UC Irvine
UC Irvine Previously Published Works

Title
StackBERT

Permalink

bttgszggescholarshiQ.orgéucéitemélvilﬂzd

Authors
Deshpande, Chinmay
Gens, David

Franz, Michael

Publication Date
2021-11-15

DOI
10.1145/3474369.3486865

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0J

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1vj1r72p
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Session 2A: Machine Learning for Cybersecurity AlSec 21, November 15, 2021, Virtual Event, Republic of Korea

Check for
Updates
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Recovery on Stripped and Optimized Binaries
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ABSTRACT

The call stack represents one of the core abstractions that compiler-
generated programs leverage to organize binary execution at run-
time. For many use cases reasoning about stack accesses of bi-
nary functions is crucial: security-sensitive applications may re-
quire patching even after deployment, and binary instrumentation,
rewriting, and lifting all necessitate detailed knowledge about the
function frame layout of the affected program. As no comprehen-
sive solution to the stack symbolization problem exists to date,
existing approaches have to resort to workarounds like emulated
stack environments, resulting in increased runtime overheads.

In this paper we present StackBERT, a framework to statically
reason about and reliably recover stack frame information of bi-
nary functions in stripped and highly optimized programs. The core
idea behind our approach is to formulate binary analysis as a self-
supervised learning problem by automatically generating ground
truth data from a large corpus of open-source programs. We train
a state-of-the-art Transformer model with self-attention and fine-
tune for stack frame size prediction. We show that our finetuned
model yields highly accurate estimates of a binary function’s stack
size from its function body alone across different instruction-set
architectures, compiler toolchains, and optimization levels. We suc-
cessfully verify the static estimates against runtime data through
dynamic executions of standard benchmarks and additional studies,
demonstrating that StackBERT’s predictions generalize to 93.44%
of stripped and highly optimized test binaries not seen during train-
ing. We envision these results to be useful for improving binary
rewriting and lifting approaches in the future.

CCS CONCEPTS

+ Software and its engineering — Compilers; Software main-
tenance tools; - Computing methodologies — Semi-supervised
learning settings.
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1 INTRODUCTION

Binary program analysis raises fundamental challenges [20]. One
of the reasons for this is that a lot of semantic and contextual in-
formation about the program such as precise control flows, types,
syntactic idioms, and symbols is present at the source level, but
missing at the binary level. In theory, compilers could support pars-
ing and operating on binaries to provide a continued, integrated
approach to “binops”. In practice, compiling software from source
level down to the binary format accepted by contemporary com-
puting hardware is a one-way street.

Nonetheless, in many cases working with binary programs repre-
sents an operational necessity, for instance, because recompilation
from source is not desirable, feasible, or legal [24]. Even for open-
source software binary rewriting may become necessary, e.g., when
a system requires live patching. For this reason, a number of bi-
nary analysis and instrumentation approaches were proposed over
time to systematically attack the fundamental challenges associ-
ated with binary analysis. Because the underlying problems can be
difficult to solve entirely, many frameworks resolve to heuristics
and relaxing assumptions to nail down indirect control flows, infer
higher-level type information, and lift binary code to compiler-level
intermediate representations [2, 13, 15].

One key aspect in binary patching is understanding the stack
layouts of the patched functions [21]. While binary format standard-
ization and debugging information can help in documenting binary
stack operations to some extent, they may not always be avail-
able, sufficiently precise, or even correct [6, 42]—particularly in the
context of heavy compiler optimizations. This is why state-of-the-
art approaches currently resort to emulated stack environments
for lifted binaries [2, 15], and live-patching of binary functions
currently requires human-in-the-loop operation. To the best of
our knowledge stack symbolization currently remains as a difficult,
open problem in the literature and as a result there currently exists
no practical approach to statically reason about stack accesses of
binary programs for the purpose of patching or recompilation.

Owing to the fundamental difficulties in traditional approaches,
recent years have seen a rise in the application of Machine Learn-
ing (ML) based approaches for binary analysis tasks. These ap-
proaches benefit through learning from a wide range of binaries


https://doi.org/10.1145/3474369.3486865
https://doi.org/10.1145/3474369.3486865
https://doi.org/10.1145/3474369.3486865
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3474369.3486865&domain=pdf&date_stamp=2021-11-15

Session 2A: Machine Learning for Cybersecurity

compiled for different architectures and across various optimiza-
tion levels. They usually involve extracting features which con-
vey high-level semantics of the underlying task to the model be-
ing trained. More recently, there have been attempts in treating
assembly code as natural language and leveraging advances in
natural-language processing (NLP) to solve analogous problems
in binary analysis. However, existing approaches either focus on
function identification [1, 5, 41, 45], feature extraction for decom-
pilation [16, 17, 19, 36, 37], or type inference [14]. We note that
inferring low-level information such as the stack layout of binary
functions—which binary patching, recompilation, and lifting all
require—is not a focus of any of these works.

Contributions. In this paper, we present StackBERT, a novel
binary analysis approach that successfully tackles stack symbol-
ization tasks in compiler-generated binaries in an instruction-set
architecture (ISA) agnostic manner. Our core idea is to formulate
stack frame recovery as a self-supervised learning problem by au-
tomatically generating labeled training data from open-source soft-
ware using popular compiler toolchains. Our framework consists of
two main components: (1) a deep neural network using the popular
Transformer architecture with self-attention [29, 44] for prediction
tasks in binary analysis, and (2) a set of tools to automatically extract
and generate ground truth labels from compiler-generated binaries,
as well as verifying model predictions for key stack symbolization
tasks using runtime information.

In our detailed evaluation we demonstrate that this allows us
to successfully solve stack symbolization tasks, such as frame size
recovery for stripped and highly optimized binaries of real-world
programs and standard benchmarks that were not seen during
training. We also validate the stack symbolization predictions from
the learned model against runtime data, further demonstrating
that StackBERT is able to successfully solve stack symbolization
tasks for 93.44% of unseen binaries in our tests. Given this level of
reliability—which remains robust across optimization levels, com-
pilers, and instruction-set architectures—we anticipate these results
to be useful for moving towards native stack support in binary
lifting, rewriting, and patching in the future.

In summary, we make the following contributions:

e We present StackBERT, a novel and architecture-agnostic
approach to binary analysis that uses masked byte prediction
to pretrain a Transformer model in a self-supervised manner.
We demonstrate the efficacy of our trained models with
respect to stack frame size recovery from the binary function
body alone.

e We extensively test and evaluate our prototype implemen-
tation using two popular and widely used compiler suites,
high optimization levels, and across different instruction set
architectures, demonstrating 93.44% validation accuracy on
standard benchmarks that were not seen during training.

e We present a new training set and tools to automatically
extract features and labels from open-source software, which
we release as an open-source implementation alongside our
model and baseline implementations. !

Thttps://www.github.com/securesystemslab/stackbert
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2 MOTIVATING EXAMPLES

Although stack symbolization of binary programs would enable
many possible applications in binary rewriting, lifting, and recom-
pilation, it currently remains as a largely open problem. There are
several reasons for this: first, binary programs in principle are free
not to use the system’s call stack and arbitrary binaries that were
produced using handwritten assembly, self-modifying code, or code
virtualization obfuscation might explicitly opt not to. Second, even
for binaries that are generated by standard compilers—and which
consequently should adhere to the system’s Application Binary
Interface (ABI)—symbolizing stack accesses is uniquely challeng-
ing [10]. In fact, it can be nearly impossible for human developers
to make sense of a program’s stack management just by looking
at stack traces post mortem: the Linux kernel developer commu-
nity had to develop a dedicated stack metadata validator [38] and
unwinder [22] to deal with mounting problems of garbled and
unintelligible stack traces in bug reports and crash dumps.

To illustrate some of these challenges concretely let us consider
a simple source-code example in Listing 1. It contains two function
definitions as well as a global integer variable definition. Since main
takes parameters and also defines local variables, one might expect
a dedicated function frame. Moreover, as the function called by
main is annotated with the __inline__ intrinsic, one might also
expect its stack frame to be part of main’s stack frame, given this
particular source code. However, if we look at the disassembly of
the binary in Listing 2 that is generated by the two big compiler
suites GCC (in version 11.1.0) and LLVM (in version 13.0.0) with
only minor variations under modest optimization levels (i.e., -O2
and -ansi), we discover that neither of these assumptions hold.

static volatile int n;
static __inline__ int inlineme(int * i) {
int fool[123] = {};
putchar (foo);
if (xi < 123)
return *i;
1t500:;
char x[n];
putchar(x);
if (n++ < 500)
goto 1t500;
return -1;

}
int main (int argc, char *argv[]) {
int xb[101;
n = argc;
b[5] = (int *)&n;
return inlineme(b[5]);
}

Listing 1: Example C program (compiles with -02 -ansi).

The reason is that both compilers determine the stacklayout
of function inlineme to be incompatible with the stack layout of
main, and hence, cannot inline the function. They do however de-
termine inlineme to be tailcall optimizable and directly forward
the local variable definitions through main via constant propa-
gation. The result is that inlineme will be defined as a function
symbol in the binary’s symbol table despite being marked inline
and never explicitly being called anywhere (only jumped to). Con-
sequently, a crashdump of this program’s execution if called with
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more than 121 command line arguments (e.g., with “seq 122 |
xargs ./example”) will not show the main function being called.
The exact same issue also arises during debugging. If this program
required live patching in a production system, the call stack would
not serve as a reliable source of its execution state. 2

1 inlineme: —----------——————-—-—-—--- » Despite be-
2 push rbp ing marked
3 mov rbp, rsp s 1s

) push rbx mhne., th?

5 lea rdi, [rbp-512] function is
6 sub rsp, 504 not inlined.
7 call putchar Its frame

8 mov eax, DWORD PTR n[rip] size is set

9 cmp eax, 122

1 ig G e.is 520 bytes
THENEE i |in the pro-
12 mov rbx, QWORD PTR [rbp-8] , |logue.

13 leave !

14 ret :

15 L7 !

16 mov rsp, rbx :

17 .L3: !

18 movsx  rax, DWORD PTR n[rip] L

19 mov rbx, rsp If 122 < eax
20 add rax, 15 the frame
21 and rax, -16 size of

22 sub rsp, rax inlineme is
23 mov rdi, rsp .

24 call putchar determined
25 mov eax, DWORD PTR n[rip] by the value
26 lea edx, [rax+1] in eax.

27 mov DWORD PTR n[rip], edx

28 cmp eax, 499

29 jle L7
30 mov rsp, rbx
31 or eax, -1 ™ No stack
2 e L ! | frame is
33 main: - - - - - - m e —m—— o m— - —— - - - !
34 mov DWORD PTR n[ripl, edi generated
35 jmp inlineme for main.

Listing 2: AMD64 assembly for the Example program

generated by GCC (LLVM output is practically identical).

For this reason, one of the first steps in symbolizing stack ac-
cesses for binary code is to bound the size of each function’s call
frame. As we saw in the example above even for binaries generated
by popular and widely used compiler frameworks with standard
compilation options, many functions will not actually have a dedi-
cated call frame, or its size may depend on the context. Functions
that are inlined multiple times by the compiler may be inlined into
the caller’s stack frame with different layouts and sizes. For some
functions the size of their stack frames may be a range of possi-
ble values depending on the exercised control flow with an upper
limit that can be computed at compile time. However, in general
we saw that a function’s stack frame may not be bounded at all
and programs that call alloca (or one of its many variants) with
a dynamically determined size argument or make use of Variable-
Length Arrays (VLAs) can exhibit differently sized stack frames for
different inputs. Since this type of runtime-dependent behavior can
cause various issues with respect to compatibility, debugging, and
memory safety it is often actively discouraged [25].

2This is why the Linux kernel requires ~fno-omit-frame-pointer for producing
reliable stack traces.
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-fstack-usage count eh_frame DWAREF info
binary-only X v v v
accurate v X X X
general X v v X
complete v X X X

Table 1: Comparison of possible approaches to statically
identify stack frame size of a binary function.

Assuming the stack frame size is at least bounded at compile
time, there are several ways one could try to statically reconstruct
an upper bound for frame sizes of function definitions for a binary
program: (1) do the obvious thing and emit stack frame sizes during
compilation ("-fstack-usage"), (2) count push and pop instruc-
tions, also considering all other modifications of the stack pointer
(like "sub rsp, 504") [28], (3) use the entries of the Canonical
Frame Address (CFA) column in the function’s .eh_frame table to
try and determine the frame size, (4) collect all DN_TAG_variable
and DW_TAG_formal_parameter entries, as well as registers writ-
ten to the stack, calculate their respective sizes in bytes, and sum up
the total (while also taking their stack offsets into account, which
might overlap).

While the first option is probably the safest and most precise,
since the compiler originally determines a function’s frame layout,
this requires source code and target compiler to both be available.
It further requires recompilation to be an option for deployment—
which may not always be the case even if source code and target
compiler are available—and is therefore unfortunately the least
generally applicable among all options listed above. In our example
both LLVM and GCC correctly report the frame size of inlineme
as 520 bytes but also mark it as “dynamic”.

In contrast, the second option sounds pragmatic, but requires
accurate code discovery, disassembly, and modeling of stack oper-
ations for each architecture individually—all of which come with
their own set of complications. As for more complex binaries and
instruction-set architectures a simple linear sweep may not actually
be sufficient to discover all stack modifications and symbolically
executing functions with global context and intricate control flows
would require sophisticated input generation, this approach is con-
strained to relatively simple cases in practice.

The third option relies on metadata that is present in the vast ma-
jority of binaries (including stripped binaries), and hence, may seem
like an attractive alternative. However, this requires CFA-entries
that are relative to the stack pointer and the compiler may opt to
represent CFA entries as base-pointer-relative (or even use general
purpose registers), in which case they are useless for determining
the stack size of the function statically.

The fourth option requires a debug build of the binary, as well
as reliable and complete type information, which is usually not
available.

We provide an overview in Table 1: in summary, all of the ap-
proaches we discussed are limited with respect to frame size re-
covery for binary programs and we discuss some of the practical
implications of this in Section 5. For our approach, we aimed at
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combining the accuracy of a compiler-based solution (which re-
quires source code) with the applicability of binary-only methods
to determine frame sizes statically while forgoing the source code
requirement. We implemented a simple baseline method for the
remaining approaches outlined above as part of our framework to
compare against the results using a learned program representation,
which we present in the next section.

3 DESIGN AND IMPLEMENTATION

In this section we present the design and implementation of Stack-
BERT. Our main goal is to statically recover stack frame sizes of
binary functions. For this, we first train a Machine Learning model
based on the popular Transformer architecture using over 600,000
compiled function bodies with masked byte prediction. We then
finetune the model to recover an upper bound on each function’s
frame size.

3.1 Overview

We designed StackBERT to be able to operate in the form of a con-
tinuous, supervised learning pipeline that consists of a number of
components and present an overview in Figure 1: (1) a collection of
widely used open-source programs (binutils, coreutils) built with
standard compilers (GCC and LLVM) using a number of different
optimization levels, (2) a label generator, including compiler-based
label generation plus tools for parsing ELF binaries using debug
information as a baseline implementation for function frame size
recovery, (3) a training set of pre-processed and automatically la-
beled data, (4) a state-of-the-art Transformer model architecture,
pre-training task setup, as well as custom finetuning task through
binning, (5) a dynamic verifier for standard benchmark programs
using reference inputs.

3.2 Technical Challenges and Baseline Analysis

As outlined in Section 2, there are several ways in which one might
try to obtain a frame size per function statically from a binary
in principle. To get a sense of how well such “conventional” ap-
proaches perform (and since none of them seemed to be publicly
available for general purpose architectures) we prototypically im-
plemented them as a baseline for our approach (cf., “Binary-based
Label Generation” in Figure 1). We make several simplifying as-
sumptions such as dealing with benign, compiler-generated exe-
cutables that are unstripped, formatted as standard ELF files, that
may or may not be built using debug information.

First, we utilize the popular pyelftools Python library [8] to
parse the binaries and read the contents of all executable sections,
as well as symbol information (. symtab), call frame information
(.eh_frame),? and (if present) debug information (.debug_info).

Next, we associate each call frame information with their respec-
tive symbol definition. The frame descriptor table consists of entries
that are intended to be used for scenarios such as frame unwinding,
debugging, and core dumping. An individual entry specifies how

3We note that although an .eh_frame section is not required by ELF, it is not removed
by the strip tool, and hence, typically present even in stripped binaries. For binaries
that do not have an . eh_frame section, it can be synthesized automatically [6] from a
function’s disassembly.
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the state of the program can be interpreted at any given point dur-
ing that procedure’s execution. For instance, if a register was saved
to the stack prior to calling another function the caller’s frame table
should contain an entry that specifies at which location within
the function’s frame that value was stored. The syntax for parsing
entries is quite complex, due to a finite-state machine encoding
for saving space. It is specified as part of the DWARF Debugging
Information Format Standard. Although the call frame information
in the .eh_frame does not represent debugging information, it
largely follows the same format.

We parse register rule expressions and generate a preliminary
frame layout based on rules that specify a dedicated stack location
for any object within the function’s frame table. Finally, we collect
and propagate any type information that is contained (or can be
assumed, e.g., based on the ELF’s target architecture) in the binary,
to obtain a number of bytes for all stack objects. Although stack
slots semantics may depend on the program counter and can, e.g.,
be reused to hold multiple objects of varying types and sizes at
different times, we ignore complex control flows for calculating the
maximum frame size. We emit three different estimates for each
function’s frame size, according to (i) the function’s disassembly,
(ii) the function’s canonical frame address, (iii) the maximally pos-
sible sum of all objects with a dedicated stack frame location and
well-defined size in bytes. We present the numbers obtained using
these three different baseline approaches and a comparison against
the estimates obtained using our finetuned Transformer network
in Section 4.

3.3 Pretraining: Masked Byte Prediction

The core idea and main component within StackBERT is our pre-
training and finetuning of a state-of-the-art Transformer model to
learn instruction set semantics in a self-supervised manner, while
supporting a variety of different instruction set architectures—like
AArch64 and AMD64—as well as potential downstream tasks. In
this way, StackBERT is able to readily support prediction tasks
largely independently of build toolchain and other metadata typi-
cally used in conventional binary analysis approaches. Our generic
pretraining setup has two important consequences: first, we are
able to leverage the large body of existing software for training
without expensive collection of labeled data. Second, the result-
ing model only requires a minimal amount of information during
inference, i.e., binary code of a function.

We pretrain the model using a self-supervised token prediction
task, where each token is equivalent to a byte of instruction opcodes
as present in the compiled binary function body. Given a sequence
of 512 bytes per sample we randomly mask a byte in the sample with
a probability of 20%. The model then has to predict the masked bytes
in the sample, minimizing over a variation of the cross-entropy
loss as objective function, tuned for masked language prediction
(see Eq. 1). We refer to Section 5 for additional discussion on our
pretraining setup. For pretraining, we use the Adam optimizer with
a learning rate of 10™* and polynomial decay scheduling.

L==" yilog(@) + (1 - yi)log(1 - §;) (1)
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Figure 1: Overview of StackBERT: first, we automatically build and pre-process a large corpus of open-source software using
two popular and widely used compiler frameworks. We then automatically extract both features and labels from the compiled
artifacts. Next, we pre-train a state-of-the-art Transformer model (RoBERTa), using byte-wise masking of the function disas-
sembly as pretext task. Since the collected label information are not usually present in stripped binaries, we then finetune the
pre-trained model using one of our custom downstream tasks, by modeling a key stack symbolization problem as classifica-
tion with binning. To accurately assess model accuracy we test and validate the model predictions against unseen inputs and
also verify its outputs dynamically using standard benchmarks with reference inputs.

3.4 Downstream Task: Frame Size Prediction

For our downstream task, we use the function body as input se-
quence to our model and the maximum size of its stack frame as
output. Bounding the size of a function’s stack frame represents
an important part of the stack symbolization problem. Potential
applications of frame-size recovery include binary instrumentation
and rewriting, run-time patching, as well as recompilation after
binary lifting to enable use of the native stack. We model frame-size
prediction as a classification problem via binning: in particular, we
define nine different classes that correspond to stack frame sizes
in the range of 8 to 2048 (see Section 5 for additional discussion).
We use the Adam optimizer with an initial learning rate of 107>
and polynomial decay scheduling to finetune the pretrained model
using the sentence prediction task, calculating the maximal score
of the function body over all classes. We utilize groundtruth labels
collected from the two big compiler toolchains GCC and LLVM in
recent versions to calculate the loss. We detail our label collection
process for this finetuning step in the next section.

4 EVALUATION AND RESULTS

We conduct all of our experiments using Google’s Colab cloud
compute engines with GPU support—the baseline only uses CPU
instances.

4.1 Dataset

To train our model on a representative number of input samples
we automatically generate a dataset of compiled binaries and cor-
responding labels consisting of real-world programs. In particular,
we use the popular and widely used GNU binutils as well as
GNU coreutils set of system programs, combining them into our
allutils corpus of compiled programs (we present an overview in
Table 2). We compile both program collections with two mainstream
compilers, GCC 11.1.0 and LLVM 13.0.0 and collect groundtruth la-
bels during the compilation process by adding the -fstack-usage

89

Task Samples
Dataset Binaries Frame Sizes (Mean/Std)
Training
allutils-GCC-AMD64-03 124 36,646 (95.24 / 702.64)
allutils-GCC-AMD64-02 124 38,115 (85.27 / 684.60)
allutils-GCC-AMD64-01 124 40,105 (82.17 / 668.48)
allutils-GCC-AMD64-00 124 52,594 (94.40 / 589.58)
allutils-LLVM-AMD64-03 124 27,660 (90.16 / 853.00)
allutils-LLVM-AMD64-02 124 27,783 (89.54 / 851.02)
allutils-LLVM-AMD64-O1 124 27,827 (90.08 / 850.12)
allutils-LLVM-AMD64-00 124 38,066 (123.81 / 770.62)
allutils-GCC-AArch64-03 124 41,035 (97.38 / 600.54)
allutils-GCC-AArch64-02 124 42,865 (87.01 / 582.98)
allutils-GCC-AArch64-01 124 45,650 (84.50 / 565.93)
allutils-GCC-AArch64-0O0 124 60,502 (92.00 / 488.92)
allutils-LLVM-AArch64-03 124 43,200 (90.49 / 585.35)
allutils-LLVM-A Arch64-02 124 43,512 (89.87 / 583.13)
allutils-LLVM-AArch64-O1 124 43,580 (91.49 / 582.37)
allutils-LLVM-A Arch64-00 124 62,450 (118.97 / 605.01)
Testing
SPEC2017-GCC-AMD64-00 23 27,885 (132.95 / 926.94)
SPEC2017-LLVM-AMD64-00 23 73,627 (92.35 / 645.73)
SPEC2017-GCC-AArch64-00 23 28,981 (153.31 / 1049.25)

SPEC2017-LLVM-AArch64-00 23 70,951 (101.42 / 653.41)

Table 2: Overview of our Training and Test Datasets (01-O3
omitted for brevity on the test set)

flag. Compiling with two different compiler frameworks target-
ing two entirely different ISA’s, using a number of varying opti-
mization levels results in a natural diversification of the dataset.
However, creating even bigger training sets is entirely possible
using our automated data pipeline using these two compilers, pos-
sibly including other target architectures. While the outputs of
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Figure 2: Coreutils Static Frame Sizes (-03 GCC 11.1.0; x-axis
truncated for brevity, since distribution is long-tailed)

-fstack-usage may be unreliable in the presence of link-time

optimizations (LTO) [33], SPEC2017 does not compile with LTO
by default and does not use it for reference inputs. For this rea-
son, our dataset does not contain any link-time optimized binaries.
Each compiler compiles the program for two different architectures
AMD64 and AArché4 and across 4 different optimization levels 00
- 03. We design experiments to stress that our approach is compiler
and architecture agnostic.

The range of frame sizes in our collected dataset is quite high,
with a maximum frame size for optimized binaries of 65640 bytes
when compiling Coreutils with LLVM (and 65616 bytes when com-
piled with GCC respectively), which represents more than 16 full
pages of memory. The function allocating this large stack frame
is cksum_pclmul in src/cksum_pclmul . c. 4 Since the distribution
of the data is long-tailed (cf., Figures 2 and 3) with very few exam-
ples for sizes larger than a couple hundred bytes, we do not use
functions with frame sizes over 8192 bytes for training.

We use the SPEC 2017 benchmark suite as a “holdout” dataset for
testing our approach. We exclude binaries which involve FORTRAN
based code from the evaluation.

4.2 Training Details

As described in Section 3, we use the RoBERTa base model archi-
tecture for our experiments as provided in the Fairseq [34] PyTorch
library developed by Facebook, which has around 125M trainable
parameters. As is common practice for language models with self-
attention mechanisms, we first use a pre-training task to automat-
ically learn a useful representation of the raw binary data and
subsequently finetune the model on a downstream task.

For the downstream task we use binning with frame sizes span-
ning multiples of two (starting from 8, 16, 32, 64, etc.) and provide a
negative log likelihood loss as defined by the pre-defined sentence
prediction task in Fairseq. For each of the models that we train,
we use distinct datapoints for the pretraining and finetuning tasks.

“https://github.com/coreutils/coreutils/blob/4edad9e1210dfaadc8630bad 16d0b2e6090de790/

src/cksum_pclmul.c#L38
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Figure 3: Coreutils Static Frame Sizes (-O3 LLVM 13.0.0; x-
axis truncated for brevity, since distribution is long-tailed)

This ensures that the pretraining task does not get access to any of
the labeled data used for the finetuning task.

We pretrain the models for 30 epochs and finetune them for 15
epochs. We observe that the finetuning task converges after 4-5
epochs of training.

4.3 Baseline Results

As explained in Section 3.2 we leverage a combination of pyelftools
and dwarf_import Python libraries to parse the binaries and obtain

static estimates of per-function frame sizes using our baseline anal-
ysis tool. It is also important to reiterate that our baseline requires

unstripped binaries, and will not be able to generate predictions if

certain metadata (such as the symbol table and the frame table) is

not available. Even with all relevant metadata available the base-
line analysis fails to make predictions in a number of cases for our

training and test sets due to parsing errors such as unsupported

DWAREFv5 tags, reaching a total accuracy of 53.86% on SPEC2017

compiled for AMD64. We also evaluate the baseline analysis on

SPEC2017 compiled for AArch64, where we observe a substantial

drop to less than 20% mean accuracy (cf., Figure 6). The main reason

for the substantial drop in performance appears to be the increased

usage of DWARF constructs that are not supported in libraries uti-
lized by our baseline implementation, as well as inferior general

support for AArch64 binaries. Due to the complexity of the anal-
ysis (section parsing, type propagation, frame-table assignment)

as well as the overall size of the binaries generating predictions

with our baseline for the entire testset takes roughly 45 minutes

and consumes up to 12GB of RAM.

4.4 StackBERT Results

Next, we evaluate the finetuned model on SPEC2017 binaries—
which were never seen during training. In contrast to the baseline
analysis, which relies on metadata embedded in the binary to predict
frame sizes, StackBERT is able to generate predictions from the
raw binary disassembly of a function body alone. This means it can
make predictions even in absence of additional information and


https://github.com/coreutils/coreutils/blob/4edad9e1210dfaa4c8630bad16d0b2e6090de790/src/cksum_pclmul.c#L38
https://github.com/coreutils/coreutils/blob/4edad9e1210dfaa4c8630bad16d0b2e6090de790/src/cksum_pclmul.c#L38
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Figure 4: Accuracy of StackBERT vs. Baseline frame size predictions for SPEC2017 (on -03 AMD64)

only requires raw byte inputs of the binary code, making predictions
in a number of cases our baseline cannot cover. We plot the results
of its predictions in blue in Figures 4 and 6. On average, StackBERT
achieves an accuracy of 93.44% on SPEC2017 compiled for AMD64.
Even for highly optimized binaries frame size prediction accuracies
never fall below the 50% mark, and drop below 60% for just a single
case. On AArché4, StackBERT’s mean accuracy remains high at
93.46%.

We would like to highlight that the finetuned model we present
here was trained on both architectures, i.e., AMD64 and AArché64.
However, during our experiments we also trained a number of
dedicated, architecture-specific models to make predictions for
each architecture separately. Results for the same are detailed in
Table 3.

Interestingly, the jointly trained model achieves an average ac-
curacy that is around 3% higher than its architecture-specific coun-
terpart for AMD64. We conclude that StackBERT manages to learn
instruction-set semantics across different architectures automati-
cally through our self-supervised byte prediction pretraining.

While overall inference time depends on the size and complexity
of the binary, StackBERT usually manages to predict stack frame
sizes for individual functions in a matter of seconds.

4.5 Additional Experiments

We conducted additional experiments to evaluate the fidelity of
the learned representation by deliberately modifying stack sizes of
binary function bodies. We chose the mcf binary from SPEC 2017
compiled with 00 optimization using GCC 11.1.0 for AMD64 for
this experiment. From this binary, we randomly picked function

Table 3: Mean accuracies across the SPEC2017 benchmark
suite for the different models across optimization levels

Model Type AMD64 AArch64 Unified  Unified
Evaluation Dataset AMD64 AArch64 AMD64 AArché64
00 90.35% 96.58% 93.56% 96.11%

01 92.72% 95.73% 95.32% 92.85%

02 90.87% 94.85% 92.38% 92.50%

03 91.34% 93.75% 92.49% 92.38%

mean 91.32% 95.23% 93.44% 93.46%
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Figure 5: Predictions made by StackBERT under targeted
modification of frame sizes continue to remain correct.

bodies containing direct manipulation of the stack pointer (e.g.,
sub rsp, 0x40). We modified the operand of these instructions by
subsequently drawing integer values from a fixed range of numbers
between 8 and 2048. We then predict the function’s stack frame
size after each individual modification. The result is depicted in
Figure 5. The dashed black line shows the range of values that was
drawn from the list. The dots show the predictions by StackBERT;
as depicted only 0.22% of the predictions lay below the dashed line,
meaning that a vast majority of the predicted values remain correct.
We conclude that the trained model accurately learns which instruc-
tions will affect frame size through our pretraining and finetuning
tasks. We also infer that the trained model learns quantitative rela-
tionships of tokens within the instruction and their relevance for
the frame size of the containing function.
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Figure 6: Accuracy of StackBERT vs. Baseline frame size predictions for SPEC2017 (on -03 AArché64)

Last but not least we verified all of the correctly labeled predic-
tions made by StackBERT for the SPEC2017 binaries by executing
the respective binary and recording the stack frame size for each
executing function using the PIN tool. We run the binaries with
the test input provided in the benchmark suite to validate frame
sizes of functions covered as part of the trace. While this severely
impacted the execution time of the program, we were able to verify
correct predictions of each of the function’s frame size by checking
that none of the static estimates exceeded the recorded runtime
values.

5 DISCUSSION AND FUTURE WORK

In this Section we briefly discuss assumptions, pretraining, down-
stream task and binning, as well as possible applications.

As mentioned in the beginning, static binary analyses typically
range from complex to generally unsolvable [20, 43]. For this reason,
we constrain the stack symbolization tasks mentioned in this paper
by making several basic assumptions: we assume standard ELF
files that can be loaded by general purpose operating systems (i.e.,
the ELF magic is set and the file format conforms to the existing
standards). We further assume that the binary files contain several
standard information, such as a symbol table and correct function
boundary information. While this may not always be the case in
practice (for instance, because the binary was stripped) function
boundary identification and symbol recovery are complimentary to
StackBERT and several existing approaches demonstrate that such
information can be recovered from stripped binaries in practice [1,
5, 37, 41]. We refer to Section 6.2.1 for an overview of existing
methods. For our baseline analysis we further assume that the
machine architecture matches the target architecture specified in
the ELF file and that section headers and parameter settings are
provided and accurate. While StackBERT does not rely on any
metadata in the binary, our baseline analysis checks for a number
of binary features in ELF files containing debug information, such
as inlined calls, nested inlining, type information, variable and
parameter declarations, and the baseline analysis assumes all of
these to be correct.

For pretraining, it is noteworthy to mention that we also ex-
perimented with an instruction-based pretraining method, where
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we applied a similar objective as mentioned in Section 3.3 to dis-
assembled byte sequences by masking all bytes belonging to an
individual instruction at the same time. However, this instruction-
wise pretraining method actually performed worse in our initial
tests compared to the byte-wise masked pretraining in the sub-
sequent downstream task. For this reason, we used the masked
language prediction task as desdribed above. Similar to related
work [37] we hypothesize that pretraining lets the model learn an
instruction-set architecture’s (ISA) semantics prior to identifying
the task-relevant bits, such as the instructions and operands that
relate to the stack pointer. We note that truncating inputs to 512
bytes is a consequence of the underlying model architecture. In our
case, this is not problematic as compilers generate instructions that
define a function’s frame size in the function prologue, i.e., at the
beginning of the function body typically within the first few dozen
bytes. However, should a function prologue exceed this limit in the
future we could adopt model variations [7, 23, 46] that forgo input
truncation.

Our downstream task uses binning to model stack frame size
recovery as a classification problem. Our rationale for binning stack
frame size predictions is two-fold: first, due to data alignment and
performance optimizations compilers already tend to favor certain
stack frame sizes over others. Second, language Transformer models
with self-attention (like RoBERTa) are known to exhibit limitations
with regards to counting and regression [9, 18]. However, there is no
fundamental reason for binning frame sizes and we believe that with
additional implementation and experimentation a regression model
for frame size prediction (possibly using a modified architecture)
should be feasible in principle.

Ideally, we would like to extend our existing downstream task
to predict additional information about a function’s stack frame,
such as the number of individual objects and their respective sizes.
While we anticipate StackBERT s design to be able to handle these
additional tasks without requiring any modifications, the main chal-
lenge for this extension lies in the ability to gather highly accurate
ground truth data. Our baseline analysis contains preditions for de-
tailed stack layouts, however, upon manual inspection of the results
their quality appears to be in similar (if not worse) condition than
the baseline frame size predictions. Unfortunately, we also found
that current compilers provide an absolute minimal amount of in-
formation about a function’s stack layout and gathering additional
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information would likely require a modification of the compiler
toolchains. While certainly possible in principle we have to leave
this task as an interesting avenue for future work.

Finally, we mentioned in the beginning that binary patching,
rewriting, and lifting are important motivations for our work. For
instance, current state-of-the-art lifting approaches rely on emu-
lated stack environments for recovered binaries [2, 15]. This means
that stack operations in recovered binaries will typically be mod-
eled as indexed accesses into a dynamically allocated, global array
variable, severely impacting runtime performance from 1.5x to up
to 3x compared against original binary executions that utilize the
native stack. We envision our results to be useful for these applica-
tions, since knowing a function’s frame size while lifting it would
enable breaking the global stack array into function-local arrays.
Knowing an upper bound on the function’s frame size should suf-
fice to enable this use case: binary lifting frameworks can use this
information to lower emulated, function-local stack frame arrays
during recompilation to utilize the native stack, potentially yielding
huge performance gains. According to our evaluation results in
Section 4 more than 90% of binary functions in SPEC2017 could
potentially have been rewritten to make use of the native stack in
the recovered binary, rather than emulating stack accesses.

6 RELATED WORK

Automated software analysis can be surprisingly difficult. While
fundamental concepts are easily explained answering questions
about the runtime behavior of a given piece of code with certainty
may be impossible [20]. Working with binary code aggrevates those
challenges, since a lot of semantic information about the program
that may be specified and present at the source level does not
actually represent meaningful input for the hardware and is thus
discarded during the compilation process. Nonetheless, automated
static analysis of binary programs has been studied for nearly three
decades and a large body of literature on the topic exists. In the
following, we provide a brief overview and comparison against
relevant approaches.

6.1 Conventional Machine Code Analysis

6.1.1 Binary Instrumentation and Rewriting. The idea of analyz-
ing and modifying binary programs is quite old. While early ap-
proaches aimed at identifying control flow and intra-procedural
data dependencies, several works soon started investigating prac-
tical methods of instrumenting the binary in question. One of the
early approaches is EEL [26] which aimed at simplifying binary
editing by providing architecture-independent abstractions. Several
other approaches such as DynamoRIO [11, 12], PIN [30, 39] and
Valgrind [32] proposed to instrument binaries during execution,
which is comparatively safer and more reliable since it avoids most
of the problems of static code discovery and analysis.

While binary rewriting approaches were initially rather limited
in their capabilities, progress in binary analysis techniques allowed
more recent binary rewriting frameworks to provide a rich set
of functionalities with support for many different architectures
and even including use cases like automated binary hardening
transformations [35, 40, 47, 48]. Several tools aim at analyzing stack
accesses using architecture-specific knowledge:
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PLTO [28] by Linn et al. analyze stack sizes for binary functions
in standard benchmarks using relocation information. However,
they do not analyze the accuracy of their recovered estimates.

The Stacktool [40] was developed to prevent stack overflows
and bound overall stack size on AVR-based systems, but focuses on
embedded systems and does not support complex instruction set
architectures.

Unfortunately, general static analysis approaches for binaries
encountered significant challenges with respect to code discovery,
memory accesses, and recompilation, leading to the idea of binary
lifting [2, 4, 15].

6.1.2  Binary Lifters. The idea behind binary lifting is to analyze ex-
ecutable binaries with respect to control flow as well as memory ac-
cesses and generate an in-memory intermediate representation (IR)
suitable for further processing—similar to how compilers use IRs to
reason about programs while translating source to machine code.
Binary lifting approaches such as CodeSurfer [3], BAP [13], Mc-
Sema [15], and BinRec [2] currently represent the state-of-the-art
in binary program analysis and instrumentation. However, due to
the strict functionality requirements of these binary lifters (e.g., for
the purpose of recompilation) they rely on abstractions and helper
constructs that the originally compiled program did not have: for
example, they usually provide an emulated stack environment us-
ing a large, dynamically allocated array, as well as various fallback
mechanisms to the original binary code. Our goal is to improve
static analysis of binary programs to aid in alleviating some of those
restrictions in the future.

6.2 Machine Learning for Machine Code

Machine learning (and in particular “Deep Learning” [27]) demon-
strated significant progress over the past 10 years in a number of
challenging and complex domains such as natural-language process-
ing, computer vision, and robotics that have traditionally proven
difficult for conventional software. It is thus perhaps unsurprising
to see increasing adoption of ML-based approaches in other do-
mains and a number of recent approaches propose to apply ML to
static program analysis tasks. Since this area is rapidly growing we
focus on a direct comparison with approaches that explicitly target
binary analysis in this section.

6.2.1 Binary Function Identification. Several works tackled binary
function identification using ML:

Byteweight [5] was one of the earliest examples that aimed at a
data-driven approach to binary analysis. They propose a learned
prefix tree representation for disassembly with normalized immedi-
ate values to classify function start addresses, tackling the function
identification problem and beating IDA Pro (the state-of-the-art at
the time) by an order of magnitude, establishing a new baseline.

Shin et al. [41] were the first to demonstate neural networks for
function identification, showing overall improvements in training
and inference time over Byteweight (which was not based on neural
networks) while keeping similar performance using a recurrent
architecture with byte-wise one-hot encoding. Function identifica-
tion approaches are complimentary to StackBERT, since we assume
function boundaries to be known (e.g., through . symtab).
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Gemini [45] proposes to train a control-flow-based embedding
for the purpose of binary function similarity detection, demonstrat-
ing order of magnitudes speedup in training and inference, as well
as improved accuracy. Function similarity detection is orthogonal
to our approach, but generally useful for malware classification and
debloating.

FUNCRE [1] tackles function inlinining detection by following
up on an earlier approach [37]. Detecting if a function was inlined
at a particular code location represents an important sub-task in
analyzing highly optimized binaries. They are able to improve the
F-score of state-of-the-art approaches in function inlining detection
by about 3%.

Since we assume function symbols to be known for our frame
size and layout prediction tasks, function identification approaches
are complimentary to StackBERT.

6.2.2 Decompilation. An increasing number of ML-based binary
analysis approaches aims to recover source-level information (com-
monly called “decompilation”), such as variable and function names,
function signatures and line numbers, as well as high-level code
constructs like loops, conditions, and switch statements:

Debin [19] uses a lifted binary intermediate representation to
predict source-level debug information. They propose a conditional-
random-field-based graphical model using factor graph represen-
tations and bayesian inference for structured prediction of likely
source-level variable types and names given a particular binary
program.

Coda [16] presents a neural network architecture to decode a
binary into an Abstract-Syntax Tree (AST) of a high-level source
language, that is then iteratively refined using the target binary in
a second step, achieving 82% program recovery accuracy on short,
custom benchmarks built without optimization (-O0).

N-Bref [17] proposes a dedicated structural transformer architec-
ture using an assembly encoder, an AST encoder, and decoder. They
demonstrate improvements of 6.1% and 8.8% accuracy in datatype
recovery and source code generation respectively using short pro-
gram snippets.

Punstrip [36] combines probabilistic fingerprinting with a graph-
ical model to learn relationship between function names and binary
features. They are able to predict semantically similar function
names based on code structure for standard library functions.

Perhaps closest to our approach is XDA [37], which proposes a
transfer-learning-based disassembly framework that uses masked
language modeling as a self-supervised pre-text task to decompi-
lation. The authors evaluate their approach on function boundary
identification and code discovery as downstream tasks, using stan-
dard benchmarks on x86 and AMD64, achieving 99.0% and 99.7%
F1 scores respectively.

Decompilation is orthogonal in principle to StackBERT, since our
main goal is to recover low-level stack memory layout of a given
binary function—which none of the existing approaches target,
support, or evaluate.

6.2.3 Binary Type Inference. Another line of work is learned type
inference for binaries. For example, Eklavya [14] proposes use of
neural networks for function signature recovery by solving two
tasks: function argument count and argument type recovery. They
achieve an accuracy of 84% and 81% for both tasks respectively using
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a recurrent architecture with an instruction-wise, skip-gram-based
word embedding model that is trained separately. Function signa-
ture recovery partially overlaps with function frame recovery, as
parameters may be passed via the stack. However, in practice many
optimized functions do not receive parameters via stack accesses
but through registers instead to increase runtime performance. In-
ferring types for local variables—which occupy the majority of
function frames in our dataset—is not supported by Eklavya.

6.2.4 Learned Models for Binary Execution. Finally, Ithemal [31]
proposes to model execution timing aspects of complex instruction
set architectures statically using an LSTM-based neural network
architecture. They demonstrate that cycle-accurate throughput pre-
dictions can be learned efficiently for modern microarchitectures,
significantly improving over the prior state-of-the-art (which does
not use machine learning). Modeling timing aspects of instruction
sequences represents an interesting but orthogonal task in static
binary analysis.

7 CONCLUSION

We present StackBERT, a novel binary analysis approach tailored
towards key stack symbolization tasks like frame size recovery. We
demonstrate byte-wise pretraining and custom finetuning tasks
that result in high-accuracy predictions on standard benchmarks,
that were not seen during training. We validate model prediction
correctness using both compiler-generated labels and runtime infor-
mation. In comparison with conventional baseline binary analysis
approaches StackBERT performs favorably and predictions remain
stable across high optimization levels, different compiler toolchains,
and different architectures. We conduct experiments that indicate
StackBERT is able to learn instruction-set semantics completely
automatically through self-supervised pretraining and anticipate
our findings to be useful for a number of additional downstream
tasks in the future.
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