
UCLA
UCLA Previously Published Works

Title
Simultaneously estimating evolutionary history and repeated traits phylogenetic signal: 
applications to viral and host phenotypic evolution

Permalink
https://escholarship.org/uc/item/1vh103h9

Journal
Methods in Ecology and Evolution, 6(1)

ISSN
2041-210X

Authors
Vrancken, Bram
Lemey, Philippe
Rambaut, Andrew
et al.

Publication Date
2015

DOI
10.1111/2041-210x.12293
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1vh103h9
https://escholarship.org/uc/item/1vh103h9#author
https://escholarship.org
http://www.cdlib.org/


Simultaneously estimating evolutionary history and repeated 
traits phylogenetic signal: applications to viral and host 
phenotypic evolution

Bram Vrancken1, Philippe Lemey1, Andrew Rambaut2,3, Trevor Bedford4, Ben Longdon5, 
Huldrych F. Günthard6, and Marc A. Suchard7,8

1Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, 
Leuven, Belgium 2Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK 
3Fogarty International Center, National Institutes of Health, Bethesda, MD, USA 4Vaccine and 
Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 
5Department of Genetics, University of Cambridge, Cambridge, UK 6Division of Infectious 
Diseases and Hospital Epidemiology, University Hospital of Zürich, University of Zürich, Zürich, 
Switzerland 7Departments of Biomathematics and Human Genetics, David Geffen School of 
Medicine at UCLA, University of California, Los Angeles, CA 90095-1766, USA 8Department of 
Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA 
90095-1766, USA

Abstract

Phylogenetic signal quantifies the degree to which resemblance in continuously-valued traits 

reflects phylogenetic relatedness. Measures of phylogenetic signal are widely used in ecological 

and evolutionary research, and are recently gaining traction in viral evolutionary studies. Standard 

estimators of phylogenetic signal frequently condition on data summary statistics of the repeated 

trait observations and fixed phylogenetics trees, resulting in information loss and potential bias.

To incorporate the observation process and phylogenetic uncertainty in a model-based approach, 

we develop a novel Bayesian inference method to simultaneously estimate the evolutionary 

history and phylogenetic signal from molecular sequence data and repeated multivariate traits. Our 

approach builds upon a phylogenetic diffusion framework that model continuous trait evolution as 

a Brownian motion process and incorporates Pagel’s λ transformation parameter to estimate 

dependence among traits. We provide a computationally efficient inference implementation in the 

BEAST software package.

We evaluate the synthetic performance of the Bayesian estimator of phylogenetic signal against 

standard estimators, and demonstrate the use of our coherent framework to address several virus-

host evolutionary questions, including virulence heritability for HIV, antigenic evolution in 

influenza and HIV, and Drosophila sensitivity to sigma virus infection. Finally, we discuss model 

extensions that will make useful contributions to our flexible framework for simultaneously 

studying sequence and trait evolution.
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1 Introduction

A central premise of comparative biology is that evolutionary history shapes the distribution 

of phenotypic traits in extant species. The field has long realized that shared ancestry 

induces statistical dependence among observed trait values and that this correlation structure 

needs to be taken into account in comparative analyses (Felsenstein, 1985; Harvey & Purvis, 

1991). Recent advances in comparative analyses of continuously-valued trait data focus on 

the tempo and mode of trait evolution, e.g. testing for different evolutionary rates (O’Meara 

et al., 2006), identifying rate shifts (Revell et al., 2012) and on correlations among traits 

(Revell & Collar, 2009). However, the question also frequently arises to what extent shared 

ancestry needs to be controlled for (Freckleton et al., 2002). Different measures have been 

proposed to quantify and test the tendency for related species to share similar traits, which is 

generally referred as ‘phylogenetic signal’. This quantification is particularly relevant for 

traits that are heavily impacted by ecological as well as evolutionary processes (Losos, 

2008).

Measures of phylogenetic signal are often classified into indices based on phylogenetic 

autocorrelation or on Brownian diffusion models of trait evolution (Münkemüller et al., 

2012). Building on spatial autocorrelation functions, phylogenetic autocorrelation quantifies 

the degree of correlation across observations that the evolutionary history explains, but does 

not provide a generative model for how the traits arise along this history; popular examples 

include Moran’s I (Moran, 1950) and Abouheif’s Cmean (Abouheif, 1999). On the other 

hand, Blomberg’s K (Blomberg et al., 2003) and Pagel’s λ (Pagel, 1999) are commonly-used 

measures that advance a Brownian diffusion process along the history as a data generative 

model and serve to both quantify and test for phylogenetic correlation. Under both measures, 

a value of 0 reflects independence across observations, whereas a value of 1 suggests that 

traits arise according to the generative process. Recent performance evaluations of different 

indices based on simulations under Brownian diffusion indicate that Pagel’s λ and 

Abouheif’s Cmean perform well in testing procedures and that Pagel’s λ provides the most 

reliable quantification of phylogenetic signal (Münkemüller et al., 2012; Shirreff et al., 

2013).

Phylogenetic comparative methods are permeating evolutionary biology, but they have only 

sporadically been adopted in virus evolutionary studies due to a strong genotypic focus and 

a comparatively lower availability of phenotypic trait data. There is however a growing 

interest in studying a variety of viral phenotypic measurements ranging from traits that 

remain close to the genotype, like antigenic properties, to those that may be heavily 

impacted by the host environment, such as virulence or infections traits (Hartfield et al., 

2014). Because of its importance for vaccine selection, antigenic evolution has been 

extensively studied in human influenza viruses. Although performing assays to measure 

influenza antigenic properties may be relatively straightforward, they produce challenging 

data explaining perhaps why antigenic evolutionary studies have largely been divorced 
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from, or at best contrasted against (Smith et al., 2004), sequence evolution (but see Bedford 

et al. (2014) for recent efforts to integrate both).

The human immunodeficiency virus (HIV) also evades humoral immune responses within a 

host, but this has far less impact at the population or epidemiological scale as compared to 

the continuous turnover characteristic for antigenic drift in seasonal influenza. The question 

still remains to what extent the virus may adapt to humoral immunity at the population level. 

Current studies addressing this generally do not account for phylogenetic dependence among 

the viruses for which antigenic neutralization is measured (e.g. Bunnik et al. (2010); Euler et 

al. (2011)), and it is unclear how this affects the results. The interest in HIV adaptation at 

the population level also extends to cell-mediated immunity (Kawashima et al., 2009), drug 

therapy (Little et al., 2002), and viral fitness, all of which can impact virulence and disease 

severity. This leads to a more general question as to what extent the HIV genotype can 

control for the rate of progression to AIDS. Disease progression rates vary extensively 

among HIV patients, but they can be predicted by the level of viraemia in early infection, 

referred to as set-point viral load (spVL) (Mellors et al., 1996). To assess the heritability of 

spVL many studies have focused on HIV transmission pairs, which resulted in a broad range 

of heritability estimates (e.g. Tang et al. (2004); Hollingsworth et al. (2010); van der Kuyl et 

al. (2010)), although this may be narrowed down by interpreting the results using a 

consistent measure of heritability (Fraser et al., 2014). Phylogenetic signal estimators have 

recently been proposed as an alternative approach to study spVL heritability (Alizon et al., 

2010; Shirreff et al., 2013). This represents a rare application of the comparative approach to 

continuously-valued viral characters, but one that in essence also attempts to disentangle the 

impact of ecological – in this case the host environment – and evolutionary processes.

Virulence may therefore also be addressed from the host perspective, as closely related hosts 

may exhibit more similarity in their susceptibility to viral infection. This has been elegantly 

addressed for sigma viruses in fruit flies (Longdon et al., 2011). By experimentally testing 

the susceptibility of 51 host species to viral infection with three different host-specific 

viruses, this study showed that the host species phylogeny is a strong determinant of viral 

persistence and replication in novel Drosophila hosts. Such investigations represent 

interesting applications for phylogenetic signal estimators that can both test and quantify the 

degree to which the host phylogeny controls pathogen susceptibility.

The examples of viral phenotypic evolution discussed above are all based on traits that can 

be subject to considerable quantification error (inherent to the assays) or natural individual 

variation. To characterize the measurement error many studies produce repeated measures, 

but then generally condition on the trait means and variances for each strain or taxon in the 

subsequent analysis. This is akin to how intraspecific variation has been traditionally treated 

by maximum likelihood estimation procedures in phylogenetic comparative approaches 

across different species, which raises the problem of error propagation (but see Lynch 

(1991) and Housworth et al. (2004) for a notable exception). To address this, Revell & 

Graham Reynolds (2012) have proposed a Bayesian method to accommodate intraspecific 

variation through simultaneously inferring species means and trait evolutionary model 

parameters. While taking into account uncertainty, a joint Bayesian inference also allows for 

cross talk between the different model components (Revell & Graham Reynolds, 2012). 
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Importantly however, the problem of error propagation extends to all aspects of comparative 

phylogenetic estimation, adding further to its imprecision. For example, there is generally 

considerable uncertainty in the reconstructed tree, including both branch lengths and tree 

topology estimates, to which trait evolutionary processes are typically fitted. Although 

phylogenetic error can be empirically captured by considering a (posterior) distribution of 

trees (Barker et al., 2007; Longdon et al., 2011; de Villemereuil et al., 2012), all these 

separate efforts indicate that trait evolutionary analyses would benefit from a general and 

coherent statistical framework, one that solely conditions on the observed sequence and trait 

data, rather than on data summary statistics such as trait means and variances of repeated 

measures and collections of independently inferred phylogenies. This has recently become 

realistic by the development of an integrated Bayesian inference approach that connects 

sequence and trait evolutionary processes in a phylogeographic context (Lemey et al., 2009, 

2010). Here, we build upon these Bayesian phylogenetic diffusion models and extend them 

to simultaneously estimate evolutionary history and trait phylogenetic signal. This 

framework has several additional advantages, including the general applicability to traits of 

any dimension, the quantification of correlations among them, and the possibility for 

ancestral state reconstructions. Furthermore, it allows incorporating measurement 

uncertainty in a natural way by numerically integrating the unobserved average tip trait 

values based on repeated measures. We use simulations to compare estimator performance 

of our Bayesian implementation of Pagel’s λ (λB) to standard phylogenetic signal estimators, 

and demonstrate its use through several applications to viral traits. We revisit heritability 

estimation for HIV virulence, contrast phylogenetic signal for antigenic evolution in 

influenza H3N2 and HIV-1 subtype B, and finally return to virulence, but from the 

perspective of Drosophila hosts challenged by host-specific sigma virus infection. Taken 

together, we demonstrate how a coherent framework can advance trait evolutionary studies 

and discuss extensions that may further promote its role in comparative analyses.

2 Methods

We begin with a brief description of Brownian diffusion along a phylogenetic tree and the 

construction of Pagel’s λ as a measure of phylogenetic signal, parameterized within this 

diffusion process. Extensive derivations find themselves in Felsenstein (1985) and Pagel 

(1999).

2.1 Phylogenetic Brownian Process

Let Y = {yij} be the N × K matrix of K-dimensional trait values realized at the tips of a tree 

 for N taxa. The diffusion process posits that data Y arise from conditionally independent, 

multivariate normally-distributed displacements along each branch in . These 

displacements are centered around the hypothesized trait value at the parent node of the 

branch and have variance proportional to a K × K positive-definite, symmetric matrix Σ, 

where the proportionality constant is the branch length. The diagonal elements of Σ describe 

the (relative) rates at which the different trait dimensions evolve over the tree and the off-

diagonal elements reflect the covariation in trait dimensions after controlling for their shared 

history. Conditioning on the hypothesized ancestral trait values α at the root of , the joint 

distribution of vec[Y] falls out as
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(1)

where vec[·] is the vectorization operator that stacks the column vectors of its argument 

below one another, ⊗ is the Kronecker product and X is a NK × K design matrix in which 

entries in column k contain a 1 for trait k or a 0 otherwise, following Freckleton et al. 

(2002). More importantly,  = {vii′} is an N × N variance matrix that is a deterministic 

function of ; we return to its definition shortly as this relates to Pagel’s λ. Equation (1) 

relates that vec[Y] is multivariate normally-distributed with NK × NK variance matrix Σ ⊗ 

, fallaciously suggesting computational order (N3K3) to decompose the variance matrix 

and evaluate the density. We prefer to work directly with the joint density of Y,

(2)

that is a matrix-normal probability density function (Dawid, 1981), where tr[·] is the trace 

operator and 1 is a N-dimensional column vector of ones. Importantly, Equation (2) clarifies 

the smaller computational order (N3 + K3) required to evaluate the density without 

specialized knowledge of Kronecker product identities. Leading software to estimate Pagel’s 

λ for multivariate traits, such as the caper package (Orne et al., 2013) in R, rely implicitly on 

this representation to afford computational efficiency.

However, Pybus et al. (2012) show that is possible to evaluate Equation (2) in 

computational order (NK2) by modeling explicitly in terms of precision Σ−1 and, more 

importantly, exploiting an original dynamic programming algorithm. We adopt this 

approach here since repeated evaluation of Equation (2) is the rate-limiting step in both 

profiling the likelihood function in a maximum likelihood framework and numerical 

integration in a Bayesian framework. This critical insight enables us to scale comparative 

methods to trees with hundreds or thousands of tips, a situation regularly encountered in 

viral evolution.

In brief, the dynamic programming algorithm starts with the joint density of Y and the 

hypothesized trait values at each of the internal and root nodes in . From this joint density, 

we recover the marginalized density of Y by integrating out the internal and root node 

values. We achieve this high-dimensional integration through a post-order tree traversal over 

the (N) internal and root nodes. Each nodal visit entails a simple integration of the 

hypothesized value at the node to arrive at the partial density of the tip trait values 

descendent to the node given the unobserved value of the parent of the node or the prior 

distribution assumed on the root trait value. This recursive task has an analytic solution 

involving (K2) computational operations.

To complete specification of the Brownian diffusion process along  and introduce Pagel’s 

λ, we return to our definition of (λ) that we now explicitly parameterize in terms of λ. Let 

(u, v) equal the sum of branch lengths along the shortest path between node u and node v 
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in . Then diagonal elements vii = (ν2N−1, νi), the time-distance between the root node 

ν2N−1 and tip node i. To interpret these elements, the marginal distribution of Yi given α has 

variance proportional to the time since the root. For ultrametric trees, these diagonal entries 

are all equal; for rapidly evolving pathogens, non-contemporaneous sequences are common, 

leading to different times. Further, the off-diagonal elements

(3)

specifying the rescaled time-distance between the root node and the most recent common 

ancestor of tip nodes i and i′. Intuitively, the covariance between two tip traits is a function 

of their shared evolutionary history, and the traits become conditionally independent at their 

most recent common ancestor node in . Scalar λ exists on the continuum between 0 and 1 

(Pagel, 1999), with λ = 1 returning a variance matrix  that perfectly adheres to a 

Brownian process along  (Felsenstein, 1985). On the other hand, λ = 0 reflects the absence 

of any phylogenetic correlation. Intermediate values of λ indicate that the phylogeny exerts a 

weaker effect on the trait evolutionary process than expected from a Brownian motion 

model.

Although λ operates directly on  given the phylogeny , it is often convenient to view λ 

as a transformation of the phylogeny to fit the Brownian motion model to the trait data. 

Figure 1 shows these transformations for three different values of λ on an example 

phylogeny relating six taxa as well as their corresponding . The transformation involves 

rescaling the internal node heights, with all internal node heights equal to the root node as 

the most extreme case (λ = 0, starlike tree in Figure 1). Freckleton et al. (2002) demonstrate 

how to construct, in a maximum likelihood (ML) setting, an estimator λML of λ for 

hypothesis testing about the strength of phylogenetic signal in fully observed multivariate 

traits conditional on a known phylogeny.

2.2 Bayesian Estimator of Repeated Traits Phylogenetic Signal

We develop a coherent estimator λB set in a Bayesian framework for simultaneously 

estimating the phylogeny and trait signal with potentially missing or repeated measures. 

Assume that at each tip i in , we observe Ri trait realizations Xi = (Xi1, …, XiRi). To model 

these repeated measures, we build upon Guo et al. (2007) by asserting that tip traits Yi are 

unobserved and characterize a sampling distribution on Xi. Specifically, we posit that each 

observed value Xir is multivariate normally distributed about Yi with variance Γi = (Ri − 1) 

× Γ, where Γ is an estimable K × K variance matrix that quantifies the measurement error in 

the observation process across all taxa. Over all taxa and all trait observations X = (X1, …, 

XN), we write

(4)
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Conveniently, when no repeated measures exist for tip i, Ri = 1 and the density function in 

Equation (4) enforces Xi = Yi, returning the original model.

To simultaneously estimate the phylogeny  and account for its uncertainty, we further 

consider aligned molecular sequences S from the N taxa and model S using standard 

Bayesian phylogenetics models parameterized in terms of other phylogenetic and 

demographic process parameters ϕ. Conditional on , we assume independence between S 
and X, enabling us to write down the joint density p( , ϕ, S) and view it, for the purposes 

of this paper, as a prior on  after integrating out ϕ. We refer interested readers to, for 

example, Suchard et al. (2001) and Drummond et al. (2012) for detailed development of 

p( , ϕ, S).

Combining the Brownian diffusion process, repeated measures and phylogenetic uncertainty 

returns the joint posterior distribution

(5)

where p(λ), p(Σ), p(Γ) and p(α) are prior distributions, and the integration in the second line 

of Equation (5) reflects a data augmentation procedure with the unobserved tip traits Y and 

root node trait α. Lemey et al. (2010) and Pybus et al. (2012) develop priors p(Σ) and p(α) 

that enable convenient analytic and numerical integration of the augmented data, in the latter 

case via Markov chain Monte Carlo (MCMC). To construct p(Γ), we structure Γ−1 = 

diag(γ1, …, γK) as a diagonal matrix, where a priori we assume γj is gamma distributed with 

expectation 1 and a large variance 1000 for j = 1, …, K. We explore several choices for p(λ) 

in the Results section; these involve the family of beta distributions that constrain 0 ≤ λ ≤ 1 

for consistency with Freckleton et al. (2002).

We define our Bayesian estimator λB as the marginal posterior mean (λ | X, S) and report 

uncertainty in this estimate via the 95% highest posterior density (HPD) interval of p(λ | X, 

S). We estimate these quantities by extending MCMC methods implemented in the Bayesian 

Evolutionary Analysis by Sampling Trees (BEAST) software package. Specifically, we use 

a random-scan Metropolis-with-Gibbs approach that employs standard transition kernels to 

integrate over the parameter spaces of  and ϕ. To sample realizations of Σ and Γ, we 

consider Gibbs samplers, and we develop random-walk Metropolis-Hastings transition 

kernels on λ and missing entries in X; this latter procedure assumes a missing completely at 

random structure (Heitjan & Basu, 1996), such that the probability that any particular datum 

is missing is independent of both the observed trait values and other model parameters. 

Integrating out the missing entries enables us to continue to draw inference in the presence 

of partially observed tip trait values, without needing to trim out trait dimensions that are not 

completely observed across all taxa or taxa that are missing traits. Finally, to compare 

different restricted models, e.g. λ = 0 (no phylogenetic signal) versus λ is random and 

estimates phylogenetic signal, we use Bayes factors derived from stepping-stone estimation 

of the marginal likelihood for each competing model (Baele et al., 2012). We accompany 
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our BEAST implementation with graphical-user interface support in BEAUti for setting up 

phylogenetic signal analyses with multivariate traits.

2.3 Benchmark

We extend a previous simulation study that was modeled after the heritability of set point 

viral load (spVL) in HIV infection history (Alizon et al., 2010). Briefly, this procedure 

involves simulating a birth-death infection process in which each branching event represents 

a new infection event. Starting from an initial value drawn from an empirical distribution of 

traits (spVL), traits diverge at transmission events. At each branching event, one daughter 

branch inherits the trait on the parental branch, yP, whereas the trait on the other daughter 

branch evolves into yD, following

(6)

where h2 represents the heritability of the trait and M is a random variable drawn from an 

empirical log(spVL) trait distribution (taken from one of data sets we analyze in this study). 

Following the original procedure (Alizon et al., 2010), this process is simulated over 13 

generations with a death probability of 1/3 of the transmission probability; each time, a 

subtree of 128 taxa with associated tip trait values is drawn randomly from the process 

reflecting incomplete sampling. Whereas the original simulation evolved 20 replicates for 

four different heritability values (h2 = 0.3, 0.5, 0.7 & 0.9), we also include the same amount 

of replicates for h2 = 0.1 to ensure symmetric simulation scenarios and because existing 

methods have difficulties detecting low degrees of heritability (Shirreff et al., 2013).

We also perform simulations according to a more recent procedure proposed by Shirreff et 

al. (2013). Here, traits are simulated along an empirical phylogeny starting from the mean 

log(spVL) at the root. Each node (and not just a single daughter branch) inherits a log(spVL) 

according to the following process with stationary variance:

(7)

where M is now drawn from a normal distribution with the mean and variance of the 

population log(spVL). We iterate through a wider range of heritability values (from 0.05 to 

0.95 with a step size 0.05), and simulate 100 replicates for each heritability level. We use 

both sets of simulations to compare our Bayesian estimate of λ to a maximum likelihood 

estimate of lambda (λML, for which various implementation exist, e.g. Revell (2012); 

Harmon et al. (2008); Orme et al. (2013); Paradis et al. (2004); Lavin et al. (2008); Pinheiro 

et al. (2013)) and Blomberg’s K, both obtained by the phytools R package (Revell, 2012). In 

order to estimate confidence intervals for λML we extend the phytools estimation procedure 

to obtain the λ values for 1.92 log likelihood units on either side of the maximum likelihood 

estimate and construct confidence intervals.
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2.4 Viral Examples

We analyze four different data sets that examine the phenotypic evolution in infectious 

diseases; these phenotypic traits include both virus-specific characteristics and host 

susceptibility to viral infection. We first focus on the Swiss HIV cohort study (SHCS) data 

set (Swiss HIV Cohort Study et al., 2010), previously used to investigate the heritability of 

spVL (Alizon et al., 2010). This study selected HIV-1 subtype B infected participants who 

had a genotypic drug resistance test and at least three HIV RNA measurements, but 

remained treatment-naive at entry. In addition to spVL from cohort participants, the study 

also measured the declining slope of CD4+ T-cell (dsCD4) counts; this quantity also 

predicts virulence to some extent (Mellors et al., 2007). As a ‘control trait’ in our analyses 

we followed Alizon et al. (2010) and considered the estimated probability that a treatment-

naive virus is resistant to zidovudine (prAZT) from the pol sequence using the geno2pheno 

system (Beerenwinkel et al., 2003). We examine spVL, dsCD4 and prAZT both 

independently and jointly as a multivariate trait.

The sequence data for the SHCS consist of population sequences of the HIV-1 polymerase 

(pol) gene for each patient and we used alignments in which amino acid positions that are 

strongly associated with antiretroviral drug resistance were removed. Having access to 

multiple viral load measures per patient after acute infection, but prior to start of 

antiretroviral therapy, the first CDC C event, or the time when the CD4 count first drops 

below 200 cells, Alizon et al. (2010) considered two different spVL criteria to distinguish 

different patients subsets. The ‘strict’ criterion only considers cases where all the viral load 

measurement fluctuate within a 1-log band around the patient-specific mean, whereas the 

‘liberal’ definition applies to all cases where at least three consecutive viral loads 

measurements are available that fluctuate within a 1-log band of their mean. We also follow 

Alizon et al. (2010) in studying the transmission group of men who have sex with men 

(MSM) separately from other transmission groups that are heterosexuals and injection drug 

users. Because the densely-sampled MSM sequences tend to cluster in phylogenetic trees 

(Kouyos et al., 2010), it is suggested that they may yield more accurate phylogenies. 

Furthermore, focusing on the MSM transmission group may remove some confounding 

factors, such as patient gender, transmission group or age, on infection trait values (Alizon et 

al., 2010). The distinction between a strict and liberal spVL definition and between MSM 

and the general population results in four data sets listed in Table 2. For the SHCS analysis, 

our full probabilistic model included a general-time reversible substitution model with 

discretized-gamma-distributed rate variation among-sites, an uncorrelated lognormal relaxed 

molecular clock model and a flexible Gaussian Markov random field model of population 

size change through time as a tree prior (Minin et al., 2008). For the isolates with unknown 

sampling times, we integrate out their dates by assuming a uniform prior distribution over a 

plausible time interval (Shapiro et al., 2011). Because the SHCS provides a large number of 

taxa (n = 661 for all risk groups and a liberal viral load criterion), we perform the different 

trait analyses on the full data set using an empirical tree distribution inferred separately from 

the nucleotide data (cfr. Lemey et al. (2014)). Finally, we estimate marginal likelihoods on a 

fixed tree topology for the different SHCS data sets because marginal likelihood estimation, 

for example via stepping stone sampling, requires a series of MCMC simulations for 
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different power posteriors; this is generally much more computationally demanding than a 

standard MCMC exploration of the posterior (Baele et al., 2012).

Our second data set explores antigenic evolution in human influenza H3N2 and consists of 

1441 hemagglutinin (HA) sequences with known date of sampling and with associated 

antigenic measurements previously obtained by Russell et al. (2008). These sequences were 

sampled globally from 2002 to 2007 and represent a subset of strains from a larger antigenic 

sampling (13,000 isolates) for which HA sequence was available (Russell et al., 2008). 

Antigenicity was measured using hemagglunination inhibition (HI) assays and mapped into 

a two-dimensional space using multidimensional scaling (MDS) (Smith et al., 2004). Here, 

we consider the first two principal antigenic coordinates resulting from a previous MDS fit 

(Russell et al., 2008) as traits in our phylogenetic diffusion model. Given the size of the data 

set, we approximate phylogenetic uncertainty by integrating over a set of trees previously 

reconstructed as part of a phylogeographic study (Lemey et al., 2014).

For the third data set, we return to HIV and study antigenic evolution in the context of 

enhanced resistance to the broadly neutralizing antibodies (nAb) PG9, PG16 and VRC01 

over the course of the HIV-1 epidemic (Euler et al., 2011). The sequence data set 

encompasses clonally sequenced viral variants from contemporary and historic 

seroconverters (seroconversion between 2003 and 2006 and between 1985 and 1989, 

respectively). To focus on the population-level evolution of neutralization resistance and 

avoid the impact of within-host evolutionary dynamics, we randomly choose one sequence 

per patient for our analyses and examine the 50% inhibitory concentration (IC50) assay 

values for the three different antibodies. This assay measures percent neutralization by 

determining the reduction in p24 production in the presence of neutralizing agent compared 

to the levels of p24 in the cultures with virus only; a detailed description can be found in 

(Euler et al., 2011). To constrain the trait values (concentrations) to be strictly positive 

values under the diffusion process, we model the log-transform of the IC50 values observed 

at the tips of the tree. When the observed log IC50 value falls outside the tested antibody 

concentration range, we integrate out the concentration over a plausible IC50 interval. For 

those IC50s lower then the lowest antibody concentration we set up a uniform prior ranging 

from the lowest tested ln(nAb) concentration to the 32x diluted lowest tested concentration. 

The values at the opposite end of the spectrum, where 50% neutralization is not reached at 

the highest nAb concentration, are integrated out over an appropriately scaled exponential 

distribution. Other evolutionary models and tree priors follow the same specifications as for 

the SHCS analyses.

Finally, we return to infection traits and study the heritability of host susceptibility to viral 

infection. To this purpose, we focus on a data set that has been used to investigate the ability 

of three host-specific Drosophila sigma viruses to persist and replicate in 51 different 

species of Drosophilidae (Longdon et al., 2011). In this experimental study, fly species are 

injected with host-specific sigma virus from D. affinis (DAffSV), D. melanogaster 

(DMelSV) and D. obscura (DObsSV), and a change in viral titre is measured between day 0 

and day 15 post-infection using quantitative reverse-transcription PCR. The copy-number of 

viral genomic RNA is expressed relative to the endogenous control housekeeping gene 

RpL32 (Rp49) based on species-specific primers for this gene. The authors aim at 
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performing three replicate measures for each virus per fly species (3 replicates each of the 

day 0 and day 15 treatments). We incorporate these repeated measures in our analyses. We 

refer to Longdon et al. (2011) for further details on the experimental procedure. We use the 

sequence data for the COI, COII, 28S rDNA, Adh, SOD, Amyrel and RpL32 genes to 

jointly reconstruct the Drosophila host phylogeny with the diffusion process and follow the 

evolutionary model and analysis settings from Longdon et al. (2011).

3 Results

3.1 Performance

We conduct a simulation study to compare the relative performance of the λB estimator to 

two standard indices of phylogenetic signal. We extend the simulation study by Alizon et al. 

(2010) aimed at evaluating the performance of Blomberg’s K (Blomberg et al., 2003) and 

Pagel’s λ (Pagel, 1999) in capturing the heritability of viral trait evolution. Briefly, the 

original simulation procedure considers a birth-death infection process with incomplete 

sampling and evolves a trait along the resulting transmission tree using different degrees of 

heritability (0.3, 0.5, 0.7 and 0.9). Here, we extend the study to a heritability value of 0.1 to 

explore a symmetric range of heritability values around 0.5. A comparison of the 

phylogenetic signal estimates for replicate data generated under different heritability values 

(Figure 2) suggests that λB captures the underlying heritability with less bias and lower 

variance compared to Blomberg’s K and λML. This is confirmed by the quantitative bias and 

mean squared error (MSE), which quantifies the amount by which the estimator differs from 

the true value, estimates as tabulated across all heritability scenarios (Table 5). Because of 

the somewhat distinct behavior for small and large heritability values (Figure 2), we also 

summarize the bias for heritability values smaller and larger than 0.5 (Table 5). This 

confirms the finding that existing methods have difficulties in estimating relatively low 

heritability values (h2 < 0.4, Shirreff et al. (2013)); Blomberg’s K and λML result in over- 

and under-estimation respectively (Table 5). λB follows the sigmoidal pattern for λML to a 

lesser extent and is characterized by smaller biases for both small and large heritability 

values.

We also report estimator coverage for λB and λML; coverage reflects the probability that the 

true value from which the data derive falls within the model estimated nominal confidence 

interval. The uncertainty for the λB estimator is quantified by a 95% Bayesian high posterior 

density (HPD) interval, the size of which - unlike a frequentist confidence interval - does not 

necessarily have to correspond to the nominal coverage. To obtain a 95% confidence 

interval (CI) for λML, we construct a likelihood-ratio test and find its points of rejection 

using a numerical optimizer in R. The need to independently implement a confidence 

interval constructor reflects the fact that λML is frequently reported as a point-estimate 

without quantifying its uncertainty. We note that Blomberg’s K phylogenetic signal statistic 

is computed as a ratio of two MSE ratios, comparing observed against expected ratios under 

Brownian motion, and is therefore less amenable to constructing confidence intervals 

(Blomberg et al., 2003).

We continue to explore the effect of prior specification on λB estimates and compare the β(1, 

1) prior to a U-shaped prior (β(0.5, 0.5)) and several bell-shaped priors. Figure 3 shows that 
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bias and MSE can be further minimized while raising coverage close to nominal values for a 

β(2, 2) prior. This prior may help to linearize the general sigmoidal relationship between λ 

and the known heritability spectrum as well as reduce the generally large variance of λ 

estimates for intermediate heritability values. We therefore adhere to this prior specification 

in further data analyses, but accompany the λ estimates with a posterior divergence measure 

to quantify the potential prior influence. Specifically, we computed the Kullback-Leibler 

(KL) divergence between the prior and posterior using the FNN package in R (Boltz et al., 

2007; Li, 2012).

We find largely similar performance differences among the three estimators, and for the 

different beta priors on λB, in a simulation analysis following a procedure similar to that of 

Shirreff et al. (2013) (Supporting Information).

3.2 HIV-1 infection traits

We estimate phylogenetic signal for spVL and dsCD4, either as separate traits or in 

combination as a bivariate trait, in the different SHCS data sets and include prAZT as a 

control (Table 2). Because the latter is measured directly from the genotype, it is expected to 

be strongly heritable. We confirm this by estimates of λB that are consistently close to 

maximum phylogenetic signal for the different SHCS data sets (Table 2). We also compare 

model fit of the standard diffusion model with estimable λB to a model that represents no 

phylogenetic signal (λB = 0) and a model with perfect Brownian phylogenetic signal (λB = 

1) using Bayes factors in Table 3. This demonstrates that the support for a non-zero 

phylogenetic signal for prAZT increases as the data set size increases while, in line with the 

very high λB estimates for prAZT, the support for a perfect Brownian phylogenetic signal 

increases. For all prAZT λB estimates, there is also a relatively high KL divergence between 

the prior and posterior distribution, suggesting that the phylogenetic signal estimates are 

well-informed by the trait data.

In accordance with Alizon et al. (2010), we find a relatively high phylogenetic signal for 

spVL (posterior mean = 0.501, 95% HPD [0.165–0.857]), but only in the MSM subset with 

the strict spVL criterion (Table 2). In contrast to the prAZT, the spVL phylogenetic signal 

decreases as the data set increases in size and also the support for a non-zero signal is low, 

and there is even support in favor of the absence of spVL phylogenetic signal in the MSM 

liberal data set. The KL divergence indicates that the posterior divergence from the prior is 

limited, implying that the data does not contribute strongly to the phylogenetic signal 

estimate in the MSM strict data set. The fact that the posterior stays close to prior 

distribution for λB is also illustrated in Supplementary Figure 1 under both a β(2, 2) and β(1, 

1) prior. Phylogenetic signal estimates for dsCD4 are generally lower, with a similar 

decrease for larger data sets (and increase in KL), and no data set supports a non-zero signal. 

The same is true for spVL and dsCD4 as a bivariate trait; in this case the two dimensions 

show a negative correlation (correlation coefficient posterior mean = −0.22, Table 2).

Phylogenetic signal in the MSM strict data set does not find strong support using BFs or KL 

information gain. This may be due to the typical star-like nature of HIV-1 subtype 

phylogenies that is very similar to the null model for phylogenetic signal estimation. The λB 

estimate may therefore be mostly informed by clusters of closely related viruses from 
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epidemiologically-linked patients. The maximum clade credibility (MCC) tree with 

ancestral spVL trait estimates for the MSM strict data set in Fig. 4 illustrates this point. In 

the tree, we indicate a number of clusters with closely related viruses and similar spVL 

values. Because these clusters have relative recent MRCAs, constituting the density at small 

node heights in the bimodal node height density plot (Fig. 4), they may offer the strongest 

resistance against transforming the phylogeny into a fully star-like tree. In fact, it has been 

suggested that restricting the dataset to MSM patients, which are more densely sampled in 

the SHCS, yields more accurate phylogenies because of better resolution of transmission 

chains between patients, and that this may explain a higher spVL heritability in the MSM 

strict data set (Alizon et al., 2010). We therefore examine whether a differential proportion 

of such transmission clusters in the different SHCS data sets may be responsible for the 

differences in λB estimates, by splitting up the data set into one that contains only taxa that 

share relatively recent nodes with other taxa (< 15 years) and one that exclusively has taxa 

related by deeper branching patterns (internal node > 15 years), and performing separate 

analyses on each.

Estimates for the prAZT control trait indicate that taxa sharing more recent common 

ancestry are indeed most informative about phylogenetic signal. Both the λB estimates and 

the associated KL divergences are high for taxa that descend from relatively recent nodes (< 

15 years in Table 4), whereas the λB estimates are much closer to their prior expectation of 

0.5 for the remaining taxa yielding considerably lower KL divergences. For spVL, however, 

the KL divergences remain low for the small data sets composed of taxa descending from 

more recent nodes, and focusing also on transmission clusters in the other data sets does not 

lead to noticeably higher phylogenetic signal estimates; this suggests that a higher 

phylogenetic accuracy for transmission clusters does not explain the higher phylogenetic 

signal.

3.3 Human influenza H3N2 antigenic evolution

We study antigenic drift in human influenza H3N2 based on a large sequence data set 

sampled between 2002 and 2007 with matching HI assay data (Russell et al., 2008). HI 

assays measure the cross-reactivity of viruses against reference antisera and the resulting 

table with measurements across a multitude of viruses is frequently mapped in two-

dimensional space based on MDS approaches (Smith et al., 2004). Here, we treat the two 

principal coordinates of a previous MDS analysis on the HI data as traits evolving along the 

influenza genealogy and estimate their phylogenetic signal (Table 5). We find relatively 

high signal for the first coordinate, but approximately half of that signal for the second 

coordinate. These differences are also reflected in the reconstructed trait patterns along the 

evolutionary history (Figure 5). Despite the much lower phylogenetic signal for the second 

coordinate, it still receives support for a non-zero estimate (Table 5). The large amount of 

influenza data included in the analysis may contribute to the more precise λB estimates 

compared to the smaller SHCS HIV data sets, and probably to a large extent also to the 

different order of magnitude in BF support. Both the magnitude of the phylogenetic signal 

for the two coordinates as a bivariate trait and its support appears to be dominated by the 

signal for the first coordinate. As expected from coordinates resulting from an MDS 
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analysis, we find also little correlation between them when accounting for the ancestral 

history (r = −0.098 [−0.158,−0.051]).

3.4 HIV-1 resistance to broadly neutralizing antibodies

By comparing viruses isolated from individuals who seroconverted in recent years to viruses 

from individuals who seroconverted early in the epidemic Bunnik et al. (2010) showed a 

decreased sensitivity of HIV-1 to polyclonal and monoclonal antibodies. Euler et al. (2011) 

extend this by examining whether the circulating HIV-1 population has also evolved 

towards resistance against neutralizing activity of the recently identified broadly neutralizing 

monoclonal antibodies (MAbs) PG9, PG16, and VRC01 (Walker et al., 2009; Zhou et al., 

2010). Here, we adopt a phylogenetic perspective on such studies which traditionally ignore 

shared ancestry and ask whether these viral evolutionary patterns translate into a noticeable 

pylogenetic signal for resistance to neutralization. Table 6 lists the λB estimates for the IC50 

measurements, both as univariate and combined multivariate traits. The mean posterior 

phylogenetic signals suggest intermediate heritability of resistance to neutralization for the 

three MAbs, but the broad credible intervals and low KL divergences indicate that these 

estimates are poorly informed by the data. For the PG9 IC50 in particular, a non-zero 

estimate cannot be supported. The lower mean trivariate trait signal is accompanied by a 

somewhat higher KL and an even stronger support against a non-zero estimate. As expected 

from the fact that PG9 and PG16 both mainly bind to a quaternary epitope on the second 

variable loop in the viral envelope trimer (Walker et al., 2009), their log(IC50) values are 

highly correlated (0.95 [0.831,0.963]). VRC01 on the other hand is directed against the CD4 

binding site (Zhou et al., 2010), and its IC50 values are only moderately correlated with 

those for PG9 (0.362 [0.015,0.649]) and PG16 (0.462 [0.146,0.730]). We illustrate the 

evolutionary pattern for resistance against PG16 and VRC01 in Fig. 6, and also summarize 

the mean log(IC50) across all lineages at different points through time below the trees. The 

latter indicates an overall rise in resistance through time, in particular within the first 5 years 

since the early samples in the mid to late 1980s. The early time points generally have lower 

resistance, and although they may indeed have led to less descendants, it is also cautious to 

bear in mind potential sampling artifacts.

3.5 Drosophila susceptibility to sigma virus infection

In our final example, we investigate the ability of three host-specific sigma viruses (family 

Rhabdoviridae) to persist and replicate in different species of Drosophilidae. This has been 

previously studied by infecting 51 Drosophila species with three host-specific viruses and 

measuring virus titers at fixed time points (Longdon et al., 2011). The authors use a 

phylogenetic mixed model to demonstrate that host relatedness strongly determines the viral 

persistence and replication in new hosts. Here we revisit this problem by diffusing the 

virulence measure, log2 viral load (log2(VL)), over the host phylogeny and measuring its 

phylogenetic signal while accommodating the multiple measurements through numerical 

integration of the unobserved average trait values at the tips. Wing size (a proxy for body 

size) is included as a control as it is expected to be a heritable trait for Drosophila species.

Our analysis indicates that the capacity to infect and replicate in different hosts for three 

different host-specific sigma viruses (DAffSV, DMelSV and DObsSV)) shows relatively 
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high phylogenetic signal, matching that of wing size in the Drosophila species (Table 7). 

These estimates are associated with relatively high KL divergences and strong support in 

favor of a non-zero estimate, but also strong support against a perfect Brownian trait 

evolutionary process. When combined into a trivariate trait, the virulence evolutionary 

patterns showed similar, moderate to high positive correlations (0.760 [0.545–0.936], 

0.675[0.408,0.954] and 0.661[0.436,0.856] between DAffSV and DMelSV, between 

DAffSV and DObsSV, and between DMelSV and DObsSV respectively). In Figure 7, we 

illustrate the trait evolutionary patterns for susceptibility to infection with two viruses from 

relatively closely related hosts.

4 Discussion

We present a Bayesian implementation of Pagel’s λ (λB) to quantify phylogenetic signal of 

multivariate traits. The estimator accommodates the different sources of uncertainty 

associated with both the sequence and (repeated) trait evolutionary processes and 

outperforms other estimators, including its maximum likelihood equivalent λML, in terms of 

accuracy and precision on simulation data under different degrees of heritability. Further 

exploration of prior specification on λB suggests that a bell-shaped prior (β(2, 2)), preferring 

intermediate phylogenetic signal a priori, further improves estimator performance. This 

prior may help to linearize the sigmoidal relationship between λ and the known heritability 

spectrum as well as reduce the generally large variance of λ estimates for intermediate 

heritability values. These characteristics are not specific to the relationship between 

simulated heritability and phylogenetic signal as they have been observed in other 

simulation studies as well (Münkemüller et al., 2012). Instead of prior specification, it may 

therefore be useful to examine transformations like to logit function for this type of 

phylogenetic signal estimators. We did not perform an exhaustive evaluation of different 

phylogenetic simulators, but more comprehensive simulation studies have shown that λML 

and Abouheif’s Cmean fulfilled most of the criteria for a good performance (Münkemüller et 

al., 2012). This, and the fact that λML was also the most robust and sensitive among 

different methods to estimate spVL heritability (Shirreff et al., 2013), reassures that the λB 

estimator will generally perform well.

We here focus on different traits related to viral virulence, infectivity and phenotypic 

evolution. Only recently, phylogenetic signal estimators have been proposed to examine the 

heritability of viral traits throughout transmission history (e.g. Alizon et al. (2010)). 

Although we can reproduce a heritability of about 50% for HIV-1 spVL, a predictor of 

disease progression, in the MSM strict data set from Alizon et al. (2010), we acknowledge 

that this estimate is not strongly informed by the data. As for the example of HIV-1 

resistance to antibody neutralization, the fact that HIV trees represent exponentially growing 

populations resulting in star-like tree topologies (Lemey et al., 2006), may offer little 

opportunity to quantify phylogenetic trait association with great precision. However, when 

focusing on the subset of taxa in clusters with relatively recent common ancestors, we 

retrieve similar, uncertain estimates for spVL phylogenetic signal in the MSM strict data set, 

but still lower signal in the other data sets. While in general, phylogenetic signal estimates 

are likely to benefit from higher phylogenetic accuracy, the potentially higher phylogenetic 

accuracy gained by focusing on transmission clusters in the SHCS does not appear to 
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explain the higher spVL phylogenetic signal for the MSM strict data set. Other dataset-

specific characteristics may therefore be more important. Adhering to a more strict 

definition for spVL may reduce measurement error and focusing on the MSM risk group 

may remove the effect of patient sex and to a large extent also age as confounding factors 

(Alizon et al., 2010). It is for example well-established that spVL is affected by patient sex, 

with males tending to have a higher spVL (Alizon et al., 2010) (reviewed in Langford et al. 

(2007)). Ignoring this variability as well as spVL measurement error may of course result in 

lower estimates of phylogenetic signal. In agreement with the low phylogenetic signal for 

the larger data sets, Hodcroft et al. (2014) recently found small but significant spVL 

heritability in a large UK dataset by making use of a phylogenetic mixed modeling, which 

can also be extended to accommodate intra-specific variation (Lynch, 1991; Housworth et 

al., 2004). The heritability of spVL therefore requires further investigation, in particular 

because it has important implications for understanding HIV dynamics (Hool et al., 2013).

Despite the different assays involved, it is clear that the antigenic evolutionary patterns are 

associated with different phylogenetic signal in human influenza and HIV-1. Although also 

governed by a limited number of genetic changes (Koel et al., 2013), escaping the antibody 

response has a strong effect on the influenza population dynamics as reflected by the ladder-

like trees for sequences sampled throughout different epidemic seasons. This pattern reflects 

a continual turnover and a relatively low standing genetic variation at any point in time (akin 

to the within-host HIV-1 phylodynamics, Lemey et al. (2006))(Grenfell et al., 2004). It is 

therefore not surprising that this tree structure translates into a strong phylogenetic signal 

and that major MDS coordinate show a clear drift pattern across the tree (Figure 5). On the 

other hand, the phylogenetic structure of HIV at the population level, with multiple co-

circulating lineages within a particle subtype, does not reflect the action of (humoral) 

immune selection (Grenfell et al., 2004). It is therefore remarkable to find population 

evolution towards increased resistance (Euler et al., 2011; Bunnik et al., 2010; Bouvin-Pley 

et al., 2013). Despite the uncertain phylogenetic signal estimates, the apparently non-random 

clustering of early and late time point viruses in the example we examined points at the 

importance of using a phylogenetic approach to address such questions and advocates for 

caution against potential sampling artifacts.

According to the support against λB = 1 (Table 5), the influenza antigenic evolutionary 

patterns do not adhere to a perfect Brownian motion process. On the one hand, measurement 

error may be partly responsible for this because the MDS coordinates are based on sparse HI 

tables with interval and truncated measurements susceptible to experimental noise. On the 

other hand, a Brownian trait evolutionary model is unlikely to be appropriate for antigenic 

drift processes because it assumes zero mean displacement. Therefore, it would be useful to 

relax this assumption and allow for an unknown estimable drift vector for the mean 

displacement in the multivariate diffusion model. Such a model extension may also prove 

useful for the example of HIV-1 resistance against neutralization if there would indeed be a 

need to model a population evolution process towards increased resistance.

To quantify phylogenetic signal in influenza antigenic evolution, we here focus on the MDS 

coordinates that were readily available for the data set under investigation (Russell et al., 

2008). We note however that the process of mapping antigenic phenotypes, referred to as 
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‘antigenic cartography’ (Smith et al., 2004), can be integrated with the genetic information 

by modeling the diffusion of antigenic phenotype over a shared virus phylogeny using the 

diffusion framework we also adopt here (Bedford et al., 2014). It would therefore be 

straightforward to use the tree transformation approach, resulting in the phylogenetic signal 

estimates, in this integrated genetic-antigenic framework. Perhaps the phylogenetic signal 

estimators may assist in selecting the number of dimensions in the Bayesian MDS approach. 

We have recently shown that a 2D model yielded optimal predictive power for a different 

H3N2 data set (Bedford et al., 2014), which seems to be in agreement with the phylogenetic 

signal estimates we obtain here. The second dimension still results in reasonable 

phylogenetic signal, but with drastically reduced support compared to the first dimension. It 

is therefore questionable that a third dimension would still be characterized by tree-based 

evolutionary patterns.

Our approach is not restricted to viral traits as shown by the sigma virus virulence study, 

where we in fact measure phylogenetic signal for a host trait (host susceptibility to viral 

infection). The phylogenetic signal estimates confirm that host phylogeny explains most of 

the variation in sigma virus replication and persistence in different Drosophila species, in a 

quantitatively similar way as the host phylogeny controls for the variation in wing sizes. 

Both measurement error and limitations to the model may again be responsible for 

deviations from a pure Brownian process, although we attempted to take into account the 

former by integrating out a mean tip trait value based on the repeated measurements. 

Longdon et al. (2011) showed that in addition to a ‘phylogenetic effect’, which explains 

similar levels of susceptibility for related species, there is also a ‘distance effect’ ensuring 

that viral titer is higher in species that are more closely related to the natural host. This 

systematic change in viral titer as a function of the distance from the natural host implies 

that drift, perhaps due to viral adaptation to its natural host, can also play a role in this trait 

evolutionary history. The correlation among the virulence patterns in the host phylogeny for 

the three different sigma viruses suggests that, despite a relatively high divergence, they may 

share similar modes of infection and replication in the same host tissues. As a consequence, 

genetic changes in different host lineages that impact cellular or immune components 

involved in replication and persistence may impact susceptibility to the three different 

viruses.

The Bayesian phylogenetic signal estimator has a number of advantages over other 

approaches. Whereas many implementations of alternative estimators are restricted to single 

traits, our extension of general-purpose phylogenetic diffusion models can be used to 

determine the phylogenetic association of multivariate traits of any dimension. As noted by 

Freckleton et al. (2002), simultaneously estimating the precision matrix and λ allows 

quantifying the correlation between pairs of traits that is optimal under a common random 

effects Brownian process. In addition, our framework is also equipped with ancestral trait 

reconstruction, which is also naturally achieved under the appropriate degree for statistical 

dependence. The phylogenetic signal estimator can also be connected to model extensions 

that relax the Brownian motion assumptions. We have previously presented a relaxed 

random walk model that accommodates diffusion rate heterogeneity by rescaling the 

precision matrix in a branch-specific manner (Lemey et al., 2010). Future studies will 
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therefore be able to examine how phylogenetic signal estimates are affected by violations of 

the constant variance assumption in Brownian processes. Most of the examples we study 

also demonstrate that the there is a need to relax the zero-mean displacement assumption 

and incorporate some degree of drift. The Ornstein-Uhlenbeck (OU) process has been 

proposed as a ‘mean reverting’ extension of Brownian motion (Hansen, 1997; Butler & 

King, 2004; Blomberg et al., 2003), but perhaps more natural generalizations may be 

developed through stochastic modeling in our Bayesian framework. While it is important to 

model trait evolutionary processes more realistically, it may also be useful to accommodate 

heterogeneity in phylogenetic signal throughout evolutionary history because different 

lineages in a phylogeny may exhibit different degrees of phylogenetic signal (Münkemüller 

et al., 2012).

Bayesian inference is a natural framework to accommodate different sources uncertainty. In 

addition to phylogenetic error and uncertainty in the sequence and trait evolutionary process, 

we also take into account measurement error for our phylogenetic signal estimates when 

multiple measurements are available for the tip traits. One drawback of adequately 

accommodating uncertainty through simultaneous estimation is the computation time that 

may need to be invested, in particular when attempting to average over all plausible 

evolutionary histories. While we show here that this is still feasible for data sets including 

more than 600 taxa, we abandoned random trees when comparing model fit using marginal 

likelihood estimation. We use a stepping stone sampling approach for marginal likelihood 

estimation, which has proven to provide a relatively accurate measure of model fit, but at the 

price of considerable computational burden (Baele et al., 2012). Therefore, future studies 

may need to pursue more efficient testing procedures, for example by allowing λ to shrink to 

zero with some prior probability in our inference and estimating Bayes factors through 

comparison of prior and posterior odds (see, e.g., Suchard et al. (2005)).

In summary, many questions in evolutionary biology need to be addressed using a 

comparative phylogenetic approach. Although we have focused on phylogenetic signal in 

this study, we hope to have demonstrated that Bayesian phylogenetic diffusion models offer 

a flexible framework for evolutionary hypothesis testing. We also hope that future advances 

will open up more opportunities for unraveling trait evolutionary processes and their 

underlying genetic determinants, for viral pathogens as well as other organisms in general.
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Figure 1. Phylogenies and corresponding variance-covariance matrices for three different λ 
values
The tree on the left (λ = 1, no transformation) provides an example of a phylogeny estimated 

or hypothesized for six taxa. The numbers above the branches represents the time elapsed on 

the branches. The corresponding variance-covariance matrix is shown beneath the tree. 

Under a Brownian motion model of trait evolution, the expected covariances (off diagonals) 

between each pair of taxa are proportional to shared ancestry for the taxa. The expected 

variances (diagonal elements) for the tip traits are proportional to the summed branch 

lengths between the root and each tip. We multiply the off diagonal elements by two 

different λ values (λ = 0.5 and 0 respectively) in the matrices to the right and show the 

corresponding tree transformation. The tree for λ = 0 collapses into a starlike tree and 

therefore represents phylogenetic independence.
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Figure 2. Estimator performance of Blomberg’sK, Pagel’s λML and λB on simulated data
Twenty phylogenies are simulated to model the evolution of an infection trait with known 

heritability (h2 = 0.1, 0.3, 0.5, 0.7 & 0.9). Phylogenetic signal is then estimated on each tree 

using only 128 leaves to account for incomplete sampling. The box plots shows the median 

values, the three quartiles and the outliers for Blomberg’s K (blue), Pagel’s λB (red) and λB 

(grey).
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Figure 3. Performance of the Bayesian phylogenetic signal estimation under various priors on λB
Different β(α,β) priors are explored for α = β. We plot bias (filled black circles) and MSE 

(crosses) according to the primary axis and coverage (open squares) according to the 

secondary axis. The dotted horizontal line represents zero bias and MSE.
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Figure 4. Maximum clade credibility tree for the MSM strict analysis
We color the nodes in the tree according to the observed (external nodes) or estimated 

(internal nodes) log spVL trait and the branches with a gradient between the relevant nodes. 

The arrows point at example clusters of closely related taxa with roughly similar trait values. 

The density plot in the lower right corner summarizes the marginal node height density from 

the the full posterior distribution.
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Figure 5. Influenza H3N2 antigenic evolution based on two MDS coordinates derived from HI 
assay data
Ancestral reconstructions for two MDS coordinates (PC1 and PC2) are represented by a 

color gradient on the same maximum clade credibility (MCC) tree summary.
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Figure 6. HIV-1 sensitivity to the broadly neutralizing monoclonal antibodies
Log IC50 measurements for two MAbs, PG16 and VRC01, are shown at the tips of the same 

same tree (left an right for PG16 and VRC01 respectively), with tip circles areas 

proportional to these values. Higher log IC50 values represent lower sensitivity of the virus 

to neutralization. The ancestral reconstruction of the sensitivity to MAb neutralization is 

depicted using a color gradient along the branches. Below the trees, we plot the average 

evolution in log IC50 with credible interval intervals (95% highest posterior density 

intervals) by slicing the tree branches at particular time points and imputing the trait values 

at that time point (cfr. Bielejec et al. (2011)).
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Figure 7. Drosophila evolutionary history with reconstructed susceptibility to infection with 
different host-specific sigma viruses
The ancestral reconstruction of log2(VL) measurements for two host-specific viruses 

(DA3SV in D. affinis, left; DObsSV in D. obscura, right) are shown using a color gradient 

along the branches of the same MCC tree. Higher log2(VL) values reflect higher levels of 

viral replication; circles are proportional to these values.
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Table 5

Phylogenetic signal estimates for human influenza H3N2 antigenic evolution.

Trait λB KL BFf0 BFf1

PC 1 0.821 (0.761,0.879) 2.611 1327.565 290.183

PC 2 0.420 (0.258,0.563) 0.921 31.773 406.558

PC1,PC2 0.731 (0.668,0.787) 2.246 1350.579 675.260
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Table 6

Phylogenetic signal estimates for HIV evolution towards resistance to antibodies.

Trait λB KL BFf0 BFf1

IC50PG9 0.468 (0.079,0.841) 0.005 −0.459 5.207

IC50PG16 0.570 (0.175,0.958) 0.044 2.359 0.243

IC50VRC01 0.558 (0.184,0.870) 0.048 2.232 9.241

IC50PG9,PG16,VRC01 0.364 (0.075,0.677) 0.230 −5.052 15.743
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Table 7

Sigma virus infectivity in Drosophila

Trait λB KL BFf0 BFf1

wing size 0.790 (0.588,0.938) 1.307 34.951 24.264

DAffSV log2(VL) 0.770 (0.529,0.969) 0.971 37.811 45.629

DMelSV log2(VL) 0.786 (0.567,0.971) 1.152 24.523 7.654

DObsSV log2(VL) 0.711 (0.494,0.896) 0.842 29.608 21.715

DAffSV/DMelSV/DObsSV log2(VL) 0.781 (0.616,0.921) 1.313 32.813 38.680

Methods Ecol Evol. Author manuscript; available in PMC 2016 January 01.




