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Prostate cancer is increasingly treated with high-dose-rate �HDR� brachytherapy, a type of radio-
therapy in which a radioactive source is guided through catheters temporarily implanted in the
prostate. Clinicians must set dwell times for the source inside the catheters so the resulting dose
distribution minimizes deviation from dose prescriptions that conform to patient-specific anatomy.
The primary contribution of this paper is to take the well-established dwell times optimization
problem defined by Inverse Planning by Simulated Annealing �IPSA� developed at UCSF and
exactly formulate it as a linear programming �LP� problem. Because LP problems can be solved
exactly and deterministically, this formulation provides strong performance guarantees: one can
rapidly find the dwell times solution that globally minimizes IPSA’s objective function for any
patient case and clinical criteria parameters. For a sample of 20 prostates with volume ranging from
23 to 103 cc, the new LP method optimized dwell times in less than 15 s per case on a standard PC.
The dwell times solutions currently being obtained clinically using simulated annealing �SA�, a
probabilistic method, were quantitatively compared to the mathematically optimal solutions ob-
tained using the LP method. The LP method resulted in significantly improved objective function
values compared to SA �P=1.54�10−7�, but none of the dosimetric indices indicated a statistically
significant difference �P�0.01�. The results indicate that solutions generated by the current version
of IPSA are clinically equivalent to the mathematically optimal solutions. © 2006 American As-
sociation of Physicists in Medicine. �DOI: 10.1118/1.2349685�
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I. INTRODUCTION

Prostate cancer, which kills an estimated 30 000 Americans
each year,1 is increasingly treated with high-dose-rate �HDR�
brachytherapy, a medical procedure in which radioactive
sources are guided through catheters to provide a high radio-
active dose to the cancer while sparing surrounding healthy
tissues. In HDR brachytherapy, the physician commonly im-
plants 14–18 catheters in the prostate through the perineum
under ultrasound guidance. The catheters are attached to an
HDR Remote Afterloader for treatment delivery. The after-
loader moves a single radioactive source, typically 4.5 mm
long and 0.9 mm in diameter containing 192Ir, inside each
catheter, stopping temporarily at predetermined dwell loca-

tions. By adjusting the length of time �dwell time� that the
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source remains at any location within a catheter �dwell posi-
tion�, it is possible to generate a wide variety of dose distri-
butions.

When treating prostate cancer, physicians desire dose dis-
tributions that conform to patient anatomy and satisfy dose
prescriptions for the target volume �prostate� and nearby
critical organs �urethra, bladder, and rectum�.2 Prior to con-
necting the afterloader, the physician obtains an image �usu-
ally CT scan or MRI� of the catheters, prostate, and sur-
rounding tissues and prescribes clinical dose requirements
for each tissue type. The goal is then to select dwell times to
satisfy the clinical criteria as best as possible. This goal can
be formulated as an optimization problem: compute dwell
times to minimize deviation from prescribed dose subject to

dwell position and dose feasibility constraints.

4012„11…/4012/8/$23.00 © 2006 Am. Assoc. Phys. Med.
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To address this optimization problem, Lessard and Pouliot
developed Inverse Planning by Simulated Annealing
�IPSA�.3–5 IPSA has been used in the treatment planning of
over a thousand patients at UCSF since 2000 and has been
independently evaluated by different American and European
institutions.6–11

A complete description of IPSA and its clinical applica-
tions was recently published.12 Only the elements required
for the present work are described here. Using hand-
segmented boundaries of the prostate, urethra, bladder, and
rectum, and often the penile bulb and dominant intraprostatic
lesions,13 the software generates a discrete sample of dose
calculation points inside and on the boundary of the tissue
types. For dose calculation points of each tissue type, IPSA
permits the physician to prescribe unique dose ranges as well
as penalty costs that grow linearly when actual dose violates
the prescribed dose ranges. Setting dwell times to minimize
dose penalty costs rather than using rigid dose constraints
guarantees that the method will find an achievable solution.
IPSA defines an objective function equal to a weighted sum
of penalty costs at dose calculation points given the dwell
times. In the IPSA framework, the mathematically optimal
solution is the solution of dwell times that globally mini-
mizes the objective function. IPSA’s single objective func-
tion assumes that the clinician has specified desirable dose
penalty costs and generates a single dwell times solution, in
contrast to multiobjective optimization formulations that
consider the weights as variables and generate a Pareto front
of solutions.14,15

The current version of IPSA software uses simulated an-
nealing �SA� to compute dwell times to minimize the objec-
tive function. The computation time for a typical case is
about 10 s on PC with a 3.6 GHz Intel Xeon processor
�Nucletron’s Masterplan Station�. The computation time in-
cludes the automatic selection of the active dwell positions,
the generation of the dose calculation points, the generation
of a look-up dose-rate table, and 100 000 simulated anneal-
ing iterations. SA applies a random search with the ability to
escape local minima and offers a statistical guarantee to con-
verge asymptotically to the global minimum.16–18 The longer
the SA algorithm searches for a solution, the higher the prob-
ability that the optimal solution is found. Although this
method has worked well in clinical practice using 100 000
iterations, there previously was no general quantitative infor-
mation available regarding the closeness to mathematical op-
timality of the solutions obtained using simulated annealing,
a probabilistic method that cannot guarantee the achievement
of a global minimum within a finite computation time.

Our primary contribution is to take the well-established
dose optimization problem defined by IPSA and show that it
can be exactly formulated as a linear programming �LP�
problem. Because the global minimum for a LP problem can
be computed exactly and deterministically using preexisting
algorithms, this formulation provides strong performance
guarantees for cost minimization: one can rapidly find the
minimum cost solution for any patient case and clinical cri-
teria parameters. LP does not require setting parameters spe-

cific to the optimization method, such as stopping criteria or
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pseudo-temperatures for SA or mutation probabilities for
GA.14,19,15 This allows clinicians to customize dose prescrip-
tions and penalty costs based on medical considerations
without concern about their effect on the convergence of the
optimization method. Unlike other deterministic algorithms
such as local search,3 the LP method will never be trapped at
sub-optimal solutions of IPSA’s objective function. Since the
LP solution is guaranteed to globally minimize the objective
function, it provides a precise baseline for evaluating solu-
tions currently being obtained clinically by probabilistic
methods such as SA.

Our second contribution is to compare quantitatively the
solutions for HDR dwell times obtained by SA, current clini-
cal practice, with the mathematically optimal solutions ob-
tained using LP. With a sample of 20 prostate cancer patient
cases, we show that the LP method resulted in significantly
improved objective function values compared to SA, but the
dose distributions produced by the dwell times solutions
were clinically equivalent as measured by standard dosimet-
ric indices.

A linear programming problem is defined by an objective
function and constraints that are linear functions of the vari-
ables. A LP problem can be solved using the SIMPLEX algo-
rithm, a global deterministic optimization method that con-
siders the geometric polyhedron defined by the linear
constraints and systematically moves along edges of the
polyhedron to new feasible solutions �represented as vertices
of the polyhedron� with successively better values of the ob-
jective function until the optimum is reached.20 In 1990,
Renner et al. was the first group to propose a linear program-
ming formulation for HDR brachytherapy dose optimization.
Their method minimizes the time the source is irradiating
tissue subject to a minimum dose constraint for a set of
points in the target volume.21 Kneschaurek et al. extended
this method to permit the specification of dose ranges using
rigid constraints for both minimum and maximum dose.22

Jozsef et al. also used rigid constraints on dose range and
minimized the maximum deviation from a prescribed dose
constant at dose calculation points.23 However, a solution of
dwell times that results in a dose distribution that satisfies the
rigid constraints may not be physically realizable. By defin-
ing the dwell times as variables and defining rigid linear
constraints on dose, these previous approaches formulated
the LP problem in a manner that does not guarantee the
output of a solution since no feasible solution may exist.
Finding a clinically realizable solution in such cases neces-
sitates arbitrarily removing some rigid dose constraints,
which requires substantial human intervention.

Our new LP formulation combines the advantages of IP-
SA’s cost functions and extensive clinical validation with the
benefits of deterministic global optimization for cost minimi-
zation. We show that the new LP method computes in finite
time the mathematically optimal solution for dwell times to
generate the best achievable dose distribution given the clini-
cal objectives and the preoptimization data generated by
IPSA �active dwell positions, dose calculation points, and

dose rate look-up table�. We applied both SA and the new LP
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method to 20 prostate cancer patient cases and evaluated
improvement of results using objective function values and
standard dosimetric indices.

II. METHODS AND MATERIALS

A. Patient data sets

We applied the LP method retrospectively to 20 prostate
cancer patient cases. The prostate volumes ranged from
23 to 103 cc. For these patients, the physician implanted
14–18 catheters in the prostate with transrectal ultrasound
�TRUS� guidance while the patient was under epidural anes-
thesia. Then Flexi-guide catheters �Best Industries, Inc.,
Flexi-needles, 283-25 �FL153-15NG��, which are
1.98-mm-diam hollow plastic needles through which the ra-
dioactive source will move, were inserted transperineally by
following the tip of the catheter from the apex of the prostate
to the base of the prostate using ultrasound and a stepper. A
Foley catheter was inserted to help visualize the urethra.

After catheter implantation, a treatment planning pelvic
CT scan was obtained for each patient. Three-millimeter-
thick CT slices were collected using a spiral CT. The clinical
target volume �CTV� and critical organs �COs� including
bladder, rectum, and urethra were contoured using the Nucle-
tron Plato Version 14.2.6 �Nucletron B.V., Veenendaal, The
Netherlands�. The CTV included only the prostate and no
margin was added. When segmenting the bladder and rec-
tum, the outermost mucosa surface was contoured. The ure-
thra was defined by the outer surface of the Foley catheter.
Only the urethral volume within the CTV was contoured.
The COs were contoured on all CT slices containing the
CTV and at least two additional slices above and below.
Implanted catheters were also segmented.

From the segmented anatomical structures, IPSA selected
the active dwell positions and generated a set of m dose
calculation points for which the optimization methods will
calculate dose. The dose calculation points are distributed
based on the anatomy and the implant in order to represent
an accurate measurement of the clinical objectives.5 For the
20 cases, m ranged from 1781 to 3510. Since the selection of
the active dwell positions and dose calculation points affects
the outcome of optimization,24 we use those generated by
IPSA as input for the LP method. For each contoured vol-
ume, IPSA uses two categories of dose calculation points:
“surface” and “volume.” This results in 8 dose calculation
point types: “surface” and “volume” for the four contoured
tissue types �prostate, urethra, bladder, and rectum�. For each
tissue type, adjusting the dose to “surface” dose calculation
points controls the dose coverage and conformality while
adjusting the dose to “volume” dose calculation points con-
trols the dose homogeneity.2

All patients were treated at UCSF Comprehensive Cancer
Center using dosimetric plans generated by the current ver-
sion of IPSA. We used imaging and dosimetry records from

those treatments to compare SA with LP.
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B. Dose calculation

Dwell positions are defined as points along catheters at
which a source can be placed for a nonzero interval of time.
The n active dwell positions were selected by IPSA. We
define the dwell time of a source at dwell position j by tj. A
dwell time of 0 corresponds to skipping past a dwell posi-
tion. The dwell times tj are the variables that will be set to
produce a dose distribution that satisfies the clinical criteria
as best as possible.

We calculate the dose-rate contribution dij of a dwell po-
sition j to a dose calculation point i as specified in the
AAPM TG-43 dosimetry protocol.25,26 The dose-rate contri-
bution is a function of rij, the distance between the dwell
position j and the dose calculation point i. It also depends on
the radioactive material used in the source, which was 192Ir.
Since small differences in the dose calculation may affect the
outcome of the optimization, we use the look-up dose-rate
table calculated by IPSA as an input for the LP method.

The dose contribution of a dwell position j to a dose
calculation point i is computed by multiplying the dose-rate
contribution dij by the dwell time tj. The dose Di at a dose
calculation point i, which has units of cGy, is calculated by
summing the dose contribution from each dwell position,

Di = �
j=1

n

dijtj .

C. Clinical criteria

After contouring, the physician prescribes dose ranges for
each anatomical structure. The dose ranges used in this
study, listed in Table I, are typical values clinically used at
the UCSF Comprehensive Cancer Center.2 This includes the
minimum dose Ds

min and maximum dose Ds
max for each dose

calculation point type s. For a dose calculation point i of type
s, the desired dose Dsi should satisfy Ds

min�Dsi�Ds
max.

In practice, it may not be physically possible to provide a
radioactive dose in the physician specified range for every
dose calculation point in the three-dimensional volume.
Hence, the physician also specifies a “penalty” for any point
for which the clinical criteria is not satisfied. If the actual
dose is below or above the prescribed range, the penalty
increases linearly at rates Ms

min and Ms
max, respectively. Ad-

min max

TABLE I. Clinical criteria parameters for dose penalty cost functions.

s Dose calculation point type Ds
min �cGy� Ms

min Ds
max �cGy� Ms

max

1 Prostate �surface� 950 100 1425 100
2 Prostate �volume� 950 100 1425 30
3 Urethra �surface� 950 100 1140 30
4 Urethra �volume� 950 100 1140 30
5 Rectum �surface� 0 0 475 20
6 Rectum �volume� 0 0 475 20
7 Bladder �surface� 0 0 475 20
8 Bladder �volume� 0 0 475 20
justment of Ms and Ms sets the relative importance of
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dose range satisfaction between anatomical structures. The
penalty weights Ms

min and Ms
max used in this study, listed in

Table I, are typical values used at the UCSF Comprehensive
Cancer Center.2 The penalty wsi at a dose calculation point i
of type s can be described in mathematical form using a cost
function,

wsi = �− Ms
min�Dsi − Ds

min� if Dsi � Ds
min

Ms
max�Dsi − Ds

max� if Dsi � Ds
max

0 if Ds
min � Dsi � Ds

max.
� �1�

Figure 1 plots the cost functions �penalty as a function of
dose� for the clinical criteria in Table I.

D. Linear programming formulation

The objective is to satisfy the clinical criteria as best as
possible by computing dwell times that minimize the net
dose penalty costs. Equation �1� from Sec. II C defines the
cost function for an individual dose calculation point i of
type s based on the clinical criteria for that point. For each
type s, we define the penalty cost Es as the average penalty
cost per point:

Es = �
i=1

ms wsi

ms
, �2�

where ms is the number of dose calculation points of type s.
The objective function E is effectively a weighted sum of the
average cost for each tissue type s, where the relative
weights are determined by the costs Ms

min and Ms
max. The

global objective function is to minimize the sum of the pen-
alty costs for the eight dose calculation point types:

E = �
s=1

8

Es = �
s=1

8

�
i=1

ms wsi

ms
. �3�

This objective function is identical to the objective function
used by IPSA.3

The objective function E is not linear because it is com-
posed of nonlinear functions wsi. However, each function wsi

is piece-wise linear. We can formulate this problem as a lin-
ear program by creating artificial variables csi to represent
cost and defining the following constraints:

csi � − Ms
min�Dsi − Ds

min� ,

csi � Mmax�Dsi − Dmax� ,
s s
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csi � 0. �4�

Because wsi is a piece-wise linear and convex function, the
above-noted constraints guarantee that csi�wsi for all i, s.
Furthermore, we redefine the global objective function to

E = �
s=1

8

�
i=1

ms csi

ms
.

For minimized E where the costs csi satisfy the inequali-
ties �4�, we are guaranteed csi=wsi for all s, i. We show this
by proving the contrapositive �csi�wsi implies E not mini-
mized�, which is logically equivalent.27 If csi�wsi, then csi

�wsi for some s, i and there will exist a cost csi� such that
csi�csi� �wsi. Since csi� will not violate any constraint in in-
equalities �4�, it is feasible. We define E� exactly as E except
using csi� instead of csi. Hence, E��E and no cost variables
used to compute E� violate a constraint, which implies E is
not minimized. Hence, for minimized E, we are guaranteed
csi=wsi.

We explicitly define the linear program in canonical
form20 by plugging into the constraints the dose distribution
Dsi at point i of type s due to dwell times tj.

Minimize

E = �
s=1

8

�
i=1

ms csi

ms
.

Subject to

csi + �
j=1

n

Ms
mindsijtj � Ms

minDs
min, s = 1, . . . ,8;i = 1, . . . ,ms,

csi − �
j=1

n

Ms
maxdsijtj � − Ms

maxDs
max, s = 1, . . . ,8;i = 1, . . . ,ms,

csi � 0, s = 1, . . . ,8;i = 1, . . . ,ms,

tj � 0, j = 1, . . . ,n .

�5�

Because of the properties of the artificial variables csi shown
earlier for minimized E, the optimal solution obtained for the
linear program will be the same as the optimal solution to the
nonlinear formulation based on the objective function in Eq.
�3� with the cost functions in Eq. �1�. We effectively trans-
formed the nonlinear IPSA optimization problem in Eq. �3�
�for which deterministic optimization algorithms such as lo-

3

FIG. 1. The clinical criteria are speci-
fied using cost functions which define
penalty as a function of dose for the
each dose calculation point type.
cal search could be trapped at sub-optimal solutions � to a
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higher dimensional space with artificial variables in which an
equivalent linear formulation �5� can be minimized determin-
istically to find the global optimal solution using the SIMPLEX

algorithm.

E. Method evaluation

We implemented software using C�� to read patient spe-
cific parameters from IPSA and output the linear program �5�
in the file format of AMPL �A Mathematical Programming
Language�.28 We solved the linear program specified in each
AMPL file using ILOG CPLEX 9.0, an advanced implemen-
tation of the SIMPLEX algorithm20 designed for large indus-
trial optimization problems.29 Computation was performed
on a 3.0 GHz Pentium IV computer running the Linux oper-
ating system.

We recorded the dwell times and the objective function
value E for the solutions obtained using SA and LP. We
evaluated the resulting dose distributions using standard do-
simetric indices, including prostate V100 and V150 �the per-
centage of the prostate receiving over 100% and over 150%
of the prescribed dose, respectively�. As dose inside the pros-
tate should fall between 100% �Dmin� and 150% �Dmax� of
prescribed dose, ideally V100 should be 100% and V150
should be 0%. Similarly, we also evaluated V100 and V150
for the urethra. Dosimetric indices for normal structures
�noncancerous tissues� include the rectum �V50 and V100�
and the bladder �V50 and V100�. As normal structures
should be spared radioactive dose, these indices ideally
should be close to 0%. We also computed dosimetric indices
in absolute dose, including the prostate D90 �the maximal
dose that covers 90% of prostate volume�, urethra D10 �the
maximal dose that covers 10% of urethra volume�, and rec-
tum and bladder D2cc �the maximal dose that covers 2cc of
the organ volume�.

III. RESULTS

ILOG CPLEX solved for the optimal solution to the linear
programming formulation in an average time of 9.00 s per
case with a standard deviation of 3.77 s for the 20 prostate
cancer patient cases. The times ranged from 3.68 to 14.63 s.
The SIMPLEX algorithm in ILOG CPLEX required an average
of 1653 iterations with a standard deviation of 341 iterations.

The average objective function value for the 20 prostate
cancer patient cases was 3.27 for the LP method compared to
3.33 for SA. The percent difference in objective function
value between the solution found using SA and the optimal
solution found using LP for each individual patient case is
shown in Fig. 2. Improvement varies from a minimum of
0.84% to a maximum of 4.59%. We performed paired t-tests
to determine the statistical significance �P�0.01� of the re-
sults and found that the improvement in objective function
value using the LP method compared to SA was statistically
significant �P=1.54�10−7�.

Figure 3 displays the standard dosimetric indices for both
the SA and LP solutions. The bars indicate the mean indices
as percents and the error bars indicate the maximum and

minimum indices obtained for the 20 prostate cancer patient
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cases. Based on these dosimetric indices, the difference be-
tween the dose distributions generated by SA and LP was
small. None of the dosimetric indices indicated a statistically
significant �P�0.01� difference between the dose distribu-
tions generated by SA and LP. The largest improvement for
the prostate D90, the rectum D2cc, and the bladder D2cc
were lower than 1%. The largest improvement for the urethra
D10 was 2%. The urethra V150 was zero for both LP and SA
method for this case. Additional dosimetic indices are shown
in Table II where positive values indicate improvement and
negative values indicate deterioration. The deterioration of
one dosimetric index is sometimes traded for the improve-
ment of other dosimetric indices and the improvement of the
global solution. The maximum improvement of LP over SA

FIG. 2. The percent difference in objective function value between the op-
timal solution �found using the LP method� and the solution found by SA for
20 prostate cancer patient cases. The difference is statistically significant
�P=1.54�10−7�.

FIG. 3. Mean dosimetric index results for the SA and LP methods for 20
prostate cancer patient cases. Error bars indicate maximum and minimum

values for the 20 patient cases.
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was a reduction of 1.65% for the prostate V150 index. How-
ever, for the same patient, LP resulted in a reduction of
0.38% of the prostate V100. Similarly, the maximum dete-
rioration of LP over SA was an increase of 1.63% for the
prostate V150 index inducing an improvement of 0.84% of
the prostate V100. Even with these two extreme cases, the
LP and SA methods provide two different solutions that are
difficult to distinguish clinically. Figure 4 plots the dose-
volume-histogram �DVH� for each tissue type for the patient
case with the greatest magnitude improvement in a dosimet-

TABLE II. Improvement of LP solutions over SA solu
absolute difference in dosimetric index percent value
index. The significance P of the differences was com

Dosimetric
index

Maximum
improvement

Minimum
improvemen

Prostate V100 0.95 −0.49
Prostate V150 1.65 −1.63
Urethra V100 1.52 −1.50
Urethra V150 0.11 −0.05
Rectum V50 0.50 −0.81
Rectum V100 0.03 0.00
Bladder V50 0.75 −0.48
Bladder V100 0.13 −0.02
Medical Physics, Vol. 33, No. 11, November 2006
ric index between the SA and LP solutions. Figure 5 displays
a CT scan of the same patient with overlaid isodose contours
for both solutions.

IV. DISCUSSION

The dosimetric index results are not significantly different
from those of the current version of IPSA, which was previ-
ously shown to be superior to the commonly used method of
geometric optimization followed by manual adjustment.2,6

for 20 prostate cancer patient cases calculated as the
gative values indicate deterioration in the dosimetric
d using paired t-tests.

Mean
improvement

99%
CI

Significance
P

0.13 �−0.10, 0.37� 0.1644
0.51 �−0.02, 1.04� 0.0217
0.12 �−0.33, 0.57� 0.4858
0.00 �−0.01, 0.02� 0.7621

−0.17 �−0.36, 0.02� 0.0344
0.01 �−0.00, 0.01� 0.0289
0.03 �−0.17, 0.23� 0.7042
0.02 �−0.00, 0.04� 0.0225

FIG. 4. DVH plots for the prostate �a�,
urethra �b�, rectum �c�, and bladder �d�
for the patient case with greatest dif-
ference in dosimetric indices between
the LP and SA solutions. For dose less
than Dmin for each tissue type, the de-
sired volume is 100%. For dose
greater than Dmax, the desired volume
0%.
tions
s. Ne
pute

t
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The small variances observed for the prostate and urethra in
Fig. 3 show the consistency of the treatment plan quality for
both the SA and LP methods. The larger variances for the
prostate V150, the rectum, and the bladder are due to differ-
ences between patients in anatomy, prostate volume, and dis-
tances between the prostate and organs at risk.

The LP and SA methods are both based on IPSA’s objec-
tive function for the HDR brachytherapy dwell time optimi-
zation problem. The only difference is the optimization algo-
rithm used, simulated annealing versus an equivalent linear
programming formulation that can be solved using the SIM-

PLEX algorithm. As simulated annealing is a probabilistic
method, it is only guaranteed to converge to an optimal so-
lution after an infinite amount of computation time. Standard
termination criteria, such as stopping the algorithm after a
fixed number of iterations, can result in suboptimal solutions.
During the development phase of the current version of
IPSA, a large number of cases were run using a very large
number of iterations ��1 million� and no significant im-
provements in the dosimetric indices were found compared
to the values found after 100 000 iterations. However, the
closeness to mathematical optimality of the solutions of the
current version of IPSA could not be guaranteed for every
new clinical case.

Because the LP formulation of IPSA’s objective function
can be solved deterministically to find the solution that glo-
bally minimizes costs, the LP method solution provides a
precise baseline for evaluating solutions obtained by proba-
bilistic methods such as SA. The LP method computed a
solution with a better objective function value compared to
SA for every patient case. The improvement in objective
function values of LP compared to SA was statistically sig-
nificant. However, the effect size of the objective function
improvement was not sufficient to result in statistically sig-
nificant differences in standard dosimetric indices for our
sample of 20 prostates with volume ranging from
23 to 103 cc. We observe that the DVH plots for the patient
case with the largest difference in dosimetric indices are
similar for both methods �Fig. 4� while differences are ob-

FIG. 5. Isodose curves for the SA �a� and LP �b� solutions for the patient
case with greatest difference in dosimetric indices. The prostate �1�, urethra
�2�, and rectum �3� are contoured in black. Catheters are shown as black
dots. Isodose curves for 50%, 100% �Dmin�, 120%, and 150% �Dmax� of
prostate minimum prescribed dose are plotted in white.
servable on the isodose curves �Fig. 5�. The hot spots �pros-
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tate V150� have different shapes and the prostate V120 curve
is at a different location. This indicates that the local dose
distribution �isodose� is different while global dose delivered
to the organs �DVH� and critical dose delivered to the organs
�dosimetric indices� are equivalent. This quantitatively indi-
cates that the dose distributions generated by SA are clini-
cally equivalent to the best achievable dose distributions
based on the current IPSA objective function with dose con-
straints and penalty weights selected for prostate cancer
cases.

V. CONCLUSION

Prostate cancer is increasingly treated with HDR brachy-
therapy, a type of radiotherapy in which a radioactive source
is guided through catheters temporarily implanted in the
prostate. Clinicians must set dwell times for the source inside
the catheters so the resulting dose distribution minimizes de-
viation from dose prescriptions that conform to patient-
specific anatomy. The primary contribution of this paper is to
take the well-established dwell times optimization problem
defined by IPSA developed at UCSF and exactly formulate it
as a LP problem. Because LP problems can be solved exactly
and deterministically, this formulation provides strong per-
formance guarantees: one can rapidly find the dwell times
solution that globally minimizes IPSA’s objective function
for any patient case and clinical criteria parameters. For a
sample of 20 prostate cancer patient cases, the new LP
method optimized dwell times in less than 15 s per case on a
standard PC.

We quantitatively compared the dwell times solutions cur-
rently being obtained clinically using SA, a probabilistic
method, to the mathematically optimal solutions obtained us-
ing the LP method. The LP method resulted in significantly
improved objective function values compared to SA, but
none of the dosimetric indices indicated a statistically sig-
nificant difference. The results indicate that solutions gener-
ated by the current version of IPSA are clinically equivalent
to the mathematically optimal solutions.

IPSA’s objective function with dose constraints and pen-
alty weights covers all organs and all clinical objectives so
they can be optimized simultaneously. The physician can ad-
just the objectives for each optimization. However, if a par-
ticular set of objectives generates the desired results then the
same set of objectives can be used for optimization of clini-
cally similar cases �i.e., prostate� without further adjust-
ments. This set of objectives, commonly called a class solu-
tion, can be used as a starting point for every patient,
significantly reducing the time needed to plan individual pa-
tient treatments.

Our linear programming formulation was designed for
prostate cancer patient cases. The mathematical formulation
can be extended to other cancer types for which HDR
brachytherapy is used by incorporating different clinical pa-
rameters, although integrating and testing the LP method
with medical imaging and segmentation for other cancer
types would require substantial effort. The method can also

be extended to support any piece-wise linear convex cost
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functions, not solely the three-piece cost functions presented
earlier. Recent developments in magnetic resonance spec-
troscopy imaging and image registration introduce a new
clinical criterion, a dose boost to the tumor volume within
the prostate.30–32 Although we do not explicitly consider that
dose calculation point type, the mathematical formulation we
defined can be extended to incorporate it by adding a tumor
volume tissue type. A potential advantage of the LP method
for each of these extensions is that it will use the well-
established framework of IPSA and deterministically com-
pute mathematically optimal dwell time solutions for all pa-
tient cases.
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