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Quantification of Polydimethylsiloxane 
Concentration in Turbid Samples Using Raman 
Spectroscopy and the Method of Partial Least 
Squares 

A.J. Durkin 1, M.N. Ediger 1 and G.H. Pettit 2 
1Electro-optics branch of the FDA Center for Devices and Radiological Health, Rockville, 2Autonomous Technologies 
Corporation, Orlando, USA 

A b s t r a c t .  This paper presents a preliminary application of Raman spectroscopy in conjunction with 
the chemometric method of partial least squares to predict silicone concentrations in homogenous 
turbid samples. The chemometric technique is applied to Raman spectra to develop an empirical, linear 
model relating sample spectra to polydimethylsiloxane (silicone) concentration. This is done using a 
training set of samples having optical properties and known concentrations representative of those unknown 
samples to be predicted. Partial least squares, performed via cross-validation, was able to predict silicone 
concentrations in good agreement with true values. The detection limit obtained for this preliminary 
investigation is similar to that reported in the magnetic resonance spectroscopy literature. The data 
acquisition time for this Raman-based method is 200 s which compares favourably with the 17 h acquisition 
required for magnetic resonance spectroscopy to obtain a similar sensitivity. The combination of Raman 
spectroscopy and chemometrics shows promise as a tool for quantification of silicone concentrations from 
turbid samples. 

Keywords: Biomedical diagnostics; Breast implant leakage; Optical spectroscopy; Partial least squares; 
Polydimethylsiloxane (PDMS); Raman spectroscopy; Silicone 

BACKGROUND 

Silicone-gel implants for breast  augmentat ion 
and reconstruct ion have been in use since 
1962. In April 1992, the Food and Drug 
Administrat ion (FDA) restr icted the use of 
silicone gel-filled breast  impiants, citing 
lack of adequate information on heal th  risks 
associated with such implants [1,2]. Local com- 
plications have long been known to occur, 
primarily consisting of capsular contracture,  a 
hardening of the implant to palpation due 
to cont rac ture  of the fibrous capsule tha t  
normally forms around the implanted body 
[3-5]. Ruptures of implants can o c c u r  ei ther 
intracapsularly,  or with extracapsular  exten- 
sion and concomitant  spread of the gel to the 
adjacent  tissue [6-8]. Although the long-term 
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effects of silicone leakage remain uncertain,  
published studies to date suggest a rupture  
ra te  of 5-51% [2]. The uncer ta in ty  in rupture  
rates is largely due to the tack of a reliable 
method for detection and quantification of sill- 
cone leakage. Virtually all implants have been 
shown to 'bleed' silicone through their  packag- 
ing into the local microenvironment  [9,10]. 
This is supported by histological findings of 
foreign-body granulomas in the capsular 
tissues or regional lymph nodes [7,11]. More 
recent  observations using magnetic resonance 
spectroscopy (MRS) have suggested the 
presence of silicon compounds in the blood of 
some women with silicone breast  implants, as 
well as evidence of silicon migrating to the 
liver [12]. 

A recent  report  indicates that  there may 
be a small long-term risk associated with 
silicone implants. However, this study is 
epidemiological and by no means conclusive 
[13]. As a scientific adjunct  to studies of 
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this type, a means for non-invasive determi- 
nation of the status of implants, and quantifi- 
cation of silicone levels in blood and 
tissue continues to be a goal of the medical 
community [14-18]. 

Detection Methods 

Many technologies are currently under inves- 
tigation for use as potential tools for detection 
of silicone, but  for the most part  these suffer 
from a host of practical difficulties. Although 
computed tomography (CT) scans produce 
high resolution images [15], patients are 
exposed to ionising radiation; therefore CT is 
not recommended for patients with augmenta- 
tion mammoplasty [10] .  Standard light 
microscopy histopathological techniques have 
been shown to be ineffective because silicone 
is refractile, non-polarisable, non-stainable 
and therefore difficult to identify [19]. Ultra- 
sonography has been investigated as a method 
of evaluation of implant integrity but  is insen- 
sitive to detection of silicone 'bleed-through' 
[20]. Several laboratories are offering tests 
that  claim to detect levels of antibodies to 
silicone that  presumably indicate a leaking or 
ruptured implant. However, the very existence 
of such silicone antibodies has not yet been 
conclusively demonstrated [10]. There are 
claims that  extremely high antibody levels may 
indicate a leaking or ruptured implant. How- 
ever, the clinical significance of silicone anti- 
bodies and at what  levels these antibodies are 
harmful remains unknown [16,17]. Although 
magnetic resonance spectroscopy (MRS) tech- 
niques are being investigated to identify 
implant leaks, they generally suffer from lack 
of sensitivity in detecting silicone either in 
small amounts or when silicone is heterogene- 
ously distributed in tissue [12]. In addition, 
MRS is expensive and time consuming. 
Finally, standard analytical chemistry tech- 
niques such as direct current plasma-atomic 
emission spectroscopy (DCP-AES) can be used 
to detect elemental Si in vitro with a sensi- 
tivity of 2.0 ~g/g (tissue) [18]. These methods, 
however, cannot differentiate between sources 
of silicone (PDMS) and elemental silicon, 
which is often present in non-implant individ- 
uals at measurable levels. In addition, these 
spectroscopic techniques are sample destruc- 
tive, require extensive sample preparation 
and are not readily accomplished in a clinical 
setting. 
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At present there is no reliable non-invasive 
technique for determining leakage outside of 
fibrous capsule. The present work is a step 
towards determination of the feasibility of 
such a task using an optical method. Optical 
spectroscopic methods have become the sub- 
ject of considerable study as a tool for moni- 
toring the state of tissue. The radiation that  is 
used for these studies, which encompass 
Raman spectroscopy [21], fluorescence spec- 
troscopy [22], Fourier transform infra-red 
spectroscopy (FT-IR) [23,24] and reflectance 
spectroscopy [25] is non-ionising and is amen- 
able to transmission via optical fibre. Spectral 
data can therefore be acquired using a contact 
or minimally invasive probe and the efficacy of 
these various spectroscopies can be studied at 
a number of organ sites without causing the 
patient undue risk or discomfort. Although 
many biologically important molecules can 
be probed using optical spectroscopy, only 
limited attempts have been made to inter- 
pret tissue Raman spectra in terms of tissue 
chemical composition [13,26,27]. Raman spec- 
troscopy is particularly attractive because it 
is a proven tool for sensitive identification 
of molecular constituents in a mixture of 
unknowns for non-biomedical applications 
[28]. Furthermore, recent reports indicate that  
Raman chemical imaging can be a useful 
characterisation tool for the identification of 
polymers, including silicone gel, in the matrix 
of excised capsular tissue [29-31]. 

Partial Least Squares 

We have used the method of partial least 
squares (PLS) to develop an empirical linear 
model of Raman scattering in turbid samples 
using a training set with known silicone con- 
centrations and optical properties similar to 
those considered as unknowns [29]. Recently, 
efforts have been made to quantify chromo- 
phores in biological samples using PLS, where 
work has focused on the determination of 
blood glucose levels using FT-IR techniques. 
These preliminary studies have shown promise 
in the accurate determination of quantitative 
information from optical spectra both in vitro 
and in vivo [23,24]. 

Briefly, using the notation of Malinowski 
[32] the PLS method is based on the regression 
between two matrices, X and Y. For spectro- 
scopic analysis of n mixtures (samples) with p 
unknowns (constituents of interest), X and Y 
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represent spectral and concentration matrices, 
respectively. Through a sequence of matrix 
rotations and regression steps, which for 
the simplest case can be described as a singu- 
lar value decomposition, PLS seeks to relate 
the matrix of spectra, X, to the matrix 
of concentrations of the consti tuent of 
interest, Y, via a calibration or model matrix B 
such that  

Y X B 
(1) 

n x p  n x m m x p  

where B is the set of calibration constants for 
the system. The rows of X and Y contain 
information about n sample mixtures. The 
columns of X contain emission spectra at m 
spectral wavelengths. Although samples may 
contain many constituents, the rows of Y are 
composed only of the concentrations of the p 
known constituents of interest for each 
sample. The reader is referred to a description 
of non-linear iterative partial least squares 
(NIPALS) discussed by Malinowski [32] 
for an accurate and detailed description 
of PLS mechanics in its least complex 
manifestation. 

The accuracy of prediction for PLS depends 
on the composition of the training and valida- 
tion sets as well as the spectral information 
included in the data [31]. One technique used 
to assess the accuracy of prediction and to 
select the optimum number of factors to 
retain in the model is known as the method 
of cross-validation [24,32]. This technique 
evaluates the ability of a PLS calibration 
model to predict the concentrations of 
unknown spectra as a function of the rank 
(number of factors or principal components) 
used in creating the calibration model. A 
discussion of cross-validation is included in 
the Methods section. 

An attractive facet of PLS is that  it does not 
explicitly require a priori knowledge of the 
sample optical properties but does require 
spectra from a training set of samples with 
known concentrations and with chemical 
complexity similar to the unknown sample of 
interest [24,33,34]. Biological systems are gen- 
erally complex mixtures for which acquisition 
of complete chemical information is time 
consuming and complex, if not impossible. 
Consequently, the application of PLS methods 
to Raman spectra presents great potential as 
a method for optical determination of tissue 
biochemistry. 

METHODS 

Samples 

To our knowledge, there has not yet been a 
study that explicitly examines the ability of 
PLS to predict chromophore concentrations 
from Raman spectra of turbid media such as 
blood or human tissue. For PLS to accurately 
predict concentrations of chromophores in bio- 
logical samples, it must be shown that the 
technique can be employed as an accurate 
predictor in samples that absorb and scatter 
light. In the case of tissues, scattering coef- 
ficients (~Is) can range between 50 and 
400 cm -I in the ultraviolet and visible por- 
tions of the spectrum (250-700 nm), and absorp- 
tion coefficients (ga) range from less than 1 to 
greater than 25 cm -I depending on tissue 
type [35]. In order to examine the predictive 
ability of PLS using Raman spectroscopy in 
a tissue-like environment, we performed our 
study on a series of 40 turbid phantoms 
with optical properties similar to those of 
tissue [22,35]. 

Polydimethylsiloxane (PDMS) was pur- 
chased from Sigma Chemical and used without 
further purification. A preliminary examina- 
tion of the Raman spectra from pure PDMS 
gels with viscosity ranging from 20 centistokes 
(MW=2000), to 500 centistokes (MW=17250) 
confirmed that  the transitions of interest for 
the purposes of this investigation can in all 
cases be found at 490 cm-  ~ and 713 cm-~. It 
was necessary to include an emulsifying agent 
in our phantoms so that  PDMS would remain 
diffusely distributed in these mixtures. Sodium 
dodecyl sulphate (SDS, Sigma Chemical), a 
common non-ionic surfactant, was first 
checked for potentially interfering Raman 
scattering in the wavenumber region of inter- 
est and was subsequently mixed with silicone 
and phosphate-buffered saline (PBS). The 
introduction of this ingredient to the mix 
caused microglobularisation of the silicone, 
resulting in a range of silicone microsphere 
diameters on the order of 20-100 gm, consistent 
with silicone particle sizes that  have been 
observed in in vitro investigations performed 
by other groups [36,37]. 

Haemoglobin was obtained from blood 
drawn from the author. Serum was separated 
from whole blood and discarded according to 
laboratory standards for the handling of poten- 
tially biohazardous fluids. The remaining cells 
(primarily red cells) were placed in isotonic 
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PBS (pH 7.4). This was used as a source of 
oxyhaemoglobin for the remainder of the 
study. Using previous work with phantoms for 
quanti tat ive fluorescence spectroscopy as a 
guideline, samples were mixed so that  the final 
concentra t ion of haemoglobin used in each 
turbid sample was between 0 and 2% by vol- 
ume (0-94.6 raM) over the set of 40 samples 
[22]. A spreadsheet using random number 
generators and statistical correlat ion func- 
tions was employed in order to ensure that  
correlat ion between concentrat ions of the 
sample ingredients were minimised. This 
ensured that  the model resulting from the 
PLS routine would not  incorporate artifacts 
related to simple correlat ion between sample 
ingredients or the order in which sample 
spectra undergo the PLS decomposition. An 
Eppendorf  micropipette (adjustable between 
1000 ~1 and 100 ~l) was used to measure the 
volume of each item placed in the mixtures. 
After placing PDMS, haemoglobin and 
surfactant  in a non-silicone coated test tube, 
PBS was added to bring the final volume of 
each sample up to 10 ml. A complete list of the 
PDMS and haemoglobin concentrat ions of 
each of these samples is described in Table 1. 
Spectra of the phantoms were acquired  
using the Raman system described in the 
next section. 

Experimental Apparatus 

The Raman spectrometer used in these studies 
is depicted in Fig. 1. Light from a 632.8 nm 
helium neon (HeNe) laser (Spectra-Physics 
127) i rradiated a plastic cuvette containing 
approximately 3 ml of sample material. A line 
pass filter was used to prevent HeNe plasma 
lines from reaching the sample. The power of 
the incident light measured at the sample 
holder was 18 mW. Scattered light was col- 
lected from the sample using an optical fibre 
bundle (manufacturer  unknown, 1.9 mm total 
diameter), placed in close proximity to the 
il luminated sample spot. Rayleigh scattered 
light was prevented from reaching the detector 
using a holographic line filter (Kaiser Super 
Notch, 6 0 D  at 632.8 nm). Light entering the 
spectrograph (SPEX 270 f/4, slit size=50 pm) 
was dispersed across the face of a CCD detec- 
tor using a holographic grating (blaze 
angle=630nm, 1200 grooves/mm, reciprocal 
linear dispersion=3.1nm/mm). The detector 
was an intensified red/blue enhanced CCD 

Table 1. Phantom constituents. Turbid phantoms 
consist of haemoglobin, PDMS, PBS and surfactant. 
These concentrations are reported in % by volume. 
The final volume of each sample is 10 ml 

Sample number % PDMS % HbO 

1 6.17 0.07 
2 4.03 1.45 
3 2.70 0.79 
4 9.13 0.76 
5 1.00 1.08 
6 5.46 0.65 
7 4.72 1.27 
8 3.45 0.35 
9 2.79 0.69 

10 1.29 1.79 
11 3.60 0.14 
12 3.42 1.43 
13 0.55 O.80 
14 4.69 O.49 
15 4.06 0.42 
16 9.24 0.93 
17 5.88 1.91 
18 1.27 0.15 
19 0.30 0.69 
20 0.22 1.16 
21 0.40 0.43 
22 4.84 0.55 
23 5.47 1.45 
24 2.68 0.36 
25 7.49 0.30 
26 9.15 0.34 
27 7.29 1.83 
28 9.17 0.25 
29 8.70 0.68 
30 6.52 1.97 
31 6.27 0.67 
32 6.97 1.17 
33 7.72 1.60 
34 3.83 1.38 
35 7.03 1.92 
36 0.62 0.66 
37 2.34 0.40 
38 4.18 1.27 
39 7.71 1.68 
40 0.93 1.94 

camera (Princeton Instruments ICCD-576G/ 
RBT, 576 x 384 array, pixel size=22 x 22 ~m, 
active area=12.7 x 8.4ram, peak quantum 
efficiency=40%). The CCD was thermoelectri- 
cally cooled to an operating temperature  of 

- 40°C. 
The placement of the fibre bundle tip in 

relat ion to the sample cuvette was established 
using a diffuse white reflecting card placed on 
the inside front surface of a cuvette as a target. 
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632.8 nm Bandpass Filter Focusing Lens, 
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Imaging 
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Fig. 1. Experimental set-up. The Raman spectrometer constructed for our preliminary investigations. The source is a 35 mW 
HeNe laser. Raman spectra were acquired using a cooled, intensified CCD. 

This cuvette was filled with water in order to 
reduce the effect of the index of refract ion 
mismatch between the card and the front of the 
cuvette. The grating of the spectrograph was 
adjusted to allow the 632.8 nm line of the laser 
to fall on the centre of the CCD (pixel number 
288). The notch filter was removed and the 
sample integrat ion time was reduced to 30 ms 
in order to avoid saturat ing the detector. The 
bundle tip was microtranslated until  the 
intensi ty of the Rayleigh scattered light was 
maximised. 

The optical path, optical fibre collection 
bundle, cuvettes and test tubes used in this 
investigation were all tested for silicone con- 
taminat ion and interference in the Raman 
regime of interest  to minimise the possibility 
of corrupt ing the experiment. Background 
interference from the set-up components 
was tested using a plastic cuvette filled with a 
mixture of 0.625% 1 ~m diameter, monodis- 
persed polystyrene microspheres (Polysciences 
Inc.) in distilled deionised water. This 
polystyrene/water  mixture was used in order 
to simulate a sample that  might generate 
sufficient Rayleigh scat tered light so as to 
induce a background Raman signal in the 
collection arm of the system. Spectra for 
this scat ter ing sample were acquired over a 
5 min period. No potential ly interfering signal 
was observed in the wavenumber region of 
interest  [38]. 

Calibration and data acquisition were 
performed using Kestrel Spec software (Rhea 
Corp.). The 632.8 nm line was used in conjunc- 
t ion with the single point calibration routine 
provided in the software. Reproducibili ty of 
the calibration was verified using the HeNe 
plasma lines which could be permitted to reach 
the detector by removing the line pass filter. 
The integrat ion time for each acquired spec- 
t rum was 1 s with a total of 200 accumulated 
spectra per sample. In order to simulate a 
device that  would not compromise the integ- 
ri ty of whole blood cells, data collection par- 
ameters were loosely based on parameters  used 
by various other  groups involved in Raman 
studies of tissues [1,26,39-41]. Real-time com- 
pensation for fluctuations in laser power was 
not possible in this case because a reliable 
continuous wave detector  was not available. 
However, we were able to account  for the slow 
decrease in laser power over the course of 
the experiment. To do this, a 's tandard'  Raman 
spectrum was acquired, using parameters  iden- 
tical to those used for the turbid samples, from 
a cuvette containing pure 200 centistokes 
PDMS every 15 min. This was used to normal- 
ise the turbid spectra taken in each 15min 
segment. Data were then exported to Microsoft 
Excel and combined to form matrices. 
MATLAB (the Math Works, Natick MA) was 
subsequently used to execute PLS and cross- 
validation routines. 
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ANALYSIS 

Raw data from the turbid samples in the 
region of the Raman features of interest 
(450-750 cm-1) were analysed using a partial 
least squares algorithm from the MATLAB 
Chemometrics Toolbox. Background was not 
subtracted, nor were spectra preprocessed 
before application of the PLS method. The 
most accurate prediction model for the train- 
ing data was chosen using a cross-validation 
algorithm which would iteratively construct a 
model for N-1 spectra and treat the remaining 
spectrum as the 'unknown'. The matrix of the 
N-1 spectra was then decomposed into princi- 
pal components, or factors, using singular 
value decomposition [35]. Models were built 
using a successively increasing number of 
these factors. On the first iteration, the model 
consists of only the factor that  accounts for 
most of the variance in the data (indicated by 
the magnitude of the corresponding eigen- 
value). The model for each factor level was 
applied to the 'unknown' spectrum to predict 
the concentration of the component of interest 
and the prediction error was recorded in a 
matrix for future reference. The next most 
important factor (indicated by the magnitude 
of the corresponding eigenvalue) was subse- 
quently included in the model and the predic- 
tion process repeated until a model consisting 
of all factors resulting from the decomposition 
of the N-1 training set was employed. The 
'unknown' was then returned to the training 
data and a different spectrum was selected as 
the 'unknown'.  This entire process was 
repeated until all samples had played the role 
of 'unknown' once. The prediction error for 
each factor level was summed across the 
sample set and plotted. The model for the 
entire set was then constructed using the fac- 
tor level for which the residuals across the 
sample set were minimised. Models consisting 
of the 'optimum' number of factors + 1 and the 
'optimum' number of factors - 1 were also con- 
structed. These models were also applied to the 
data and the predictions compared to the 
results obtained using the 'optimum' number 
of factors. 

The results of each application of PLS are 
summarised and discussed in the following 
section. In each case, an average figure of 
merit is used to describe predictive ability. The 
average relative error of prediction (AREP) 
was calculated via equation 2, as the absolute 
difference between predicted concentration 

(Pi) and actual concentration (Ti) averaged 
over all n samples in the set [22]. This figure 
was normalised to the maximum actual 
concentrations of PDMS (T/max) making up the 
phantom. 

AREP = 1  ~ ]Pi- Til (2) 
ni=l  ITi[max 

RESULTS 

Raman Spectroscopy 

Figure 2 illustrates the unique Raman 'finger- 
print' of PDMS. The solid line shown here is a 
typical Raman spectrum of pure PDMS 
(viscosity=200 centistokes) illustrating the 
Si-O stretch and Si-C stretch modes that  are 
easily detectable at 490 cm -1 and 713 cm -1, 
respectively. These observed Raman modes are 
reported to be highly accurate and can serve as 
specific markers for all silicone products 
exhibiting unaltered silicon-oxygen and 
carbon-silicon bands [39]. This region of the 
Raman spectrum is particularly attractive 
due to the lack of interfering Raman signal 
from endogenous tissue constituents [1,26,36]. 
Contrasted with the spectrum of pure PDMS is 
a typical spectrum acquired for a sample con- 
taining PDMS, red blood cells, SDS and PBS 
(sample no. 16, Table 1). The change in signal 
to noise ratio in going from the pure PDMS 
spectrum to the mixture spectrum helps to 
illustrate the challenge in recovering accurate 
concentration predictions of constituents of 
complex samples. 

As discussed above, the appropriate number 
of factors to use in a predictive model is indi- 
cated by the residual predictive errors 
incurred over the calibration set. Figure 3 
indicates the amount of residual error across 
the sample set as a function of the number of 
factors used in the model. The residual error 
for factor levels in excess of eight demon- 
strates a gradual increase in cross-validation 
prediction error due to 'overfit' from factors 
that  represent noise. The number of factors for 
which the minimum in the error occurs is 
generally a good indicator of the number of 
factors to keep in the model. It is good practice 
to verify this by performing concentration 
prediction using one or two fewer and one or 
two more factors than that  indicated by the 
minimum. The number of factors suggested 
by cross-validation for the 40 samples used 
here is eight. A summary of the AREP of 
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17500- Si-O ~ e t c h ,  490 cm-1 
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Fig, 2. PDMS spectrum. The solid line is the Raman spectrum of pure PDMS acquired using our setup. The molecular structure 
is essentially a Si-O-Si- backbone with methyl groups (-CHa) bonded to the Si. The key Raman features shown here are the Si-O 
stretch (490 cm -~) and the Si-C stretch (713 cm-~). The location of these features is invariant with viscosity (50-500 centistokes). 
The Raman spectrum for a turbid mixture containing PDMS, red blood cells, SDS and PBS is indicated by the open squares. 
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Fig. 3. Residual errors vs number of factors. The appropri- 
ate factor level for a model with good predictive ability is 
generally that level for which the residual errors, summed 
across the calibration set, are first minimised. In this case, the 
factor level that minimises the concentration prediction errors 
is 8. 

cross-val ida t ion  p red ic t ion  using 4, 6, 7, 8, 9 
fac tors  is shown in Table  2 to i l lus t ra te  how 
the  pred ic t ive  abi l i ty  of a model  can  va ry  as 
the  num be r  of  fac tors  is a l tered.  

F igure  4(a) i l lus t ra tes  the  pred ic ted  PDMS 
concen t r a t i ons  ob ta ined  by applying PLS to 
the da ta  acqu i red  for the  tu rb id  phantoms.  The 
sum of the  res idual  e r rors  i ncu r r ed  via cross- 
va l ida t ion  was de te rmined  as a func t ion  of the  
numbe r  of factors.  These  resul ts  ind ica ted  t h a t  
a model  based  on eight  fac tors  yields the  first 
min imum in res idual  p red ic t ion  e r ro r  across 
the  sample set. This  is a r ea sonab le  ou tcome 
cons ider ing  t ha t  t he re  are  th ree  simple con- 
s t i tuents  (PBS, PDMS and  SDS) in addi t ion  
to blood, which  i tself  is an amalgam of com- 
pounds  and can  con t r i bu t e  a handfu l  of factors  
to the  model  itself, depending  on the  wave 

Table 2. Average relative error of prediction 
(AREP) for cross-validation prediction as a function 
of the number of factors used in the model 

Number of AREP 
factors (%) 

4 3.82 
6 1.12 
7 0.79 
8 0.55 
9 0.58 

number  reg ion  unde r  inves t iga t ion  [41]. The 
a r row in Fig. 4(a) indica tes  r ecen t  in v i t ro  
resul ts  ob ta ined  using MRS on a blood sample 
t a k e n  from a pa t i en t  wi th  silicone-filled 
implants  [12]. This  cor responds  to a PDMS 
co n cen t r a t i o n  of abou t  5 mg/g. 

In order  to approx imate  a typica l  appli- 
ca t ion  of the PLS technique ,  a tes t  was 
per formed in which  the p red ic t ion  resul ts  
ob ta ined  by cross-val idat ion were compared  to 
the  pred ic t ions  ob ta ined  by appl ica t ion  of a 
model  developed for separa te  t r a in ing  samples. 
This  was done by select ing two sets of 10 
samples a t  r an d o m  from the  or ig inal  40 spec- 
tra.  The pred ic ted  si l icone concen t ra t ions  of 
the  first set of 10 samples were  ca lcu la ted  
us ing cross-val idat ion.  A separa te  model  
based on 10 samples not  inc luded  in this  
first set of da ta  was also gene ra t ed  using 
cross-val idat ion.  This  model  ob ta ined  for the  
second set of  da ta  was subsequent ly  appl ied to 
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Fig. 4. Prediction of PDMS concentration in turbid samples. 
The diagonal line has a slope=l. In an 'ideal' investigation, all 
predictions would lie along this line. (a) Cross-validation 
prediction results for the entire set of 40 samples. The arrow 
indicates recent in vitro results obtained using MRS on a 
blood sample taken from a patient with silicone-filled implants 
[12]. This corresponds to a PDMS concentration of 5 mg/g of 
tissue. Our preliminary results based on Raman spectroscopy 
and PLS compare favourably with this result. (b) Comparison 
of prediction results obtained by validation (filled squares) to 
those obtained using cross-validation (triangles). 

the first 10 samples. The set one cross- 
validation predictions are compared to the pre- 
dictions obtained for set one using the model 
developed for set two and are i l lustrated in 
Fig. 4(b). This result  is summarised in Table 3. 

C O N C L U S I O N S  

The results of this work indicate that  Raman 
spectroscopy has potential  to be useful for the 
discrete detection of low-concentration foreign 
compounds in a turbid optical environment. 
We were able to obtain good agreement be- 
tween measured and cross-validation predicted 
silicone concentrat ions in optically complex 
samples over a wide range of optical proper- 
ties. Similarly, we have seen that  for a very 
simple case, application of a model to an inde- 
pendent set of validation data can give predic- 
tive results comparable to those achieved via 
cross-validation. Furthermore,  good predictive 
ability has been demonstrated for PDMS 
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Table 3. AREP of PLS for cross-validation pre- 
diction vs. prediction obtained using a model 
developed for a separate calibration set 

Cross- 
Validation validation 

AREP 5.31% 0.59% 

concentrat ion regime consistent with a result  
obtained by a group using magnetic resonance 
spectroscopy that  requires much longer inte- 
gration time than the Raman method as tested 
[8]. Work remains to be done to explore the 
detection limits of this technique. 

There is very poor agreement between 
reported results in the li terature.  The paper by 
Garrido et al. [12] which describes MRS as a 
method for determining blood silicone levels, 
continues to be the subject of much debate. 
They reported finding silicone in concen- 
trat ions of about 5 mg/g. Generally, the rest of 
the community seems re luctant  to accept a 
concentrat ion of this magnitude, however no 
one has yet been able scientifically to disprove 
this result. Furthermore,  there is considerable 
variat ion between results reported by groups 
trying to enumerate the differences between 
background levels of silicon in persons without 
implants vs those with implants using methods 
such as DCP-AES, which are sample prep- 
arat ion intensive, but  very sensitive (detection 
limit 2ng/g) [12,18]. Based on a survey of 
this l i terature,  we estimate tha t  a sensitivity 
of 50-100 gg/g will be required. Ultimately, 
we will have to perform our own experiments 
(Raman vs DCP-AES) on blood samples from 
both implanted and non-implanted persons in 
order fully to understand the detection limits 
that  will be required. We are also current ly 
doing experiments to determine the smallest 
detectable concentra t ion of silicone in an opti- 
cally simple sample (PBS, PDMS, surfactant) 
in order to estimate the limits of detection for 
PDMS under idealised circumstances. 

In the future, we intend to make a number of 
improvements to gain a greater  understanding 
of the practical  limits of this technique. 
We estimate the collection efficiency for 
Raman-scattered radiat ion for these prelimi- 
nary experiments to be only a few per cent. 
This leaves considerable room for improve- 
ment through modifications to the optical 
geometry. Towards this end, there have been 
recent  reports of progress in assembling an 
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optical-fibre based Raman system for biomedi- 
cal applications. Specifically, a spectroscopy 
group at Massachuset ts  Insti tute of Tech- 
nology has recently demonstrated a 7-fold 
increase in collection efficiency of Raman scat- 
tered radiat ion from a tissue surface, using a 
parabolic reflecting element coupled to an 
optical fibre [42]. In addition, a group at the 
Universi ty of Texas has had success in obtain- 
ing in vivo measurements using an optical 
probe designed to improve optical throughput  
and reduce interfering Raman signal from the 
fibre probe itself [26]. 

In addition to apparatus modification, appli- 
cation of the PLS method for spectral quanti- 
tative analysis is a very active field that  is 
continuously being refined and improved. To 
date we have applied PLS to the problem of sili- 
cone bioassay in a cursory manner. A review of 
the l i terature indicates that  refinements in 
both data preprocessing and postprocessing 
can be used to enhance the predictive ability 
of the method [43]. These enhancements will 
be augmented in a synergistic manner by the 
bet ter  Raman spectra (in terms of signal-to- 
noise ratio) we hope to obtain through the 
aforementioned modifications. 

Finally, we should note that  background 
autofiuorescence is a significant concern when 
performing Raman spectroscopy of human 
tissue [26]. In the preliminary experiments 
reported here, fluorescence was not observed 
to measurably degrade the Raman spectra in 
the wave number region of interest. As our 
experiments use progressively more complex 
samples, eventually using whole blood taken 
from implant and non-implant patients, this 
phenomenon will be closely monitored. Meth- 
ods that  have been reported to be effective in 
combatting these effects include using longer 
wavelength excitation light and fluorescence 
subtract ion via polynomial fit [1,26,39]. Similar 
techniques will be invoked as required. 

Should these attempts at assay enhancement 
prove beneficial, a successful diagnostic tech- 
nique could readily be incorporated into one 
of the various instruments being developed 
for optical imaging of the breast. Broader 
public health benefits include possible low-cost 
sensitive assays of breast disease, that  can be 
readily integrated into an imaging system. 
Techniques developed could conceivably be 
extended to spectroscopic investigations in 
other organ sites and ultimately may provide a 
means by which metabolic changes of in vivo 
tissue can be monitored. 
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