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Abstract—As line rates continue to grow, network security
applications such as covert timing channel (CTC) detection must
utilize new techniques for processing network flows in order to
protect critical enterprise networks. GPU-based packet processing
provides one means of scaling the detection of CTCs and other
anomalies in network flows. In this paper, we implement a GPU-
based detection tool, capable of detecting model-based covert
timing channels (MBCTCs). The GPU’s ability to process a large
number of packets in parallel enables more complex detection
tests, such as the corrected conditional entropy (CCE) test—a
modified version of the conditional entropy measurement, which
has a variety of applications outside of covert channel detection.
In our experiments, we evaluate the CCE test’s true and false
positive detection rates, as well as the time required to perform
the test on the GPU. Our results demonstrate that GPU packet
processing can be applied successfully to perform real-time CTC
detection at near 10 Gbps with high accuracy.

I. INTRODUCTION

Network security applications must utilize new techniques
in order to process packets at network line rates of 10 Gbps,
and eventually 40 and 100 Gbps. For scaling these tasks,
multi-core CPUs and other parallel systems such as Massively
Parallel Processing Array (MPPA) or Field Programmable
Gate Arrays (FPGA) architectures can be applied. However,
these approaches each have their own limitations in terms
of programmability, performance, and flexibility. Containing
thousands of cores, Graphics Processing Units (GPUs) possess
much greater thread-level parallelism and memory bandwidth
compared to CPUs [1]. Therefore, using the GPU presents
another possible way to scale real-time software-based packet
processing, and several papers have already demonstrated its
effectiveness for tasks such as software routing [2] and fire-
wall packet classification [3]. Covert timing channel (CTC)
detection is one possible network security application which
can benefit from GPU packet processing. CTCs exploit the
timing of the inter-packet delays (IPDs) in authorized network
flows to embed hidden data transfers. Detecting CTCs in real-
time requires performing statistical tests on a large number of
incoming flows and comparing the results with those expected
for legitimate traffic. Since the test scores for each flow
are independent, a GPU can process many flows in parallel.
Furthermore, the GPU can also perform the tests on individual
flows in parallel, allowing real-time usage of more complex
and effective detection tests such as the corrected conditional
entropy of the IPD sequence, which could not be included in
our previous CTC detection experiments [4].

Although previous work shows that the first-order entropy
alone can be somewhat effective for detection, the false positive
rate is still high [4]. A more effective detection method requires
calculating the corrected conditional entropy (CCE), which is
the conditional entropy calculation plus a corrective term ac-
counting for the number of unique subsequences in the sample.
The CCE test has proven effective for detecting a variety
of CTCs with minimal false positives [5]. Outside of CTC
detection, the CCE test has a variety of applications, particularly
in medical imaging applications, such as analyzing heart rate
variability data and other biological processes [6]. However,
calculating the CCE score for a large sequence is an expensive
calculation computationally, requiring the construction of a tree
for each individual flow [5]. For higher traffic rates with a large
number of flows arriving each second, we need to calculate the
CCE score for each flow more efficiently. In order to perform
the calculation quickly, we propose that packets be processed
on the GPU. The corrected conditional entropy formula and our
GPU algorithm will be explained in detail in section 4.

To evaluate the large number of incoming flows without
packet loss, we implement a detection tool that performs the
CCE test using a NVIDIA Tesla K20C GPU. Our tool sniffs
incoming traffic and gathers packet data into large batches,
which are then tested on the GPU. The GPU will use the CCE
calculation to report which flows are likely to contain covert
channels. In our work, we consider a well-known CTC variety
known as model-based covert timing channels (MBCTCs),
which avoid detection by fitting the CTC’s packet timings to a
statistical model based on natural traffic [7]. By testing our tool
against a traffic sample injected with MBCTCs, we confirm the
CCE test’s effectiveness as a classifier established in previous
results [5]. We also evaluated the maximum performance of our
tool, establishing that it can handle close to a full 10 Gbps line
rate assuming average sized packets.

Implementing real-time CTC detection at high data rates
requires capturing and storing large amounts of packet data
by flow, and then performing the detection test in a small
amount of time (less than 67.2 ns per packet for minimum-
sized packets) to avoid packet loss. The limited time available to
process each flow makes it especially difficult to perform more
complex calculations such as the CCE test. While GPU packet
processing offers good potential performance, mapping the
problem is particularly difficult because the CCE test requires
us to construct and process a k-ary tree for every flow, every



few seconds. Since tree construction is a difficult task for
GPUs [8], [9], we need an alternative method of calculating
CCE scores. Since the CCE calculation uses k-ary trees, each
tree can be interpreted as an array. Therefore, our solution
involves transforming the tree structures into arrays, a form
well-suited for GPU processing.

This work presents multiple new contributions. The most
significant are as follows:

• Our detection tool marks a significant improvement over
previous CTC detection work. In our experiments, we
manage to detect nearly 100% of our sample’s CTCs.

• In addition to confirming the CCE test’s effectiveness,
we achieve higher rates compared to previous real-time
detection experiments [4]. We achieve close to 10 Gbps
using medium-sized packets.

• By performing our tree transformation and completing the
calculation using arrays, we compute the CCE scores in
less than 1 ms per flow, an order of magnitude faster than
previous results [5].

• Our work also demonstrates how GPU packet processing
can efficiently calculate complex individual flow statistics
using packet batches.

The rest of the paper will provide further background on the
CCE test and CTC detection, as well as our experimental results
and discussion. In Section II-B we discuss our motivations for
this project. In Section IV we discuss our tool design in-depth,
the CCE algorithm, and the experimental setup. In Section V
we discuss the experimental results. Section VI describes
some related work on GPU-based packet processing and CTC
detection. Finally, in Section VII we give the conclusions and
describe the potential for future work.

II. TIMING CHANNELS AND DETECTION

A covert channel allows unauthorized data transfers through
authorized channels. This can allow harmful exploits such as
controlling botnets or leaking private data [4]. In this work, we
will focus on detecting network covert timing channels, which
function by encoding data inside the inter-packet delays (IPDs)
of a network flow. A very basic channel type would be Cabuk’s
IP covert timing channel (IPCTC) [10], a simple on/off channel,
where a packet transmission during a set time interval will be
interpreted by the receiver as a 1, while no transmission during
that interval will be interpreted as a 0 [10]. This encoding
scheme, although functional, creates traffic where the shape
and regularity differs greatly from the original, overt traffic,
making detection simple [5]. More advanced timing channels
attempt to mimic real traffic statistics to bypass detection.
For example, Time-Replay Covert Timing Channels (TRCTC)
uses two legitimate IPD sets, producing a 0-bit or a 1-bit by
replaying according to one of the two sets. This encoding
scheme makes the new traffic appear similar to overt traffic,
complicating detection [5].

In this work, we focus on Model-Based Covert Timing
Channels (MBCTC). MBCTCs evade detection by mimicking
legitimate traffic’s shape and regularity. To achieve this, the

channel first analyzes outgoing flows to determine an appro-
priate statistical model, then encodes the message inside the
flow’s IPDs using that model’s inverse distribution function.
The channel can then be decoded by the receiver using the
cumulative distribution function [5]. Figure 1 illustrates the
process. While this encoding prevents detection by common
detection methods such as Kullback-Liebler Divergence and the
Kolmogorov-Smirnov Test, CCE detects MBCTCs with near-
perfect accuracy [5].

A. Detection Methods

Ideally, we would want to eliminate all possible CTCs.
Existing methods such as the network pump [11] and fuzzy
time [12] introduce noise that alters packet timings, reducing
a covert channel’s reliability and capacity. However, applying
these techniques to all incoming flows will harm legitimate traf-
fic performance as well. Therefore, we want to first detect likely
CTC flows, then disrupt them selectively. Basic channels—such
as IPCTCs—are relatively simple to detect, but other channels
can closely resemble the unaltered traffic. CTCs can be detected
by measuring the shape and regularity of network traffic and
comparing it to the expected legitimate statistics [10].

CTC detection tests can be grouped into regularity tests
and shape tests. Shape tests represent first-order traffic statis-
tics, including the Shannon entropy or Kolmogorov-Smirnov
score, which measures the greatest difference between two IPD
distributions. Regularity tests represent higher order statistics,
such as conditional entropy [5]. Different detection tests will
be effective depending on the channel type [4]. IPCTCs alter
both traffic shape and regularity, allowing detection by a variety
of tests. TRCTCs closely resemble the natural traffic’s shape,
but since the packet timings do not correlate naturally, the
regularity scores will be significantly different than normal
traffic. MBCTCs closely resemble both the regularity and shape
of unaltered traffic, making most detection tests ineffective [4].
However, the CCE test, which is a modified conditional entropy
measurement, effectively identifies MBCTCs [5]. Our work
focuses on efficiently implementing the CCE test for real-time
detection.

B. Motivation

Improved Real-Time Detection: Although many papers have
been written on CTC detection, few consider real-time detection
in streaming data. Our previous real-time CTC detection work
used an MPPA architecture [4] (Tilera TilePro64 NIC). The
incoming flows are equally assigned to the different cores.
Each core, acting independently, uses sample-and-hold [13]
to identify large flows. After a flow is identified as large,
and potentially harboring a CTC, a histogram will be con-
structed representing that flow’s inter-packet delays (IPDs).
Once enough packets have been gathered for a given flow
(typically 1,000), a detection test such as the first-order entropy
test is performed using the histogram. If the score exceeds a
certain threshold, the flow is reported as a CTC flow.

The MPPA detection tool could detect real-time CTCs with
some success at line rates around 2 Gbps. However, there



Fig. 1. Model-based covert timing channel detection model. A warden placed at a router monitors traffic and reports unusual flows.

were multiple limitations. Since the memory on a core is
fairly small, only a relatively small amount of packet data
could be kept on each one. In addition, by having each core
handle different sets of flows, the tests themselves could not be
parallelized across cores. Both of these factors limited the types
of possible detection tests to simple ones such as first-order
entropy, Kullback-Liebler divergence, and the Kolmogorov-
Smirnov test. While the results show that the first-order entropy
test is a decent classifier for MBCTCs, it is outclassed by the
corrected-conditional entropy (CCE) test, which could not be
implemented on the MPPA tool. Previous results have shown
that the CCE test is an excellent CTC classifier, capable of
identifying multiple covert channel types with low false positive
rates [5].

Compared with specialized hardware like FPGAs or MPPAs,
GPUs are more commonly available in existing systems. There-
fore, GPU-based packet processing would be more valuable
for implementing real-time CTC detection. Some existing GPU
packet processing tasks include pattern matching and packet
routing [1]. In addition, GPUs have previously been used to
accelerate mutual information calculations, a measurement that
shares similarities with conditional entropy [14]. Calculating
the CCE scores for a large numbers of incoming flows in real-
time should also demonstrate more complex GPU calculations
on streaming packet data are plausible. The primary motivation
behind this project was to determine whether or not CCE-based
detection could be effectively implemented using GPU packet
processing.

Efficient Entropy Calculation: In addition to detecting covert
channels, entropy measurements have a variety of applica-
tions. Corrected conditional entropy in particular is useful
for evaluating heart rate data and other bioinformatics [6].
Conditional entropy alone is useful for a variety of applications,
including analyzing financial time series data [15]. Transfer
entropy has applications in data mining and neuroscience,
among other uses. For example, it can be used to measure
a person’s influence on social media such as Twitter, or to
measure the connectivity in brain regions [15]. However, for a
large value series, entropy calculations can become very time-
consuming [15]. Therefore, improving the efficiency of entropy
measurements using GPU processing is a worthwhile pursuit
beyond its applications for covert channel detection.

III. CORRECTED CONDITIONAL ENTROPY

The corrected conditional entropy (CCE) test is simply the
conditional entropy with a corrective term consisting of the

Fig. 2. CCE k-ary tree [7]. k = 5 bins, window size = 3. The bin sequence is
divided into 5 windows, each representing a path through the tree. Each node
maintains a count of how many windows have passed through it. The counts
are then used to calculate the CCE score. Algorithm 1 describes how this same
structure can be represented using arrays.

Shannon entropy multiplied by the percentage of unique sub-
sequences added. The Shannon entropy, or first-order entropy,
measures the amount of randomness of a random variable. The
formula is as follows:

H = −
n∑

i=1

P (xi) logP (xi) (1)

with P (xi) referring to the probability of selecting the value
xi. The conditional entropy (CE) test, which measures the
randomness of a variable given the value of another variable,
can be calculated as follows for a sequence of random values:

H(Xi|X1..Xi−1) = H(X1..Xi)−H(X1..Xi−1) (2)

The CCE formula is as follows:

CCE(Xm|X1..Xm−1) = H(Xm|X1..Xm−1) + P ×H (3)

with P representing the percentage of uniquely occurring se-
quences and H being the Shannon Entropy [5]. This corrective
term is necessary, because with finite sequences the conditional
entropy tends towards zero as the sequence grows longer, while
the corrective term will increase [5]. The reason for this is
that the conditional entropy calculation requires finding the
Shannon entropy values for each subsequence. As the sequence
windows get longer, the more likely we will have no repeating
subsequences, giving us a final entropy value of 0. With CCE,
the corrective term ensures that the score will not continue
to decrease towards 0. The maximum CCE score possible is



equal to the first-order entropy score [5]. In the context of
CTC detection, the sequence we use to calculate the CCE is the
sequence of bin numbers determined by the inter-packet delays
(IPDs). Each IPD is compared to a range of values based on
training data and assigned a bin between 0 and 4 inclusive. The
minimum CCE scores can be used to reliably detect common
varieties of CTCs, including IPCTC, TRCTC, and MBCTC.

To calculate the minimum CE score, we calculate the Shan-
non Entropy for each subsequence length from 1 through N,
where N is the maximum subsequence length. Then, after
calculating all the entropy values, we find the minimum entropy
score. The typical way to calculate the CE score is to create a
perfect k-ary tree, where k is the total number of bins. The IPD
bin sequence for a flow is divided into subsequence windows,
which have sizes equal to the tree height. Figure 2 demonstrates
the tree used to calculate the CE for a small sequence of
seven IPD bin values. Each node of the tree contains a count
representing how many times a subsequence has passed through
that node. For example, the leaf nodes represent a full window
sequence, while the root’s children represent the first value in
a sequence. These counts are used to calculate the Shannon
entropy for each level of the tree, and the minimum value gives
the CE score for that network flow. The tree-based minimum
CCE calculation functions the same way, but the corrective term
is added to the entropy score for each tree level.

A. GPU Entropy Calculation

Algorithm 1 Steps for calculating the CCE for the tree shown
in Figure 2 using arrays. The window size is 3, equal to the
height of the tree.

input: IPD sequence array A = [2, 3, 5, 3, 5, 4].
output: IPD sequence’s CCE.
1. Convert the sequence into windows of size 3.
[[2, 3, 5], [3, 5, 3], [5, 3, 3], [3, 5, 4]]
2. Convert each sub-sequence to a single base 4 value by
combining the value in that sub-sequence. For example, in
the first window, the sub-sequence of length 3, [1, 2, 3] will
become 2 + 3 ∗ 4 + 5 ∗ 16 = 94. The windows will now be
[[2, 14, 94], [3, 23, 71], [5, 17, 65], [3, 23, 87]]
3. Arrange the values such that tuples of equal length are
together. [[2, 3, 5, 3], [14, 23, 17, 23], [94, 71, 65, 87]]
4. Sort the values. [[2, 3, 3, 5], [14, 17, 23, 23], [65, 71, 87, 94]]
5. Count how many times a number appears in the same
group. [[1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
6. Now, each group corresponds to the counts at a level of
the tree. Using these counts, we can calculate the CCE at
each level as we would using the tree.
7. Finally, take the minimum of these values to obtain the
final CCE score.

Although using trees to calculate entropy works, it requires
too much time to calculate the CCE score for long sequences
of packets. After dividing the sequence of values into windows,
the standard k-ary tree-based CCE calculation requires updating
each node’s count as it is visited while moving in a path from

the root to the leaf nodes, repeating for each window in the
sequence. Once the counts have been calculated, the CCE score
is calculated for each level of the tree and the minimum value
is selected as the final score. A previous paper showed this
method requires 16 ms to calculate the CCE score for a single
flow using a 3.4 GHz Intel Pentium D [5]. For high data rates,
the need to process a large number of new flows constantly
arriving necessitates a more efficient means of calculating the
CCE score for each flow.

For this reason, we chose to perform the CCE calculation
using the GPU. However, constructing thousands of large trees
in real time on a GPU is difficult to perform efficiently. Rather
than dynamically constructing a tree for each flow on the GPU,
we instead represent each flow’s tree within a single large
array. Since the number of bins and window size for the trees
is predetermined, the CCE calculation can be performed by
first dividing each flow’s portion of the array into windows
of size N , then counting the number of matching sub-arrays
of different lengths from 1 to N . Each sub-array represents a
partial path through the tree, and is stored as a single base-4
value for comparison. Although some different sub-arrays will
have the same base-4 translation, it is less likely for longer sub-
arrays and simplifies the matching process. The conversion of
a CCE tree into an array representation is further explained in
Algorithm 1, which calculates the CCE score using the same
IPD bin sequence used to create the tree shown in Figure 2.

This approach simplifies performing the CCE test on the
GPU and has multiple advantages. Since the calculation can be
performed entirely using arrays, we could implement the CCE
calculation using NVIDIA’s CUDA Thrust template library.
Thrust is more manageable than raw CUDA kernels and easily
portable with multicore CPUs using OpenMP or TBB [16].
In its current state, the algorithm expresses the nodes and
counts for a k-ary tree in array form. However, with modifica-
tions, other types of data can be stored at each node. Other
calculations that require binary or k-ary trees could benefit
from using similar methods. Assuming we already know each
node’s maximum number of children, a tree could similarly be
flattened into an array.

IV. SYSTEM DESIGN AND EXPERIMENTAL SETUP

Our detection tool is a heterogeneous system, using both
the CPU and GPU to calculate flow statistics for an incoming
packet stream. Similar to PacketShader and other GPU-based
packet processing systems [2], [17], our detection tool first
gathers packets into large batches on the CPU, then sends those
batches to the GPU for processing. The tool uses two threads
to allow an overlap between CPU and GPU operations. One
thread receives packets, timestamping them and placing them
into a lockfree queue, while the other removes packets from
the queue and stores them into batches. Once enough packets
have been obtained to form a complete batch, that batch is
then copied to the GPU for processing. The processing consists
of two steps. First, the GPU gathers converts the batch array
into a smaller arrays consisting of only packets belonging to
flows with enough packets to accurately perform the CCE test.



Fig. 3. Basic GPU-based packet processing model, adapted from Mukerjee et
al. [17]. The GPU receives packet batches from the CPU, processes them and
returns a result.
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Fig. 4. CPU vs. GPU maximum throughput achieved for different packet sizes.

Second, the GPU takes this modified array and calculates the
CCE score for each flow it contains. If a flow’s reported CCE
score is under a certain predetermined threshold, then that flow
will be reported as containing a model-based covert timing
channel (MBCTC). Figure 4 compares the performance with
the OpenMP CPU-only version of the tool. Figure 3 gives an
overview of how the system processes packet data.

A. PF RING Packet Capture

Our CTC detection tool prototype uses PF RING ZC (zero-
copy), a NUMA-aware packet processing framework developed
by ntop to receive packets at line rate on a 10 Gbps ether-
net link [18]. Similar to Intel’s DPDK [19] or netmap [20],
PF RING ZC bypasses the standard network stack, accelerating
packet processing. Using DMA, the NIC copies packet data
directly to memory, rather than copying between the kernel
and user space. When beginning an application, PF RING
ZC establishes packet buffers to avoid any memory allocation.
Rather than receiving packets through interrupts, PF RING ZC
polls for packets [21]. According to ntop [18], PF RING ZC
performs better than DPDK for smaller packets. Our packet
sniffing code builds on ntop’s zcount example program, which
receives and counts packets at 10 Gbps line rates regardless of
packet size.

B. Batch Processing

The packet I/O code is based on a modified version of
pf ring’s zcount example. One thread is dedicated to collecting

and timestamping incoming packets. The thread puts the raw
packet pointers and timestamps into a lockfree queue. The
processing thread continuously reads packet data from this
queue, obtains the four-tuple identifying the flow (source ip and
port, destination ip and port), and stores them in a buffer. Since
we assume only large flows contain CTCs, and 80 percent of
flows contain no greater than 20 packets [22], we use ”sample-
and-hold” [13] to reduce the amount of packet data stored.
For each incoming packet from a new flow, there is a small
chance (about 0.5% in our case) that it and all further packets
in that flow will be stored. Therefore, only large “Elephant”
flows are likely to be stored in the buffer [23], reducing memory
usage and creating a buffer containing mostly flows capable of
carrying a high capacity CTC. Since the CTC flows we can
detect will be very large (thousands of packets or more), we
can afford to use a very low sample-and-hold probability. This
processes continues until enough packets are gathered in the
buffer to send a large batch to the GPU for testing. By default,
the batch size is set to 12,500,000 packets. Larger batch sizes
will increase bandwidth, but also latency.

Once enough new packets are stored, the packet data in
the buffer array is prepared for the CCE calculation. First,
the array containing the IPDs is converted into a new array
containing only flows with enough data to obtain an accurate
CCE score, typically between 500 and 2,000 packets. Then,
we calculate the adjacent difference for the packet timestamps
to obtain the inter-packet delays (IPDs). Using equiprobable
binning, the IPDs are converted to a bin value between 1 and
5, with 5 representing the largest IPDs. If there are enough
eligible flows, this modified batch array is copied to the GPU
to perform the CCE calculation using Thrust. Although our
approach will accurately detect CTCs in a batch, one issue is
that processing packets in batches will inevitably capture only a
fraction of the large flows. For example, assume we set the CCE
test to process flows with 2000 packets or more, and the batch
only contains the first 1000 packets of that flow. If the flow
is only slightly larger than 2000 packets, the flow will not be
reported, because not enough of its packets were present in any
given batch. Therefore, our current approach can only sample
a fraction of the overall large flows. Using our trace file with
a 500 IPD threshold, we captured around 98.4% of the large
flows, and 91% when replaying it together with near 10 Gbps
traffic. However, we assume CTC flows are large and long-
lived [4], and therefore a more significant portion of potential
CTC flows are likely to be sampled in their lifetime. CUDA
Thrust allows GPU code to be updated and tested quickly, while
also being portable with multi-core CPUs.

C. Experimental Setup

For our setup, two PowerEdge T630 machines (a sender and
a receiver) were connected by a 10 Gbps Ethernet connection.
Both the sender and receiver contained two Intel Xeon E5-
2637 v3 3.5GHz processors. The receiver contains a PowerEdge
T630 GPU along with a NVIDIA Tesla K20C GPU accelera-
tor, which is used for our experiments. Designed for general
purpose computing, the Tesla K20C has 2496 CUDA cores,



TABLE I
MBCTC TRACE FILE STATISTICS. LARGE FLOWS CONTAIN 1000 PACKETS

OR MORE.

Total Packets Total Flows Large Flows Legitimate CTCs

33581932 631089 3377 3056 321

208 GB/s memory bandwidth, and 5 GB GDDR5 memory [24].
The sender will transmit flows to the receiver, which sniffs
incoming traffic and processes the packets in batches using
the CCE test. By running our tool in this way, we performed
a variety of tests, evaluating the CCE test’s effectiveness of
as a classifier, measuring the packet processing time, and
the various trade-offs in our implementation between memory
usage, latency, and throughput on the GPU. From a CAIDA
repository [25], we used a real traffic trace containing one
minute of traffic from a 10 Gbps San Jose OC-192 link. The
trace file has been anonymized, meaning it only contains packet
headers and therefore minimum-sized packets. This same trace
was used in our previous real-time detection experiments [4].
We modify the pcap file by replacing roughly 10% of the flows
containing greater than 1000 packets with MBCTC flows. The
threshold choice of 1000 IPDs was chosen based on previous
detection experiments [4], [5]. Table I describes the CTC-
containing trace file we used for our experiments.

For sending packets, we used two different tools—tcpreplay
and zsend. Depending on the experiment, we send packets using
either tcpreplay, zsend, or both. Tcpreplay replays pcap files
while maintaining accurate timing information, meaning we
can use it for our detection rate tests. PF RING ZC’s zsend
tool allows us to blast random packets at 10 Gbps line rate
for testing the maximum data rates our system can handle
without packet loss. By setting the packet size, zsend lets us test
the maximum data rate at varying packet sizes. The two tools
can be combined by replaying with tcpreplay while running
zsend. By combining the two, we embedded our trace file while
sending larger amounts of traffic to test detection at high data
rates.

V. RESULTS AND DISCUSSIONS

We performed tests on the tool’s ability to identify CTCs
using the CCE test, as well as the performance. Table II defines
the important system and experimental parameters.

A. Classification Results

To ensure our tool functions properly, we measured the true
and false positive rates for the CTCs reported after receiving
all the packets from our trace file. In this case, a true positive
refers to a flow being correctly reported as containing a CTC.
As Figure 5 demonstrates, the corrected conditional entropy
test score performs well at classifying MBCTCs. Even while
sending our trace file embedded within 10 Gbps traffic, the CCE
scores remain accurate. The percentages nearly match previous
results [5], which reported a 95% true positive rate with a 1%
false positive rate when testing a sample of 2000 packets. By
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tweaking the score threshold for reporting CTCs to reduce the
false positive rate to the same value, we also obtain a true
positive rate around 95%. For our results, we report a possible
CTC if the CCE score is less than 0.4, ignoring outliers with
CCE scores near zero. However, this threshold can be altered
depending on how many false positives can be accepted. The
response to a reported false positive could be to add noise to that
flow through fuzzy time or other techniques [11], [12]. Since
that flow’s packets will still arrive, albeit at a reduced rate, some
false positive may be allowed depending on the application.
However, a stricter false positive rate could be necessary for
some applications such as VoIP.



TABLE II
EXPERIMENTAL PARAMETERS

Parameter Definition

True Positive Rate Percentage of tested CTC flows correctly classified as CTCs.
False Positive Rate Percentage of tested legitimate flows incorrectly classified as CTCs.
Window Size The IPD bin sequence window length. Equivalent to the CCE tree height.
IPD Threshold The number of IPD bin values used per flow for calculating the CCE scores.
Batch Latency The time spent gathering packets before processing a batch.
Maximum Throughput The maximum data rates achievable without dropping packets.
Batch Threshold The number of new packets required before testing a batch.
Batch Setup Time The time spent preparing a packet batch for the CCE test passing the batch threshold.
CCE Test Time The time required to calculate CCE scores and report flows as CTCs or not after preparing a batch.
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There are trade-offs to consider when selecting the window
size and IPD threshold used for calculating the CCE score.
Using a larger window size and testing more IPDs will give
more accurate detection (Figure 6). However, that will also
increase the time required to process the flows, and require
more memory per flow. Figure 6 shows that the time per flow
can increase significantly. Ideally, the smallest possible sample
and window size should be used to handle higher data rates
without packet loss. The detection rate for our sample stopped
improving significantly at 2000 IPDs and window size 10. With
those parameters, it takes around 0.4 ms per flow to calculate
the CCE score for a batch.

B. GPU Packet Processing Results

In order to test for CTCs, we gather packets into large
batches. Once enough packets are gathered, the packet batch
is copied to GPU memory, and each flow in the batch is tested
for CTCs. Before copying to GPU memory, the batch must be
setup for the CCE calculation. This involves culling all flows
below the IPD threshold, and ensuring that all remaining flows
have an equal number of IPD bin values. The batch threshold
affects the test result latency and throughput. A larger batch
threshold increases the throughput by processing more flows
per batch (Figure 8). Larger batch thresholds also increase
the latency between receiving enough packets to perform the
CCE test on a flow and reporting whether or not it contains
a CTC (Figure 10). Assuming we test 2,500 IPDs per flow,

we can test 3,000 large flows per batch without running out
of memory during the Thrust CCE calculations. This translates
to a maximum batch size of 7,500,000 packets. However, it is
improbable that all the flows in a batch will each contain exactly
2,500 IPDs. Therefore, batch sizes larger than 7,500,000 are
possible if larger throughput is desired, provided the number
of flows to be tested is limited to 3,000 or less. We obtained
the best results using a threshold of 12,500,000 or more, as
shown in Figure 8.

In Figure 4, we show the highest possible rates we could
achieve with different packet sizes on a CPU and GPU imple-
mentation of our detection tool. To measure this, we have our
sender machine blast packets to the receiver using PF RING’s
zsend application for five minutes, then report whether or
not any packets were dropped. Since zsend cannot specify
the number of packets per flow, we assign a random flow id
between 0 and 14999 to each incoming packet, ensuring that
flows are large enough to pass the sample-and-hold test and be
stored in a batch. In order to simulate a heavy workload with
hundreds of large flows being processed every batch, each batch
is randomly assigned between 0 and 1,500 flows over the IPD
threshold per batch for which to arrange and calculate the CCE
score. On average, around 750 flows containing over 2500 IPDs
will be tested per batch using this method. Assuming average
512 byte packets, our tool can handle 10 Gbps traffic at near
line rate (about 9.69 Gbps, or 2,200,000 pps). However, higher
rates should be possible when testing with real traffic samples,
depending on how many flows pass the sample-and-hold test.
Since code written in Thrust is portable between CUDA and
OpenMP, comparing the performance is simple [16]. Figure 4
shows that the GPU version performs significantly better than
the parallel OpenMP CPU version running on eight Intel Xeon
E5-2637 cores for packet sizes up to 512B.

The total time to complete the two batch processing steps
depends primarily on a few factors—the number of eligible
flows, the window size, and the IPD threshold value. We
obtained our best results by having Thrust perform the batch
setup on the CPU and the CCE calculation on the GPU. If the
batch contains the maximum number of flows possible (3000),
the calculation will require slightly over 2 seconds to classify
the flows (Figure 9). However, since a batch will almost never
contain only eligible flows, packet loss is unlikely. The CCE
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calculation time per flow remains below 0.5 ms regardless of
how many flows are being tested. Even including the batch
setup time, this is significantly faster than the 16 ms per flow
CCE calculation described in previous results [5].

VI. RELATED WORK

Covert Timing Channel Detection: Although many papers
describe techniques for either limiting channel capacity or elim-
inating network covert timing channels completely [11], [12],
these techniques usually hurt legitimate traffic performance
as well, making covert timing channel detection the more
appealing choice [4]. Cabuk et al. [10] introduced two covert
timing channel detection techniques—the regularity test and the
ε-similarity test. Gianvecchio and Wang [5] provide background
on a variety of covert timing channel detection techniques,
and also introduce entropy-based detection using measurements
of first-order entropy and the corrected-conditional entropy to
identify covert traffic. Many other measurements have been
used for detection, such as mean-max ratio [5]. Commonly,
detection techniques are created to counter a particular covert
timing channel, but have limited effectiveness in detecting
other channel types [5]. Examples include the ε-similarity test
(effective for detecting IPCTC traffic), and measuring the data
and acknowledgement packet timing intervals (effective for
detecting the Cloak CTC) [5]. After new detection techniques
are introduced, new covert timing channel types designed to
counter those techniques tend to follow [5], [7].

GPU Packet Processing: There have been many papers
showing GPU packet processing as an effective means of scal-
ing network packet processing applications using commodity
hardware [1]. Given their higher memory bandwidth, GPUs
have been shown to perform high data rate software packet
processing more efficiently than CPUs alone [2]. PacketShader
is a GPU-based processing framework that can perform Open-
Flow flow matching and ipv4/ipv6 packet forwarding at multi-
10Gbps rates [17]. Similarly, Snap is a framework built on top
of Click, a modular software router. Snap performs SDN for-
warding and other processing tasks at 30 Gbps with minimum-
sized packets, and can reach 40 Gbps with packet sizes starting
at 128-bytes [26]. In addition to packet forwarding, GPU-
based processing has been used to quickly perform pattern
matching for intrusion detection systems, such as Kargus and
Gnort [27], [28]. GPU-based processing has also been applied
to software-defined networks (SDNs). For example, GSwitch
is a recent system that performs packet classification using
the GPU to improve packet searches. Their Bloom search
algorithm outperforms a CPU-based equivalent by a factor of
12, processing 64-byte packets at 10 Gbps [29].

Depending on the application, much of the benefits of GPU
processing come from the advantages of writing algorithms in
languages such as OpenCL or CUDA, which has inherent ad-
vantages such as vectorization and hiding memory latency [30].
By optimizing memory latency in CPU software packet pro-
cessing applications, the authors significantly closed the gap
between CPU and GPU performance [30]. Therefore, GPU-
based packet processing could be more worthwhile for tasks
that benefit more from vectorization than reducing memory
latency, since programming for CPU-based vectorization is
difficult [30], although compilers such as Intel’s ispc provide
extensions for single-instruction multiple data (SIMD) pro-
gramming [30]. For this reason, CTC detection could be ex-
pected to benefit significantly from GPU processing, since cer-
tain detection tests—including the CCE entropy test—require
processing a large number of flows, each with corresponding
vectors of inter-packet delays (IPDs).

VII. CONCLUSION AND FUTURE WORK

Our results confirm that covert timing channel detection
can be performed efficiently in real-time by calculating the



corrected conditional entropy scores for network flows on a
GPU. Our tool manages to detect CTCs more accurately and
at higher data rates when compared to previous results [4],
even while running purely on the CPU. As predicted by earlier
results [5], the CCE test is a reliable classifier for model-
based covert channels, identifying suspicious flows with a low
false positive rate. By converting the conditional entropy tree
structures into arrays, batches of packet data can be converted
into a format that is easily parallelized and translated into
GPU code. This technique could potentially be applied to
other entropy measurements, such as those used to evaluate
financial transfers or connectivity in the brain [15]. Our results
demonstrate that, in addition to tasks such as firewall rule
lookups and packet forwarding [2], GPU packet processing
can be applied for improving statistical analysis of individual
network flows at the packet level.

There are multiple ways in which our tool could be expanded
upon and improved. One obvious way would be to include
additional CTC detection tests that can identify channel types
that evade CCE detection, such as including Welch’s t-test
for Jitterbug channels [31]. Although our detection tool could
handle traffic at 10 Gbps line rates with average sized packets,
40 Gbps line rates are becoming more common. Although using
raw CUDA kernels might increase the maximum throughput,
using CUDA Thrust provides multiple advantages, notably the
ease of coding that allows new detection tests to be added
quickly, as well as portability between CPUs and GPUs. One
potential direction to expand this work would be to integrate
it with the Bro intrusion detection system by writing policy
scripts that respond to reported CTCs by disrupting the flow’s
packet timing to reduce or eliminate the channel’s capacity.
Finally, although our implementation uses only a single GPU,
the CCE computation should scale well for handling higher
data rates. The more memory available, the more batches can
be created. On a system with multiple GPUs, multiple batches
can be processed in parallel, allowing our tool to handle much
higher rates of traffic.
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