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A Perturbation Property of the TLS-LP Method 

YINGBO HUA A N D  TAPAN K .  SARKAR 

Abstract-We show that the TLS-LP method and the SVD-Prony 
method are equivalent to the first-order perturbation approximation. 
In practice, it means that the two methods yield the same estimation 
variances when the signal-to-noise ratio (SNR) i s  above a threshold. 

I. INTRODUCTION 
The TLS-LP method and the SVD-Prony method have been 

presented recently in  [ I ]  and [2], [3], respectively. In [ I ] ,  the TLS- 
LP method is claimed to be more robust to noise than the SVD- 
Prony method, based on intuitive interpretations of “LS” and 
“TLS” and on simulation results. 

In this correspondence, we submit that the TLS-LP method and 
the SVD-Prony method yield the identical estimates (of frequen- 
cies and damping factors) to the first-order approximation. This 
result explains a simulation observation, presented in [SI, that the 
improved Pisarenko method (equivalent to the TLS-LP method i n  
[ I ]  and the Mini-Norm method in [4]) and the Tufts-Kumaresan 
(TK) method (i.e., SVD-Prony method) have very close estimation 
accuracy when the signal-to-noise ratio (SNR) is above a threshold. 
Note that the estimation variances are linearly proportional to the 
noise variance when SNR is larger than the threshold [2], [3], IS], 

A detailed perturbation analysis of the TK method was presented 
in [6]. The result shown in this correspondence implies that the 
perturbation analysis in [6] also applies to the TLS-LP method i n  
111. 

[61. 

11. AN EQUIVALENT FORMULATION 
Adopting the notation used in [ 11, we define 

I - 1  

XI. 

XI. + I 
b =  

where x,. k = 0 ,  1, . . . , N - I ,  is the sequence of superimposed 
exponentials perturbed by noise. L satisfies M 5 L 5 N - M. We 
also denote the L-degree polynomial coefficients by 

r i  
I cl. I 

c = [;-I]. (2.3) 
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The signal poles are estimated from the roots of the polynomial 
P ( 2 )  = I - E, ~ l . lc,z-L. The only difference between the TLS- 
LP method and the SVD-Prony method is the way of computing c 
from A and b.  

According to the TLS-LP method, c is such that I( c 11 is mini- 
mized subject to 

(2.4) 

where 11 . 1) denotes 2-norm, [ .  17. denotes rank-M SVD truncation 
(i.e.,  except for the M largest singular values of the corresponding 
matrix, all smaller singular values are set to  be zero). 

According to the SVD-Prony method, c is such that 11 c 11 is min- 
imized subject to 

[A] ,c  = b.  (2 .5)  

111. FIRST-ORDER PERTURBATIONS 
Since the estimated pole z, ( j  = I .  2, . . . , M )  should satisfy 

P ( z , )  = 0, it follows (also see [6, eq. (20)]) that the perturbation 
6z,  in  estimated z, is related to the first-order term of the perturba- 
tion 6c in estimated c in the following way: 

= ( Z , H S C ) / D  

where D is the denominator free of noise, and 

z,” = [z;’, . . . , z , ’ ] .  (3 .2 )  

In (3. I ) ,  only 6z, and 6c are perturbed by noise but all other quan- 
tities are noise free. Equation (3.1) applies to both the TLS-LP 
and the SVD-Prony. Hence, all we need to show is that the nu- 
merator in (3. l ) ,  ( Z Y G C ) ,  is the same for both the TLS-LP and the 
SVD-Prony in first-order terms of noise in  the data sequence xL .  

For the TLS-LP, we let 

[ A  b ] ,  = [ A ’  b ’ ] .  ( 3 . 3 )  

Then (first-order) differentiating (2.4) yields 

~ A ’ c  + A‘& - 66’ = 0 (3.4) 

which leads to 

where the superscript “+”  denotes pseudoinverse, 6[  . ] T  denotes 
the perturbation in the truncated matrix [ . 17. due to noise, and all 
other quantities on the left side are noise free. E can be any vector 
orthogonal to the column space of noiseless A” = AH.  But note 
that in noise free case, Z ~ E  = 0. 

For the SVD-Prony, one can easily verify, by following the 
above approach, that 

I -:I + E 
6c = - A ) 6 [ A r  b ]  (3 .6)  

where all quantities, except those preceded by 6, are noise free. 

noise free quantities in the two equations). 
Note that in  (3.5) and (3.6), A” = A: = A +  (because they are 

From (3.5) and (3.6), we have that for the TLS-LP 

[-;I z,HGc = -z,HA’6[A b ] ,  (3.7) 
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and for the SVD-Prony 

( 3 . 8 )  

Now we provide the lemma: 
Lemma: If Z = Y + 6Z, where Y has rank M and 6Z is a small 

perturbation, and ZT is the rank-M SVD truncation of Z ,  then 
u,"6ZT = u,"GZ to the first-order approximation where p,, is any 
vector in  the column space of Y. 

This lemma implies that the SVD truncation does not affect the 
first-order perturbations (under a constraint). 

Proof: Using SVD, we write 
M 

Y = 2: s,u,vy (3 .9a)  
, = I  

(3.9b) 

M 

Z ,  = C o,a,p: ( 3 .  I O )  
, = I  

where the singular values are in descending order. Clearly, if 
6Z = 0 ,  (3.9a), (3.9b). and (3.10) are identical. Following the 
approach in [7], we let the perturbation matrix 6Z be k X  where k is 
a small number. Then U , ,  a, and p, have Taylor expansions with 
respect to k at k = 0. Substituting those expansions into (3.9a) and 
dropping second and higher order terms of k ,  we obtain the first- 
order approximation equation: 

> M  

6Z = (6o,u,vy + s,6a,$ + .s,u,6p?) (3 .11 )  

where all quantities, except those preceded by 6. are unperturbed 
(i.e..  noiseless). Since U,) is in the column space of Y. U,, is or- 
thogonal to U, for i > M .  Also note that in (3. I I ) .  s, = 0 for 
i > M since Y has rank M .  Hence. multiplying (3. I I )  by utyields 

U : ~ Z  = U: C (6a,u,v/ + s,6a,vj' + s , u , ~ p y )  

I =  I 

M 

, = I  

= U t G Z , .  (3.12) 
The second equation in (3.12) follows from the same derivation for 
(3.11). The lemma is proved. 

Referring to (3.7) and (3 .8) .  we see that 

R [ ( Z , H A + ) " ]  

belong-to R [ A  +"I 
equal-to R [ A  ] 

belong-to R [ A b ]  (3.13) 

where R [  . ] denotes "column space" (range) of [ . 1.  Applying 
(3.13) and the lemma to (3.7) and (3.8) leads to that for both the 
TLS-LP and the SVD-Prony 

(3.14) 

where all quantities, except for those preceded by 6. are noise free. 
Finally. we note that if A and b are replaced by forward-and- 

backward versions for the case of undamped sinusoids, the above 
presentation is also valid. 
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Comments on "Complete Discrete 2-D Gabor 
Transforms by Neural Networks for Image 

Analysis and Compression" 

LEFTERIS MELISSARATOS A N D  

EVANGELIA MICHELI-TZANAKOU 

In his paper.' Daugman uses a three-layer neural network to 
transform two-dimensional (2-D) discrete signals into another type 
of representation, namely the 2-D "Gabor" representation. He then 
used this new representation to analyze images in different ways 
and mainly to do compression on them. 

This correspondence addresses a statement that is made on page 
1171, last paragraph: "it would be completely impractical to solve 
this huge system of simultaneous equations by algebraic methods 
such as matrix manipulation, sincc the complexity of such methods 
grows fxtorially with the number of simultaneous equations." 

We would like to point out that the method of Gauss elimination 
solves the problem in a low order polynomial time; specifically, 
O ( N ' )  arithmetic operations are needed where N is the number of 
linear equations and the number of unknowns. 

Major algorithms include LU decomposition, requiring 
O (  N 3 / 3  ) operations; the Householder QR decomposition, requir- 
ing 0 ( 2 N 7 / 3 )  operations: and the Givens QR decomposition, re- 
quiring O ( 4 N ' )  operations, as discussed in detail in many numer- 
ical analysis books [ I ] .  121. 
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