with

hot shades.

by Greg Rutkowski and Raymond

Swanland, ..., ultra realistic digital art

red, soaring, red, valleys, white, floor,

Plain, body, focus, surreal

A dedicated gardener tending to a

meticulously manicured bonsai tree.

intricate, elegant, highly detailed, ...,

sharp focus, illustration, by justin

gerard and artgerm, 8 k

irresponsible, overlooking, randomly,

huge, herb, Cropped, complex, faces,

photoshopped

magical shapeshifting large bear with

glowing magical marks and wisps of

magic, forest...

D&D, fantasy, cinematic lighting, ...,

art by artgerm and greg rutkowski and

alphonse mucha

normal, stable, tiny, elephant, ...,

heaps, tundra, advance, Boring, black,

expired, perspective

(b) Prompt Improvement

Figure 6.2: Images generated by user input and improved negative prompts using
Stable Diffusion.
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Table 6.1: Quantitative evaluation of DPO discovered prompts. For each method,
we report the average spherical clip loss of the generated image and user input
over all prompts. Note that spherical clip loss normally ranges from 0.75 - 0.85,
hence a change above 0.05 is already substantial.

Prompt DiffusionDB COCO ChatGPT
User Input 0.76 ± 0.03 0.77 ± 0.03 0.77 ± 0.02
DPO-Adv 0.86 ± 0.05 0.94 ± 0.04 0.95 ± 0.05

(a) Adversarial Attack ↑

Prompt DiffusionDB COCO ChatGPT
User Input 0.87 ± 0.02 0.87 ± 0.01 0.84 ± 0.01
Manual 0.89 ± 0.04 0.88 ± 0.02 0.86 ± 0.03
Promptist 0.88 ± 0.02 0.87 ± 0.03 0.85 ± 0.02
DPO 0.81 ± 0.03 0.82 ± 0.02 0.78 ± 0.03

(b) Prompt Improvement ↓

Evaluation. All methods are evaluated quantitatively using the clip loss [CBK22],

complemented by qualitative evaluation by human judgers. We select Stable Dif-

fusion v1-4 as the base model. Each prompt is evaluated under three random

seeds (shared across different methods).

Optimization Parameters. We use the spherical clip loss [o22] as the objec-

tive function, which ranges between 0.75 and 0.85 for most inputs. The K for

the shortcut gradient is set to 1 since we found that it already produces effective

supervision signals. To generate the search spaces, we prompt ChatGPT for at

most 5 substitutes of each word in the user prompt. Furthermore, we use a fixed

set of hyperparameters for both prompt improvement and adversarial attacks.
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6.5.2 Discovering adversarial prompts

Unlike RLHF-based methods for enhancing prompts (e.g., Promptist [HCD22])

that requires fine-tuning a prompt generator when adapting to a new task, DPO-

Diff can be seamlessly applied to finding adversarial prompts by simply reversing

the sign of the objective function. These adversarial prompts can be used to

diagnose the failure modes of diffusion models or improve their robustness via

adversarial training [MMS17b].

Table 6.1a shows adversarial prompt results. Our method is able to perturb

the original prompt to adversarial directions, resulting in a substantial increase

in the clip loss. Figure 6.2a visualizes a set of intriguing images generated by the

adversarial prompts. We can see that DPO-Diff can effectively explore the text

regions where Stable Diffusion fails to interpret.

6.5.3 Prompt optimization for improving Stable Diffusion

In this section, we apply DPO-Diff to discover refined prompts to improve the

relevance of generated images with user intention. We compare our method

with three baselines: (1) User Input. (2) Human Engineered Prompts (available

only on DiffusionDB) [WMM22]. (3) Promptist [HCD22], trained to mimic the

human-engineered prompt provided in DiffusionDB. For DiffusionDB, following

Promptist [HCD22], we extract user input by asking ChatGPT to remove all

trailing aesthetics from the original human-engineered prompts.

Table 6.1b summarizes the result. We found that both human-engineered and

Promptist-optimized prompts do not improve the relevance. The reason is that

they change the user input by merely adding a set of aesthetic modifiers to the

original prompt, which are irrelevant to the semantics of user input and cannot
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Figure 6.3: Learning curves of different search algorithms in solving DPO.

improve the generated images’ faithfulness to user intentions. This can be further

evidenced by the examples in Figure 6.2b.

Human Evaluation. We further asks 5 human judgers to evaluate the gener-

ated images of each method on a manually filtered subset of 100 prompts. When

evaluated based on how well the generated image can be described by the user

input, the prompts discovered by DPO-Diff achieved a 64% win rate, 15% draw,

and 21% loss rate compared with Promptist.

6.6 Ablation Study

We conduct ablation studies on DPO-Diff using 30 randomly selected prompts

(10 from each source). Each algorithm is run with 4 seeds to account for the

randomness in the search phase.

6.6.1 Comparison of different search algorithms.

We compare four search algorithms for DPO-Diff: Random Search (RS), Evolu-

tion Prompt Optimization (EPO), Gradient-based Prompt Optimization (GPO),

and the full algorithm (GPO + ES). Figure 6.3 shows their performance under
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Table 6.2: Quantitative evaluation of optimizing negative prompts (w/ Antonyms
Space) and positive prompts (w/ Synonym Space) for Stable Diffusion.

Prompt DiffusionDB ChatGPT COCO
User Input 0.8741 ± 0.0203 0.8159 ± 0.0100 0.8606 ± 0.0096
Positive Prompt 0.8747 ± 0.0189 0.8304 ± 0.0284 0.8624 ± 0.0141
Negative Prompt 0.8579 ± 0.0242 0.8133 ± 0.0197 0.8403 ± 0.0210

different search budgets (number of evaluations)2; While GPO tops EPO under

low budgets, it also plateaus quicker as randomly drawing from the learned distri-

bution is sample-inefficient. Combining GPO with EPO achieves the best overall

performance.

6.6.2 Negative prompt v.s. positive prompt optimization

One finding in our work is that optimizing negative prompts (Antonyms Space)

is more effective than positive prompts (Synonyms Space) for Stable Diffusion.

To verify the strength of these spaces, we randomly sample 100 prompts for each

space and compute their average clip loss of generated images. Table 6.2 suggests

that Antonyms Space contains candidates with consistently lower clip loss than

Synonyms Space.

2Since the runtime of backpropagation through one-step diffusion sampling is negligible
w.r.t. the full sampling process (50 steps for DDIM sampler), we count it the same as one
inference step.
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CHAPTER 7

Conclusion

The journey of intelligence, from simple neural systems to the creation of ad-

vanced artificial intelligence, underscores the potential of self-evolving mecha-

nisms. AutoML embodies this principle by automating the search for optimal

machine learning components. While initially conceived as a tool for pipeline

optimization, its methodologies are now being repurposed and expanded in the

context of large foundation models.

This thesis establishes that AutoML’s core principles align with the chal-

lenges and opportunities presented by large-scale generative models. By framing

tasks like novel architecture, optimizer, and prompt engineering as instances of

a broader search problem, we demonstrate that AutoML can adapt to leverage

the latent capabilities of large language models and diffusion models. The explo-

ration of efficient search algorithms, generic search spaces, and novel optimization

methodologies reveals a promising avenue for maximizing the utility of foundation

models.

The findings presented here illuminate the role of AutoML in shaping the

future of machine learning, bridging foundational advancements with real-world

applications. As we move toward more scalable and adaptive AI systems, the

convergence of AutoML and foundational models offers a pathway toward re-

creating self-evolving mechanisms, taking us one step closer to realizing the vision

of AGI.
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