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Primate Frontal Eye Field Neurons Selectively Signal the Reward 
Value of Prior Actions

Xiaomo Chen, Marc Zirnsak, Gabriel M. Vega, Tirin Moore
Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of 
Medicine, Stanford, CA 94305, USA.

Abstract

The consequences of individual actions are typically unknown until well after they are executed. 

This fact necessitates a mechanism that bridges delays between specific actions and reward 

outcomes. We looked for the presence of such a mechanism in the post-movement activity of 

neurons in the frontal eye field (FEF), a visuomotor area in prefrontal cortex. Monkeys performed 

an oculomotor gamble task in which they made eye movements to different locations associated 

with dynamically varying reward outcomes. Behavioral data showed that monkeys tracked reward 

history and made choices according to their own risk preferences. Consistent with previous 

studies, we observed that the activity of FEF neurons is correlated with the expected reward value 

of different eye movements before a target appears. Moreover, we observed that the activity of 

FEF neurons continued to signal the direction of eye movements, the expected reward value, and 

their interaction well after the movements were completed and when targets were no longer within 

the neuronal response field. In addition, this post-movement information was also observed in 

local field potentials, particularly in low-frequency bands. These results show that neural signals 

of prior actions and expected reward value persist across delays between those actions and their 

experienced outcomes. These memory traces may serve a role in reward-based learning in which 

subjects need to learn actions predicting delayed reward.
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1. Introduction

A basic fact of learned behaviors is that they are generally shaped by their experienced 

consequences; behaviors preceding aversive events tend to diminish in frequency, whereas 

those preceding reward tend to be repeated. The neural mechanisms of reinforcement 
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learning have been extensively studied at multiple levels for several decades (Lee et al., 

2012; Neftci and Averbeck, 2019; Soltani et al., 2017), yet among the more significant 

lingering questions is how behaviors are linked to their ensuing consequences when the 

latter does not immediately follow the former. Neural signals that command specific motor 

behaviors, such as eye movements, generally operate on a timescale of tens of milliseconds 

(Yarbus, 1967), yet in most circumstances, the rewarding or aversive consequences of those 

behaviors happen ona much longer timescale. This temporal discrepancy has been referred 

to as the ‘distal reward problem’ (Hull, 1943; Izhikevich, 2007) or the ‘credit assignment 

problem’(Barto et al., 1983; Minsky, 1961; Sutton and Barto, 1998). For example, upon 

scoring a point in a tennis match, the brain needs to associate that type of reward with the 

specific movements that preceded it. Among the mechanisms proposed to address this 

problem is a signal that persists long enough to bridge the time between specific behaviors 

and their consequences (Drew and Abbott, 2006; Sutton and Barto, 1998). Yet, evidence of 

such a mechanism has thus far been limited (Gerstner et al., 2018; Lee et al., 2012), 

particularly at the level of spiking neuronal activity.

In humans and other primates, visually guided behavior typically begins with the selection 

of visual stimuli within a cluttered visual scene and the serial foveation of particular items 

via saccadic eye movements. Visually guided eye movements are the primary means by 

which information is gathered from the environment. Each movement transforms previously 

unresolvable details in the visual periphery into resolvable percepts at the fovea. In this 

behavior, the fovea is a limited resource, and the value of the information obtained from eye 

movements is typically unknown until well after they are performed. Thus, one might 

consider neurons involved in visually guided eye movements as candidates for conveying 

information about the value of movements even after those movements are carried out. A 

number of previous studies have demonstrated that neurons within the cortical eye fields of 

primates, including the frontal eye field (FEF), signal the reward value of upcoming saccadic 

eye movements (Chen and Stuphorn, 2015; Ding and Hikosaka, 2006; Glaser et al., 2016; 

Roesch and Olson, 2003; So and Stuphorn, 2010). Yet, it remains unclear if the value of 

prior movements is likewise encoded.

To address this question, we studied the activity of FEF neurons in a behavioral task that 

allowed us to measure value signals well after targeting eye movements. We first use 

prospect theory (Chen and Stuphorn, 2018; Glimcher and Fehr, 2013; Tversky and 

Kahneman, 1979) to estimate the subjective value of each reward option. We next show that 

the activity of FEF neurons conveys information both about the direction of prior 

movements and their corresponding reward value. This post-saccadic activity encodes the 

conjunction of prior movements and their subjective value and is different from the reward 

value representation before targeting eye movements. Lastly, we show that post-movement 

information was also observed in simultaneously recorded FEF LFPs, particularly in low-

frequency bands. These results suggest a potential role of the FEF in bridging the delays 

between specific eye movements and reward outcomes and in reinforcing the eye 

movements leading to rewarding consequences.
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2. Methods

All experimental procedures were in accordance with the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals, the Society for Neuroscience Guidelines and 

Policies, and Stanford University Animal Care and Use Committee. Two healthy male 

rhesus monkeys (Macaca mulatta, 17 and 16 kg), monkey J and monkey O, were used in 

these experiments.

2.1. General and Surgical Procedures

Surgery was conducted using aseptic techniques under general anesthesia (isoflurane) and 

analgesics were provided during postsurgical recovery. Each animal was surgically 

implanted with a titanium head post and a cylindrical titanium recording chamber (20 mm 

diameter) overlaying the arcuate sulcus. A craniotomy was then performed in the chambers 

on each animal, allowing access to the FEF.

2.2. Neurophysiological techniques

Recording sites within the FEF were identified by eliciting short-latency, fixed vector 

saccadic eye movements with trains (50–100ms) of biphasic current pulses ( ≤50 μA; 250 

Hz; 0.25 ms duration) as in previous studies (Bruce et al., 1985). Single-neuron and local 

field potential (LFP) recordings were obtained with 16 or 32-channel linear array electrodes 

with contacts spaced 150 μm apart (V and S-Probes, Plexon, Inc). Electrodes were lowered 

into the cortex using a hydraulic microdrive (Narishige International). Neural activity was 

measured against a local reference: a stainless guide tube located close to the electrode 

contacts. At the preamplifier stage, signals were processed with 0.5 Hz 1-pole high-pass and 

8 kHz 4-pole low-pass anti-aliasing Bessel filters, and then divided into two streams for the 

recording of LFPs and spiking activity. The stream used ultimately for LFP analysis was 

additionally amplified (×500–2000), processed by a 4-pole 200 Hz low-pass Bessel filter and 

sampled at 1000 Hz. No other filters were used in the analyses. The stream used for spike 

detection was processed by a 4-pole Bessel high-pass filter (300 Hz) a 2-pole Bessel low-

passed filter (6000 Hz), and was sampled at 40 kHz. Extracellular waveforms were classified 

as single neurons or multi-units using online-template-matching and subsequently confirmed 

using offline sorting (Plexon).

2.3. General behavioral techniques

During all behavioral measurements, eye position was monitored and stored at 1000 Hz, and 

a spatial resolution of ~0.05 degrees of visual angle (dva) (Eyelink 1000, SR Research). 

Task stimuli were presented on a display (Samsung 2233RZ, 120 Hz refresh rate, 1680 × 

1050 pixel resolution) positioned 28–30 cm in front of the animal.

2.4. Behavior task

Monkeys were trained on an oculomotor gamble task in which they made saccadic eye 

movements to targets with differing, delayed reward outcomes (Figure 1). The monkey first 

fixated on a central fixation point (0.5 dva diameter) on gray background (60 cd/m2) for a 

setinterval (900 ms). Fixation was enforced within a +/−1 dva error window. During this 

period, on 67% of trials, a texture background (~ 4% luminance contrast) appeared across 
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the entire display after 300 ms. Following the fixation interval, one target (force-choice 

trials) or two targets (free-choice trials) appeared on the display. The targets are 3 dva 

diameter white circles. They appeared at locations in the right, left or both hemifields, and 

target eccentricities varied between sessions from 5°–12°. Following a target presentation 

period of 800 ms, the central fixation point was turned off, and monkeys were free to make 

saccadic movements to one of the targets. After the saccade, fixation on the target was 

required for an additional 400–800ms (400 ms: four sessions; 600 ms: one session; 800 ms: 

six sessions), after which the upcoming reward amount was cued by the number of red dots 

appearing around the fixation (result onset). Juice reward was delivered following an 

additional 300 ms after reward onset.

Each behavioral block started with 20 forced-choice trials. In these trials, only one target 

appeared on the display. Monkeys made saccadic eye movements and learned different 

movement-reward contingencies at two different target locations. After the forced-choice 

block, monkeys performed 20–40 free-choice trials. These trials were used to assess the 

extent to which monkeys learned the movement-reward contingencies and to measure their 

preferences between different reward conditions. Overall, there were three possible reward 

conditions with varying quantities of a juice reward, a High-risk, a Low-risk, and a Sure 
condition. In the High-risk condition, monkeys had a 50% chance of receiving 4 drops of 

juice and a 50% chance of receiving 0 drops. In the Low-risk condition, monkeys had a 50% 

chance of receiving 3 drops of juice and a 50% chance of receiving 1 drop. In the Sure 

condition, monkeys always received 2 drops of juice. For all these reward outcomes, the 

average reward amounts were equal, but the variance in the amount differed between 

conditions. We used free-choice trials to analyze the monkeys’ subjective value for each 

reward condition. Forced-choice trials, in which all of the risk conditions and target 

directions were sufficiently sampled, were used for the neurophysiological analysis. Each 

experimental session consisted of a complete pairing of Sure, Low-risk, and High-risk trials 

across the two target locations without pairing identical risk conditions. This resulted in 6 

different pairings. Overall, there were 18 blocks, as each pair was repeated three times in a 

pseudo-random order.

2.3 Behavioral Analysis

We assumed a softmax decision function, where the probability of selecting the gamble was 

indicated by the difference of the subjective values of the two options:

ℎλ(ΔU) = 1
1 + e( − λ(ΔU))Eq (1)

where ΔU = U1 − U 2 gives the utility difference between gamble options, and λ is the 

softmax parameter that determines stochasticity in selection between the two options.

We used prospect theory to estimate subjective values of the two gamble options (Chen and 

Stuphorn, 2018; Hsu et al., 2009). Prospect theory is derived from classical expected value 

theory in economics and assumes that the subjective value of a gamble depends on the utility 

of the reward amount that can be earned, weighted by the probability of the particular 

outcome. The subjective value of the choice option o was calculated as follows:
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Uo = uρ V win_o × pwin_o + uρ V loss_o × ploss_o (2)

where uρ(V) is a power function to model the utility function, following previous research 

(Hsu et al., 2009; Lattimore et al., 1992):

uρ(V ) = V ρ (3)

Both humans and monkeys exhibit relatively accurate estimations of mid-range probability 

around 0.5 (Farashahi et al., 2018; Stauffer et al., 2015). We thus used pwin_i and ploss_i as an 

estimate of subjective probability.

2.5 Analysis of the Neural Activity

Data were analyzed using custom scripts written in MATLAB (The Mathworks, Inc), unless 

otherwise indicated. Spike times were converted to firing rate estimates by convolution with 

a causal 50 ms boxcar filter (Chandrasekaran et al., 2017) and then normalized across all 

trials using z-score normalization. Overall, we recorded 293 multi and single units with 

visual activity and 264 LFP channels. We focused our analyses on average neuronal activity 

and LFP power measured in the early target period [−300 to 49 ms] (pre-target period) and 

prior to the result onset, following the targeting eye movement [−300 to 49 ms] (post-

movement period). During both periods, the monkeys fixated on either the fixation point or 

the chosen target throughout the analysis period. These analysis windows were chosen to 

exclude or minimize the influence of transient visual responses. In addition, as we did not 

observe significant differences between effects measured with low contrast textured 

backgrounds and homogenous backgrounds during these time windows, all trials were 

combined in the analysis.

2.5.1 Linear regression analysis—Linear regression analysis was performed to 

quantify the influence of reward value on neuronal activity and LFP power. Trials were first 

separated according to the target locations. Next, average neural activity was regressed 

against the subjective value of reward options.

Ai = βo + β1 × Ui (4)

Where Ai is the average firing rate or the mean energy in a given LFP band on the ith trial, 

Ui is the subjective value of the reward option, β0 and β1 are regression coefficients.

2.5.2 Demixed principal component analysis (dPCA)—We used dPCA analysis to 

decompose population activity into different task components: condition-independent 

components, target direction components, subjective value components, and interactions 

components between target direction and subjective value. For the dPCA analysis, all 

neuronal activity across all sessions was used. Firing rates were down sampled into 10ms 

time bins. We performed regularized dPCA and decoding of classes as described in Kobak et 

al., 2016. Time periods in which classification accuracy exceeded all 100 shuffled decoding 

accuracies in at least 10 consecutive time bins were considered significant.
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2.5.3 Support Vector Machine (SVM) linear classifier—We used a linear support 

vector machine (SVM) classifiers (Chang and Lin, 2011) to quantify the information about 

movement direction and subjective value contained in the population of FEF neurons or 

LFPs in the pre-target period and the post-movement period. In decoding subjective value, 

for example, a classifier was trained on neural activity (pre-target or post-movement) to 

discriminate between reward outcome conditions (High, Low, and Sure) perdirection. Before 

training, spike counts for each neuronal recording were normalized across all stimulus 

conditions. All reported discrimination accuracies are based on five-fold cross-validation. 

Permutation tests (1000 repetitions) were used to determine whether the discrimination 

accuracy of a given neuronal recording was significantly greater than that expected by 

chance (discrimination performance of the classifier after label shuffling).

2.5.4 Power spectral density (PSD)—PSDs were calculated by Thomson’s multitaper 

method (Gregoriou et al., 2009; Jarvis and Mitra, 2001; Pesaran et al., 2008). Four 

orthogonal discrete prolate spheroidal (Slepian) sequences were used in the analysis. For 

both pre-target and post-movement period, we examined the 350 ms LFPs with 1000 Hz 

sampling rate. This resulted in a ~2.9 Hz frequency resolution. On each trial, spectra were 

converted to decibels, and were normalized across trials for each frequency using min-max 

normalization. Our analysis of LFPs focused on four frequency bands known to contain 

task-relevant information in the FEF, specifically the alpha band (8–12 Hz), the beta band 

(12–30 Hz), the low-gamma band (30–80 Hz), and the high-gamma band (80–150 Hz).

3. Results

3.1 Monkeys preferred risky choices

We trained two monkeys (O and J) to perform an oculomotor gamble task (Fig. 1). In the 

task, monkeys made saccadic eye movements to targets with differing, delayed reward 

outcomes. The task consisted of multiple blocks of two types of trials: forced-choice trials 

and free-choice trials. Each session started with a set of forced-choice trials in which 

monkeys learned the reward outcomes associated with each of the two target locations, one 

of which coincided with the response fields (RFs) of recorded FEF neurons. Three possible 

sets of reward conditions were associated with each location: a High-risk, a Low-risk, and a 

Sure condition. In the High-risk case, the monkey received 4 drops or 0 drops of juice with 

equal probability. In the Low-risk case, it received 3 drops or 1 drop of juice with equal 

probability, and in the Sure case, it always received 2 drops of juice. Thus, in each forced-

choice block, the outcomes always had the same average reward, but different reward 

variances (Fig.1B). Forced-choice trials were followed by a block of free-choice trials in 

which the two choice locations had the same reward outcomes as in the preceding forced-

choice trials. The free-choice trials were used to measure the monkey’s choice behavior, and 

always consisted of unequal pairings of risk (e.g. Sure and High-risk). Each experimental 

session consisted of a complete pairing of Sure, Low-risk and High-risk trials across the two 

target locations (Methods).

During free-choice trials, each monkey’s choice behavior was influenced both by reward 

history and the monkey’s risk preference. Consistent with previous work (Barraclough et al., 
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2004; Sugrue et al., 2004), reward history reliably influenced choice behavior. Both 

monkeys were more likely to repeat choosing the same option if they had won the gamble in 

the previous Low or High-risk trial (Fig. 2A) (2 × 2 repeated measures ANOVA, Monkey O: 

p = 10−3; Monkey J: p < 10−5). In addition, the monkey’s risk preference also had a 

significant effect on choice behavior. Rather than exhibiting a win-stay-lose-switch strategy, 

both monkeys were more likely to continue choosing the High-risk option, regardless of the 

previous reward outcome (Fig. 2A) (2 x 2 repeated measures ANOVA, Monkey O: p < 10−4; 

Monkey J: p < 10−4). We further quantified the monkeys’ choice behavior using prospect 

theory (Tversky and Kahneman, 1979) to obtain utility functions (Chen and Stuphorn, 2018; 

Hsu et al., 2009). We found that the utility functions for both monkeys were convex across 

experimental sessions (Monkey O:ρ = 1.76, p < 10−7; Monkey J:ρ = 1.99, p < 10−9  (Fig. 2B). 

The convexity of the utility functions reveals that both monkeys were risk-seeking, 

consistent with previous studies (Chen and Stuphorn, 2018; Farashahi et al., 2018; Kim et 

al., 2012; McCoy and Platt, 2005). Lastly, we estimated the subjective value of each choice 

option using the utility functions from each experimental session. For both monkeys, the 

higher risk options had larger subjective values (Fig. 2C). We next measured the 

representation of subjective value by FEF neurons during both the pre-target and post-

movement periods.

3.2 Neuronal activity in FEF correlates with subjective value during pre-target period

We measured the spiking activity from a total of 293 single and multi-unit recordings in the 

FEF using linear array micro-electrodes (Methods). We focused our analyses on neural 

activity measured during forced-choice trials in which all of the risk conditions and target 

directions were sufficiently sampled. We first examined whether FEF neuronal activity 

represented the subjective value associated with different target locations in the pre-target 

period. We found that activity differed across the different risk conditions; that is, FEF 

activity was modulated by subjective value. This modulation emerged prior to the 

appearance of the target and was present both when targets appeared inside and outside of 

the neuronal RF (Fig. 3A). Of the total 293 neuronal recordings, 28% (n = 82) exhibited 

individually significant effects of the target’s subjective value (Fig. 3B). Among those units, 

59% (n = 48) were significantly modulated by the subjective value of targets located inside 

of the RF, 70% (n = 57) were significantly modulated by the subjective value of targets 

located outside of the RF, and 28% (n = 23) were modulated by the subjective value of 

targets located outside of the RF, and 28% (n = 23) were modulated by subjective value of 

both. In addition, across the full population of recordings, activity was on average positively 

correlated with subjective value prior to the appearance of the target in the neuron’s RF (Fig. 

3C) βin = 0.02, p < 10−4 . In contrast, for target locations outside of the neuronal RF, activity 

was on average negatively correlated with subjective value βin = − 0.04, p < 10−9 . 

Correlation coefficients obtained from locations inside the RF (βvin) were negatively 

correlated with coefficients obtained from locations outside the RF field (βout) (p < 10−8). 

The pattern of observed modulation suggests that neuronal activity reflects the subjective 

value of the target. However, determining the influence of subjective value is difficult during 

the pre-target period because neuronal activity may also reflect other behavioral variables 

that covary with subjective value, variables such as the planning of eye movements (Bruce 
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and Goldberg, 1985; Glaser et al., 2016) and/or attentional deployment toward or away from 

the RF (Thompson et al., 2005). Thus, we turned the focus of our analysis to the post-

movement period, when only the anticipation of the reward outcome was a factor.

3.3 FEF neurons selectively signal subjective value of prior movements during the post-
movement period.

In our task, eye movements to each target were followed by a post-movement period (400 – 

800 ms), after which monkeys received feedback about the impending reward amount (Fig. 

1). During this period, maintenance of fixation on the target was highly stable, and neither 

monkey aborted any trials by breaking fixation (0% abort rate). This period allowed us to 

measure FEF activity after the monkey had shifted the target to the center of gaze and 

outside of the neuronal RF. During the post-movement period, the location of neuronal RFs 

no longer coincided with a behaviorally relevant stimulus, a relevant location, nor a 

movement plan regardless of whether the target had previously been inside or outside of the 

RF. Thus, this period allowed us to measure the extent to which FEF activity continued to 

signal the subjective value of the fixated target. Indeed, we found that during the post-

movement period, while the monkey fixated on the target, FEF activity continued to vary 

according to the target’s subjective value (Fig. 4A). The modulation by subjective value was 

evident both for trials in which targets had previously appeared inside and outside of the RF.

We examined the subjective value modulation during the post-movement period in the full 

population of 293 neuronal recordings (Fig. 4B). During this period, 26% (n = 77) exhibited 

individually significant effects of the target’s subjective value. Of those neurons, 53% (n = 

41) were significantly modulated by the subjective value of targets that had previously 

appeared inside of the RF. A similar proportion of neurons, 61% (n = 47), was significantly 

modulated by the subjective value of targets that had appeared outside of the RF, and 14% (n 

= 11) were modulated by subjective value of targets appearing at either location. Similar to 

the pre-target period, across the full population of recordings, activity was on average 

positively correlated with subjective value when the target had appeared inside of the RF 

βin = 0.02, p < 10−3 . For targets that had appeared outside of the RF, however, activity was 

also positively correlated with subjective value βin = 0.03, p < 10−8 . Thus, subjective value 

was signaled by FEF neurons well after targeting eye movements, whether or not the target 

had previously been inside of the RF. Yet, the pattern of modulation differed from that 

observed during the pre-target period, when activity was negatively correlated with 

subjective value of non-RF targets (Fig. 3B). Moreover, in contrast to the pre-target period, 

where subjective value correlations during inside and outside RF trials were negatively 

correlated with one another (Fig. 3B), they were positively correlated during the post-

movement period (p < 10−3)(Fig. 4B).

In spite of the overall positive correlation between activity and subjective value, individual 

FEF neurons appeared to exhibit a heterogeneous pattern of modulation both by subjective 

value and eye-movement direction (Fig. 4A). That is, FEF neurons showed mixed selectivity 

to the different task components (Fusi et al., 2016; Rigotti et al., 2013). In the post-

movement period, many neurons were selective to the saccadic direction, the target’s 

subjective value, or both. We therefore applied dimensionality reduction to reduce the 
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population activity to task feature-dependent components that summarize most of the 

neuronal activity patterns (Cunningham and Byron, 2014; Kobak et al., 2016) (Methods). 

These components revealed a simpler population-level structure underlying individual 

neuronal firing rates. Specifically, we found that the population activity was captured by a 

single condition-invariant feature and was significantly modulated by 3 condition-variant 

features (Fig. 5A). Among these components, the condition-invariant component captured 

the temporal profile of activity largely identically across the different conditions and 

explained 55% of the total variance of the population firing rate. Among the condition-

variant components, the risk condition component (High, Low, and Sure) correlated with 

subjective value, and explained 12% of the variance. In addition, direction of prior 

movement explained 22% of the variance in the post-movement activity. Lastly, an 

interaction component captured the interaction between the target’s subjective value and the 

prior movement direction and explained 11% of the variance in population activity. This is in 

contrast with the peri-target period (Fig. S1), where population activity was significantly 

modulated by target direction (38% of variance) and the interaction between the target’s 

subjective value and target direction (11% of variance), but not subjective value (6% of 

variance).

To quantify the information provided by each of the task components, we measured the 

performance of a linear classifier in discriminating between different subjective target values 

and prior movement directions using the trial-by-trial responses from all 293 neuronal 

recordings (Fig. 5B). Consistent with the dPCA analysis, the classifier accurately decoded 

both the prior saccade direction and the risk condition, exceeding the level expected by 

chance (Mean accuracy across 6 conditions: 61%; chance level = 17%). In addition, the 

classifier made more errors when decoding different risk conditions within a certain 

movement direction than between movement directions. We further assessed the classifier 

performance in 20-ms intervals to examine how task component information evolved 

throughout the post-movement period. We found that accuracy in decoding the direction of 

the prior movement was robust and stable throughout the post-movement period (Mean 

accuracy: 93%). Decoding performance for risk conditions exceeding chance levels (~ 33%) 

both for trials on which the target had appeared inside the RF (Mean accuracy: 55%) or 

outside the RF (Mean accuracy: 51%). Furthermore, for both conditions, decoding accuracy 

increased toward the result onset (Fig. 5C). This pattern was consistent for both monkeys 

(Fig. S2A and B)

3.4 FEF local field potentials (LFPs) selectively signal subjective value of prior movement 
during post-movement period.

Lastly, we examined the modulation of LFP by subjective value modulation on LFPs 

inrecorded FEF LFPs (n = 264) during the post-movement period. First, we found that LFP 

responses in all frequency bands represented the direction of prior movements at both the 

population level and in individual recordings (Fig. 6A and B). Among all frequency bands, 

activity in the beta band from 58% of recording sites significantly signaled the direction of 

the prior movement as quantified by a linear classifier (see methods). As a control, LFP 

responses during the pre-target period showed almost no selectivity to the upcoming 

movement direction (Fig. S3). In addition, we observed that both low-frequency (alpha and 
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beta bands) and high-gamma band LFP responses were modulated by the subjective value of 

targets that had appeared inside and outside of the RF (Fig. 6A and B, see Methods). These 

effects shared the same polarity across either target locations (Fig. 6C). Specifically, low-

frequency LFP responses were negatively correlated with subjective value of the reward 

condition while the high-gamma band LFP responses were positively correlated with 

subjective value of targets (Fig. 6C). Notably, across all frequency bands, the majority of 

beta band LFP responses were significantly modulated by subjective value (In RF: 56%; Out 

RF: 52%) (Fig. 6B).

Discussion

Our results show that the activity of FEF neurons continues to signal the subjective value of 

targeted stimuli as well as the direction of prior eye movements even after those movements 

are completed and when the targets of movements are no longer positioned inside of the RF. 

Monkeys made eye movements to targets of varying risk magnitude and exhibited a 

preference for the higher-risk-targets. Consistent with previous studies, during the pre-target 

period, FEF activity varied with the subjective value of target locations. However, FEF 

activity during this period is known to depend heavily on the preparation of eye movements 

(Goldberg and Bushnell, 1981), as well as on attentional deployment (Armstrong et al., 

2009; Kastner et al., 1999; Thompson et al., 2005), potentially accounting for the apparent 

modulation by subjective value. Thus, we examined neuronal activity during the period after 

movement completion in a task that delayed the reward outcomes of those movements. We 

found that the activity of individual FEF neurons continued to signal the subjective value of 

target stimuli during the post-movement period when the targets had appeared inside or 

never appeared in the neuronal RF. Population level analyses revealed that information about 

subjective value and prior movement direction was robust throughout the post-movement 

period in FEF neuronal activities. Furthermore, we found that this conjunction of prior 

movement direction and subjective value information was also abundant in low-frequency 

LFPs in around 55% of the recording sites. These results suggest a potential role of FEF in 

reinforcing the eye movements leading to rewarding consequences.

A collection of past studies shows that signals related to an animal’s previous choices have 

been observed in a number of primate brain areas. These areas include the prefrontal cortex, 

posterior parietal, and cingulate cortex (Akrami et al., 2018; Barraclough et al., 2004; 

Fecteau and Munoz, 2003; Genovesio et al., 2006; Hwang et al., 2017; Sugrue et al., 2004). 

However, it is unclear how history of choice and reward can conjointly shape the neuronal 

activity and behavior in the next trial, especially when the reward does not immediately 

follow the action that leads to it. In reinforcement learning theory, this temporal credit 

assignment problem can be resolved in at least two ways. The first is to broaden the 

temporal footprint of spike-timing-dependent plasticity (STDP) by neuromodulators such as 

dopamine, acetylcholine, serotonin, or norepinephrine (Gerstner et al., 2018). Evidence 

suggests that the 10-msec timescale of conventional STDP may be moderately extended by 

neuromodulators (Bittner et al., 2017; Gerstner et al., 2018; He et al., 2015; Pawlak et al., 

2010; Yagishita et al., 2014). A complementary solution to this problem is to prolong the 

neural signals, in the form of elevated firing rates, that need to be associated by STDP. These 

neural signals are a form of memory trace activity that bridges the temporal gaps that 
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separate action and reward under typical behavioral conditions. Specifically, they represent 

information about the immediately preceding movement that can be used as part of a 

feedback-driven learning process to adjust future decisions based on a comparison between 

the expected and actual outcome of prior movements (Sutton and Barto, 1998). Such signals 

have been identified in several previous studies in frontal areas (Ding and Gold, 2012; Lee et 

al., 2012; So and Stuphorn, 2012; Tsujimoto et al., 2010; Tsunada et al., 2019). Our results 

provide an important complement to previous studies and demonstrate the existence of such 

signals in the FEF in learning movement-reward contingencies. FEF is an important 

interface cortical area between frontal regions and posterior visual cortex (Stanton et al., 

1995) and oculomotor structures (Stanton et al., 1988). Its unique role in both saccadic target 

selection and in the deployment of visual spatial attention suggest that the memory 

representation we report here may also be useful in updating other forms of sensorimotor 

control such as altering attentional priorities or movement probabilities. Future studies will 

be needed to test this hypothesis directly.

We observed that post-movement memory information exists not only in the activity of FEF 

neurons but also in the majority of low-frequency band LFP responses; particularly in the 

beta band activity. During the post-movement period, the distributions of both prior-

movement and subjective value information across the FEF LFP spectrum were similar to 

one another. In contrast, the distribution of reward-movement information across LFP 

spectra observed here wasnotably different from the distributions containing visual spatial 

information across LFP spectrum observed previously (Chen et al., 2018, 2020). Beta band 

FEF LFPs havebeen shown to contain the lowest visual spatial information compared to 

other frequency bands. Low-frequency frontal LFPs (alpha and beta bands) have been 

associated both with working memory (Bastos et al., 2018; Lundqvist et al., 2016, 2018; 

Salazar et al., 2012) and motor planning (Chen et al., 2010; Donoghue et al., 1998; Feingold 

et al., 2015). This low-frequency activity may be generated by the interaction between 

pyramidal neurons and local interneurons within the FEF with an excitatory drive provided 

by thalamocortical (Ketz et al., 2015) and/or basal ganglia (Chatham and Badre, 2015) 

loops. It may also reflect a differential dopaminergic modulation of NMDA currents in 

excitatory and inhibitory neurons (Brunel and Wang, 2001; Durstewitz et al., 2000). 

Previous studies suggest that this low-frequency frontal activity may play an important role 

in modulating working memory, and in forming neural ensembles (Kopell et al., 2011; 

Miller et al., 2018). Consistent with that, the reduced beta power observed in our study 

during the high subjective value condition may reflect a reduced inhibition that facilitates the 

persistence of post-movement memory delay spiking activity in the FEF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• FEF neuronal activity correlated with expected reward value of different 

movements in an oculomotor gamble task.

• Movement direction and expected reward signals persisted after movements 

were completed.

• Post-movement signals were also present in low-frequency LFPs.
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Fig. 1. An oculomotor gamble task.
(A) In the task, monkeys made saccadic eye movements to targets with differing, delayed 

reward outcomes. The visual targets (white dot) were identical, while the reward outcomes 

of movements to different target locations differed between blocks. In each trial, following 

fixation, one target appeared either inside (e.g left) or outside of (e.g right) the RFs of FEF 

neurons (blue disks). After each movement, monkeys maintained fixation on the target for 

an additional 400–800 ms (post-movement period), after which the reward amount was cued 

by the number of red dots appearing around the fixated target (result onset). Juice reward 

(drops) was delivered 300 ms after the result onset. Each block started with 20 forced-choice 

trials and was followed by 20–40 free-choice trials. In the forced-choice trials, two visual 

targets appeared on the display, and monkeys were free to choose one of them. Black crosses 

denote gaze position. Black arrows on the display show the direction of the saccade and 

curved, blue arrows show the changes in RF position caused by the saccade. (B) Minimum, 

maximum, and average reward amounts in the High-risk, Low-risk and Sure conditions. In 

all conditions, average reward outcomes were the same, but the variance of the reward 

outcome varied.
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Fig. 2. Risk-seeking behavior during free-choice trials.
(A) Frequency of repeating the same choice (stay) for different juice outcomes of the 

previous trial in different risk conditions. (B) Estimated power utility functions for both 

monkeys. Each line shows individual session estimates for the two monkeys. (C) Estimated 

subjective value for each risk condition for both monkeys. Error bars denote ± SEM.
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Fig. 3. Neuronal responses were correlated with subjective value during the pre-target period.
(A) Mean neuronal responses from two example recordings shown for different subjective 

value conditions for targets appearing inside (left) and outside of (right) the RF. The shaded 

region denotes ± SEM. Gray bar at the bottom indicates the time epoch used in the analyses. 

(B) Regression coefficients for the subjective value of the targets appearing inside and 

outside the RF across all recordings. Black bars in marginal distributions denote individually 

significant coefficients. Arrows indicate means.
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Fig. 4. Neuronal responses remained correlated with subjective value during the post-movement 
period.
(A) Mean neuronal responses from three example recordings shown for different subjective 

value conditions for targets appearing inside (left) and outside of (right) the RF. In the above 

diagram, the gray cross denotes the prior fixation location and the black cross denotes the 

current fixation location. The dotted circle indicates the prior RF location, before the 

saccade, and the blue disk indicates the current neuronal RF. Black arrows on the screen 

represent the direction of the saccade and blue arrows represent the changes of the RF 
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location by saccade. (B) Regression coefficients for the subjective value of the prior targets 

during the post-movement period. Same conventions as in Fig. 5.
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Fig. 5. Dynamics of FEF population activity signal both direction and subjective value of prior 
targets.
(A) Demixed principal components of the gamble task during the post-movement period. 

Time course of the projection of single components aligned on result onset. Top left: the 

condition-invariant component; top right: the target direction component; bottom left: 

reward component; bottom right: the interaction component between direction and reward. 

Black lines at bottom denote the time intervals during which the respective task parameter 

can be reliably extracted from population activity using linear classification. For each 

feature, the first component that captures the most variance is shown. (B) Performance of a 

linear classifier in distinguishing the 6 task conditions during the post-movement period. 

Numbers indicate the percentage of trials of each condition (x-axis) predicted by the 

classifier (y-axis). The number on the diagonal axis indicates the hit rates. (C) Temporal 
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profiles of classification accuracy in distinguishing prior target direction (left) and subjective 

value of prior targets inside (middle) and outside of (right) the RF. Shaded gray regions 

show the distribution of classification accuracies expected by chance as estimated by 1000 

iterations of shuffling procedure.
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Fig. 6. Representation of prior movement direction and subjective value in FEF LFPs during the 
post-movement period.
(A) Normalized LFP power spectra shown for different movement directions (left), and 

subjective values of targets presented inside (middle) and outside (right) of the RF. The 

shaded area denotes ± SEM and black lines at bottom denote significance. (B) The fraction 

of recording sites significantly modulated by prior movement direction (left), the subjective 

value of the targets presented inside (middle) and outside of the RF (right). (C) Regression 

coefficients for the subjective value of targets presented inside (left) and outside (right) of 

the RF. Error bars indicate standard error.
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