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Estimation of GNSS Atmospheric Delay in
Networked Systems

Jean-Bernard Uwineza∗

Advisor: Jay A. Farrell

✦

Abstract—This report explores different methods of estimating the at-
mospheric delay error in Global Navigation Satellite Systems (GNSS)
within a network of interacting agents. In the first part, we state the
problem and formulate the individual solution when there is no inter-
agent interactions, followed by the homogeneous centralized solution
when all agents can interact with a central node. We then show that a
distributed information-weighted average consensus solution converges
to the centralized solution. The second part considers the case of het-
erogeneous agents by exploring methods of combining estimates with
unknown correlations. We conclude by outlining some future directions.

1 INTRODUCTION

An important requirement in Intelligent Transportation Sys-
tems (ITSs) is the availability of accurate and reliable lo-
cation information. In navigation systems, and specially for
autonomous vehicles (AVs), this is the foremost requirement
as AVs require up to centimeter-level navigation accuracy,
high availability, and integrity [1], [2]. No individual tech-
nology can currently offer that level of performance, and
a suite of sensors needs to be used, with the Global Navi-
gation Satellite System (GNSS) sensors [3]–[5] as the main
provider of absolute positioning. Hence, to improve overall
navigation performance in AVs (and other applications),
GNSS-based positioning must be accurate and reliable.

The most prominent framework for achieving high stan-
dalone GNSS positioning accuracy is Differential GNSS
(DNSS). Local Area DGNSS (LADGNSS) approach uses
local networks of base stations to offer corrections to users
within a small geographical area. Cited accuracy levels in
the literature for LADGNSS are around 1–3 meters [6],
[7], which can fall short of the SAE J2945/1 specifications
for autonomous vehicles [8]. Besides accuracy, LADGNSS
is limited only to local applicability, making it unfeasible
to implement on continental geographical areas. The most
prominent alternative that has gained widespread adoption
is Precise Point Positioning (PPP), which offers very accu-
rate global corrections derived from external data sources
spread across the globe [9], [10]. PPP achieves centimeter-
level accuracy by using ionosphere-free pseudorange and
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carrier-phase observations from dual-frequency receivers, as
well as resolved carrier-phase integer ambiguities [11], [12].
The resolution of integer ambiguities depends of factors
such as local environmental conditions, the elevation, signal
strength, and number of available satellites. As a result, it
often takes several epochs for the resolution to converge.
However, there are various international organizations that
use networks of stations to provide real-time or near real-
time PPP corrections (e.g. International GNSS Service (IGS)
and European Space Agency (ESA)). In [13], [14], IGS
real-time corrections were used in combination with dual-
frequency receivers. Due to various constraints (financial
and otherwise), consumer markets favor single-frequency
receivers.

In [15]–[17], real-time single-frequency implementations
of PPP compensate for ionospheric error by combining
pseudorange and carrier phase measurements. The solution
is reported to take around 1.5–4 hours to converge. The
accuracy of 0.30 m and 0.71m is reported for stationary and
moving platforms, respectively [17]. The use of GNSS-aided
INS approaches significantly reduces convergence time and
increases accuracy. A convergence time of 5 minutes and
horizontal accuracy of 60 cm is reported in [18], whereas [14]
reports a convergence time of 5 minutes and accuracy of 0.05
m. Of the main reasons for long convergence times is that
many observations are needed to estimate the residual at-
mospheric delay in PPP-compensated GNSS measurements.
Automotive applications require convergence time on the
order of just a few seconds, with high reliability. In this
report we study the use of local agents cooperating in a net-
worked system to estimate the residual atmospheric delay
error, with the goal of significantly reducing convergence
time.

In Section 2, we formulate the state estimation problem,
where the full state to be estimated consists of variables
unique to each agent and an additional common variable—
the local GNSS atmospheric delay error. Section 3 finds both
the individual and centralized estimates of the full state.
Since we are not interested in cooperating to estimate the
unique variables of each agent, Section 4 finds the estimate
of only the common variable; first in a centralized non-
distributed manner, then in a distributed framework via
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information-weighted average consensus. In Section 5, we
consider a different distributed framework which addresses
the unknown correlations between individual estimates.
Sections 6 and 7 offer concluding remarks and explore
avenues for future research, respectively.

2 PROBLEM FORMULATION

Suppose we have a network of vehicles navigating in the
same local environment, each making independent GNSS
measurements from its sensors. At time t, the measurement
from satellite s available at vehicle v is ysv , modeled as

ysv = 1s
v pv + ctv +Ms

v T + ηv, (1)

where pv denotes a position vector, ctv is clock error term
for each vehicle, T is the atmospheric delay error term,
and ηv is the measurement noise, assumed to be zero-mean
Gaussian. The quantity 1s

v is the line-of-sight unit vector
from s to v, and Ms

v = 1/ sin(esv) is the obliquity coefficient,
where esv is the local elevation angle at the signal pierce
point relative to vehicle v [19], [20]. The above equation can
be expressed as

ysv =
[
1s
v 1 Ms

v

]  pv

bv
T

+ ηv (2)

where bv = ctv . Let xv = [pv, bv, T ]
⊤ ∈ Rp, and

hs
v = [1s

v, 1,M
s
v ] ∈ R1×p. The value of mv is the number

of measurements at vehicle v. Assuming the atmospheric
delay T to be constant in a local geographic area, the s
superscript is not required. Then, there are elements of the
state vector that are common to all vehicles and others that
are unique. The state vector becomes xv = [zv, T ]

⊤, where
zv = [pv, bv]

⊤ is the unique part of the state vector for each
vehicle.

Hence, combining the measurements from eqn. (2), we
obtain the standard form

yv = Hvxv + ηv (3)

where yv ∈ Rmv and Hv = [h1
v, . . . ,h

mv
v ]⊤ ∈ Rmv×p is the

observation matrix for vehicle v, and is time-varying. The
noise ηv ∈ Rmv is modeled as a Gaussian random variable
with ηv ∼ N (0,Rv) where Rv ∈ Rmv×mv is the corre-
sponding covariance matrix. The measurement information
matrix at vehicle is Bv = R−1

v ∈ Rmv×mv . The goal is
to jointly solve the shared atmospheric delay state in a
distributed manner.

3 NON-DISTRIBUTED ESTIMATION OF THE FULL
STATE

For comparison purposes, this section discusses two partic-
ular scenarios regarding the communication between vehi-
cles in the network. The first is when there is zero commu-
nication between nodes, and each agent acts alone (has the
least information). This is the case when every vehicle is in-
dividually solving for its state, using only its measurements.
In this case, a weighted least-squares estimate provides the
Minimum Variance Unbiased (MVU) estimate and could be

used every time the measurements are available. The second
scenario is when all agents communicate to a central node.
Hence, the estimator has maximum information.

3.1 Individual Solution
With no communications in the network, each node can
use its own measurements to solve for its state. With the
measurement model in eqn. (3), and a prior estimate whose
information matrix is J−

v , the MVU solution is

x̂+
v =

(
J−
v +H⊤

v Bv Hv

)−1 (
J−
v x−

v +H⊤
v Bv yv

)
. (4)

The posterior information in the state is

J+
v = J−

v +H⊤
v Bv Hv, (5)

where Jv is the information matrix. The posterior covari-
ance matrix is

P+
v =

(
J−
v +H⊤

v Bv Hv

)−1
=

[
P+

zvzv
P+

zvT

P+
T zv

P+
T T

]
. (6)

3.2 Centralized MAP Solution
With a network of vehicles v ∈ 1, . . . , N where there is
communication to a central node, the goal is to estimate
the concatenated state vector x = [z1, . . . , zN , T ]

⊤ ∈ Rq ,
where q = (p − 1)N + 1 and N is the number of vehicles
(nodes) in the network. For analysis, it is helpful to redefine
x with a permutation P to obtain xP = Px such that
xP = [p1, . . . ,pNv

, b1, . . . , bN , T ]
⊤. (Subsequently, xP will

be referred to simply as x.)
The collection of all measurements from all sensor is

expressed as
Y = Hx+ ν (7)

where Y =
[
y⊤
1 ,y

⊤
2 , . . . ,y

⊤
N

]⊤ ∈ Rm is the concatenation of
all measurements in the network, with m =

∑N
v=1 mv . From

eqn. (3), let Hv = [Av 1v Mv], where each Av ∈ Rmv×(p−2)

is a matrix composed of unit vectors, and both 1v ∈ Rmv

and Mv ∈ Rmv are column vectors. Then H ∈ Rm×q is a
block matrix of the form:

H =


A1 0 · · · 0 11 0 · · · 0 M1

0 A2 · · · 0 0 12 · · · 0 M2

...
...

. . .
...

...
...

. . .
...

...
0 0 · · · AN 0 0 · · · 1N MN

 . (8)

For the measurement noise vector ν =
[
ν⊤1 , ν⊤2 , . . . , ν⊤m

]⊤ ∈
Rm, the covariance matrix is R ∈ Rm×m and the corre-
sponding information matrix is B = R−1 ∈ Rm×m. As the
measurement noises are assumed to be uncorrelated across
all nodes (vehicles), the covariance matrix, R, is diagonal
and the information matrix is B = diag(B1,B2, . . . ,BN ).

The value of m can change depending on which satellites
are visible at each node. This is because vehicles in the
same area do not see the same number of satellites, as some
satellites could be obstructed by obstacles such as buildings
or trees. Similarly, the value of N can change as vehicles
travel in and out of the predefined local area. For simplicity,
we will consider that these two values are constant, i.e. all

2
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Figure 1: A comparison of simulated individual estimates and the central estimate for N = 1000 vehicles.

vehicles remain in the same local area and observe the same
number of satellites at all times.

With the model in eqn. (7), we can formulate a central-
ized maximum-a-posteriori (MAP) solution for an estimator
with access to measurements from all nodes. Assume the
prior state of x is available and denote it by x−

c ∈ Rq with
error ηc = x−

c − x and Cov(ηc) = Pc ∈ Rq×q .
Combining eqn. (7) with the prior estimate, we obtain a

new model equation[
x−
c

Y

]
=

[
Iq
H

]
x+

[
ηc

ν

]
, (9)

where Iq ∈ Rq×q is the identity matrix.

Let Z =

[
x−
c

Y

]
∈ Rm+q , Hc =

[
Iq
H

]
∈ R(m+q)×q , and

β =

[
ηc

ν

]
∈ Rm+q . Then we can express (9) as

Z = Hc x+ β, (10)

where β ∼ N (0,C). The prior error is assumed to be
uncorrelated to the measurement noise and the covariance
matrix is C = diag(Pc,R). Let J−

c = (Pc)
−1 ∈ Rq×q be

the prior information matrix. Then the information matrix
combining the prior and the measurements is J = C−1 ∈
R(m+q)×(m+q) and J = diag(J−

c ,B).
The Centralized MAP estimate of x is

x+
c = (H⊤

c J Hc)
−1(H⊤

c J Z) (11a)

= (J−
c +H⊤ BH)−1(J−

c x−
c +H⊤ BY) (11b)

J+
c = J−

c +H⊤ BH (11c)

In eqn. (11c), the term H⊤BH represents the infor-
mation about x brought by new measurements, and
J+
c =

(
Cov(x+

c )
)−1

is the information about x in x+
c . We

note that eqn. (11c) is similar to eqn. (5) when performing
the individual solution.

Figure 1 shows a comparison of individual solutions
and the centralized solution in a simulated environment of
N = 2000 vehicles. The atmospheric delay estimate signifi-
cantly improves in the centralized approach. It can be shown
that as long as N > 1, the information about each vehicle’s
state is enhanced when using the centralized estimator.

4 MAP ESTIMATION OF ATMOSPHERIC DELAY

In the previous section, to obtain a centralized solution of
the full state, each node had so send both its measurement
vector and state estimate to a central node, which would
then reply to each agent with the corresponding posterior
estimate. Since it is impractical to estimate the full state
(both the unique and common variables) centrally, this
section is concerned with marginalizing and only estimating
the common variable.

4.1 Centralized Atmospheric Delay Estimation

In section 3.2, we formulated a centralized MAP solution
for the full-state. In this section we formulate a centralized
solution for only the atmospheric delay variable. We present
the solution in two different parametrizations; namely the
covariance form and information form.

3



UC-RIVERSIDE, ECE DEPARTMENT, PHD QUALIFYING REPORTS November 3, 2020

4.1.1 Covariance Form
In this centralized framework, each vehicle sends an esti-
mate T+

v and a covariance P+
Tv

from eqns. (4)–(5). These can
be modeled as T+

v = T+ + ρv , where ρv ∼ N (0,P+
Tv
) is

the estimation error with P+
Tv

as the covariance. We can the
write the concatenated vector of estimates as

T+ = HT + ρ, (12)

where T+ = [T1
+, . . . , TN

+]⊤, H = [1, . . . , 1]⊤,
ρ = [ρ1, . . . , ρN ], and ρ ∼ N (0,P+

T ) with P+
T ∈ RN×N—

a block diagonal matrix of P+
Tv

matrices. The MAP optimal
solution to (12) is

T̂+ =
(
H⊤(P+

T )
−1H

)−1(
H⊤(P+

T )
−1 T+

)
=

( N∑
v=1

(P+
Tv
)−1

)−1( N∑
v=1

(P+
Tv
)−1T+

v

)
.

(13)

4.1.2 Information Form
We recall that xv = [zv, T ]

⊤, where zv comprises of the
unique variables of the state vector for vehicle v, and T is
the atmospheric delay variable. Let the submatrices of the
individual posterior information matrix for vehicle v from
eqn. (5) be written as

J+
v =

[
B+ b+

(b+)⊤ c+

]
, (14)

where B+ ∈ R(p−1)×(p−1), b+ ∈ Rp−1 and c+ ∈ R. (For
brevity, the subscript v has been omitted in the matrix
components.) The corresponding information vector is

j+v ≜ J+
v x̂

+
v =

 j+vz

j+vT

 =

 B+z+v + b+T+
v

(b+)⊤z+v + c+T+
v

 . (15)

Using this information form parametrization, we can perform
marginalization via Schur complement [21] to obtain the
information submatrix1 corresponding only to T . That is,

J+
Tv

= c+ − (b+)⊤(B+)−1b+. (16)

Using (16), the information vector is

j+Tv
= J+

Tv
T+
v . (17)

The derivation of the information vector expression is given
in Appendix B. We note that the above is the so-called
“natural” parametrization of the Gaussian distribution, in
which the error in (12) is modeled as ρ ∼ N−1(0,J+

T ),
where J+

T =
(
P+

T

)−1
.

The solution in (13) can then be written as

T̂+ =
( N∑

v=1

J+
Tv

)−1( N∑
v=1

j+Tv

)
, (18)

by using the expressions of (17) and (16). In other words,
the MAP solution to (12) can be found by averaging the
information-weighted estimates from all vehicles.

1In this case, both the information “matrix” and “vector” are scalars
since T is itself a scalar.

The centralized approach requires sending data to a cen-
tral node, which could fail; and the computation complexity
directly depends on the number of nodes in the network.
Furthermore, solution (13) does not take advantage of the
fact that messages can be easily broadcast from one node to
its neighbors [22].

4.2 Distributed Information-Weighted Average Consen-
sus Estimate
Having found a centralized estimate, we discuss a way to
compute it in a distributed framework. We note that the
solution in eqns. (13) and (18) can be solved in a distributed
manner. Define

D =
1

N

( N∑
v=1

J+
Tv

)
=

1

N

N∑
v=1

Dv, (19)

where Dv = J+
Tv

, and D,Dv ∈ R. Similarly, define

d =
1

N

( N∑
v=1

j+Tv

)
=

1

N

N∑
v=1

dv, (20)

where dv = j+Tv
, and d, dv ∈ R. Then (18) can be written as

T̂+ = D−1d. (21)

The dimension of D does not depend on the number of
nodes N , i.e. as the dimension of the problem grows (more
nodes added to the network, for example), the requirements
for storing D and Dv do not change. The same applies to d
and dv .

An alternative to the centralized approach is to use the
average consensus algorithm [23], [24]. With this approach,
each node maintains estimates of both Dv and dv , which
we now refer to by the dummy variable xv , initialized to
xv(0) = Dv and xv(0) = dv , respectively. Each node can
exchange information only with its neighbors, and solve
for both D and d by iterating the discrete-time difference
equations:

xv(k + 1) = xv(k) + ϵ
∑
w∈ℵv

avw
(
xw(k)− xv(k)

)
, (22)

where 0 < ϵ < 1/∆. For analysis, eqn. (22) can also be
written as

x(k + 1) = Px(k), (23)

with P = I − ϵL, where I is the identity matrix, and L
is the Laplacian matrix defined in eqn. (51) (see Appendix
A for graph theory preliminaries). In [23], it is shown that
each vehicle converges to the average of initial values, i.e. a
consensus is asymptotically reached.

The algorithm for performing an information-weighted
consensus (IWC) is presented in Algorithm 1.

4.3 Simulation and Discussion
We set up a network of 100 nodes and three topologies: the
small-world topology [25], scale-free topology [26], and the
basic ring topology. The small-world and scale-free topolo-
gies are shown in Figure 2. These topologies are briefly
discussed in Appendix A. The consensus speed parameter

4
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(a) Small-world (b) Scale-free

Figure 2: Network topologies both with 100 nodes, minimum degree of
5, and average degree of around 10. (a): A small-world network with
500 connections, maximum degree of 16, and median degree of 10. (b):
A scale-free network with 485 connections, maximum degree of 47, and
median degree of 7.

Algorithm 1 Performing Information-Weighted Distributed
Average Consensus on T at node v.

Input: Prior estimate, x−
v , prior information matrix J−

v , con-
sensus speed, ϵ, tolerance, τ , and maximum consensus
iterations, K .

Output: Estimate T̂+
v and information matrix J+

Tv
.

1: Initialize consensus proposals:
D0

v = c+ − (b+)⊤(B+)−1b+,

d0v = J+
Tv
T+
v .

2: while ∥T̂+
v (k + 1)− T̂+

v (k)∥ > τ & k < K do
3: Send Dk

v and dkv to all neighbors w ∈ ℵv ;
4: Receive Dk

v and dkv from all neighbors w ∈ ℵv ;
5: Update using (22):

Dk+1
v = Dk

v + ϵ
∑
w∈ℵv

(Dk
w −Dk

v )

dk+1
v = dkv + ϵ

∑
w∈ℵv

(dkw − dkv)

6: k = k+1
7: end while
8: Compute the distributed estimate T̂+

v by
T̂+

v = (D)−1d

is set to ϵ = 1/∆, where ∆ is the maximum degree of the
network. As shown in Figure 9h, the IWC approach con-
verges to the central estimate for all interaction topologies,
but with different convergence speeds. Despite having the
largest maximum degree, the scale-free network converges
slower than the small-world network. The basic ring net-
work, whose nodes all have the same degree of 2, converges
at the slowest rate. This is because even though eqn. (22)
guarantees convergence for any undirected connected graph
[23], [27], but the convergence speed depends on the nature
of connectivity in the graph. Graphs with a smaller average
path length converge faster.

We get unweighted consensus (UC)—which is the usual
average consensus—if we use (22) and modify algorithm
1 to perform consensus on the estimates T̂v instead of the
information vector and matrix. Figure 3b shows that both
the information-weighted and unweighted consensus ap-

2 4 6 8 10 12 14 16 18 20

3

4

5

6

7

Basic ring Scale-free Small-world

(a) Consensus for different topologies

16 18 20 22 24 26 28 30 32 34 36

4.86

4.88

4.9

4.92

Info-weighted Unweighted

(b) Weighted and un-weighted consensus

Figure 3: Distributed average consensus for a network with 100 nodes
and different topologies. In all plots, shaded area is within one standard
deviation from the mean estimate across all nodes.

proaches converge at comparable rates for the small-world
topology. (Other network topologies should also exhibit
the same convergence behavior in relation to information
weighting.) This is because the convergence rate depends
only on the network characteristics, i.e. the Laplacian matrix
L. On the other hand, as shown in Figure 4, IWC produces
the smallest convergence error, i.e. it converges closer to the
centralized estimate of T compared to UC. As shown in
eqns. (18) and (21), the information-weighted consensus is
guaranteed to converge at the centralized estimate, whereas
the unweighted consensus will not. Notably, IWC converges
exponentially, as shown in Figure 4. We note that due to
the properties of consensus [23], [24], both IWC and UC
algorithms are guaranteed to converge, albeit at different
values. We note that in the case when an agent joins the
network for the first time, the agent will get the most
accurate estimate of the atmospheric delay instantly, thereby
significantly decreasing its convergence time. This is in
sharp contrast to convergence times of several minutes or
hours noted in the introduction [15]–[18].

Due to various constraints, one would expect real-world
communication topologies in navigation networks to be
similar to ring lattices, or approaching small-world net-
works when random connections are possible. The con-
struction of networks with high degrees such as scale-free
networks is generally not a good idea [23] since they are
not robust to issues such as time-delays and communication
failures. This is supported by recent findings that scale-free
networks are empirically rare in robust natural systems2

[28], [30].

2Incidentally, this remains a vibrant research topic, but a controver-
sially contended one [28], [29].

5
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Figure 4: Convergence error for the information-weighted (blue) and
the un-weighted (red) consensus algorithms on a vertical log scale for
emphasis.

5 HETEROGENEOUS ESTIMATION

In the previous sections it was assumed that all agents are
identical in their estimation methods. This led to a further
implied assumption that there is some knowledge of the
correlation or independence of their priors. In real-world
networks, agents are heterogeneous and it is often the case
that their prior correlation is unknown. This section removes
that assumption and presents algorithms for fusing state
estimates with unknown correlation.

Consider two estimates x̂v, x̂w of x ∈ Rp from two
neighboring vehicles, v and w. These estimates are assumed
to have a Gaussian distribution of the form

x ∼ N (x̂v,Pv) and x ∼ N (x̂w,Pw), (24)

respectively, where Pv,Pw ∈ Rp×p are their respective
covariances. For convenience, the distributions of the above
estimates will be referred to as xv and xw, respectively. If
vehicle w communicates its estimate to v, the goal is to
fuse these two estimates at v to obtain a fused estimate x̂f

modeled as
xf ∼ N (x̂f ,Pf ). (25)

It should be the case that x̂f is more accurate than either x̂v

and x̂w. In other words,

Property 5.1. The fusion of estimates x̂v and x̂w gives an
estimate x̂f such that Pf ≤ Pv and Pf ≤ Pw. △

It is also desired that the fused estimate be consistent as
defined below.

Definition 5.2 (Consistency of the Fused Estimate [31], [32]).
A fused estimate xf ∼ N (x̂f ,Pf ) is consistent if

Pf ≥ P̆f ,

where P̆f = E⟨x̃f x̃
⊤
f ⟩ with x̃f ≜ x − x̂f . The actual covariance

matrix P̆f is unknown and Pf is its estimate. △

In other words, the estimated covariance is bounded
below by the actual error covariance. This implies that
the estimate x̂f is consistent if its stated level of perfor-
mance, quantified by the information matrix Jf = P−1

f is
smaller than the actual information matrix J̆f = P̆−1

f . As
consequence, a consistent estimate is conservative since it

consistently overestimates the uncertainty in the underlying
distribution.

The ellipsoids corresponding to Pv and Pw are denoted
by Ξv and Ξw, respectively. For instance, an ellipsoid corre-
sponding to x ∼ N (x̂,P) is defined as:

Ξ(x̂,P) =
{
x ∈ Rn

∣∣(x− x̂)⊤P−1(x− x̂) ≤ 1
}
. (26)

5.1 Combining Uncorrelated Estimates
In the case when two Gaussian estimates are independent,
hence uncorrelated, we obtain the optimal fusion via the
following lemma whose proof can be found in [33], [34].

Lemma 5.3 (Linear Combination of Two Independent Esti-
mates). Let xv and xw be two independent unbiased estimates
of x, whose means and covariances are (x̂v,Pv) and (x̂w,Pw),
respectively. Then their fused estimate is

Pf =
(
P−1

v +P−1
w

)−1
,

x̂f = Pf (P
−1
v x̂v +P−1

w x̂w).
(27)

This is the unbiased estimate that minimizes tr(Pf ). For con-
venience of notation in the text that follows, we will denote
xf = Φ(xv,xw), where xf ∼ N (x̂f ,Pf ). △

The above is the optimal fusion when xv and xw are
independent. Otherwise, and often in practice, the scheme
in eqn. (27) is referred to as naı̈ve fusion, since it completely
disregards possible correlations due to shared information.
We now derive some methods of fusing two correlated prior
estimates.

5.2 Combining Estimates With Known Correlation
The following considers a situation when the correlation,
and hence mutual information, between the estimates is
known. To account for the known correlation, we use Φ
defined in Lemma 5.3 to represent xv and xw as

xv = Φ(xvv,xvw) and xw = Φ(xww,xvw). (28)

In this expression,

xvv∼ N (θv,Θv), xww∼ N (θw,Θw), xvw∼ N (γ,Γ)
(29)

where θv,θw,γ ∈ Rp and Θv,Θw,Γ > 0 ∈ Rp×p. The
quantities xvv and xww represent exclusive information
used only in one estimate, whereas xvw represents the
known shared information. Additionally, Assumption 5.4 is
required to enable the use of eqn. (27).

Assumption 5.4 (Pair-wise Independence). The random vari-
ables xvv,xww,xvw are pair-wise independent. △

Consequently, via eqn. (28), the definition of Φ in eqn.
(27) and Lemma 5.3, we get

P−1
v =Θ−1

v + Γ−1,
x̂v = Pv(Θ

−1
v θv + Γ−1γ)

(30)

and

P−1
w =Θ−1

w + Γ−1,
x̂w = Pw(Θ

−1
w θw + Γ−1γ).

(31)

6
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Because of Assumption 5.4, fusing xv and xw is equivalent
to fusing xvv , xww, and xvw via a three-way linear combi-
nation due to

Lemma 5.5 (Three-way Linear Combination of Independent
Estimates). Assume xvv , xww, and xvw of eqn. (29) are indepen-
dent. Then, the optimal linear combination that minimizes tr(Pf )
is:

P−1
f = Θ−1

v +Θ−1
w + Γ−1 (32a)

x̂f = Pf

(
Θ−1

v θv +Θ−1
w θw + Γ−1γ

)
. (32b)

Proof. Since xvv , xww, and xvw are all independent, the
result follows by applying Lemma 5.3 recursively.

Solving (30) and (31) for Θv and Θw and substituting
into (32) yields:

Pf = (P−1
v +P−1

w − Γ−1)−1 (33a)

x̂f = Pf (P
−1
v x̂v +P−1

w x̂w − Γ−1γ). (33b)

This shows that the fused estimate and its covariance can
be determined when the quantities γ and Γ are known.

Furthermore, we can use Lemma 5.3 to characterize the
covariance of xv and xw, Cov(xv,xw). To this end, the
estimation errors are

x̃v = x̂v − xv = Pv

(
Θ−1

v θv + Γ−1γ
)
− xv

= Pv

(
Θ−1

v (θv − xv) + Γ−1(γ − xv)
)

= Pv

(
Θ−1

v θ̃v + Γ−1γ̃
)

and similarly

x̃w = Pw

(
Θ−1

w θ̃w + Γ−1γ̃
)
.

Since E⟨θ̃vθ̃⊤
w ⟩ = E⟨θ̃vγ̃⊤⟩ = E⟨θ̃wγ̃⊤⟩ = 0, we obtain the

following expression:

Cov(x̂v, x̂w) = E
〈
x̃vx̃

⊤
w

〉
= E

〈
Pv(Γ

−1γ̃ +Θ−1
v θ̃v)(γ̃

⊤Γ−1 + θ̃⊤
wΘ

−1
w )Pw

〉
= Pv E

〈
Γ−1γ̃γ̃⊤Γ−1

〉
Pw

= Pv Γ
−1Pw. (34)

Thus, the covariance of the two estimates xv and xw can be
modeled explicitly in terms of the mutual information, Γ−1.

Eqn. (33) is the optimal fusion of two unbiased estimates
when mutual covariance Γ and covariance matrices Pv and
Pw are known. However, in some applications, the mutual
covariance Γ is not known. We next consider three methods
to handle the situation when the quantities γ, Γ are not
known.

5.3 Combining Estimates With Unknown Correlation
In [31], it shown that Ξf ⊂ Ξv ∩Ξw for any choice of
Γ. Section 5.3.1 finds a value of Γ corresponding to the
largest Ξf such that Ξf ⊂ Ξv ∩Ξw, and a value of γ that
minimizes its distance from both x̂v and x̂w. However, this
formulation is found not to be consistent for all possible
values of Γ. Section 5.3.2 finds the optimal consistent fusion
scheme for unknown Γ by finding the smallest Ξf such
that Ξv ∩Ξw ⊂ Ξf . Finally, Section 5.3.3 finds a consistent
fusion scheme such that Ξv ∩Ξw ⊂ Ξf and Ξf ⊂ Ξv ∪Ξw.

5.3.1 Ellipsoidal Intersection

In some applications, actual values for quantities γ and Γ
in eqn. (33) are unknown, but could be selected using the
previous assumption of pair-wise independence. The goal
of this section is to find values of γ and Γ satisfying the
constraints of the problem.

Selecting Γ: The objective is to find a value of Γ
that maximizes the covariance Pf of eqn. (33a). Maximizing
Pf is equivalent to maximizing the mutual information
Γ−1, and since Γ > 0, this is equivalent to minimizing
the determinant of the mutual covariance, |Γ|. Additionally,
since Θ−1

w = P−1
w − Γ−1 ≥ 0, we have Γ ≥ Pw. Similarly,

we also have Γ ≥ Pv . Hence, we define Γ̌ as the solution to
the following optimization problem [33], [34];

Γ̌
.
= arg min

Υ∈Rp×p
log |Υ|.

subject toΥ ≥ Pv, Υ ≥ Pw.
(35)

The ellipsoid ΞΓ̌ is the Löwner–John ellipsoid of Ξv ∪Ξw,
defined as the minimum volume ellipsoid that contains
both ellipsoids of Pv and Pw, i.e. ΞΓ̌ ⊆ Ξv ∪Ξw [35]. We
subsequently use the result from [36] to compute ΞΓ̌.

First, we show that eqn. (35) is invariant to linear trans-
formations represented by a non-singular matrix T ∈ Rp×p.
We use Theorem C.1 in Appendix C.1 to define the diago-
nalized covariance matrices as3

Pv = T−1PvT
−⊤ and Pw = T−1PwT

−⊤ (36)

where T−⊤ = (T−1)⊤ = (T⊤)−1. Then, eqn. (35) becomes

Γ
.
= arg min

Υ∈Rp×p
log |Υ|,

subject to Υ ≥ Pv, Υ ≥ Pw

(37)

where Υ = T−1ΥT−⊤ and Γ = T−1ΓT−⊤. We note that
the ellipsoids corresponding to Pv and Pw are aligned, thus
making the constraints of (37) easier to satisfy compared to
those of (35). Lemma 5.6 shows that the solution to eqn.
(35) is equivalent to the inverse linear transformation of the
solution to eqn. (37), then Theorem 5.7 shows how to find
Γ.

Lemma 5.6. For Pv , Pw and Pv , Pw, Γ satisfying eqn. (36),
with some non-singular T ∈ Rp×p, the solution to (35) via (37)
is

Γ̌ = TΓT⊤.

Proof. Define Υ = T−1 ΥT−⊤. Note Pv = TPv T
⊤ and

Υ = TΥT⊤. Then, if Υ ≥ Pv , we get (Υ−Pv)
1/2 ≥ 0,

which implies that T(Υ−Pv)T
⊤ ≥ 0, which further im-

plies Υ ≥ Pv . Similarly, if Υ ≥ Pw, then Υ ≥ Pw.
Furthermore, for any non-singular matrices A, B, we

have |AB| = |A| |B| (see Proposition 2.7.3 in [37]). There-

3This is to transform both covariance matrices so that the major and
minor semi-axes of their corresponding ellipsoids are aligned.
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fore, log |Υ| = log(|TΥT⊤|) = log |Υ|+ 2 log |T|. This
implies that

Γ = arg min
Υ∈Rp×p

log |Υ|

subject to Υ ≥ Pv, Υ ≥ Pw

= arg min
Υ∈Rp×p

log |Υ|
subject to Υ ≥ Pv, Υ ≥ Pw.

Hence,

TΓT⊤ = arg min
Υ∈Rp×p

log |Υ|
subject to Υ ≥ Pv, Υ ≥ Pw

= Γ̌.

This completes the proof.

Theorem 5.7. For any positive definite Pv,Pw ∈ Rp×p,
(i) There exists a non-singular matrix T ∈ Rp×p such that

Pv = T−1PvT
−⊤ = Ip

Pw = T−1PwT
−⊤ = Dw

where Dw > 0 is diagonal, and Ip is the identity matrix.
(ii) The matrix Γ defined in (37) satisfies Γ = DΓ, with

DΓ = max{Pv,Pw} = max{Ip,Dw}, where max is the
component-wise maximum function.

(iii) The matrix Γ̌ defined in (35) satisfies Γ̌ = TDΓ T
⊤.

Note that (i) is the simultaneous diagonalization of Pv

and Pw (defined in Appendix C.1), whereas (ii) is the
solution to (37), and (iii) is obtained using Lemma 5.6. The
full proof of Theorem 5.7 is given in Appendix C.2.

To find the appropriate the T, consider the eigenvalue
decompositions of Pv defined by

SvDvS
−1
v = Pv,

where Sv,Dv ∈ Rp×p are rotational and scaling (diagonal)
matrices, respectively. To align Pw with Pv , we apply a
linear transformation (rotation followed by scaling) defined
by

P⋆
w = D

− 1
2

v S−1
v PwSvD

− 1
2

v

whose eigenvalue decomposition is

SwDwS
−1
w = P⋆

w.

Then, S−1
v PvSv and S−1

w P⋆
wSw are diagonal. Specifically,

S−1
w D

− 1
2

v S−1
v PwSvD

− 1
2

v Sw = Dw (38)

Using Theorem C.1, and comparing (38) and (54), we set the
non-singular matrix T to

T
.
= SvD

1
2
v Sw.

Applying the transformations of eqn. (36), we notice that
Pv and Pw are diagonal. In fact, Pv = Ip and Pw = Dw.
Consequently, by Theorem 5.7 (ii), Γ = DΓ = max(Pv,Pw)
is a diagonal matrix given by

[DΓ]qr
.
=

{
max{1, [Dw]qr} q = r

0 q ̸= r
.
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Figure 5: Characterizations of mutual covariances via EI and ICI. Note
that ΞΓ,EI is the smallest ellipsoid containing Ξv ∪ Ξw , whereas
ΞΓ,ICI ⊃ Ξv ∩Ξw .
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Figure 6: Fused covariance ellipsoids via CI, EI, ICI, and naive fusion.

Therefore, by Theorem 5.7 (iii), the solution to the optimiza-
tion problem of (35) is

Γ̌ = SvD
1
2
v Sw DΓ S−1

w D
1
2
v S

−1
v . (39)

As an illustrative example throughout this section,
we forgo the previous 1-dimensional example for a 2-
dimensional one whose state estimates have covariances

Pv =

[
2.5 −1.0
−1 1.2

]
, Pw =

[
0.8 −0.5

−0.5 4.0

]
. (40)

Their respective means are: x̂v = [0.5, 1]⊤ and x̂w = [2, 1]⊤.
The ellipses corresponding to covariance matrices in (40) are
shaded in Figure 6. The resulting Γ̌ using Pv and Pw of (40)
is:

Γ̌ =

[
2.5 −1.2

−1.2 4.3

]
.

The corresponding ellipsoid ΞΓ̌ is shown as the blue curve
in Figure 5.
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Selecting γ: Having found an algebraic expression
for Γ̌, it is now possible to find an expression for γ̌. The goal
is to find γ̌ that minimizes a certain distance of γ from both
x̂v and x̂w . Since both x̂v and x̂w have different accuracies,
their distances to γ should be weighed accordingly. To that
end, [33] defines a cost function

C(γ)
.
= ∥Wv(γ − x̂v)∥22 + ∥Ww(γ − x̂w)∥22 , (41)

where Wv,Ww > 0 are positive definite weight matrices.
Then γ̌ is defined as the value that minimizes the cost
function in (41). Specifically,

γ̌
.
= arg min

γ∈Rp
C(γ) (42)

It is shown in [33] that the unique solution to (42) is

γ̌ = (Wv +Ww)
−1

(Wvx̂v +Wwx̂w) . (43)

Straightforward choices for Wv and Ww are the exclusive
information matrices Θ−1

v and Θ−1
w , respectively. However,

to avoid numerical instabilities, we add ξIp to Θ−1
v and

Θ−1
w , for some ξ > 0 to ensure positive definiteness.

Solving (30) and (31) for Θ−1
v and Θ−1

w yields:

Wv = P−1
v − Γ̌−1+ξIp and Ww = P−1

w − Γ̌−1+ξIp. (44)

To avoid ξIp potentially having undue effect on γ̌,
we choose ξ to be as small as possible. Define
𭟋 = P−1

v +P−1
w − 2Γ̌−1, and the quantity λ0+(𭟋) to be the

smallest positive eigenvalue of 𭟋. Then,

ξ =

{
0 |𭟋| ≠ 0

c ≪ λ0+(𭟋) otherwise,

where c ∈ R is a small number satisfying 0 < c ≪ λ0+(𭟋).
When x̂v = [0.5, 1]⊤ and x̂w = [2, 1]⊤, and using

the previous result of Γ̌ computed from (39), we obtain
γ̌ = [1.0, 1.1]⊤. These results for Γ̌ and γ̌ are used in eqn.
(33) to give the results illustrated in Figure 6 (the blue
ellipse). In Figure 6, Ξf,EI is the largest ellipsoid enclosed
by the intersection of Ξv and Ξw.

We note that EI is not consistent [32]. This is because
the solution in eqn. (39) depends on the decompositions in
(30) and (31), which themselves depend on Assumption 5.4.
Hence, in cases when Assumption 5.4 is not fulfilled, it is
possible that E⟨x̃f x̃

⊤
f ⟩ > Pf .

Algorithm 2 summarizes how to perform EI fusion at
node v, whose neighbors are w ∈ ℵv and the total number
number of neighbors is L = |ℵv|.

Besides formulating explicit expressions of the mutual
information, the fused estimate can also be obtained via
convex combinations of the covariances.

5.3.2 Covariance Intersection

Linear combination of covariances using Lemmas 5.3 and
5.5 is the optimal approach for data fusion when the corre-
lation is known (see Section 5.2). For unknown correlation,

Algorithm 2 Performing EI Fusion at node v.

Input: x̂v , Pv , x̂w, Pw

Output: x̂f , Pf .
1: Initialize:

x̂v(0) = x̂v, Pv(0) = Pv

2: for l = 1, . . . , L do
3: x̂w(l) = x̂w, Pw(l) = Pw (w ∈ ℵv);
4: Compute Γ̌(l) for Pv(l−1) and Pw(l) using (39);
5: Compute γ̌(l) for Pv(l−1), x̂v(l−1),Pw(l), x̂w(l) using

(43) and (44);

6: Pv(l) =
(
P−1

v(l−1) +P−1
w(l) − Γ̌−1

(l)

)−1

;

7: x̂v(l) = Pv(l)

(
P−1

v(l−1)x̂v(l−1)+P−1
w(l)x̂w(l)− Γ̌−1

(l) γ̌(l)

)
;

8: end for
9: x̂f = x̂v(L), Pf = Pv(L);

Julier and Uhlmann [31] proposed the Covariance Intersec-
tion (CI) algorithm to fuse estimates via a convex combination
of their information. Specifically,

Pf =
(
ωP−1

v + (1− ω)P−1
w

)−1
(45a)

K = ωP−1
v

L = (1− ω)P−1
w

x̂f = Pf (Kx̂v + L x̂w) . (45b)

The parameter ω can be determined using conventional
methods of optimization by minimizing either the trace or
determinant of Pf , formally:

ω
.
= arg min

ω∈[0,1]
tr(Pf ). (46)

Since the cost function is convex with respect to ω, it will
have a unique minimum for ω ∈ [0, 1].

A proof of consistency is provided in the appendix of
[31].

This consistency is depicted in Figure 6, where the ellipse
Ξf,CI lies on the outside of the intersection of Ξv and Ξw. For
CI, it is always true that Ξv ∩Ξw ⊆ Ξf,CI . Hence, it seems
possible to find a fusion scheme that is less conservative,
but still consistent. This can be done by characterizing and
exploiting the fact that both xv and xw have shared informa-
tion owing to their correlation. In Figure 6, Ξf,EI ⊂ Ξf,CI ,
and hence EI would be considered more accurate than CI.
For EI, it is always true that Ξf,EI ⊆ Ξv ∩Ξw, compared to
CI with Ξv ∩Ξw ⊆ Ξf,CI . However, we recall that EI is not
consistent [33], [34], whereas CI is always consistent.

5.3.3 Inverse Covariance Intersection
EI relies on Assumption 5.4 to select γ̌ and Γ̌, which makes
it inconsistent. On the other hand, CI assumes nothing about
the structure of the correlation between xv and xw, which
allows it to be consistent. However, CI does not explicitly
quantify the mutual information between the prior esti-
mates. Noack et al. [32], building on previous work by Sijs
et al. [34] proposed Inverse Covariance Intersection (ICI).
The goal of ICI is to find a fusion scheme that estimates
the mutual information and is consistent. As in CI, this
fusion scheme is parametrized by ω ∈ (0, 1), and as in EI,

9
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Figure 7: Fused state estimation results via CI, EI, ICI , and naı̈ve fusion.
Each ellipse has been centered around its mean, represented by a dot of
respective color. It should be noted that naı̈ve fusion is over-confident.

it removes mutual information when computing the fused
information matrix. Specifically, [32] derived the following
solution:

Pf =
(
P−1

v +P−1
w − (ωPv + (1− ω)Pw)

−1
)−1

(47a)

K = P−1
v − ω(ωPv + (1− ω)Pw)

−1

L = P−1
w − (1− ω)(ωPv + (1− ω)Pw)

−1

xf = Pf (Kxv + Lxw) (47b)

The parameter ω is found using eqn. (46) for Pf in (47a).
The formulation in eqn. (47) can also be expressed in

terms of selected mutual covariance and mean, as in eqn.
(33), where

Γ̌ = ωPv + (1− ω)Pw (48a)
γ̌ = ωx̂v + (1− ω)x̂w. (48b)

It should be seen that the solution arising from ICI com-
prises an agreement on the mutual covariance and mean.
Consequently, the resulting fused estimate is provably con-
sistent in the same way as CI fusion [32]. The Γ̌ for ICI is
illustrated in Figure 5, where it shown that its ellipsoid is
smaller than that of EI.

The ellipsoids corresponding to fused estimation solu-
tions obtained via all presented fusion schemes are shown
in Figure 7.

5.4 Simulation and Discussion
Figure 8 compares the convergence of heterogeneous ap-
proaches considered in this section and that of the ho-
mogeneous consensus approaches considered in Section 4.
The simulation consisted of 100 agents with Watts-Strogartz
small-world interactions [25] with probability of 0.3. It was
found that both CI and ICI converge at the same rate, as
shown in Figure 8a. Figure 8b shows that EI converges
slower than both CI and ICI, but slightly faster than IWC
(Figure 8c). These convergence properties hold in the pres-
ence of additional agent interactions in the network, as
shown in Figure 9 of Appendix D.

Algorithm 3 Performing CI or ICI Fusion at node v.

Input: x̂v , Pv , x̂w, Pw

Output: x̂f , Pf .
1: Initialize:

x̂v(0) = x̂v, Pv(0) = Pv

2: for l = 1, . . . , L do
3: x̂w(l) = x̂w, Pw(l) = Pw w ∈ ℵv ;
4: Find ω for Pv(l−1) and Pw(l) by solving (46), using

(45a) for CI or (47a) for ICI;
5: Compute Pv(l) for Pv(l−1),Pw(l), and ω using (45a)

for CI or (47a) for ICI;
6: Compute x̂v(l) using (45b) for CI or (47b) for ICI;
7: end for
8: x̂f = x̂v(L), Pf = Pv(L);

1 2 3 4 5 6 7 8 9 10

Iterations

3

4

5

6

7

(a) Convergence of CI and ICI
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(b) Convergence of EI
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(c) Convergence of IWC

Figure 8: Comparison of convergence of heterogeneous approaches and
IWC for a small-world network with N = 100 and ℵv = 2.

In terms of their convergence point, all these approaches
converge at different points. Notably, also as discussed in
Section 4.2, IWC is unbiased; it converges to the central-
ized estimate, albeit slowly. None of the heterogeneous
approaches is unbiased. Unlike ICI, CI, and IWC, for EI
additional interaction will not only change the convergence
rate, but also the convergence point, as shown in Figure 9.
It should be noted that this simulation is for the less likely
case when all agents simultaneously join a network that had
not been operating beforehand.
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Table 1: Comparison of Different Estimation Methods

Dist
rib

uted

Consis
ten

t

Converg
es

Unbias
ed

Addres
se

s

Unknown

Corre
lat

ion

Centralized — ✓ — ✓ ✗

UC ✓ ✗ ✓ ✗ ✗

IWC ✓ ✓ ✓ ✓ ✗

EI ✓ ✗ ✓ ✗ ✓
CI ✓ ✓ ✓ ✗ ✓
ICI ✓ ✓ ✓ ✗ ✓

6 CONCLUSION

We have explored methods of estimating the GNSS atmo-
spheric delay error in systems of interacting agents. In the
first part, we found optimal solutions for both the individu-
alized and centralized scenarios. Subsequently, we showed
that a distributed information-weighted average consensus
approach converges to the optimal centralized solution. In
a simulation, we briefly explored the differences between
prominent interaction topologies in terms of their conver-
gence rate, and showed that the quasi-random small-world
topology converges faster than either the scale-free or basic
ring topologies. The second part of the report considered the
situation of heterogeneous agents and explored methods of
fusing estimates. Table 1 summarizes different properties of
the methods considered in this report.

7 FUTURE DIRECTIONS

In this section we outline some avenues for future research
in the topics discussed above. Some of them necessarily
need to be inter-disciplinary within the wider engineering
field.

7.1 Real-world Implementation

To the best of our knowledge, none of these algorithms have
been implemented in a real-world scenario for distributed
estimation of GNSS atmospheric delay error. The ubiquity of
GNSS receivers for automotive applications and in devices
such as smartphones [38]–[40] presents a real opportunity
to implement these algorithms in large-scale settings.

Whereas in this report we have assumed network
topologies with static and strongly connected graphs, any
real-world implementation will have to consider time-
variant dynamic topologies and the possibility of non-
connected graphs arising from communication failures, for
instance. Additionally, communication delays will also have
to be taken into consideration.

7.2 Security and Safety

As mentioned earlier, the biggest challenge in satellite nav-
igation is no longer only about accurate positioning, but
about reliable, safe, and robust positioning. Relying on a
communications networks allows for higher redundancy
and gives an additional layer of reliability, but it also adds
a potential vulnerability to hacking attacks, which may

compromise other connected sensors and systems [1]. The
threats to communication networks, especially the physical
layer, are well-known in the literature, but are constantly
evolving [41], [42]. However, these threats are beyond the
scope of estimation theory as discussed within this report.
Nevertheless, there are also emerging threats to GNSS sys-
tems in the form of jamming and coordinated spoofing
attacks [43]–[45] that have to be detected and mitigated [46].
These attacks not only compromise positioning reliability,
but also pose severe risks to personal and collective pri-
vacy. In systems with non-interacting agents, spoofing and
jamming could be devastating to military and civil infras-
tructures [47]–[49]. Recent efforts have developed methods
detecting spoofing attacks via testing GNSS position so-
lutions against on-board Inertial Navigation System (INS)
solution [50], or using machine learning techniques [51].
Future research will have to assess the full potential of coor-
dinated attacks in sensitive networks of interacting agents,
and develop novel solutions for detecting and mitigating
these attacks.

7.3 Consensus on Signed Graphs

The vast majority of research on cooperative estimation
is conducted on standard graphs whose edges have non-
negative weights [52]. This is due to the assumption that
the agents are mutually cooperative and their coupling
facilitates consensus [53]. However, in real-world situations,
all agents might not be cooperative; some agents might be
antagonistic (or hostile) and could be modeled by assigning
negative weights to the corresponding edges. This could
be found in social networks, for example, in which hostile
interactions could turn consensus into polarization [54],
[55]. Altafini gives necessary and sufficient conditions which
guarantee that a form of consensus can be achieved in the
presence of hostile interactions [54]. Further research could
explore the connections between antagonism in networks
and the security issues outlined in Section 7.2, and poten-
tially develop techniques to mitigate the security risks while
still achieving consensus.
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APPENDIX A
GRAPH THEORY PRELIMINARIES

Suppose we have a network represented by an undirected
connected graph G = (V, E), where V = {1, . . . , N} repre-
sents the nodes and E ⊂ V × V represents the agent pairs
(v, w) ∈ E that are able to communicate directly. The neigh-
bors of node v is a set denoted as ℵv = {w ∈ V : (v, w) ∈ E}
and its cardinality is denoted by |ℵv|. The adjacency matrix
of G, A = {avw}, is defined as

Avw
.
=

{
1 , if v = w
0 , if v ̸= w.

(49)

The degree matrix is of G an N × N matrix defined as
∆ = ∆(G) = {∆vw} where

∆vw
.
=

{
|ℵv| , if v = w
0 , if v ̸= w.

(50)

The Laplacian of graph G is defined by

L = ∆−A (51)

A path on the graph is a sequence of nodes (w0, w1, . . . , wm)
such that wn ∈ V, (wn, wn+1 ∈ E) for all n, and m is the
path length. An undirected graph is connected if there is
an undirected path between every pair of distinct nodes.
A graph is strongly connected if there is a directed path
connecting any two arbitrary nodes v, w of the graph. In this
report, we assume all graphs are connected. The diameter of
G is defined as the maximum length of the shortest path
between any pair of nodes [22], [27], [56].

In the examples of this report, we consider three
undirected communication topologies: ring, scale-free, and
small-world. In ring networks, each node node is connected
to its immediate neighbors in a closed loop so that the
corresponding graph is connected. A ring lattice network
has the added property that each node is connected to
K neighbors. Small world networks have a quasi-random
topology consisting of a ring lattice with additional random
connections generated by a fixed probability [25], [57]. Scale-
free networks have a degree distribution that follows a
power law, i.e. few nodes have most of the connections and
act as hubs [26]. The small-world and scale-free topologies
are illustrated in Figure 2.

APPENDIX B
DERIVATION OF THE INFORMATION VECTOR, j+Tv

As in the information matrix in eqn. (16), the information
vector is also obtained by Schur complement, which leads
to

j+Tv
= J+

Tv
T+
v . (52)

The above expression is proven below.

Proof. The Schur complement of j+vz in j+v is obtained by
using (14) and (15). Specifically,

j+Tv
= j+vT − (b+)⊤(B+)−1j+vz

=
(
(b+)⊤zv + c+Tv

)
−

(
(b+)⊤(B+)−1

(
B+z+ + b+Tv

))
= (b+)⊤zv + c+Tv − (b+)⊤(B+)−1(B+)z+v

− (b+)⊤(B)−1b+Tv

= (b+)⊤zv + c+Tv − (b+)⊤z+v − (b+)⊤(B+)−1b+Tv

= c+Tv − (b+)⊤(B+)−1(b+)Tv

=
(
c+ − (b+)⊤(B+)−1(b+)

)
Tv

= J+
Tv
Tv

Thus, we have obtained the expression in (17).

APPENDIX C
C.1 Simultaneous Diagonalization

This appendix states and proves a theorem on simultaneous
diagonalization of two real symmetric matrices.

Theorem C.1. Let A,B ∈ Rp×p be two real symmetric matri-
ces, and A be positive definite. Then there exists a non-singular
matrix T ∈ Rp×p such that

T−1AT−⊤ = I and T−1BT−⊤ = D (53)

where D is a real diagonal matrix and I is the identity matrix.

Proof. Due to positive definitiveness, we already have
A = R⊤R, for some non-singular matrix R. Hence
R−⊤BR−1 is symmetric and there exists an orthogonal
matrix S such that

S−1 R−⊤BR−1 S = D. (54)

From (54), define T−1 = S−1 R−⊤, and observe that

T−1BT−⊤ = D,

T−1 AT−⊤ = S−1 R−⊤R⊤RR−1 S = I,

hence completing the proof.

C.2 Proof of Theorem 5.7

We restate Theorem 5.7 below.

Theorem. For any positive definite Pv,Pw ∈ Rp×p,
(i) There exists a non-singular matrix T ∈ Rp×p such that

Pv = T−1PvT
−⊤ = Ip

Pw = T−1PwT
−⊤ = Dw

where Dw > 0 is diagonal, and Ip is the identity matrix.
(ii) The matrix Γ defined in (37) satisfies Γ = DΓ, with

DΓ = max{Pv,Pw} = max{Ip,Dw}, where max is the
component-wise maximum function.

(iii) The matrix Γ̌ defined in (35) satisfies Γ̌ = TDΓ T
⊤.

An alternative to the following proof can be found in
[34].

Proof. (i) This follows directly from Theorem C.1.
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(ii) We want to show that D⋆ = DΓ satisfies

D⋆ .
= argmin log |Υ|, subject to Υ ≥ Dv,Υ ≥ Dw

We first note two trivial cases. If Ip ⩾ Dw—that is,
[Ip]qq ≥ [Dw]qq for q ∈ Z[1,p]—then D⋆ = DΓ = Ip.
Similarly, if Ip ⩽ Dw, then DΓ = Dw.
For the remaining cases when Ip ⩽̸ Dw and Ip ⩾̸ Dw,
we use a result in [36] for general Dv,Dw ≥ 0. But we
have to first assume a structure for Dv,Dw. Specifically,
Assumption C.2. [Dv]qq ≥ [Dw]qq for q ∈ Z[1,n] and
[Dv]qq ≤ [Dw]qq for q ∈ Z[n+1,p], for some n ∈ Z[0,p].

Since Ip ⩽̸ Dw and Ip ⩾̸ Dw, this assumption is
fulfilled when we apply a suitable transformation to
Dw. Also, for each n as in Assumption C.2, we define a
family of matrices

T .
=

{
T ∈ Rn×p−n

∣∣TT⊤ ⩽ In
}
,

and define S ∈ Rp×p as

ST
.
=

[
In T
T⊤ Ip−n

]
. (55)

Subsequently, define ΣT = Q+RS−1
T R, where

Q = min{[Dv]qq[Dw]qq}, (56)

R =
∣∣∣[Dv]qq − [Dw]qq

∣∣∣1/2. (57)

Then, we use Theorem C.3 (Theorem 2 in [36]) that
states that Dv,Dw ≤ Σ for any positive definite Dv

and Dw.
Theorem C.3 (From [36]). For Dw,Dv ≥ 0, there does
not exist a matrix D̃ ̸= ΣT, for any T ∈ T such that
Dv ≤ D̃ ≤ ΣT and Dw ≤ D̃ ≤ ΣT.
Using the known property that 0 ≤ log |A| ≤ log |B|
holds for any 0 ≤ A ≤ B (Corollary 8.4.10. of [37]),
Theorem C.3 implies that D⋆ = ΣT⋆ . Therefore,

D⋆ .
= Q+RS−1

T⋆R

with T⋆ .
= arg min

T∈T
log |ΣT|.

We notice that DΓ = Q+R2 holds for any Dv = Ip
and Dw > 0. In that case D⋆ = Q+R2, which implies
that ST⋆ = Ip and T⋆ = 0n×p−n. Hence, we are only
left to show that T⋆ = 0n×p−n.
Using the property that 0 ≤ log |A| ≤ log |B| holds for
any 0 ≤ A ≤ B, we get that T⋆ satisfies

Q+RS−1
T⋆R ≤ Q+RS−1

T R

which means that ST⋆ ≥ ST, for all T. Equivalently,
T⋆ is obtained using T⋆ .

= argmax
T∈T

log |ST|. Since

|ST| =
∣∣In −TT⊤∣∣ (Fact 2.14.9. of [37]), we get

T⋆ = argmax
T∈T

log
∣∣In −TT⊤∣∣

= argmax
T∈T

n∑
q=1

λq(In −TT⊤)

= argmax
T∈T

n∑
q=1

1− λq(TT⊤) (58)

The fact that 0 ≤ TT⊤ ≤ In, for all T ∈ T and
q ∈ Z[1,n], implies 0 ≤ λq(TT⊤) ≤ 1. Hence, the
maximum in (58) is reached when λq(TT⊤) = 1 for
all q ∈ Z[1,n]. Therefore, T⋆ = 0n×p−n.

(iii) This follows directly from Lemma 5.6.

APPENDIX D
EFFECT OF NUMBER OF NEIGHBORS

Increasing the average number of interactions for each agent
(ℵv) while holding the size of the network (N ) constant
decreases the convergence time for all methods considered
in this report. However, for EI this also changes its conver-
gence point, as shown in Figures 9c and 9d. This points to
the underlying inconsistency of the EI approach.
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(b) Convergence of CI and ICI for ℵv = 10
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Figure 9: Convergence rates for a small-world network of N = 100, ℵv = {2, 10} and p = 0.3.
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