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The vast collecting area of the Square Kilometre Array (SKA), harnessed by sensitive receivers,
flexible digital electronics and increased computational capacity, could permit the most sensitive
and exhaustive search for technologically-produced radio emission from advanced extraterrestrial
intelligence (SETI) ever performed. For example, SKA1-MID will be capable of detecting a
source roughly analogous to terrestrial high-power radars (e.g. air route surveillance or ballistic
missile warning radars, EIRP†∼ 1017 erg sec−1) at 10 pc in less than 15 minutes, and with a
modest four beam SETI observing system could, in one minute, search every star in the primary
beam out to ∼100 pc for radio emission comparable to that emitted by the Arecibo Planetary
Radar (EIRP ∼ 2 x 1020 erg sec−1)‡. The flexibility of the signal detection systems used for SETI
searches with the SKA will allow new algorithms to be employed that will provide sensitivity to
a much wider variety of signal types than previously searched for.

Here we discuss the astrobiological and astrophysical motivations for radio SETI and describe
how the technical capabilities of the SKA will explore the radio SETI parameter space. We
detail several conceivable SETI experimental programs on all components of SKA1, including
commensal, primary-user, targeted and survey programs and project the enhancements to them
possible with SKA2. We also discuss target selection criteria for these programs, and in the case
of commensal observing, how the varied use cases of other primary observers can be used to full
advantage for SETI.

Advancing Astrophysics with the Square Kilometre Array
June 8-13, 2014
Giardini Naxos, Sicily, Italy

∗Speaker.
†EIRP = equivalent isotropic radiated power
‡Both for Band 1

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/
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1. Background

1.1 Signatures of Life

Whether or not life occurs elsewhere in the universe is one of the most profound questions
science can ask. As of this moment, we know of only a single example of the emergence of life,
despite evidence that the necessary abiotic precursors and environmental conditions are common.
Earth-like planets (Petigura et al. 2013), water (Hogerheijde et al. 2011) and complex chemistry
(Herbst & van Dishoeck 2009) have now been found in abundance, emboldening the field of astro-
biology and underscoring the allure of extraterrestrial life. Knowing that extraterrestrial life could
exist, the race is on to discover whether or not it, in fact, does exist. Yet more compelling is the pos-
sibility that extraterrestrial evolution may have followed a similar track as on the Earth, and brought
forth a life form possessing intelligence and a technological capability perhaps far exceeding our
own.

Although spectroscopy of extrasolar planet atmospheres or in-situ sampling missions in our
Solar System may soon yield indirect evidence for life beyond Earth, the deeper question of the
parameters of life’s evolution that might lead to intelligence is addressable only by much more
select means. The creation of technology, and specifically environmental modification by that
technology, is the only known tracer of intelligence detectable over interstellar distances. However,
while many chemical tracers of basic life can be ambiguous (Krasnopolsky et al. 2004; Rein et al.
2014), there exist types of electromagnetic emissions that could plausibly be generated by advanced
technology but are not known to ever arise naturally. As far as we know, these emissions are definite
and conclusive indicators of advanced technology, and presumably its intelligent creator. Radio
communication in particular is a superb example of such a probe of extraterrestrial technology and
is in fact the most detectable distant signature of our own technology.

Radio astronomy has long played a prominent role in searches for extraterrestrial intelligence
(SETI), beginning with the first suggestions by Cocconi & Morrison (1959) that narrow-band radio
signals near 1420 MHz might be effective tracers of advanced technology and early experiments
along these lines by Drake (1961), continuing through to more recent investigations searching for a
variety of coherent radio signals indicative of technology at a wider range of frequencies, e.g. Tarter
et al. (1980); Horowitz et al. (1986); Horowitz & Sagan (1993); Steffes & DeBoer (1994); Leigh
(1998); Korpela et al. (2001); Gray & Ellingsen (2002); Rampadarath et al. (2012); Siemion et al.
(2010, 2013). The motivation for radio searches for extraterrestrial intelligence has been throughly
discussed in the literature (Oliver & Billingham 1971; Tarter 2003), but the salient arguments are
the following: 1. coherent radio emission is commonly produced by advanced technology (judg-
ing by Earth’s technological development), 2. electromagnetic radiation can convey information at
the maximum velocity currently known to be possible, 3. radio photons are energetically cheap to
produce, 4. certain types of coherent radio emissions are easily distinguished from astrophysical
background sources, 5. these emissions can transit vast regions of interstellar space relatively unaf-
fected by gas, plasma and dust. These arguments are unaffected by varying assumptions about the
motivation of the transmitting intelligence, e.g. whether the signal transmitted is intentional or un-
intentional, and can be applied roughly equally to a variety of potential signal types or modulation
schemes.
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1.2 Artificial Radio Emission

The first modern radio SETI experiments, including Frank Drake’s pioneering work described
in Drake (1961), focused on identifying continuous narrow-band emission. In the SETI context,
“narrow-band” emission is defined as electromagnetic emission that is spectrally narrower than
natural astrophysical sources. In the radio regime, the spectrally narrowest natural sources are
astrophysical masers, with a spectral width no narrower than ∼ 500 Hz. The vast majority of
radio SETI searches conducted since have continued this paradigm. The motivations for searching
for signals of this type are numerous, but prominent among them are that narrow-band signals
are readily distinguishable from natural sources, are relatively simple and are easy to detect with
current technology. Were an advanced civilization interested in intentionally signaling another
species, these properties would be very valuable. Narrow-band sinusoids are also a prominent
component of many of our terrestrial radio communication and ranging systems, e.g. carrier tones
and continuous-wave (CW) radar, but this is changing as terrestrial technology becomes more
sophisticated.

More recently, it has been suggested that various other types of signals possess merit as well.
Several authors have presented variations on the idea that a plausible signal from a very advanced
civilization might appear to be a subtle variation on natural emission, either to make use of a natural
source’s inherent luminosity or to attract the attention of other astronomers (Cordes 1993; Lemarc-
hand 1994; Cordes & Sullivan 1995; Sullivan & Cordes 1995; Chennamangalam et al. 2015). Ben-
ford (2010); Benford et al. (2010a,b) have argued that the terrestrial economics of beacon trans-
mitter construction and operation imply that broadband rather than narrow-band systems might
be preferred. Fridman (2011) concluded that broadband emission employing frequency-shift key-
ing (FSK) would be preferred by energy-conscious civilizations seeking to transmit information-
bearing signals using similar capabilities to our own. Messerschmitt (2012); Messerschmitt &
Morrison (2012) similarly arrived at the idea that broadband communication might be preferable by
considering robustness to radio frequency interference (RFI), and further deduced that this emission
may have time-bandwidth extents influenced by the properties of the interstellar medium (ISM). In
other words, the coherence of a modulated information-bearing signal would be limited in time or
bandwidth extent by the combined effects of the relative motion of the source and receiver and the
inhomogenous plasma occupying the intervening space. Depending on the degree to which these
effects can be corrected for, they define either limits or search parameters of any algorithm used to
detect information bearing radio emission sent over interstellar distances.

In addition to changing ideas about signal types, there has been steady growth in the number
and diversity of suggestions of preferred frequencies for radio SETI. The so-called “terrestrial mi-
crowave window” (TMW, Figure 1), the spectral region of relatively low natural noise between the
galactic synchrotron background and emission and absorption by water and oxygen in the Earth’s
atmosphere, was identified early as an ideal band to conduct radio SETI (Morrison et al. 1977).
Faced with technological limitations that made it very difficult to search the entire ∼1−15 GHz
window, early SETI experiments developed the notion of the “water-hole,” an especially attractive
region of spectrum at the bottom of the TMW trough bound by the frequencies of hyperfine tran-
sitions of neutral hydrogen (H, fH ≈ 1.42 GHz) and the hydroxyl radical (OH, fOH ≈ 1.67 GHz).
In addition to the romantic allusion to terrestrial desert oases where life in a barren land gathers to
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sate, there was a convenient supply of large telescopes and sensitive radio receivers operating in
that range already. As time progressed, other “special frequencies” were identified. Blair & Zadnik
(1993) lists 55 individual “interstellar communication channel” frequencies between 500 MHz and
25 GHz based on scaling1 the rest frequencies of H and OH hyperfine transitions by mathematically
special “civilization signature constants,” e.g. π,π/2,2π,e,πe,ee. Gindilis et al. (1993) identified
additional preferred frequencies based on hyperfine transitions of neutral hydrogen in the n = 2
excited state.
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Figure 1: The “terrestrial microwave window”: a relatively quiet radio window between non-thermal galactic syn-
chrotron emission and molecular rotational transitions in the Earth’s atmosphere. Also indicated on the figure is the
so-called “Water Hole” bound by the frequencies of hyperfine transitions of neutral hydrogen (H, fH ≈ 1.42 GHz) and
the hydroxyl radical (OH, fOH ≈ 1.67 GHz)

Bands above and below the TMW present compelling opportunities as well. Loeb & Zal-
darriaga (2007) have detailed a number of reasons why the band between 50−300 MHz might
be worthwhile, including the fact that some of the Earth’s most detectable emission is leaked at
these frequencies. While observations that encroach on the upper end of the TMW tend to become
more difficult and less sensitive due to increased atmospheric noise, radio transmissions at these
frequencies are less affected by the interstellar and interplanetary plasma and might be more easily
produced at very high luminosities (Benford 2010; Benford et al. 2010b,a). Gindilis (1973) pointed
out that the received signal to noise ratio (SNR) for pulse communication with delay compensation
increases by more than an order of magnitude between 1 and 10 GHz, reaching a peak around 56
GHz. Kardashev (1979) argued that advanced civilizations transmitting deliberate beacons might

1e.g. fHπ =4.462336273 GHz as given in the reference
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generally prefer frequencies higher than a few GHz due to less impairment from the ISM, and
identified several particular “magic frequencies” related to the cosmic microwave background tem-
perature and hyperfine transitions in the positronium “atom” around 200 GHz. Fortunately modern
radio astronomy technology allows searches over many hundreds of MHz to GHz of instantaneous
bandwidth, lessening the extent to which these “magic frequencies” need be considered.

As our own radio technology advances, we will undoubtedly develop new ideas about what
type of emission we might expect from similar technology at work on another world. Though
there are certain frequencies and signal types that have been particularly advocated to-date, an
ideal terrestrial radio SETI observatory would provide near continuous frequency coverage over a
significant fractional bandwidth, and flexible signal detection systems that could be programmed
to use multiple search algorithms. Such a system is precisely what the SKA will provide - through
an open and extensible digital signal processing backend, the SKA will enable SETI observers to
readily program flexible compute elements with their own algorithms, and optionally attach user-
supplied custom hardware if necessary. The world’s most sensitive radio telescope will thus be
perfectly suited to conducting novel SETI observations, and as we detail below, will permit the
most sensitive search for artificial radio emission ever conducted.

2. SETI Observations on the SKA

2.1 Commensality

Since the inception of modern radio SETI, observers have grappled with a fundamental prob-
lem. The SETI search space is so broad in many dimensions, crucially including both frequency
and sky location, that a proper search requires very large amounts of telescope time. However, the
dedication of significant amounts of observing time on the largest publicly-funded radio telescopes
to a single science program, let alone one as speculative as SETI, is simply not possible. More than
30 years ago, SETI astronomers devised a solution that they dubbed “parasitic SETI” (Bowyer et al.
1983). By taking advantage of the fact that the amplified sky signal from a radio telescope can be
duplicated many times over with very little added noise or loss of sensitivity, SETI astronomers
could “piggy-back” on other users’ observations to conduct vast sky surveys for signs of intelli-
gent life without ever billing a minute of primary-user time. Now given the friendly and more
accurate name “commensal observing,” this technique is enabling the Search for Extraterrestrial
Radio Emission from Nearby Developed Intelligent Populations (SERENDIP), SETI@home and
AstroPulse projects to use the Arecibo Observatory to conduct SETI observations for thousands of
hours per year. Astronomers of all stripes have now begun to recognize the efficacy of commen-
sal observing for a wide range of science programs that can take advantage of very large amounts
of observing time without rigorous constraints on integration period or the need to target specific
objects or fields. Commensal searches for radio transients are now routinely conducted with the
VLBA (Wayth et al. 2011), and other commensal transient and SETI pipelines are in development
or early operation at the JVLA, GBT, LOFAR (Serylak et al. 2013), Jodrell Bank and elsewhere.

Support for commensal observations will be critical for the SKA SETI program. For the dis-
cussion here, we define commensal observations to mean two or more users using the observatory
largely independently, sharing only the primary field(s) of view chosen by the primary observers.
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Figure 2: Schematic Diagram of Commensal Observation on the SKA: a SETI observer employs an independent
beamforming capability to form phased-array beams within the current primary field(s) of view based on observatory
meta information, and directs the unprocessed digital voltage data for those beams to SETI signal processor via Ethernet

From a SETI perspective, we envision an observing system in which multiple phased array beams
can be independently steered within the primary field-of-view and fed to dedicated signal pro-
cessing hardware where SETI specific algorithms are implemented. The Allen Telescope Array’s
designed mode of operation is an excellent schematic prototype for the way in which such a system
can function (DeBoer 2006; Welch et al. 2009). Figure 2 illustrates this scheme: a SETI observer
employs an independent beamforming capability to form phased-array beams within the current
primary field(s) of view based on observatory meta information, and directs the unprocessed digi-
tal voltage data for those beams to SETI signal processors that perform interference excision and
signal detection. Using a technology such as Ethernet, multiple copies of a single beam can be
directed to multiple signal processors for analysis using multiple techniques. The most sensitive
SETI observations with the SKA will be conducted in this phased-array mode, but it is worth point-
ing out that there are additional opportunities for conducting parallel SETI analysis on imaging and
raw u-v data products as well.

2.2 Signal Processing

Signal detection in current SETI experiments is essentially an exercise in matched filtering, in
which the filter template is defined by the assumed characteristics of the transmitter. As discussed
in Section 1.2, most radio SETI experiments focus on narrow-band emission, and thus the appro-
priate matched filter is a high resolution Fourier transform, combined with an additional step to
account for the unknown relative acceleration between transmitter and receiver. A suite of other
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algorithms might be effectively employed in a SETI experiment, including principal component
analysis (Biraud 1983; Maccone 1991), autocorrelation (Gardner & Spooner 1992), symbol-wise
autocorrelation (SWAC) (Morrison 2012) and automatic modulation classification (AMC) (Aslam
& Nandi 2010) and references therein, but are not yet in widespread use largely due to their com-
putational cost. SETI experiments on the SKA will benefit from significant increases in computa-
tional performance thanks to the continuing Moore’s law growth in the electronics industry (Moore
1965), and thus will be able to consider implementing some of these techniques using the SKA’s
flexible signal detection systems. Moreover, for the most part these techniques are “embarrassingly
parallel” and can readily be scaled to accommodate enhanced capabilities.

Here we will use the case of narrow-band detection as an illustrative example of SETI signal
processing and for calculating the sensitivity of SKA SETI observations. Although the sensitivity to
sources of a given luminosity would vary somewhat for algorithms detecting other types of signals,
the sensitivity expressions and calculations used here are roughly correct for other incoherent or
weakly-coherent detection schemes (Sullivan & Mighell 1984; Gulkis 1984).

The minimum incoherently detectable flux, Fi, of a narrow band signal in one polarization is
given by:

Fi = Si∆bi = σthreshSsys

√
∆b
t

(2.1)

Where Si is the intrinsic flux density of the transmitter, ∆bi the intrinsic bandwidth of the
transmitter, σthresh is the SNR, Ssys is the system equivalent flux density (SEFD) of the receiv-
ing telescope, ∆b is the spectral channel bandwidth and t the integration time. Here we assume
∆bi < ∆b, and have expressed Fi in terms of flux rather than flux density to more intuitively relate
experimental sensitivity to terrestrial transmitter power levels, which are commonly described by
total apparent luminosity (or EIRP).

For narrowband signals, the “Doppler drift,” or changing apparent frequency due to the relative
acceleration between the transmitter and receiver is given simply by:

ḟ =
d−→V
dt

frest

c
(2.2)

where −→V is the line of sight relative velocity between receiver and source, fapparent is the apparent
frequency of the transmitter for constant velocity and c the speed of light. Because we are search-
ing for emission at an unknown frequency, the overall Doppler shift imposed on a signal due to
some unknown constant relative velocity is unimportant for detection. As points of reference, the
maximum contribution from the Earth’s orbital motion at 1 GHz is ∼±0.02 Hz s−1, and from the
Earth’s rotation is2 ∼−0.1 Hz s−1.

Narrow band signals are spectrally broadened by both the ISM and interplanetary medium
(IPM), with a magnitude equal to (Cordes & Lazio 1991; Siemion et al. 2013):

∆νbroad−ISM = 0.097 Hz ν
−6/5
GHz

(
V⊥
100

)
SM3/5 (2.3)

and

∆νbroad−IPM = 300 Hz ν
−6/5
GHz

(
R

R�

)−9/5

(2.4)

2The maximum rotational contribution is negative because it occurs for a source observed from the equator at zenith.
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Where νGHz is the observing frequency in GHz, R is the Solar impact distance, V⊥ is the
transverse (perpendicular to the line of sight) velocity of the source in km/sec and SM the direction
dependent scattering measure, a measure of the electron density fluctuations (c.f. Rickett 1990)
integrated along the line of sight. For most lines of sight with R >∼ 100 R� out to several kpc, the
total spectral broadening is no more than3 ∼ 0.1 Hz ν

−6/5
GHz

The combined influence of the above effects thus dictate the parameters of an optimal search
for narrow-band transmitters. Around 1 GHz for example, frequency resolutions of order 0.1 Hz
and (unknown) drift correction up to a few Hz/sec would permit optimum detection of equato-
rial transmitters on a planet up to five times larger and rotating five times faster than the Earth at
distances of around 1 kpc. Algorithms used to detect other types of signals will be similarly param-
eterized, in that they will search or average over similar parameters and will also be constrained
based on the expected properties of the signal and communication channel.

2.3 Target Selection

Generally speaking there are two possible SETI observing strategies, targeted observations of
individual objects or fields thought to be especially likely to host intelligent life or blind surveys
of large swaths of the sky. Occasionally hybrid approaches are employed, e.g. surveys of the
Kepler Field (Siemion et al. 2013) or the Galactic Center region (Shostak & Tarter 1985). The
relative merit of these two approaches depends strongly on the luminosity function of artificial
radio transmitters, which at present is largely unconstrained (Tarter 2004), although some insight
can be drawn from examining the luminosity distribution of terrestrial transmitters (See Section
2.4). This fact, combined with many other unknowns, will lead to a wide range of views regarding
how SETI observations should be conducted on the SKA. As is the case with any science program,
these proposals should be subject to peer review and those targets deemed most compelling will
be observed with highest priority. Tarter (2001) and references therein detail the varied proposed
approaches to SETI target selection in detail.

In practice, the vast majority of SETI observing on the SKA will be conducted commensally
with other science programs, employing a signal processing system that will be capable of conduct-
ing searches using multiple phased-array beams over only a fraction of the primary beam. Thus an
all-sky catalog providing a number of targets per primary field of view, at the highest frequencies,
at least equal to the number of phased-array SETI beams (2−4 in the minimal case), is required.
Such a catalog would consist of∼ 25M targets, and could be readily constructed from the expected
results of GAIA (Perryman et al. 2001) following a prescription similar to that used in the “HabCat”
catalogue of habitable stars (Turnbull & Tarter 2003a,b). That is, essentially choosing stars and ex-
oplanet systems that appear most conducive to life as we know it, or in other words are similar to
our own Solar system.

However, a HabCat-like catalog should be supplemented using additional strategies. For ex-
ample, a simple isotropic volume-selected sample of stars is an ideal target set for a SETI exper-
iment for a number of reasons. Most importantly, it ameliorates the inherent anthropocentric bias
that can lead us to concentrate SETI efforts on environments similar to our own planetary system.
A search of a blind volume-limited sample of stars is premised only on the notion that intelligent

3V⊥ = 25 km/sec, SM from Cordes & Lazio (2002)
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life requires a stellar host in order to develop. It also probes a diverse nearby stellar population
that is exceedingly well studied at many wavelengths. In the event of a non detection, these at-
tributes of the sample will allow us to place strong and broadly applicable limits on the presence
of technologically-produced radio emission. It also allows us to search very deeply, which may be
important if the artificial radio transmitter luminosity function declines steeply much past our own
technologically produced radio luminosity.

The plethora of multi-planet exoplanet systems now known present a unique opportunity for
performing SETI searches at particularly advantageous times - epochs of conjunction along a line
of sight to the Earth (See Figure 3). Extrapolating from humanity’s exploration of space, it is likely
that a more advanced civilization having similar proclivities would explore and perhaps colonize
multiple planets in their star system. These explorations could very easily include planet-planet
communication, radar imaging or radar mapping of orbital debris, perhaps similar to the way in
which we use the Arecibo Planetary Radar to image objects in our own Solar System. Observing
these systems during alignments would allow us to potentially eavesdrop on this emission. The
published ephemerides of these known systems readily enable calculation of conjunction times,
and many more such systems are expected to be discovered in the coming decades.

Figure 3: An illustration of a 2-planet conjunction in an extrasolar planetary system along a line of sight to the Earth.

Another idea that may inform the construction of an SKA SETI catalog is the notion that
perhaps there are preferred regions of the galaxy for the development of complex life, so-called
“galactic habitable zones” (GHZ), e.g. based on stellar population similarity to the Sun or a low
rate and proximity of supernovae (Lineweaver et al. 2004). Figure 4 depicts one possible realization
of such a GHZ from Morrison & Gowanlock (2014). For each pixel shown, the plotted metric
(arbitrary units) is proportional to the accumulated time available for intelligence to evolve across
all habitable planets within that pixel out to a maximum range of 5 kpc from Earth, summed over all
epochs. The available times for intelligence to putatively emerge occur during gaps between nearby
supernova events. As shown, this work suggests that a region of the sky centered on the galactic
centre and spanning approximately 60◦ of longitude and 30◦ of latitude is especially attractive.
Other additions to a SKA SETI target list might include natural sources that could serve either
as signposts or natural amplifiers, e.g. using a maser filament to amplify a narrow-band signal
transmitted at a specific maser transition frequency (Cordes 1993; Cordes & Sullivan 1995).
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Figure 4: Contour map plot of the relative propensity for the emergence of intelligence as a function of telescope point-
ing direction in galactic coordinates, based on supernova event rates. An equal-area sinusoidal projection is employed,
where each pixel represents approximately one square degree on the sky. For each pixel, the plotted metric (arbitrary
units) is proportional to the accumulated time available for intelligence to evolve across all habitable planets within
that pixel out to a maximum range of 5 kpc from Earth, summed over all epochs. The available times for intelligence
to emerge occur during gaps between nearby supernova events. Only gap times exceeding a minimum threshold are
included in the summations. For this plot, a threshold of 2.15 Gyr is employed, consisting of 1.55 Gyr (the assumed
time for land-based complex life to evolve) plus 0.6 Gyr (the assumed minimum time for complex life to further evolve
to intelligence).

2.4 Sensitivity

Absent of the actual detection of an artificial extraterrestrial radio transmitter, our best points of
reference for the sensitivity of radio SETI experiments, and the luminosities of sources we might
detect, come from our own terrestrial technology. Figure 5 lists several terrestrial transmitters
that produce emission in the bands probed by the SKA, along with their pseudo-luminosities as
described by their equivalent isotropically radiated power (EIRP). The approximate number of
such transmitters on the Earth is also listed. These terrestrial analogs of artificial transmitters
are included simply to describe the energetics of transmitters that SKA SETI experiments might
be sensitive to in an intuitive way. Although in many cases these transmitters produce emission
precisely alike that searched for in radio SETI experiments, in other cases they modulate their
output power in such a way that they would not be as detectable as is implied by considering their
transmissions as a simple sinusoid.

Figure 6 depicts the sensitivity of each component of the SKA to narrow-band transmitters
at 15 pc, as compared with other facilities actively performing SETI searches over the same band.
Search parameter assumptions here match roughly what might be expected for a significant fraction
of commensal observations, namely a maximum integration time of 10 minutes. As shown, with
appropriate signal detection systems the raw sensitivity of the SKA can be leveraged to create the
most sensitive SETI system in the world. In Figure 6, a transmitter is detectable if its EIRP is
above the curve for a given telescope. Thus in the observing scenario presented, a transmitter with
an EIRP of 2 x 1020 ergs/sec (planetary radar) is detectable with all of the telescopes shown, while
a transmitter with an EIRP of 1 x 1017 ergs/sec (airport radar) is detectable only with SKA2.
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Interplanetary Radar

Long Range Aircraft
Radar

High Power TV and
Radio

Transmitter Type Luminosity (EIRP)
(ergs/sec)

Number on Earth

Few

Dozens

Hundreds

~2 x 1020

~1 x 1017

~5 x 1012

Figure 5: A table of terrestrial analogs of artificial extraterrestrial radio sources, including the pseudo-luminosity,
as expressed by the equivalent isotropically radiated power (EIRP) and the approximate number of such transmitters
present on Earth.

Figure 7 depicts what sensitivities could be attained in a more optimistic scenario, in which
SETI was the primary observing purpose or commensal observations were performed with another
science case very well matched to SETI. Here we assume an integration time of 60 minutes, and
the minimum channelization bandwidth permitted by ISM and IPM effects. As shown, with SKA1,
radio transmitter luminosities similar to our high power radars will be detectable from tens of
thousands of stars across the entire terrestrial microwave window, and with SKA2 these signals
will be detectable from hundreds of thousands of stars. Further, with SKA2 we will for the first
time have the sensitivity to detect radio emission similar in power to our own TV and radio stations
from a few of our nearest neighbors.

As is the case with many large scientific facilities, we expect the full capabilities of the SKA
to emerge over time. SETI is very well suited to conducting early deployment science, as the
breadth of unexplored parameter space in SETI is quite large in terms of frequency coverage and
raw sensitivity. Although increased sensitivity and digital capabilities, especially the availability
of additional phased-array beams, will increase the depth and breadth of SETI on the SKA, with
50% build-out of SKA1 across the board a SETI program could begin to probe the nearer targets
in a luminosity-limited survey. More distant targets could be reserved for full sensitivity. However,
it is worth pointing out, as shown in Figure 7, that only SKA2 has the ability to detect TV and
radio station-like transmitters. With the expected number of planetary systems for which it would
be sensitive to these in the single digits, any reduction in sensitivity of SKA2 could render a nearby
human-like civilization invisible.

3. Summary

SETI searches with the SKA1 facilities will build from an active base of theoretical and ex-
perimental work being done in the field with existing large-scale facilities, but the combination
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Figure 6: Sensitivity of each component of the SKA to narrow-band transmitters at 15 pc, as compared with other
facilities actively performing SETI searches over the same band. Here we assume a significance threshold σ = 15,
bandwidth ∆b = 0.5 Hz and integration time t = 10 minutes. A transmitter is detectable if its EIRP is above the curve
for a given telescope. Thus a transmitter with an EIRP of 2 x 1020 ergs/sec (planetary radar) is detectable with all of the
telescopes shown, while a transmitter with an EIRP of 1 x 1017 ergs/sec (airport radar) is detectable only with SKA2.
Sensitivities for the Green Bank Telescope (GBT), Arecibo and LOFAR were taken from those facilities’ observing
guides. For LOFAR we assume only core stations are used. Allen Telescope Array (ATA) sensitivity was taken from
van Leeuwen et al. (2009).

of raw sensitivity, flexible electronics and increased computational capacity will enable orders-of-
magnitude improvement in the speed, depth and breadth of previous SETI experiments. The most
thorough targeted SETI search previously conducted surveyed 1000 stars over 1−3 GHz to a lu-
minosity limit of ∼2 x 1019 ergs/sec Backus (1998). In a five year commensal campaign, SKA1
could survey every star in its declination range within 60 pc − more than ten thousand stars − to a
luminosity limit an order of magnitude fainter, ∼ 1018 ergs/sec, over a larger band. Conservatively,
in ten years SKA2 could survey every star within 60 pc to a luminosity limit equal to the EIRP of
terrestrial aircraft radars over the entire terrestrial microwave window.

Historically, performing SETI experiments effectively with large telescopes has been tech-
nically and politically difficult. SKA will be the first world-class telescope ever constructed for
which SETI observations are a conscious part of the design process and are available as a facility
observing mode. Our most powerful tool to search for other intelligent life in the cosmos will be
available and accessible to astronomers around the world, infusing new people and ideas in to the
field of SETI and maximizing the scientific return of the SKA. Searches for life beyond Earth,
especially searches for intelligent life, have a remarkable ability to spark the imagination of the
public, and this component of the SKA science case will offer ample opportunity for outreach and
public engagement. From a purely scientific standpoint, the discovery of an independent genesis
of life on another world would provide strong evidence that life is common, and its intelligence
would suggest that evolution proceeds towards this end easily. Were an information-containing
transmission to be received and decoded, we can only conjecture what thoughts and ideas might be
contained therein, but surely our human culture would be enriched in unimaginable ways.
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Figure 7: The number of stars in the solar neighborhood from which narrow-band emission would be detectable
at two luminosity levels. Here we assume a stellar number density of n∗ = 0.1 pc−3, significance threshold σ = 12
and integration time t = 60 minutes. For luminosities similar to our terrestrial aircraft radars we assume bandwidth
∆b= 0.01 Hz and for luminosities similar to terrestrial TV/radio-like signals (right) we assume fully coherent integration
(∆b = t−1). The search parameters shown here, namely the smaller value of ∆b than discussed in Section 2.2, reflect the
relative proximity of these nearby stars and by extension their less scattered lines of sight.
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