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Abstract

Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism 

mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in 

RNA molecules1. Although many editing sites have recently been discovered2–7, the extent to 

which most sites are edited and how the editing is regulated in different biological contexts are not 

fully understood8–10. Here we report dynamic spatiotemporal patterns and new regulators of RNA 

editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples 

(representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) 

project and in hundreds of other primate and mouse samples. We show that editing levels in non-

repetitive coding regions vary more between tissues than editing levels in repetitive regions. 

Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-

repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an 

inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, 

rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-

directed regulation of RNA editing for most sites, although the small set of conserved coding sites 

is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 

targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR 

enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, 

such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR 

proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-

to-I editing.

The prevalence and importance of A-to-I RNA editing have been illuminated in recent years 

largely owing to the rapid adoption of high-throughput sequencing technologies11,12. 

Separate laboratories have examined the RNA editome across many tissues or 

developmental stages in human and other mammals13–17. However, the published studies are 

limited in the number of samples and tissues examined and do not systematically compare 
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the editing landscape across species or thoroughly dissect the regulation of editing. In this 

work, we performed multidimensional analyses of thousands of new and publicly available 

sequencing libraries to address major gaps in our fundamental knowledge of A-to-I editing.

To construct a mammalian reference atlas of A-to-I editing, we first compiled a 

comprehensive list of editing sites in human and mouse (Supplementary Note 1) and then 

examined the RNA editome across tissues using 8,551 RNA-sequencing (RNA-seq) samples 

derived from 552 donors in the GTEx project (Supplementary Information 1). Notably, the 

editing profiles across different tissues were highly correlated (Fig. 1a) and the overall 

editing activities were also generally similar, except for skeletal muscle, in which editing 

was significantly lower than in other tissues (P <2.2 ×10−16, Wilcoxon rank sum test; Fig. 

1b). Nevertheless, principal component analysis (PCA) showed that the brain regions could 

still be resolved from non-brain tissues (Extended Data Fig. 1a). Within the brain, the 

cerebellum was clearly segregated from other brain parts (Extended Data Fig. 1b), possibly 

owing to higher expression of ADAR2 (also known as ADARB1) (Extended Data Fig. 1c). 

When we examined non-repetitive sites in coding regions only, the editing levels became 

more distinct among the various tissues (Fig. 1a). The different brain regions clustered 

together, as did heart and skeletal muscle. Unexpectedly, the artery was the most highly 

edited tissue type (Fig. 1c). The importance of RNA editing in vascular disease was 

demonstrated in a recent study18. We further validated the results obtained from the GTEx 

data by applying a targeted sequencing approach (microfluidics-based multiplex PCR and 

deep sequencing; mmPCR–seq)19 (Supplementary Note 2) to examine 12,871 exonic sites in 

672 loci (Supplementary File 2) on independent tissue samples from two individuals 

(Extended Data Fig. 2).

The extent to which variation in editing may be attributed to the expression of each ADAR 

enzyme is not well understood. From the GTEx data, we found that the expression of 

ADAR1 (also known as ADAR) accounted for approximately 20% of the variation in overall 

editing of repetitive sites (Fig. 1d), which represented 97.7% of all known editing sites. By 

contrast, ADAR2 expression explained 2.8% of the variation (Fig. 1d). However, when non-

repetitive protein-coding sites were considered instead, ADAR1 expression accounted for 

only 6% of the variation, whereas ADAR2 expression accounted for 25% (Fig. 1e). The 

expression of ADAR3 (also known as ADARB2), which localizes exclusively to the brain 

and has no enzymatic activity, was negatively correlated with editing levels in brain (Fig. 

1f). When the negative influence of ADAR3 was taken into account, ADAR1 and ADAR2 

were able to explain better the variation in editing (Fig. 1g), supporting the hypothesis that 

ADAR3 served predominantly as an inhibitor of editing in the brain, possibly by competing 

for double-stranded RNA (dsRNA) substrates20.

We next sought to identify groups of individual editing sites that share similar patterns 

across different tissues. We performed a co-editing network analysis by focusing on 2,094 

sites that exhibited higher variation of editing across tissues, and revealed 8 distinct clusters 

of sites (Supplementary Note 3 and Extended Data Fig. 1d). Additionally, we specifically 

searched for tissue-specific editing sites and identified 3,710 sites that were edited 

exclusively or preferentially in only one tissue type (Supplementary Note 3, Extended Data 

Fig. 1e and Supplementary File 3).
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To obtain an expanded view of the A-to-I editing landscape in mammals, we applied 

mmPCR–seq by interrogating 11,103 exonic sites in 557 loci (Supplementary File 2) to 12 

tissue types from several adult mice, and constructed a spatial map of editing in mouse that 

has both similar and distinct features to that in human (Extended Data Fig. 3a–i, 

Supplementary Note 4). Overall, we observed comparable spatial editing patterns between 

human and mouse, although there is less variation among human tissues mainly owing to the 

presence of Alu repeats. Furthermore, the editing landscape was plastic and responded to 

external stimuli, as demonstrated by a mouse liver injury model (Extended Data Fig. 3j, k).

We next assessed the dynamics of RNA editing over mouse development of several tissues 

using mmPCR–seq. Although the brain was the most highly edited organ in the adult mouse, 

we found that the fetal liver was more highly edited than the brain during mid-

embryogenesis (embryonic day (E) 12.0–E13.0) (Extended Data Fig. 4a). This is consistent 

with previous findings that an editing-deficient Adar1 mutant mouse dies at around E13.5 

owing to failed haematopoiesis in the fetal liver21. Furthermore, we observed that the editing 

activity mostly increased over development in the brain but not in non-brain tissues 

(Extended Data Fig. 4b–f), which could be largely explained by expression levels of ADARs 

(Extended Data Fig. 4g, h). This is consistent with a recent study examining RNA editing in 

brain development17.

To compare RNA editing between human and mouse, we focused on sites that were 

conserved between both species. Notably, PCA revealed that the samples were grouped by 

species rather than by tissue type (Fig. 2a). A similar pattern was observed using mmPCR–

seq data (Extended Data Fig. 5a–c). The differentially edited sites between the two species 

(often higher in human than in mouse) can be explained by the stability of the dsRNA 

structures (Extended Data Fig. 5d), possibly owing to the proximity of the human sites to 

Alu repeats (Extended Data Fig. 5e), which often form long double-stranded stem–loops22.

Subsequently, we performed cross-species comparisons using datasets from the Non-human 

Primate Reference Transcriptome Resource (NHPRTR) (Extended Data Fig. 6a, Methods). 

Again, different NHPRTR samples were largely grouped by species and not by tissue types 

(Fig. 2b). However, we also found that the editing variance of non-repetitive sites, including 

most of the 59 highly conserved sites23, were mainly explained by tissue differences (Fig. 

2c). When we performed PCA on the highly conserved sites only, we observed separation by 

tissue types (Fig. 2d). The overall grouping by species was not due to individual-to-

individual variability or measurement limitations (Extended Data Fig. 6b, c). In addition, the 

expression of the ADAR enzymes was similar among species (Extended Data Fig. 6d), 

suggesting that the pattern was unlikely to be due to species-specific trans-acting factors. We 

also showed that sites edited similarly between species had more conserved flanking 

sequences than sites edited differentially (Extended Data Fig. 6e). Collectively, our data 

suggest that cis-acting elements exert a greater effect on RNA editing than trans-acting 

factors, consistent with our recent observations in Drosophila24,25, although non-repetitive 

sites are more directed by trans-acting factors. These results parallel recent findings that 

RNA splicing is primarily cis-directed26,27 and are in sharp contrast to gene expression 

programs, which exhibit tissue-specific signatures26,27.
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RNA editing in mammals is catalysed by ADAR1 and ADAR2, but their substrates are 

poorly defined. By perturbing ADAR enzymes in human cells, we curated 9,352 and 1,403 

sites that are edited by ADAR1 and ADAR2, respectively, including 262 sites that are edited 

by both (Extended Data Fig. 7a–d, Supplementary File 4 and Supplementary Note 5). In 

addition, the editing levels of 73% of ADAR1 targets and 78% of ADAR2 targets are 

significantly correlated with ADAR1 and ADAR2 expression levels, respectively, in the 

GTEx data.

Next, we sought to identify the targets of each ADAR enzyme in mouse using mmPCR–seq 

not only in cells (Extended Data Fig. 8a) but also in vivo by using various mouse models in 

which ADAR1 or ADAR2 activity is depleted. To determine ADAR1 targets in vivo, we 

analysed the Adar1−/− mouse model at E12.0 (Extended Data Fig. 8b, c, Methods) and also 

several adult tissues from wild-type and Adar1E861A/E861A Ifih1−/− mice21 (Fig. 3a). To 

determine ADAR2 targets in vivo, we examined multiple adult tissues from wild-type and 

Adar2−/−Gria2R/R mice (Fig. 3b, Methods). In either ADAR1 or ADAR2 editing-deficient 

tissue, the average editing level was lower than in the wild-type tissues (P <0.05, Student’s t-
test; Extended Data Fig. 8d, e), and expression of the other active ADAR enzyme remained 

largely unchanged (Extended Data Fig. 8f, g). In total, we curated 1,457 and 976 sites that 

are edited by ADAR1 and ADAR2, respectively, in mouse, including 698 sites that are 

edited by both (Supplementary File 5).

To dissect the interaction in regulation between ADAR1 and ADAR2, we compared the 

editing ratio of Adar1E861A/E861AIfih1−/− to wild-type mice with the ratio of 

Adar2−/−Gria2R/R to wild-type mice for each site (Fig. 3c). Globally, we observed that the 

dependency on different ADAR enzymes varied from tissue to tissue. In the brain, ADAR1 

and ADAR2 performed comparable roles, whereas in the liver, spleen and thymus, ADAR1 

was the dominant editing enzyme, possibly owing to lower expression levels of ADAR2 in 

non-brain tissues. In the heart, although ADAR1 functioned as the key enzyme, ADAR2 

could also repress the editing of 66 ADAR1 targets. Clustering analysis of the ratios further 

revealed that the editing sites could be separated into five main groups of regulation that 

differed in their tissue-specific dependencies on ADAR1 and ADAR2 (Fig. 3d), as 

illustrated by sites in the Trim12c, Car5b, Cds2, Flna and Specc1 genes (Fig. 3e and 

Extended Data Fig. 8h). Notably, the dependency of most (62%) of the sites on the editing 

enzymes varied from tissue to tissue. Collectively, our results revealed an unexpectedly 

dynamic tissue-specific control of A-to-I editing by ADAR1 and ADAR2, which was not 

appreciated in previous studies.

Our work uncovered many spatiotemporal patterns of editing that could not be fully 

explained by the ADAR enzymes, prompting us to identify factors that help to account for 

these diverse patterns. Although previous work reported editing effects of the fragile X 

mental retardation protein FMRP28 and the PIN1 isomerase29, we detected few notable 

editing changes using several tissues from the knockout mice (Extended Data Fig. 9a, b). 

Hence, to search for regulators of editing in human, we performed linear regression analysis 

on the GTEx datasets and identified 144 or 147 genes that had expression levels that were 

either positively or negatively correlated, respectively, with overall editing levels (Methods, 

Fig. 4a, Extended Data Fig. 9c and Supplementary File 6). Gene Ontology (GO) analysis 
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revealed that they were significantly enriched for genes with functions in RNA metabolism 

(Extended Data Fig. 9d). From co-immunoprecipitation experiments in HEK293T cells, we 

showed that four out of the top six candidates interacted biochemically with either ADAR1 

or ADAR2 (Fig. 4b and Extended Data Fig. 9e).

The top candidate negative regulator of editing was AIMP2 (Fig. 4a), which encodes a 

component of the aminoacyl-tRNA synthetase complex30. AIMP2 interacted with both 

ADAR1 and ADAR2 (Fig. 4b). Deletion mapping experiments revealed that residues 162–

225 of AIMP2 were essential for the interaction (Extended Data Fig. 10a–c). Overexpression 

of AIMP2 led to a significant reduction in editing at 1,565 sites (P <0.01, Fisher’s exact test; 

Fig. 4c and Supplementary File 7), and a decrease in ADAR1 and ADAR2 protein levels 

(Fig. 4d and Extended Data Fig. 10d), although their transcript levels were unaffected 

(Extended Data Fig. 10e). In addition, when protein synthesis was inhibited by 

cycloheximide, levels of ADAR1 protein decreased more rapidly in AIMP2-overexpressed 

cells than in control cells (Fig. 4e). Hence, our results indicated that AIMP2 promotes the 

degradation of the editing enzymes, consistent with previous work that shows a non-

canonical function of AIMP2 in regulating protein stability30.

Our survey of the editing landscape in mammals revealed unusually low editing in skeletal 

muscle. Intriguingly, of the tissues profiled, the expression level of AIMP2 was highest in 

skeletal muscle (Extended Data Fig. 10f, g). Furthermore, the expression of ADAR1 and 

AIMP2 together accounted for 45% of the overall editing differences (Fig. 4f), whereas 

ADAR1 alone accounted for 20% (Fig. 1d). To investigate the role of AIMP2–ADAR 

interactions in skeletal muscles, we performed gene perturbation experiments in the C2C12 

mouse myoblast cell line. Knockdown of Aimp2 using short hairpin RNAs (shRNAs) altered 

the cell morphology from fusiform or star-shaped to a more elongated appearance (Fig. 4g), 

reduced the proliferation of C2C12 cells (Fig. 4h) and promoted the expression of markers 

normally associated with the transition from myoblasts to myotubes (Fig. 4i). Notably, these 

phenotypes could be rescued by the simultaneous knockdown of Adar1 with Aimp2 (Fig. 

4g–i). Similar results were obtained using other independent shRNAs (Extended Data Fig. 

10h). We further confirmed the results by overexpression of Adar1 with or without 

concomitant over-expression of Aimp2 (Fig. 4j). Hence, our analysis suggests that AIMP2 

functions in myoblasts, at least in part, by blocking ADAR1-mediated RNA editing, which 

has recently been shown to be important for the myoblast-to-myotube transition31.

In summary, our work has afforded an unprecedented view of the dynamic landscape and 

regulation of RNA editing in mammals. We have demarcated major editing trends across 

tissues and over development and highlighted key differences in editing between human, 

non-human primates and mouse. We have identified a new regulator of editing, AIMP2, and 

determined its role in shaping the RNA editome in mammals. Future studies aimed at 

uncovering additional cis- and trans-regulators of A-to-I editing are necessary to determine 

how precise control of editing is achieved in a myriad of biological contexts10,22,32,33.
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METHODS

Data reporting

No statistical methods were used to predetermine sample size. The experiments were not 

randomized, and investigators were not blinded to allocation during experiments and 

outcome assessment.

Tissues

All human fetal and adult genomic DNA and RNA were purchased from BioChain Institute. 

The human tissues were collected post-mortem from individuals with no known medical 

history. For donor N37, we obtained RNAs for 10 somatic tissues (cerebellum, frontal lobe, 

heart, lung, liver, stomach, pancreas, colon, small intestine and skeletal muscle) and DNA 

for 2 somatic tissues (frontal lobe and small intestine). For donor N6, we obtained RNAs for 

10 somatic tissues (cerebellum, corpus callosum, diencephalon, frontal lobe, parietal lobe, 

temporal lobe, kidney, adrenal gland, stomach and small intestine) and DNA for 3 tissues 

(cerebellum, frontal lobe and stomach). We also purchased additional RNAs and DNAs for 

adult lung, liver and small intestine, with each sample coming from a different individual. 

For fetuses F120 and F122, we obtained RNAs for five somatic tissues each (frontal lobe, 

lung, liver, small intestine and skeletal muscle) and DNA for two somatic tissues each 

(frontal lobe and small intestine). The RNA integrity numbers (RINs) of all human samples 

were at least 6.0.

Mouse samples were obtained as follows. Inbred FVB/N mice were purchased from Jackson 

Laboratory and maintained at Stanford University until they were 30 months old. One-

month-old inbred C57BL/6J were purchased from Jackson Laboratory. Tissues from inbred 

129S1/SvImJ 6 months old mice were provided by L. Attardi. Additional inbred 129S1/

SvImJ male and female mice were purchased from Jackson Laboratory and crossed to obtain 

embryos and pups. Fmrp-null (also known as Fmr1-null) mice and the corresponding control 

wild-type mice were purchased from Jackson Laboratory. Pin1-null mice and the 

corresponding control wild-type mice were genotyped and provided by G. Del Sal and A. 

Rustighi. Adar1+/− male and female mice35 were crossed to obtain Adar1+/+, Adar1+/− and 

Adar1−/− embryos, which were genotyped36. Tissues were also obtained from previously 

published 6-week-old Adar1E861A/E861AIfih1−/− and Adar2−/−Gria2R/R mouse models21,37. 

To induce acute liver injury, 8-week-old male BALB/cJ mice were administered with a 

single dose CCl4 (0.4 mg g−1, Sigma) suspended in olive oil and liver biopsies were taken 

daily for four days. Tissues were flash frozen in liquid nitrogen or dry ice immediately after 

dissection. All care and procedures were in accordance with the Guide for the Care and Use 

of Laboratory Animals. All animal experiments were approved by Stanford’s Administrative 

Panel on Laboratory Animal Care (APLAC) or by the Animal Ethics Committee (AEC) of 

the athenaeum of the University of Trieste, the Institutional Animal Care and Use 

Committee of the Wistar Institute, and St Vincent’s Hospital (Melbourne) AEC.

High-quality RNA is important for constructing RNA-seq and mmPCR–seq libraries. Mouse 

tissues were kept frozen until they were immersed in Trizol or Qiazol and rapidly grounded 

using a handheld disposable pestle grinder system. After chloroform treatment, cold 
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centrifugation, and retrieval of upper aqueous phase, each sample was purified through an 

RNeasy column (Qiagen). Concentrations were measured using Nanodrop (Thermo 

Scientific) and RNA qualities were checked using BioAnalyzer (Agilent). The RIN values of 

all mouse samples were at least 8.0.

Cell lines and transfection

Cell lines were obtained as follows. HEK293T cells were provided by H. H. Ng. C2C12 

cells were provided by S.-C. Ng. 2fTGH cells were from G. Stark. The cell lines were 

routinely checked by PCR for myco-plasma contamination using the following primers: 

forward, 5′-GGGAGC AAACAGGATTAGATACCCT-3′; reverse, 5′-
TGCACCATCTGTCAC TCTGTTAACCTC-3′.

HEK293T and C2C12 mouse myoblast cells were cultured in DMEM supplemented with 

10% fetal bovine serum and penicillin/streptomycin (Life Technologies). Cells were 

incubated at 37 °C in a humidified 5% CO2 air incubator. For transfection of HEK293T 

cells, the cells were seeded at 50–60% confluency and next day 1 μg of AIMP2 (either full-

length or its fragments) along with 1 μg of ADAR1 or ADAR2 were co-transfected using 

JETPRIME transfection reagent. The cells were collected 2 days after transfection for 

protein lysate or RNA preparation.

The samples for our interferon studies were prepared as follows. 2fTGH (wild-type) human 

cells were seeded at the rate of 5 ×105 cells per well in 6-well plates in DMEM with 10% 

fetal bovine serum. Interferon treatment (IFNα A/D) was carried out 24 h after seeding at a 

final concentration of 1,000 U ml−1. After incubation with interferon for 24 h, total RNA 

was isolated using Trizol (Ambion) following the manufacturer’s protocol. In brief, 1 ml 

Trizol was added to each well, mixed by pipetting, and collected into 15 ml polypropylene 

tubes. Chloroform (200 μl) was added, mixed vigorously for 1 min, and allowed to stand at 

room temperature for 5 min. Samples were centrifuged at 4,000 r.p.m. for 10 min at 4 °C 

and the aqueous phase was collected. Isopropanol (500 μl) was added to the aqueous 

fraction, mixed, and allowed to stand at room temperature for 10 min. The RNA precipitate 

was pelleted by centrifuging at 4,000 r.p.m. for 10 min at 4 °C. The pellet was rinsed with 1 

ml 70% ethanol, air dried, and dissolved in RNase-free water. Total RNA was prepared from 

untreated and IFN-treated mouse embryonic fibroblasts in a similar way. Quantification was 

carried out using a nanodrop UV spectrophotometer.

Construction of RNA-seq and exome-seq libraries

The Illumina mRNA-seq library preparation workflow was followed with some 

modifications, as described previously38. The library amplification step was performed with 

SYBR Green I on a real-time PCR machine to prevent over-amplification. All libraries were 

quantified using the Qubit dsDNA High Sensitivity Assay Kit (Invitrogen) and sequenced on 

HiSeq 2000 (Illumina) to produce paired 100-bp reads. For the 1-month-old mouse samples, 

N6 human samples, as well as the non-N6 and non-N37 human samples, we used custom 3-

bp barcodes that were inserted at the ligated end of the adapters. For all the other samples, 

we used the standard 6-bp Illumina barcodes that were added to each library in the final PCR 

step.
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Genomic DNA from the frontal lobe and small intestine of N37, F120 and F122, as well as 

N6 cerebellum, N6 frontal lobe, N6 stomach, and all the non-N6 and non-N37 adult human 

tissues were prepared for exome sequencing. The enrichment of targeted regions was 

performed using the Agilent SureSelect Human All Exon 50Mb Kit (Agilent Technologies) 

following manufacturer’s instructions. We also prepared an additional library from the non-

N6, non-N37 lung using Nextera DNA sample preparation kit (Epicentre). As with the 

RNA-seq libraries, the final PCR step was performed on the real-time thermocycler with 

SYBR Green I in the reaction mix to prevent over-amplification of libraries. Details of all 

the samples are provided in Supplementary File 8.

Construction of mmPCR–seq libraries

We have previously described our mmPCR–seq method in detail19. In brief, RNAs were 

reverse transcribed using either SuperScript III (Invitrogen) or iScript advanced reverse 

transcriptase (Bio-Rad). The cDNAs were purified using the MinElute PCR Purification Kit 

(Qiagen), with an elution volume of 15 μl or less. For brain samples, at least 200 ng cDNA 

was loaded into each well of an Access Array microfluidic chip (Fluidigm). For non-brain 

samples, at least 400 ng cDNA was loaded. The PCR reactions were performed on the 

Access Array System (Fluidigm) using 5× KAPA2G Multiplex PCR Mix (Kapa 

Biosystems). The primer sequences for both human and mouse are provided in 

Supplementary File 2. Barcodes were added in a second round of PCR using Phusion DNA 

polymerase (Finnzymes). Samples were sequenced on HiSeq 2000 (Illumina) to produce 

paired 101-bp reads. Details of all the samples are provided in Supplementary File 8.

Pre-amplification of low quantity samples

In some biological models in which material is limited, such as RNA from specific cell types 

or diseased samples, the samples have to be pre-amplified before loading into the Fluidigm 

chip. We tested different complexities of pre-amplification (number of pooled primers), 

different PCR protocols, different amounts of templates used for pre-amplification, different 

clean-up procedures, and different quantities of cDNA loaded into the Fluidigm chip. We 

found that the following protocol produces the least amount of undesired PCR products 

(based on gel electrophoresis) and the highest mapping rates. The low quantity RNAs were 

reverse transcribed using iScript advanced kit (Biorad) according to the manufacturer’s 

instructions. Next, the multiplex PCR primers were divided equally into three pools, so that 

there were approximately 200 primer pairs per pool. Hence, for each sample, three separate 

pre-amplification reactions have to be carried out. Each pre-amplification reaction consisted 

of 6 μl 5× KAPA2G Multiplex PCR Mix (Kapa Biosystems), 3 μl cDNA (typically 50–200 

ng), and 21 μl pooled primers. The PCR program used was: 95 °C for 10 min, followed by 

10–12 cycles of 95 °C for 15 s, 60 °C for 30 s, and 72 °C for 1 min 30 s, and lastly followed 

by 72 °C for 2 min. We used the MinElute PCR Purification Kit (Qiagen) to clean up the 

pre-amplification reactions with a slight modification: after DNA binding using buffer PB 

from the kit, the columns were washed once with 35% guanidine hydrochloride before the 

wash with buffer PE. Alternatively, AMPure XP beads can also be used to remove the 

smaller undesirable by-products. The concentrations of the pre-amplified cDNA were 

subsequently measured by Nanodrop. For loading into the Fluidigm chip, in contrast to 

unamplified cDNA where we used 200–2,000 ng per sample, here we loaded only 20–30 ng 
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for each pre-amplified cDNA. After mmPCR–seq, we found that for neuronal samples (such 

as brain tissues or differentiated neurons), there were minimal undesired amplicons and we 

could simply use the Qiagen PCR Purification Kit for clean-up. For non-neuronal samples 

(such as lung tissues), there were still some additional undesired PCR products, which we 

had to remove by gel extraction. The editing level measurements from pre-amplified samples 

were highly reproducible and also highly correlated with results obtained from the same 

samples without pre-amplification (data not shown).

Validations by Sanger sequencing

To validate whether the newly identified editing sites are bona fide and to confirm the 

editing levels measured by mmPCR–seq, we performed regular PCR to amplify a selection 

of sites. We used either iQ SYBR Green Supermix (Bio-Rad) or KAPA SYBR FAST Master 

Mix Universal (Kapa Biosystems) for the PCR reactions. To ensure that even low abundant 

transcripts can be amplified and sequenced, a touch down PCR program was employed: 

95 °C for 3 min, followed by 24 cycles of 95 °C for 15 s, 72 °C to 60 °C (decrement of 

0.5 °C every cycle) for 30 s, and 72 °C for 45 s, then followed by 40 cycles of 95 °C for 15 

s, 60 °C for 30 s, and 72 °C for 45 s, and lastly followed by 72 °C for 2 min. For a handful 

of sites with low editing levels, the PCR product was inserted into a vector using the TOPO 

TA Cloning Kit (Invitrogen) and then transformed into Top10 Escherichia coli cells 

(Invitrogen). At least 30 colonies were picked for each site. All Sanger sequencing was 

carried out by Sequetech, Eurofins MWG Operon, AITbiotech, or Axil Scientific. 

Validations are available at http://lilab.stanford.edu/atlas.

Mapping of RNA-seq and mmPCR–seq reads

We adopted our previously published pipeline to accurately map RNA-seq reads onto the 

genome6,7. In brief, we used BWA39 to align RNA-seq reads to a combination of the 

reference genome and exonic sequences surrounding known splicing junctions from 

available gene models. We mapped each of the paired-end reads separately using the 

commands ‘bwa aln fastqfile’ and ‘bwa samse -n4’. We chose the length of the splicing 

junction regions to be slightly shorter than the RNA-seq reads to prevent redundant hits (that 

is, 95 bp for reads of 100 bp length). The reference genomes used were: human (hg19) and 

mouse (mm9). Gene models were obtained through the UCSC Genome Browser for 

Gencode, RefSeq, Ensembl, and UCSC Genes. We only considered uniquely mapped reads 

with mapping quality q >10 and used samtools rmdup40 to remove identical reads (PCR 

duplicates) that mapped to the same location. Of these identical reads, only the read with the 

highest mapping quality was retained for further analysis. Unique reads were subjected to 

local realignment and base score recalibration using the IndelRealigner and Table 

Recalibration tools from the Genome Analysis Toolkit (GATK)41. The above steps were 

applied separately to each of our RNA-seq samples for mouse and human. In addition, we 

downloaded and mapped publicly available RNA-seq data for brain tissues of 10 mouse 

strains (each with two biological replicates) (ENA: ERP000614) and six tissues for one 

mouse strain (each with six biological replicates) (ENA: ERP000591). Subsequently, the 

mapped reads from all samples were combined into one human and one mouse dataset 

(pooled) for variant calling.
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Reads that were produced using the mmPCR–seq protocol were mapped to the genome and 

splicing junctions in the same way as RNA-seq reads. However, mmPCR–seq samples were 

not subjected to duplicate removal before local realignment and samples were treated 

separately (rather than pooled) for the subsequent steps.

GTEx data processing

The GTEx expression data used in this study was obtained from dbGap release of 

provisional analysis data (12 January 2015 version), which contained 8,555 postmortem 

samples. The editing level was called on the GTEx v6p release (study accession 

phs000424.v6.p1; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000424.v6.p1), which contained a total of 9,547 postmortem samples. For all 

the analyses, we used 8,551 samples that had both expression and editing data available. To 

call editing level of each site from GTEx RNA-seq, we computed the ratio of G reads 

divided by the sum of A and G reads for each of the know editing site and only kept the sites 

of which the sum of A and G reads was higher than 20 for downstream analysis. For each 

tissue type, we calculated the mean editing level of each site from different individuals and 

required the mean value should be computed from at least 10 samples. After applying above 

filters, in total there were 408,580 sites used for downstream analysis of the GTEx data. In 

addition, we analysed a representative subset of GTEx samples to identify new editing sites. 

For each tissue type, we chose six samples, with three datasets from males and three datasets 

from females, and for each gender, one from a young donor (20–35 years old), one from a 

middle-aged donor (35–55 years old), and one from an old donor (55–70 years old). We 

chose the RNA-seq datasets that had the deepest sequencing coverage. The whole-genome 

sequencing (WGS) data for each donor was also obtained from GTEx v6p release to 

minimize false discoveries. Details of chosen samples are presented in Supplementary File 

9.

Identification of editing sites from RNA-seq data

We used the UnifiedGenotyper tool from the Genome Analysis Toolkit (GATK)41 to call 

variants from the mapped RNA-seq reads. In contrast to the usual practice of variant calling, 

we identified variants with very loose criteria by using the UnifiedGenotyper tool with 

options stand_call_conf 0, stand_emit_conf 0, and output mode EMIT_VARIANTS_ ONLY. 

Human variants at non-repetitive and repetitive non-Alu sites were required to be supported 

by at least three mismatch reads. A support of one mismatch read was required for variants 

in human Alu regions. Mouse variants at non- repetitive and repetitive non-Alu sites had to 

be supported by at least two and three mismatched reads, respectively. This set of variant 

candidates was subject to several filtering steps that increased the accuracy of editing site 

discovery. For humans, we removed all known single nucleotide polymorphisms (SNPs) 

present in the SNP database (dbSNP; except SNPs of molecular type ‘cDNA’; database 

version 135; http://www.ncbi.nlm.nih.gov/SNP/), the 1000 Genomes Project, and the 

University of Washington Exome Sequencing Project (http://evs.gs.washington.edu/EVS/). 

For GTEx samples, we also removed SNPs from the GTEx v6p release WGS data. For 

mouse, we removed all known SNPs based on annotations from dbSNP, the Sanger 

Institute42,43, and a recent in-house sequencing study of 10 mouse genomes (M.T.O. et al., 
unpublished observations). In addition, we removed all mouse RNA-seq variants if they 
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showed any evidence for the same type of variation in the genome of any of the 11 inbred 

strains sequenced by the Sanger institute42,43. To remove false positive RNA-seq variant 

calls due to technical artefacts in both human and mouse, further variant filters were applied 

as previously described6,7. In brief, we (1) required a variant call quality q >20; (2) 

discarded variants if they occurred in the first six bases of a read; (3) removed variants in 

repetitive regions; (4) removed intronic variants if they were within 4 bp of splice junctions; 

and (5) discarded variants in homopolymer runs. Moreover, we removed sites in regions 

highly similar to other parts of the genome by BLAT44. Finally, variants were annotated 

using ANNOVAR45 based on gene models for Gencode, RefSeq, Ensembl, and UCSC 

Genes. The resulting sets of sites identified from our RNA-seq data were combined with all 

sites available in the RADAR database11 and were subsequently referred to as ‘known’ sites 

for further analysis by mmPCR-seq.

Identification of editing sites from mmPCR–seq

To identify novel editing sites from our mmPCR–seq samples, we called variants using the 

GATK UnifiedGenotyper41 and applied the same filters to remove technical artefacts as for 

the discovery of editing sites from RNA-seq (see above). We applied this procedure to each 

mmPCR–seq sample individually. Subsequently, we selected variants from each sample by 

applying a variable minimum variant frequency threshold that resulted in an A-to-G 

mismatch fraction of >80% per sample. Assuming all non-A-to-G mismatches are false and 

the error rate for all 12 mismatch types is equal, this resulted in a false discovery rate of 

(20%/11)/80% =2.3%. Finally, all A-to-G variants found in each sample separately were 

pooled and reported as ‘novel’ sites.

Expression analysis

The expression of known genes (that is, expected fragments per kilobase of transcript per 

million fragments mapped (FPKM)) was quantified using Cufflinks246 (parameter -G) on 

the basis of Tophat247 mappings for all RNA-seq libraries. Gene models for human and 

mouse were obtained from Ensembl for human (release 72) and mouse (release 67). If a 

variant overlapped with several gene models, the average of the FPKM values for all 

overlapping genes was calculated.

Comparison of editing levels in human and mouse mmPCR–seq samples

To determine the overall similarities in editing between samples, we selected sites that were 

covered by at least 100 reads in mouse samples and at least 300 reads in human samples and 

that were edited to at least 1% in any of the mouse or human samples respectively. 

Similarities in editing levels between samples were quantified using a Pearson correlation 

and are reported as R2 values. Statistical analyses were performed using the R package.

Overall editing levels

To identify the relation between editing levels and expression of the editing enzymes, we 

determined the overall editing by using the RNA-seq data for each tissue sample in human 

and mouse. We determined the overall editing as the total number of reads with G at all 

known editing positions as compared to all reads covering the position (that is, containing A 
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and G nucleotides at the editing position). We did not impose any sequencing coverage 

criteria, but instead took all sites into account that were used in this study (including sites 

from the RADAR database11, sites discovered by our own and GTEx RNA-seq, and sites 

found in the data generated by mmPCR–seq) to obtain the total amount of editing in each 

sample.

PCA analysis

To identify the major sources of variation in mouse and human tissue samples, we performed 

PCA. In addition to the criteria that were imposed for correlation analysis (see above), we 

removed all sites that were missing editing value measurements in more than one-third of 

the samples. The missing values of the remaining sites were imputed using missForest R 

package48 with default settings. Then the ‘prcomp’ function in R was used to determine the 

principal components on the complete dataset.

Co-editing network analysis

Editing levels of individual site were quantified as the number of G reads divided by the 

total number of A and G reads mapped to an editing site when the latter was higher than 20 

reads in more than 10 samples. By applying this criterion, we had 408,580 editing sites 

quantifiable in the GTEx data, including 369,797 Alu sites, 13,612 repetitive non-Alu sites 

and 25,171 non-repetitive sites including 2,642 sites in coding regions. To identify sites that 

are co-edited in different groups of tissues, several criteria were applied for preprocessing of 

data. We (1) removed sites with too many missing values of samples (≥4 samples, 20,726 

sites remained); (2) removed samples with too many missing values of sites (≥50%, cervix–

endocervix removed); (3) constructed a sample tree by hierarchical clustering (method 

=‘average’) and cut the tree (cutHeight =16, minSize =10) to remove outlier(s) from the 

sample tree (muscle removed); and (4) removed sites with low variance (coefficient of 

variance <0.8, 2,094 sites remained). We used the WGCNA R package49 to estimate the best 

soft-thresholding power for the co-editing network construction. The minimum power tested 

that reached the R2 cut-off of 0.8 for topology model fit was determined as the optimal 

value. We then calculated the adjacencies with the optimal soft-thresholding power 

estimated above and transformed the adjacency into a topological overlap matrix to calculate 

the corresponding dissimilarity. Next, we were able to use hierarchical clustering on the 

dissimilarity to produce a dendrogram of sites and identified 6 co-editing modules with 

minModuleSize =30. A heat map was used to show how sites were clustered into the 

modules and their editing patterns in different tissues (Extended Data Fig. 1f).

Tissue-specific editing analysis

To identify editing sites that are specifically edited in only one tissue, we focused on sites in 

which the editing level can be detected in at least 10 major tissues with at least 20 

sequencing reads in the GTEx data. We then applied the ROKU R package50 to rank the 

sites by their overall tissue specificity using Shannon entropy and detected tissues specific to 

each site, if any exists, using an outlier detection method. We required the editing level range 

(maximum editing level minus minimum editing level) to be higher than 10% and Shannon 

entropy lower than 0.4 to generate a list of tissue-specific editing sites.
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Comparison of editing at conserved sites between human and mouse

To compare editing sites directly between human and mouse, we identified positions that are 

conserved between human and mouse. For that purpose, we converted the coordinates of all 

targeted human sites to positions on the mouse reference genome using the liftOver tool and 

the ‘hg19.ToMm9.over.chain’ file provided by the UCSC Genome Browser (http://

genome.ucsc.edu). We repeated the same procedure by converting all mouse sites to 

positions on the human reference genome using the ‘mm9ToHg19.over.chain’ file. For 

positions that were successfully lifted over we determined the nucleotide in the query and 

target genomes using the pairwise alignments in axt format that are provided by the UCSC 

Genome Browser. We repeated the same procedure 100 times using randomly chosen ‘A’ 

positions from edited genes to obtain a control for the substitution rates between the two 

species.

To ensure that all selected positions were truly edited, we chose only sites that were edited in 

at least one human and one mouse sample by more than 2% for further analysis. The 

correlations between human and mouse tissues and developmental stages were quantified 

using Pearson’s R2 value. These correlations served as similarities between samples for a 

hierarchical clustering using Ward’s minimum variance method as metric. Duplex energies 

were obtained using the RNAduplex program provided in the Vienna RNA package51.

Comparison of editing at conserved sites between human and non-human primates

To identify positions that are both present and edited in the human and non-human primates 

genomes, we started with the list of human editing sites and performed a ‘liftover’ process 

following the order of species in the phylogenetic tree (human, chimpanzee, baboon, rhesus, 

marmoset), and then repeated in the reverse direction. To calculate the editing levels of the 

conserved sites, we used the RNA-seq data for human, chimpanzee, baboon, rhesus and 

marmoset from NHPRTR34,51 and computed the ratio of G reads divided by the sum of A 

and G reads for each site and kept only the sites with the sum of A and G reads higher than 

20. We further required that each site should be edited ≥5% in at least one sample of each 

tissue. After applying the above filters, in total there were 46,344 conserved and edited sites 

used for downstream analysis (Extended Data Fig. 10a). For each editing site, to test 

whether its usage changes more strongly between tissues or between species, we quantified 

the explained variance by fitting an ANOVA model to each site with tissue and species as 

explanatory variables and used the sum of squares as the measure of variation52.

Identification of variability in editing between different mouse strains

To identify sites that are differentially edited between the 129S1/SvImJ and FVB/N mouse 

strains, we applied a strategy that relied on the discovery of editing sites that exhibit 

consistent differences between the two strains in more than one tissue. More precisely, we 

first identified editing sites that were reproducible in technical replicates of 129S1/SvImJ 

cerebellum, 129S1/SvImJ frontal lobe, FVB/N cerebellum, and FVB/N frontal lobe. 

Reproducibility was determined using Fisher’s exact test with P >0.05 when comparing the 

numbers of edited and unedited nucleotides between two replicates. Subsequently, we 

calculated the average editing level between technical replicates at reproducible sites and 

compared them between the two strains. This comparison was performed independently for 
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both cerebellum and frontal lobe tissues. Sites were required to show a difference of >10% 

between strains in both tissues to be reported as candidates. To determine structural 

differences in RNA secondary structures that may be caused by variation between mouse 

strains and that may affect editing levels, we used the following procedure: First, the 

RNAduplex software was used to determine candidate editing complementary sequences in 

a window of ±5 kb of the candidate sites. Second, for regions determined by RNAduplex we 

created sequences that were specific for each mouse strain by replacing reference 

nucleotides with genomic variants annotated in each mouse strain. Third, we used IPknot53 

to predict a more accurate secondary structure (including pseudoknots) for both sequences 

separately and investigated the differences in structure that were caused by genomic variants 

in the two strains.

Identification of ADAR1 and ADAR2 target sites

To discover editing sites that are targets of ADAR1 in mouse, we measured editing levels in 

wild-type (Adar1+/+) (2 replicates), heterozygous (Adar1+/−) (7 replicates) and null 

(Adar1−/−) (5 replicates) mouse embryos (E12.0). In addition, we measured editing levels in 

Adar1+/+Ifih1−/− (5 tissues) and Adar1E861A/E861AIfih1−/− (5 tissues, 2 replicates) adult 

mouse samples. We required a minimum coverage of 100 reads in each replicate and 

reported sites to be ADAR1 targets if the editing level measurements between the wild-type 

(Adar1+/+) replicates and the null (Adar1−/−) replicates were significantly different (P <0.1, 

Student’s t-test), and if the average editing levels between wild-type and knockout samples 

differed by at least 5%.

A similar strategy was applied to identify ADAR2 target sites in 5 mouse tissues by 

comparing wild-type and Adar2−/−Gria2R/R mice21. We required (1) reproducible editing 

levels between replicates in wild-type and knockout samples (s.d. <10%), (2) a significant 

difference between wild-type and knockout replicates (P <0.1, Student’s t-test), and (3) a 

difference of >5% between wild-type and Adar2−/− average editing levels. These criteria 

were also applied to identify ADAR1 targets from human 2fTGH cells and mouse 

embryonic fibroblasts treated or untreated with IFNα.

To understand the regulation of editing by ADARs further, we used the 

Adar1E861A/E861AIfih1−/− and Adar2−/−Gria2R/R mouse tissue data to identify editing sites 

that were preferentially edited by ADAR1 and ADAR2, respectively, in different contexts. 

We calculated the ratio between Adar1E861a/E861A and wild-type as well as the ratio between 

Adar2−/− and wild-type editing levels (knockout/ wild-type ratio). A knockout/wild-type 

ratio close to 0 signified low editing in mutant mice but higher editing in wild-type mice and 

therefore a dependence of editing on the corresponding enzyme. Vice versa, a knockout/

wild-type ratio close to 1 suggested similar levels of editing in mutant and wild-type mice, 

and therefore not a dependence of editing on the corresponding enzyme. In some cases, the 

knockout/wild-type ratio was higher than 1, suggesting the inhibiting role of editing of the 

corresponding enzyme.
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Identification of sites affected by FMRP and PIN1 from wild-type and knockout mice 
comparisons

To identify sites that differed in their editing levels between wild-type and Fmrp−/− mice, we 

required that (1) their editing levels were reproducible within biological replicates of wild-

type samples and Fmrp−/− samples (s.d. <10%), (2) their editing levels differed significantly 

between wild-type and Fmrp−/− replicates (P <0.1, Student’s t-test), and (3) the difference 

between average editing levels was >5% between wild-type and Fmrp−/− samples. For brain 

tissues, we used four replicates for wild-type and knockout mice each. For non-brain tissues, 

two biological replicates were available for both wild-type and knockout mice.

We applied the same strategy to discover sites that differed significantly in editing between 

wildtype and Pin1−/− mice. For that purpose, three biological replicates were available in 

each tissue for wild-type and knockout mice.

Identification of editing regulator candidates and functional enrichment analysis

To identify genes in which the expression level positively or negatively correlated with 

overall editing level of different subsets of sites, we applied robust linear regression model to 

fit the expression levels of every gene in each of the major tissue types of GTEx data to the 

overall editing levels of all sites, Alu sites, non-Alu repetitive sites, non-repetitive sites and 

coding sites, respectively. Before fitting the linear models, we required the expression level 

of each gene to be higher than 1 in at least 60% of the samples, and normalized the 

expression levels by gene so that the mean =0 and variance =1. Subsequently, we built the 

linear model between gene expression levels and overall editing levels, taking into 

consideration the expression level of ADAR1 as an additional variable. We chose the cut-off 

P value for positive and negative regulator candidates within each tissue using Bonferroni 

correction (α=0.01). To identify regulators with broader effect on editing, we further 

required that in at least 8 tissues the candidate’s expression level was significantly correlated 

with editing levels and no conflicts were found between the tissues. After repeating this test 

for different categories of editing sites, we combined the results to generate a comprehensive 

list of 144 positive and 147 negative regulator candidates of RNA editing (Supplementary 

File 5).

We obtained GO annotation for each of the regulator candidates using BioMart54. To find 

functional enrichment, we used topGO54 to perform the enrichment test on positive and 

negative regulators based on gene counts (topNodes =20, nodeSize =5, P <0.01, Fisher’s 

exact test).

Co-immunoprecipitation

HEK293T cells were co-transfected using JETPrime with Myc-tagged ADAR1 or ADAR2 

and Flag-tagged AIMP2 fragments for 48 h. Cells were lysed in RIPA buffer containing 150 

mM NaCl, 25 mM Tris-HCl, pH7.2, 1% NP-40, 0.25% sodium dodecyl sulphate (SDS), and 

1 mM dithiothreitol (DTT). Phenylmethylsulfonyl fluoride (PMSF) (1 mM final 

concentration) and protease inhibitor cocktail (Roche) were added freshly before lysis. Anti-

Flag M2 beads (Sigma) were washed twice with RIPA buffer and equal amount of cell 

lysates were added to the beads and incubated overnight at 4 °C. The bound proteins were 
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washed away from unspecific proteins by high-salt buffer containing 250 mM NaCl, 25 mM 

Tris-HCl, pH 7.2, 0.5% NP-40, 0.1% SDS and 1 mM DTT. The samples were run on 12% 

SDS–PAGE and transferred onto a nitrocellulose membrane using TurboBlot (Biorad). The 

blots were probed with anti-Myc (Santa Cruz) and anti-Flag (Sigma) for specific interaction 

of ADAR1/ADAR2 and AIMP2 respectively.

Cycloheximide chase

To study protein degradation rate of ADAR1, HEK293T cells were split into a 6-well plate 

at a seeding density of 300,000 cells per well and grown overnight. The cells were then 

either transfected with an empty p3×-Flag vector or Flag-tagged AIMP2 vector and grown 

for another 48 h before the addition of cycloheximide. After the addition of cycloheximide 

(100 μg ml−1), the cells were collected at different times points as indicated and lysed in 

RIPA buffer (25 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40, 0.25% sodium deoxycholate, 

and 1 mM PMSF). Equal amounts of protein were separated on a 12% SDS–PAGE gel and 

transferred to a nitrocellulose membrane. The blots were blocked in 5% milk overnight at 

4 °C and incubated with anti-ADAR1 (Abcam) and anti-Flag primary antibodies followed 

by secondary antibody incubation. The blots were developed using Advanta 

chemiluminescence western blotting solution (Advanta). Anti-β-actin was used as loading 

control. Images were captured in Biorad Image station and analysed using ImageJ.

Quantitative PCR

Total RNA was extracted using Quick-RNA MiniPrep (Zymo Research) kit following the 

manufacturer’s protocol. For each sample, 1 μg of total RNA was taken for reverse 

transcription using the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher) using 

standard protocol. The reverse transcription products were later used to run qPCR using 

KAPA SYBR FAST qPCR Master Mix (KAPA Biosystems) for specific genes. All assays 

were run in triplicates and normalized to Gapdh control. Four independent biological 

replicates were used to calculate the mean and s.e.m.

The following mouse primers were used in real-time PCR experiments: Gapdh forward, 

ACCACAGTCCATGCCATCAC; Gapdh reverse, TCCACCAC CCTGTTGCTGTA; Adar1 
forward, GGGTCTTGATCGGGGAGA; Adar1 reverse, GCTGCCAGAGAGAGGAAGTG; 

Aimp2 forward, CGTGCTTGGAAA GGACTATG; Aimp2 reverse, 

ATTCTCGGGCACATTCTTG; Myod forward, CCAGGCACAGGAAGATTG; MYOD_R, 

CAGCACTCCATGCATATCTC; Myog forward, TTATCATAATATGCCTCG; Myog 
reverse, GAAGAGACTA GAACAGAT; Myh3 forward, ATCGAAGCTCAGAACCAG; 

Myh3 reverse, CCCTTGACATATTCTTCCTTTG.

Knockdowns of AIMP2 and ADAR1 in C2C12

We first predicted potential shRNA targets in silico using the following website: http://

projects.insilico.us/SpliceCenter/siRNACheck. Subsequently, the following oligonucleotides 

were ordered from IDT: AIMP2_shRNA1 forward, 

CCGGCACACACATTCGTCTGTCAAGCTCGAGCTTGACAGACGAATGTGTGTGTTT

TTG; AIMP2_ shRNA1 reverse, 

AATTCAAAAACACACACATTCGTCTGTCAAGCTCGAGCTTGACAGACGAATGTGT
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GTG; AIMP2_shRNA2 forward, 

CCGGCAGATGCAGACTTGGACGTAACTCGAGTTACGTCCAAGTCTGCATCTGTTTT

TG; AIMP2_shRNA2 reverse, 

AATTCAAAAACAGATGCAGACTTGGACGTAACTCGAGTTACGTCCAAGTCTGCAT

CTG; AIMP2_shRNA3 forward, 

CCGGTAGCCACAAACACATTGGACTCTCGAGAGTCCAATGTGTTTGTGGCTATTTT

TG; AIMP2_shRNA3 reverse, 

AATTCAAAAATAGCCACAAACACATTGGACTCTCGAGAGTCCAATGTGTTTGTGG

CTA; ADAR1_ shRNA1 forward, 

CCGGGCCAAGAACTACTTCAAGAAACTCGAGTTTCTTGAAGTAGTTCTTGGCTTT

TTG; ADAR1_shRNA1 reverse, 

AATTCAAAAAGCCAAGAACTACTTCAAGAAACTCGAGTTTCTTGAAGTAGTTCTT

GGC; ADAR1_shRNA2 forward, 

CCGGGAAGAGCCCAGTTACTACACTCTCGAGAGTGTAGTAACTGGGCTCTTCTTTT

TG; ADAR1_shRNA2 reverse, 

AATTCAAAAAGAAGAGCCCAGTTACTACACTCTCGAGAGTGTAGTAACTGGGCTC

TTC. The underlined sequences were the predicted shRNA targets. Next, the forward and 

reverse oligonucleotides were annealed and cloned into the pLKO.1 lentiviral vector, which 

was predigested with EcoRI and AgeI. The final constructs were verified by sequencing. For 

the knockdown experiments, C2C12 cells were grown until 50% confluency in 6-well plates 

and then infected with the relevant shRNA lentiviruses (with 8 ng ml−1 polybrene). The 

infected cells were passaged the next day and selected in puromycin for 3 days.

Data availability

Sequencing data have been deposited in the NCBI Sequence Read Archive under accession 

number SRP039090 and the NCBI Gene Expression Omnibus (GEO) under accession codes 

GSE87068 and GSE87198. Scripts used to analyse the data and plot the figures are available 

upon request.
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Extended Data

Extended Data Figure 1. Analysis of GTEx RNA-seq data
a, PCA was applied to the editing levels of all sites in every GTEx body part. The brain 

tissues were separated from other non-brain tissues. b, A focused PCA of editing in 

individual brain tissues highlighted that the cerebellum was distinct from other brain regions. 

c, Correlation between the first editing principal component (PC1) and the expression level 

of ADAR2 in various brain tissues. d, Co-editing network analysis of 2,094 sites that 

exhibited high variation across tissues (coefficient of variance >0.8) detected 8 regulatory 

modules (coloured in grey, turquoise, green, black, yellow, red, brown and blue). e, Heat 

map of editing levels from sites that are specifically edited in a single human tissue. The 

editing levels are normalized across samples for each site.

Tan et al. Page 19

Nature. Author manuscript; available in PMC 2017 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 2. Analysis of adult human tissues by mmPCR–seq
a, Comparisons between mmPCR–seq editing level measurements and RNA-seq data from 

the GTEx project for different human tissues. R2 values were calculated by simple linear 

regression. b, Pearson correlations between the editing profiles of different adult human 

tissues from a single individual (N37), as measured by mmPCR–seq. c, PCA of editing 

levels in different tissues from N37 revealed that the brain samples were separated from non-

brain samples. d, Scatterplot between the loading of PC1 and the average editing level for 

each N37 tissue. PC1, which explained over 30% of the editing differences between tissues, 

corresponded to average editing levels of the tissues. Editing activity was lowest in the 
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skeletal muscle of N37, similar to what was observed in the GTEx data. e, PCA of editing in 

various brain tissues from a single individual (N6) revealed that the cerebellum was distinct 

from other brain anatomical regions. Cer, cerebellum; Corpus, corpus callosum; Di, 

diencephalon; FL, frontal lobe; TL, temporal lobe.

Extended Data Figure 3. Analysis of adult mouse tissues by mmPCR–seq
a, Average editing levels of sites at coding and untranslated region (UTR) positions in 12 

mouse tissues from a single individual (129S1 strain). b, Correlations between ADAR 

expression levels (quantified as the number of RNA-seq fragments per kilobase of transcript 

per million mapped reads (FPKM)) and overall editing levels in different mouse tissues. The 

overall editing level is defined as the percentage of edited nucleotides at all known editing 

sites. c, Pearson correlations for the editing levels of individual sites between various adult 

mouse tissues (129S1 strain). d, Numbers of significantly differentially edited sites between 

various brain parts from 129S1 adult mice (n =2 biological replicates). e, Editing levels of 
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two exemplary sites that are differentially edited between various brain parts from 129S1 

adult mice (n =2 biological replicates). f, Pearson correlations for the editing levels of 

individual sites between various adult mouse tissues (FVB strain). g, Editing levels of two 

exemplary sites that are differentially edited between various brain parts from FVB adult 

mice (n =4 biological replicates). h, Comparison of editing levels in the cerebellum and 

frontal lobe between mice of two different genetic backgrounds (129S1 and FVB). The 

editing levels of sites that are marked in red differ by more than 10% between the two mouse 

strains in both cerebellum and frontal lobe. Editing levels were calculated as the average 

between technical replicates at reproducible sites (P >0.05, Fisher’s exact test, for the 

comparison of edited and unedited nucleotide counts between technical replicates). i, 
Predicted RNA secondary structure for part of the NT5DC3 3′UTR that contains an SNP 

(blue) and an editing site (orange). The editing site in the FVB strain (edited at 63%) is 

located in a more stable dsRNA stem than the same site in the 129S1 strain (edited at 15%). 

j, Changes in RNA editing levels during a four-day period of liver regeneration after carbon 

tetrachloride (CCl4)-induced injury in the mouse. A total of 262 editing sites were 

significantly variable from day 0 to day 4 after injury (P <0.2, ANOVA). k-means clustering 

revealed that the 262 sites can be divided into five distinct groups with different patterns of 

editing level changes. For each cluster, an exemplary editing site was shown on the right. k, 

GO analysis of the genes in which editing was dynamically regulated during liver 

regeneration. During liver injury, hepatocytes undergo necrosis and the surviving 

hepatocytes proliferate. The enriched GO terms suggest that RNA editing may have an 

important role during the reparative process of the liver.
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Extended Data Figure 4. Analysis of mouse development by mmPCR–seq
a, Comparison of average editing levels between mouse brain and liver at mid-

embryogenesis stage E12.0–E13.0 (n =4 biological replicates). b, Comparison of RNA 

editing between mouse brain and liver. At mid-embryogenesis (E12.0–E13.0), most sites are 

edited at higher levels in the liver than in the brain. However, as development progresses 

over time (postnatal 2 days and 6 months), the brain becomes the dominant tissue of editing 

activity instead. c, Heat map of editing levels in mouse liver and brain during development. 

We observed an overall trend of increased editing over development in brain. d, Sanger 

validation of two editing sites in the mouse Cacna1d gene that show an increase in editing 

levels over development. e, A total of 30 sites, in which the editing levels remained stable 

over development, including the Gria2 Q/R site. These sites were required to have an 

average editing within the 75th percentile and no significant increase or decrease in editing 

over development (P >0.02, F-test, and slope <0.01, linear regression). f, Sanger validation 
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of one site in the Copa gene that showed constant editing levels over mouse brain 

development. g, Average editing levels in different mouse tissues over development. h, 

ADAR expression levels in different mouse tissues over development.

Extended Data Figure 5. Comparison of human and mouse editing landscapes
a, Workflow for the identification of 215 editing sites that are targeted in mmPCR–seq and 

conserved between and edited in human and mouse. b, Heat map showing editing levels of 

the 215 conserved sites for various human and mouse adult tissues. The tissues (columns) 

were clustered hierarchically based on correlations of editing levels between them. The 

dendrogram on top represents the distances between tissue samples. Sites (rows) were 

clustered into positions that either differed significantly in editing between human and 

mouse (group 1) (P <0.01, Wilcoxon rank sum test) or were similarly edited between the 
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two species (groups 2A, 2B and 2C). Group 2A: highest editing level <0.04 in both human 

and mouse; group 2B: 0.04 ≤highest editing level <0.2; group 2C: highest editing level ≥0.2. 

c, Heat map showing editing levels of the 215 conserved sites for various human and mouse 

developmental stages. Clustering was performed in a similar manner to that in b, and the 

same groupings were used. d, RNA duplex free energies for human and mouse sites with 

differential (group 1) or similar (groups 2A, 2B and 2C) levels of editing. The secondary 

structures in human displayed significantly lower free energy than those in mouse (P <0.001, 

Wilcoxon rank sum test) for group 1 sites, which were generally edited at higher levels in 

human and primarily responsible for the separation of human and mouse in the clustering. e, 

Distance from nearest Alu element for differentially edited sites (group 1) and similarly 

edited sites (groups 2A, 2B and 2C). In human, group 1 sites were significantly closer to Alu 
repeats than group 2 sites (P <0.05, Wilcoxon rank sum test).

Tan et al. Page 25

Nature. Author manuscript; available in PMC 2017 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 6. Comparison of editing landscapes across different primates
a, Workflow for the identification of 46,344 editing sites that are conserved between and 

edited in human and non-human primates. b, PCA of editing profiles in various tissues from 

different chimpanzee individuals. The samples are largely separated by tissue type. c, PCA 

of editing profiles in various tissues from four human subjects who participated in the GTEx 

project. We selected the top four individuals with RNA-seq data from the most number of 

tissue types. d, ADAR1 expression levels in various tissues of human and four non-human 

primates. e, Distribution of editing variance with sites binned according to the extent to 

which their surrounding sequences are conserved between different primates. Sites that are 

more highly conserved between species (high phastCons scores) showed lower variation in 

editing (low coefficient of variance). PhastCons scores were calculated using 500 bp 

flanking each editing site. Association test was performed using ANOVA.

Extended Data Figure 7. Identification of ADAR1 and ADAR2 targets in human

Tan et al. Page 26

Nature. Author manuscript; available in PMC 2017 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a, Editing levels for human 2fTGH cells that were either untreated or treated with IFNα. 

Sites that differ in editing by more than 10% between untreated and treated samples are 

marked in red. GO analysis of the differentially edited sites revealed a functional enrichment 

for genes involved in viral response or cytokine production, fatty acid metabolism, and 

intracellular transport. b, Comparison of editing levels between HEK293T cells with 

ADAR1 overexpression and control cells. P values were calculated using the Fisher’s exact 

test. c, Comparison of editing levels between HEK293T cells with ADAR2 overexpression 

and control cells. P values were calculated using the Fisher’s exact test. d, Venn diagram 

showing number of ADAR1 targets identified from different ADAR1 knockdown cell lines 

(see Supplementary Note 5 for details).
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Extended Data Figure 8. Identification of ADAR1 and ADAR2 targets in mouse
a, Editing levels for mouse embryonic fibroblasts that were either untreated or treated with 

IFNα. Sites that differ in editing by more than 10% between untreated and treated samples 

are marked in red. b, Average editing levels for wild-type, Adar1+/− and Adar1−/− E12.0 

mouse embryos. Error bars represent s.d. of two (wild type), seven (Adar1+/−), or five 

(Adar1−/−) biological replicates. c, Comparison of editing levels between wild-type and 

Adar1−/− E12.0 mouse embryos. Sites that differ in editing by more than 10% between wild-

type and knockout mice are marked in red. d, Average editing levels of sites in different 

tissues from wild-type and Adar1E861A/E861A mice. Error bars represent s.d. of two 

biological replicates. e, Average editing levels of sites in different tissues from wild-type and 

Adar2−/− mice. Error bars represent s.d. of two (heart), four (spleen and thymus), or six 

(brain and liver) biological replicates. f, Normalized expression levels of Adar2 in various 

tissues from wild-type and Adar1E861A/E861A mice. Error bars represent s.d. of two 

biological replicates. g, Normalized expression levels of Adar1 in various tissues from wild-

type and Adar2−/− mice. Error bars represent s.d. of two (heart), four (spleen and thymus), or 

six (brain and liver) biological replicates. h, Chromatograms from Sanger sequencing of two 

clustered sites on chromosome X at positions 160415964 and 160415965 in the Car5b gene 

(reverse strand) are shown as examples for different modes of regulation across tissues.
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Extended Data Figure 9. Analysis of FMRP, PIN1 and other potential regulators of RNA editing
a, Comparison of average editing levels in 10 tissues and neural stem cells of wild-type and 

Fmrp−/− mice at reproducible sites (s.d. <10% in wild-type and Fmrp−/− replicates). Sites 

that differ by more than 10% in editing levels between wild-type and Fmrp−/− mice are 

marked in red. b, Comparison of average editing levels in 9 tissues of wild-type and Pin1−/− 

mice at reproducible sites (s.d. <10% in wild-type and Pin1−/− replicates). Sites that differ by 

more than 10% in editing levels between wild-type and Pin1−/− mice are marked in red. c, 

Correlation of the expression levels of the top negative (FASTKD5 and MRPL15) or positive 

(CLK1, N4BP2L1 and CDKN1B) candidate regulators with overall editing of all sites in the 

GTEx samples. R2 values were calculated by robust linear regressions on overall editing 

levels and logarithmic transformed RPKM values. d, GO analysis of the 144 putative 
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positive regulators and 147 putative negative regulators of editing. The top three biological 

processes that are reported by both DAVID and Panther are given for each set of regulators. 

e, Both ADAR1 and ADAR2 co-immunoprecipitates with FASTKD5, MRPL15 and 

N4BP2L1. HEK293T cell lysates were incubated with anti-Flag M2 beads to 

immunoprecipitate each regulator and concurrently pull down the ADAR enzymes.

Extended Data Figure 10. Characterization of AIMP2 as a negative regulator of RNA editing
a, Deletion mapping of AIMP2. The schematic diagram depicts the wild-type AIMP2 gene 

and various fragments (F1–F7) of AIMP2 that were tested for interaction with the ADAR 

enzymes. The first and last numbers of each construct indicate the amino acid residues that 
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were included in that particular fragment. b, c, Co-immunoprecipitation experiments using 

anti-Flag M2 beads revealed that only fragments F5 and F6 failed to interact biochemically 

with ADAR1 (b) and ADAR2 (c), thereby suggesting that the TP53 interaction domain (in 

pink) is required for AIMP2 to bind with ADAR1 and ADAR2. Additionally, the PARK2 

interaction domain (in orange) seems to hinder the interaction of AIMP2 with ADAR1 

because its absence in fragment F3 led to an increase in the amount of ADAR1 that was 

pulled down together with the regulator. d, Western blot analysis showed that overexpression 

of AIMP2 in MCF7 cells reduced the protein levels of both the p150 and p110 isoforms of 

ADAR1. e, Expression levels of ADAR1 and ADAR2 in HEK293T cells with or without 

AIMP2 overexpression, as assayed by RNA-seq. f, Expression levels of AIMP2 in various 

human tissues from the GTEx RNA-seq datasets. g, Expression levels of AIMP2 in various 

non-human primate tissues from the NHPRTR RNA-seq datasets. h, Replications of Fig. 4i 

with independent shRNAs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The GTEx multi-tissue RNA editome
a, Heat map and dendrogram of Pearson correlations on the editing levels of 53 tissues 

calculated using all sites (below diagonal) or non-repetitive coding sites only (above 

diagonal). The dendrogram was drawn based on the distance metric computed by non-

repetitive coding sites. The colour codes for GTEx tissues are the same as in a throughout, 

unless otherwise specified. b, c, Overall editing levels of repetitive (b) or non-repetitive (c) 

coding sites in various human tissues. Each box plot represents samples from one tissue 

type. Tissues are in the same order as in a (top to bottom). The overall editing level is 

defined as the percentage of edited nucleotides at all known editing sites. d, e, Correlations 

between expression levels of ADAR1 (quantified as the number of RNA-seq reads per 

kilobase of transcript per million mapped reads (RPKM)) and overall editing levels of either 

repetitive (d) or non-repetitive (e) coding sites in 8,551 GTEx samples. R2 values were 

calculated by robust linear regressions on overall editing levels and logarithmic transformed 

RPKM values. f, Correlation between the expression level of ADAR3 and overall editing 

level in various brain tissues. g, Correlation of ADAR1 and ADAR2 expression with overall 

editing of all sites in the brain tissues when the negative influence of ADAR3 was taken into 

account.
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Figure 2. Comparison of A-to-I editing between different mammals
a, PCA on editing levels of various human (red) and mouse (blue) tissues. The editing levels 

for human were determined by averaging across GTEx samples of the same tissue type for 

each site. The editing levels for mouse were measured by RNA-seq data of various tissues 

(see Methods). b, PCA on editing levels of various human and non-human primate tissues. 

In total, editing levels measured from 68 samples spanning 26 tissue types were used for 

PCA. We averaged the editing levels for samples of the same tissue type from the same 

species. Inset, phylogenetic tree of the five primate species under consideration. The editing 

levels for human and non-human primates were all measured using the RNA-seq data from 

NHPRTR34 for consistency. c, Estimation of the extent to which variation in editing level of 

each site could be attributed to differences in tissues or species. The light and dark blue dots 

represent repetitive and non-repetitive sites, respectively. The red dots represent the 59 

conserved sites identified in a recent study23. The variation in editing of these sites was 

mostly explained by tissue differences, with the exception of an intronic site in BLCAP, 

which is not edited in non-human primates. d, PCA on editing levels of various human and 

non-human primate tissues using only the 59 conserved sites. Colours around the circles 

denote species, using the same colour scheme as in b. The brain samples segregated from 

the non-brain samples.
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Figure 3. Dynamic regulation of RNA editing by ADAR1 and ADAR2
a, b, Comparison of editing levels in five tissues between wild-type (WT) and 

Adar1E861A/E861AIfih1−/− adult mice (a), and between wild-type and Adar2−/−Gria2R/R adult 

mice (b). Sites that are differentially edited (≥10% editing level difference between wild-

type and mutant mouse) are marked in red. The diagram on the right illustrates how ADAR1 

and ADAR2 targets are determined by comparing their editing levels between wild-type and 

mutant mice. c, Comparison of editing ratios between Adar1E861A/E861AIfih1−/− and wild-

type mice, and between Adar2−/−Gria2R/R and wild-type mice. The editing ratio is defined 

as the editing level in the ADAR editing-deficient mutant divided by the editing level in the 

wild-type mouse. The diagram on the right illustrates how ADAR1 and ADAR2 targets are 

determined by comparing their editing ratios. d, Heat map and dendrogram of hierarchical 

clustering of editing sites using editing ratios between either Adar1E861A/E861AIfih1−/− or 

Adar2−/−Gria2R/R and wild-type mice in five adult mouse tissues. The editing sites could be 

divided into five distinct clusters (1 to 5, top to bottom), three of which exhibit tissue-

specific regulation by ADAR1 and ADAR2. Cluster 1, sites mostly affected by ADAR1 but 

unaffected by ADAR2 in all five tissues; cluster 2, sites mostly affected by ADAR1 in all 

five tissues while also being affected by ADAR2 in some tissues; cluster 3, sites mostly 

affected by both ADAR1 and ADAR2 in brain, while mostly by ADAR1 in the other four 

tissues; cluster 4, sites mostly affected by ADAR2 in all five tissues; cluster 5, sites affected 

by both ADAR1 and ADAR2 at different levels in five tissues. e, Exemplary sites for each 

cluster highlighting the complex regulation of A-to-I editing by the ADAR enzymes.
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Figure 4. Identification of AIMP2 as a negative regulator of A-to-I editing
a, Correlation of AIMP2 expression with overall editing of all sites in the GTEx samples. R2 

values were calculated by robust linear regressions on overall editing levels and logarithmic 

transformed RPKM values. b, Co-immunoprecipitation experiment with either MYC-tagged 

ADAR1 or MYC-tagged ADAR2 and 3×Flag-tagged AIMP2 in HEK293T cells. Anti-Flag 

M2 beads were used to immunoprecipitate the regulator, and anti-MYC was then used to 

probe whether the relevant editing enzyme was pulled down together with AIMP2. c, 

Comparison of editing levels between control cells and cells with AIMP2 overexpressed 

(OE). The red-purple coloured dots indicate the differentially edited sites (P <0.01, Fisher’s 

exact test). d, Western blot analysis of ADAR1 and ADAR2 protein levels with or without 

overexpression of AIMP2 in HEK293T cells. Only the p110 isoform of ADAR1 was 

detected. e, Cycloheximide-chase analysis followed by western blotting was used to 

determine the rate at which the ADAR1 p110 protein was degraded with or without AIMP2 

overexpression. f, Correlation of ADAR1 expression with overall editing of all sites in the 

GTEx samples when the negative influence of AIMP2 was taken into account. R2 values 

were calculated by robust linear regressions on overall editing levels and logarithmic 

transformed RPKM values. g–i, Effect of knocking down (KD) either AIMP2 alone or both 

AIMP2 and ADAR1 concurrently in undifferentiated C2C12 myoblasts. Morphology (g), 

proliferation rate (h) and expression (i) of muscle-specific markers. Myh3, myosin heavy 

chain; Myod, myogenic differentiation 1; Myog, myogenin. Scale bars, 100 μm. j, Effect of 

overexpressing ADAR1 alone or both ADAR1 and AIMP2 together in C2C12 myoblasts on 

the expression of muscle-specific markers. *P <0.05, **P <0.01, Student’s t-test. Error bars 

denote s.e.m. from three biological replicates.
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