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MELD-Path Efficiently Computes Conformational Transitions, 
Including Multiple and Diverse Paths

Alberto Perez†,§, Florian Sittel‡,§, Gerhard Stock‡, Ken Dill*,†

†Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New 
York 11794, United States

‡Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, 
Germany

Abstract

The molecular actions of proteins occur along reaction coordinates. Current computer methods 

have limited ability to explore them. We describe a fast protocol called MELD-path that 

(1) efficiently samples relevant conformational states via MELD, an accelerator of Molecular 

Dynamics (MD), (2) seeds multiple short MD trajectories from MELD states, and then (3) 

constructs Markov State Models (MSM) that give the routes and kinetics. We tested the method 

against extensive (multi μs) MD simulations of the right-handed- to left-handed-helix transition of 

a 9-mer peptide of AIB, the symmetry of which allows us to establish convergence. MELD-path 

finds all the metastable states, their correct relative populations, and the full ensemble of routes, 

not just a single assumed route. For this transition, we find a very broad route structure. MELD

path is highly parallelizable and efficient, yielding the full route map in a few days of computation. 

We believe MELD-path could be a general and rapid way to explore mechanistic processes in 

biomolecules on the computer.
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1. INTRODUCTION

A main way to study the detailed actions and mechanisms of biomolecules is by Molecular 

Dynamics (MD) computer simulations. Based on the underlying physical driving forces, 

they can give the picosecond-by-picosecond and Ångstrom-by-Ångstrom narratives that 

experiments are too coarse-grained to provide. However, MD modeling of biomolecular 

mechanisms is currently limited, for the following reasons. MD sampling is very inefficient 

by itself to sample large conformational changes and overcoming kinetic barriers. MD 

mechanistic modeling requires knowing a proper reaction coordinate, which is often 

difficult to determine. It must sample the conformations well enough along the reaction 

coordinates to get accurate closely spaced free-energy distributions, but such computations 

are prohibitively expensive for all but the simplest problems. Consequently, it is unable to 

explore more than one or a few dominant routes, even though biomolecule transition routes 

are likely to be many and varied. We describe here a method called MELD-path that can 

address these problems, and we give a proof-of-principle example.

It is often of interest to learn about a particular transition between two states (A and B). 

Sometimes it is possible to guess or identify a reaction coordinate between states A and B. 

Then, the free energy profile along the reaction coordinate can be found using enhanced 

sampling methods to get good population statistics on the recrossings between A and B. 

Typically, enhanced sampling methods require either adding restraining potentials to guide 

the system from one basin to another or require multiple independent simulations near the 

transition site to get good statistics on the crossing of A and B. For example, the pathway 

can be sampled by umbrella sampling.1 Or, the pathway can be divided into small bins, 

each of which has a different biasing potential, allowing for a more accurate reconstruction 

of the free energy profile using the weighted histogram analysis method (WHAM)2 or the 

Multistate Bennett Acceptance Ratio (MBAR).3,4

Current approaches assume that a pathway has a dominant route and some small ensemble 

of variations around it. For example, the nudged elastic band method5,6 starts with 

an assumed dominant path but allows for deviations from it by spring-law forces.7 

Metadynamics8 assumes a pathway is defined by a set of collective variables (CV) and 

then samples those paths efficiently using history-dependent biases along them to force 

the sampling into regions not sampled before. This methodology is often combined with 
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parallel tempering for more efficient sampling.9,10 Here, big challenges include guessing 

good CVs and the hysteresis and inaccuracies that arise when the CVs do not reflect well the 

underlying pathways.9

Some current methods use multiple independent runs rather than biasing potentials 

to overcome barriers and sampling limitations. In transition path sampling11,12 many 

independent trajectories are started from states near a possible transition path in order 

to collect statistics on which paths traverse from one basin to another. The approach is 

highly parallelizable and the computational cost is linear in the barrier (WAB), whereas 

it is exponential for a direct (MD) approach (whenever WAB ≫ kBT). In milestoning,13 

the energy surface is broken into different sections, and trajectories are initiated in each 

to record crossings between sections. This allows us to reconstruct the whole kinetic 

landscape. In the weighted ensemble path sampling14,15 method, different trajectories are 

started from the same point (or bin), each carrying a weight of 1/M where M is the 

number of runs started. After each simulation, statistical weights for bins are calculated, 

and more simulations are started from the end points. By keeping track of the different 

weights and resampling, the kinetics and thermodynamics can be efficiently recovered at 

the end of the simulation. Recently, Markov State Models (MSM) have become a popular 

way16-20 to describe the kinetics as memoryless jumps between metastable states. Transition 

probabilities between states are estimated from either long or many short independent MD 

trajectories. Also, methods to build MSMs from independent trajectories include adaptive 

sampling21-23 (spawning simulations in regions of higher uncertainties) and adaptive 

seeding24,25 for choosing good starting configurations (e.g., the FAST algorithm26) for 

spawning short trajectories.

In summary, here are the challenges. First, good reaction coordinates or CVs are rarely 

known in advance. Second, for computational practicality, it is often assumed that only one 

reaction path dominates. Yet, in important problems like protein folding, the route structure 

is highly diverse and heterogeneous. Third, obtaining the free energies, barriers, and kinetics 

along paths is computationally expensive because it requires expensive enhanced sampling 

of closely spaced probability distributions stepping along the whole path. We describe 

below MELD-path, which first seeks relevant states on the whole conformational surface 

by MELD-accelerated MD and then finds free energies and kinetics by seeding unbiased 

trajectories from these states. Below, we first review the MELD method for accelerating the 

MD searching for relevant states, given the two end states A and B.

MELD Samples States and Populations.

MELD (Modeling Employing Limited Data) is a method that accelerates MD simulations 

when at least some information is known.27,28 Using Bayesian modeling, MELD “melds 

together” physical simulations, such as MD with force fields, with external information on 

some kind that need not be well conditioned. MELD-accelerated MD preserves detailed 

balance. Hence, populations are relevant and related to free energies using Boltzmann 

weights. MELD uses a Hamiltonian and temperature replica exchange protocol where the 

Hamiltonian is modified with biasing potentials to satisfy general knowledge.27,28 It has 

been validated for folding small proteins,28,29 in protein structure determination,27 and in 
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finding the binding poses and affinities of peptides binding to proteins.30,31 MELD can 

speed up in sampling rare events; for example, NuG2 (a designed fast folding variant of 

protein G)32 can be folded starting from a completely extended chain within 500 ns of 

MELD simulations and detected as the lowest-free-energy cluster,28 whereas unaccelerated 

MD simulations exceeding 50 μs do not sample the native state.33 So far, MELD has only 

been proven as a method for finding stable or metastable conformational states of proteins, 

not of mechanistic pathways. In the present work, we show how MELD can be used to 

identify metastable states and heterogeneous reaction coordinates and give populations and 

rates.

Modeling the Helix-to-Helix Transition of AIB.

As a proof-of-principle, we test MELD-path on the Aib9 peptide (Figure 1). This is a 

good test system because (1) extensive unaccelerated MD simulations are already available. 

(2) AIB exhibits hierarchical dynamics and is too complex to sample efficiently via long 

MD (the unaccelerated simulations are not fully converged). (3) The full set of metastable 

states are readily enumerated. (4) It is symmetric (because AIB, α-amino-isobutyric acid, is 

achiral; see SI Figure 1), providing for a strong internal check on accuracy and convergence 

(of states, kinetics and pathways). (5) From the nature of the possible states, it is clear that 

many different routes between the end states are possible.

Despite it is short length, the Aib9 peptide forms very stable 310 helices34-37 and is 

able to stabilized shorter living α-helices. This system has been broadly studied both 

computationally and experimentally for energy transport along its chain,38,39 giving good 

qualitative results between the two and exhibiting a dynamical transition behavior that is 

well reproduced computationally. Long MD trajectories carried out previously40 show two 

kinds of events are needed for transitions between left (l) and right (r) helix conversion 

(which happens in the microsecond time scale): (1) hydrogen bond transitions in the 

picosecond time scale and (2) transitions of individual residues (l/r) at the nanosecond 

time scale. Thus, in MD simulations, many hydrogen bond transitions and conformational 

switching of individual residues are observed but few complete helix-to-helix transitions. 

Standard MD does not obtain converged populations and kinetics of the system, as judged 

with the imperfect symmetry in time scales and populations.41 Here, we focus on the 

behavior of the central five residues of this peptide in order to avoid end effects. Each 

residue can be classified into three dominant states of the Ramachandran map: left helix 

region (l), right helix region (r), or neither (−). Hence, there are 35 = 243 possible states for 

this system.

2. METHODS

Details of the Present Simulations.

We used AIB parameters derived for the NCAA42 (Non Canonical Amino Acid force field 

library) compatible with the AMBER molecular package43 using the GBNeck2 implicit

solvent model.33 For the present problem, the force field and implicit solvent model are 

able to reproduce well the helical conformations of the molecule. The kinetics predicted 

within the implicit solvent model are likely to be accelerated relative to explicit solvent or 
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experiments. The MELD-path protocol discussed here can also be applied using explicit 

solvent at a higher computational expense, but the point of the present work is just to test the 

sampling approach in MELD-path.

MELD Runs.

The MELD27,28 plugin to OpenMM44 is used to run the H,T-REMD. The innovation comes 

in the way the Hamiltonian is changed: we input information about the system based on 

the knowledge that Aib9 likes to make helices, with the understanding that some of the 

information will be accurate and some will not. During MELD trajectories, only the data 

that are most compatible with the current conformation are used until the next time step. 

The data are enforced with flat bottom harmonic restraints that vanish at the higher replicas 

and become stronger at the lower ones; thus, the system samples from completely unfolded 

structures to structures that are compatible with a part of the data and the force field at lower 

replicas. We enforced three different types of protocols to assess whether our results were 

independent of the information we used (three independent MELD runs).

Here, we describe one of the protocols. The other two protocols are described in the SI. 

Since the helices can be either 3–10 or α-helices, we input all possible hydrogen bond 

patterns O(i) → N(i + 3) or O(i) → N(i + 4) to be within 4 Å of each other as flat bottom 

harmonic restraints. But, we only ask that one restraint be satisfied at any point during the 

trajectory. Note that this resembles an experiment that mimics low-quality NMR NOE data. 

Indeed, this is what MELD has successfully been shown to do:29-31 to handle sparse, noisy, 

and ambiguous data.27,28,45 Consequently, MELD-path is an extensible approach to more 

complex problems of folding and binding than the small peptide conformational transition 

described here. The use of data accelerates the nucleation of helical states. Since the system 

is symmetric, these restraints do not favor either left- or right-handed helices. We ran MELD 

with 30 replicas for 2.5 μs, requiring under a week of computation on our local GPU cluster.

MELD-Path.

MELD by itself is a method for searching over states, not for giving kinetics. In contrast, 

MELD-path uses unbiased simulations seeded from states found by MELD to recover both 

kinetics and state populations. Relevant states were chosen as seeds for generating unbiased 

simulations. We use three seed structures for each state originating from the three protocols 

described above and in theSI. For each seed, we run 20 independent simulations, each of 

which runs for about 15 ns in implicit solvent (25 min computer time limit on a single GPU 

in the Blue Waters supercomputer) using the Amber MD package.43 This corresponds to 

13,805 simulations for an aggregated simulation time of about 221 μs. The 25 min time limit 

takes advantage of the backlogging in the queueing system, allowing us to collect 221 μs of 

unbiased MD simulations in 17 days (a sequential run of the same length would have taken 

255 days if it could run continuously; our approach would have taken under 2 h if we could 

use all Blue Waters GPU nodes simultaneously).

Long, unbiased MD.

We ran 16 independent simulations with the same implicit solvent and force field parameters 

as the MELD and MELD-path runs. Each trajectory was at least least 5 μs, summing to a 
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total of 80 μs. Each independent trajectory took about 6 days of computer time using the 

same resources as above.

3. RESULTS AND DISCUSSION

MELD Samples the Relevant States and Populations Well.

Out of the possible 243 states, the initial MELD simulations samples 231 states (the 

other two protocols described here produce 229 and 228 states). SI Figure 2 shows good 

symmetry, and evaluation of all the states across the three different protocols shows 

good agreement. However, this characterization of states is not optimal; many states 

are kinetically indistinguishable and interconvert rapidly (SI Figure 2). Hence, following 

previous work,46 we processed the ensemble of trajectories using standard Markov 

state modeling software21,46,47 as well as our own approach.48,49 We featurized MELD 

trajectories in terms of the phi and psi dihedrals of each internal residue and projected 

them onto the principal components (tICA and dPCA+,49 see SI Figure 3 for projections 

of principal components). Both tICA and dPCA+ analyses of the unaccelerated MD and 

the MELD simulations show a better definition of states based on kinetic clustering despite 

the limitation that in our MELD replica exchange approach kinetics are biased. dPCA+ 

categorized residues to be in one of four states: l, r, l*, or r*, where * defines excited states 

(SI. Figure 1). According to this definition, there are 46 macrostates. We use this definition 

from now on.

MELD correctly identifies the two helical states as the lowest in free energy, and the slowest 

conformational transition in the system corresponds to the helix-to-helix transition (SI 

Figure 2). There are an additional 20 metastable states in the system, none involving excited 

states (which have lower populations). These results are in agreement with previously 

published41 long unbiased simulations, but they are obtained in fraction of the time. The 2.5 

μs required 5 days of sampling, while unbiased simulations of the same length are much 

less efficient at sampling the conformational landscape. The caveat is that MELD kinetics 

are biased since MELD uses replica exchange, but they can still capture the underlying 

routes. The MELD-path protocol uses these states as a starting point to produced corrected 

kinetics. However, before describing MELD-path results, it is worth noting similarities and 

differences with unbiased simulations. Rather than using published data, we started several 

long, independent unbiased simulations (see Methods) from the same configuration. This 

is to ensure a fair comparison vis-a-vis the solvent model, capping groups, and force field 

parameters. We did independent simulations in order to get error estimates and compare 

overall performance with MELD-path.

The dPCA+ decomposition exhibits a qualitatively similar free energy surface between 

MELD simulations and the pooling of the 16 long MD simulations. In all cases, the results 

are consistent with 46 main states. It takes a bit over 2 μs of sampling with unbiased MD to 

ensure visiting all 46 states (Figure 2). MELD runs cover the 46 states in the range from 0.3 

to 0.6 μs in the three protocols we tested, a significant speed up (less than a day of sampling 

in our local cluster). However, MELD does not provide kinetics and hence only provides 

good starting structures for the MELD-path approach.
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MELD-Path Samples Well the Kinetic Routes.

We used MELD-path starting from MELD states to sample 221 μs of unbiased MD as 

described in Methods. The Ramachandran plot is identical for all five internal residues 

analyzed here (SI Figure 1). The resulting dPCA+ plot is perfectly symmetrical, with the 

left-hand helix and right-hand helix being the two most populated states (Table 1 and Figure 

3). Clustering using a density-based approach48 on the subspace of the first five PCA modes, 

we can again identify 46 microstates (SI Table 1 and Figure 3). At this point, the data 

coming from pooling the 16 long MD (80 μs of aggregate sampling) or the MELD-path 

data (221 μs of aggregate sampling) tells us the same information: (1) Both sample 46 states 

efficiently. (2) The populations of the top states converge to roughly 33% each for the left- 

and right-handed helix. (3) The mean first passage time for the helix-to-helix transition is of 

the order of 40 ns. We can investigate how much data is needed to converge to these results. 

For the long MD, we can estimate Markov models based on shorter chunks of simulation 

and estimate average and standard deviations from the 16 independent runs, whereas for the 

MELD-path data we can choose to use a different number of trajectories to construct the 

Markov state models and choosing different subsets of trajectories estimate averages and 

deviations. This is summarized in Figure 2 for the three quantities described above: states, 

populations, and helix-to- helix kinetics. It is easy to see that MELD-path runs efficiently 

sample all states even for a fraction of the data. This is expected since by construction 

we are starting from seeded states representing all states in the system. On the other hand, 

individual MD needs to be longer than 2 μs to ensure sampling of all 46 states (panels A 

and B in Figure 2). Looking at the convergence of the population for the top five states 

(panels C and D in Figure 2), we see that we would need only 1/20th of the data (11 μs to 

sample to converge the top two states, 1 day of sampling), whereas it would take at least 4 μs 

from an individual trajectory (4.8 days of sampling). These results hold also for converging 

the mean first passage time for the helix-to-helix transition (panels E and F in Figure 2). 

Roughly, we see that we need to wait 5 times longer to sample the same phenomena using 

long simulations. Note that this is a small system, so the scaling benefits should increase for 

larger systems.

Finally, SI Figure 4 shows us the free energy surface vs the two principal components for 

different amounts of sampling. It illustrates the 5 fold increase in efficiency of convergence. 

It also shows the high degree of symmetry in sampling even in the least populated cases.

Kinetic information further allows us to identify the first 22 states representing 98% of the 

sampled conformations as metastable and correspond to each residues being in a l or r region 

of the Ramachandran plot. Their populations follow symmetry quite well. We looked at the 

transition matrices at different lag times to estimate the stabilities of these states (SI Figure 

5). At short lag times (40 ps), all 46 states have a high self-transition probability, denoted 

by a high probability value along the diagonal in SI Figure 5 (left plot). The first 22 states 

exhibit very small probability of jumping to other states on this time scale. However, the 

next 24 states correspond to shortlived conformations with high probability to transition to 

one of the top 22 states. Moving to longer time scales (1 ns, right-hand panel in SI Figure 5) 

shows indeed that the self-transition probability of states 23 to 46 vanishes, and most states 

have a high probability of transitioning to the top 22 states. The diagonal values in SI Figure 
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5 (right plot) now exhibit very low probability after state 22. Some residues in states 23–46 

correspond to excited states40 (marked l* or r* in SI Figure 1). These excited states have 

been described before as intermediates on the way to l/r transitions.

We then looked in more detail at the transitions between the main 22 states. Figure 4 shows 

the metastable states and the transition rates between them as a network of nodes at their 

average PC1/PC2 positions (see SI Figure 6 for long MD vs MELD-path on the original 

46 states). Node sizes are scaled by the logarithm of state population, and edges are scaled 

by the transition rate. Blue connections depict transitions to the left (along PC1), while 

orange connections go to the right. The network is based on the transition matrix with τ 
= 1 ns. Detailed balance has been checked for this matrix, with differences in population 

probabilities from forward and backward propagation of ~10−4, i.e., considering numerical 

errors detailed balance is fulfilled. Figure 4 highlights again the remarkable symmetry of 

Aib9 in aspects like state populations, l/r compositions, and transition rates. Note that the 

most populated metastable states (1–10) lie on the edges of the plot. Kinetics are converged 

and return the expected behavior of the system. For example, the transition rate between 

state one (or two) and any other state in which one residue flips conformation is roughly 

the same; this is expected since the probability of breaking the helix at any one point in the 

central five residues is roughly the same.

We now quantify the rates and routes by using Markov Chain Monte Carlo sampling 

(averaging over 106 chains) and transition probability propagation. The mean first passage 

time of the l ↔ r helix transition has been estimated to be of the order of ~40 ns, compared 

to ~200 ns from previous results in explicit water. This disagreement in time scales is to be 

expected as the implicit solvent allows much faster diffusion due to the lower viscosity of 

the solvent. So, these dynamics are accelerated by a factor of 5, well within the expected 

range. Further mean first passage times are shown in Table 2. Using Bayesian Markov 

models, we estimate the errors on these transition times for the helix-to-helix transitions 

to be 40.0 ns (standard deviation of 0.6 ns, standard error of 1.5) and 39.5 ns (standard 

deviation of 0.6 ns and standard error of 1.6), indicating the robustness and symmetry of the 

simulated transitions. The transitions toward the (very) high populated all-l and all-r states 

are relatively fast (~10–20 ns), and transitions out of these states are about twice as slow, 

as one would expect. However, regardless of the target state, all transitions out of the stable 

states happen on about the same time scale, with the all-l to all-r transitions even being 

relatively fast in comparison to other transitions.

It may seem paradoxical that a bigger conformational change can happen on the same 

time scale as the flipping of a single amino acid (Table 2). The explanation for this is the 

multiplicity of pathways. Upon close inspection of the transition probabilities (Figure 4), it 

becomes clear that there are multiple pathways transitioning between all-l and all-r states, 

whereas the individual paths between specific states are fewer. To illustrate this, we further 

coarse grain our kinetic model by lumping together states which have the same amount 

of residues in l/r conformations (e.g., llrrr and lrrrl are now l2r3, see Figure 5). Hence, in 

SI Table 2, we look at what is the mean first passage time between states with different 

numbers of l or r states irrespective of their ordering. As expected, now the probability of 

going l5 ↔ l4r1 ↔ l3r2 ↔ l2r3 ↔ l1r4 ↔ r5 is close to intuition. It takes about 15 ns for a 
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single residue to flip states, but double or triple jumps are possible, accelerating the process 

(e.g., l5 →l4r1 →l3r2 takes about 30 ns, whereas a direct jump only takes 22 ns). In the 

same way, the five independent jumps would take around 75 ns if the amino acids flipped 

one at a time, but with cooperativity and multiple jumps, we get an average of 40 ns for 

the transition. Thus, we have shown that the apparent paradox in time scales shown in Table 

2 is easily explainable when considering all possible pathways in the system. Although, a 

transition between states all-l/r to any particular state is rare, the transition from states all-l/r 
to one of the other metastable states is not so rare.

MELD-Path Identifies the Dominant Pathways.

We use transition path theory50,51 as implemented in the PyEMMA software package47 to 

calculate the most populated paths between the all-l and all-r states (see Figure 6 and similar 

plots comparing long MD and MELD-path on the 46 state system in SI Figure 7). Selecting 

the six most important pathways for each direction, we show in Figure 6 and in SI Table 3 

that most of the transitions occur when an all-l or all-r configuration sequentially loses l or r 
residues, starting from one end or the other. These pathways alone describe about 60% of the 

total flux between the all-l and all-r states (SI Figure 8). Significantly less frequently does 

the molecule transition directly from all-l to all-r (or the reverse). While specific pathways 

with configuration changes in the middle of the chain are also very infrequently sampled, as 

a total they still describe roughly the other 40% of total flux. The comparison between long 

MD and MELD-path can also be seen in SI Figure 7.

4. SUMMARY

We describe MELD-path, a computational accelerator for molecular dynamics simulations 

that finds reaction pathways between conformational states of biomolecules. It broadly 

samples kinetically relevant states and is correspondingly able to find broad ensembles 

of routes, if they exist. We give a proof of principle on the Aib9 peptide helix-to-helix 

transition. The Markov-State Model seeding is embarrassingly parallelizable: in the limit of 

enough GPUs, all 13,805 independent trajectories used in this work could be collected in 25 

min, whereas a single aggregate trajectory would require 255 days (requiring the same total 

GPU time). Our 30-replica MELD run took 1 week, and the collection of all the short MD 

trajectories took 17 days, giving a huge speedup relative to a single trajectory. The method 

can readily be adapted for explicit solvent. Also, the generation of initial conformations 

could have been based on geometric sampling of dihedrals at a lower computational cost. In 

short, we believe the MELD-path method may also be a general and efficient way to explore 

more complex mechanisms and pathways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left- to right-helix transition of AIB9 studied here.
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Figure 2. 
Sampling needed to achieve convergence with long MD or the MELD-path approach. (Top 

row) Single MD trajectories as a function of simulation time, showing averages and standard 

deviations over 16 independent runs. (Bottom row) Showing MELD-path quantities obtained 

using a fraction x = all, 1/2, 1/5,… of the full run to construct the MSMs. (A and D) Amount 

of sampling needed to visit all 46 relevant states. (B and E) Convergence of the top five 

state populations. (C and F) Convergence of the MFPT for going from left- to right-handed 

helix or vice versa. The red and black lines in panel C represent using all 16 independent 

simulations to construct the MSM.
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Figure 3. 
2D projections of Aib9 of MELD-path trajectories on the two first eigenvectors from 

dPCA+. Notice that MELD+MD samples the landscape significantly better than just MELD 

(SI Figure 2), and the symmetry of the molecule is captured in the symmetry in state 

populations.
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Figure 4. 
Transition rates between the 22 states and their neighbors from MELD + MSM. MSM 

representation (τ = 1 ns) of the 22 major states, positioned according to their average of 

PC1 and PC2. Line thicknesses are proportional to the rates. Blue connections go to the left, 

orange to the right.
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Figure 5. 
Mean first passage times (in ns) in a coarse-grained representation of the system. Switching 

one residue at a time takes around 15 ns on average, whereas jumping to any particular 

microstate inside those coarse-grained states can take much longer. Transitions with multiple 

residues changing state are also possible. The pairs of numbers refer to forward (i.e., left to 

right, first number) and backward (right to left, second number) passage times.
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Figure 6. 
Predicted pathways of maximum net flux from all-l to all-r (orange) and vice versa (blue) 

coming from transition path theory.
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Table 1.

Metastable Populations (in percent) and Right-/Left-Handed Classification with r/l Denoting the Main States

state l/r pop state l/r pop

1 lllll 30.9 2 rrrrr 30.6

3 rrlll 4.4 4 rrrll 4.4

6 lllrr 4.2 5 llrrr 4.2

7 rllll 3.8 8 lrrrr 3.8

10 llllr 3.2 9 rrrrl 3.3
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Table 2.

Mean First Passage Times (ns) between Important States as Given by Markov Chain Monte Carlo Sampling on 

MSM with τ = 1 ns

i j MFPT(i,j) MFPT(j,i)

lllll rrrrr 40 40

lllll llllr 41 11

lllll lllrr 50 20

lllll rllll 43 15

lllll rrlll 51 23

rrrrr rrrrl 41 11

rrrrr rrrll 49 20

rrrrr lrrrr 44 15

rrrrr llrrr 53 23

J Chem Theory Comput. Author manuscript; available in PMC 2021 November 05.


	Abstract
	Graphical Abstract
	INTRODUCTION
	MELD Samples States and Populations.
	Modeling the Helix-to-Helix Transition of AIB.

	METHODS
	Details of the Present Simulations.
	MELD Runs.
	MELD-Path.
	Long, unbiased MD.

	RESULTS AND DISCUSSION
	MELD Samples the Relevant States and Populations Well.
	MELD-Path Samples Well the Kinetic Routes.
	MELD-Path Identifies the Dominant Pathways.

	SUMMARY
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.



