
Learning and Inferring Representations of Data in Neural Networks

by

Jesse A. Livezey

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Michael R. DeWeese, Chair
Professor Professor Marjorie D. Shapiro

Professor Bruno A. Olshausen
Kristofer E. Bouchard, Ph.D.

Spring 2017

Learning and Inferring Representations of Data in Neural Networks

Copyright 2017
by

Jesse A. Livezey

1

Abstract

Learning and Inferring Representations of Data in Neural Networks

by

Jesse A. Livezey

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Michael R. DeWeese, Chair

Finding useful representations of data in order to facilitate scientific knowledge generation
is a ubiquitous concept across disciplines. Until the development of machine learning and
statistical methods with hidden or latent representations, useful representations of data
were generated “by hand” through scientific modeling or simple measurement observations.
Scientific models often make explicit the underlying structure of a system which generates
the data we observe and measure. To test a model, inferences must be made about the free
parameters and the distributions of latent or unmeasured variables in the model conditioned
on the data collected. At this time, many scientific disciplines such as astronomy, particle
physics, wildlife conservation, and neuroscience have been moving towards collecting datasets
that are large and complex enough so that no human will ever look at and analyze all
measurements by hand. Datasets of this scale present an interesting scientific opportunity: to
be able to derive insight into the structure of natural systems by creating models which can
adapt themselves to the latent structure of large amounts of data, often called data-driven
hypothesis testing. The three topics of this work fall under this umbrella, but are largely
independent research directions. First, we show how deep learning can be used to infer
representations of neural data which can be used to find the limits of information content in
sparsely sampled neural activity and applied to improving the performance of brain-computer
interfaces. Second, we derive a circuit model for a network neurons which implements
approximate inference in a probabilistic model given the biological constraint of neuron-local
computations. Finally, we provide a theoretical and empirical analysis of a family of methods
for learning linear representations which have low coherence (cosine-similarity) and show that
linear methods have limited applicability as compared to nonlinear, recurrent models which
solve the same problem. Together, these results provide insight into how scientists and the
brain can learn useful representations of data in deep and single layer networks.

i

This work is dedicated to people in the Bay Area and around the world who are fighting
against injustice and fighting for their communities, bodies, and self-determination.

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Summary of results . 3

2 Methods: Machine learning and deep learning as models of data 6
2.1 Introduction . 6
2.2 Maximum-likelihood learning . 7
2.3 Supervised learning . 9
2.4 Supervised deep networks . 11
2.5 Unsupervised learning . 17
2.6 Other types of machine learning . 19

3 Methods: Linear generative models 21
3.1 Introduction . 21
3.2 Biological implementations of MAP inference in sparse coding models 21
3.3 Constrained versus unconstrained optimization problems 22
3.4 (Overcomplete) Independent Components Analysis 23

4 Deep learning for neural data analysis 24
4.1 Introduction . 24
4.2 Materials and methods . 25
4.3 Classification results . 31
4.4 Phonetic organization of deep network output 35
4.5 Discussion . 36

5 Inference using a network of leaky integrator neurons with strictly neuron-
local computation 39
5.1 Introduction . 39

iii

5.2 Sparse coding . 40
5.3 Comparing reconstruction objectives . 42
5.4 A network circuit for inference . 44
5.5 Numerical simulations for inference dynamics 45
5.6 Discussion . 46

6 Overcomplete independent components analysis 48
6.1 Introduction . 48
6.2 Minima landscape of coherence control costs 50
6.3 Minima analysis for the L2 and L4 costs for a 2-dimensional space 55
6.4 Minima analysis for high dimensions . 57
6.5 Results on datasets . 60
6.6 Methods . 63
6.7 Discussion . 67

7 Discussion 69
7.1 Developing high-throughput, interpretable neural data analysis methods . . . 69
7.2 Coherence control in deep networks or neural systems 71
7.3 Biological implementations of machine learning 71
7.4 Contributions (past, present, and future) of physicists to neuroscience 72

Bibliography 73

iv

List of Figures

2.1 The nll of a Gaussian model. 9
2.2 Plot of the nll of a Bernoulli model. 11
2.3 Computational graph representation for a layered deep network. 14
2.4 Plot of accuracy on the training, validation, and testing accuracy during model

training with different regulizers . 15
2.5 Cross validation procedure . 17

4.1 ECoG activity in vSMC during speech production. 26
4.2 Trial-averaged ECoG activity in vSMC during speech production. 27
4.3 Classification accuracy in time during consonant-vowel production. 28
4.4 Comparison of llinear and deep models. 33
4.5 Accuracy as a function of dataset size. 34
4.6 Analysis of the predictions of the deep network for the subject with the highest

accuracy. 36
4.7 Deep networks and phonetic correlation comparison. 37

5.1 Graphical models for three sparse coding objectives. 41
5.2 Inference dynamics at network initialization . 45
5.3 Same plots as fig 5.2 after ten thousand iterations of learning. 46

6.1 Stucture of the pathological global minimum in the L2 cost which the L4 cost
corrects. 52

6.2 Analysis of different coherence control mechanisms. 55
6.3 Comparison of different coherence control mechanisms in a known mixing-matrix

recovery task. 61
6.4 Results from fitting a 2-times overcomplete model on natural images. 63
6.5 Results from fitting two times overcomplete ICA models on natural images with

different costs. 64

7.1 Directions for improving data analysis methods. 70

v

List of Tables

2.1 Network hyperparameters . 16

4.1 Hyperparameters for fully connected networks 30
4.2 Classification and ITR Results . 32

vi

Acknowledgments

This work was largely completed in Berkeley, California. This area was first settled by the
Ohlone people and was later violently stolen from them [1, 2]. The Ohlone people continue
the struggle against colonialism today.

My parents and extended family are the main reason that I have been able to make it
through multiple decades of education and scientific training. I am privileged to have parents
who have always encouraged me to explore the things I am interested, often math and science.
They have been both a safety net and a source of gentle encouragement. I also have a brother
and sister who have been great siblings and role models and who are following in their older
brother’s footsteps in graduate programs as I write this. Beyond my interests in science, my
family have also always taught me to value empathy, love, and care for others. This has had
a large influence both on how I perceive my own role in science and how I allocate my time
outside of “research” hours.

I also received an enormous amount of support from my partner, Sarah Maslov, over the
course of my six years at Berkeley. This has included emotional support, sitting around doing
taxes together, getting me out of the apartment to explore the Bay Area, and making sure
our apartment stays habitable. I am grateful for the time and effort Sarah has put into our
relationship.

The Berkeley Compass Project has been a space for me to explore the intersection of
my interests in physics, education, and the more “human” parts of science. My fellow
Compasseers have become my friends, extended family, mentors, and accomplices. From
them I have learned to be a better scientist, teacher, mentor, and bureaucrat. I have also
found a ton of support from members of Compass during times when I have struggled in grad
school. I would like to thank everyone who has been a part of Compass and who continues
to do the work.

I have been a member of Mike DeWeese’s and Kris Bouchard’s labs and have benefited
from the diversity of views and mentoring styles from both labs. Having space to transform
from a physicist to the strange multi-armed scientist I am now has been invaluable. I’ve had
the opportunity to learn about neuroscience, information theory, parallel computing, and
machine learning and I am grateful for those opportunities. Mike has been very supportive in
allowing me to explore a variety of ideas and interests. Kris has helped me focus and refine a
more narrow line of research. I have been very lucky to have a combination of these styles
during my tenure at the Redwood Center.

I have been fortunate to be part of the Redwood Center in addition to the DeWeese
and Bouchard labs. The Redwood PIs: Bruno Olshausen, Fritz Sommer, Tony Bell, Pentti
Kanerva, and Mike DeWeese have create and a space where people from a diverse set of
fields can come together and do interesting work. I would also like to thank all of the PIs,
postdocs, research associates, and grad and undergrad students at the Redwood Center and
in neighboring labs, especially Allie Fletcher; I’ve learned a lot from you all. I’ve also been
fortunate to be able to work with a number of very hard working and creative undergrads.
Our interactions and research have been enjoyable and productive.

vii

There are collaborations with folks at UCSF and LBNL of which I have been a part. These
collaboration have been a great opportunity for me to grow my perspective as a scientist.

Graduate and undergraduate students, staff, administrators, and faculty at Berkeley have
put an immense amount of effort into equity and inclusion work. I am grateful for the work
they have done and continue to do. There has been real leadership from my fellow physics
and neuroscience students and other students at Berkeley.

In the physics department and on campus, there are a number of wonderful administrators
and staff. In particular, Anne Takizama, Donna Sakima, Kathy Lee, Brian Underwood, and
Claudia Trujillo do an enormous amount of work support graduate students. James Little,
Roberto Barrueto-Cabello, Terry Buehler, Amin Jazaeri, and Ben Spike have also been very
supportive of my and other’s work in Compass. There are also more people behind the scenes
that have made it possible for me to be successful, and I’m sure I have not appreciated them
enough.

Finally, I would like to thank my thesis committee: Mike DeWeese, Kris Bouchard, Bruno
Olshauen, and Marjorie Shapiro. Your feedback brought clarity to this document (and my
thoughts).

1

Chapter 1

Introduction

The core process for generating knowledge in science is the iteration of creating and testing
scientific models. Current experimental evidence is combined with theoretical assumptions
to create models. These models make quantitative predictions about the statistics of future
measurements. When those measurements become available, we can then compare our models
with the data and iterate on this process when there are discrepancies.

Typically, scientists choose models which assume that the complexity observed in the data
is actually the results of a much simpler but stochastic process which may have a number of
parameters and latent variables. The free parameters of the models could be fundamental
constants of the universe, population-level decision making probabilities in economics, or
properties of ion channels on neuron membranes. They are assumed to have the same value
across data measurements. A process for generating data may also have latent variables.
These are quantities that we expect to vary stochastically from measurement to measurement
in some unobserved way like the type of particles initially produced in a proton-proton
collision at the LHC, the specific preferences of an individual in a decision making study,
or the state of neighboring neurons in the brain. These parameters and latent variables
determine the hypothesis for how data is generated in the model. Once data is collected, the
values and distributions of these free parameters and variables needs to be inferred. This
process of inference is what allows us to reason about how well our model describes the
structure of the data.

In some scientific domains, the generative process of the data can be specified in detail.
For instance, in particle physics experiments, although it may not be known which theory
best represents the physics of the universe, for any given theory, detailed simulations can be
made for what signals to expect in a particle detector. In many biological domains, such as
neuroscience, the theories are not detailed or constrained enough to simulate and generate
realistic data. It is therefore often the case that models with a pre-specified broad hypothesis
must be able to adapt to the details of the data being fit. For instance, dynamical systems
models can be fit to neural data measured during the production of motor movements, but it
might not be known a priori which parts of cortex are controlling which articulators and this
needs to be inferred from the data.

CHAPTER 1. INTRODUCTION 2

The brain is a complex system which learns how to better condition behaviors on sensory
stimuli and past experiences. There are a hierarchy of recurrently interconnected regions
which exhibit both local and global structure. As additional complication, different brain
regions in humans evolved at different times and can have significantly different structure and
function. When neuroscientists record neural data, they are subsampling in space and time
the complex nonlinear electrical and chemical activity in the brain. Data analysis methods
and models for neural data need to be able to uncover the underlying structure from the
subsampled data. This structure could be spatial organization across the surface of the brain,
organization in time-frequency space, activity which corresponds to the representation of
sensory input, or spatially coordinated temporal dynamics which generate motor movements.

In an analogous process, there is evidence that the brain is learning from the structure of
the sensory input it receives; the brain is not completely genetically hardwired and so the
brain must be learning from and adapting to the stimuli it receives. There is a body of work
in theoretical neuroscience which compares the structures learned by probabilistic models of
natural sensory data and neural representations of the same data. These hypotheses look
for connections between learning techniques that we successfully apply to data in machine
learning contexts and strategies the brain may be using. Typically, connections can be made
to the learned representations of data themselves in models and cortex, the learning rules
which lead to those representations, or both. Often times, the machine learning models that
we compare neural processing to require calculations, storage, or information transmission
that could not conceivably be happen in neural circuitry. Some examples are when learning
rules require neurons to have access to all synaptic strengths in the entire network, when
feedforward connections and feedback connections need to be precisely tuned with respect to
each other, or when a long history of activity needs to be stored for learning [3, 4, 5]. To
make details hypotheses about learning and inference happening in the brain, these models
must be adapted or approximated to fit the constraints of biology. This often requires a more
fundamental understanding of the original limitations of machine learning methods.

If we want to understand the mechanism for how this relationship between machine
learning and learning in the brain might be implemented, we must better understand the
limitations of the algorithms we believe the brain may be (approximately) using. Overcomplete
linear representations appear in many parts of machine learning models. Deep networks,
linear models, Kalman filters, and HMM-GMMs all have linear representations as components
of more complex representations. When a representation is overcomplete, i.e. it has higher
dimensionality than the dimensionality of its input, it can often become degenerate or
coherent, where different elements of the representation code for nearly identical patterns.
Collapsing into identical representations is not beneficial for a model, but it may also not be
optimal to have completely orthogonal representations with no redundancy in noisy systems
(like the brain may be). This trade off can be implicit in the structure of the model and it can
also be controlled through additional model terms. Understanding the limitations and trade
offs of machine learning models and potential solutions will allow better algorithms to be
developed and also allow us to understand what algorithms the brain may be implementing.

The remainder of this chapter will introduce the content of the three main chapters of

CHAPTER 1. INTRODUCTION 3

this work (chapters 4, 5, and 6). All three chapters are centered around learning or inferring
latent representations of data, although they do not build sequentially on each other. The
underlying theme is that through (probabilistic) modeling of data, the structure of the process
that generated the data can be better understood. Specifically, we would like to understand
the computations the brain is doing. In neural data, we would like to extract complex,
potentially nonlinear relationships between the neural observables and sensory processing or
motor coordination. The structure inferred from data can then be compared with existing
theories or can be used to generate new theories of the computations happening in the brain.

1.1 Summary of results

Deep learning for neural data analysis

In chapter 4, the latent representations will be used in a supervised deep network which will
be used to classify speech from electrical signals recorded from the surface of human cortex.
These representation are learned by training a deep network to learn a non-linear mapping
between neural data and speech tokens. We will rely on the probabilistic interpretation of
these networks to learn about the representations of speech in sensorimotor cortex.

Vocal articulation of speech requires the coordinated and continuous orchestration of
several parts of the vocal tract. This coordinated articulatory movement should be reflected
in the cortical dynamics which generate these movements and therefore the neural data
measured during speech production.

We apply supervised deep networks to this dataset in order to understand, first, whether
deep networks are well suited to the task of classifying speech tokens from neural data, i.e.
do they have better classification accuracy than traditional methods, and second, once these
networks are trained on neural data whether the learned representations can be used to
understand the representations of speech in sensorimotor cortex. In other domains, deep
learning is the state of the art method. Neural data is subsampled in space and time which
means that the underlying structure is also subsampled. Given this subsampling, developing
methods which can best extract structure from neural data is important for developing power
models of neural data. This work is also motivated by the larger trend in neuroscience
and science in general of increasingly large and complex datasets. Deep networks have the
potential to leverage these huge datasets, but their current application in scientific domains
is relatively limited.

We find that deep networks have improved classification accuracy as compared to tradi-
tional methods such as linear classifiers. This improvement seems to be largest when the linear
classifiers initially have good performance. At the same time, the estimated improvement
if more data was to be collected is higher for deep networks. These higher classification
accuracies have potential clinical applications in brain-computer interfaces for people who
have lost the ability to use their speech articulators. Higher classification accuracy implies a
higher information transfer rate and higher words-per-minute for a brain-computer interface.

CHAPTER 1. INTRODUCTION 4

Finally, we find that the representations learned for classifying consonants and vowels also
reveal the structure of motor coordination in ventral sensorimotor cortex. Phonetic features
are represented hierarchically on the basis of articulatory features with major articulators at
the top of the hierarchy, place of constriction in the vocal tract in the middle of the hierarchy,
and manner of construction and vowel features at the bottom of the hierarchy. These results
indicate that deep networks can not only provide state-of-the-art accuracy in classification
from neural signals, but that they also can be used to understand the latent structure of
neural data from single-trial noisy data.

Inference using a network of leaky integrator neurons with strictly
neuron-local computation

Chapters 5 and 6 are both focused on specific implementations of linear generative probabilistic
models where the data is assumed to be generated from a set of latent sources, S, which are
mixed through a linear transformation, M , to form the data, X, as:

X
(i)
j =

∑
k

MjkS
(i)
k , (1.1)

where the superscripts indicate elements of a batch and subscripts indicate data or latent
dimensions.

Chapter 5 focuses on how a network of leaky integrate-and-fire neurons can perform
maximum a posteriori inference in a sparse coding model. Many probabilistic models
have neural interpretations. These models and interpretations often have different levels
of biological plausibility. In sparse coding models, inference is typically not “neuron local”
meaning that the computations that are happening inside of a neuron depend on quantities
that an individual neuron would presumable not have access to: the synpatic strengths of
the other neurons in the network. Previous work [3] has created a network of spiking neurons
which can approximate the learning rules of sparse coding with neuron local learning rules.
This work is extended by modifying the inference circuit so that it will follow the gradient of
the energy function, a condition that could not be guaranteed with the previous network.

We first derive a modified inference circuit from the gradient of the SAILnet objective
function and show that it performs more stable inference. Deriving the inference from the
objective function ensures that the dynamics of the model will actually perform inference
over the latent variables of the model. This new circuit has the same level of biological
plausibility as the original SAILnet circuit, namely neuron-local computation. This derivation
also predicts that the total conductance of a neuron should scale with the total strength of
its dendritic synaptic strengths. These analyses lead to a new rate-coding network which can
be simulated and whose inference can be compared to analytic results.

CHAPTER 1. INTRODUCTION 5

Overcomplete independent components analysis

Chapter 6 focuses on overcomplete Independent Components Analysis (ICA), which is a
linear generative model of data where it is assumed that the latent sources can be recovered
through a linear transformation. When the sources have higher dimensionality than the data,
the models are called overcomplete and require methods to prevent multiple basis elements
from becoming co-aligned.

In overcomplete representations, the higher density of bases in the space can lead to high-
coherence solutions, which is quantified by the maximum absolute value of the off-diagonal
elements of the Gram matrix of a dictionary [6], W :

coherence ≡ max
i 6=j
|
∑
k

WikWjk| = max
i 6=j
| cos θij|. (1.2)

This is a generally unwanted property for a representation learning algorithm since it means
that multiple bases are coding for the same feature which means that the representation may
be inefficient and possibly overfit to the distribution of features in the training data.

Several methods have been previously proposed in order to control the coherence of a
learned representation [7, 8, 9, 10]. Our first result is a proof that the L2 cost does not
provide coherence control as it was intended to. We provide some insight and intuition as to
why this method seems reasonable on its face, but actually has internal symmetries which
prevent it from operating as coherence control.

Based on these observations, we suggest several new methods for coherence control and
a modification of one existing method. Our suggested methods achieve high coherence on
learned representations.

We test these methods on a task to recover the known structure in a toy dataset. We find
that the new methods perform comparably and that several previously suggested methods
to not perform well in as broad of a range of conditions. We find that in general, methods
with linear inference, i.e. ICA, do not perform as well as sparse coding which has nonlinear,
recurrent inference. This may suggest a computational necessity for the local, recurrent
activity found in sensory areas in cortex.

6

Chapter 2

Methods: Machine learning and deep
learning as models of data

2.1 Introduction

Supervised and unsupervised learning are two main topics in machine learning. In both cases,
distributions generated from a model are compared with the empirical data distribution.
Typically, the parameters of the model are learned by trying to minimize the divergence
between the model distribution and the empirical data distribution with respect to the
parameters of the model. Maximum-likelihood (ML) or approximate ML methods are
commonly used [11, 12].

Once a model is learned or trained, it is often used to reason about the properties of
new data [13, 14]. In supervised models, predictions on new unlabeled data can be made.
These predictions could be used to tag or sort data in a preprocessing pipelines, communicate
language through a brain-computer interface, or translate an acoustic signal into text [15,
16]. Unsupervised models can be used to make inferences about the latent causes for any
given datapoint, generate new samples from the approximated data distribution, or group
data into clusters based on the inferred structure [17, 18].

This chapter will provide background on the relevant tools used in machine learning and
theoretical neuroscience for later chapters. Chapter 3 provides more detailed background for
chapters 5 and 6.

Notation and naming conventions for variables and parameters in
distributions and energy functions

Since this work will generally not take a Bayesian perspective on parameter estimation, we
will differentiate between model variables which have statistical distributions and model
parameters which will only have point-estimates by placing them on the left or right side of

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 7

semicolons respectively in joint or conditional distributions, e.g.

P̂ (x; θ), P̂ (x|y; θ) (2.1)

where x and y are model variables and θ are model parameters. In a Bayesian model [19],
the model parameters would also have prior and posterior distributions for their estimates
rather than just point-estimates as in ML learning. Occasionally, the model parameters will
be left implicit for brevity. Prior distributions are sometimes added as model regularization,
but are commonly still used to make a point-maximum a posteriori estimate [12].

For this chapter it will be important to distinguish (empirical) data and model distributions.
Distributions with hats will be model distributions and distributions without hats will be
data distributions.

Depending on the context, including the background of the person you are talking to, the
terms objective (function), energy function, error function, loss (function), cost (function),
and negative log-likelihood can be used interchangeably. The term negative log-likelihood will
be used when referring to training objectives for probabilistic models and objective function
where an explicit probabilistic formulation is not needed.

2.2 Maximum-likelihood learning

In ML learning or estimation, the model probability of measuring a data point, x, is maximized.
In practice, it is often a monotonic transformation of the likelihood, the log-likehood, which
is maximized. Alternatively, the negative log-likelihood (nll) can be minimized. Minimizing
the nll will be the convention used in this work. For an entire dataset of independent
measurements, xi i ∈ {1, . . . , N}, the total likelihood is the product of the likelihoods of each
individual measurement (the joint probability of independent variables is the product of their
marginal probabilities). The average nll is also commonly used which is just the total nll
divided by the dataset size.

Relationship between maximum-likelihood learning and the KL
divergence

For fitting parameterized models to data, there is a well known relationship between the nll
and the KL divergence. This relationship will be useful for understanding the relationship
between cost functions used in machine learning and deep networks and maximum likelihood
learning. The empirical data distribution for a dataset, xi i ∈ {1, . . . , N}, is a mean of delta
function, where each data point is represented as a delta function, and can be written as

P (x) =
1

N

N∑
i

δ(x− xi). (2.2)

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 8

Formally, the average nll of the data under the model can be written as

〈nll〉 = − 1

N

N∑
i

log P̂ (xi; θ) (2.3)

and the KL divergence between the empirical data distribution and model distribution is

DKL(P (x)||P̂ (x; θ)) =

∫
dx P (x) log

(
P (x)

P̂ (x; θ)

)
=

∫
dx P (x) log(P (x))− P (x) log(P̂ (x; θ))

= −
∫
dx

1

N

N∑
i

δ(x− xi) log(P̂ (x; θ)) +

∫
dx P (x) log(P (x))

= − 1

N

N∑
i

log P̂ (xi; θ) +

∫
dx P (x) log(P (x)).

(2.4)

The second term in the KL divergence does not depend on the parameters of the model and
so it will have no effect on parameter estimation.

Maximum-likelihood learning for a Gaussian distribution

For example, if you have one dimensional data, historical temperature measurements for May
1st for instance, and want to model the distribution of measurements over the years as a
Gaussian distribution, N (µ, σ), the likelihood and nll for one data point, x, are respectively

P̂ (x;µ, σ) =
1√

2πσ2
exp(−(µ− x)2

2σ2
), (2.5)

− log P̂ (x;µ, σ) =
(µ− x)2

2σ2
+

1

2
log(2πσ2). (2.6)

and so the total nll for the dataset is the sum of the nlls for the individual data points

nll(µ, σ) =
N∑
i

− logP (xi;µ, σ). (2.7)

To estimate the parameters µ and σ that make the measured data most probable under
the model, the nll can be minimzed with respect to µ and σ

∂

∂µ
nll(µ, σ) =

N∑
i

µ− xi
σ2

= 0 =⇒ µ̂ =
1

N

N∑
i

xi, (2.8)

∂

∂σ
nll(µ, σ) = −

N∑
i

(µ− xi)2

σ3
+

1

σ
= 0 =⇒ σ̂ =

√√√√ 1

N

N∑
i

(µ̂− xi)2. (2.9)

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 9

In the case of a Gaussian distribution model of the data, the parameters of the model were
able to be estimated in closed form. In many cases, it is not possible to explicitly solve for
the optimal parameters of the model. In these cases, it is common to find the local minima
of the function through iterative gradient descent on the parameter vector, θ

θt+1 = θt − ε
∂

∂θt
nll(θ). (2.10)

Fig 2.1 shows the nll for a Gaussian model fit to one dimensional data drawn from N (0, .5).
For three different σ values, the nll is plotted as a function of µ. The nll is smallest near
x = 0 for all models and the optimal σ has the lowest minimum. The convexity of the nlls is
related to the fact that a closed-form solution is available. Even if this was not available,
the model parameters could be updated by performing gradient descent on the nll (walking
down the nll curves). For more complex models, the nll may not be convex and may have a
number of local minima, saddle points, or areas where the gradients are very small.

-1.5 -0.75 0.0 0.75 1.5
x

0.5

1

1.5

optimal
.5
2

Figure 2.1: Plot of the nll of a Gaussian model as a function of µ, for three different σ
parameters (equal to, smaller than, and larger than the optimal value). Blue pins are
measurements of a one-dimensional variable, x, and the nlls have been consistently rescaled
for clarity.

2.3 Supervised learning

The distinction between unsupervised and supervised learning is not always clear, but
commonly the term supervised learning is used to describe the process of modeling conditional
distributions of labels or tags with which the data has been annotated

P̂ (y|x; θ) ∼ P (y|x), (2.11)

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 10

where y are commonly a set of labels, tags, or regression values associated with the data, x.
Typically, supervised datasets need much more human curation than unsupervised datasets,
e.g. labeling objects in images versus just collection images. The process of training supervised
models is is the same as unsupervised models, the model’s conditional distribution is matched
to the data’s empirical distribution using maximum likelihood learning (the KL divergence
cost).

If the regression values, y, are real-valued vectors, a Gaussian loss is often used where the
nll of the model is

nll(yi, xi, θ) =
(µ(xi, θ)− yi)2

2σ(xi, θ)2
+

1

2
log(2πσ(xi, θ)

2). (2.12)

σ(·) is often assumed to be a constant function of the inputs and parameters which leads to
the commonly used squared-error loss. If the regression values are labels or a class, the nll
comes from the Bernoulli or Multinomial distributions

nll(yi, xi, θ) = −
∑
i

yi log(P̂ (yi = 1|xi; θ)). (2.13)

In these models, it is helpful to distinguish between the implicit quantities that are
normally referred to as model parameters, µ and σ in a Gaussian model, the feature or class
probabilities in a Bernoulli or Multinomial model, and the explicit parameters, θ, which are
part of the network that generates the implicit parameters. In deep networks (or hierarchical
probabilistic models), the implicit model parameters are often generated through a nonlinear
process which is a (stochastic) function of other, often explicit, model parameters.

Fig 2.2 shows the nll for a Bernoulli model. A Bernoulli model and loss is often used to
describe the ML model for a binary feature or label. Each feature can individually be present
or not present in a element of the dataset. Each feature has one implicit parameter which is
the probability that the datapoint contains the feature. If the feature is present, y = 1, then
the nll peaks at when the feature is predicted with probability zero and decreases until y is 0.
The opposite happens if the feature is not present in the data, y = 0.

For a classification (Multinomial) problem, the loss is similar, although the labels are
constrained to be a one-hot binary vector where only one bit can be equal to 1 for any data
point. The predicted class probabilities must be positive and sum to 1 and so a softmax
nonlinearity is often used to satisfy these constraints

softmax(hi) =
exp(hi)∑
j exp(hj)

(2.14)

where hi are proportional to the predicted log-probabilities up to a shared additive constant.
In the context of using classifying speech production, the data, x, is neural data. In this

work, we will learn mappings between electrocortographic (ECoG) data and produced speech
phonemes. The ECoG data will be timeseries data recorded from a number of channels. The
data was recorded during the utterances of short speech tokens. Traditionally, this mapping

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 11

0 1

P(y = 1)

0

1

2

3

4

5

6

7

nl
l

nll, y=0
nll, y=1

Figure 2.2: Plot of the nll of a Bernoulli model as a function of P̂ (y = 1). For any given
instance of a feature and label, only one of these two nlls would be contributing to the loss
and so the predictions are always pushed to be closer to 0 or 1.

has been done through training linear regression models like multinomial linear regression or
linear discriminant analysis [16]. In these methods, the parameters of the implicit models
are generated through a linear or affine transformation of the raw data. In this work, the
affine transforms will be broadened to learned nonlinear transformations created by training
supervised deep networks.

2.4 Supervised deep networks

Deep networks are a broad class of models which are commonly applied to problems where
there are large datasets available, and hand-engineered features have not yet saturated
performance. They can be used in unsupervised and supervised setting. This work will focus
on supervised deep networks.

Supervised deep networks are highly parameterized models which learn mappings between
their input data, x, and a set of regression features or labels, y. Input can be unstructured
features vectors, data with topological organization like 2-dimensional images, or timeseries
data like sound or neural signals. The mappings are constrained to be differentiable to allow
the network parameters to be trained through gradient descent. The computations in a deep
network are typically organized in a series of layers, where each layer does a small set of
computations.

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 12

The structure of a layer

Most deep networks are built using a layered structure. A typical layer performs a chained
affine-nonlinear transformation on its inputs, hi, to create the outputs, hi+1

hi+1
J = f(

∑
k

wjkh
i
k + bj) (2.15)

where w is a matrix of weights, b is a vector of offsets, and f(·) is a nonlinearity. Common
nonlinearities are rectification (ReLU), tanh(x), or sigmoid (1

1−e−x) for internal layers of the
network. The final layer nonlinearity is chosen to match the required output probability
distribution: linear for a Gaussian mean, sigmoid for a Bernoulli feature probability, softmax
for class probabilities.

For large images or timeseries, an affine convolution with a set of filters can be applied
rather than a simple affine transformation [20, 21, 15, 22]. This will lower the computational
complexity of the model (if the input and output dimensionality are kept fixed) since fewer
multiplication and adds need to be done and will also result in parameters being shared
spatially or temporally. In many datasets, e.g. images or recordings of speech, the statistics
of the data are assumed to be stationary along the axes of convolution. In an image, any
given pattern could appear at any location with equal probability and likewise in an audio
recording any given sound could appear at any point in time.

Convolution can be used even when the statistics are not expected to be exactly stationary.
This will decrease computational complexity, but may not provide the same amount of
parameter sharing, since the filter activations may also not be stationary after training. In
neural datasets, the subject is often performing a specific task. Many tasks to not have
stationarity in their structure, and so the neural data may not be expected to have stationary
statistics. Even with these non-stationary caveats, convolutions can often be an effective
approach to data with topological structure.

To decrease dimensionality in convolutional networks, the convolutions can be strided,
which will roughly decrease the output dimensionality by a factor of the stride, or a pooling
layer can be applied. Striding a convolution is equivalent to downsampling the output by an
integer fraction. In a pooling layer, a spatially local set of filter activations are compared
and some 1-dimensional statistic is computed. Max pooling [23] is common where the largest
activation. Mean pooling is also sometimes used [23].

Cost functions for deep classification

The cost functions used to train deep networks are typically the same as the ones used to train
single-layer machine learning models. Deep networks can have squared-error or classification
losses as in eqs. 2.12 and 2.13. Simple Bayesian priors are often used to regularize the
parameters in the model, although estimation is generally a point-estimate, not a posterior
distribution for parameters. These priors can be thought of as additional to the cost function
of the model. This method of regularization and others will be covered later in section 2.4.

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 13

Training using backpropagation of errors

Deep networks typically have many parameters, often growing into the tens of millions or
more. The dimensionality of the parameters places constraints on the types of algorithms
which can be used to train them. For instance, memory requirements cannot be quadratic
in the number of parameters, which means that most methods that require calculating the
Hessian of the cost explicitly will not be able to scale to large problems.

These parameters are typically contained in stacks of convolutional filters of shape
(n filters, n channels, n x, n y) with total size equal to the product of those
dimensions, weight matrices of shape (n in, n out), and biases are typically vectors of
shape (n features). The cost function of a deep network will be a differentiable function
of the layer parameters, wi and bi, and layer activations, hi. We will need to compute the
derivative with respect to the parameters in layer i, θi

∂C(θi)

∂θij
=
∑
k

∂C(θi, hi+1)

∂hi+1
k

∂hi+1
k

∂θij
, (2.16)

∂C(θi)

∂hi+1
j

=
∑
k

∂C(θi, hi+1, hi+2)

∂hi+2
k

∂hi+2
k

∂hi+1
j

(2.17)

We can write out the derivatives with respect to any given layer’s input activations or
parameters using the chain rule as a function of the derivatives with respect to the activations
of the layer. Intuitively the errors are being passes backward through the network which lead
to the name “backpropagation” [24, 25, 26]. For an extensive history of the backpropagation
algorithm in mathematics, physics, and machine learning, see [27] and citations within.

In this way, the derivative can be taken with respect to any of the layer activations or layer
parameters. The deep network computation (forward-pass) and derivatives (backward-pass)
are often represented as a directed computational graph where nodes represent computation
and edges represent the flow of data. Fig 2.3 shows an example computational graph for the
forward and backward passes of a deep network. This representation is very high level in that
the entire computation that a layer does is represented as one node. In practice, there are
subgraphs represented within each layer which represent matrix multiplication/convolution,
bias addition, and nonlinearities as separate operations.

A näıve method for updating parameters from the gradients is to use basic gradient
descent as in eq. 2.10. Basic gradient descent is generally very slow in that it requires many
gradient steps to train the model to good performance and can get stuck near saddle points
which are attractors [28]. It does not take into account that information in the history of
gradients and update steps can be used to approximate second order gradient information.
A number of methods, often inspired by techniques that have performance guarantees for
convex problems, have been proposed and are commonly used. These include momentum [29]
where the parameter state is treated as a massive particle with linear, velocity dependent
damping with the cost function as a potential energy. These methods typically double or
triple the memory requirements but often converge much faster.

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 14

X h1 h2 ŷ

Forward computation

X h1 h2 ŷ

y

Backward computation

w1 w2 w3

w1 w2 w3

Figure 2.3: Computational graph representation for a layered deep network. Top panel shows
the forward computation from left to right for computing the network’s predictions. The
bottom panel shows errors being passed backwards starting from a comparison of the network
predictions, ŷ, and the true labels, y. Green nodes represents data entering the graph, orange
nodes are network parameters, and yellow nodes represent the computations performed by
the layers in the graph. Black and blue arrows represent the output of computations being
passed between computational nodes.

Model regularization

The goal of training deep networks and machine learning models in general, is to create a
model that can perform inference well on new, unseen data. When a model is trained on a
fixed-size dataset, if the model has enough representational capacity (which is very easy to
achieve with deep networks), it will eventually have better performance on the training data
than it does on held-out validation data.

Fig 2.4 shows the dynamics of training with and without regularization. The first panel
shows the training dynamics through the misclassifcation rate (lower is better) on the training,
validation, and testing sets on a the MNIST dataset [30] where only a small subset (n = 100)
of the training data are used to exaggerate the overfitting. The misclassification rate on
the training set always approaches zero. With either L2 regularization of the norm of the
weight matrices or dropout the validation and testing misclassification rates are lower than
an unregularized model.

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 15

100 101 102
10 1

100

no
 re

gu
la

riz
at

io
n

33.2

35.8
train
valid
test

100 101 102
10 1

100

m
isc

la
ss

ifi
ca

tio
n

 L
2

29.0

30.4

100 101 102

epochs
10 1

100

dr
op

ou
t

27.7

29.3

Figure 2.4: Plot of accuracy on the training, validation, and testing accuracy during model
training on the MNIST dataset. Top panel shows training dynamics with no regularization,
the middle panel shows training dynamics with L2 norm regularization, and the bottom panel
shows training dynamics with dropout.

L2 regularization is implemented as an additional term in the training loss

CL2(W) = λ
∑
ij

W 2
ij

P (Wij) ∼ exp(−λW 2
ij)

(2.18)

where λ sets the strength of the regularization. It can also be interpreted as a Gaussian prior
on the elements of the weight matrix in a Bayesian framework. Dropout [31] is a regularization
technique which is meant to combat one way in which a model might overfit: different parts
of the model may learn to be dependent on other parts of the model co-activating. Dropout

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 16

randomly drops out (zero-masks) subsets of the inputs and model activation and rescales the
remaining inputs and activations. This means that not every unit in a layer will be used for
each training example and not every parameter will received a gradient. As can be seen by
comparing the top and bottom panels of fig 2.4, dropout often makes training slower as it
adds stochasticity to the training procedure.

For human neural datasets, the size of the dataset will almost always be a limiting factor
is training models. Compounding this is the fact that neural datasets are typically high
dimensional. For both of these reasons, model regularization will be a crucial part of training
deep networks on neural data.

Hyperparameter selection methods

Deep networks, as described, have a number of parameters that need to be chosen to
instantiate a model. A non-exhaustive list of potential parameters in a fully-connected
network is tabulated in table 2.1.

Table 2.1: Network hyperparameters

Parameter Options

Model hyperparameters
number of layers integer
dimensionality of each layer’s output integer
layer parameter initialization scheme many options, e.g. [32, 33]
layer nonlinearity ReLU, sigmoid, tanh, etc.
Training hyperparameters
training algorithm many options, e.g. [29, 34, 35]
training algorithm parameters e.g. learning rate, decay rates
Regularization hyperparameters
weight-norm regularization positive coefficients
dropout parameters dropout rate and rescale value

Cross validation is used to chose the optimal set of hyperparameters. Many models are
trained with suggestions coming from either a random selection of hyperparameters [36] or a
model-based hyperparameter estimation method [37, 38]. After many models are trained, the
model with the best validation score is selected. The model scores on the test set are reported.
This process is shown in a toy example in fig 2.5. In the left column, three models are fit to
a one-dimensinoal dataset (blue pins represent a data point). Row A is a simple Gaussian
model, row B is a complex, highly parameterized model, and row C shows a “parsimonious”
model. Looking at the training data (left column) it seems that the simple model does not
model the data well (lots of probability near zero with no data there), and the complex model

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 17

is a good fit to the data. When the models are evaluated on held-out data (right column). it
becomes more clear that the parsimonious model captures the structure of the data best and
the complex model has overfit to the details of the training data.

A

B

C

Simple

Complex

Parsimonious

Figure 2.5: The cross validation procedure for model selection is schemetized here. The
left column shows three different models fit to a one-dimensional dataset. The model pdf is
shown as a line and the training data are the blue pins. A A Gaussian model of the data.
B A seven-Gaussian mixture model. C A two-Gaussian mixture model. The right columns
shows the model pdfs against held-out validation data.

2.5 Unsupervised learning

The goal of unsupervised learning is to understand the distribution of data in a dataset.
Often this means trying to design models, P̂ (X; θ), which can model the distribution of data,
P (X) as closely as possible:

P̂ (x; θ) ∼ P (x). (2.19)

Often the structure of the latent distributions are constrained in these models in order to
have interpretable latent or unobserved variables. In models with latent (or hidden) variables,
h, we define a larger model with latent and observed variables which is related to the model

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 18

distribution of the data through marginalization

P̂ (x; θ) =
∑
h

P̂ (x, h; θ). (2.20)

To train this model, the derivative of the nll must be taken, but usually it is not possible to
analytically marginalize out h. We are left with

∂

∂θ
nll =

∂

∂θ
− log

∑
h

P̂ (x, h; θ)

=−
∑

h
∂
∂θ
P̂ (x, h; θ)∑

h P̂ (x, h; θ)

=−
∑

h
∂
∂θ

exp(log(P̂ (x, h; θ)))

P̂ (x; θ)

=−
∑

h P̂ (x, h; θ)∂ log(P̂ (x,h;θ))
∂θ

P̂ (x; θ)

=−
∑
h

P̂ (h|x; θ)
∂ log(P̂ (x, h; θ))

∂θ
,

(2.21)

which is the expectation over the posterior distribution of the latent variables, P̂ (h|x; θ),
of the derivative with respect to θ of the log-probability of the model. Computing the
posterior distribution of the latent variables is often intractable given that it requires the
marginalization of the joint distribution.

Many models of this form are created by specifying a prior distribution on the latent
variables and a conditional distribution of data conditioned on the latent variables.

P̂ (x, h; θ) = P̂ (x|h; θ)P̂ (h; θ). (2.22)

In this case, the posterior is

P̂ (h|x; θ) =
P̂ (x, h; θ)∑
h P̂ (x, h; θ)

, (2.23)

and the denominator cannot be computed.
Many of the distributions used in practice are chosen because they can be written in a

form which is equivalent to a Boltzmann distribution

P̂ (x; θ) =
exp(−E(x; θ))

Z(θ)
(2.24)

which makes evaluating the derivative in the last line of eq. 2.21 straightforward.
This integral can be estimated or approximated in several ways. Sampling from the

posterior distribution [39] can be used to estimate the value of the integral. There are efficient

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 19

Hamiltonian Monte Carlo samplers that can be used if the probabilities can be written in the
form of eq. 2.24 [40]. Alternatively, Expectation Maximization can be used wherein the nll
can be approximated with an estimate which is a upper bound to the nll and so minimizing
this bound will minimize the nll . Neither of these techniques will be used in this work, but
there is extensive literature available on both [41, 42].

Maximum a posteriori estimation

If the posterior distribution is dominated by modes, the final expectation in eq. 2.21 can
be approximated by a point-estimate of the integral at the mode of the distribution. This
technique is called maximum a posteriori or MAP estimation. To find the mode, posterior
can be maximized or the negative log-posterior can be minimized with respect to the value of
h. The location of the minimum of the negative log-posterior is

h∗ = arg min
h
− log P̂ (h|x; θ)

= arg min
h
− log(P̂ (x, h; θ))− log(

∑
h

P̂ (x, h; θ)),
(2.25)

which can be used to approximate

−
∑
h

P̂ (h|x; θ)
∂ log(P̂ (x, h; θ))

∂θ
∼ ∂ log(P̂ (x, h∗; θ))

∂θ
. (2.26)

Since the second term does not depend on h, it can be dropped from the optimization in
practice. The minima of this function are often found through numerical optimization.

This minimization can also be written to look like a dynamical circuit model [43], which
has implications for how inference and possibly MAP inference could happen in a network of
biological neurons.

Deep unsupervised models

As alternatives to structured models, many of the models which can currently generate the
most convincing samples are deep networks which have latent variables which are generally
hard to interpret such as generative adversarial networks, variational auto-encoders, and
diffusion networks [44, 45, 18]. They will not be covered in this work.

2.6 Other types of machine learning

There are other types of machine learning models which are not covered under the umbrella
of unsupervised and supervised learning. They will not be covered here. One example is
reinforcement learning [46] where a model of an agent’s interactions with the world is needed
in addition to a model of the sensory input.

CHAPTER 2. METHODS: MACHINE LEARNING AND DEEP LEARNING AS
MODELS OF DATA 20

There are also machine learning models which do not use continuous gradient descent as a
learning objective such as the original formulation of Hopfield networks or hyper-dimensional
computing [47, 48].

21

Chapter 3

Methods: Linear generative models

3.1 Introduction

This chapter will extend the background methods presented in chapter 2 to a specific set
of unsupervised probabilistic models: linear generative models. This will be the basis for
chapters 5 and 6.

Many of the simplest models of sensory processing in theoretical neuroscience can be cast
as linear generative probabilistic models. We follow the motivation and derivation of sparse
coding and independent components analysis (ICA) from Olshausen [49]. In these models,
the sensory stimuli, X, come from a set of hidden sources, S, which are mixed linearly. The
sensory system may also have measurement noise, η added to the signal. This can be written
as

Xi =
∑
j

AijSj + εi, (3.1)

where A is a mixing matrix. To completely specify the model, it is necessary to specify a
prior distribution on S and a distribution of the noise ε. In these types of models, it is
conventional to call the latent variables sources S (activity, a, is another common convention)
rather than h, but it is just a change in notation.

3.2 Biological implementations of MAP inference in

sparse coding models

Sparse coding puts a sparse prior (independent, heavy-tailed) on the sources and a isotropic
Gaussian distribution on the noise. One common formulation of sparse coding puts a Laplacian
prior on the sources and a Gaussian distribution for the noise. We can write down the model

CHAPTER 3. METHODS: LINEAR GENERATIVE MODELS 22

distribution as

P (X;A, σ, λ) =

∫
dSP (X|S;A, σ)P (S;λ)

=
1

Z(A, σ, λ)

∏
i

∫
dS exp

(
−

(Xi −
∑

j AijSj)
2

2σ2

)∏
k

exp (−λ|Sk|).
(3.2)

The posterior distribution of S is often required to do inference or learning. Since this is
in general hard to compute, we approximate inference with MAP inference. So, rather than
using P (S|X), we use arg minS P (S|X). This is often done on the negative log posterior
rather than on the posterior directly

arg min
S
− logP (S|X;A, σ, λ) =− logP (X,S;A, σ, λ) + logP (X;A, σ, λ)

=
∑
i

(Xi − AijSj)2

2σ2
+
∑
k

λ|Sk|

+ log(Zjoint(A, σ, λ)) + logP (X;A, σ, λ).

(3.3)

The process of inferring a set of latent variables from a stimulus, is a process that both
machine learning models and biological systems need to do [50]. As described in section
2.5, machine learning systems have many options available to them for running inference.
Biological systems are constrained to use (or, more accurately, have evolved to use) the neural
substrate of the sensory system. If we take the idea that neural systems are performing
probabilistic inference seriously, abstract computations must be mapped onto computations
that a network of neurons could perform.

Luckily for the modeler, it is not always clear what the unit, timescale, or representation
of computation is in the brain [51, 52]. This means that there is a large space of hypotheses
to explore. One set of related hypotheses is that networks of sensory neurons in the brain
are performing MAP inference on a model of the world in response to sensory stimuli. This
computation can then be written in a form which could be implemented in a neural circuit
and inspected for computation that may not be “biologically plausible”. This will be the
topic of chapter 5.

3.3 Constrained versus unconstrained optimization

problems

Chapter 5 will compare two cost function: an unconstrained cost function and an approxima-
tion to this cost function with constraints. Here we will briefly describe the methods that
will be used to minimize both cost functions.

An unconstrained objective function is simple to minimize through gradient descent,
which was describes in chapter 2. As long as derivatives of the objective can be taken with

CHAPTER 3. METHODS: LINEAR GENERATIVE MODELS 23

respect to the parameters of the model, the parameters can be updated to minimize the
objective.

If the objective has an additional set of constraints, often written as Ci(P̂ (X)) = 0, then
these terms can be added to the objective multiplied by their Lagrange multipliers, λi

Constrained Objective = Unconstrained Objective−
∑
i

λiCi(P̂ (X)). (3.4)

We now want to minimize the unconstrained objective subject to the additional constraints.
This can be done by updating both the model parameters through the gradient of the
constrained objective with respect to the parameters and then updating the Lagrange
multipliers through their gradients of the constrained objective with respect to themselves.
This can be done in a “hard” way where at each step the gradients of the constrained objective
with respect to the Lagrange multipliers are set exactly to zero, or through a “soft” gradient
descent technique. The latter will be used in chapter 5.

3.4 (Overcomplete) Independent Components

Analysis

Independent components analysis (ICA) models assume no measurement or reconstruction
noise, i.e. they assume that the unobserved sources account for all of the variance in the
measured data. For a model where the dimensionality of the data is the same as the
dimensionality of the sources (complete), the linear generative process for ICA is

Xi =
∑
j

AijSj (3.5)

which is the same as eq. 3.1 except for the lack of a noise term. A is assumed to be full rank
and so the sources can be recovered from the data using the inverse of A

Si =
∑
j

WijXj (3.6)

with W = A−1. This means that ICA has a very simple method for inferring the latent
sources from data: a single linear transformation. It is often the case that we want to infer
representations that have higher dimensionality than the data (overcomplete). In this case,
the mixing matrix, A, is no longer square and cannot be inverted. Chapter 6 will cover
existing overcomplete ICA models, provide a new theoretical understanding of aspects of the
model, and suggestion new models and modifications to existing models to improve their
properties. We will also show that the simple linear inference procedure of ICA is not as
powerful as the iterative MAP estimate needed for sparse coding which provides insight into
one reason why cortex, which is generally overcomplete in sensory regions, has recurrent
connections.

24

Chapter 4

Deep learning for neural data analysis

Chapter coauthors: Kristofer E. Bouchard, Edward F. Chang

4.1 Introduction

Vocal articulation is a complex task requiring the coordinated and continuous orchestration
of several parts of the vocal tract. To study the neural basis of speech requires monitoring
cortical activity at high spatio-temporal resolution (on the order of tens of milliseconds)
over large areas of sensorimotor cortex (∼1300mm2) [53]. To achieve the simultaneous
high-resolution and broad coverage requirements in humans, electrocorticography (ECoG) is
an ideal method for recording neural signals. Using such recordings, there has been a surge
of recent efforts to understand the cortical basis of speech production [53, 54, 55, 56, 57]. For
example, analyzing mean activity, Bouchard et. al. [53] demonstrated, much in the spirit of
Penfield’s earlier work [58], that the ventral sensorimotor cortex (vSMC) has a spatial map
of articulator representations (i.e. lips, jaw, tongue, and larynx) that are engaged during
speech production. Additionally, it was found that spatial patterns of activity across the
vSMC network extracted with principal components analysis at specific time points organized
phonemes along phonetic features emphasizing the articulatory requirements of production.
Building off of these results, Bouchard and Chang [54, 55] demonstrated high-performance,
single-trial continuous prediction of produced vowel acoustics from these recordings.

Many studies have attempted to classify produced speech from ECoG activity. For
example, whole word studies have achieved classification performance just under 50% on
a ten word corpus (5x over chance, 10%) [59]. However, classifying smaller phonetic parts
of speech may better match the internal representations [53] and, in the context of brain
machine interfaces for speech prosthetics, would exploit the inherent combinatorial nature of
language. Pei et al. [60] used consonant-vowel-consonant (CVC) syllables and classified vowels
or consonant pairs achieving 40.7 ± 2.7% for vowels and 40.6 ± 8.3% for consonant pairs
(both 1.5x over chance, 25%) with four classes in each task. Herff et al. [61] use techniques
from speech recognition and achieve phone accuracies above 50% (11x over chance, 4.7%),

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 25

but have incorporated a language model into their classifier unlike other studies. To our
knowledge Mugler et al. [56] have achieved the best speech classification performance purely
from ECoG recordings, with 36% accuracy on 24 consonants (5x over chance, 7.4%) and 24%
on 15 vowels in a single subject (2x over chance, 12.9%).

The linear methods used in these works may not be able to fully extract the information
present in the neural signals. This motivates the use of deep networks as decoders as they
have surpassed or become competitive with previous state-of-the-art models in a number
of fields including computer vision, text translation, and speech recognition [62, 63, 64, 65].
Deep neural networks have recently been applied as classifiers for other types of physiological
data including electromyographic (EMG) and electroencephalographic (EEG) signals [66, 67,
68, 69] and on stimulus reconstruction in sensory regions using ECoG [70]. The goal of this
work is to investigate deep networks as an alternative computing framework for brain machine
interfaces/neural prosthetics, with a specific focus on the uniquely human capacity to produce
spoken language, and to examine the structure of speech representations discovered by the
networks towards understanding brain computations in general.

4.2 Materials and methods

Experimental data

The experimental protocol, collection, and processing of the data examined here have been
described in detail previously [53, 54, 55]. Briefly, four native English speaking human
subjects underwent chronic implantation of a subdural electrocortigraphic (ECoG) array over
the left hemisphere as part of their clinical treatment of epilepsy. The subjects gave their
written informed consent before the day of surgery. The subjects read aloud consonant-vowel
syllables (CVs) composed of 19 consonants followed by one of three vowels (/a/, /i/ or /u/),
for a total of 57 potential Consonant-Vowel (CV) syllables (not all subjects produced all
CVs). The number of repetitions per CV varied across subjects and CVs from 10 to 50 and
the total number of examples ranged from 1500 to 3500. All subjects had a small number of
CVs which there was not enough data to do cross-validation on (< 10 examples) and these
CVs were excluded per-subject.

Electrical field potentials were recorded directly from the cortical surface with a high-
density (4mm pitch), 256-channel ECoG array and a multi-channel amplifier optically con-
nected to a digital signal processor (Tucker-Davis Technologies [TDT], Alachua, FL). The time
series from each channel was visually and quantitatively inspected for artifacts or excessive
noise (typically 60 Hz line noise). These channels were excluded from all subsequent analysis
and the raw recorded ECoG signal from the remaining channels were then common average
referenced and used for spectro-temporal analysis. For each useable channel, the time-varying
analytic amplitude was extracted from eight bandpass filters (Gaussian filters, logarithmically
increasing center frequencies [70-150 Hz] and semi-logarithmically increasing band-widths)
with the Hilbert transform. The high-gamma (Hγ) activity was calculated by averaging the

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 26

analytic amplitude across these eight bands. This signal was down-sampled to 200 Hz and
each channel was z-scored. Baseline is defined as a period of time in which the subjects were
silent, the room was silent, and the subject was resting. Fig 4.1 shows z-scored data across
trials (top) and the trial-average activity for one electrode (bottom). Based on the results
described in [53, 54, 55], we focused on the electrodes in the ventral sensorimotor cortex
(vSMC). The Hγ activity for each of the examples in our data set was aligned to the acoustic
onset of the consonant-to-vowel transition. For each example, ∼ 1.3 seconds of data was
extracted, giving 258 time points per example. The mean of the first and last ten time points
was subtracted from the data per electrode and vocalization.

Figure 4.1: ECoG activity in vSMC during speech production. Top panel shows the z-scored,
Hγ data across trials for one electrode during the production of /ga/ showing consistent
response. Bottom panel is trial-averaged Hγ ± s.e.m.

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 27

Example trial-averaged Hγ ECoG data from Subject 1 for three CVs: /ba/, /da/ and
/ga/, processed in the way described above, is shown in fig 4.2 from one subject. As described
previously [53], different syllables are generated by distinct, but partially overlapping spatio-
temporal patterns of activity. Furthermore, the Hγ activity of many electrodes and the
consonant decoding accuracy (fig 4.2D and fig 4.3) begin rising several hundred milliseconds
before acoustic onset, emphasizing the motor nature of the recordings.

0 800-500
Time (ms)

0 800-500
Time (ms)

0 800-500
Time (ms)

/ba/ /da/ /ga/

El
ec

tro
de

s i
n v

SM
C

Fre
qu
en
cy

Central Sulcus

Sylvian Fissure

A

C

D

B
Dorsal

Ventral

PosteriorAnterior

Figure 4.2: ECoG activity in vSMC during speech production. A Electrode layout overlaid
on the vSMC. B Articulator position and point of constriction for the production of /ba/
(lips), /da/ (coronal tongue), and /ga/ (dorsal tongue). C The audio spectrogram aligned to
CV acoustic transition (dotted line). D Mean high-gamma activity from electrodes in vSMC
aligned to CV transition. Traces are colored red-to-black with increasing distance from the
Sylvian fissure. The syllables /ba/, /da/, and /ga/ are generated by spatio-temporal patterns
of activity across the vSMC.

A simple way to visualize the approximate time-courses for consonant and vowel repre-
sentations is to train multinomial logistic regression models at each point in time to classify
consonants or vowels. The results of this analysis is shown in fig 4.3. The light gray and
red lines show the single subject consonant and vowel accuracies ± s.e.m. respectively for
the four subjects. The black and red areas show the subject averaged results. The vertical
dashed line show the time of the transition from consonant to vowel acoustics. Consonant
classification accuracy rises about three hundred milliseconds prior to the vowel transition,
before acoustics are produced for many consonants. Vowel classification accuracy rises after
the transition. There is a period of time from just before the transition to about two hundred
milliseconds after the transition where both the consonant and vowel can be classified, which
is evidence of the coarticulation of the consonants and vowels which can be measured in the

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 28

acoustic and neural signals [54].

-500 0 800
Time (ms)

1

2

3

4

5

A
cc

u
ra

cy
/c

h
a
n
ce

Single subj. consonant

Single subj. vowel

Subj. avg. consonant

Subj. avg. vowel

Chance

Figure 4.3: Accuracy of decoding consonants or vowels during production with multinomial
logistic regression on time slices. Grey shaded areas are consonant accuracy ± s.e.m. for the
4 individual subjects. Light red shaded areas are vowel accuracy ± s.e.m. for the 4 individual
subjects. Dark black and red areas are subject-averaged accuracies ± s.e.m.

Machine learning models

Deep networks

Deep networks have demonstrated state-of-the-art classification performance on a number
of tasks [64, 71, 65]. They have also recently been used in neuroscience as state of the art
encoding models of stimuli [72, 73, 74]. In this work, we evaluate deep networks as classifiers
of produced speech from human ECoG. In addition to classifying CV syllables, we also
consider classifying consonants and vowels as separate entities from the entire time series.
Previous studies which have classified speech from ECoG have primarily used linear (single
layer) models for classifying speech tokens. These models apply learned linear filters to the
data, and are therefore limited in their ability to represent complex nonlinear relationships,
which may be present in the neural data. Multilayer networks can combine features in
nonlinear ways when making predictions. This gives them more expressive power in terms
of the types of mappings they can learn at the cost of more model hyperparameters, more
model parameters to train, and more difficult training dynamics.

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 29

Many machine learning methods can be cast as probabilistic models of data. Classification
models can be interpreted as trying to find the model parameters, θ∗, which minimize the
negative log-likelihood of the training data and labels, {x(i), y(i)}, under a model which gives
the conditional probability of the labels given the input data

θ∗ = arg min
θ

− logP (Y |X; θ), {x(i), y(i)}. (4.1)

Deep networks parametrize this conditional probability with a sequence of linear-nonlinear
operations. Each layer in a fully connected network consists of an affine transform followed
by a nonlinearity:

h1 = f(w1 · x+ b1),

hi = f(wi · hi−1 + bi),
(4.2)

where x is a batch of input vectors, wi and bi are trainable parameters (weights and biases,
respectively) for the ith layer, hi is the ith hidden representation, and f(·) is a nonlinearity.
Linear networks are a special case of deep networks with no hidden representations. Convolu-
tional networks were evaluated but did not provide better performance than full-connected
networks.

For all network types, the final layer non-linearity is chosen to be the softmax function.
This nonlinearity transforms a vector of real numbers into a vector which represents one draw
from a multinomial distribution. It is the negative log-likelihood of this distribution under
the training data which is minimized during training.

To train the networks, the data is randomly organized into 10 subsets (folds) with mutually
exclusive test sets and 80-10-10% splits (training-validation-testing). Since the validation
and testing sets may have fewer than 10 examples per class it was important to split each
class proportionally so that all classes were equally distributed.

These networks have a number of hyper-parameters that govern network architecture
and optimization, such as the number of layers, the layer nonlinearity, and the optimization
parameters. A list of hyperparameters explored is given in table 4.1. For all results, hyper-
parameters were selected by choosing the model with the best average validation classification
accuracy across folds. Hyper-parameter search was done using the Spearmint library and
random search [75, 36]. Deep networks perform best when large amounts of data are used for
training. Since our corpus was relatively small for training deep networks, we regularized
the models in three ways: dropout, weight decay, and filter norm-clipping in all layers of
the model. The dropout rate, activation-rescaling factor, max filter norm, and weight decay
coefficient were all optimized hyper-parameters. Pylearn2 [76] was used to train all models.

Linear models

As baseline models, we trained two linear classifiers on the data. One of the linear classifiers
(softmax linear regression) was optimized using the same hyper-parameter selection method as

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 30

Table 4.1: Hyperparameters for fully connected networks

Name Type Range/Options

Init. Momentum Float .5
Terminate After No Improvement Epochs Int 10

Num FC Layers Int 1 to2
Layer dim. Int 57 to 1000
Layer nonlinearity Enum Tanh, Sigmoid, ReLU
log10 Weight Init Float -5 to 0
log10 Learning Rate (LR) Float -3 to -1
log10 Min. LR Float -4 to -1
log10 One-minus LR Decay Float -5 to -1
log10 One-minus Final Momentum Float -4 to -.3
Momentum Saturation Epoch Int 1 to 100
Batch Size Int 100 to 512
Max Epochs Int 10 to 100
One-minus Input Dropout Rate Float .1 to 1
Input Rescale Float .1 to 5
One-minus Default Dropout Rate Float .1 to 1
Default Rescale Float .1 to 5
log10 L2 Weight Decay Float -7 to 0
Max Filter Norm Float .1 to 5

the fully connected networks but was limited to having no hidden layers. The second was one-
versus-all linear discriminant analysis (LDA) to compare deep networks with previous results.
It is important to note that unsupervised dimensionality reduction is commonly applied
before applying LDA. In our case, we have effectively applied ’dimensionality reduction’ by
choosing the Hγ band and the electrodes in the vSMC. Additionally, our goal was to evaluate
methods with as little pre-processing as possible.

Performance metrics

Information transfer rate

To compare our results with previous speech classification studies, we report estimated
information transfer rates (ITR) in addition to classification statistics. ITR is a unified way
of calculating the effectiveness of different classifiers, which can have differing numbers of

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 31

classes, durations, and modalities. To calculate ITR, the symbol rate is multiplied by the
information per symbol, defined as the channel capacity, C, between the ground truth class,
Y , and predicted class, Ŷ :

C = supremum
P (Y)

I(Ŷ ;Y) = supremum
P (Y)

∑
Ŷi

∑
Yj

P (Ŷi|Yj)P (Yj) log2

(
P (Ŷi|Yj)
P (Ŷi)

)
. (4.3)

For previous work, we must approximate the channel capacity since we do not have access
to the details of the classification performance, P (Ŷ |Y). Wolpaw et. al. [77] suggest an
approximation that assumes all classes have the same accuracy as the mean accuracy and
all errors are distributed equally. To make a fair comparison, we compute this approximate
value for our results (and so make fair comparisons) in addition to the exact value. We find
that the approximation underestimates the true ITR.

Performance trend with training set size

We compared performance scaling of different models by training on variably sized fractions
of the training set. For each fraction of the data, samples were randomly chosen so that the
training set had roughly equal numbers of examples from each class. The validation and test
splits were left the same size. Hyper-parameters were chosen independently for each fraction
of the training data using an equal number of hyper-parameter optimization steps.

4.3 Classification results

For the models considered, we report overall classification accuracy and peak single phoneme
classification accuracy for the best model. All models have classification accuracy significantly
above chance (p < 0.01, Wilcoxon Signed Rank Test, 10 measurements from folds, chance
calculated by training on data with shuffled labels). Additionally, we report consonant and
vowel accuracy for multilayer networks. Furthermore, for increasing amounts of training data,
we also show how performance scales for different models.

Deep networks achieve state-of-the-art classification accuracy

Categorical BMIs for speech rely on accurate classification of neural signals for robust and
high-throughput communication. To this end, we study the ability of deep networks to classify
ECoG signals as one of 57 CV syllables and phonemes (1 of 19 consonants or 1 of 3 vowels).
We found that deep networks outperform a set of baseline models on all classification tasks
examined here which is shown in fig 4.4 and tabulated in table 4.2. For the best subject,
fully connected networks with one hidden layer gave the best performance, achieving 35.4 ±
2.5% accuracy (18x chance, 2.0%). The 4 subject average was 17.9 ± 10.3% accuracy (9x
chance, 2.0%). For the best subject, classification accuracy on consonants and vowels, fully

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 32

connected networks achieved a prediction rate of 44.7 ± 2.1% (8x chance, 5.8%) and 70.0
± 1.6% (2x chance, 32%) respectively. For the 4 subject average, classification accuracy on
consonants and vowels was 27.3 ± 10.8% (5x chance, 5.8%) and 53.0 ± 10.9% (2x chance,
32%) respectively. The CV syllable with the best decoding performance is /ha/ with 72.0 ±
16.0% (7x chance, 11%) accuracy. Of the baseline models, softmax linear regression performs
best, with 26.6 ± 2.0% (16x chance, 1.7%) accuracy on syllables. To make a close comparison
to Mugler et. al. [56], we use LDA and perform consonant classification from the entire time
series for the best subject. Using LDA, Mugler et. al. report 36.1% on a 24 consonant task
(5x chance, 7.4%), while LDA on our data gives 26.9 ± 1.8% on a 19 consonant task (5x
chance, 5.0%).

Table 4.2: Classification and ITR Results

Model
Classification

Accuracy
Folds/
Chance

Approx. ITR
bps

(Exact)
Deep net, 57 CV, single subj. 35.4 ± 2.5% 18x 1.1 (3.0 exact)
Deep nets, 57 CV, subj. mean 17.9 ± 10.3% 9x 1.6 (.4 exact)
Linear Classifier, 57 CV, single subj. 24.8 ± 1.8% 12x 0.64 (2.6 exact)
Linear Classifier, 57 CV, subj. mean 13.6 ± 6.9% 7x 1.1 (3.0 exact)
LDA [56], 24 cons., single subj. 36.1% 5x 0.75
LDA [56], 24 cons., subj. mean 20.4 ± 9.8% 3x 0.25
LDA, 19 consonants 26.9 ± 1.8% 5x 0.4 (1.2 exact)
Deep net, Cons., 19 cons., single subj. 44.7 ± 2.1% 8x 0.9 (1.9 exact)
Deep nets, Cons., 19 cons., subj. mean 27.3 ± 10.8% 5x 0.4 (0.8 exact)
LDA [56], 15 vowels, single subj. 23.9% 2x 0.22
LDA [56], 15 vowels, subj. average 19.2 ± 3.7% 2x 0.12
Deep net, Vowel, 3 vowels, single subj. 70.0 ± 1.6% 2x 0.4 (0.4 exact)
Deep nets, Vowel, 3 vowels, subj. mean 53.0 ± 10.9% 2x 0.1 (0.1 exact)

Across subjects, performance varies likely due to the specific alignment of the grid of
electrodes with relevant function areas and also. In general we find that higher performance
with a linear classifier is correlated with larger improvements from deep networks. This is
true for both the raw accuracy and the potential improvement with more data collection as
we will show.

We additionally quantified performance by calculating the estimated information trans-
mitted per symbol and per unit time. For the CV syllables, 35.4% classification accuracy
would lead to a channel capable of transmitting 1.1 bits per syllable as reported in Table
4.2. Given typical syllable rates of 4 syllables per second [78], this could transmit up to
4.4 bits per second, which corresponds to 49 words per minute [79]. Together, these results
demonstrate that both fully connected deep networks have state-of-the-art performance on

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 33

A B

C

Figure 4.4: Linear versus deep accuracy comparison across tasks. Left column is accuracy of
linear models and right column is the accuracy of deep models. Lines connect subjects from
both categories. Accuracies are normalized to chance (chance at 1). Perfect classification
for each subject is indicated by colored dotted lines. Differences in perfect performance
are due to different distributions of CVs across subjects. A Linear versus deep accuracy
comparison for the full CV task. B Linear versus deep accuracy comparison for consonant
(19-way classification) and vowel (3-way classification) tasks. C Linear versus deep accuracy
comparison for consonant place and consonant matter (both 3-way classification).

classifying produced speech from ECoG recordings. This strongly motivates the use of neural
networks in BMIs to improve information transfer rates compared to previous methods.

Deep networks scale efficiently with limited data

Deep networks often out perform other classification methods when the amount of training
data is large. In contrast to the data sets to which deep networks are commonly applied,
which typically contain ∼ 107 or more examples, most data sets in neuroscience are often
limited to ∼ 102 − 103 examples. In particular, since human ECoG data is only collected

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 34

in clinical situations with limited access to patients, knowing how these methods scale with
increasing dataset size is important for future data collection, as well as their applicability to
BMIs. To assess how classification performance of deep networks depended on the amount of
available training data compared to other methods, we trained models on differently sized
subsets of the data.

In Figure 4.5A, we plot the classification performance for three classifiers as a function of
the number of samples included in the data set. While performance improves with increasing
dataset size for all models, deep networks have the best scaling. The scaling of the fully
connected networks: 11.0 ± 1.2% per thousand examples, is significantly better than linear
models: 6.8 ± 1.0% per thousand examples (p < 0.01, t-test, 10 measurements from folds).
Convolutional models did not have significantly better scaling with 7.4 ± 1.2% per thousand
examples. This is summarized These results demonstrate that deep networks use limited
data more efficiently than other methods, an important consideration when applying to
neuroscience data.

A B

Figure 4.5: Accuracy as a function of dataset size. A For Subject 1, accuracy as a function
of training dataset size. Performance of fully-connected, convolutional, and linear models are
compared. B Comparison of slopes for linear versus deep models. Left column is slope of
accuracy per one thousand data points for linear networks and the right columns is the slope
for deep networks.

Fig 4.5B summarizes the estimated improvement with a larger dataset for 4 subjects.
Again, we see that subjects with the best scaling from linear models have the best scaling

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 35

from deep networks. This correlation is useful for quickly gauging the likelihood of improved
performance with deep networks from linear models which can be trained much faster.

4.4 Phonetic organization of deep network output

Brain computations are non-linear functions operating on spatio-temporal patterns of neural
activity. However, most methods used to understand brain computation are linear, inherently
limiting the capacity to extract structure from neural recordings. This is an issue not only
for optimization of BCIs, but also for understanding brain computations. As deep networks
are essentially adaptive bases function, non-linear function approximators, it is possible that
they can extract structure from noisy, single-trial neural recordings that reveal important
organization of representations.

We examined the structure of network output to more fully understand the organization
of syllable representations in vSMC. In Figure 4.6, we show the average confusion matrix
resulting from the output of the softmax layer of the fully connected network (i.e. before
binary classification), with target syllables arranged along rows and predicted syllable across
columns. The syllables are ordered according to the results of agglomerative hierarchical
clustering using Ward’s method. To the right is a bar-plot of the mean accuracy with which
a specific syllable was correctly classified. Note that the syllable with worst accuracy is the
one with the smallest number of examples in the dataset. At the highest level, syllables seem
to be confused only within the articulator involved (lips, back tongue, or front tongue) in
the syllable. This is followed by a characterization of the place of articulation within each
articulator (bilabial, labio-dental, etc.). At the lowest level there seems to be a clustering
across the vowel categories that capture the general shape of the vocal tract in producing the
syllable. These results are in excellent agreement with the previous analysis of mean spatial
patterns of activity at separate consonant and vowel time points [53]. In contrast, applying
the same analysis to the predictions of a linear network only reproduces the top levels of
the hierarchy. These results demonstrate the capacity of deep networks to reveal important
structure in single-trial neural recordings that is not recoverable with other methods.

This hierarchy can be quantified by comparing this predicted deep network feature space
with different phonetic/articulatory feature spaces. To do this we create two sets of pairwise
distances and correlate them. The first is the pairwise Euclidean distances between each CV
and every other CV in deep networks space. The second is the pairwise Hamming distances
in phonetic feature space. These can be correlated across CV for each subject. The summary
statistics are shown in fig 4.7. For consonant features, we see that the major articulator
features are most correlated with the predicted network features, with consonant place and
then manner as less correlated. Vowel features have small correlations which are similar in
magnitude to manner. It is important to note that the deep network was not trained on
phonetic labels, it only received consonant and vowel labels. Relationships between consonant
structure was inferred from the data.

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 36

to
o

th
aa

th
ee

da
a

la
a

na
a

lo
o

le
e do

o
de

e ne
e

sa
a za

a
so

o
ta

a
se

e ze
e

sh
oo

zo
o

sh
aa

te
e

sh
ee

th
oo

ke
e ga

a
ka

a go
o

ko
o ge

e
he

e ye
e

ha
a

ra
a

ya
a ho

o
ro

o wo
o

no
o yo

o
fa

a pa
a

wa
a va

a
ba

a m
aa

re
e we

e
pe

e be
e

m
ee

fe
e

ve
e po

o
bo

o m
oo

fo
o vo

o

Predicted CV

toothaatheedaa laanaa looleedoodeeneesaa zaasoo taasee zeeshoo zooshaa teesheethookeegaakaagookoogeeheeyeehaa raayaahooroowoonooyoofaapaawaavaabaamaareeweepeebeemee feeveepooboomoofoovoo

Ta
rg

et
 C

V

0

0.65
Di

st
an

ce

0 0.5
Accuracy

0.00

0.12
A B

C
D

Figure 4.6: Analysis of the predictions of the deep network for the subject with the highest
accuracy. A Dendrogram showing hierarchical clustering based on the softmax outputs. Blue
nodes are largely coronal (front) tongue, orange nodes as sibilant, green dorsal (back) tongue,
and purple are labial. B The trend of the number of discovered clusters as a function of
minimum allowed distance between clusters. The dashed line represents the distance, 0.3,
used for the clusters identified in panel A, which is in a relatively flat region of the number
of clusters vs. threshold relationship. Inset is colorbar for C. C Trial-averaged prediction
probabilities for all CVs. Network shows block-diagonal structure when ordered by clustering
in A. D Mean accuracy per syllable across folds.

4.5 Discussion

This study is the first to use deep networks to classify produced speech from human sensori-
motor cortex. Compared to other classification methods (LDA, logistic regression), we find

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 37

Figure 4.7: Comparison of the learned deep network feature space and different potential
phonetic/articulatory feature spaces. For each category of features labeled on the left side of
the axis (major articulator, consonant place, consonant manner, vowel) pairwise distances in
the deep network space are correlated with pairwise distances in the feature space for each
CV. The center line on each bar is the median correlation and the end bars are the 25th and
75th percentiles.

that deep networks classify syllables with state-of-the-art accuracy (∼35%) and push the
boundary on information transfer rates for consonants, vowels and CV classification (49 words
per minute). Fully connected architectures have the highest performance on this dataset,
although convolutional networks also surpass previous methods. The success of these simple
architectures encourages future work in applying recurrent networks to neural time series
data. This could allow classification of variable length utterances which would not need to
be hand-aligned. Beyond having the best current performance, deep networks exhibit the
best performance scaling as a function of data set size, and are projected to keep improving
with larger neural datasets. This is important in their practical application to most biological
data sets, which have small sample sizes.

Outside of their utility as classifiers, deep networks can also provide insight into the latent
structure of data. Since deep networks can learn continuous mappings to probabilities over
classes, their outputs can contain implicit information about the relationship between data
points. In fact, when hierarchical clustering was done on the CV confusion matrix from
the softmax outputs of the network, we recover the phonetic organization of the spoken
syllables, which is directly related to the articulators and shape of the vocal tract during
speech production. This highlights the close relationship between neural signals in the vSMC
and articulators that has also been seen in previous studies [53]. However, we note that

CHAPTER 4. DEEP LEARNING FOR NEURAL DATA ANALYSIS 38

the previous study applied dimensionality reduction to trial-averaged data at hand-picked
time points. Thus, the ability to reveal this structure from single-trials across all times is
noteworthy, as trial-averaging is not possible in the BCI context. While the performance
of deep networks on neural data is indeed encouraging, it falls short of the performance of
similar networks on acoustic data (∼90% classification accuracy on the acoustic data from
this dataset). This difference can be reduced by improved understanding and continued
investigation into robust feature representations of ECoG data as related to speech production.
For example, we found the highest (relative to chance) decoding performance was for the
entire consonant-vowel syllable, which agrees with previous descriptions of context dependent
phoneme representations (i.e. coarticulation) in vSMC activity [54]. Again, deep networks
can enable this by revealing the latent structure of neural data as shown in this study (fig
4.6). The ability to extract meaningful structure from single-trial data is important for
understanding the nature of brain computations and suggests that deep networks may be
useful for this purpose in general.

39

Chapter 5

Inference using a network of leaky
integrator neurons with strictly
neuron-local computation

Chapter coauthor: Michael R. DeWeese

5.1 Introduction

Marr [80] famously divided descriptions of computation into three levels. They are: com-
putation, algorithm, and implementation. The computational description is a high-level
description of the problem that is being solved through computation, e.g. object detection,
speech recognition, or navigation. The algorithmic description, is the abstract mathematical
algorithm that will be used to solve the problem, e.g. deep networks, random guessing, or
dynamical systems. Finally, the implementation level is the hardware details which are used
to implement the algorithm such as a CPU, memristors, or neural substrate [81, 82].

A common hypothesis in theoretical neuroscience is that the brain is learning a structued
probabilistic model of sensory stimuli. One implication of this hypothesis that that if a
probabilistic model is trained on natural stimuli, i.e. natural images or sounds, the nodes in
the model should have similar activity to functional units in the brain. Olshausen and Field
[83], showed that a sparse coding model trained on natural images has response properties
that are similar to those of simple cells in V1. Since then, there have been many results
showing that responses in other parts of visual and auditory streams can be explained by
learning models of natural scenes [84, 85, 86, 87, 88].

To make this hypothesis more exact, the computations required for learning and inference
in these models must be mapped onto computations that functional units, typically a network
of neurons, in the brain could carry out. Rozell et al. [43] proposed a set of locally-competitive
algorithms to perform MAP inference, which have sub-membrane potential dynamics and
thresholding behavior, similar to neurons in cortex. These dynamics have a clear neural

CHAPTER 5. INFERENCE USING A NETWORK OF LEAKY INTEGRATOR
NEURONS WITH STRICTLY NEURON-LOCAL COMPUTATION 40

analog with was explored in a spiking version of this circuit [89].
Zylberberg et al. [3] proposed a network of spiking leaky integrate-and-fire neurons,

SAILnet, which can perform approximate learning and inference in a sparse coding model.
The parameter updates and inference circuit only require neuron-local computations, meaning
that each computation in the model could be carried out by a single neuron given the
information that a neuron in cortex likely has access to: its own membrane potential and
recent spike rate, the value of its own synapses, and the spiking rate of neurons with which
it has connections. It was shown how the local learning rules can be derived from an
approximation to the full sparse coding objective function, but the leaky integrate-and-fire
inference circuit was motivated from previous theoretical models of biological neurons and
not derived from the objective function.

Note that to implement a network that can train itself and infer latent variables, the
actual objective function never needs to be computed. The entire objective function will
by definition not be neuron-local because all neurons have trainable parameters and so no
neuron can compute a function of all trainable parameters. All that is needed is that the
derivatives with respect to the network’s parameters and latent variables be neuron-local.

In this chapter we derive a leaky integrator inference circuit, which takes a similar form
to the one proposed in [3], and show numerically that it better follows the gradient of the
objective function. Sections 5.2 and 5.3 summarize sparse coding and its implementation in
SAILnet. Section 5.4 goes through the details of how to derive an inference circuit from the
objective function.

5.2 Sparse coding

The original sparse coding objective [83] is a sum of reconstruction term and sparsity terms

E(X,S;A, λ) =
1

2

∑
i

(Xi −
∑
j

AijSj)
2 +

∑
j

λf(Sj), (5.1)

where Xi is a data vector, Aij is a dictionary of filters or feedforward weights, Sj are the
sparse coefficients or latent variables, and λ is a parameter that controls the trade-off between
reconstruction and sparsity. A common choice for f(S) is the L1 norm, which allows the
objective to be easily interpreted as a simple probabilistic model with Gaussian errors on a
linear reconstruction from latent variables which have a Laplacian prior.

Alternate sparse coding objective

Zylberberg et al. [3] gave an alternative objective function for sparse coding. Rather than
putting a prior on the sparse coefficients, the problem was turned into a constrained opti-
mization problem where the reconstruction term in the energy function was the same, but

CHAPTER 5. INFERENCE USING A NETWORK OF LEAKY INTEGRATOR
NEURONS WITH STRICTLY NEURON-LOCAL COMPUTATION 41

the sparse prior was turned into homeostasis for the individual neuron’s firing rates:

E(X,S;A, θ, p) =
1

2

∑
i

(Xi −
∑
j

AijSj)
2 +

∑
i

θi(Si − p) (5.2)

where the second terms is a constraint implemented using the method of Lagrange multipliers.
The reconstruction term will lead to both non-local learning rules for A and a non-local

inference circuit for infering S. So, it is approximated by an objective

E(X,S;A,W, θ, p) =
1

2

∑
ij

(Xi − AijSj)2 +
∑
i

θi(Si − p) +
∑
ij

Wij(SiSj − p2) (5.3)

which will lead to Oja’s learning rule [90] and a local inference circuit. Notice that the sum
on j has moved outside of the squaring operation in the first term. Zylberberg et al. [3]
showed that gradient descent with respect to A,W , and θ gave local learning rules for the
parameters of the model.

The change in the reconstruction term removes terms that implement explaining-away in
the model during inference. The third term in the objective constrains the neurons activities
to be decorrelated. Wij is constrained to be non-negative and symmetric with Wii = 0.

As shown in Fig 5.1, sparse coding can be represented as a graph wherein a set of latent
variables, S, are explaining, through conditional probabilities, the data, X. In a graphical
model, conditional dependencies are indicated with directed arrows and local statistical
dependencies are indicated with lines. Graphical model representations of distributions are a
powerful tool for reasoning about models. Wainwright and Jordan [11] present their use and
properties. This work will not use the full machinery of graphical models, but will rely on
the intuition gained from their graphical representation of statistical dependencies.

Si Sj

Xk Xk

Si Sj

Xk

Si Sj

Xk Xk

Figure 5.1: Graphical models for three sparse coding objectives. Latent variables Si and
Sj explain visible (data) variable Xk. The left panel shows the model for the original
reconstruction objective. The middle panel shows the model for the local reconstruction
objective before the decorrelating constraint is added. The right panel shows the local
reconstruction model after the decorrelating connections have been added.

CHAPTER 5. INFERENCE USING A NETWORK OF LEAKY INTEGRATOR
NEURONS WITH STRICTLY NEURON-LOCAL COMPUTATION 42

In the original objective represented in the left panel of fig 5.1, all latent variables are
explaining each dimension of the data. This means that then the posterior of the distribution
is computed, the latent variables will have an explaining-away effect on each other, i.e.
P (Si|Xk) > P (Si|Xk, Sj). This can be seen graphically because Si and Sj have a connection
through Xk.

In the approximate reconstruction objective, each neuron is independently trying to
explain the data, which leads to a set of disconnected pairs of nodes as in the middle panel.
Each latent variable in S in independently trying to explain all of the data dimensions Xk.
With no other structure in the model, all neurons or latent variables will typically collapse
into modeling the dimension with largest variance.

In the panel on the right, the decorrelation term adds a undirected dependence back
between the latent variables which will approximate the explaining away effect from the
left-most panel. This will prevent the neurons from learning a degenerate representation of
the data.

When the objective function is made local by throwing away terms which are not neuron-
local. This removes any explaining-away effects the latent variables have on each other
during inference. This would lead to the neurons learning potentially degenerate solutions
or representations. This motivates adding in auxillary synapses between units which may
induce an approximate explaining-away effect. The decorrelation constraint which leads to
inhibitory synapses is added to the network to approximate the explaining-away effect.

5.3 Comparing reconstruction objectives

Following the analysis of Zylberberg et al. [3], we can expand both the local and non-local
objectives and compare terms. For the data averaged, non-local reconstruction objective we
have

CNL(X,S;A) =
1

2N

∑
ik

(X
(k)
i −

∑
j

AijS
(k)
j)2, (5.4)

where superscripts indicate dataset indices. For the local objective we have

CL(X,S;A) =
1

2N

∑
ijk

(X
(k)
i − AijS

(k)
j)2, (5.5)

where we are now including an average over a batch of size N with batch index denoted by
superscripts.

CHAPTER 5. INFERENCE USING A NETWORK OF LEAKY INTEGRATOR
NEURONS WITH STRICTLY NEURON-LOCAL COMPUTATION 43

Starting with the non-local objective, we get

CNL(X,S;A) =
1

2N

∑
ik

(X
(k)
i −

∑
j

AijS
(k)
j)2

=
1

2N

∑
ik

(
(X

(k)
i)2 − 2X

(k)
i

∑
j

AijS
(k)
j + (

∑
j

AijS
(k)
j)(

∑
j

AijS
(k)
j)

)

=
1

2

∑
i

〈X2
i 〉 −

∑
ij

Aij〈XiSj〉+
1

2

∑
ijk

AijAik〈SjSk〉

(5.6)

where expectations are over the batch.
For the local objective, we get

CL(X,S;A) =
1

2N

∑
ijk

(X
(k)
i − AijS

(k)
j)2

=
1

2N

∑
ijk

(
(X

(k)
i)2 − 2X

(k)
i AijS

(k)
j + (AijS

(k)
j)(AijS

(k)
j)
)

=
L

2

∑
i

〈X2
i 〉 −

∑
ij

Aij〈XiSj〉+
1

2

∑
ij

A2
ij〈SjSj〉

(5.7)

where L is the number of neurons in the network.
There are two differences to note. The first is that the local objective has L− 1 extra

copies of the first term from moving the sum on neurons outside of the reconstruction. These
terms have no parameter dependence so they will not affect inference or learning. The second
important difference is in the final term where we are neglecting the off-diagonal terms from
the sum over AijAik〈SjSk〉). The decorrelation should keep 〈SjSk〉) small and Zylberberg
et al. [3] shows that AijAik and 〈SjSk〉) are correlated so the off diagonal terms should be
small compared to the diagonal terms.

So we can relate the two objectives by

CNL(X,S;A) = CL(X,S;A)− M − 1

2

∑
i

〈X2
i 〉+

1

2

∑
i,j 6=k

AijAik〈SjSk〉 (5.8)

where the first term only depends on the data and the second term’s function is being replaced
by the inhibitory matrix W .

In the objective function, the explaining away is apparent when looking at the MAP
inference differential equation. The neurons have an inhibiting effect on each other which
is proportional to the inner product of their dictionary elements and the activity of the
inhibiting neuron. This term is not neuron-local and could not reasonably be implemented in
a networks of biological neurons.

CHAPTER 5. INFERENCE USING A NETWORK OF LEAKY INTEGRATOR
NEURONS WITH STRICTLY NEURON-LOCAL COMPUTATION 44

5.4 A network circuit for inference

Before the parameters of the model can be learned, the sparse code for each data element
needs to be inferred. For classic sparse coding, this is commonly done using MAP inference
on the objective function with respect to the codes S. Zylberberg et al. [3] instantiated a
leaky integrate-and-fire circuit (LIF) which had three terms in the integrator circuit

τ
dui
dt

= −ui +
∑
j

XjAji −
∑
j 6=i

Wijyj

yi = 1 if ui > θi else 0

(5.9)

which are conductive leak, linear filtering driving, and inter-neuron inhibition. yj is the
instantaneous, binary spiking variable for neuron i. This circuit may not always descend the
objective function, as we can show.

The negative gradient of the local objective function, eq. 5.3, is

−∂E(S|X;A,W, θ)

∂Si
=
∑
j

AjiXj −
∑
j

A2
jiSi − θi − 2

∑
j 6=i

Wjiaj. (5.10)

The first term is the same linear filtering term as in SAILnet. The second is the leakiness
term with an additional scaling by the length squared of the dictionary element. In sparse
coding, the dictionary is commonly normalized to have length 1 to remove a degeneracy
in the model, but since SAILnet has a homeostatic constraint on S, it is not be possible
to also constraint the norm of A, have a homeostatic rate for S, and reconstruct the data,
which has fixed norm. Empirically, the mean norm will be on the order of length 1, but can
vary by a small integer factor and will have non-zero variance. It is an interesting prediction
that the leakiness of the membrane of a neuron should scale with the overall strength of
its synapses. −θ would be converted into a spike-threshold in a LIF version of this analog
equation. Finally, the last term is twice the SAILnet value due to W being symmetric.

Given this analog optimization problem, there are a number of different ways to instantiate
a leaky-integrator circuit to approximate inference. The negative gradient can be interpreted
as the driving current in the circuit

τ
dui
dt

= −∂E(S|X;A,W, θ)

∂Si
. (5.11)

The remaining choices all have to do with how to interpret the analog Si, in the spiking
model. Some options are:

• ui, the analog membrane potential - probably used for leakiness ai,

• yi, the instantaneous spike variable, - possible for inhibitory terms,

• ȳi, the current spike rate, - possible for inhibitory terms.

CHAPTER 5. INFERENCE USING A NETWORK OF LEAKY INTEGRATOR
NEURONS WITH STRICTLY NEURON-LOCAL COMPUTATION 45

5.5 Numerical simulations for inference dynamics

Fig 5.2 shows the dynamics of inference when the network is first initialized, i.e. when the
parameters have not been adapted to the data. The inhibitory weights and thresholds are
initialized at zero and the reconstruction weights have been drawn randomly from a mean-zero
unit normal distribution. This means that only the reconstruction objectives contribute to
inference. The top panel shows the normal reconstruction error measures during 200 steps of
inference. The bottom panel shows the independent reconstruction error during the same
inference.

0.00

0.25

0.50

0.75

1.00

m
se SAILnet S

Local S
Nonlocal S
init

100 101 102

steps

0.900

0.925

0.950

0.975

1.000

in
de

pe
nd

en
t m

se

SAILnet S
Local S
Nonlocal S
init

Figure 5.2: Inference dynamics at network initialization for a network running inference on the
nonlocal objective function, local SAILnet objective function, and corrected local objective
function derived here. The top panel shows the mean-squared error, which is equivalent to
the nonlocal objective during the respective inference dynamics. The bottom panel shows
the local error which is equivalent to the average of the each neuron’s individual error.

Initially, all three inference circuits descend the objective function. The nonlocal circuit
will continue to descend until the data is close to perfectly reconstructed. Initially, the minima
that the local circuits are falling into is far away from the minima that the nonlocal circuit

CHAPTER 5. INFERENCE USING A NETWORK OF LEAKY INTEGRATOR
NEURONS WITH STRICTLY NEURON-LOCAL COMPUTATION 46

has and so while they initially descend, at some point they move away from the nonlocal
minimum and their reconstruction error rises. If the independent reconstruction error is
measured, the local inference circuit will exactly desend this objective and we see that the
nonlocal and SAILnet circuits

Inference after ten thousand steps of learning is shown in fig 5.3. Descent is qualitatively
similar, but the local circuit more closely follows the nonlocal circuit as compared to the
original SAILnet circuit. Interestingly the SAILnet circuit initially more quickly descends
both objectives, but traverses the minimum in reconstruction error and climbs back to a
solution with high error.

0.00

0.25

0.50

0.75

1.00

m
se SAILnet S

Local S
Nonlocal S
init

100 101 102

steps

0.900

0.925

0.950

0.975

1.000

in
de

pe
nd

en
t m

se

SAILnet S
Local S
Nonlocal S
init

Figure 5.3: Same plots as fig 5.2 after ten thousand iterations of learning.

5.6 Discussion

We have developed a new dynamical neural circuit which implements constrained inference
in an approximate sparse coding model. This circuit connects the second of Marr’s level:
algorithm to the third: a neural implementation. This connection requires approximation

CHAPTER 5. INFERENCE USING A NETWORK OF LEAKY INTEGRATOR
NEURONS WITH STRICTLY NEURON-LOCAL COMPUTATION 47

given the neuron-local nature of information in a neural circuit model. Unlike previous
work [3], we derive this circuit from the objective function of the model, which leads to a
procedure which is interpretable as inference in a probabilistic model. In a rate-based neural
implementation, we show that this new circuit is more stable and more closely follows the
dynamics of the original nonlocal objective function of the model.

The insights gained from the translation of a probabilistic model, sparse coding, to
an approximate neural implementation, SAILnet and modifications proposed here, can be
applied to other classes of models. These types of modifications are tailored to the type
of probabilistic model as opposed to general purpose translation of algorithms into spiking
neural circuit as proposed in the Neural Engineering Framework [91].

48

Chapter 6

Overcomplete independent
components analysis

Chapter coauthors: Alejandro F. Bujan, Friedrich T. Sommer

6.1 Introduction

Mining the statistical structure of data is a central topic of machine learning and an important
tool for neuroscience. A prominent class of such algorithms is dictionary learning methods,
which reveal structural primitives in the data, the dictionary, and a corresponding latent
representation, often regularized by sparsity. Here we consider dictionary learning of the
type first proposed under the name Independent Components Analysis (ICA) [92, 93],
that are computationally tractable because the learned mappings between data and latent
representation are both linear. Specifically, we focus on overcomplete dictionary learning [94,
95, 10], the case, when the dimension of the latent representation exceeds the dimension of
the data and therefore the linear filters (dictionary) generating the data cannot be mutually
orthogonal.

Dictionary learning has important applications in neuroscience as a computational model
for understanding the formation of sensory representations in the brain [93, 96, 97, 98, 99, 100,
101] and as data mining tools [102, 103, 104]. Furthermore, overcomplete dictionary learning
has been shown to learn more a more diverse set of features which more closely represent the
diversity of receptive fields found in sensory cortex [99, 101, 105]. Overcompleteness may also
be a strategy used by early sensory areas in cortex as it has been shown that they contain
more neurons than afferent inputs [106, 107, 108, 109, 110, 111].

Unsupervised, overcomplete representation learning algorithms require either implicit or
explicit mechanisms for preventing learned features from becoming coherent. The coherence
of the dictionary is defined as the maximum absolute value of the off-diagonal elements of

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 49

the Gram matrix of a dictionary [6], W ,

coherence ≡ max
i 6=j
|
∑
k

WikWjk| = max
i 6=j
| cos θij|. (6.1)

During inference, latent features in overcomplete sparse coding models [112] have an explaining-
away effect on each other which prevent them from learning coherent solutions. In overcom-
plete independent components analysis (ICA) [95, 10], additional costs need to be added to
the sparsity prior to prevent high-coherence solutions. Sparse coding methods which add
additional coherence control costs have also been proposed [8, 9].

ICA is a technique for learning the underlying non-Gaussian and independent sources, S,
in a dataset, X. ICA is formulated as a noiseless linear generative model:

Xi =
∑
j

AijSj, (6.2)

where A ∈ RD×L is referred to as the mixing matrix wherein D is the dimensionality of the
data, X, and L is the dimensionality of the sources, S. The goal of ICA is then to find the
unmixing matrix W ∈ RL×D such that the sources can be recovered, Si =

∑
jWijXj with

W = A−1. In the complete case the mixing matrix can be inverted. The unmixing matrix W
can be obtained by minimizing the negative log-likelihood of the model:

arg min
W

M∑
i=1

L∑
j=1

g(
∑
k

WjkX
(i)
k)− log(det(W)) (6.3)

where g(·) specifies the shape of the negative log-prior and is usually a smooth version of
the L1 norm such as the log(cosh(·)), X(i) is the ith element of the dataset, X, which has
M elements, and where the bases are constrained to be unit-norm. If the data has been
whitened, the unconstrained optimization can be replaced by a constrained optimization
where the second term in the cost function is replaced with the constraint WW T = I [113].
The log-determinant and the identity constraint will both prevent the bases from becoming
coherent. In ICA, as an alternative to sparse coding, inference is a single linear transformation
versus a maximum a posteriori (MAP) estimation or posterior estimation which requires
computationally expensive iterative methods.

In overcomplete ICA models, neither the log-determinant cost nor the orthonormality
constraint are viable and so the objective function can modified by adding a new cost, C, to
the sparsity prior [7, 10]. The new unconstrained optimization problem becomes:

arg min
W

λ
M∑
i=1

L∑
j=1

g(
∑
k

WjkX
(i)
k) + C(W). (6.4)

This cost should prevent the co-alignment of the bases. Different methods for coherence
control in overcomplete ICA have been proposed: a quasi-orthogonality constraint [114], a

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 50

reconstruction cost (equivalent to an L2 Gram matrix cost) [10], and a Random Prior cost
[7] (see section 6.6 for details). However, a systematic analysis of the properties of proposed
ICA methods and a comparison with methods that extend more naturally to overcomplete,
i.e. sparse coding, is still missing in the literature.

Here, we show that although the global minima of the L2 cost has zero coherence for a
complete basis, in the overcomplete case, it has global minima wherein pairs of basis vectors
have coherence which can become one. We introduce a theoretical framework for evaluating
different degeneracy control costs, and propose several new costs, which we compare with
previously proposed methods. Our first novel approach is the L4 cost on the difference
between the identity matrix and the Gram matrix of the bases. The second method is a cost
which we term the Coulomb cost because it is derived from the potential energy of a collection
of charged particles bound to the surface of an n-sphere. We also propose a modification to
existing cost function which allows them to learn less coherent dictionaries.

In addition to controlling coherence, we show that these costs will influence the distribution
of an overcomplete set of bases in the high dimensional space. We investigate their effect on
the distribution of pairwise angles between bases learned on a dataset with known structure
and evaluate the diversity of bases learned on natural images using different degeneracy
costs. Finally, we provide analytic and numerical methods for evaluating potential degeneracy
controls.

6.2 Minima landscape of coherence control costs

The L2 cost

Dictionary or representation learning methods often augment their cost functions with addi-
tional terms aimed at learning less coherent features or making learning through optimization
more efficient. The L2 cost [8, 10, 9], defined for a matrix, W , as:

CL2 =
∑
ij

(δij −
∑
k

WikWjk)
2 =

∑
ij

(δij − cos θij)
2, (6.5)

is one of these costs and is motivated by compressed sensing [115, 6]. First, minimizing the
L2 cost is a necessary but not sufficient condition for finding equiangular tight frames (see
section 6.6 for details), a certain class of minimum coherence solutions. Second, overcomplete
representations are easier to recover when the mixing matrix has low coherence [116].

We prove that the L2 cost has global minima with maximal coherence. This implies
that the L2 cost and its related costs are not providing coherence control in overcomplete
dictionaries.

Pathological degeneracy in the L2 cost

For the L2 cost, it can be shown that in the overcomplete case, there exists a set of global
minima in which the angle between pairs of bases is exactly zero. We prove the following

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 51

theorem:

Theorem 1. Let W be an integral overcomplete unmixing matrix with data dimension D
and latent dimension L = n×D, with n an integer greater than 1. There exist global minima
of the L2 cost: W0, with coherence = 1.

This theorem also implies that an orthonormal basis is a global minimum in the complete
case. We also show that there are transformations which move the degenerate solution
(coherence = 1) into non-degenerate solutions (coherence < 1) to which the L2 cost is
invariant.

Theorem 2. There exist continuous transformations: Φ = R⊕I(L−D), R ∈ O(D), I(L−D)
an L−D dimensional identity transformation, on W0 to which the L2 cost is invariant. These
transformed matrices W0Φ have coherence < 1 and are global minima of the L2 cost.

Section 6.4 contains the proofs of these theorems.
These degenerate minima are illustrated with a two dimensional, two times overcomplete

example in fig 6.1. It can be shown that there are pathological minima, fig 6.1A, which can
be continuously rotated into other low coherence minima, fig 6.1B. These configurations are
equivalent in terms of the value of the L2 cost and lie on a connected global minimum.

In order to understand these minima, we evaluate the structure of the cost in the two
dimensional example analytically. The global rotational symmetry of the L2 cost allows us
to parameterize all solutions with respect to one fixed basis element: (1, 0), without loss of
generality. The bases, shown in fig 6.1, are:

(1, 0), (cos θ1, sin θ1), (cos θ2, sin θ2), (cos θ2 + θ3, sin θ2 + θ3). (6.6)

Setting θ1 and θ3 to π/2, i.e. creating a set of two orthonormal bases, forms a ring of minima
as θ2 is varied. This can be shown by computing the gradient and the eigenvalues of the
Hessian of the cost at these points. The cost function, gradient, and Hessian are tabulated in
section 6.3.

The gradient is zero everywhere along this path, which shows that it is critical point. One
eigenvalue of the Hessian is 0 as shown in fig 6.1C. This corresponds changing θ2 (see section
6.3 for details), which is equivalent to rotating the pairs of bases with respect to each other
and has no effect on the cost. The second two eigenvalues will be positive as long as θ2 is
not nπ or (n+ 1

2
)π for integer n, respectively. At the points where they are zero, the second

derivatives vanish, but inspection of the cost along these axes show that they will be locally
stable as the fourth derivatives are positive.

Numerical simulations, section 6.2, suggest that these pathological solutions are also
present in the quasi-orthonormality constraint [114] which is an iterative update. In summary,
we find that several proposed coherence control methods do not prevent dictionary from
becoming coherent in the overcomplete regime indicating that there is a need for new forms
of coherence control.

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 52

θ1

θ3

θ2 θ1

θ3

θ2

-45 0 45

θ2

1

0

1

e i
 (

a
rb

.
u
n
it

s)

L2

L4

A B

C

Figure 6.1: Stucture of the pathological global minimum in the L2 cost which the L4 cost
corrects. For A and B, each arrow represents a basis element in a 2-times overcomplete basis
in a 2-dimensional space. A Bases which have the same value of the cost as the bases in B
for any θ2 including the pathological solution θ2 → 0 and B shows a potential good solution
with low coherence. C The eigenvalues of the Hessian of the L2 and L4 costs at θ1 = θ3 = π

2

as a function of θ2. Each purple line is one of the three eigenvalues of the L2 cost as θ2 is
varied. Each yellow line is one of the three eigenvalues of the L4 cost as θ2 is varied.

Proposed coherence control costs

The L4 cost

We propose a novel coherence control cost termed the L4 cost, which transforms the degenerate
minima of the L2 cost into saddle points.

CL4 =
∑
ij

(δij −
∑
k

WikWjk)
4 =

∑
ij

(δij − cos θij)
4 (6.7)

Following the same analysis as section 6.2, we show that the degenerate solutions are either
reduced to saddle points at θ2 = nπ

2
or local minima at θ2 = (2n + 1)π

4
(fig 6.1C, which

correspond to incoherent solutions. The cost function, gradient, and Hessian are tabulated in
section 6.3.

The Coulomb cost

We also propose a second alternative cost, where the repulsion from high coherence is
Coulombic: the Coulomb cost. Coherence control can then be related to the problem of

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 53

characterizing the minimum potential energy states of L charged particles on an n-sphere, an
open problem in electrostatics [117]. The energy, ECoulomb, of two charged point particles of
the the same sign is proportional to the inverse of their distance, ~rij:

ECoulomb
ij ∝ 1

|~rij|
. (6.8)

To map this problem onto ICA, the cost should be made symmetric around θ = π/2 rather
than θ = π, which can be accomplished by replacing θ with 2θ, i.e. |rij| =

√
1− cos2(θij/2)→√

1− cos2 θij. Therefore, the Coulomb cost1 can be formulated as follows:

CCoulomb =
∑
i 6=j

1√
1− cos θ2ij

. (6.9)

Coherence-based costs

The coherence of a dictionary [6] is defined as the maximum absolute value of the off-diagonal
elements of the Gram matrix, as in equation 6.1, which can be used as a cost function during
optimization. This cost is difficult to numerically optimize since the derivative through the
max operation will only act on one pair of bases at each optimization step, although it should
find solution with local minima of coherence. An easier to optimize, but heuristic, version of
this cost is the sum over all off-diagonal elements whose squares are larger than the mean
squared value

CSoft Coherence =
∑

i 6=j s.t. cos θ2ij>cos θ̂2

| cos θij|, with cos θ̂2 = mean
i,j

(cos θ2ij). (6.10)

We find that this cost does not work well for coherence control in ICA, but it can be used
to generate mixing matrices for generating data with known structure as in section 6.5.

Flattened costs

The Random prior and Coulomb costs have quadratic terms that dominate their derivatives
as cos θ → 0. As will be described in section 6.2, these terms can have the undesired effect of
pushing more pairs of bases close to orthogonal at the expense of having more bases with
smaller pairwise angles. We also created versions of the Random prior and Coulomb costs
where the quadratic terms have been removed, i.e.

CFlat(cos θij) = C(cos θij)−
∂2C(cos θij)

∂ cos θ2ij

∣∣∣∣
0

cos2 θij. (6.11)

1We subtract off the value of the cost for perpendicular bases, 1, for each pair i, j to bring the cost into a
better dynamic range.

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 54

Analytic and numerical investigations of coherence control

In order to understand the origin of the effects of the different coherence controls on the
pairwise angle distributions, the coherence costs can be directly compared without the
data dependent ICA sparsity prior. We use two different initializations of the bases and
optimize the data-independent coherence costs. These initializations are: a noisy pathological
initialization (as in section 6.2) and a random uniform initialization.

The noisy pathological initialization tiles an orthonormal, complete basis two times and
adds Gaussian noise to every basis element to create W . As shown in fig 6.2A, most pairwise
angles start close to either 90 or 0 degrees apart as shown in the two peaks in the initial
distribution. The quasi-orthogonality update and the L2 are unable to move away from this
solution unlike the other costs, which generate comparable solutions for both initializations.

In the random uniform case, the elements of W are drawn independently from a uniform
distribution on the unit hyper-sphere. After converging, the quasi-orthogonality update [114]
produces a distribution which is more coherent than the initialization (fig 6.2A. All other
costs decrease the coherence of the bases. The distribution of pairwise angles for the L2 cost
peaks at 90 degrees but also has a longer tail towards small angles. The other costs have
shorter tails and have varying amounts of density near 90 degrees. Of all costs, the L4 cost
distributes the angles most evenly which is reflected by its distribution having the narrowest
width and lowest coherence.

In order to gain more insight into the qualitative differences in the distributions of angles,
we analyze the behavior of the costs around θ = 0 and θ = 90 (fig 6.2D-E respectively). The
gradient of the cost close to | cos θ| = 1 is proportional to the force the angles feel to stay
away from zero which will determine the tail of the angle distribution.

Taylor expanding all the costs near cos θ = 0 reveals that all cost functions have non-zero
second order terms except for the L4 cost which only has a fourth order term with linear
and cubic terms in their gradients respectively as shown in fig 6.2E. Gradients which scale
linearly will encourage pairs of basis vectors to be more orthogonal at the expense of skewing
the angle distribution towards small values. This leads to distributions of pairwise angles
which are less uniform over all pairs of elements of the basis. Fig 6.2C shows the effect of
removing the quadratic terms from the Coulomb and Random Prior costs. In both cases, the
costs have fewer pairwise angles close to 90 degrees and a smaller coherence.

This analysis shows that proposed coherence control methods prevent degeneracy to
different degrees, and furthermore that the choice of coherence control, which is meant to
affect the distribution of small pairwise angles, has an effect on the entire distribution of
angles.

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 55

80 90 45 90
θ

10-4

10-2

100

P
ro

b
a
b
ili

ty
D

e
n
si

ty

82 90
θ

10-4

10-2

100

P
ro

b
a
b
ili

ty
D

e
n
si

ty

Coulomb

Rand. Prior

Flat Coulomb

Flat Rand. Prior

0.6 0.8 1
cos θ

10-1

100

101

∇
C

(c
os
θ)

-0.2 0 0.2

cos θ
-0.1

0.1

∇
C

(c
os
θ)

0 10
10-4

10-2

100

P
ro

b
a
b
ili

ty
D

e
n
si

ty

Quasi-ortho
L2

L4

Soft Coher.

Coulomb

Rand. Prior

A B

C D

E

θ

Figure 6.2: Analysis of different coherence control mechanisms. Color code is preserved across
panels. A Angle distributions obtained by numerically minimizing different cost functions
C for a random initialization of the bases. Red dotted line indicates the initial distribution
of angles. B Angle distributions obtained (as in A) with a pathological initialization of
the bases. C Comparison of standard and flattened Coulomb and Random Prior costs. D
Gradient of the costs as a function of cos θ near cos θ ∼ 1. E Gradient of the costs as a
function of cos θ near cos θ ∼ 0.

6.3 Minima analysis for the L2 and L4 costs for a

2-dimensional space

Here we tabulate the full Hessian matrices, eigenvalues, and eigenvectors for the analysis in
section 6.2.

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 56

L2 cost

CL2(θ1, θ2, θ3)|θ1,θ3=π2 = 4

∂CL2(θ1, θ2, θ3)

∂~θ
|
θ1,θ3=

π
2

=
(
0 0 0

)
H(CL2)|θ1,θ3=π2 =

 4 0 4 cos 2θ2
0 0 0

4 cos 2θ2 0 4


Eig.(HL2)|θ1,θ3=π2 =

 0
8 sin2 θ2
8 cos2 θ2


EVec.(HL2)|θ1,θ3=π2 =

0
1
0

 ,

−1
0
1

 ,

1
0
1



(6.12)

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 57

L4 cost

CL4(θ1, θ2, θ3)|θ1,θ3=π2 = 3 + cos 4θ2

∂CL4(θ1, θ2, θ3)

∂~θ
|
θ1,θ3=

π
2

=
(
2 sin 4θ2 −4 sin 4θ2 −2 sin 4θ2

)
H(CL4)|θ1,θ3=π2 =

 −8 cos 4θ2 8 cos 4θ2 4(cos 2θ2 + cos 4θ2)
8 cos 4θ2 −16 cos 4θ2 −8 cos 4θ2

4(cos 2θ2 + cos 4θ2) −8 cos 4θ2 −8 cos 4θ2



Eig.(HL4)|θ1,θ3=π2 =


4(cos 2θ2 − cos 4θ2)

−2 cos 2θ2 − 14 cos 4θ2 − . . .
. . .
√

2
√

34− 2 cos 2θ2 + cos 4θ2 − 2 cos 6θ2 + 33 cos 8θ2
−2 cos 2θ2 − 14 cos 4θ2 + . . .

. . .
√

2
√

34− 2 cos 2θ2 + cos 4θ2 − 2 cos 6θ2 + 33 cos 8θ2


EVec.(HL4)|θ1,θ3=π2 =

1
0
1

 ,


−1

(
√
2
8

√
2 cos 2θ2 + cos 4θ2 − . . .

. . . 2 cos 6θ2 + 33 cos 8θ2 + 34
− . . .

. . .− 2 cos 2θ2) sec 4θ2 + 1
4

1

 ,


−1

1
4
− (2 cos 1

4
θ2 + . . .

. . .
√
2
8

√
−2 cos 2θ2 + cos 4θ2 − 2 cos 6θ2 + . . .

. . . 33 cos 8θ2 + 34
) sec 4θ2

1


(6.13)

6.4 Minima analysis for high dimensions

This section contains the proof of Theorems 1 and 2.

L2 cost minima and equiangular tight-frames: proof of Theorem 1

Here we prove Theorem 1 in two steps: first we can show the equivalence, up to an additive
constant, of minimizing the L2 cost and minimizing the L2 norm in the error of equation
6.22. Then we show that the pathological solution (section 6.2) is at the global minimum of
this cost.

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 58

Proof of Theorem 1. For a normalized (
∑

kW
2
ik = 1, ∀i) matrix, W :

CL2 =
∑
ij

(
∑
k

WikWjk − δij)2

=
∑
ij

(
∑
k

WikWjk − δij)(
∑
l

WilWjl − δij)

=
∑
ijkl

WikWjkWilWjl − 2
∑
ijk

WikWjkδij +
∑
ij

δ2ij

=
∑
ijkl

WikWjkWilWjl − 2
∑
ik

W 2
ik + const.(L)

=
∑
ijkl

WikWjkWilWjl + const.(L)

(6.14)

Ceq. 6.22 =
∑
kl

(
∑
i

WikWil −
L

D
δkl)

2

=
∑
kl

(
∑
i

WikWil −
L

D
δkl)(

∑
j

WjkWjl −
L

D
δkl)

=
∑
ijkl

WikWilWjkWjl − 2
∑
ikl

L

D
WikWilδkl +

∑
kl

(
L

D
δkl)

2

=
∑
ijkl

WikWilWjkWjl − 2
L

D

∑
ik

W 2
ik + const.(L,D)

=
∑
ijkl

WikWilWjkWjl + const.(L,D)

(6.15)

where
∑

kW
2
ik = 1, ∀i is used extensively and the index letters were initially chosen to

make the comparison of the final lines more clear. In Le et al. [10], the L2 cost is also shown
to be equivalent to the reconstruction cost with whitened data.

Now we can show that the same basis that was described in section 6.2: W0, an integer
overcomplete basis where each set of complete bases is an orthonormal basis, exactly satisfies
equation 6.22 and so is a minimum of the L2 cost. This solution is very far away from an
ETF in the sense of equation 6.21. A basis of this form, W ∈ RL×D, can be constructed as
Wij = δ(i mod D)j with L = n×D, n ∈ N, i.e. a D dimensional identity matrix tiled N times.

This construction satisfies equation 6.22 and therefore has a value of 0 for Ceq. 6.22. Since
Ceq. 6.22 is a sum of quadratic, and therefore non-negative, terms, this construction is a global

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 59

minimum of Ceq. 6.22 and the L2 cost.∑
k

WkiWkj =
∑
k

δ(k mod D)iδ(k mod D)j

= nδij

=
L

D
δij

⇒ Ceq. 6.22 = 0

(6.16)

as k mod D = i a total of n times when i = j.
However, this construction has off-diagonal Gram matrix elements that are either 0 or 1:

cos θij =
∑
k

WikWjk

=
∑
k

δ(i mod D)kδ(j mod D)k

= δ(i mod D)(j mod D),

(6.17)

which is not equal or close to an equiangular solution: cos θij = cosα, ∀i 6= j.

Invariance to continuous transformations: proof of Theorem 2

Here we prove Theorem 2: the L2 cost, initialized from the pathological solution, is invariant
to transformations, Φ = R⊕ I, R ∈ O(D), constructed as orthogonal rotations applied to
any basis subset and an identity transformation on the remaining bases. This shows that low
coherence and high coherence configurations are both global minima of the L2 cost.

Proof of Theorem 2. For an D dimensional space with an n ∈ Z+ times overcomplete basis,
the pathological case is n orthonormal subsets, each its own orthonormal basis. We label our
bases into the sequential subsets of orthornormal subsets by labelW1, . . . ,WD, . . . ,W2D, . . . ,Wn×D.
So, bases W1 through WD form a full-rank orthonormal basis and this basis is tiled n times.
Consider the following partition of the bases: partition A is the first orthonormal set, i.e.
bases W1 through WD, and partition B the remainder of the bases, i.e. bases WD+1 through
Wn×D. If a rotation is applied to all elements of A, only terms in the cost between elements
of A and B will change. It is straightforward to show that the terms in the cost that have
both elements within A or both within B are constant since the rotation does not alter the
relative pairwise angles.

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 60

For Wi ∈ B, we can write down the terms in the cost which contain itself and elements
from AR:

CWi,AR =
∑
Wj∈A

(RTW T
j Wi)

2 + (W T
i WjR)2

= 2
∑
Wj∈A

ProjWjR
(Wi)

2

= 2|Wi|2

= CWi,A.

(6.18)

Since the Wj ∈ A remain an orthonormal basis under a rotation, the sum of the projections-
squared is the L2 norm-squared of Wi which is constant. Since this is true for every Wi ∈ B,
the entire cost is constant under this transformation. This argument holds for any subset
which forms an orthonormal basis and so all orthonormal subsets can rotate arbitrarily with
respect to each other without changing the value of the L2 cost, but the coherence of the
matrix does depend on the transformation, Φ.

6.5 Results on datasets

Mixing-matrix recovery

To investigate how these methods perform in overcomplete ICA, we compare different ICA cost
functions and a sparse coding model on the task of recovering a known mixing-matrix from
k-sparse data with a Laplacian prior. We compare three classes of overcomplete dictionary
recovery methods. The first is a sparse coding baseline [96], the second are modified maximum-
likelihood ICA models described in section 6.1, and the final is score matching [95], which is
a non-maximum-likelihood method.

Two metrics are combined to compare the known and recovered matrices: ∆P which
is a measure of how many basis elements were not recovered, and the median of pmin, the
distribution of angles between the original bases and nearest recovered bases (see section
6.6 for details). Both metrics are zero for a perfect recovery and we use their average
normalized to be between zero and one as a single metric which varies between 0 and 1. For
a 32-dimensional data space, we vary the k-sparseness and overcompleteness of the data.
For each of these datasets, where dataset size was scaled with mixing matrix size, we fit
all models to the data from 10 random initializations, for a range of sparsity weights: λ, if
applicable, and then compare the recovery metrics across models.

Fig 6.3 shows the recovery metrics on a 32 dimensional dataset with a mixing-matrices
created by minimizing the Soft Coherence cost. Fig 6.3A shows the the normalized average
metric as a function of λ across models trained on a 12-sparse, 2-times overcomplete dataset
(values where all methods perform well). All methods can recover the mixing matrix, but the
L2 and Score Matching costs perform slightly worse than the modified maximum-likelihood

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 61

ICA methods. All methods have a certain range of λ over which they recover the mixing
matrix well and have differences in how they fail, for instance sparse coding has a very quick
transition to poor recovery compared to ICA methods whose performance tends to decrease
slowly as λ moves outside of the optimal range.

10-2 10-1 100 101 102

λ

0

1

N
o
rm

a
liz

e
d

M
e
a
n

1 2 3
Overcompleteness

0

1

N
o
rm

a
liz

e
d

M
e
a
n

2 9 16
k-sparseness

0

1

N
o
rm

a
liz

e
d

M
e
a
n

1 2 3
Overcompleteness

0

1

N
o
rm

a
liz

e
d

M
e
a
n

L2

L4

Coulomb

Flat Coulomb

Rand. Prior

Flat Rand. Prior

Score Matching

Sparse Coding

2 9 16
k-sparseness

0

1

N
o
rm

a
liz

e
d

M
e
a
n

A B C

D E

Figure 6.3: Comparison of different coherence control mechanisms in a known mixing-matrix
recovery task. All mixing-matrices were generated from the Soft Coherence cost. A The
mean of the two measures of recovery (lower is better), ∆P and median(pmin) (see section
6.6 for method for determining null values), for a 2-times overcomplete mixing matrix and
k = 12. Color and line style are preserved across panels. Since score matching does not have
a λ parameter, it is plotted at a constant. B Recovery performance (± s.e.m., n = 10) at best
λ as a function of overcompleteness at k = 12. C Recovery performance (± s.e.m., n = 10)
at best λ as a function of k-sparseness at 2-times overcompleteness. D, E Same plots as B
and C at a point where methods do not perform as well: k = 6 and 3-times overcomplete.

Fig 6.3B shows how the methods perform as a function of overcompleteness at fixed k = 12.
Score matching recovers well in a smaller range of overcompleteness as compared to other ICA
methods. Besides the L2 cost, all other ICA methods have nearly identical recovery. The L2

cost’s performance breaks down at lower overcompleteness. All ICA methods fail to recover
the mixing matrix once the overcompleteness is large enough while sparse coding continues
to be able to recover the mixing matrix. Since the number of bases being recovered changes

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 62

as the overcompleteness changes, it is not meaningful to compare the recovery metric across
overcompleteness, but it meaningful to compare different models at fixed overcompleteness.

Fig 6.3C shows how the methods perform as a function of k-sparseness at fixed 2-times
overcompleteness. Sparse coding performs well at all k-sparsenesses, but the ICA methods
require larger k-sparseness. Score matching fails to recover at a lower k-sparseness than
other ICA methods. Since the number of bases being recovered is fixed as a function of the
k-sparseness, the recovery metric can be compared across k-sparseness and models.

Fig 6.3D-E show the methods in a regime (k = 6 and 3-times overcomplete, respectively)
where ICA methods struggle to recover the mixing matrix whereas sparse coding continues
to recover the mixing matrix well.

In summary, we find different ICA methods have different regimes of performance with
score matching and the L2 cost having the smallest ranges of applicability. Other ICA
methods generally have similar performance. Score matching did not always perform as well
as other ICA methods as a function of overcompleteness or k-sparseness, although it is a
hyperparameter-free cost (no λ hyperparameter). In all cases, the more computationally
costly sparse coding was able to recover the mixing matrix more consistently than ICA
models. This shows that the linear inference in ICA models is not be able to recover latent
representations for highly overcomplete representations.

Experiments on natural images

On a natural images data, we no longer have a ground truth mixing matrix or known prior,
but the effects of coherence control on the distribution of bases learned can be evaluated.
We train 2-times overcomplete ICA models on 8-by-8 whitened image patches at a fixed
value of sparsity across costs found by binary search on λ. The score matching cost has no λ
parameter to trade off sparsity versus coherence although it finds solutions of similar sparsity
to the value chosen for the other costs. It is known that for natural images data sets, bases
learned with ICA can be well-fit by Gabor filters [93]. Hence, we evaluate the distribution
of the learned basis by inspecting the parameters obtained from fitting the bases to Gabor
filters (see section 6.6 for details).

Our results show that the distributions of angles from the trained ICA models are in line
with the theoretical results from section 6.2. Fig 6.4A shows the results of fitting a 2-times
overcomplete models to 8-by-8 natural images patches from the Van Hateren database [118].
The L2 cost has more pairwise angles close to zero compared to the other costs with the
L4 having the smallest coherence. Similarly, as shown in fig 6.4B, the Random Prior and
Coulomb costs have lower coherence when the second order terms are removed and behave
more similarly to the L4 cost. For the range of sparsities which were considered, the visual
appearance of the bases is similar to results from previous ICA work and similar across costs
(L4 bases are shown in fig 6.4C.

The tiling properties of the learned dictionaries were then visualized in more detail. Fig
6.5 shows the summary of these results for the L2, L4 and Flattened Coulomb costs. Fig 6.5A
shows the coordinates of the center of the fit Gabor filter. The dimensions and rotation of

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 63

0 90
θ

10-5

100

P
ro

b
a
b
ili

ty
D

e
n
si

ty

Score Matching

Rand. Prior

Coulomb
L2

L4

45 90
θ

10-5

100

P
ro

b
a
b
ili

ty
D

e
n
si

ty

Flat Rand. Prior

Flat Coulomb

A B

C

Figure 6.4: Results from fitting a 2-times overcomplete model on natural images. A, B
Pairwise angle distributions across costs for 8-by-8 natural image patches for a fixed value of
sparsity (y-axis log scaled). B Comparison between the Random Prior and Coulomb costs
and the flattened versions. The L4 distribution is also shown for comparison. C Bases learned
with the L4 cost.

the rectangle represent the envelope widths and planar rotation angle respectively. Fig 6.5B
plots the planar rotation angle against the oscillation frequency of the Gabor. Fig 6.5C shows
the envelope widths. The radius of the circle is proportional to the oscillation frequency.
Qualitatively, the parameters of the fits to the L2 cost bases are more clustered than the L4

and Flattened Coulomb costs, which look similar.

6.6 Methods

A repository with code to reproduce the figures is online [119].

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 64

1 2 3 4 5 6
x-position

1

2

3

4

5

6
y
-p

o
si

ti
o
n

L2

0

45

90

13
5

1
8

0

0. 0 0. 6

frequency

0

45

90

13
5

1
8

0

0. 0 0. 6

frequency

100 101

var[]

100

101

v
a
r[

]

1 2 3 4 5 6
x-position

L4

0

45

90
13

5

1
8

0

0. 0 0. 6

frequency

0

45

90
13

5

1
8

0

0. 0 0. 6

frequency

100 101

var[]

1 2 3 4 5 6
x-position

Flat Coulomb

0

45

90

13
5

1
8

0

0. 0 0. 6

frequency

0

45

90

13
5

1
8

0

0. 0 0. 6

frequency

100 101

var[]

A

B

C

p
la

n
a
r

ro
ta

ti
o
n

Figure 6.5: Results from fitting two times overcomplete ICA models on natural images with
different costs. Color code as in previous figures. A Rectangle position: center of Gabor fit
in pixel coordinates, rectangle rotation: planar-rotation of Gabor, rectangle shape: envelope
width parallel and perpendicular to the oscillation axis. B Polar plots of planar-rotation
angle and spatial frequency. Marker size scales with geometric mean of envelope widths. C
Log-scale plot of envelope widths-squared parallel and perpendicular to the oscillation axis.
Marker size scales with oscillation frequency.

Previously proposed coherence control methods

Quasi-orthogonality constraint

Hyvärinen et al. [114] suggest a quasi-orthogonality update which approximates a symmetric
Gram-Schmidt orthogonalization scheme for an overcomplete basis, W , which is formulated
as:

W ← 3

2
W − 1

2
WW TW. (6.19)

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 65

Reconstruction cost and the L2 cost

Le et al. [10] propose adding a reconstruction cost to the ICA prior (RICA) as a form of
coherence control, which they show is equivalent to a cost on the L2 norm of the difference
between the Gram matrix of the filters and an identity matrix for whitened data

CRICA =
1

N

∑
ij

(X
(i)
j −

∑
kl

WkjWklX
(i)
l)2

∝ CL2 =
∑
ij

(δij −
∑
k

WikWjk)
2 =

∑
ij

(δij − cos θij)
2,

(6.20)

where Wij is the component of the ith source for the jth mixture , X
(i)
j is the jth element of

the ith sample, θij is the angle between pairs of basis, and δij is the Kronecker delta.
The L2 cost has also been proposed as a form of degeneracy control or coherence control [8,

9]. Equiangular tight-frames (ETFs) are a set of frames (overcomplete dictionaries) which
have minimum coherence. The fact that an ETF has minimum coherence is used to motivate
the L2 cost as a form of coherence or degeneracy control. A matrix W ∈ RL×D is an ETF if∑

k

Wik ·Wjk = cosα, ∀i 6= j (6.21)

for some angle, α, and ∑
k

WkiWkj =
L

D
δij. (6.22)

The L2 cost will encourage equation 6.22 to be satisfied, but does not encourage equation
6.21 to be satisfied as we show in Theorem 1.

Random prior cost

Hyvärinen and Inki [7] use a prior on the distribution of pairwise angles to encourage low
coherence. The prior is the distribution of pairwise angles for two vectors drawn from a
uniform distribution on the n-sphere2.

CRandom prior = −
∑
i 6=j

logP (cos θij) ∝ −
∑
i 6=j

log(1− cos2 θij) (6.23)

Score Matching

Hyvärinen and Dayan [120] propose a training objective function for non-normalized statistical
models of continuous variables called score matching. The score function is derivative of the
log-likelihood of the model or data distribution with respect to the data

ψ(X; Θ) = ∇X log p(X; Θ) (6.24)
2For both the Random Prior and the Coulomb cost (section 6.2), we regularize the costs and their

derivatives near | cos θ| = 1 by adding a small positive constant in the objective, i.e. 1−cos θ2ij → 1+|ε|−cos θ2ij .

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 66

The score matching objective is the mean-squared error between the model score, ψ(X; Θ),
and data score, ψD(X; Θ) averaged over the data, D:

J(Θ) =
1

2

∫
X

pD(X)||ψ(X; Θ)− ψD(X; Θ)||2. (6.25)

Model implementation

All models were implemented in Theano [121]. ICA models, with the exception of the
Coherence cost, were trained using the L-BFGS-B [122] implementation in SciPy [123].
FISTA [124] was used for MAP inference in the sparse coding model and the weights were
learned using L-BFGS-B. All weights were training with the norm-ball projection [10] to keep
the bases normalized. A repository with code to reproduce the results will be posted . For
ICA models with degeneracy costs, the degeneracy control cost with no sparsity penalty was
used as the objective for Fig 6.2.

Datasets

k-sparse datasets Mixing matrices were generated by minimizing the Soft Coherence cost.
Data was generated by taking k samples from a diagonal multivariate Laplacian distribution
and combining them with the mixing-matrix.

Natural images dataset Images were taken from the Van Hateren database [118]. We
selected images where there was minimal motion blur and minimal saturated pixels. 8-by-8
patches were taken from these images and whitened using PCA.

Recovery metrics

Permutation comparison: ∆P If the mixing matrix A is recovered perfectly, W T will
be a permutation of A. To estimate the closeness to a permutation matrix, the matrix
Pij = |Wi · Aj| was created. The maximum across rows of this matrix gives the element of A
which is most similar to each element of W . The absolute difference from 1, averaged across
columns was used as a metric for closeness to a permutation

∆P =
∑
j

∣∣∣∣∣∑
i

δargmaxk Pik,j − 1

∣∣∣∣∣ (6.26)

If W was generated exactly from a permutation of A, each column would have one maximum
value and ∆P would be zero.

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 67

Permutation distribution comparison: pmin The median of the distribution of the
smallest angles per row (largest inner product): median(pmin), of the matrix Pij, measures
how well the recovered bases match the bases from the mixing matrix.

median(pmin) = median
j

arccos(min
i
Pij). (6.27)

For both metrics, the null value can be computer by comparing W s and As where the W s
come from fits to the same prior data, but a different random initialization of A. The
normalized mean of these two metrics is used as single measure of mixing matrix recovery.

Fitting Gabor parameters

We fit the Gabor parameters [125] to the learned bases using an iterative grid-search and
optimization scheme which gave the best results on generated filters. The learned parameters
were the center vector: {µx, µy}, planar-rotation angle: θ, phase: φ, oscillation wave-vector k,
and envelope variances parallel and perpendicular to the oscillations: σ2

x̂ and σ2
ŷ respectively.

Because they are constrained to be positive, the log of the parameters: k, σ2
x̂, σ

2
ŷ are optimized.

x̂ = cos(θ)x+ sin(θ)y

ŷ = − sin(θ)x+ cos(θ)y

µ̂x = cos(θ)µx + sin(θ)µy

µ̂y = − sin(θ)µx + cos(θ)µy

Gabor(x, y;µx, µy, θ, σx̂, σŷ, φ) = exp

(
−(x̂− µ̂x)2

2σ2
x̂

− (ŷ − µ̂y)2

2σ2
ŷ

)
sin(kx̂+ φ)

(6.28)

The procedure for finding the best Gabor kernel parameters was to save the parameter
set with best mean-squared error after the following iterations:

1. for different initial envelope widths, fit the center location for the envelope to the
blurred absolute value of the basis,

2. for different planar rotations and frequencies, numerically optimize the rotation, phase,
and frequency of the Gabor

3. for the best fits from above, re-optimize the centers, widths, and phases.

A repository with code to reproduce the fits is online [126].

6.7 Discussion

Learning overcomplete representations of data is often the first stage in data processing
pipelines, in computational models of the brain, and many other fields including experimental

CHAPTER 6. OVERCOMPLETE INDEPENDENT COMPONENTS ANALYSIS 68

neuroscience. In neuroscience, such algorithms serve as models for efficient sensory coding
because sensory areas in cortex have more neurons than afferent inputs. For all applications
of dictionary learning, computational tractability is an issue, and for this reason, ICA-like
algorithms with linear inference are particularly appealing. Here we investigated potential
and inherent limitations of linear inference methods in overcomplete dictionary learning.

First, we compared different constraints for degeneracy control of the learned components.
Any multidimensional method for extracting signal components needs a form of coherence
control to prevent components from becoming co-aligned. Commonly, this is achieved by
an orthogonality cost which may be implicit in the model. We show theoretically and by
simulation, that the L2 cost, which successfully achieves orthogonality in the complete case,
exhibits pathological global minima in the overcomplete case.

We then suggest two novel costs which do not suffer from pathological minima in the
overcomplete case. Among those, the L4 cost provides solutions with the lowest coherence.
The flattened Random Prior [7] and proposed Coulomb costs provide gentle coherence control
in the sense that their influence is very small unless components are nearly co-aligned.

Further, we show that the proposed methods of coherence control can extend the regime
in overcompleteness and sparseness of the standard ICA methods for dictionary recovery.
However, even the improved methods begin to fail when overcompleteness grows beyond
two-fold or if the data is k-sparse with small k. The difficulty with recovering the mixing
matrix from k-sparse data is counterintuitive at first, because nonlinear inference methods
do better as k is decreased. This is likely due to the inability of a linear transformation to
recover k-sparse sources without explaining away which will compound as k is decreased.

All told, our study explores power and limitations of linear inference for overcomplete
dictionary learning. We note that variations of the sparsity prior have not been systematically
explored here, a potential topic of further investigation. The limitations of linear methods
to yield highly sparse overcomplete representations might suggest a reason why cortex has
dense, local, recurrent networks in sensory areas. The circuitry could provide the substrate
for nonlinear inference of sparse sensory representations that possess an overcompleteness
which has been estimated to be, depending on species, between ten- and many hundred-fold.

69

Chapter 7

Discussion

Theoretical neuroscience and machine learning have had an intertwined history. Many ideas
in machine learning and particularly deep learning have their inspiration in biological neural
networks (although they quickly stray from biological constraints). Today, the field of machine
learning often contributes back to neuroscience through new methods for data analysis and
intuitions and theories from machine learning and statistics.

This chapter will touch on the future research directions I would like to pursue in the
intertwined areas of theoretical and computational neuroscience and machine learning.

7.1 Developing high-throughput, interpretable neural

data analysis methods

As scientific datasets grow in size and complexity, our models and methods must also grow.
Neural datasets are a microcosm of a larger scientific trend of larger datasets [127, 128].

In neuroscience, the important (potentially correlated) axes of data growth for any method
are typically

• dataset collection duration per subject or animal,

• spatial and/or temporal sampling resolution,

• signal to noise ratio,

• number of functional or structural units captured, and

• complexity of the stimulus or behavior.

Measurement techniques which improve along any of these axes can lead to larger dataset
sizes as measured in the dimensionality of a single sample and/or the number of samples.
As the same time, the miniaturization of many recording methods means that data can

CHAPTER 7. DISCUSSION 70

be recorded continuously (often 24/7) and in awake behaving animals at a high functional
resolution.

These larger datasets mean that new questions can be asked and answered. For instance,
there has been a trend in neuroscience to move away from trial-averaged analyses and towards
methods that can do single trial analysis since trial-averaging has been shown to erase
interesting neural dynamics [129]. This work has been facilitated both by larger, more precise
measurements, but also better statistical and modeling methods.

There is a long history in computational in improving simple, interpretable methods to
make them more powerful [130, 131]. This is schematized in fig 7.1 with traditional methods
often having lower generalizable predictive performance which is often improved through
model tweaks and additions. Although this is a simplification, it representative of many of
the methods being developed for neural data analysis. An alternative and complementary
approach is to first find methods most accurately relate neural data and stimuli or behaviors.
At this point in time, deep networks are the best models of cortical signals recording during
complex stimuli and and behavior.

interpretability

pe
rf
or
m
an

ce

deep
learning

linear
methods

?

Figure 7.1: Directions for improving analysis methods. Deep learning methods typically have
high performance as measured by variance explained or accuracy, but have uninterpretable
parameters. On the other hand, linear methods or structured models are often interpretable,
but often to not explain the neural data as well as deep networks.

There has been a small amount of work done in interpreting the representations learned
by deep networks [132, 133]. Typically this is done in standard network architectures. It
is often the case in other models, that structuring the representations can lead to more
interpretable representations. These ideas could be applied to deep networks to encourage

CHAPTER 7. DISCUSSION 71

them to learn more interpretable feature, e.g. statistically independent representations,
factorized representations, or non-negative representations. How these representations form
during learning is also not a well understood problem [134]. Understanding the dynamics
of learning from both a computational and theoretical point of view would lead to better
methods for producing more compressed representations, more structured representations,
and potentially more interpretable representations. Finally, structured models and deep
models have been combined in ways to create more powerful structured models [45, 65], but
this combination could also be used to build more interpretable deep networks.

7.2 Coherence control in deep networks or neural

systems

In both machine learning and biological systems it may be beneficial to control the coherence
of the representations learned, where the coherence is the largest absolute value of the
off-diagonal elements of the Gram matrix.

In the case of machine learning systems, high coherence representations mean that the
representational capacity of a set of parameters has not been fully utilized. Similar features
are being represented by multiple elements, which could be allocated elsewhere or removed.
A high coherence solution may also sample the latent structure of a dataset in a biased way
leading to overfitting. We have thus far only considered the effects of coherence control costs in
ICA models. A similar cost could be applied to deep networks, graphical models, or dynamical
systems models. It seems likely that this cost would be most useful in models with no recurrent,
explaining-away effects such as deep networks. It would also be helpful, theoretically, to
understand coherence control as a Bayesian prior so that it can be incorporated into models
in a more principled way.

Biological systems may also benefit from coherence control for similar reasons. It is likely
not the case that all excitatory neurons in cortex are learning different features since cells
within a cortical column often have similar tuning [135]. It might be the case that coherence
control operates laterally through inhibitory networks. This could operate in place of or
in conjunction with explaining-away connections which are often hypothesized to be one of
the functions of inhibitory networks in cortex. To implement coherence control in biological
systems, the computations required for computing the cost and gradients must be mapped
onto neural circuits. This may require addition modification or approximation to the cost
function which can be used in machine learning models.

7.3 Biological implementations of machine learning

Understanding how to create biologically plausible implementations of machine learning
algorithms has both scientific and practical value. Understand how the brain processes and
acts in the world is one of the central goals of neuroscience. Exploring whether the brain is

CHAPTER 7. DISCUSSION 72

implementing something similar to machine learning algorithms and what the algorithms’
implementations looks like in biological hardware is one of the goals of computational
and theoretical neuroscience. Formalizing this relationship often requires us to modify
or approximate machine leaning models so that they can be implemented in simplified
neural circuitry. There has been limited work in their field that is often highly specialize to
one specific algorithm. Understanding the families of approximations and tricks required to
translate machine learning algorithms to biological “hardware” is important for understanding
how neural circuits may be processing information.

From a practical standpoint, the field of neuromorphic computing is looking to build
computational devices which get around Moore’s law by using non-Von Neumann architec-
tures [136, 137]. This often leads to systems that are extremely energy efficient as compared
to conventional computers, but are still very inefficient as compared to the biological brains. It
is not always trivial to implement algorithms developed with a von Neumann architecture in
mind in neuromorphic chips; neuromorphic chips often come with constraints on information
transfer and processing that are similar to biological systems. Therefore, understanding
methods for implementing algorithms in biology is also applicable to understanding how to
implement these algorithms in emerging hardware platforms.

7.4 Contributions (past, present, and future) of

physicists to neuroscience

(Bio)physicists’ training in building analytic and computational models of systems has brought
a new and useful set of tools and methods to neuroscience over the past hundred years [138,
47, 139]. The brain is a multi-scale, information processing machine which can extract and
store ecologically relevant information from the environment and generate robust movements
to interact with the environment. There are physical/energetic and information theoretic
limits which can be used to understand how the brain might work. Often these questions can
be used to ask whether biological system operate near fundamental limitations of information
processing or control [140].

I view the current state of neuroscience similarly to how I imagine physicists thought
about the laws of the universe before the Standard Model was developed. There is a vast
amount of experimental data to be explained, and very few theories which can explain a
diverse set of results. We are looking for theories which are both specific in that they can
explain the detailed measurements in the brain and broad enough so that they are not
single-purpose theories. Currently, I think that connections to machine learning are poised
to provide the most insight into neural systems, but in the long term, I believe that the
theoretical foundations of neuroscience will come from a variety of disciplines including
physics, mathematics, statistics, and biology.

73

Bibliography

[1] Muwekma Ohlone Tribe of the San Francisco Bay Area. Tribal History. 2015. url:
http://www.muwekma.org/tribalhistory.html (visited on 05/08/2017).

[2] The Sogorea Te Land Trust. The Sogorea Te Land Trust. 2017. url: http://
sogoreate-landtrust.com (visited on 05/08/2017).

[3] J. Zylberberg, J. T. Murphy, and M. R. DeWeese. “A sparse coding model with
synaptically local plasticity and spiking neurons can account for the diverse shapes of
V1 simple cell receptive fields”. In: PLoS Comput Biol 7.10 (2011), e1002250.

[4] T. P. Lillicrap et al. “Random feedback weights support learning in deep neural
networks”. In: arXiv preprint arXiv:1411.0247 (2014).

[5] R. J. Williams and D. Zipser. “Experimental analysis of the real-time recurrent learning
algorithm”. In: Connection Science 1.1 (1989), pp. 87–111.

[6] M. a. Davenport et al. “Introduction to compressed sensing”. In: Preprint 93 (2011),
pp. 1–68.

[7] A. Hyvärinen and M. Inki. “Estimating overcomplete independent component bases
for image windows”. In: Journal of Mathematical Imaging and Vision 17.2 (2002),
pp. 139–152.

[8] I. Ramırez, F. Lecumberry, and G. Sapiro. Sparse modeling with universal priors and
learned incoherent dictionaries. Tech. rep. Citeseer, 2009.

[9] C. D. Sigg, T. Dikk, and J. M. Buhmann. “Learning dictionaries with bounded
self-coherence”. In: IEEE Signal Processing Letters 19.12 (2012), pp. 861–864.

[10] Q. V. Le et al. “ICA with reconstruction cost for efficient overcomplete feature learning”.
In: Advances in Neural Information Processing Systems. 2011, pp. 1017–1025.

[11] M. J. Wainwright and M. I. Jordan. “Graphical models, exponential families, and
variational inference”. In: Foundations and Trends R© in Machine Learning 1.1–2 (2008),
pp. 1–305.

[12] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[13] A. Yuille and D. Kersten. “Vision as Bayesian inference: analysis by synthesis?” In:
Trends in cognitive sciences 10.7 (2006), pp. 301–308.

BIBLIOGRAPHY 74

[14] J. M. Beck et al. “Probabilistic population codes for Bayesian decision making”. In:
Neuron 60.6 (2008), pp. 1142–1152.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep
convolutional neural networks”. In: Advances in neural information processing systems.
2012, pp. 1097–1105.

[16] E. M. Mugler et al. “Direct classification of all American English phonemes using
signals from functional speech motor cortex”. In: Journal of Neural Engineering 11.3
(2014).

[17] M. S. Lewicki. “A review of methods for spike sorting: the detection and classification
of neural action potentials”. In: Network: Computation in Neural Systems 9.4 (1998),
R53–R78.

[18] J. Sohl-Dickstein et al. “Deep Unsupervised Learning using Nonequilibrium Thermody-
namics”. In: Proceedings of The 32nd International Conference on Machine Learning.
2015, pp. 2256–2265.

[19] D. J. MacKay. “Bayesian methods for adaptive models”. PhD thesis. California
Institute of Technology, 1992.

[20] K. Fukushima. “Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position”. In: Biological Cybernetics 36.4
(1980), pp. 193–202.

[21] D. C. Cireşan et al. “Deep, big, simple neural nets for handwritten digit recognition”.
In: Neural computation 22.12 (2010), pp. 3207–3220.

[22] Y. LeCun et al. “Backpropagation applied to handwritten zip code recognition”. In:
Neural computation 1.4 (1989), pp. 541–551.

[23] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT Press, 2016.

[24] P. J. Werbos. “Applications of advances in nonlinear sensitivity analysis”. In: System
modeling and optimization. Springer, 1982, pp. 762–770.

[25] Y. LeCun. “Une procédure d’apprentissage pour réseau à seuil asymétrique (A learning
scheme for asymmetric threshold networks)”. In: Proceedings of Cognitiva. Vol. 85.
1985, pp. 599–604.

[26] D. Rumelhart, G. Hinton, and R. Williams. “Learning representations by back-
propagation errors”. In: Nature 323 (1986), pp. 533–536.

[27] J. Schmidhuber. Who Invented Backpropagation? 2015. url: http://people.
idsia.ch/˜juergen/who-invented-backpropagation.html (visited on
04/03/2017).

[28] Y. N. Dauphin et al. “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization”. In: Advances in neural information processing
systems. 2014, pp. 2933–2941.

BIBLIOGRAPHY 75

[29] I. Sutskever et al. “On the importance of initialization and momentum in deep learning.”
In: ICML (3) 28 (2013), pp. 1139–1147.

[30] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database of handwritten digits.
1998.

[31] N. Srivastava et al. “Dropout: a simple way to prevent neural networks from overfitting.”
In: Journal of Machine Learning Research 15.1 (2014), pp. 1929–1958.

[32] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedforward
neural networks”. In: International conference on artificial intelligence and statistics.
2010, pp. 249–256.

[33] A. M. Saxe, J. L. McClelland, and S. Ganguli. “Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks”. In: arXiv preprint arXiv:1312.6120
(2013).

[34] M. D. Zeiler. “ADADELTA: an adaptive learning rate method”. In: arXiv preprint
arXiv:1212.5701 (2012).

[35] D. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[36] J. Bergstra and Y. Bengio. “Random search for hyper-parameter optimization”. In:
Journal of Machine Learning Research 13 (2012), pp. 281–305.

[37] J. Snoek, H. Larochelle, and R. P. Adams. “Practical bayesian optimization of machine
learning algorithms”. In: Advances in neural information processing systems. 2012,
pp. 2951–2959.

[38] J. S. Bergstra et al. “Algorithms for hyper-parameter optimization”. In: Advances in
Neural Information Processing Systems. 2011, pp. 2546–2554.

[39] A. Doucet, N. De Freitas, and N. Gordon. “An introduction to sequential Monte Carlo
methods”. In: Sequential Monte Carlo methods in practice. Springer, 2001, pp. 3–14.

[40] J. Sohl-Dickstein, M. Mudigonda, and M. R. DeWeese. “Hamiltonian Monte Carlo
without detailed balance”. In: International Conference on Machine Learning. 2014.

[41] R. M. Neal. “Probabilistic inference using Markov chain Monte Carlo methods”. In:
(1993).

[42] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood from incomplete
data via the EM algorithm”. In: Journal of the royal statistical society. Series B
(methodological) (1977), pp. 1–38.

[43] C. J. Rozell et al. “Sparse coding via thresholding and local competition in neural
circuits”. In: Neural computation 20.10 (2008), pp. 2526–2563.

[44] I. Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information
processing systems. 2014, pp. 2672–2680.

BIBLIOGRAPHY 76

[45] D. P. Kingma and M. Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

[46] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. 2011.

[47] J. J. Hopfield. “Neural networks and physical systems with emergent collective com-
putational abilities”. In: Proceedings of the national academy of sciences 79.8 (1982),
pp. 2554–2558.

[48] P. Kanerva. “Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors”. In: Cognitive Compu-
tation 1.2 (2009), pp. 139–159.

[49] B. Olshausen. Sparse coding and ‘ICA’. Tech. rep. 2008.

[50] R. P. Rao, B. A. Olshausen, and M. S. Lewicki. Probabilistic models of the brain:
Perception and neural function. MIT press, 2002.

[51] R. VanRullen, R. Guyonneau, and S. J. Thorpe. “Spike times make sense”. In: Trends
in neurosciences 28.1 (2005), pp. 1–4.

[52] F. Rieke. Spikes: exploring the neural code. MIT press, 1999.

[53] K. E. Bouchard et al. “Functional organization of human sensorimotor cortex for
speech articulation.” In: Nature 495.7441 (2013), pp. 327–32.

[54] K. E. Bouchard and E. F. Chang. “Control of Spoken Vowel Acoustics and the
Influence of Phonetic Context in Human Speech Sensorimotor Cortex”. In: Journal of
Neuroscience 34.38 (2014), pp. 12662–12677.

[55] K. E. Bouchard and E. F. Chang. “Neural decoding of spoken vowels from human
sensory-motor cortex with high-density electrocorticography”. In: Engineering in
Medicine and Biology Society (EMBC), 2014 36th Annual International Conference
of the IEEE. IEEE. 2014, pp. 6782–6785.

[56] E. M. Mugler et al. “Direct classification of all American English phonemes using
signals from functional speech motor cortex.” In: Journal of neural engineering 11
(2014), p. 035015.

[57] F. Lotte et al. “Electrocorticographic representations of segmental features in con-
tinuous speech”. In: Frontiers in Human Neuroscience 09.February (2015), pp. 1–
13.

[58] W. Penfield and E. Boldrey. “Somatic motor and sensory representation in the cerebral
cortex of man as studied by electrical stimulation.” In: Brain: A journal of neurology
(1937).

[59] S. Kellis et al. “Decoding spoken words using local field potentials recorded from the
cortical surface.” In: Journal of neural engineering 7 (2010), p. 056007.

[60] X. Pei et al. “Decoding vowels and consonants in spoken and imagined words using
electrocorticographic signals in humans.” In: Journal of neural engineering 8 (2011),
p. 046028.

BIBLIOGRAPHY 77

[61] C. Herff et al. “Brain-to-text: decoding spoken phrases from phone representations in
the brain”. In: Frontiers in Neuroscience 9.June (2015), pp. 1–11.

[62] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale
image recognition”. In: International Conference on Learning Representations (2015).

[63] A. Graves, A. R. Mohamed, and G. E. Hinton. “Speech recognition with deep recurrent
neural networks”. In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on. IEEE. 2013, pp. 6645–6649.

[64] D. Amodei et al. “Deep speech 2: End-to-end speech recognition in english and
mandarin”. In: arXiv preprint arXiv:1512.02595 (2015).

[65] M. J. Johnson et al. “Structured VAEs: Composing Probabilistic Graphical Models
and Variational Autoencoders”. In: arXiv preprint arXiv:1603.06277 (2016).

[66] S. Stober, D. J. Cameron, and J. A. Grahn. “Using Convolutional Neural Networks
to Recognize Rhythm Stimuli from Electroencephalography Recordings”. In: Neural
Information Processing Systems (2014), pp. 1–9.

[67] M. Wand and T. Schultz. “Pattern Learning with Deep Neural Networks in EMG-based
Speech Recognition”. In: Engineering in Medicine and Biology Society (EMBC), 2014
36th Annual International Conference of the IEEE 35 (2014), pp. 4200–4203.

[68] A. Supratak, L. Li, and Y. Guo. “Feature Extraction with Stacked Autoencoders for
Epileptic Seizure Detection”. In: Engineering in Medicine and Biology Society (EMBC),
2014 36th Annual International Conference of the IEEE (2014), pp. 4184–4187.

[69] D. F. Wulsin et al. “Modeling electroencephalography waveforms with semi-supervised
deep belief nets: fast classification and anomaly measurement.” In: Journal of neural
engineering 8.3 (2011), p. 036015.

[70] M. Yang et al. “Speech reconstruction from human auditory cortex with deep neural
networks”. In: Telluride Neuromorphic Cognition Engineering Workshop. 2015.

[71] K. He et al. “Deep residual learning for image recognition”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 770–778.

[72] D. L. Yamins et al. “Performance-optimized hierarchical models predict neural re-
sponses in higher visual cortex”. In: Proceedings of the National Academy of Sciences
111.23 (2014), pp. 8619–8624.

[73] L. McIntosh et al. “Deep learning models of the retinal response to natural scenes”.
In: Advances in Neural Information Processing Systems. 2016, pp. 1361–1369.

[74] A. S. Benjamin et al. “Modern machine learning far outperforms GLMs at predicting
spikes”. In: bioRxiv (2017).

[75] J. Snoek, H. Larochelle, and R. Adams. “Practical Bayesian Optimization of Machine
Learning Algorithms.” In: Neural Information Processing Systems (2012), pp. 1–9.

BIBLIOGRAPHY 78

[76] I. J. Goodfellow et al. “Pylearn2: a machine learning research library”. In: arXiv
preprint arXiv:1308.4214 (2013).

[77] J. R. Wolpaw et al. “Brain-computer interfaces for communication and control.” In:
Clinical neurophysiology : official journal of the International Federation of Clinical
Neurophysiology 113.6 (2002), pp. 767–91.

[78] A. Cruttenden. Gimson’s pronunciation of English. Routledge, 2014.

[79] C. M. Reed and N. I. Durlach. “Note on Information Transfer Rates in Human
Communication”. In: Presence: Teleoperators and Virtual Environments 7 (1998),
pp. 509–518.

[80] D. Marr. “A computational investigation into the human representation and processing
of visual information”. In: WH San Francisco: Freeman and Company 1.2 (1982).

[81] J. von Neumann. “The Computer And The Brain”. In: (1958).

[82] L. Chua. “Memristor-the missing circuit element”. In: IEEE Transactions on circuit
theory 18.5 (1971), pp. 507–519.

[83] B. A. Olshausen and D. J. Field. “Emergence of simple-cell receptive field properties
by learning a sparse code for natural images”. In: Nature 381.6583 (1996), p. 607.

[84] D. J. Klein, P. König, and K. P. Körding. “Sparse spectrotemporal coding of sounds”.
In: EURASIP Journal on Advances in Signal Processing 2003.7 (2003), p. 902061.

[85] E. C. Smith and M. S. Lewicki. “Efficient auditory coding”. In: Nature 439.7079
(2006), pp. 978–982.

[86] A. Hyvärinen and U. Köster. “Complex cell pooling and the statistics of natural
images.” In: Network (Bristol, England) 18.2 (June 2007), pp. 81–100.

[87] N. L. Carlson, V. L. Ming, and M. R. DeWeese. “Sparse codes for speech predict
spectrotemporal receptive fields in the inferior colliculus”. In: PLoS Comput Biol 8.7
(2012), e1002594.

[88] H. Hosoya and A. Hyvärinen. “A hierarchical statistical model of natural images
explains tuning properties in V2”. In: Journal of Neuroscience 35.29 (2015), pp. 10412–
10428.

[89] S. Shapero et al. “Optimal sparse approximation with integrate and fire neurons”. In:
International journal of neural systems 24.05 (2014), p. 1440001.

[90] E. Oja. “Simplified neuron model as a principal component analyzer”. In: Journal of
mathematical biology 15.3 (1982), pp. 267–273.

[91] C. Eliasmith and C. H. Anderson. Neural engineering: Computation, representation,
and dynamics in neurobiological systems. MIT press, 2004.

[92] P. Comon. “Independent component analysis, a new concept?” In: Signal processing
36.3 (1994), pp. 287–314.

BIBLIOGRAPHY 79

[93] A. J. Bell and T. J. Sejnowski. “The “independent components” of natural scenes are
edge filters”. In: Vision research 37.23 (1997), pp. 3327–3338.

[94] B. A. Olshausen and D. J. Field. “Sparse coding with an overcomplete basis set: A
strategy employed by V1?” In: Vision research 37.23 (1997), pp. 3311–3325.

[95] A. Hyvärinen. “Estimation of non-normalized statistical models by score matching”.
In: Journal of Machine Learning Research 6.Apr (2005), pp. 695–709.

[96] B. A. Olshausen and D. J. Field. “Emergence of simple-cell receptive field properties
by learning a sparse code for natural images”. In: Nature 381.6583 (1996), pp. 607–609.

[97] D. J. Klein, P. König, and K. P. Körding. “Sparse spectrotemporal coding of sounds”.
In: EURASIP Journal on Advances in Signal Processing 2003.7 (2003), p. 902061.

[98] E. C. Smith and M. S. Lewicki. “Efficient auditory coding”. In: Nature 439.7079
(2006), pp. 978–982.

[99] M. Rehn and F. T. Sommer. “A network that uses few active neurones to code
visual input predicts the diverse shapes of cortical receptive fields”. In: Journal of
computational neuroscience 22.2 (2007), pp. 135–146.

[100] J. Zylberberg, J. Murphy, and M. DeWeese. “A sparse coding model with synaptically
local plasticity and spiking neurons can account for the diverse shapes of V1 simple
cell receptive fields”. In: PLoS computational biology (2011), pp. 1–33.

[101] N. L. Carlson, V. L. Ming, and M. R. DeWeese. “Sparse codes for speech predict
spectrotemporal receptive fields in the inferior colliculus”. In: PLoS Comput Biol 8.7
(2012), e1002594.

[102] A. Delorme, T. Sejnowski, and S. Makeig. “Enhanced detection of artifacts in EEG data
using higher-order statistics and independent component analysis”. In: Neuroimage
34.4 (2007), pp. 1443–1449.

[103] G. Agarwal et al. “Spatially distributed local fields in the hippocampus encode rat
position”. In: Science 344.6184 (2014), pp. 626–630.

[104] J.-i. Hirayama, T. Ogawa, and A. Hyvärinen. “Unifying blind separation and clustering
for resting-state EEG/MEG functional connectivity analysis”. In: Neural computation
(2015).

[105] B. A. Olshausen. “Highly overcomplete sparse coding”. In: IS&T/SPIE Electronic
Imaging. International Society for Optics and Photonics. 2013, 86510S–86510S.

[106] H. B. Barlow. “The ferrier lecture, 1980: Critical limiting factors in the design of the
eye and visual cortex”. In: Proceedings of the Royal Society of London B: Biological
Sciences 212.1186 (1981), pp. 1–34.

[107] H. Spoendlin and A. Schrott. “Analysis of the human auditory nerve”. In: Hearing
research 43.1 (1989), pp. 25–38.

BIBLIOGRAPHY 80

[108] C. A. Curcio and K. A. Allen. “Topography of ganglion cells in human retina”. In:
Journal of comparative Neurology 300.1 (1990), pp. 5–25.

[109] G. Leuba and R. Kraftsik. “Changes in volume, surface estimate, three-dimensional
shape and total number of neurons of the human primary visual cortex from midges-
tation until old age”. In: Anatomy and embryology 190.4 (1994), pp. 351–366.

[110] J. L. Northern and M. P. Downs. Hearing in children. Lippincott Williams & Wilkins,
2002.

[111] M. R. DeWeese, T. Hromádka, and A. M. Zador. “Reliability and representational
bandwidth in the auditory cortex”. In: Neuron 48.3 (2005), pp. 479–488.

[112] M. S. Lewicki and B. A. Olshausen. “Probabilistic framework for the adaptation and
comparison of image codes”. In: JOSA A 16.7 (1999), pp. 1587–1601.

[113] A. Hyvärinen and E. Oja. “A fast fixed-point algorithm for independent component
analysis”. In: Neural computation 9.7 (1997), pp. 1483–1492.

[114] A. Hyvärinen, R. Cristescu, and E. Oja. “A fast algorithm for estimating overcomplete
ICA bases for image windows”. In: Neural Networks, 1999. IJCNN’99. International
Joint Conference on. Vol. 2. IEEE. 1999, pp. 894–899.

[115] T. Strohmer and R. W. Heath. “Grassmannian frames with applications to coding
and communication”. In: Applied and Computational Harmonic Analysis 14.3 (2003),
pp. 257–275.

[116] S. Howard, R. Calderbank, and S. Searle. “A fast reconstruction algorithm for deter-
ministic compressed sensing using second order Reed Muller codes”. In: Proc. IEEE
Conf. Information Sciences and Systems (2008), pp. 11–15.

[117] S. Smale. “Mathematical problems for the next century”. In: The Mathematical
Intelligencer 20.2 (1998), pp. 7–15.

[118] J. H. van Hateren and A. van der Schaaf. “Independent component filters of natural
images compared with simple cells in primary visual cortex”. In: Proceedings of the
Royal Society of London B: Biological Sciences 265.1394 (1998), pp. 359–366.

[119] url: https://github.com/JesseLivezey/oc_ica.

[120] A. Hyvärinen and P. Dayan. “Estimation of Non-Normalized Statistical Models by
Score Matching.” In: Journal of Machine Learning . . . 6 (2005), pp. 695–709.

[121] Theano Development Team. “Theano: A Python framework for fast computation of
mathematical expressions”. In: arXiv e-prints abs/1605.02688 (May 2016).

[122] R. H. Byrd et al. “A limited memory algorithm for bound constrained optimization”.
In: SIAM Journal on Scientific Computing 16.5 (1995), pp. 1190–1208.

[123] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python.
[Online; accessed 2017-03-15]. 2001–2017.

BIBLIOGRAPHY 81

[124] A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding Algorithm for
Linear Inverse Problems”. In: SIAM Journal on Imaging Sciences 2.1 (2009), pp. 183–
202.

[125] D. L. Ringach. “Spatial structure and symmetry of simple-cell receptive fields in
macaque primary visual cortex”. In: Journal of neurophysiology 88.1 (2002), pp. 455–
463.

[126] url: https://github.com/JesseLivezey/gabor_fit.

[127] Allen Institute for Brain Science, Allen Brain Atlas. url: http://www.brain-
map.org/overview/index.html (visited on 04/18/2017).

[128] Collaborative Research in Computational Neuroscience. url: http://crcns.org
(visited on 04/18/2017).

[129] K. W. Latimer et al. “Single-trial spike trains in parietal cortex reveal discrete steps
during decision-making”. In: Science 349.6244 (2015), pp. 184–187.

[130] T. Sharpee, N. C. Rust, and W. Bialek. “Analyzing neural responses to natural signals:
maximally informative dimensions”. In: Neural computation 16.2 (2004), pp. 223–250.

[131] J. W. Pillow et al. “Spatio-temporal correlations and visual signalling in a complete
neuronal population”. In: Nature 454.7207 (2008), pp. 995–999.

[132] J. Yosinski et al. “Understanding neural networks through deep visualization”. In:
ICML Deep Learning Workshop. 2015.

[133] A. Nguyen et al. “Synthesizing the preferred inputs for neurons in neural networks
via deep generator networks”. In: Advances in Neural Information Processing Systems.
2016, pp. 3387–3395.

[134] I. J. Goodfellow, O. Vinyals, and A. M. Saxe. “Qualitatively characterizing neural
network optimization problems”. In: arXiv preprint arXiv:1412.6544 (2014).

[135] P. E. Maldonado et al. “Orientation selectivity in pinwheel centers in cat striate
cortex”. In: Science 276.5318 (1997), pp. 1551–1555.

[136] G. Indiveri et al. “Neuromorphic silicon neuron circuits”. In: Frontiers in neuroscience
5 (2011), p. 73.

[137] P. A. Merolla et al. “A million spiking-neuron integrated circuit with a scalable
communication network and interface”. In: Science 345.6197 (2014), pp. 668–673.

[138] A. L. Hodgkin and A. F. Huxley. “A quantitative description of membrane current and
its application to conduction and excitation in nerve”. In: The Journal of physiology
117.4 (1952), p. 500.

[139] S. P. Strong et al. “Entropy and information in neural spike trains”. In: Physical
review letters 80.1 (1998), p. 197.

[140] S. E. Palmer et al. “Predictive information in a sensory population”. In: Proceedings
of the National Academy of Sciences 112.22 (2015), pp. 6908–6913.

