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Abstract

Incorporating higher-order optimization functions, such as Levenberg-Marquardt

(LM) have revealed better generalizable solutions for deep learning problems.

However, these higher-order optimization functions suffer from very large pro-

cessing time and training complexity especially as training data sets become

large, such as in multi-view classification problems, where finding global optima

is a very costly problem. To solve this issue, we develop a solution for LM-

enabled classification with, to the best of knowledge first-time implementation

of hinge loss, for multiview classification. Hinge loss allows the neural network

to converge faster and perform better than other loss functions such as logistic

or square loss rates.

We prove our method by experimenting with various multiclass classifica-

tion challenges of varying complexity and training data size. The empirical

results show the training time and accuracy rates achieved, highlighting how

our method outperforms in all cases, especially when training time is limited.

Our paper presents important results in the relationship between optimization

and loss functions and how these can impact deep learning problems.
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1. Introduction

Neural network research is creating an impact in many engineering and real-

world applications. Several methods are being explored that allow neural net-

works to train and converge faster to optimal solutions while achieving the best

accuracies. One methodology to improve prediction accuracy is to explore mul-5

tiple higher-order optimization functions, replacing single order Stochastic Gra-

dient Descent (SGD), but these come with higher computational and memory

costs. SGD has been favored as being computationally inexpensive, particu-

larly in large-scale classification problems [1][2] or where training data streams

in small samples, but its stochasticity introduces much uncertainty in the re-10

sults [3]. Other optimization approaches such as Conjugate Gradient (CG) and

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L- BFGS), are also sim-

ple to train and optimally converge, sometimes improving classification accuracy

[4]. In comparison to these approaches, in this paper, we focus on using a dif-

ferent higher-order optimization function, the Levenberg-Marquardt algorithm15

particularly due to the complexity of using quasi-Hessian matrix calculations in

classification problems.

Higher-order approaches have proven to be more robust in finding global op-

tima solutions [5]. However, these approaches suffer from very slow convergence

and get lost in parameter space too often [6]. One way to work around this issue20

is to vary the loss functions being used, to allow the neural networks to converge

faster. In their seminal work, Rosasco et al. [7] showed how loss functions can

impact statistical learning in both classification and regression problems. They

showed that when Ivanov type regularization is utilized, hinge and logistic loss

functions can lead to better convergence than classic square loss.25

Loss functions or error functions, like cross-entropy measures, are commonly

used to train neural networks. These become very complicated in multi-view

classification problems as it requires one-hot-shot encoding to parse the multi-

ple labels. Other examples, like mean square error only applies in regression
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problems where value differences are calculated to train the neural network.30

However, when loss functions are coupled with optimizers, in LM approaches,

one cannot use cross entropy-based loss functions because it is more suited to-

wards batch training (as in SGD). LM uses the Hessian matrix to calculate the

global optima and would benefit greatly using quadratic loss functions such as

Hinge loss [7]. In this paper, we investigate how this relationship of optimiza-35

tion and loss functions interplays, particularly when challenged in multi-view

classification problems.

The importance of loss functions has been discussed in different studies. In

[8], authors showed that defining good loss function may eliminate complex neu-

ral network structures and training requirement. They defined mutual channel40

loss and applied for one of the challenging computer vision problem, fine grained

image classification. The proposed loss function uses two channels to repre-

sent diversity and discriminality. Another approach focused on loss function

rather than neural network structure is [9]. Authors integrated a regulariza-

tion coefficient to the cross-entropy loss and named this loss function as Dual45

Cross-Entropy Loss. They aimed limiting probability of the misclassified data

points and eliminate gradient vanishing. They tested their method on Stanford

Cars-196 dataset and CIFAR-10 datasets and proved its efficiency.

Duan et al. [10] showed how SVMs can use hinge loss used for binary clas-

sification to be extended to multi-view classification problems. In [11], use of50

hinge loss-SGD with convolutional neural networks was proposed and tested

on German Traffic Sign Recognition Benchmark. The neural network structure

had 1162284 trainable parameters and reported results showed that proposed

method had achieved 99.65% accuracy. In [12], an improved Hinge loss was

proposed and used as loss function of feature selection approach. The proposed55

approach eliminated the difficulty of optimizing multiclass Hinge loss and spar-

sity regularization issue. Authors reported that with their methodology, they

achieved optimal convergence rate for smooth problems.

In this paper, we adopt this method and develop hinge loss with LM optimiz-

ers to develop solutions that can converge faster and produce optimal accuracy.60

3



Demonstrating this, to the best of our knowledge, first implementations, our

experiments in multi-view classification problems show that when the training

budget is low, hinge loss with LM can produce optimal accuracy quicker than

other combinations of optimizer and loss functions. Specifically, our contribu-

tions are,65

• We investigate the relationship of optimization and loss functions in multi-

classification problems of varying complexities.

• To the best of our knowledge, we develop and present the first-time im-

plementation of hinge loss with Levenberg-Marquardt optimizer, showing

comparisons with other loss functions.70

• We present experimental results in classification problems from OpenML,

showing that when the training budget is low, hinge loss and LM can

provide optimal results.

The rest of the paper has been organized as follows: Section 2 describes

the related work in optimizers and loss functions research. Section 3 presents75

the background on the preliminaries used in this paper, with Section 4 showing

how the solution is implemented. Section 5 presents the experiment details and

results obtained. Finally, section 6 discusses what our experiments reveal.

2. Related Work

Achieving faster convergence using a modification of the optimization algo-80

rithm has shown success [13]. Wilamowski et al. [14] modified the second-order

derivatives, like the Levenberg-Marquardt algorithm, to improve the quasi-

Hessian matrix calculations. Compared to SGD, methods using Gauss-Newton

can help learn global convergence by quadratic derivatives [15]. These ap-

proaches utilize inverse of Jacobian or Hessian matrices to speed up conver-85

gence finding global optima quickly. Conjugate Gradient can produce solu-

tions in n steps for n-dimensional unconstrained quadratic problems, however,
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it requires estimation of Hessian vector products affecting its performance on

the estimation approach. Another approach based on the Hessian matrix, L-

BFGS, presents memory challenges and can only work with limited data sets.90

The Levenberg-Marquardt is based on inverse curvature matrix calculation and

is efficient for small and medium-scaled problems but too expensive for large

datasets. LM also computes local minima of multivariate functions using an iter-

ative approach to solve nonlinear least squares functions, utilizing both gradient

descent and Gauss-Newton approaches. LM have become important optimiza-95

tion function in recent studies. In [16], LM was used for training multilayer

neural network architecture for probabilistic estimation method of brake pres-

sure. The performance results show that LM is an efficient way for training

MLP architectures. In [17], hybrid of LM and genetic algorithm was proposed

for optimized automatic spectrometer design and provided better performances100

than that of LM and genetic algorithm individually. LM algorithm is suitable

for improvements. In [18], damping factor, which is the key element of LM, was

optimized and tested for identifying temperature-dependent thermal conductiv-

ities. Authors showed that their proposed method increased the accuracy and

stability of LM.105

The role of loss functions in training deep learning models and optimizers can

impact the results. Rosasco et al. [7] showed how choosing a different loss func-

tion can impact the convergence rates. Their results showed that hinge loss was

able to achieve the best results and produce bounded results for classification

problems in theoretical settings. Berger [19] argued that using non-Bayesian110

methods such as minimax can lead to the idea of modeling loss functions as

regret in decision making and develop solutions similar to how humans make

decisions. Christoffersen et al. [20] showed that for any given model, the loss

function used in parameter estimation and model evaluation should be the same,

otherwise suboptimal parameter estimates may be affected. Hennig et al. [21]115

formalized the loss function as a mathematical decision problem, showing how

subjective decision problems are affected. However, in all of the above papers,

loss function and their impact are explained in theoretical settings.
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More recent work [22] shows a variety of loss functions in distribution learn-

ing and density estimation, showing that log loss can satisfy many desired cri-120

teria. On the other hand, recent works have taken regularization factor, which

provides smooth decision surface into account instead of changing loss function

types. Hence, regularization have become important in machine learning models

[23]. Arguably, Deming and Taleb [24] argued that one needs to pay more at-

tention to loss functions, designed specific to the problem, can produce effects in125

more manners other than classical smooth, continuous, symmetric, differentials

cases.

In this paper, we introduce the novel concept of using Hinge loss with the

LM optimization method for classification problems. Our proposed approach

takes advantage of LM for classification problems by using one of the efficient130

convex loss functions. Although LM is an efficient approach in itself, it does not

apply to cross-entropy function which is often generally used for classification

problems. On the other hand, Hinge loss is one of the efficient convex loss

functions SVM models have utilized [10]. In this study, we develop multi-view

classification problems as in SVM methods, but utilize optimization with the135

LM approach and compare results with other techniques.Main contributions of

this study are to investigate loss model efficiency and to utilize Hinge loss which

is generally used with SVM models, with LM optimization function. According

to the test results, it can be claimed that Hinge loss with LM is one of the

alternative approach to cross entropy.140

3. Background

In neural network training, optimization functions play key roles in deter-

mining the best-trained weight to minimize the network prediction accuracy.

The Levenberg-Marquardt algorithm provides a numerical solution to minimize

a non-linear function by combining the gradient descent and Gauss-Newton145

method. It uses a parameter to decide the step size, taking large values first

and then smaller values, to allow convergence from any initial state near-global
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minima. It is known as the most efficient training algorithm [25].

3.1. Stochastic Gradient Descent

Gradient descent is a common optimization algorithm for training neural150

networks. Based on the idea of updating the tunable parameters to minimize

the objective function, we use the learning rate to converge the loss function.

Let L be the objective function and w the model parameter. At every

timestep t the w is updated based on following equation,

wt = w(t−1) − α ∂L/∂w (1)

There are two types of gradient descent implementations: stochastic (SGD)155

and vanilla gradient descent. While vanilla gradient descent updates parame-

ters after processing the complete training dataset, stochastic gradient descent

allows us to update the parameters sequentially after each training sample. This

causes the vanilla gradient descent to converge slowly compared to stochastic

gradient descent. Despite this speed, stochastic gradient descent suffers from160

fluctuation and causes the learning rate to decrease very slowly. This prob-

lem can be resolved using momentum techniques as it uses the past parameter

updates to inform the current decisions, thereby reducing the fluctuations. If

parameter updates of two sequential timesteps are in similar directions, the mo-

mentum increases and decreases the updates. Examples of these include Nes-165

terov Accelerated Gradient, and others using adaptive learning rates such as

Adagrad, Adadelta, RMSprop, and Adam. Comparative studies have revealed

that Adadelta, Adagrad, and RMSprop approaches provide the best conver-

gence rates [26]. The algorithms of compared optimizers Conjugate Gradient

and BFGS are given in Appendix section. The focused approaches such as170

Levenberg-Marquardt, Hinge Loss are discussed in further subsections.

3.2. Levenberg-Marquardt

Both, SGD and CG are first-order approaches, that give impressive results

in classification challenges [27]. Levenberg-Marquardt (LM) is an optimization
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method for solving the sum of squares of non-linear functions. It is a combina-175

tion of gradient descent and the Gauss-Newton method, starting with gradient

descent and as it comes close to the solution, like a Gauss-Newton method, us-

ing a damping factor. While larger damping factors result in gradient descent

behavior, small damping factor lead to Gauss-Newton method convergence.

Let d be a target value vector for m data points and y be the output vector180

of the fitting function, L is defined as:

L =
m∑

j=1

(dj − yj)2 (2)

According to the gradient descent approach, the update is as,

∆wt = αJTW (d− y) (3)

where J denotes Jacobian matrix of ∂y
∂wt

and W is the weight vector.

According to the Gauss-Newton approach, the update is as,

∆wt =
(
JTWJ

)−1
JTW (d− y) (4)

Since LM combines these methods, the update rule is,185

∆wt =
(
JTWJ + λI

)−1
JTW (d− y) (5)

where I denotes the identity matrix and λ represents the damping factor. If

the new parameter results in lower errors than previous ones, the new parameter

values are accepted and λ is decreased. Otherwise, the new parameter set is

rejected and λ value is increased [28].

3.2.1. LM in classification problems:190

LM is an optimization algorithm that works with a squared loss function.

For classification problems, the most commonly used loss functions are cross-

entropy and even squared loss function. One may convert the classification

problem into a regression problem. This conversion requires one-hot encoding

as shown in Algorithm 1.195
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Algorithm 1: LM in Classification Problems:

Apply one-hot encoding to the classes.

Calculate the output values of the neural network.

Calculate loss function by applying one of the methods given above.

Calculate the update on weights applying the LM approach.

Apply updates to the weights.

With N classes, there should be N outputs whose values are between {0 or

1} or {0.1 or 0.9}. Using {0.1 or 0.9} avoids getting stuck in neuron problems.

These are summarized in the next section as,

• Sum of the squared distance of all outputs (opt 1).

• Squared distance of desired output (opt 2).200

• Squared distance of predicted output (opt 3).

• Sum of the squared distance of both desired and predicted outputs (opt4).

3.3. Loss Functions

3.3.1. Squared Loss function or opt1:

When the squared loss function is chosen for classification problems, it is205

defined as a sum of square of all the output values (Eq. 6).

loss =
N∑

j=1

(dj − tj)2 (6)

where N is number of classes, dj represents desired output value, and tj

represents predicted value for jth class. We call this opt1 in this study.

3.3.2. Variations of Squared Loss function or opt2, opt3, opt4:

Other variations of the squared loss function are also used for improving210

classification training. For example, using squared distance of desired output as
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opt2 (Eq. 7), squared distance of predicted output as opt3 (Eq. 8), or the sum

of squared distance of both desired and predicted outputs as opt4 (Eq. 9).

loss = (dj − tj)2 (7)

where jth class is the correct class, dj represents desired output value for correct

class, and tj represents predicted value for the correct class.215

loss = (di − ti)2 (8)

where ith class is the predicted class, di represents desired output value for

predicted class, and ti represents predicted value for chosen class.

loss = (dj − tj)2 + (di − ti)2 (9)

where ith class is the predicted class, di represents desired output value for

predicted class, and ti represents predicted value for chosen class and jth class

is the correct class, dj represents desired output value for correct class, and tj220

represents predicted value for the correct class.

3.3.3. Hinge Loss:

Hinge loss is introduced for maximum margin classification problems such

for example in Support Vector Machines [10]. Assuming that desired outputs

are (-1 or 1), hinge loss is defined as,225

hl = max (0, 1− d · t) (10)

where d is desired value and t is the predicted value. Since hinge loss is non-

differentiable, we use a smoothed version to be coupled with optimization func-

tions. One of the frequently used variations of this is the squared hinge loss,

hl2 = (max (0, 1− d · t))2 (11)

For multi-view classification problems, hinge loss variations can be defined,

hl = max (0, 1 + (wtx− wdx)) (12)
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where wtx and wdx are model parameters.230

3.4. LM and its Relationship with Loss functions

LM has been utilized with SVMs to develop improved accuracy of classi-

fication problems. The technique, however, cannot be used with many forms

of cross-entropy or log-losses which are common approaches in training neural

networks [29]. This is because of the limitations of the search space in how235

LM computes its convergences. The Jacobian matrix becomes too huge, re-

quiring a lot of memory and the cross-entropy cannot compute optimal weight

approximations.

On the other hand, hinge loss is based on solving a convex problem that

can provide innovative solutions to the problem of the LM approach. Since on240

its own hinge loss is non-differentiable, we need to calculate subgradients to

efficiently use it. Using the squared hinge loss function with l2-regularization,

the challenge is converted into a least square problem, which can make it easy

to use LM as a solver. This can be combined with multi-view classification, Eq.

13.245

L = λ||w||22 +max (0, 1− (wtx− wdx))
2

(13)

4. Proposed Approach

The proposed solution utilizes squared hinge loss function in a multilayer

neural network using semi-linear hidden units.

Let d be a target value ε 0,1 and y be the output of the sigmoid function, L

is defined as in 14:250

L = λ||w||22 +max (0, 1− (d− y))
2

(14)

The λ parameter plays critical role for convergence. The value of the λ

determines the flexibility of the convergence. Flexibility increases the value of

w. To minimize the loss function, w should be small values. If λ is zero, the

model will be least squares. The w obtained with least square will be a scale

11



factor and it may not be solution for many problems. On the other hand, large255

λ values cause w = 0 which is also not a solution. Therefore, choosing optimal

λ is critical. There are different approaches to determine best regularization

parameter [30]. One of those studies uses linear combination of different ranker

scores which represent different values of λ. Ranking provides solution to re-

gression problems but it assigns labels y to the values x which is element of260

the input space. Ranking does not deal with the value of y, it deals with the

relative ranks of the elements x. Authors took the advantage of ranking method

to decide regularization parameter in [31]. They showed the advantage using

linear functional strategy ranking algorithm over a fixed regularization param-

eters with experimental examples [31]. In this study, we applied grid search to265

find optimal λ. Applying swarm based approaches and linear functional strat-

egy are aimed as future work. One limitation of using hinge loss is to have a

linear activation function in the hidden units. Here, ReLU can be considered as

semi-linear functions that eliminate these negative values. Another limitation of

the proposed approach is that hinge loss is appropriate for binary classification270

problems. To solve this problem, SVM’s multi-view solutions such as OneV-

sOne (OVO), OneVsAll (OVA) are adopted. OVO approach creates pairs from

classes, iterates over all combinations and applies voting system at the end. On

the other hand, OVA approach iterates N times where N is the number of class

and each time one class is chosen as opponent of all other classes problem has.275

Although SVM is simulated for the proposed solution, the main difference

between them is that while SVM output is only {0, 1}, in our approach the

output is between and including (0,1).

5. Experiment

We investigated the performance of optimizer and loss functions. For multi-280

class problems, a squared loss can be defined in different ways. Four different

variations were used - a sum of the squared distance of all outputs (opt1),

squared distance of desired output (opt2), squared distance of predicted output

12



Algorithm 2: Proposed Approach:

if The problem is multiclass then

Choose OVO or OVA methodology.

Create sub binary problems according to the chosen methodology.

end if

for Each binary problems: do

Assign 0.9 or 1 to the desired value to the output neuron representing the

correct class and 0.1 or 0 to another output neuron.

Calculate the output values of the neural network.

Calculate loss function shown in Eq. 14.

Calculate the update on weights applying the LM approach.

Apply updates to the weights.

end for

(opt3), and a sum of the squared distance of both desired and predicted outputs

(opt4). These approaches are compared with the cross-entropy loss function285

with the SGD optimizer and the proposed approach.

5.1. Datasets and Experimental Setup

In this study, we compared performances of hinge loss utilized, and vari-

ations of squared error loss function utilized optimization functions. Those

optimization functions are conjugate gradient, LBFGS, and LM. Experiments290

are performed on five datasets obtained from openML. Small, medium, and

large-sized datasets were chosen with details given in Table 1. We normalize

the data set using 70% for training and 30% as test data. Additionally, to ensure

consistency, the same seed value is used.

MLP architecture used: We use the architecture, Input Layer, Hidden295

Layer with 50 neurons and ReLU activation, Hidden Layer with 35 neurons,

and ReLU activation, Sigmoid Layer for output. The learning rate was chosen

as 0.01. For the cross-entropy tests, the momentum technique was applied with

a momentum value of 0.99, using the Nesterov strategy.
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Table 1: Details of the Architecture - Classification tasks.

Iris Glass Vehicle Abalone PenDigit Mnist IMDB

Input 4 9 18 8 16 784 50

NN architecture 50-35-3 50-35-6 50-35-4 50-35-28 50-35-2 200-70-10 50-35-2

Size Small Small Medium Small Small Large Large

Features 4 9 18 8 16 784 50

Training data set 105 150 7695 593 2924 60000 25000

Test data set 35 64 3297 253 1253 10000 25000

Classes/output 3 6 4 28 2 10 2

Variations of squared loss function are labeled opt1 - opt4. opt1: sum300

of squared distance between target and output of the model. opt2: squared

distance between target and output of target neurons. opt3: squared distance

between the value of output neuron and the target value of output neurons.

opt4: sum of the squared distance between target output and an output value

of the target node and model output value and value of a related node.305

5.2. Simulation Results

The accuracy results are summarized in Tables 2, 3. The loss performances

of the various optimization functions are shown in Figures 1 - 7.

It is observed with the different squared loss functions, the predicted output

(opt3) provides the worst results in general. Here, the optimizer tries to decrease310

the value of incorrect classes, not considering the actual output, leading to

incorrect assumptions of the winning classes. However, Figures 6, 7 show that

it performs better for larger datasets and models. Opt4 provides some better

results, using two objectives - while it increases the output value of the correct

class, it decreases the output of the winner. Overall, with increased objectives315

opt1, obtains worse results for overall accuracy.

When opt1 results are compared to cross-entropy results, there is a dramatic
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Figure 1: Abalone.

Figure 2: Glass.
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Figure 3: Iris.

Figure 4: PenDigit.
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Figure 5: Vehicle.

Figure 6: IMDB.
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Figure 7: MNIST.

decrease in model accuracy. It is also observed that when the number of classes

increases, the decrease in accuracy becomes more dramatic.

For some datasets such as PenDigit and Vehicle, most of the approaches320

fluctuated until epoch 48 or 49. For those datasets algorithms ran 5 more epochs

and decreases in fluctuation frequencies were observed. To provide consistency,

Figures are cropped at fiftieth epoch.

Using Levenberg-Marquardt as Optimizer: Although it is an efficient

optimizer utilizing second-order derivatives, for classification problems takes a325

long time and may cause reductions inaccuracy. The reason behind this is

that LM is directly applied to MSE and applying it to classification problems

requires additional efforts. Moreover, it is known that LM is utilized to solve

SVM problems with some modifications. If the squared hinge loss function with

l2-regularization is used for classification purposes, the problem is converted330

into a least square problem, allowing one to use LM as a solver.

The multiclass Hinge loss function provides the closest results to cross-

entropy results. Performances of different optimization functions utilizing the

18



Table 2: Final accuracy results (shown in (%)) across all loss and optimizer functions combi-

nations after training for 50 epochs.

Loss Functions CrossEntropy opt1 opt2 opt3 opt4

with Optimizer SGD SGD LM LM LM

Data set

Iris 95.45 45.45 51.11 35.55 62.22

Glass 67.74 9.68 30.77 8.88 46.15

PenDigit 89.62 65.88 78.83 57.3 64.9

Vehicle 27.27 14.88 20.85 14.88 26.37

Abalone 31.83 1.17 28.93 1.17 29.52

Mnist 98.2 82.9 79.6 67.5 71.36

IMDB 87.9 48.54 57.4 26.4 52.65

Hinge loss function are compared in Table 3. This table aims to answer two

research questions we have. First one is which Hinge Loss - Optimizer variation335

will catch the baseline Cross Entropy results, second one is which optimizer is

more beneficial for using with Hinge Loss. According to the test results, LM and

SGD performances are very close to cross-entropy results. Classification results

of PenDigit and Vehicle datasets are better than cross-entropy classifications.

It is also proved that Hinge Loss-LM combination performed better than Hinge340

Loss -SGD variation for larger data sets. Moreover, the Hinge loss function

provides faster convergence than cross-entropy and other MSE options.

Computational time requirements for Hinge loss utilized methods are given

in Table 4. All tests were run on the same hardware architecture. Com-

putational time was measured by utilizing time.process time() function from345

Python’s time library.

According to the Table 4, while LBFGS takes a quite a long time, SGD takes

the least time. LM takes more time than SGD. However, computational times

given in Table 4 show time need for 50 epoch and for most of the datasets LM

converges to optimal values before 50 epoch. Since LM converges before SGD,350
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Table 3: Final accuracy results (shown in (%)) across all loss and optimizer functions combi-

nations after training for 50 epochs.

Loss Functions Hinge-L2 Hinge-L2 Hinge-L2 Hinge-L2

with Optimizer SGD Conjugate LBFGS LM

Data set

Iris 77.45 43.27 62.73 75.55

Glass 62.74 23.68 35.77 66.15

PenDigit 93.62 74.46 78.83 89.46

Vehicle 25.2 12.66 14.85 31.27

Abalone 31.83 5.97 31.83 31.83

Mnist 70.42 75.56 82.34 97.34

IMDB 45.28 47.34 51.34 86.45

the time requirement will be the same or less. The main reason behind LM’s time

requirement is that time requirement for Hessian calculation is proportional to

both number of classes and the number of parameters defined in neural network

architecture.

6. Conclusions355

In this study, the applicability of hinge loss and LM to classification problems

are analyzed.

In this paper, the Hinge loss function is converted to the squared multiclass

Hinge loss function, with l2-regularization added to it. All the MSE options and

new forms of the multiclass squared hinge loss function with l2-regularization360

were implemented and compared with a cross-entropy loss function. Moreover,

squared hinge loss function with l2-regularization is applied to other optimiza-

tion functions. According to the test results, while opt3 and opt1 perform worse,

opt4 was the optimal solution for applying MSE to classification problems. Mul-

ticlass Hinge loss function with l2 regularization provided the closest results to365

cross-entropy results. Moreover, the squared multiclass Hinge loss function with
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Table 4: Computational time comparison (sec) for 50 epochs training

Loss Functions Hinge-L2 Hinge-L2 Hinge-L2 Hinge-L2

with Optimizer SGD Conjugate LBFGS LM

Data set

Iris 0.00194 0.0087 0.127 0.00573

Glass 0.00453 0.0675 0.189 0.167

PenDigit 0.245 2.453 16.78 1.976

Vehicle 1.687 5.674 25.46 12.34

Abalone 0.00786 0.0885 0.276 0.0674

Mnist 196.645 588.363 1087.463 323.234

IMDB 123.645 472.34 956.34 285.45

l2 regularization performed well with other optimization functions.

Our proposed approach investigates the relationships between optimization

and loss functions and how it affects the accuracy and training time of com-

plex problems. From the results, we can conclude that using Hinge loss (with370

LM) outperforms the much-favored cross-entropy (with SGD), by reaching op-

timal loss function very quickly in the same computational cost of the training

epochs. However, when trained for longer, such as 50 epochs, we found that

cross-entropy can produce much better accuracy results. The hinge loss function

converges faster than other loss functions. It is also applicable to other opti-375

mization functions. In terms of computation, the Hessian function takes much

longer than the other simple order optimization functions. But with the added

advantage of taking lesser training epochs to reach equilibrium, it warrants fur-

ther research in investigating how higher-order Hessian matrix calculations can

be made quickly to improve the performance of these techniques. Furthermore,380

in future experiments, we will analyze Levenberg-Marquardt’s performance in

more complex neural network architectures such as in problems of reinforce-

ment learning to determine the convergence properties of the algorithms and its

comparison with more commonly used optimization and loss approaches.
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Contribution and novelty of this work can be summarized as follows: in-385

vestigating the effect of loss function calculation types for multi-classes, use of

Hinge loss and l2-regularization with different optimization functions, investi-

gating applicability of LM-Hinge loss on multi-class classification problems and

its performance. According to the test performances, although computational

complexity of LM is higher than that of SGD, LM-Hinge loss combination con-390

verges to optimum before SGD converges and can provide almost the same

classification results.
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Appendix A. Conjugate Gradient

As discussed above, using previous parameter updates is a way to avoid505

fluctuations. However, we can also use equations to inform when to perform

updates as

∆wt = −∂L/(∂wt ) + β∆w(t−1) (A.1)

Conjugate gradient works on finding an optimal coefficient β to prevent fluc-

tuation. There are several methods for calculating the coefficient β in literature

such as Fletcher-Rieves, Polak–Ribière, Hestenes-Stiefel, and Dai–Yuan. The510

formula below shows the β calculation of the methods, respectively.

β =
∂L/(∂wt )

T
(∂L/(∂wt ))

(∂L/(∂wt−1 ))
T

(∂L/(∂wt−1 ))
(A.2)

β =
∂L/(∂wt )

T
(∂L/(∂wt )− ∂L/(∂wt−1 ))

(∂L/(∂wt−1 ))
T

(∂L/(∂wt−1 ))
(A.3)

β =
∂L/(∂wt )

T
(∂L/(∂wt )− ∂L/(∂wt−1 ))

(∆w(t− 1))
T

(∂L/(∂wt )− ∂L/(∂wt−1 ))
(A.4)

β =
∂L/(∂wt )

T
∂L/(∂wt )

(∆w(t− 1))
T

(∂L/(∂wt )− ∂L/(∂wt−1 ))
(A.5)

Although CG provides fast convergence, it often results in poor performance

[32].
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Appendix B. Broyden-Fletcher-Goldfarb-Shanno Algorithm

Quasi-Newton methods approximate the Hessian value to solve unconstrained515

optimization problems. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

is one of the efficient Quasi-Newton approaches [33].

Let L be a continuously twice differentiable loss function, an approximation

of the inverse Hessian matrix as given below.

Ht+1 = Ht −
Htsts

T
t Ht

sTt Htst
+
yty

T
t

sTt yt
(B.1)

st = wt+1 − wt (B.2)

yt = (∂L/∂wt+1)− (∂L/∂wt) (B.3)

Parameter update are as follows,520

∆wt = HT
t (∂L/∂wt) (B.4)

wt+1 = wt + α∆wt (B.5)
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