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Abstract

Triangulated Categories of Motives over fs Log Schemes

by

Doosung Park

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Martin Olsson, Chair

In this thesis, we construct triangulated categories of motives over fs log schemes with
rational coefficients and formulate its six operations formalism. For these, we introduce pw-
topology and log-weak equivalences to study the homotopy equivalences of fs log schemes.
We also introduce equivariant cd-structures to deal with descent theory of motives more
systematically.
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10.4 Poincaré duality for AQ → AP . . . . . . . . . . . . . . . . . . . . . . . . . . 200
10.5 Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.6 Purity transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
10.7 Canonical version of purity transformations . . . . . . . . . . . . . . . . . . 222

Bibliography 224

Index of terminology 226

Index of notations 228

iii



Acknowledgements

First of all, I would like thank my advisor, Martin Olsson, for his encouragement and
support during my years in Berkeley. His research inspired me to study the topic of this
thesis. I would like to thank Brad Drew and Arthur Ogus for helpful communications or
conversations.

iv



Introduction

0.1. This thesis is devoted to constructing the triangulated categories of motives over fs
log schemes with rational coefficients and their six operation formalism. Throughout the
introduction, let Λ be a fixed ring. For simplicity, assume also that every log scheme we deal
with in the introduction is a noetherian fs log schemes over the spectrum of a fixed prime
field or Dedekind domain.

Construction

0.2. As illustrated in [CD12, 16.2.18], A1-weak equivalences and the étale topology “gener-
ate” the right homotopy equivalences needed to produce the motivic cohomology. However,
in the category of fs log schemes, we may need more homotopy equivalences. For example,
consider morphisms

Y
g→ X

f→ S

of fs log schemes satisfying one of the following conditions:

(a) f is exact log smooth, and g is the verticalization Xver → X of f .

(b) f is the identity, and g is a pullback of Au : AM → AP where u : M → specP is a
proper birational morphism of monoschemes.

(c) f is the identity, the morphism g : Y → X of underlying schemes is an isomorphism,
and the homomorphism

Mgp

Y,y →M
gp

X,g(y)

of groups is an isomorphism for any point y of Y .

(d) f is the projection S × AN → S, and g is the 0-section S × ptN → S × AN where ptN
denotes the reduced strict closed subscheme of AN whose image is the origin.

For each type (a)–(d), we should expect that g : Y → X is homotopy equivalent over S in
some sense because the Betti realization of g seems to be homotopy equivalent over the Betti
realization of S. It is not clear that A1-weak equivalences and the étale topology can make
such morphisms of the types (a)–(d) as homotopy equivalences.

0.3. Thus we decided to introduce new topologies and new weak equivalences.
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(1) The piercing topology on the category of fs log schemes is the Grothendieck topology
generated by the morphism

SpecZ
∐

AN → A1

where the morphisms SpecZ → A1 and AN → A1 used above are the 0-section and
the morphism removing the log structure respectively.

(2) The winding topology on the category of fs log schemes is the Grothendieck topology
generated by the morphisms

Aθ : AQ → AP

where θ : P → Q is a Kummer homomorphism of fs monoids.

(3) The pw-topology on the category of fs log schemes is the minimal Grothendieck topol-
ogy generated by strict étale, piercing, and winding covers.

We choose these for technical reasons. The new weak equivalences are log-weak equivalences,
and see (1.7.2) for the description.

0.4. Our construction of the triangulated category of motives over fs log schemes using the
above notions is roughly as follows. Let S be a fs log scheme, and let ft/S denote the
category of fs log schemes of finite type over S. The starting category is

DA1(Shpw(ft/S,Λ))

(see [CD12, 5.3.22, 5.1.4] for the definitions). We invert all the log-weak equivalences in
this category. Then we consider the localizing subcategory of this generated by twists and
motives of the form MS(X) for exact log smooth morphisms X → S. The resulting category
is denoted by

Dlog,pw(S,Λ).

We do not attempt to write this as DM(S,Λ) because it is not clear whether they are
equivalent or not when S is a usual scheme.

Six operations

0.5. Our next goal is to develop the Grothendieck six operations formalism. Let T be a
triangulated, fibered over the category of fs log schemes. The formalism should contain the
following information.

(1) There exists 3 pairs of adjoint functors as follows:

f ∗ : T (S) � T (X) : f∗, f : X → S any morphism,

f! : T (X) � T (S) : f !, f : X → S any separated morphism of finite type,

(⊗, Hom), symmetric closed monoidal structure on T (X).

(2) There exists a structure of a covariant (resp. contravariant) 2-functors on f 7→ f∗,
f 7→ f! (resp. f 7→ f ∗, f 7→ f !).
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(3) There exists a natural transformation

αf : f! → f∗

which is an isomorphism when f is proper. Moreover, α is a morphism of 2-functors.

(4) For any separated morphism of finite type f : X → S, there exist natural transfor-
mations

f!K ⊗S L
∼−→ f!(K ⊗X f ∗L),

HomS(f!K,L)
∼−→ f∗HomX(K, f !L),

f !HomS(L,M)
∼−→ HomX(f ∗L, f !M).

(5) Localization property. For any strict closed immersion i : Z → S with complementary
open immersion j, there exists a distinguished triangle of natural transformations as
follows:

j!j
! ad′−→ id

ad−→ i∗i
∗ ∂i−→ j!j

![1]

where ad′ (resp. ad) denotes the counit (resp. unit) of the relevant adjunction.

(6) Base change. Consider a Cartesian diagram

X ′ X

S ′ S

g′

f ′ f

g

of fs log schemes. Assume that one of the following conditions is satisfied: f is strict,
f is exact log smooth, g is strict, or g is exact log smooth. Then there exists a natural
isomorphism

g∗f! −→ f ′! g
′∗.

(7) Lefschetz duality. Let f : X → S be an exact log smooth morphism of fs log schemes
of relative dimension d, and let j : Xver/f → X denote its verticalization of X via f .
Then there exist natural isomorphisms

j∗j
∗f !(−d)[−2d]

∼−→ f ∗,

f ! ∼−→ j]j
∗f ∗(d)[2d].

Here, the formulations (1)–(5) are extracted from [CD12, Introduction A.5.1]. In (2.9.1),
borrowing a terminology from [CD12, 2.4.45], we introduce the notion of log motivic trian-
gulated category. The following is our first main theorem.

Theorem 0.6 (2.9.3 in the text). A log motivic triangulated category satisfies the properties
(1)–(6) in (0.5), the homotopy properties (Htp–5), (Htp–6), and (Htp–7), and the purity.

0.7. We do not prove (7) in (0.5) for log motivic triangulated categories. In [Nak97, 5.1],
the proper base change theorem is proved in the context of the derived category of Kummer
log étale sheaves with a more general condition than that of our formalism (6), but we do
not know that such a generalization is possible to our situation.
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Verification of the axioms

0.8. Our second main theorem is as follows.

Theorem 0.9 (2.9.4 in the text). Assume that Λ is a Q-algebra. Then the category
Dlog,pw(−,Λ) is a log motivic triangulated category..

0.10. With (0.6), we see that Dlog,pw(−,Λ) satisfies the properties (1)–(6) in (0.5), the
homotopy properties (Htp–5), (Htp–6), and (Htp–7), and the purity.

Poincaré duality

0.11. The following is a weaker version of (7) in (0.5).

(7)’ Poincaré duality. Let f : X → S be a vertical exact log smooth morphism of fs log
schemes of relative dimension d. Then there exist a natural isomorphism

f !(−d)[−2d]
∼−→ f ∗.

One of the main obstacles is not only to prove that it is an isomorphism but also to construct
it. Since the construction exists locally, to circumvent this obstacle, we extend log motivic
triangulated categories to diagrams of fs log schemes. Here, a diagram of fs log schemes
means a functor from a small category to the category of fs log schemes. For this, we adopt
Ayoub’s algebraic derivator in [Ayo07]. Our third main theorem is as follows.

Theorem 0.12 (10.7.2 in the text). A log motivic triangulated category satisfies (7)’ in
(0.11) if

(i) it can be extended to diagrams of schemes,

(ii) it satisfies the axioms of (9.1.2) and strict étale descent.

0.13. By (9.5.3), Dlog,pw(−,Λ) can be extended to diagrams of fs log schemes, and it satisfies
(9.1.2) and strict étale descent. Thus it satisfies (7)’ in (0.11).

Organization

0.14. Construction part. In Chapter 1, we first review the notion of premotivic triangulated
categories. We develop an equivariant version of cd-structures, and we discuss descent and
compactness using this. After dicussing localizing subcategories and Bousfield localizations
for premotivic triangulated categories, we construct the category Dlog,pw(S,Λ) as explained
in (0.4).

0.15. Six operations part. In Chapter 2, we review properties of morphisms in [Ayo07] and
[CD12]. Many properties of morphisms in them are trivially generalized to properties for

viii



strict morphisms. We end this chapter by introducing the notion of log motivic triangulated
categories.

In Chapter 3, we discuss results on log schemes and motives that will be needed in the
later chapters.

In Chapter 4, we construct purity transformations. Let f : X → S be a vertical exact
log smooth morphism of fs log schemes of relative dimension d. Unlike the case of usual
schemes, the diagonal morphism

X → X ×S X
of underlying schemes is not a regular embedding in general. Hence we cannot apply the
theorem of Morel and Voevodsky [CD12, 2.4.35]. To resolve this obstacle, we assume that
the diagonal morphism X → X ×S X has a compactified version of an exactification

X
c→ E → X ×S X

in some sense. Then c becomes a strict regular embedding, so when f is a proper exact log
smooth morphism, we can apply [loc. cit] to construct the purity transformation

f] −→ f∗(d)[2d].

We discuss this construction even if the exactification does not exist in Chapter 10.
In Chapter 5, we introduce the notions of the semi-universal and universal support prop-

erties, which are generalizations of the support property for non proper morphisms. Then we
prove that Kummer log smooth morphisms satisfy the semi-universal support property. We
next prove that morphisms satisfying the semi-universal support property enjoy some good
properties. Then we prove the semi-universal support property for Aθ : AN2 → AN where
θ : N→ N⊕N denotes the diagonal morphism and the projection AN × ptN → ptN. We end
this chapter by proving the support property under the additional axiom (ii) of (2.9.1).

In Chapter 6, we develop various homotopy properties. In particular, the proof of the
assertion that for morphisms of types (c) and (d) in (0.2), the morphisms

MS(Y )→MS(X)

in Dlog,pw(S,Λ) are log-weak equivalences is given.

0.16. Verification of the axioms part. In Chapter 7, we prove the localization property for
various premotivic triangulated categories in the order of structural complexity. In the course
of proof, we introduce the dimensional density structure, which is applied to showing that
the union of dividing and Zariski cd-structure is reducing with respect to the dimensional
density structure. We also introduce log′′′-weak equivalences for future usage.

In Chapter 8, consider the projection g : S × ptN → S where S is a fs log scheme with a
fs chart N. The main purpose of the first two sections is to construct the functor

g] : Dlog′′′,pw(eSm/(Y × ptN),Λ)→ Dlog′′′,pw(eSm/S,Λ),

which is the left adjoint of g∗. To show this, we show that various morphisms are isomor-
phisms or log′′′-weak equivalences. This enable us to show that g∗ is conservative, and then
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we reduce the axiom (ii) of (2.9.1) to (5.5.5). We also discuss (Htp–1), (Htp–2), (Htp–3),
and (Htp–4) for Dlog,pw(−,Λ). This completes the proof that Dlog,pw(−,Λ) is a log motivic
triangulated categories.

0.17. Poincaré duality part. In Chapter 9, we select axioms of algebraic derivators to define
the notion of premotivic triangulated prederivators. We prove several consequences of the
axioms. Then as in Chapter 1, we discuss localizing subcategories and Bousfield localizations.
We end this chapter by showing that Dlog,pw(−,Λ) can be extended to eSm-premotivic
triangulated prederivators.

In Chapter 10, we introduce the notion of compactified exactifications. Applying these to
various transformations defined in Chapter 4, we construct the Poincaré duality for vertical
exact log smooth separated morphism f : X → S with a fs chart having some conditions, and
we show the purity. Then we collect the local constructions of purity transformations using
the notion of premotivic triangulated prederivators, and we discuss its canonical version.

Terminology and conventions

0.18. General terminology and conventions.

(1) Let Λ be a ring throughout this thesis. We often assume that Λ is a Q-algebra.

(2) When S is an object of a full subcategory S of the category of fs log schemes, we say
that S is an S -scheme.

(3) When f is a morphism in a class P of morphisms of a category, we say that f is a
P-morphism.

(4) If we have an adjunction α : C � D : β of categories, then the unit id → βα is
denoted by ad, and the counit αβ → id is denoted by ad′.

(5) We mainly deal with fs log schemes. The fiber products of fs log schemes and fiber
coproducts of fs monoids are computed in the category of fs log schemes and fs monoids
respectively unless otherwise stated.

(6) An abbreviation of the strict étale topology is sét.

0.19. Terminology and conventions for monoids.

(1) For a monoid P , we denote by SpecP the set of prime ideals of P . Note that K 7→
(P −K) for ideals K of P gives one-to-one correspondence between SpecP and the
set of faces of P .

(2) A homomorphism θ : P → Q of monoids is said to be strict if θ : P → Q is an
isomorphism.

(3) A homomorphism θ : P → Q of monoids is said to be locally exact if for any face G
of Q, the induced homomorphism Pθ−1(G) → QG is exact.
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(4) Let θ : P → Q be a homomorphism of monoids. A face G of Q is said to be θ-critical
if θ−1(G) = θ−1(Q∗). Such a face G is said to be maximal θ-critical if G is maximal
among θ-critical faces.

(5) A homomorphism θ : P → Q of monoids is said to be vertical if the cokernel of θ
computed in the category of integral monoids is a group. Equivalently, θ is vertical if
θ(P ) is not contained in any proper face of Q.

0.20. Terminology and conventions for log schemes.

(1) For a monoid P with an ideal K, we denote by A(P,K) the closed subscheme of AP

whose underlying scheme is SpecZ[P ]/Z[K].

(2) For a sharp monoid P , we denote by ptP the log scheme A(P,P+).

(3) For a log scheme S, we denote by S the underlying scheme of S, and we denote by
MS the étale sheaf of monoids on S given by S.

(4) For a morphism f : X → S of log schemes, f denotes the morphism X → S of
underlying schemes.

(5) For a morphism f : X → S of fs log schemes, we say that f is a monomorphism if it is a
monomorphism in the category of fs log schemes. Equivalently, f is a monomorphism
if and only if the diagonal morphism X → X ×S X is an isomorphism.

(6) For a morphism f : X → S of fine log schemes and a point x ∈ X, we say that f is
vertical at x if the induced homomorphism

MS,f(x) →MX,x

is vertical. Then the set

Xver/f := {x ∈ X : f is vertical at x}

is an open subset of X, and we regard it as an open subscheme of X. The induced
morphism Xver/f → S is said to be the verticalization of f , and the induced morphism
Xver/f → X is said to be the verticalization of X via f .

0.21. Terminology and conventions for monoschemes.

(1) For a monoid P , we denote by specP the monoscheme associated to P defined in
[Ogu14, II.1.2.1].

(2) For a monoscheme M (see [Ogu14, II.1.2.3] for the definition of monoschemes), we
denote by AM the log scheme associated to M defined in [Ogu14, Section III.1.2].
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Chapter 1

Construction

1.1 Premotivic categories

1.1.1. Through this section, we fix a category S with fiber products and a class of morphisms
P of S containing all isomorphisms and stable by compositions and pullbacks.

1.1.2. In this section, we will review P-premotivic triangulated categories and exchange
structures formulated in [CD12, Section 1]. First recall from [CD13, A.1] the definition of
P-primotivic triangulated categories as follows.

Definition 1.1.3. A P-premotivic triangulated category T over S is a fibered category
over S satisfying the following properties:

(PM–1) For any object S in S , T (S) is a symmetric closed monoidal triangulated category.

(PM–2) For any morphism f : X → S in S , the functor f ∗ is monoidal and triangulated, and
admits a right adjoint denoted by f∗.

(PM–3) For any P-morphism f : X → S, the functor f ∗ admits a left adjoint denoted by f].

(P-BC) P-base change: For any Cartesian square

X ′ X

S ′ S

f ′

g′ f

g

in S with f ∈P, the exchange transformation defined by

Ex : f ′]g
′∗ ad−→ f ′]g

′∗f ∗f]
∼−→ f ′]f

′∗g∗f]
ad′−→ g∗f]

is an isomorphism.

(P-PF) P-projection formula: For any P-morphism f : X → S, and any objects K in T (X)
and L in T (S), the exchange transformation defined by

Ex : f](K ⊗X f ∗L)
ad−→ f](f

∗f]K ⊗X f ∗L)
∼−→ f]f

∗(f]K ⊗S L)
ad′−→ f]K ⊗S L

1



is an isomorphism.

We denote by HomS the internal Hom in T (S).

Remark 1.1.4. Note that the axiom (PM–2) implies

(1) for any morphism f : X → S in S and objects K and L of T (S), we have the natural
transformation

f ∗(K)⊗X f ∗(L)
∼−→ f ∗(K ⊗S L) (1.1.4.1)

with the coherence conditions given in [Ayo07, 2.1.85, 2.1.86].

(2) for any morphism f : X → S in S , we have the natural transformation

f ∗(1S)
∼−→ 1X

with the coherence conditions given in [Ayo07, 2.1.85].

Definition 1.1.5. Let T be a P-premotivic triangulated category.

(1) Let f : X → S be a P-morphism in S . Then we put MS(X) = f]1X in T (S). It is
called the motive over S represented by X.

(2) A cartesian section of T is the data of an object AS of T (S) for each object S of S
and of isomorphisms

f ∗(AS)
∼−→ AX

for each morphism f : X → S in S , subject to following coherence conditions:

(i) the morphism id∗(AS)∗
∼−→ AS is the identity morphism,

(ii) if g : Y → X is another morphisms in S , then the diagram

g∗f ∗(AS) g∗AX AY

(gf)∗(AS) AY

∼

∼

∼

id

∼

in T (Y ) commutes.

The tensor product of two cartesian sections is defined termwise.

(3) A set of twists τ for T is a set of Cartesian sections of T stable by tensor product.
For short, we say also that T is τ -twisted .

1.1.6. Let i be an object of τ . Then it defines a section iS for each object S of S , and for
an object K of T (S), we simply put

K{i} = K ⊗S iS.

Then when i, j ∈ τ , we have
K{i+ j} = (K{i}){j}.
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Note also that by (1.1.4(1)), for a morphism f : X → S in S , we have the natural isomor-
phism

f ∗(K{i}) ∼−→ (f ∗K){i}.

1.1.7. Let T be a P-premotivic triangulated category. Consider a commutative diagram

X ′ X

S ′ S

f ′

g′ f

g

in S . We associates several exchange transformations as follows.

(1) We obtain the exchange transformation

f ∗g∗
Ex−→ g′∗f

′∗

by the adjunction of the exchange transformation

f ′]g
′∗ Ex−→ g∗f].

Note that it is an isomorphism when f is a P-morphism by (P-BC).

(2) Assume that f is a P-morphism. Then we obtain the exchange transformation

Ex : f]g∗
ad−→ f]g∗f

′∗f ′]
Ex−1

−→ f]f
∗g′∗f

′
]

ad′−→ g′∗f
′
].

(3) Assume that g∗ and g′∗ have right adjoints, denoted by g! and g′! respectively. If the
exchange transformation

f ∗g∗
Ex−→ g′∗f

′∗

is an isomorphism, then we obtain the exchange transformation

Ex : f ′∗g′!
ad−→ g!g∗f

′∗g′!
Ex−1

−→ g!f ∗g′∗g
′! ad′−→ g!f ∗.

(4) For objects K of T (X) and L of T (S), we obtain the exchange transformation

Ex : f∗K ⊗S L
ad−→ f∗f

∗(f∗K ⊗S L)
∼−→ f∗(f

∗f∗K ⊗X f ∗L)
ad′−→ f∗(K ⊗X f ∗L).

(5) For objects K of T (S) and L of T (X), we obtain the natural isomorphism

Ex : HomS(K, f∗L) −→ f∗HomT (f ∗K,L)

by the adjunction of (1.1.4.1).
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(6) Assume that f is a P-morphism. For objects K and L of T (S) and K ′ of T (X), we
obtain the exchange transformations

f ∗HomS(K,L)
Ex−→ HomX(f ∗K, f ∗L),

HomS(f]K
′, L)

Ex−→ f∗HomX(K ′, f ∗L)

by the adjunction of the P-projection formula.

(7) Assume that f is a P-morphism and that the diagram is Cartesian. Then we obtain
the exchange transformation

Ex : MS′(X
′) = f ′]1X′

∼−→ f ′]g
′∗1X

Ex−→ g∗f]1X = g∗MS(X).

Note that it is an isomorphism.

(8) Assume that f and g are P-morphisms and the the diagram is Cartesian. Then we
obtain the exchange transformation

Ex : MS(X ×S S ′) = f]g
′
]f
′∗1′S

Ex−→ f]f
∗g]1S′

∼−→ f](1X ⊗X f ∗g]1S′)
Ex−→ f]1X ⊗S g]1S′ = MS(X)⊗MS(S ′)

.

Note that it is an isomorphism.

(9) Assume that T is τ -twisted and that f is a P-morphism. For i ∈ τ and an object
K of T (X), we obtain the exchange transformation

Ex : f](K{i})
∼−→ f](K ⊗X f ∗1S{i})

Ex−→ (f]K){i}.

Note that it is an isomorphism.

(10) Assume that T is τ -twisted. For i ∈ τ and an object K of T (X), we obtain the
exchange transformation

Ex : (f∗K){i} ∼−→ f∗K ⊗S 1S{i}
Ex−→ f∗(K ⊗X f ∗1S{i}) = f∗(K{i}).

If twists are ⊗-invertible, then it is an isomorphism since its right adjoint is the natural
isomorphism

f ∗(L{−i}) ∼−→ (f ∗L){−i}

where L is an object of T (S).

1.2 Equivariant cd-structures

1.2.1. Through this section, we fix a category S . We also assume that Λ is a Q-algebra.
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Definition 1.2.2. Let S be an S -scheme, let P be a class of morphisms of S containing
all isomorphisms and stable by compositions and pullbacks, and let t be a topology on S
such that every t-covering consists of P-morphisms.

(1) We denote by
PSh(P/S,Λ)

the category of presheaves of Λ-modules on the category of P/S-schemes.

(2) We denote by
Sht(P/S,Λ)

the category of t-sheaves of Λ-modules on the category of P/S-schemes.

Definition 1.2.3. (1) Let A be a set with a left action of a group G. Then we denote
by AG the subset of A fixed by G.

(2) Let F be a sheaf on a site C with a left action of a group G. Then we denote by F/G
the colimit of the diagram induced by the G-action

F ×G⇒ F

in the category of sheaves on C. Note that for any sheaf F ′ on C, we have

HomC(F/G, F
′) ∼= (HomC(F, F

′))G.

Here, the right action of G on HomC(F, F
′) comes from the left action of G on F .

(3) As in [CD12, 3.3.21], for any object K of C(PSh(P/S,Λ)) or C(Sht(P/S,Λ)) with a
left G-action where t is a topology on S , we denote by KG the complex im pK where
pK : K → K denotes the morphism defined by the formula

p(x) =
1

#G

∑
g∈G

g · x.

Then we get the morphisms

K
qK→ KG iK→ K

whose composition is pK .

Definition 1.2.4. Recall from [Ayo07, Section 4.5.3] that the t∅-topology on S is the
minimal Grothendieck topology such that the empty sieve is a covering sieve for the initial
object ∅. Note that a presheaf F on S is a t∅-sheaf if and only if F (∅) = ∗.
Definition 1.2.5. We will introduce an equivariant version of cd-structures in [Voe10a] as
follows. An equivariant cd-structure (or ecd-structure for abbreviation) P on S is a collection
of pairs (G,C) where G is a group and C is a commutative diagram

X ′ X

S ′ S

g′

f ′ f

g

of S -schemes with G-actions on X over S and on X ′ over S ′ such that
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(i) g′ is G-equivariant over g,

(ii) if G ∼= G′ and C ∼= C ′, then (G,C) ∈ P if and only if (G′, C ′) ∈ P .

For a pair (G,C) ∈ P , C is called a P -distinguished square of group G. The tP -topology is
the Grothendieck topology generated by t∅-topology and morphisms of the form

X
∐

S ′ → S (1.2.5.1)

for (G,C) ∈ P . If G is trivial for any element of P , then P is a cd-structure defined in
[Voe10a, 2.1].

1.2.6. In [Voe10a] and [Voe10b], analogous results of the Brown-Gersten theorem ([BG73])
for Nisnevich topology and cdh-topology are studied by introducing cd-structures. For in-
stance, if we take P as the collection given in (1.2.8(4)), then we recover the Nisnevich
cd-structure. In [CD12, §3.3], it is applied to study descents in triangulated categories of
motives over usual schemes.

However, there is a topology like the étale topology that cannot be obtained by any
cd-strucutres. In [loc. cit], descent theory for the étale topology (and more generally the
h-topology) is discussed with equivarient versions of distinguished squares but without cd-
structures. The reason why we introduce ecd-structures here is to study descent theory for
such a topology more systematically.

1.2.7. From now on, in this section, fix a fs log scheme S. Then we assume that S is a full
subcategory of the category of noetherian fs log schemes over S such that

(i) S is closed under finite sums and pullbacks via morphisms of finite type,

(ii) if S belongs to S and X → S is strict quasi-projective, then X belongs to S ,

(iii) if S belongs to S , then S × AM belongs to S for every fs monoscheme M ,

(iv) If S belongs to S , then S is belongs to S .

Definition 1.2.8. Consider a Cartesian diagram

C =
X ′ X

S ′ S

g′

f ′ f

g

of S -schemes and a group G acting on X over S. We have several ecd-structures as follows.

(1) Recall from [Voe10b] that C is called an additive distinguished square (with trivial
G) if X ′ = ∅ and S = X q S ′.

(2) Recall from [Voe10b] that C is called a plain lower distinguished square (with trivial
G) if f and g are strict closed immersions and S = f(X) ∪ g(S ′).

(3) Recall from [Voe10b] that C is called a Zariski distinguished square (with trivial G)
if f and g are open immersions and S = f(X) ∪ g(S ′),
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(4) Recall from [Voe10b] that C is called a strict Nisnevich distinguished square (with
trivial G) if f is strict étale, g is an open immersion, and the morphism f−1(S −
g(S ′))→ S− g(S ′) is an isomorphism. Here, S− g(S ′) is considered with the reduced
scheme structure.

(5) C is called a Galois distinguished square of group G if X ′ = S ′ = ∅, f is Galois, and
G is the Galois group of f .

(6) C is called a dividing distinguished square (with trivial G) if X ′ = S ′ = ∅ and f is a
surjective proper log étale monomorphism.

(7) C is called a piercing distinguished square (with trivial G) if C is a pullback of the
Cartesian diagram

ptN AN

SpecZ A1

(1.2.8.1)

of S -schemes where the lower horizontal arrow is the 0-section and the right vertical
arrow is the morphism removing the log structure.

(8) C is called a quasi-piercing distinguished square (with trivial G) if C is a plain lower
distinguished or C has a decomposition

X ′ X

Y ′ Y

S ′ S

such that the upper square is a plain lower distinguished square and that the lower
square is a piercing distinguished square or a pullback of the Cartesian diagram

ptN AN

ptN2 AN ×A1 AN

(1.2.8.2)

where the lower horizontal arrow is the 0-section and the right vertical arrow is the
diagonal morphism of AN → A1 removing the log structure.

(9) For n ∈ N+, let µn be an n-th root of unity. Then C is called a winding distinguished
square of group G if X ′ = S ′ = ∅, f is a pullback of the composition

AQ × SpecZ[µn]→ AQ
Aθ→ AP
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where the first arrow is the projection, n ∈ N+, and θ : P → Q is a Kummer
homomorphism of fs monoids such that the Galois group of AQ × SpecQ[µn] over
AP × SpecQ exists, and G is the Galois group.

By (1.2.5), we obtain the additive, plain lower, Zariski, strict Nisnevich, dividing, piercing,
quasi-piercing, Galois, and winding ecd-structures and topologies.

Definition 1.2.9. Let P be an ecd-structure on S . As in [Voe10a], we introduce the notions
of complete, regular, and bounded ecd-structures as follows.

(1) A P -simple covering is a covering that can be obtained by iterating coverings of the
form (1.2.5.1).

(2) P is called complete if any covering sieve of an object X 6= ∅ of S contains a sieve
generated by a P -simple covering.

(3) P is called regular if for any (G,C) ∈ P , C is Cartesian, S ′ → S is a monomorphism,
and the induced morphism of tP -sheaves

(ρ(X ′)×ρ(S′) (ρ(X ′)/G))
∐

ρ(X)→ ρ(X)×ρ(S) (ρ(X)/G)

is surjective where ρ(S) denotes the representable tP -sheaf of sets of S.

(4) Recall from [Voe10a, 2.20] that a density structure on S is a function which assign
to any object S of S a sequence D0(S), D1(S) . . . of family of morphisms to S with
the following conditions:

(i) (∅ → S) ∈ D0(S) for all S,

(ii) isomorphisms belong to Di for all i,

(iii) Di+1 ⊂ Di,

(iv) if g : Y → X is in Di(X) and f : X → S is in Di(S), then gf : Y → S is in
Di(S).

(5) Let D∗(−) be a density structure. Then (G,C) ∈ P is called reducing (with respect
to D∗) if for any i ≥ 0, and any X ′0 ∈ Di(X

′), S ′0 ∈ Di+1(S ′), X0 ∈ Di+1(X), there
exist X1 ∈ Di+1(X), a distinguished square of G

C1 =

X ′1 X1

S ′1 S1

g′

f ′ f

g

of S -schemes over S, and a G-equivariant morphism C1 → C which coincides with
the morphism S1 → S on the right corner and whose other respective components
factor through X ′0, S ′0, X0.

(6) A G-equivariant morphism (G′, C ′) → (G,C) of P -distinguished squares is called a
refinement if the morphism is the identity on G and the identity on the right corner.
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(7) Let D∗(−) be a density structure. Then P is called bounded by D∗(−) if every element
of P is reducing with respect to D∗(−) and that for any object X of S , there exists
n such that any element of Dn(X) is an isomorphism.

Definition 1.2.10. For a noetherian scheme S, recall from [Voe10b] the standard density
structure Dd(S) as follows. An open immersion U → S is in Dd(S) if for any irreducible
component Zi of S − U , there is an irreducible component Si of S containing Zi such that
dimSi ≥ d+ dimZi.

Then for an S -scheme X, we denote by Dd(X) the family Dd(X). It is again called the
standard density structure.

1.2.11. The notions of complete, regular, and bounded ecd-structures will be used in (1.3.6).
Hence let us study these notions for the ecd-structures defined in (1.2.8).

Proposition 1.2.12. The additive, plain lower, Zariski, and strict Nisnevich ecd-structures
are complete, regular, and bounded by the standard density structure.

Proof. It follows from [Voe10b, 2.2].

Proposition 1.2.13. The piercing, quasi-piercing, Galois, and winding ecd-structures are
complete.

Proof. It follows from [Voe10b, 2.5].

Proposition 1.2.14. The quasi-piercing cd-structure is regular.

Proof. Consider a commutative diagram

C =
X ′ X

S ′ S

g′

f ′ f

g

of S -schemes. If it is a plain lower distinguished square, we are done by (1.2.12). Hence we
may assume that C has a decomposition

X ′ X

Y ′ Y

S ′ S

p′

g′

p

g′′

q′ q

g

such that the upper square is a plain lower distinguished square and the lower square is a
pullback of (1.2.8.1) or (1.2.8.2). We want to show that the induced Cartesian diagram

X ′ X

X ′ ×S′ X ′ X ×S X

d

g′×gg′
(1.2.14.1)
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of S -schemes where d denotes the diagonal morphism is again a quasi-piercing distinguished
square.

Since p is a strict closed immersion, we have

X ∼= (X ×S X)×Y×SY,d′ Y,

X ′ ×S′ X ′ ∼= (Y ′ ×S′ Y ′)×Y×SY (X ×S X).

where d′ : Y → Y ×S Y denotes the diagonal morphism. Thus (1.2.14.1) is a pullback of the
Cartesian diagram

Y ′ Y

Y ′ ×′S Y ′ Y ×S Y
d′

g′′×gg′′
(1.2.14.2)

of S -schemes via p× p : X ×S X → Y ×S Y . Then the remaining is to show that (1.2.14.2)
is a quasi-piercing distinguished square. By definition, (1.2.14.2) is a pullback of (1.2.8.2) or
the Cartesian diagram

ptN AN

ptN AN

id id (1.2.14.3)

where the horizontal arrows are the 0-section. The square (1.2.8.2) is a quasi-piercing distin-
guished square by definition, and the square (1.2.14.3) is a plain lower distinguished, which
is a quasi-piercing distinguished square. Thus (1.2.14.2) is a quasi-piercing distinguished
square.

Proposition 1.2.15. The quasi-piercing cd-structures is bounded by the standard density
structure.

Proof. Consider a quasi-piercing distinguished square

C =
X ′ X

S ′ S

g′

f ′ f

g

of S -schemes. As in the proof of [Voe10b, 2.11], if we replace X by the scheme-theoretic
closure of the open subscheme f−1(S ′ − S), we get another quasi-piercing distinguished
square which is a refinement of the original one. Then the same proof of [Voe10b, 2.12] can
be applied to our situation.

Proposition 1.2.16. The union of the additive and Galois ecd-structures is regular.
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Proof. The additive structure is regular by [Voe10b, 2.2]. Thus as in the proof of [CD12,
3.3.19], the question is equivalent to the assertion that for any additive and Galois sheaf of
sets F and any Galois cover f : X → S, the function

F (S)→ F (X)G

induced by f ∗ : F (X)→ F (Y ) is a bijection. This follows from the fact that the cokernel of
the induced functions

F (X) ⇒ F (X ×S X) = F (X ×G) ∼= F (X)×G

is exactly F (X)G.

Proposition 1.2.17. The union of the plain lower and winding ecd-structures is regular.

Proof. Let f : X → S be a winding cover, which is a pullback of the composition

AQ × SpecZ[µn]→ AQ
Aθ→ AP

where the first arrow is the projection, n ∈ N+, and θ : P → Q is a Kummer homomorphism
of fs monoids such that the Galois group G of AQ× SpecQ[µn] over AP × SpecQ exists. We
denote by

ϕ(g) : Q⊕ Z/(n)→ ϕ : Q⊕ Z/(n)

the homomorphism induced by g. We have

X ×S X =
⋃
g∈G

Xg

where Xg denotes the graph of the automorphism X → X induced by g ∈ G.
We will show that Xg is a closed subscheme of X ×S X. We put Q′ = Q ⊕ Z/(n). It

suffices to show that for any g ∈ G, the homomorphism

Q′ ⊕P Q′ → Q′, (a, b) 7→ a+ ϕ(g)(b)

is strict. Composing with the isomorphism

Q′ ⊕P Q′ → Q′ ⊕Q′, (a, b) 7→ (a, ϕ(g−1)(b)),

it suffices to show that the summation homomorphism

Q′ ⊕P Q′ → Q′

is strict. It follows from (1.2.18) below.
Then as in the proof of [CD12, 3.3.19], the question is equivalent to the assertion that for

any plain lower and winding sheaf of sets F and any winding cover f : X → S, the function

F (S)→ F (X)G
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induced by f ∗ : F (X)→ F (Y ) is a bijection. The function

F (X ×S X)→
∐
g∈G

F (Xg)

is injective since F is a plain lower sheaf, so the conclusion follows from the fact that the
cokernel of the compositions

F (X) ⇒ F (X ×S X)→
∐
g∈G

F (Xg)

is exactly F (X)G.

Lemma 1.2.18. Let θ : P → Q be a Kummer homomorphism of fs monoids. Then the
summation homomorphism η : Q⊕P Q→ Q is strict.

Proof. The homomorphism η : Q⊕P Q ⊕ Q is surjective, so the remaining is to show that
d is injective. Choose n ∈ N+ such that nq ⊂ θ(P ). For any q ∈ Q, n(q,−q) = (nq, 0) +
(0,−nq) = 0 because nq ∈ θ(P ). Thus (q,−q) ∈ (Q⊕P Q)∗ since Q⊕P Q is saturated. Let
Q′ denote the submonoid of Q⊕P Q generated by elements of the form (q,−q) for q ∈ Qgp.
Then Q′ ⊂ (Q⊕P Q)∗, and Q/Q′ ∼= Q. The injectivity follows from this.

Proposition 1.2.19. The Galois and winding ecd-structures are bounded by the standard
density structure.

Proof. If follows from [Voe10b, 2.9].

Theorem 1.2.20. Any combination of unions of the additive, plain lower, Zariski, strict
Nisnevich, quasi-piercing, additive+Galois, and plain lower+winding ecd-structures is com-
plete, regular, and bounded by the standard density structure.

Proof. It follows from (1.2.12), (1.2.13), (1.2.14), (1.2.15), (1.2.16), (1.2.17), (1.2.19), and
[Voe10a, 2.6, 2.12, 2.24].

Definition 1.2.21. The Grothendieck topology on S generated by the strict étale, piercing,
and winding topologies is called the pw-topology , and the Grothendieck topology on S
generated by the strict étale, quasi-piercing, and winding topologies is called qw-topology .

1.2.22. By [CD12, 3.3.26], the strict étale topology is the minimal Grothendieck topology
generated by the strict Nisnevich and Galois topologies, and the additive topology is coarser
than the strict étale topology. Thus the strict étale topology and qw-topology are unions of
topologies in (1.2.20).
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1.3 Descents

1.3.1. Through this section, we fix a full subcategory S of the category of noetherian fs log
schemes satisfying the conditions of (1.2.7). We also assume that Λ is a Q-algebra.

Definition 1.3.2. Let S be an S -scheme, let P be a class of morphisms of S containing
all isomorphisms and stable by compositions and pullbacks, and let t be a topology on S
such that every t-covering consists of P-morphisms.

(1) eSm/S denotes the category of S -schemes exact log smooth over S. The class of
exact log smooth morphisms in S is denoted by eSm.

(2) lSm/S denotes the category of S -schemes log smooth over S. The class of exact log
smooth morphisms in S is denoted by lSm.

(3) ft/S denotes the category of S -schemes of finite type over S. The class of exact log
smooth morphisms in S is denoted by ft.

(4) For any presheaf F on P/S, we denote by ΛS(F ) the Λ-free presheaf

(X ∈ ft/S) 7→ ΛF (S).

Then we denote by Λt
S(F ) its associated t-sheaf.

(5) For any P-morphism X → S, we denote by Λt
S(X) the free sheaf in Sht(P/S,Λ)

represented by X → S.

(6) We denote by C(Sht(P/S,Λ)) the category of unbounded complexes in Sht(P/S,Λ).
An object C of this category is called a complex in Sht(P/S,Λ).

(7) We denote by K(Sht(P/S,Λ)) the category of unbounded complexes in Sht(P/S,Λ)
modulo the chain homotopy equivalences.

(8) If X = (Xi) be a simplicial S -scheme over S, then we denote by Λt
S(X ) the asso-

ciated complex
· · · → Λt

S(Xi)→ · · · → Λt
S(X0)→ 0→ · · · .

(9) Recall from [CD12, 5.1.9] that a complex C in Sht(P/S,Λ) is said to be t-local if for
any P-morphism X → S and any n ∈ Z the induced homomorphism

HomK(Sht(P/S,Λ))(Λ
t
S(X)[n], C)→ HomD(Sht(P/S,Λ))(Λ

t
S(X)[n], C)

(10) Recall from [CD12, 5.1.9] that a complex C in Sht(P/S,Λ) is said to be t-flasque if
for any P-morphism X → S, any t-hypercover X → X, and any n ∈ Z the induced
homomorphism

HomK(Sht(P/S,Λ))(Λ
t
S(X)[n], C)→ HomK(Sht(P/S,Λ))(Λ

t
S(X )[n], C)

is an isomorphism. Note that by [CD12, 5.1.13], C is t-local if and only if C is
t-flasque.
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1.3.3. We refer to [CD12, 3.2.5] for the definition of t-descent . For example, a complex K
in PSh(P/S,Λ) satisfies t-descent if and only if K is t-flasque by definition.

Definition 1.3.4. Let S be an S -scheme, let P be a class of morphisms of S containing
all isomorphisms and stable by compositions and pullbacks, and let P be a ecd-structure on
S /S. We put t = tP for brevity. We denote by BCP the union of the family of bounded
complexes of the form

Λt
S(X ′)G[n]→ Λt

S(X)G[n]⊕ Λt
S(T ′)[n]→ Λt

S(T )[n]

for P -distinguished squares of group G

X ′ X

T ′ T

g′

f ′ f

g

of S -schemes over S and n ∈ Z and the family of bounded complexes of the form

MS(∅)[n]

for n ∈ Z. A complex C in Sht(P/S,Λ) is said to be BCP -local if

HomD(Sht(P/S,Λ))(D,C) = 0

for any object D of BCP .

1.3.5. Many results in [Voe10a] can be trivially generalized to ecd-structures and complexes
of presheaves of Λ-modules. The following theorem is such an example.

Theorem 1.3.6. Let S be an S -scheme, and let K be a presheaf of complexes of Λ-modules
on S /S, and let P be a ecd-structure on S /S. Consider the following conditions.

(i) K(∅) = 0, and for any P -distinguished square of G

X ′ X

T ′ T

of S -schemes over S, the diagram

K(T ) K(T ′)

K(X)G K(X ′)G

is homotopy Cartesian in the derived category of Λ-modules.
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(ii) The image of K in D(PSh(P/S,Λ)) is BCP -local.

(iii) The image of K in D(PSh(P/S,Λ)) is tP -local.

Then we have the implication (i) ⇔ (ii). When P is a complete, regular, and bounded, we
also have the implication (ii)⇔ (iii).

Proof. The equivalence of (i) and (ii) follows from the point 1 of [Voe10a, 3.8] with the
generalization (1.3.5). When P is complete, regular, and bounded, the equivalence of (ii)
and (iii) follows from the points 2 and 3 of [Voe10a, 3.8] with the generalization (1.3.5).

Corollary 1.3.7. Let S be an S -scheme, and let K be an object of D(PSh(P/S,Λ)). If
P is a complete, regular, and bounded ecd-structure on S , then the following conditions are
equivalent.

(i) For any morphism p : T → S of S -schemes, and for any P -distinguished square

X ′ X

T ′ T

f ′

g′

f

g

of S -schemes with a G-action, the commutative diagram

p∗p
∗K p∗g∗g

∗p∗K

(p∗f∗f
∗p∗K)G (p∗h∗h

∗p∗K)G

ad

ad ad

ad

is homotopy Cartesian where h = fg′.

(ii) K satisfies tP -descent.

Proof. By definition, the condition (i) is equivalent to the condition that and for any objects
and E of D(PSh(P/S,Λ)), the presheaf of complexes of Λ-modules

RHom(E,RΓgeom(−, K))

on S /S (see [CD12, 3.2.11.3, 3.2.15] for the definitions) satisfies the condition (i) of (1.3.6).
Then by the implication (i)⇔ (iv) of (loc. cit), it is equivalent to the condition that

RHom(E,RΓgeom(−, K))

satisfies tP -descent over S /S. Finally, it is equivalent to the condition (ii) by [CD12, 3.2.18].

Corollary 1.3.8. Let S be an S -scheme, let K be an object of D(PSh(P/S,Λ)), and
let P be a union of the additive, plain lower, Zariski, strict Nisnevich, quasi-piercing, ad-
ditive+Galois, and plain lower+winding ecd-structures. Then the conclusion of (1.3.7) is
satisfied.

Proof. It follows from (1.3.7) and (1.2.20).

15



1.4 Compactness

1.4.1. Through this section, we fix a category S and a class of morphisms P of S containing
all isomorphisms and stable by compositions and pullbacks.

Definition 1.4.2. Let T be triangulated category which admits small sums. Recall from
[CD12, 1.3.15] the following definitions.

(1) An object X of T is called compact if the functor HomT (X,−) commutes with small
sums.

(2) A class G of objects of T is called generating if the family of functors

HomT (X[n],−)

for X ∈ G and n ∈ Z is conservative.

(3) T is called compactly generated if there exists a generating set G of compact objects
of T .

Definition 1.4.3. Let T be a P-premotivic triangulated category over S .

(1) We say that T is generated by P and τ if for any object S of S , the family of objects
of the form

MS(X){i}

for a P-morphism X → S and i ∈ τ generates T (S).

(2) We say that T is compactly generated by P and τ if T is generated by P and τ and
for any P-morphism X → S and i ∈ τ , MS(X){i} is compact.

(3) We say that T is well generated if T (S) is well generated in the sense of [Nee01,
8.1.7] for any object S of S .

(4) We say that T is well generated by P and τ if T is well generated and generated by
P and τ .

Note that T is compactly generated by P and τ if and only if T is generated by P and τ
and compactly τ -generated in the sense of [CD12, 1.3.16].

1.4.4. Let T be a well generated P-premotivic triangulated category over S . Recall from
[CD12, 1.3.17] that a family of objects G of T generates T if and only if T is the localizing
subcategory of T generated by G.

1.4.5. Assume that S be a full subcategory of the category fs log schemes satisfying the
conditions of (1.2.7). Assume also that Λ is a Q-algebra. Let P be any combination of unions
of the additive, plain lower, Zariski, strict Nisnevich, quasi-piercing, additive+Galois, and
plain lower+winding ecd-structures. Then BCP in (1.3.4) is a bounded generating family for
tP -hypercovering in ShtP (ft,Λ) in the sense of [CD12, 5.1.28]. We will use this in (1.7.5).
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1.5 Localizing subcategories

1.5.1. Through this section, we fix a category S and classes of morphisms P ′ ⊂ P of
S containing all isomorphisms and stable by compositions and pullbacks. We fix also a
τ -twisted P-premotivic triangulated category T well generated by P and τ .

For an object S of S , we denote by FP′/S the family of motives of the form

MS(X){i}

for P ′-morphism X → S and twist i ∈ τ . Then we denote by T (P ′/S) the localizing sub-
category of T (S) generated by FP′/S, and we denote by T (P ′) the collection of T (P ′/S)
for object S of S . The purpose of this section is to show that T (P ′) has a structure of
P ′-premotivic triangulated category.

1.5.2. For a P-morphism X → S, we denote by MP′/S(X) the image of MS(X) in TP′ ,
and we denote by ρ] the inclusion functor

T (P ′)→ T .

Then the set of twists τ for T gives a set of twists for T (P ′). It is denoted by τ again.
Since T is well generated by P and τ by assumption, T (P ′) is well generated by P ′ and
τ . By [Nee01, 8.4.4], ρ] has a right adjoint

ρ∗ : T → T (P ′)

since ρ] respects small sums. For any object S of S , we denote by

ρ],S : T (P ′/S) T (S) : ρ∗S

the specification of ρ] and ρ∗ to S.

1.5.3. Let X and S be objects of S . Consider a diagram

T (P ′/X) T (P ′/S)

T (X) T (S)

ρ],X ρ∗X ρ],S ρ∗S

α

β

such that α is left adjoint to β. Suppose that α maps FP′/S into T (P ′/S) and that α
commutes with twists. Then we define

αP′ : T (P ′/X)→ T (P ′/S),

βP′ : T (P ′/S)→ T (P ′/X)

as αP′ = ρ∗Sαρ],X and βP′ = ρ∗Xβρ],S. We often omit P ′ in αP′ and βP′ for brevity.
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Proposition 1.5.4. Under the notations and hypotheses of (1.5.3),

(1) α commutes with ρ], i.e., ρ],SαP′
∼= αρ]X ,

(2) αP′ is left adjoint to βP′,

Proof. (1) The counit
ρ],Sρ

∗
Sαρ],X −→ αρ],X

is an isomorphism since ρ],S is fully faithful and the essential image of αρ],X is in the essential
image of ρ],S. This proves the statement.

(2) We will show this by constructing the unit and counit. The unit

id
ad−→ βP′αP′

is constructed by

id
ad−→ ρ∗Xρ],X

ad−→ ρ∗Xβαρ],X
ad′−1

−→ ρ∗Xβρ],Sρ
∗
Sαρ],X .

Here, the third arrow is defined and an isomorphism by (1). The counit

αP′βP′
ad′−→ id

is constructed by

ρ∗Sαρ],Xρ
∗
Xβρ],S

ad′−→ ρ∗Sαβρ],S
ad′−→ ρ∗Sρ],S

ad−1

−→ id.

Here, the third arrow is defined and an isomorphism since ρ],S is fully faithful. These two
satisfy the counit-unit equations, so αP′ is left adjoint to βP′ .

Proposition 1.5.5. Consider a commutative diagram

X ′ X

S ′ S

g′

f ′ f

g

of S -schemes. Assume that g∗ and g′∗ commutes with ρ∗ and that the exchange transforma-
tion

g∗f∗
Ex−→ f ′∗g

′∗

is an isomorphism. Then the exchange transformation

g∗P′f∗,P′
Ex−→ f ′∗,P′g

′∗
P′

is also an isomorphism.
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Proof. Since ρ∗ is essentially surjective, it suffices to show that the natural transformation

g∗P′f∗,P′ρ
∗
S′

Ex−→ f ′∗,P′g
′∗
P′ρ

∗
S′

is an isomorphism. By the condition that g∗ and g′∗ commutes with ρ∗, it is equivalent to
the assertion that the natural transformation

ρ∗Xg
∗f∗

Ex−→ ρ∗Xf
′
∗g
′∗

is an isomorphism. This follows from the other condition.

1.5.6. We will define operations (f],P′ for f ∈P ′, f ∗P′ , f∗,P′ , ⊗, and Hom) and prove the
axioms of P ′-premotivic categories for T as follows.

(1) For any object S of S , we put 1P′,S = ρ],S1S. We often omit P ′ in the notation for
brevity.

(2) Construction of f],P′ for f ∈P ′, f ∗P′, and f∗,P′. By (1.5.4), we have adjunctions

f],P : T (P/X) T (P/S) : f ∗P

f ∗P : T (P/X) T (P/S) : f∗,P

where in the first one, we assume that f ∈ P ′. Then by (loc. cit), f],P′ for f ∈ P ′

and f ∗P′ commute with ρ].

(3) Functoriality of f ∗P′. Let f : X → S and g : Y → X be morphisms in S . Then the
natural isomorphism

g∗P′f
∗
P′ −→ (fg)∗P′

is constructed by

ρ∗Sg
∗ρ],Sρ

∗
Sf
∗ρ],S

ad′−→ ρ∗Sg
∗f ∗ρ],S

∼−→ ρ∗S(fg)∗ρ],S.

The usual cocycle condition for f ∗P′ follows from the usual cocycle condition for f ∗.
Thus T is a fibered category over S .

(4) Construction of ⊗. For an object S of S and objects K and L of T (P ′/S), we
denote by K ⊗P′/S L the object

ρ∗S(ρ],SK ⊗S ρ],SL)

in T (P ′/S).

(5) Monoidality of ρ],S. The morphism

ρ],S(K ⊗P′/S L) −→ (ρ],SK)⊗S (ρ],SL)
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is constructed by

ρ],Sρ
∗
S(ρ],SK ⊗S ρ],SL)

ad′−→ (ρ],SK)⊗S (ρ],SL). (1.5.6.1)

We will show that it is an isomorphism. To show this, since T (P ′/S) is well generated
by P and τ , it suffices to show that the morphism

ρ],S(MP′/S(V )⊗P′/S MP′/S(W )) −→ (ρ],SMP′/S(V ))⊗S (ρ],SMP′/S(V ))

is an isomorphism for P ′-morphisms V → S and W → S. It follows from the
commutative diagram

ρ],S(MP′/S(V )⊗P′/S MP′/S(W )) (ρ],SMP′/S(V ))⊗S (ρ],SMP′/S(V ))

MS(V ×S W )

∼

in T (S).

We can similarly construct the isomorphism

ρ],S(1P′/S)
∼−→ 1S.

We will show below that −⊗P′/S − gives a closed symmetric monoidal structure on
T (P ′/S). With this structure, one can check that the coherence conditions given in
[Ayo07, 2.1.79, 2.1.81] are satisfied, i.e., the functor ρ],S is monoidal.

(6) Functoriality of ⊗. The natural transformation

(−⊗P′/S −)⊗P′/S − −→ −⊗P′/S (−⊗P′/S −)

is constructed by the composition

ρ∗S(ρ],Sρ
∗
S(ρ],SK ⊗S ρ],SL)⊗S ρ],SN)

ad′−→ρ∗S((ρ],SK ⊗S ρ],SL)⊗S ρ],SN)
∼−→ρ∗S(ρ],SK ⊗S (ρ],SL⊗S ρ],SN))

ad′−1

−→ρ∗S(ρ],SK ⊗S ρ],Sρ∗S(ρ],SK ⊗S ρ],SN))

for objects K, L, and N of T (P ′/S). Here, the first and third arrows are defined and
isomorphisms since (1.5.6.1) is an isomorphism, so the composition is an isomorphism.
We can construct similarly isomorphisms

K ⊗P′/S 1P′/S −→ K, 1P′/S ⊗P′/S K −→ K

in T (P ′/S). The coherence conditions given in [Ayo07, 2.1.79, 2.1.81] for −⊗P′/S−
follows from the coherence conditions for −⊗S −. Thus −⊗P′/S − gives a symmetric
monoidal structure on T (P ′/S).
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(7) Construction of Hom For an object S of S , and objects K and L of T (S), we
construct the internal Hom

HomP′/S(K,L)

by
ρ∗SHomS(ρ],SK, ρ],SL).

Then −⊗P′/SK is left adjoint to HomP′/S(K,−), so −⊗P′/S− is a closed symmetric
monoidal structure on T (P ′/S).

(8) Monoidality of f ∗P′. Let f : X → S be a morphism in S . For objects K and L of
T (S), the isomorphism

f ∗P′K ⊗P′/S f
∗
P′L

∼−→ f ∗P′(K ⊗P′/S L)

is constructed by the composition

ρ∗S(ρ],Sρ
∗
Sf
∗ρ],SK ⊗S ρ],Sρ∗Sf ∗ρ],SL)

ad−1

−→ ρ∗S(f ∗ρ],SK ⊗S ρ],Sρ∗Sf ∗ρ],SL)

ad−1

−→ ρ∗S(f ∗ρ],SK ⊗S f ∗ρ],SL)
∼−→ ρ∗Sf

∗(ρ],SK ⊗s ρ],SL)

ad−→ ρ∗Sf
∗ρ],Sρ

∗
S(ρ],SK ⊗S ρ],SL)

.

in T (P ′/S). The first and second arrows are defined and isomorphisms since f ∗

commutes with ρ], and the fourth arrow is an isomorphism since (1.5.6.1) is an iso-
morphism.

We can similarly construct the isomorphism

f ∗P′(1P′/S)
∼−→ 1P′/S′ .

The coherence conditions given in [Ayo07, 2.1.85, 2.1.86] for these follows from the
coherence conditions for f ∗. Thus the functor

f ∗P′ : T (P/S)→ T (P/S ′)

is monoidal.

(9) Proof of (P ′-BC). The P ′-base change property for T (P ′) follows from (1.5.5).

(10) Proof of (P ′-PF). Let f : X → S be a P-morphism. For objects K of T (X) and L
of T (S), we want to show that the morphism

f],P′(K ⊗P′/X f
∗
P′L)

Ex−→ f],P′K ⊗P′/S L

is an isomorphism. Since ρ] is fully faithful and monoidal, applying ρ],S to the above
morphism, it suffices to show that the morphism

f](ρ],XK ⊗X f ∗ρ],SL)
Ex−→ f]ρ],XK ⊗S ρ],SL

is an isomorphism. This follows from the P-projection formula for T .
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(11) Twists. The set of twists τ on T induces a set of twists on T (P). It is also denoted
by τ .

1.5.7. Thus we have proven that

(i) T (P ′) is a τ -twisted P-premotivic triangulated category,

(ii) T (P ′) is well generated by P ′ and τ .

1.6 Bousfield localization

1.6.1. Through this section, we fix a category S and class of morphisms P of S containing
all isomorphisms and stable by compositions and pullbacks. We fix also a τ -twisted P-
premotivic triangulated category T well generated by P and τ . For any object S of S , we
also fix an essentially small family of morphisms WS in T (S) stable by twists in τ , f] for
P-morphism f , and f ∗. The collection of WS is denoted by W .

Definition 1.6.2. Let S be an object of S .

(1) We denote by TW ,S the localizing subcategory of T (S) generated by the cones of the
arrows of W .

(2) We denote by T (S)[W −1] the Verdier Quotient T (S)/TW ,S. Then we denote by
T [W −1] the collection of T (S)[W −1] for object S of S .

(3) We say that an object L of T (S) is W -local if

HomT (S)(K,L) = 0

for any object K of T (S) which is the arrow of a morphism in W . Equivalently,

HomT (S)(K,L) = 0

for any object K of TW ,S.

(4) We say that a morphism K → K ′ in T (S) is a W -weak equivalence if the cone of the
morphism is in TW ,S. Equivalently, the induced homomorphism

HomT (S)(K
′, L)→ HomT (S)(K,L)

is an isomorphism for any W -local object L of T (S). This equivalence follows from
[Nee01, 9.1.14].

1.6.3. The purpose of this section is to show that T [W −1] has a structure of a τ -twisted
P-premotivic triangulated category. Let S be an object of S . First note that T (S)[W −1]
is well generated by [Nee01, Introduction 1.16] and that it is generated by P and τ . Then
T (S)[W −1] is well generated by P and τ . By [Nee01, 9.1.19], we have the adjunction

πS : T (S) T (S)[W −1] : OS
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of triangulated categories where πS denotes the Verdier quotient functor and OS denotes the
Bousfield localization functor. Note that by [Nee01, 9.1.16], the functor OS is fully faithful,
and its essential images are exactly W -local objects of T (S).

For any P-morphism X → S, we put

MS,W (X) = πS(MS(X)).

Then we denote by

π : T T [W −1] : O

the collection of the functors πS and OS.
Because W is stable by f] for P-morphism f and f ∗, if f : X → S is a P-morphism,

then the functor
f]f
∗ = MS(X)⊗S −

preserves W . Thus it preserves TW ,S. This means that the functor

K ⊗S −

preserves W -weak equivalence for any object K of T (S).
Note also that a morphism K → K ′ in T (S) is a W -weak equivalence if and only if the

induced morphism πSK → πSK
′ in T (S)[W −1] is an isomorphism.

1.6.4. Let X and S be objects of S , and consider a diagram

T (X) T (S)

T (X)[W −1] T (S)[W −1]

α

β

πX OX πS OS

such that α is left adjoint to β. Suppose that α maps the cones of WX into TW ,Y and com-
mutes with twists. Then β preserves W -local objects, so α preserves W -weak equivalences.
Then we define

αW : T (X)[W −1]→ T (S)[W −1],

βW : T (S)[W −1]→ T (X)[W −1]

as αW = πSαOX and βW = πXβOX . We often omit W in αW and βW for brevity.

Proposition 1.6.5. Under the notations and hypotheses of (1.6.4),

(1) α commutes with π, i.e., πSα ∼= αW πX ,

(2) αW is left adjoint to βW ,

Proof. (1) For any object K of T (X), the morphism K → OXπXK is a W -weak equivalence,
so αK → αOXπXK is a W -weak equivalence since α presrerves W -weak equivalences. Then
the morphism πSαK → πSαOXπXK is an isomorphism, i.e., πSα = αW πX .
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(2) We will show this by constructing the unit and counit. The unit

id
ad−→ βW αW

is constructed by

id
ad′−1

−→ πXOX
ad−→ πXβαOX

ad−→ πXβOSπSαOX .

Here, the first arrow is defined and an isomorphism since OS is fully faithful. The counit

αW βW
ad′−→ id

is constructed by

πSαOXπXβOS
ad−1

−→ πSαβOS
ad−→ πSOS

ad−→ id.

Here, the first arrow is defined and an isomorphism by (1). These two satisfy the counit-unit
equations, so αW is left adjoint to βW .

Proposition 1.6.6. Consider a commutative diagram

X ′ X

S ′ S

g′

f ′ f

g

of S -schemes. Assume that g∗ and g′∗ commutes with O and that the exchange transforma-
tion

g∗f∗
Ex−→ f ′∗g

′∗

is an isomorphism. Then the exchange transformation

g∗W f∗,W
Ex−→ f ′∗,W g

′∗
W

is also an isomorphism.

Proof. Since O is fully faithful, it suffices to show that the natural transformation

OS′g∗W f∗,W
Ex−→ OS′f ′∗,P′g′∗P′

is an isomorphism. By the condition that g∗ and g′∗ commutes with O, it is equivalent to
the assertion that the natural transformation

g∗f∗OX
Ex−→ f ′∗g

′∗OX

is an isomorphism. This follows from the other condition.

1.6.7. Now we will show that T [W −1] is a P-premotivic triangulated category by con-
structing f] for f ∈P, f ∗, f∗, ⊗, and Hom.
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(1) For any object S of S , we put 1S,W = πS1S. We often omit W in 1S,W for brevity.

(2) Constructions of f],W for f ∈ P, f ∗W , and f∗,W . The functors f] for f ∈ P and f ∗

preserve W , so by (1.6.5), we have the adjunctions

f],W : T (X)[W −1] T (S)[W −1] : f ∗W

f ∗W : T (X)[W −1] T (S)[W −1] : f∗,W

where in the first one, we assume that f is a P-morphism. Then by (loc. cit), f],W
for f ∈P and f ∗W commute with π.

(3) Functoriality of f ∗W . Let f : X → S and g : Y → X be morphisms in S . Then the
natural isomorphism

g∗W f
∗
W −→ (fg)∗W

is constructed by

πS′′g
∗OS′πS′f ∗OS

ad−1

−→ πS′′g
∗f ∗OS

∼−→ πS′′(fg)∗OS.

Here, the first arrow is an isomorphism since g∗ preserves W -weak equivalence and
the unit

id
ad−→ OS′πS′

is a W -weak equivalence. The usual cocycle condition for f ∗W follows from the usual
cocycle condition for f ∗. Thus T [W −1] is a fibered category over S .

(4) Construction of ⊗. For an object S of S and objects K and L of T (P ′/S), we
denote by K ⊗S,W L the object

πS(OSK ⊗OSL)

in T (S)[W −1].

(5) Functoriality of ⊗. Then the natural transformation

(−⊗S,W −)⊗S,W − → −⊗S,W (−⊗S,W −) (1.6.7.1)

is constructed by the composition

πS(OSπS(OSK ⊗S OSL)⊗S OSN)
ad−1

−→ πS(OSK ⊗OSL⊗OSN)

ad−→ πS(OSK ⊗S OSπS(OSL⊗S OSN))

for objects K, L, and N of T (S)[W −1]. Here, the first arrow is defined and an
isomorphism because πS and ⊗S preserve W -weak equivalence and the morphism

OSK ⊗S OSL
ad−→ OSπS(OSK ⊗S OSL)
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is a W -weak equivalence. Similarly, the second arrow is an isomorphism, so (1.6.7.1)
is an isomorphism.

We can similarly construct isomorphisms

K ⊗S,W 1S −→ K, 1S ⊗S,W K −→ K

in T (S)[W −1]. The coherence conditions given in [Ayo07, 2.1.79, 2.1.81] for −⊗S,W −
follows from the coherence conditions for − ⊗ −. Thus − ⊗S,W − gives a monoidal
structure on T (S)[W −1].

(6) Construction of Hom. For an object S of S , and objects K and L of T (S), we
construct the internal Hom

HomS,W (K,L)

by
πSHomT (S)(OSK,OSL).

Then −⊗S,W K is left adjoint to HomS,W (K,−), so −⊗S,W − is a symmetric closed
monoidal structure on T (S)[W −1].

(7) Monoidality of f ∗. Let f : X → S be a morphism of S -schemes. For any objects K
and L of T (S)[W −1], we construct the morphism

f ∗W K ⊗S,W f ∗W L→ f ∗W (K ⊗S,W L) (1.6.7.2)

by the composition

πX(OXπXf ∗OSK ⊗X OXπXf ∗OS′L)
ad−1

−→ πX(f ∗OSK ⊗X OXπXf ∗OXL)

ad−1

−→ πX(f ∗OSK ⊗X f ∗OXL)
∼−→ πXf

∗(OSK ⊗X f ∗OXL)

ad−→ πXf
∗(OSπS(OSK ⊗X f ∗OS′L)).

The first and second arrows are defined and isomorphisms since πX and ⊗S preserve
W -weak equivalences and the unit

id
ad−→ OXπX

is a W -weak equivalence. The fourth arrow is an isomorphism by the same reason.
Thus (1.6.7.2) is an isomorphism.

We can similarly construct the isomorphism

f ∗W (1S,W )
∼−→ 1X,W .

The coherence conditions given in [Ayo07, 2.1.85, 2.1.86] for these follows from the
coherence conditions for f ∗. Thus the functor

f ∗W : T (S)[W −1]→ T (X)[W −1]

is monoidal.
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(8) Monoidality of π. For an object S of S , and objects K and L of T (S)[S −1], we
construct the morphism

πS(K ⊗S L)→ πSK ⊗S,W πSL

by the composition

πS(K ⊗S L)
ad−→ πS(OSπSK ⊗S L)

ad−→ πS(OSπSK ⊗S OSπSL).

Here, the arrows are isomorphisms since πS and ⊗S preserve W -weak equivalences
and the unit

id
ad−→ OSπS

is a W -weak equivalence.

We can similarly construct the isomorphism

πS(1S)
∼−→ 1S,W .

Note that the coherence conditions given in [Ayo07, 2.1.85, 2.1.86] are satisfied, i.e.,
the functor

πS : T (S)→ T (S)[W −1]

is monoidal.

(9) Proof of (P-BC). The P-base change property for T [W −1] follows from (1.6.6).

(10) Proof of (P-PF). The P-projection formula for T [W −1] can be obtained by applying
π to the P-projection formula for T since π is monoidal and essentially surjective.

(11) Twists. The set of twists τ on T induces a set of twists on T [W −1]. It is also denoted
by τ .

1.6.8. Thus we have proven that

(i) T [W −1] is a P-premotivic triangulated category,

(ii) T [W −1] is well generated by P and τ .

1.7 log-localization

1.7.1. Throughout this section, we fix a full subcategory S of the category of noetherian fs
log schemes satisfying the conditions of (1.2.7).

Definition 1.7.2. For an S -scheme S, we will consider the following situations for mor-
phisms

Y ′
h−→ Y

g−→ X
f−→ S

of S -schemes.
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(a) The morphism f is of finite type, the morphism g is the identity, and the morphism
h is the projection A1

Y → Y .

(b) The morphism f is of finite type, the morphism g is the identity, and the morphism
h is a dividing cover.

(c) The morphism f is log smooth, the morphism g is an exact log smooth morphism, and
the morphism h is the verticalization Y ver → Y of X via fg.

(d) The morphism f is log smooth, the S -scheme X has a neat fs chart P , and the
morphism g is the projection

X ×AP AQ → X

where the homomorphism θ : P → Q is a locally exact vertical homomorphism of
fs monoids such that g is an exact log smooth morphism. The morphism h is the
morphism

X ×AP AQG → X ×AP AQ

induced by the localization Q→ QG where G is a maximal θ-critical face of Q.

Let T be a τ -twisted P-premotivic triangulated category over S . Then let WA1,S (resp.
Wlog′,S, resp. Wlog′′,S, resp. Wlog,S) denote the family of morphisms

MS(Y ′){i} →MS(Y ){i}

in T (S) where i ∈ τ and the morphism Y ′ → Y is of the type (a) (resp. of the types (a)–(b),
resp. of the type (b), resp. of the types (a)–(d)). Note that WA1 (resp. Wlog′ , resp. Wlog) is
stable by the operations f] for f ∈ ft (resp. f ∈ ft, resp. f ∈ lSm) and f ∗. To ease the
notations, we often remove W in the notations. For example, we write log-weak equivalences
instead of Wlog-weak equivalences.

Definition 1.7.3. Let t be a topology on S such that any t-covering consists of morphisms
of finite type. Consider the category

DA1(Sht(ft/S,Λ))

(see [CD12, 5.3.22, 5.1.4] for the definitions). It is a ft-premotivic triangulated category.
They are also denoted by DA1,t(ft,Λ) and DA1,t(ft,Λ).

Let P be a class of morphisms of S containing all isomorphisms and stable by compo-
sitions and pullbacks and contained in the class ft, and let W be an essentially small family
of morphisms in DA1,t(ft,Λ) containing A1-weak equivalences and stable by f] for f ∈ P
and f ∗. Then we denote by

DW ,t(ft,Λ)

the category obtained by inverting W -weak equivalences as in (1.6.2).
We also denote by

DW ,t(P,Λ)
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the localizing subcategory of DW ,pw(ft,Λ) obtained by applying (1.5.1) to the inclusion
P ⊂ ft.

If t′ is another topology on S finer than t, then we have an adjunction

at′ : Sht(ft,Λ) Sht′(ft,Λ) : ι

where at′ denotes the sheafification functor and ι denotes the inclusion functor. From this,
we obtain the adjunction

a∗t′ : DW ,t(P,Λ) DW ,t′(P,Λ) : at′,∗

of P-premotivic categories.

1.7.4. By (1.4.5) and [CD12, 5.1.32], the ft-premotivic triangulated category

Dqw(ft,Λ)

is compactly generated by ft and τ , so it is well generated by ft and τ . Then (1.5.2) and
(1.6.3), if P is a class of morphisms of S containing all isomorphisms and stable by com-
positions and pullbacks and contained in the class ft, then the P-premotivic triangulated
category

DA1,pw(P,Λ), Dlog′,pw(P,Λ), Dlog,pw(P,Λ)

are well generated by P and τ .

1.7.5. By the proofs of [CD12, 5.2.38, 5.3.39], the ft-premotivic triangulated categories

DA1,qw(ft,Λ), Dlog′,qw(ft,Λ), Dlog,qw(ft,Λ)

are compactly generated by ft and τ . Thus if P is a class of morphisms of S containing all
isomorphisms and stable by compositions and pullbacks and contained in the class ft, then
the P-premotivic triangulated category

DA1,qw(P,Λ), Dlog′,qw(P,Λ), Dlog,qw(P,Λ)

are compactly generated by P and τ .
The above method is not applicable for Dlog′,pw(lSm,Λ) since we cannot apply (1.4.5) for

the pw-topology. To show that it is compactly generated by lSm and τ , we will circumvent
this obstacle by showing that the morphism

a∗qw : Dlog′,pw(lSm,Λ)→ Dlog′,qw(lSm,Λ)

of lSm-premotivic triangulated categories is an isomorphism under some assumption as
follows.
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1.7.6. Let S be an S -scheme, and let K be an object of Dlog′,pw(ft/S,Λ). For any commu-
tative diagram

C =
X ′ X

T ′ T

g′

f ′ f

g

of S-schemes over S, we denote by LC,K the homotopy pullback in Dlog′,pw(ft/S,Λ) of the
lower right corner of the commutative diagram

p∗p
∗K p∗g∗g

∗p∗K

p∗f∗f
∗p∗K p∗h∗h

∗p∗K

ad

ad ad

ad

(1.7.6.1)

where p : T → S is the structural morphism and h = fg′. Then we denote by

qC : p∗p
∗K → LC,K

the induced morphism in Dlog′,pw(ft/S,Λ).

Proposition 1.7.7. Under the notations and hypotheses of (1.7.6), assume that C is a
piercing distinguished square. If K is plain lower flasque, then the morphism qC is an
isomorphism, i.e., the diagram (1.7.6.1) is homotopy Cartesian in Dlog′,pw(ft/S,Λ).

Proof. Note that K satisfies the pw-descent by [CD12, 5.3.30]. Let C ′ denote the commuta-
tive diagram

X ′ X

X ′ ×T ′ X ′ X ×T X
where the vertical arrows are the diagonal morphisms and the horizontal arrows are induced
by g and g′. We put X0 = X, and we denote by (Xi)i∈N the Čech cover associated to
X0 → T . As in the proof of [Voe10a, 5.3], it suffices to show that qC′×TXi,K is an isomorphism
in Dlog′,pw(lSm/S,Λ) for all i.

The diagram C ′ is a pullback of (1.2.8.2), which has the decomposition

ptN AN

AN⊕Z

V ′ AM

ptN2 AN ×A1 AN

i

Au

Av

t
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where

(i) each square is Cartesian,

(ii) t denotes a pullback of the diagonal morphism A1 → A2 via the morphism AN2 → A2

removing the log structure,

(iii) M denotes the fs monoscheme which is the gluing of

spec(Nx⊕ N(x−1y)), spec(Ny ⊕ N(y−1x))

along spec(Nx⊕ Z(x−1y)),

(iv) u : spec(Nx⊕Z(x−1y))→M denotes the obvious open immersion of fs monoschemes,

(v) v : M → spec(Nx ⊕ Ny) denotes the obvious proper birational morphism of fs
monoschemes,

(vi) i denotes the 1-section.

Then C ′ has a decomposition

X ′ X

Y ′ Y

X ′ ×T ′ X ′ X ×T X

a′ a

(1.7.7.1)

such that the upper square is a plain lower distinguished square and a and a′ are dividing
covers. Since we inverted log’-weak equivalences, the adjunctions

id
ad−→ a∗a

∗, id
ad−→ a′∗a

′∗

are isomorphisms. Thus if we denote by C ′′ the upper diagram of (1.7.7.1), then it suffices
to show that qC′′×TXi,K is an isomorphism. It follows from (1.3.8) since C ′′ is a plain lower
distinguished square.

1.7.8. In (7.6.2), we will show that the essential image of the functor

ρ] : Dlog′,pw(lSm,Λ)→ Dlog′,pw(ft,Λ)

satisfies the plain lower descent. Let K be an object in its essential image, and let C be a
Cartesian diagram

X ′ X

T ′ T

g′

f ′ f

g
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of S -schemes over S. When C is a plain lower distinguished square, by (1.3.8), the condition
(i) of (1.3.7) for C is satisfied. When C is a piercing distinguished square, by (1.7.7), the
condition (i) of (1.3.7) for C is satisfied, and when C is a pullback of (1.2.8.2), the condition
(i) of (1.3.7) for C is satisfied by the proof of (1.7.7). Thus the condition (i) of (1.3.7)
for C when C is a quasi-piercing distinguished square is satisfied, so by (1.7.7), C satisfies
qw-descent. Then [CD12, 5.3.30] implies that the functor

a∗qw : Dlog′,pw(lSm,Λ)→ Dlog′,qw(lSm,Λ)

is an equivalence of lSm-premotivic triangulated categories. This implies that the functor

a∗qw : DW ,pw(P,Λ)→ Dlog′,qw(lSm,Λ)

is an equivalence of P-premotivic triangulated categories for W = Wlog′ ,Wlog and P =
lSm, eSm.

In particular, for such W and P, by (1.7.5), DW ,pw(P,Λ) is compactly generated by P
and τ .

1.7.9. One of the purposes of this thesis is to study the eSm-premotivic triangulated category
Dlog,pw(eSm,Λ). For brevity, it is also denoted by Dlog,pw(−,Λ).
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Chapter 2

Properties of premotivic triangulated
categories

2.0.1. Through this section, fix a base fs log scheme S. Then fix a full subcategory S of
the category of noetherian fs log schemes over S such that

(i) S is closed under finite sums and pullbacks via morphisms of finite type,

(ii) if S belongs to S and X → S is strict quasi-projective, then X belongs to S ,

(iii) if S belongs to S , then S × AM belongs to S for every fs monoscheme M ,

(iv) If S belongs to S , then S is belongs to S ,

(v) for any separated morphism f : X → S of S -schemes, the morphism f : X → S of
underlying schemes admits a compactification in the sense of [SGA4, 3.2.5], i.e., we
have a factorization

X → Y → S

in S such that the first arrow is an open immersion and the second arrow is a strict
proper morphism.

We also fix a class P of morphisms of S containing all strict smooth morphisms of S -
schemes and stable by compositions and pullbacks. Then we fix a P-premotivic triangulated
category T .

For example, as in [CD12, 2.0], S can be the spectrum of a prime field or Dedekind
domain, and then S can be the category of noetherian fs log schemes over S.

2.0.2. In [Ayo07] and [CD12], the adjoint property, base change property, A1-homotopy
property, localization property, projection formula, purity, t-separated property, stability,
and support property are discussed. Many of them can be trivially generalized to properties
for strict morphisms. We also introduce base change properties for non strict morphisms
and other homotopy properties. In the last section, we introduce the notion of log motivic
triangulated categories, which will be the central topic in later chapters.
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2.1 Elementary properties

2.1.1. Recall from [CD12, §2.1, 2.2.13] the following definitions.

(1) We say that T is additive if for any S -schemes S and S ′, the obvious functor

T (S q S ′)→ T (S)×T (S ′)

is an equivalence of categories.

(2) Let f : X → P be a proper morphism of S -schemes. We say that f satisfies the
adjoint property, denoted by (Adjf ), if the functor

f∗ : T (X)→ T (S)

has a right adjoint. When (Adjf ) is satisfied for any proper morphism f , we say that
T satisfies the adjoint property, denoted by (Adj).

(3) Let t be a topology on S generated by a pretopology t0 on S . We say that T is
t-seperated, denoted by (t-sep), if for any t0-cover {ui : Xi → S}i∈I of S, the family
of functors (f ∗i )i∈I is conservative.

2.1.2. Let t be a topology on S generated by a pretopology t0 on S such that any t0-cover
is consisted with P-morphisms. Assume that T satisfies (t-sep) and that T is generated
by P and τ . Let S be an S -scheme, and let P ′/S be a class of P-morphisms X → S such
that for any P-morphism g : Y → S, there is a t-cover {ui : Yi → Y }i∈I such that each
composition gui : Yi → S is in P ′/S. In this setting, we will show that the family of objects
of the form

MS(X){i}

for morphism X → S in P ′/S and i ∈ τ generates T (S).
Since T is generated by P and τ , the family of functors

HomT (S)(MS(X){i},−) = HomT (X)(1X{i}, f ∗(−))

for P-morphism f : X → S and i ∈ τ is conservative. By assumption, there is a t0-cover
{uj : Xj → X}j∈I such that each composition fuj : Xj → S is in P ′/S. Applying (t-sep),
we see that the family of functors

HomT (Xj)(u
∗
j1X{i}, u∗jf ∗(−)) = HomT (S)(MS(Xj){i},−)

for P-morphism f : X → S, j ∈ I, and i ∈ τ is conservative. This implies the assertion.

Proposition 2.1.3. Let t be a topology on S generated by a pretopology t0 on S such that
any t0-cover is consisted with P-morphisms. Assume that T satisfies (t-sep) and that T is
well generated by P and τ . Let S be an S -scheme, and let {ui : Si → S}i∈I be a t0-cover.
Then T (S) is the localizing subcategory of T (S) generated by the essential images of ui] for
i ∈ I.
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Proof. We denote by P ′/S the class of morphisms of the form

X → Si
ui→ S

where i ∈ I and the first arrow is in P. Then for any P-morphism Y → S, we have the
Cartesian diagram

Y ×S Si Y

Si S

of S -schemes. From this diagram, we see that the hypotheses of (2.1.2) is verified. Then
by (loc. cit) and (1.4.4), T (S) is the localizing subcategory of T (S) generated by objects
of the form

MS(X){i}
for morphism X → S in P ′/S and i ∈ τ . The conclusion follows from this.

2.2 Localization property

2.2.1. Let i : Z → S be a strict closed immersion of S -schemes, and let j : U → S be its
complement. Recall from (1.1.3) that T satisfies (P-BC). According to [CD12, 2.3.1], we
have the following consequences of (P–BC):

(1) the unit id
ad−→ j∗j] is an isomorphism,

(2) the counit j∗j∗
ad′−→ id is an isomorphism,

(3) i∗j] = 0,

(4) j∗i∗ = 0,

(5) the composition j]j
∗ ad′−→ id

ad−→ i∗i
∗ is zero.

Definition 2.2.2. We say that T satisfies the localization property, denoted by (Loc), if

(1) T (∅) = 0,

(2) For any strict closed immersion i of S -schemes and its complement j, the pair of

functors (j∗, i∗) is conservative, and the conunit i∗i∗
ad′−→ id is an isomorphism.

2.2.3. Assume that T satisfies (Loc). Consequences formulated in [CD12, §2.3] and in the
proof of [CD12, 3.3.4] are as follows.

(1) For any closed immersion i of S -schemes, the functor i∗ admits a right adjoint i!.

(2) For any closed immersion i of S -schemes and its complement j, there exists a unique
natural transformation ∂i : i∗i

∗ → j]j
∗[1] such that the triangle

j]j
∗ ad′−→ id

ad−→ i∗i
∗ ∂i−→ j]j

∗[1]

is distinguished.
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(3) For any closed immersion i of S -schemes and its complement j, there exists a unique
natural transformation ∂i : j∗j

∗ → i∗i
![1] such that the triangle

i∗i
! ad′−→ id

ad−→ j∗j
∗ ∂i−→ i∗i

![1]

is distinguished.

(4) Let S be an S -scheme, and let Sred denote the reduced scheme associated with S.
The closed immersion ν : Sred → S induces an equivalence of categories

ν∗ : T (S)→ T (Sred).

(5) For any partition (Si
νi−→ S)i∈I of S by locally closed subsets, the family of functors

(ν∗i )i∈I is conservative.

(6) The category T is additive.

(7) The category T satisfies the strict Nisnevich separation property (in the case of usual
schemes, note that (Loc) implies the cdh separation property).

(8) For any S -scheme S and any strict Nisnevich distinguished square

X ′ X

T ′ T

g′

f ′ f

g

of P/S-schemes, the associated Mayer-Vietoris sequence

p]h]h
∗p∗K −→ p]f]f

∗p∗K ⊕ p]g]g∗p∗K −→ p]p
∗K −→ p]h]h

∗p∗K[1]

is a distinguished triangle for any object K of T (S) where h = fg′ and p denotes the
structural morphism T → S.

2.3 Support property

Definition 2.3.1. Following [CD12, 2.2.5], we say that a proper morphism f of S -schemes
satisfies the support property, denoted by (Suppf ), if for any Cartesian diagram

X ′ X

S ′ S

g′

f ′ f

g

of S -schemes such that g is an open immersion, the exchange transformation

Ex : g]f
′
∗ → f∗g

′
]

is an isomorphism. We say that T satisfies the support property (resp. the strict support
property), denoted by (Supp) (resp. (sSupp)), if the support property is satisfied for any
proper morphism (resp. for any strict proper morphism).
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2.3.2. In this section, from now, we assume that for any morphism f : X → S of S -schemes,
the morphism f : X → S admits a compactification in the sense of [SGA4, 3.2.5], i.e., we
have a factorization

X → Y → S

in S such that the first arrow is an open immersion and the second arrow is a strict proper
morphism.

2.3.3. Let f : X → S be a separated morphism of S -schemes. Then choose a compactifi-
cation

X → S ′ → S

of f . Then following [Chi99, 5.4], f can be factored as

X
f1−→ X ×S S

f2−→ S ′ ×S S
f3−→ S

where

(i) f1 denotes the morphism induced by X → X and X → S,

(ii) f2 denotes the morphism induced by X → S ′,

(iii) f3 denotes the projection.

The morphisms f1 and f3 are proper, and the morphism f2 is an open immersion. Hence we
can use the argument of [CD12, §2.2]. A summary of [loc. cit] is as follows.

Assume that T satisfies (Supp). For any separated morphism of finite type f : X → S
of S -schemes, we can associate a functor

f! : T (X)→ T (S)

with the following properties:

(1) For any separated morphism of finite types f : X → Y and g : Y → Z of S -schemes,
there is a natural isomorphism

(gf)! → g!f!

with the usual cocycle condition with respect to the composition.

(2) For any separated morphism of finite type f : X → S of S -schemes, there is a natural
transformation

f! → f∗,

which is an isomorphism when f is proper. Moreover, it is compatible with composi-
tions.

(3) For any open immersion j : U → S, there is a natural isomorphism

f! → f].

It is compatible with compositions.
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(4) For any Cartesian diagram

X ′ X

S ′ S

g

f ′ f

g

of S -schemes such that f is separated of finite type, there is an exchange transfor-
mation

Ex : g∗f! → f ′! g
′∗

compatible with horizontal and vertical compositions of squares such that the dia-
grams

g∗f! f ′! g
′∗

g∗f∗ f ′∗g
′∗

Ex

∼ ∼

Ex

g∗f! f ′! g
′∗

g∗f] f ′]g
∗

Ex

∼ ∼

Ex−1

of functors commutes when f is proper in the first diagram and is open immersion in
the second diagram.

(5) For any Cartesian diagram

X ′ X

S ′ S

g

f ′ f

g

of S -schemes such that f is separated of finite type and g is a P-morphism, there is
an exchange transformation

Ex : g]f
′
! → f!g

′
]

compatible with horizontal and vertical compositions of squares such that the dia-
grams

g]f
′
! f!g

′
]

g]f
′
∗ f∗g

′
]

Ex

∼ ∼

Ex

g]f
′
! f!g

′
]

g]f
′
] f]g

′
]

Ex

∼ ∼

∼

of functors commutes when f is proper in the first diagram and is open immersion in
the second diagram.

(6) For any separated morphism of finite type f : X → S of S -schemes, and for any
K ∈ T (X) and L ∈ T (S), there is an exchange transformation

Ex : f!K ⊗S L→ f!(K ⊗X f ∗L) (2.3.3.1)
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compatible with compositions such that the diagrams

f!K ⊗S L f!(K ⊗X f ∗L)

f!K ⊗S L f∗(K ⊗X f ∗L)

Ex

∼ ∼

Ex

f!K ⊗S L f!(K ⊗X f ∗L)

f]K ⊗S L f](K ⊗X f ∗L)

Ex

∼ ∼

Ex−1

of functors commutes when f is proper in the first diagram and is open immersion in
the second diagram.

(7) Assume that T satisfies (Adj). For any separated morphism of finite type f : X → S
of S -schemes, the functor f! admits a right adjoint

f ! : T (S)→ T (X).

2.4 Homotopy properties

Definition 2.4.1. Let S be an S -scheme. Let us introduce the following homotopy prop-
erties.

(Htp–1) Let f denote the projection A1
S → S. Then the counit

f]f
∗ ad′−→ id

is an isomorphism.

(Htp–2) Let f : X → S be an exact log smooth morphism of S -schemes, and let j : Xver → X
denote the verticalization of X via f . Then the natural transformation

f]j]j
∗ ad′−→ f]

is an isomorphism.

(Htp–3) Let S be an S -scheme with a fs chart P , let θ : P → Q be a vertical homomorphism
of exact log smooth over S type (see (3.1.2) for the definition), and let G be a θ-critical
face of Q. Consider the induced morphisms

S ×AP AQG

j→ S ×AP AQ
f→ S.

Then the natural transformation

f]j]j
∗f ∗

ad′−→ f]f
∗

is an isomorphism.

(Htp–4) Let f : X → S be a dividing cover of S -schemes. Then the unit

id
ad−→ f∗f

∗

is an isomorphism.
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(Htp–5) Let f : X → S be a morphism of S -schemes with the same underlying schemes such
that the induced homomorphism Mgp

S,f(x) → M
gp

X,x is an isomorphism for all x ∈ X.
Then f ∗ is an equivalence of categories. is an isomorphism.

(Htp–6) Let S be an S -scheme, let f : S×AN → S denote the projection, and let i : S×ptN →
S × AN denote the 0-section. Then the natural transformation

f∗f
∗ ad−→ f∗i∗i

∗f ∗

is an isomorphism.

(Htp–7) Assume that T satisfies (Supp). Under the notations and hypotheses of (Htp–3), the
natural transformation

f!j]j
∗f ∗

ad′−→ f!f
∗

is an isomorphism.

2.4.2. Note that the right adjoint versions of (Htp–1), (Htp–2), and (Htp–3) are as follows.

(1) Under the notations and hypotheses of (Htp–1), the unit

id
ad−→ f∗f

∗

is an isomorphism.

(2) Under the notations and hypotheses of (Htp–2), the natural transformation

f ∗
ad−→ j∗f

∗f ∗

is an isomorphism.

(3) Under the notations and hypotheses of (Htp–3), the unit

f∗f
∗ ad−→ f∗j∗j

∗f ∗

is an isomorphism.

2.5 Purity

Definition 2.5.1. Let S be an S -scheme, let p denote projection A1
S → S, and let a denote

the zero section S → A1
S. Then we denote by 1S(1) the element p]a∗1S[2], and we say that

T satisfies the stability property, denoted by (Stab), if 1S(1) is ⊗-invertible.

Remark 2.5.2. Note that our definition is different from the definition in [CD12, 2.4.4], but
if we assume (Loc) and (Zar-Sep), then they are equivalent by the following result.
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Proposition 2.5.3. Assume that T satisfies (Loc), (Zar-Sep), and (Stab). Let f : X → S
be a strict smooth separated morphism of S -schemes, and let i : S → X be its section. Then
the functor

f]i∗

is an equivalence of categories.

Proof. It follows from the implication (i)⇔(iv) of [CD12, 2.4.14].

Definition 2.5.4. Let f : X → S be a separated P-morphism of S -schemes. We denote
by a the diagonal morphism X → X×SX and p2 the second projection X×SX → X. Then
we put

Σf = p2]a∗.

If we assume (Adj), then we put
Ωf = a!p∗2.

Note that Σf is left adjoint to Ωf .

Definition 2.5.5. Let f : X → S be a P-morphism of S -schemess. Assume that (f is
proper) or (f is separated and T satisfies (Supp)). Consider the Cartesian diagram

X ×S X X

X S

p1

p2

f

f

of S -schemes, and let a : X → X ×S X denote the diagonal morphism. Following [CD12,
2.4.24], we define the natural transformation

pf : f]
∼−→ f]p1!a∗

Ex−→ f!p2]a∗ = f!Σf .

The right adjoint of pf is denoted by

qf : Ωff
! −→ f ∗.

Definition 2.5.6. Let f be a P-morphism of S -schemes, and assume that (f is proper)
or (f is separated and T satisfies (Supp)). We say that f is pure, denoted by (Purf ), if the
natural transformation pf is an isomorphism. Note that if we assume (Adj), then f is pure
if and only if qf is an isomorphism. We say that T satisfies the purity, denoted by (Pur), if
T satisfies (Purf ) for any exact log smooth separated morphism f .

Remark 2.5.7. Note that our definition is different from the definition in [CD12, 2.4.25]
in which the additional condition that Σf is an isomorphism is assumed. However, if we
assume (Loc), (Zar-Sep), and (Stab), then the definitions are equivalent by (2.5.3).

Theorem 2.5.8. Assume that T satisfies (Htp–1), (Loc), and (Stab). Then T satisfies
(sSupp).
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Proof. The conditions of the theorem of Ayoub [CD12, 2.4.28] are satisfied, and the same
proof of [loc. cit] can be applied even if S is not a usual scheme. The consequence is that
the projection P1

S → S is pure for any S -scheme S. Then the conclusion follow from the
proof of [CD12, 2.4.26(2)].

Theorem 2.5.9. Assume that T satisfies (Htp–1), (Loc), (Stab), and (Supp). Then any
strict smooth separated morphism is pure.

Proof. As in the proof of (2.5.8), P1
S → S is pure for any S -scheme S. Then the conclusion

follows from the proof of [CD12, 2.4.26(3)].

Theorem 2.5.10. Assume that T satisfies (Htp–1), (Loc), (Stab) and (Supp). Consider a
Cartesian diagram

X ′ X

S ′ S

f ′

g′

f

g

of S -schemes such that f is strict smooth separated and g is separated. Then the exchange
transformation

f]g
′
!
Ex−→ f ′]g!

is an isomorphism.

Proof. It follows from (2.5.9) and the proof of [CD12, 2.4.26(3)].

2.6 Base change property

2.6.1. Consider a Cartesian diagram

X ′ X

S S

g′

f ′ f

g

of S -schemes. When f is proper, let us introduce the following base change properties.

(BCf,g) The exchange transformation g∗f∗ → f ′∗g
′∗ is an isomorphism.

(BC–1’) For all f and g such that f is strict and proper, (BCf,g) is satisfied.

(BC–2’) For all f and g such that f is an exact log smooth morphism and proper, (BCf,g) is
satisfied.

(BC–3’) For all f and g such that g is strict and f is proper, (BCf,g) is satisfied.

(BC–4’) For all f and g such that g is a P-morphism and f is proper, (BCf,g) is satisfied.
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On the other hand, when f is just assumed separated but T satisfies (Supp), we have the
following base change properties.

(BCf,g) The exchange transformation g∗f! → f ′! g
′∗ is an isomorphism.

(BC–1) For all f and g such that f is strict, (BCf,g) is satisfied.

(BC–2) For all f and g such that f is an exact log smooth morphism, (BCf,g) is satisfied.

(BC–3) For all f and g such that g is strict, (BCf,g) is satisfied.

(BC–4) For all f and g such that g is a P-morphism, (BCf,g) is satisfied.

Proposition 2.6.2. If T satisfies (Loc), then (BCf,g) is satisfied for all f and g such that
f is a strict closed immersion.

Proof. It follow from the proof of [CD12, 2.3.13(1)], but we repeat the proof for the conve-
nience of reader. Let h′ denote the complement of f ′. Then by (Loc), the pair (f ′∗, h′∗) of
functors is conservative, so it suffices to show that the natural transformations

f ′∗g∗f∗
ad−→ f ′∗f ′∗g

′∗,

h′∗g∗f∗
ad−→ h′∗f ′∗g

′∗

are isomorphisms. The first one is an isomorphism since the counits f ∗f∗
ad−→ id and

f ′∗f ′∗
ad′−→ id are isomorphisms by (Loc), and the second one is an isomorphism by (2.2.1(4)).

Proposition 2.6.3. If T satisfies (Supp), then the property (BC–n) implies (BC–n’) for
n = 1, 2, 3, 4.

Proof. It follows from (2.3.3(4)).

Proposition 2.6.4. If T satisfies (Supp), then the category T satisfies (BC–4’).

Proof. It follows from (2.6.3) and (P-BC).

Proposition 2.6.5. Assume that

(i) T satisfies (Loc) and (Supp),

(ii) for any S -scheme S, the projection P1
S → S is pure.

Then the category T satisfies (BC–1).

Proof. The conditions of [CD12, 2.4.26(2)] are satisfied, and the same proof of [loc. cit] can
be applied even if S is a fs log scheme.

Proposition 2.6.6. Assume that T satisfies (Loc), (Supp), and (Zar-Sep). Then the cate-
gory T satisfies (BC–3).
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Proof. By (2.6.3), it suffices to show (BC–3’). Consider a Cartesian diagram

X ′ X

S ′ S

g′

f ′ f

g

of S -schemes such that g is strict and that f is proper. By (Zar-Sep), the question is
Zariski local on S ′, so we reduce to the case when S ′ is affine. Then the morphism g is
quasi-projective, so we reduce to the cases when

(1) g is an open immersion,

(2) g is a strict closed immersion,

(3) g is the projection P1
S → S.

In the cases (1) and (3), we are done by (BC–4), so the remaining is the case (2). Hence
assume that g is a strict closed immersion.

Let h : S ′′ → S denote the complement of g, and consider the commutative diagram

X ′ X X ′′

S ′ S S ′′

g′

f ′ f

h′

f

g h

of S -schemes where each square is Cartesian. Since the pair (g′∗, h
′
]) generates T (X) by

(Loc), it suffices to show that the natural transformations

g∗f∗g
′
∗ → f ′∗g

′∗g′∗, g∗f∗h
′
] → f ′∗g

′∗h]

are isomorphisms. The first arrow is an isomorphism by (Loc), and the second arrow is an
isomorphism by (Supp) and (P-BC). This completes the proof.

Proposition 2.6.7. Assume that T satisfies (Loc). Consider a plain lower distinguished
square

X ′ X

S ′ S

g′

f ′ f

g

of S -schemes, i.e., f and g are closed immersions such that f(X) ∪ g(X) = S ′, and the
diagram is Cartesian. We put h = fg′. Then for any object K of T (S), the commutative
diagram

K f∗f
∗K

g∗g
∗K h∗h

∗K

ad

ad ad

ad

in T (S) is homotopy Cartesian.
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Proof. Let u : S ′′ → S denote the complement of g. Then u factors through X by assump-
tion, and let u′ : S ′′ → X denote the morphism. and consider the commutative diagram

X ′ X X ′′

S ′ S S ′′

g′

f ′ f

u′

g′′

g u

where each square is Since the pair (g∗, u∗) of functors is conservative, it suffices to prove
that the diagrams

g∗K g∗f∗f
∗K

g∗g∗g
∗K g∗h∗h

∗K

ad

ad ad

ad

u∗K u∗f∗f
∗K

u∗g∗g
∗K u∗h∗h

∗K

ad

ad ad

ad

are homotopy Cartesian. The first diagram is isomorphic to

g∗K f ′∗h
∗K

g∗K f ′∗h
∗K

id

ad

id

ad

by (Loc) and (2.6.2), and it is homotopy Cartesian. For the second diagram, since its
lower horizontal arrow is an isomorphism by (P-BC), it suffices to show that the natural
transformation

u∗
ad−→ u∗f∗f

∗K

is an isomorphism. Since u = fu′, we have the natural transformations

u′∗f ∗
ad−→ u′∗f ∗f∗f

∗K
ad′−→ u′∗f ∗K,

whose composition is an isomorphism. The second arrow is an isomorphism by (Loc), so the
first arrow is also an isomorphism.

2.7 Projection formula

Definition 2.7.1. For a proper morphism f : X → S of S -schemes, we say that f satisfies
the projection formula, denoted by (PFf ), if the exchange transformation

f∗K ⊗X L
Ex−→ f∗(K ⊗Y f ∗L)

is an isomorphism for any objects K of T (X) and L of T (S). We say that T satisfies the
projection formula, denoted by (PF), if (PFf ) is satisfied for any proper morphism f .
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2.7.2. Assume that T satisfies (PF) and (Supp). Let f : X → Y be a separated morphism
of S -schemes. Then by the proof of [CD12, 2.2.14(5)], the exchange transformation

f!K ⊗X L
∼−→ f!(K ⊗Y f ∗L)

is an isomorphism for any objects K of T (X) and L of T (S). If we assume further (Adj),
then by taking adjunctions of the above exchange transformation, we obtain the natural
transformations

HomS(f!K,L)
∼−→ f∗HomX(K, f !L),

f !HomX(L,M)
∼−→ HomX(f ∗L, f !M).

for any objects K of T (X) and L and M of T (S).

2.8 Orientation

Definition 2.8.1. Let p : E → S be a vector bundle of rank n of S -schemes, and let
i0 : S → E denote its 0-section. Then an isomorphism

tE : p]i0∗ −→ 1S(n)[2n]

is said to be an orientation of E. When T satisfies (Adj) and (Stab), we denote by

t′E : 1S(−n)[−2n] −→ i!0p
∗

its right adjoint.
Recall from [CD12, 2.4.38] that a collection t of orientations for all vector bundles E → S

of S -schemes with the compatibility conditions (a)–(c) in [loc. cit] is said to be an orientation
of T .

2.8.2. Note that by (2.5.3), if T satisfies (Loc), (Zar-Sep), and (Stab), then any vector
bundle has an orientation.

2.9 Log motivic categories

Definition 2.9.1. Let T be a eSm-premotivic triangulated category. Borrowing a termi-
nology from [CD12, 2.4.45], we say that T is a log motivic triangulated category if

(i) T satisfies (Adj), (Htp–1), (Htp–2), (Htp–3), (Htp–4), (Loc), (két-Sep), and (Stab).

(ii) for any S -scheme S with the trivial log structure, the morphism S × AN → S × A1

removing the log structure satisfies the support property.

2.9.2. In [CD12, 2.4.45], motivic triangulated category is defined, and in [CD12, 2.4.50], the
six operations formalism is given for motivic triangulated cateogires. Following this spirit,
we introduced our notion of log motivic triangulated category, which will satisfy the log
version of the six operations formalism (1)–(5) in (0.5).

Now, we state our main theorems.
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Theorem 2.9.3. A log motivic triangulated category satisfies the properties (1)–(6) in (0.5),
the homotopy properties (Htp–5), (Htp–6), and (Htp–7), and (Pur).

Theorem 2.9.4. The eSm-premotivic category Dlog,pw(−,Λ) is a log motivic triangulated
category.

2.9.5. Here is the outline of the proofs of the above theorems. Let T be a log motivic
triangulated category over S .

(1) In (2.6.3), (2.6.4), (2.6.5), and (2.6.6), we have proven that T satisfies (BC–1), (BC–
3), and (BC–4).

(2) In (5.3.4), we will show that T satisfies (PF).

(3) In (5.6.5), we will show that T satisfies (Supp).

(4) In (6.1.9), we will show that T satisfies (Htp–5).

(5) In (6.2.1), we will show that T satisfies (Htp–6).

(6) In (6.3.1), we will show that T satisfies (Htp–7).

(7) In (6.4.4), we will show that T satisfies (BC–2).

(8) In (10.5.5), we will show that T satisfies (Pur).

(9) Dlog,pw(−,Λ) satisfies (sét-Sep) and (Stab) by construction.

(10) In (7.5.3), we will show that Dlog,pw(−,Λ) satisfies (Loc).

(11) In (7.6.3), we will show that Dlog,pw(−,Λ) is compactly generated by eSm and τ . This
implies (Adj) by [CD12, 1.3.20].

(12) In (8.3.3), we will show that Dlog,pw(−,Λ) satisfies (Htp–1), (Htp–2), (Htp–3), and
(Htp–4).

(13) In (8.4.3), we will show that Dlog,pw(−,Λ) satisfies the axiom (ii) of (2.9.1).
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Chapter 3

Some results on log geometry and
motives

3.1 Charts of log smooth morphisms

Definition 3.1.1. Let f : X → S be a morphism of fine log schemes with a fine chart
θ : P → Q. Consider the following conditions:

(i) θ is injective, the order of the torsion part of the cokernel of θgp is invertible in OX ,
and the induced morphism X → S ×AP AQ is strict étale,

(ii) θ is locally exact,

(iii) θ is Kummer.

Then we say that

(1) θ is of log smooth type if (i) is satisfied,

(2) θ is of exact log smooth type if (i) and (ii) are satisfied,

(3) θ is of Kummer log smooth type if (i) and (iii) are satisfied,

Definition 3.1.2. Let S be a fine log schemes with a fine chart P . Let θ : P → Q be a
homomorphism of fine monoids. Consider the following conditions:

(i) θ is injective and the order of the torsion part of the cokernel of θgp is invertible in
OS,

(ii) θ is locally exact,

(iii) θ is Kummer.

Then we say that

(1) θ is of log smooth over S type if (i) is satisfied,

(2) θ is of exact log smooth over S type if (i) and (ii) are satisfied,

(3) θ is of Kummer log smooth over S type if (i) and (iii) are satisfied,
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Proposition 3.1.3. Let f : X → S be a morphism of fs log schemes, and let P be a fs chart
of S. If f is log smooth, then strict étale locally on X, there is a fs chart θ : P → Q of f of
log smooth type.

Proof. By [Ogu14, IV.3.3.1], there is a fine chart θ : P → Q of f of log smooth type. We
may further assume that Q is exact at some point x of X by [Ogu14, II.2.3.2]. Then Q is
saturated since Q ∼=MX,x is saturated, so θ is a fs chart.

Proposition 3.1.4. Let f : X → S be a morphism of fs log schemes, let x be a point of
X, and let P be a fs chart of S exact at s := f(x). If f is exact log smooth (resp. Kummer
log smooth), then strict étale locally on X, there is a fs chart θ : P → Q of f of exact log
smooth type (resp. Kummer log smooth type).

Proof. Let us use the notations and hypotheses of the proof of (3.1.3). When f is exact, by
the proof of [NO10, 3.5], the homomorphism θ is critically exact. Then by [Ogu14, I.4.6.5],
θ is locally exact. Thus we are done for the case when f is exact log smooth.

When f is Kummer, the homomorphism MX,x → MS,s is Kummer. Thus the homo-
morphism θ is Kummer since P is exact at s and Q is exact at x. This proves the remaining
case.

Proposition 3.1.5. Let g : S ′ → S be a strict closed immersion of fs log schemes, and let
f ′ : X ′ → S ′ be a log smooth (resp. exact log smooth, resp. Kummer log smooth) morphism
of fs log schemes. Then strict étale locally on X ′, there is a Cartesian diagram

X ′ X

S ′ S

f ′

g′

f

g

of fs log schemes such that f is log smooth (resp. exact log smooth, resp. Kummer log smooth).

Proof. Let x′ be a point of X ′, and we put s′ = f ′(x′) and s = g(s′). We can choose a fs
chart P of S exact at s by [Ogu14, II.2.3.2]. Then P is also a fs chart of S ′ exact at s′. By
(3.1.3) and (3.1.4), there is a fs chart θ : P → Q of log smooth type (resp. exact log smooth
type, resp. Kummer log smooth type) such that the induced morphism

h′ : X ′ → S ′ ×AP AQ

is strict étale. Then by [EGA, IV.18.1.1], Zariski locally on X ′, there is a Cartesian diagram

X ′ X

S ′ ×AP AQ S ×AP AQ

h′

g′

h

g′′

such that h is strict étale and g′′ denotes the morphism induced by g. The remaining is to
put f = ph where p : S ×AP AQ → S denotes the projection.
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3.2 Change of charts

3.2.1. Let S be a fine log scheme, let α : P → Γ(S,MS) and α′ : P ′ → Γ(S,MS) be fine
charts of S, and let s be a geometric point of S. Assume that one of the following conditions
is satisfied:

(a) α is neat at s,

(b) α is exact at s, and P ′gp is torsion free.

In this setting, strict étale locally on S near s, we will explicitly construct a chart α′′ : P ′′ →
Γ(S,MS) and homomorphisms β : P → P ′′ and β′ : P ′ → P ′′ such that α′′β = α and
α′′β′ = α′.

By [Ogu14, II.2.3.9], strict étale locally on S near s, there exist homomorphisms

κ : P ′ → P, γ : P ′ →M∗
S

such that α′ = α ◦ κ+ γ. Consider the homomorphisms

β : P → P ⊕ P ′gp, a 7→ (a, 0),

β′ : P ′ → P ⊕ P ′gp, a 7→ (κ(a), a),

α′′ : P ⊕ P ′gp → Γ(S,MS), (a, b) 7→ α(a) + γgp(b)

of fs monoids. Then α′′β = α and α′′β′ = α′. The remaining is to show that α′′ is a chart of
S. This follows from the fact that the morphism

Aβ : AP⊕P ′gp → AP

is strict. So far we have discussed the way to compare charts of S. In the following two
propositions, we will discuss the way to compare charts of birational morphisms.

Proposition 3.2.2. Let S be a fs log scheme with fs charts α : P → Γ(S,MS) and α′ :
P ′ → Γ(S,MS), and let θ′ : P ′ → Q′ be a homomorphism of fs monoid with a homomorphism
ϕ : Q′gp → P ′gp such that ϕ ◦ θ′gp = id. Assume that P is neat at some geometric point
s ∈ S. We denote by κ the composition

P ′ →MS,s → P

where the first (resp. second) arrow is the morphism induced by α (resp. α′). Consider the
coCartesian diagram

P ′ P

Q′ Q

κ

θ′ θ

κ′

of fs monoids. Then strict étale locally on S, there is an isomorphism

S ×AP ′ AQ′
∼= S ×AP AQ.
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Proof. Choose homomorphisms β, β′, and α′′ as in (3.2.1). Consider the commutative dia-
gram

P ′ P ⊕ P ′gp

Q′ Q⊕ P ′gp

θ′

β′

θ′′

δ′

(3.2.2.1)

of fs monoids where θ′′ and δ′ denote the homomorphisms

θ′′ : P ⊕ P ′gp → Q⊕ P ′gp, (a, b) 7→ (θ(a), b),

δ′ : Q′ → Q⊕ P ′gp, a 7→ (κ′(a), ϕ(a)).

We will show that the above diagram is coCartesian. The induced commutative diagram

P ′gp P gp ⊕ P ′gp

Q′gp Qgp ⊕ P ′gp

θ′gp

β′gp

θ′′gp

δ′gp

of finitely generated abelian groups is coCartesian. Hence from the description of pushout
in the category of fs monoid, to show that (3.2.2.1) is coCartesian, it suffices to show that
the images of η and δ generate Q ⊕ P ′gp. This follows from the fact that κ′ : Q′ → Q is
surjective.

We also have the coCartesian diagram

P P ⊕ P ′gp

Q Q⊕ P ′gp

θ

β

θ′′

δ

of fs monoids where δ denotes the first inclusion. Then we have isomorphisms S ×AP ′ AQ′
∼=

S ×AP⊕P ′gp AQ⊕Q′gp ∼= S ×AP AQ.

Proposition 3.2.3. Let S be a fs log scheme with fs charts α : P → Γ(S,MS) and α′ :
P ′ → Γ(S,MS), and let u′ : M ′ → specP ′ be a birational homomorphism of fs monoschemes.
Assume that P is neat at some point s ∈ S. Consider the Cartesian diagram

M M ′

specP specP ′

v

u u′

specκ

of fs monoschemes where κ denotes the homomorphism defined in (3.2.2). Then there is an
isomorphism

S ×AP ′ AM ′
∼= S ×AP AM .
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Proof. Let specQ′ → M ′ be an open immersion, and let specQ → M denote the pullback
of it via v : M →M ′. Then by (3.2.2), there is an isomorphism

S ×AP ′ AQ′
∼= S ×AP AQ.

Its construction is compatible with any further open immersion specQ′1 → specQ′ → M ′,
so by gluing the isomorphisms, we get an isomorphism S ×AP ′ AM ′

∼= S ×AP AM .

3.3 Sections of log smooth morphisms

Lemma 3.3.1. Let f : X → S be a log étale morphism of fs log schemes, and let i : S → X
be its section. Then i is an open immersion.

Proof. From the commutative diagram

S X S

X X ×S X X

i

i i′

f

i

a p2

of fs log schemes where

(i) a denotes the diagonal morphism,

(ii) p2 denotes the second projection,

(iii) each square is Cartesian,

it suffices to show that a : X → X×SX is an open immersion. Since the diagonal morphism

X → X ×S X

is radiciel, it suffices to show that a is strict étale by [EGA, IV.17.9.1]. As in [EGA, IV.17.3.5],
the morphism a is log étale. Thus it suffices to show that a is strict. We will show this in
several steps.

(I) Locality on S. Let g : S ′ → S be a strict étale cover of fs log schemes, and we put
X ′ = X ×S S ′. Then the commutative diagram

X ′ X ′ ×S′ X ′

X X ×S X

of fs log schemes is Cartesian, so the question is strict étale local on S.
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(II) Locality on X. Let h : X ′ → X be a strict étale cover of fs log schemes. Then we have
the commutative diagram

X ′ ×S X ′

X ′ X ×S X ′

X X ×S X

h′′

h

a′

a′′

h′

a

of fs log schemes where

(i) the small square is Cartesian,

(ii) a′′ denotes the diagonal morphism,

(iii) h′ and h′′ denote the morphism induced by h : X ′ → X.

Assume that a′′ is strict. Then a′ is strict since h′′ is strict, so a is strict since h is a strict
étale cover. Conversely, assume that a is strict. Then a′ is strict, so a′′ is strict. Thus the
question is strict étale local on X

(III) Final step of the proof. By [Ogu14, IV.3.3.1], strict étale locally on X and S, we have
a fs chart θ : P → Q of f such that

(i) θ is injective, and the cokernel of θgp is finite,

(ii) the induced morphism X → S ×AP AQ is strict étale.

Hence by (I) and (II), we may assume that (X,S) = (AQ,AP ). Then it suffices to show that
the diagonal homomorphism

AQ → AQ ⊕AP AQ

is strict. To show this, it suffices to show a ⊕ (−a) ∈ (Q ⊕P Q)∗ for any a ∈ Q. Choose
n ∈ N+ such that na ∈ P gp. Because the summation homomorphism

P gp ⊕P gp P gp → P gp

is an isomorphism, the two elements (na) ⊕ 0 and 0 ⊕ (na) of Q ⊕P Q are equal. Thus
n(a ⊕ (−a)) = 0. Since Q ⊕P Q is a fs monoid, we have a ⊕ (−a) ∈ Q ⊕P Q. This means
a⊕ (−a) ∈ (Q⊕P Q)∗ since n(a⊕ (−a)) = 0.

Lemma 3.3.2. Let f : X → S and h : Y → X be morphisms of fine log schemes. Assume
that h is surjective. If h and fh are strict, then f is strict.

Proof. By [Ogu14, III.1.2.10], it suffices to show that the induced homomorphism

MS,f(x) →MX,x

of fine monoids is an isomorphism for any point x of X. Since h is surjective, we can choose
a ray y ∈ Y whose image in X is x. Then we have the induced homomorphisms

MS,f(x) →MX,x →MY,y
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of fine monoids. The second arrow (resp. the composition of the two arrows) is an isomor-
phism since h (resp. fh) is strict. Thus the first arrow is also an isomorphism.

Lemma 3.3.3. Let f : X → S be a morphism of fine log schemes. Then there is a maximal

open subscheme U of X such that the composition U → X
f→ S is strict.

Proof. Let U denote the set of points x ∈ X such that the induced homomorphism

MS,f(x) →MX,x

of fine monoids is an isomorphism. If U is open in X, then by [Ogu14, III.1.2.10], U is the

maximal open subscheme U of X such that the composition U → X
f→ S is strict. Thus the

remaining is to show that U is open.
By [Kat00, 1.5], there is a strict étale morphism h : Y → X of fine log schemes such that

the image of h contains U and that fh is strict. Let V denote the image of h, which can be

considered as an open subscheme of X. Then by (3.3.2), the composition V → X
f→ S is

strict where the first arrow is the open immersion. Thus V ⊂ U by the construction of U .
Then V = U , and in particular U is open in X.

Lemma 3.3.4. Let S be a fs log scheme such that the underlying scheme S is henselian,
let i : Z → S a strict closed immersion of fs log schemes, and let f : X → S be a log étale
morphism of fs log schemes. Then any partial section s : Z → X of X → S can be uniquely
extended to a section S → X.

Proof. The graph morphism t : Z → Z×SX of S is a section of the projection Z×SX → Z,
so t is an open immersion by (3.3.1). We denote by U the set of points x of X such that the
induced homomorphism

MS,f(x) →MX,x

is an isomorphism. Then by the proof of (3.3.3), U is an open subset of X, and we consider
it as an open subscheme of X. Since t is strict, t factors through Z ×S U , so we have the
commutative diagram

U

Z Si

of fs log schemes. Then since S is henselian, there exists a section of f ′ extending s′, which
makes a section of f extending s. Hence the remaining is the uniqueness of a section.

If s′ : S → X is a section of f extending s, then by (3.3.1), it is an open immersion, so
s′ should factor through U . The morphism U → S is strict étale, so a section s′ is unique
since S is henselian.

Lemma 3.3.5. Let f : X → S be a Kummer log smooth separated morphism of fs log
schemes, and let i : S → X be its section. Then i is a strict regular embedding.
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Proof. Since i is a pullback of the diagonal morphism d : X → X ×S X, it suffices to show
that d is a strict regular embedding. The new question is strict étale local on X and S, so
we may assume that f has a fs chart θ : P → Q of Kummer log smooth type by (3.1.4).
Then θ : P → Q is Kummer, so by (1.2.18), the summation homomorphism Q→ Q⊕P Q is
strict. Thus the first inclusion Q⊕P Q→ Q is also strict. In particular, the first projection
p1 : X ×S X → X is strict smooth. Then d is the section of a strict smooth separated
morphism, so d is a strict regular embedding.

Lemma 3.3.6. Let θ : P → Q be a Kummer homomorphism of fs monoids, and let η :
Q → P be a homomorphism of fs monoids such that ηθ = id. If Q is sharp, then θ is an
isomorphism.

Proof. Let q ∈ Q be an element not in θ(P ). Since θ is Q-surjective, we can choose n ∈ N+

such that nq = θ(p) for some p ∈ P . Then

n(q − θη(q)) = θ(p)− θηθ(p) = 0,

so q − θη(q) ∈ Q∗ since Q is saturated. Then q − θη(q) = 0 since Q is sharp, which proves
the assertion.

3.4 Log étale monomorphisms

Proposition 3.4.1. Let f : X → S be a log étale monomorphism of fs log schemes, and let
P be a fs chart of S. Then Zariski locally on X, there exists a chart θ : P → Q of f with
the following properties:

(i) the induced morphism X → S ×AP AQ is an open immersion,

(ii) θgp : P gp → Qgp is an isomorphism.

Proof. Let x be a point of X. By [Ogu14 IV.3.3.1], there is a strict étale neighborhood
g : X ′ → X of x such that fg has a fs chart θ′ : P → Q′ of log étale type. Let x′ ∈ X ′ be
a point over x. By [Ogu14, II.2.3.1], we may further assume that the chart Q′ → MX′ is
exact at x′. We may also assume that g is a strict étale cover because the question is Zariski
local on X.

We put Q = P gp ∩ Q′. Then Q is a fs monoid by Gordon’s lemma [Ogu14, I.2.3.17],
and the induced homomorphism P gp → Qgp is an isomorphism. The inclusion Q → Q′ is
Kummer since the inclusion P gp → Qgp is Kummer, so replacing S → AP by S×APAQ → AQ,
we may assume that θ′ is Kummer.

Since f is a monomorphism, the diagonal morphism X → X ×S X is an isomorphism,
so the morphism X ′ ×X X ′ → X ′ ×S X ′ induced by f is an isomorphism. Consider the
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commutative diagram

X ′ ×X X ′ X ′ ×S X ′

X ′ ×X X ′ X ′ ×S X ′

X X ×S X

∼

∼ v

u

d

of fs log schemes where d denotes the diagonal morphism. Since d is an immersion, u is
immersion, so v is an immersion. Consider the factorizaton

X ′ ×S X ′
w→ X ′ ×int

S X ′
w′→ X ′ ×S X ′

of v where X ′×int
S X ′ denotes the fiber product computed in the category of fine log schemes.

Then w is an immersion since v is an immersion.
If θ′ is not an isomorphism, then let a ∈ Q′− θ′(P ) be an element. For some n ∈ N+, we

have na ∈ P . Then the monoid
Q′′ := Q′ ⊕int

P Q′

is not saturated since (a,−a) /∈ Q′′ but n(a,−a) = 0 ∈ Q′′. Thus for any morphism
t : Spec k → A(Q′′,Q′′+) where k is a field, the pullback T → Spec k of the induced morphism

A(Q′′sat,Q′′+) → A(Q′′,Q′′+)

via t is not an isomorphism. This contradicts to the fact that w is an immersion. Thus θ′

is an isomorphism. Then fg is strict, so f is strict by (3.3.2) since g is a strict étale cover.
Thus f is a strict étale monomorphism, which is an open immersion by [EGA, IV.17.9.1].
This completes the proof.

Corollary 3.4.2. Let (fi : Xi → S)i∈I be a finite family of log étale monomorphisms such
that each Xi is quasi-compact, and let P be a fs chart of S. Then there is a birational
morphism u : M → specP of fs monoschemes such that for each i, the induced morphism

Xi ×AP AM → S ×AP AM

is open immersion. We may also assume that u is proper.

Proof. Note that the question is Zariski local on each Xi. By (3.4.1), for each i, Zariski
locally on Xi, there is a homomorphism θi : P → Qi of fs monoids such that θgp

i is an
isomorphism and that the induced morphism Xi → S ×AP AQi is an open immersion.

Choose a fan Σ of the dual lattice (P gp)∨ such that for each element σ of Σ, there is i ∈ I
such that σ ⊂ Q∨i . Let M denote the monoscheme associated to the fan Σ. Then for each i,
the induced morphism Xi ×AP AM → S ×AP AQ is open immersion.

If we choose a fan Σ such that its support is equal to (P gp)∨, then u : M → specP is
proper.
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Corollary 3.4.3. Let f : X → S be a proper log étale monomorphism of fs log schemes
such that X is quasi-compact, and let g : S → AP be a fs chart. Then there are a proper
birational morphism M → specP of fs monoschemes and a commutative diagram

Y AM

X

S AP

h

Au

f

g

such that the outside diagram and the upper square are Cartesian

Proof. By (3.4.2), there are a Zariski cover (vi : Xi → X)i∈I with finite I and a proper
birational morphism u : M → specP of monoschemes such that for each i ∈ I, the induced
morphism Xi ×AP AM → S ×AP AM is an open immersion. Then the induced morphism

g′ : X ×AP AM → S ×AP AM

is also an open immersion. Since f is proper, g′ should be an isomorphism. If we put
Y = S ×AP AM , then we get the wanted diagram.

3.5 Structure of Kummer homomorphisms

Lemma 3.5.1. Let P be a fine monoid such that the group P
gp

is torsion free (e.g. when P
is a fs monoid). Then there is a section P → P of the quotient homomorphism θ : P → P .

Proof. We follow the proof of [Ogu14, II.2.3.7]. Since P
gp

is torsion free, we can choose a
section

η : P
gp → P gp

of θgp. Let p be an element of P , and choose an element p′ ∈ P such that θ(p′) = p. Then

θgpη(p) = p = θgp(p′),

so η(p)− p′ ∈ ker θgp = P ∗. Thus η(p) ∈ P . This means η(P ) ⊂ P , so η induces a section of
θ.

Lemma 3.5.2. Under the notations and hypotheses of (3.5.1), the homomorphism

λ : P ⊕ P ∗ → P

induced by a section η : P → P of θ and the inclusion P ∗ → P is an isomorphism.
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Proof. Let p be an element of P . Then p = ηθ(p) + p′ for some p′ ∈ P ∗, so p = λ(θ(p), p′),
i.e., λ is surjective. For the injectivity, let (p1, p2) and (p′1, p

′
2) be elements of P ⊕ P ∗ such

that λ(p1, p2) = λ(p′1, p
′
2). Then we have

p1 = θλ(p1, p2) = θλ(p′1, p
′
2) = p′1.

The above two equations implies p2 = p′2, and this shows the injectivity of λ.

Lemma 3.5.3. Let θ : P → Q be a homomorphism of fs monoids such that θ is Kummer,
and for n ∈ N+, let µn : P → P denote the multiplication homomorphism a 7→ na. Then
there is n ∈ N+ such that in the coCartesian diagram

P Q

P Q′

θ

µn η

θ′

of fs monoids, the homomorphism θ′ is strict, i.e., θ′ is an isomorphism.

Proof. By (3.5.1), there is a section λ : P → P of the quotient homomorphism P → P .

Replacing P
θ→ Q by P

λ→ P
θ→ Q, we may assume that P is sharp.

If θ′(p) ∈ Q′∗ for some p ∈ P , then nθ(p) ∈ Q∗. Thus θ(p) ∈ Q∗, contradicting to the
assumption that θ is Kummer. Thus the remaining is to show the surjectivity of θ′.

Choose n ∈ N+ such that nQ ⊂ θ(P ) + Q∗. If q ∈ Q is an element, then nq = θ(p) + q′

for some p ∈ P and q′ ∈ Q∗. We have

nη(q)− nθ′(p) ∈ Q′∗,

so η(q) = θ′(p) in Q′ because Q′ is saturated. This shows the surjectivity of θ′.

3.5.4. We will study the structure of Kummer homomorphisms of fs monoids as follows. Let
θ : P → Q be a Kummer homomorphism of fs monoids, and let λ : P → P be a section of
the quotient homomorphism P → P . Such a section exists by (3.5.1).

By (3.5.3), there is n ∈ N+ such that in the diagram

P P Q

P P ′ Q′

λ

µn η

θ

η′

θ′

of fs monoids where each square is coCartesian and µn : P → P denotes the multiplication
homomorphism a 7→ na, the homomorphism θ′ is strict. Then by (3.5.2), we obtain the
commutative diagram

P ∼= P ⊕ P ∗ Q

P ′ ∼= P ⊕ P ′∗ P ⊕Q′∗
µn⊕µ′∗

id⊕θ′∗

of fs monoids.
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3.6 Generating motives

3.6.1. Throughout this section, we fix a full subcategory S of the category of fs log schemes
satisfying the conditions (2.0.1). We also fix a τ -twisted eSm-premotivic triangulated cate-
gory T over S generated by eSm and τ satisfying (Loc) and (sét-Sep).

3.6.2. Let S be an S -scheme with a fs chart α : P →MS. We denote by FS,α the family
of motives in T (S) of the form

MS(S ′ ×AP ′ ,Aθ′ AQ){r}

where

(i) S ′ → S is a Kummer log smooth morphism with a fs chart η : P → P ′ of Kummer
log smooth type,

(ii) θ′ : P ′ → Q is an injective homomorphism of fs monoids such that the cokernel of θ′gp

is torsion free,

(iii) θ′ is logarithmic and locally exact,

(iv) r is a twist in τ .

Proposition 3.6.3. Under the notations and hypotheses of (3.6.2), the family FS,α generates
T (S).

Proof. Let f : X → S be an exact log smooth morphism of S -schemes with a fs chart
θ : P → Q of exact log smooth type. It suffices to show that the motive MS(X){r} is
in 〈FS,α〉 where r is a twist in τ . Here, 〈FS,α〉 denotes the localizing subcategory of T (S)
generated by FS,α.

(I) Reduction of S. Note first that the question is strict étale local on S by (2.1.2). Let
i : Z → S be a strict closed immersion of S -schemes, let j : U → S denote its complement,
and let β : P →MZ denote the fs chart induced by α. Assume that the question is true for
Z and U . Then by (Loc), to show the question for S, it suffices to show that the motive

i∗MZ(Z ′ ×AP ′ AQ){r}

with the similar conditions as in (i)–(iv) of (3.6.2) is in 〈FZ,β〉.
The induced morphism Z ′ → Z ×AP AP ′ is open since it is smooth, and let W denote its

image. Choose an open immersion Y → S ×AP AP ′ such that W ∼= Z ×S Y and that ηgp is
invertible in OY . By [EGA, IV.18.1.1], we may assume Z ′ ∼= W ×Y S ′ for some strict smooth
morphism S ′ → Y since the question is Zariski local on Z ′. Then we have Z ′ ∼= Z ×S S ′. By
(Loc), we have the distinguished triangle

MS(U×SS ′×AP ′AQ) −→MS(S ′×AP ′AQ) −→ i∗MZ(Z ′×AP ′AQ) −→MS(U×SS ′×AP ′AQ)[1]

in T (S), and this proves the question since MS(U ×S S ′ ×AP ′ AQ) and MS(S ′ ×AP ′ AQ) are
in 〈FS,α〉.
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By the proof of [Ols03, 3.5(ii)], there is a stratification {Si → S} of S such that each
Si has a constant log structure. Hence applying the above argument, we reduce to the case
when α : P →MS induces a constant log structure.

(II) Construction of P ′. We will use induction on

d := max
x∈X

rkMgp

X,x.

If d = dimP , then f is Kummer log smooth, so we are done. Hence let us assume d > dimP .
We denote by P ′ the submonoid of Q consisting of elements p ∈ Q such that np ∈

θ(P ) + Q∗ for some n ∈ N+. Then P ′ is a fs monoid by Gordon’s lemma [Ogu14, I.2.3.17].
Let θ′ : P ′ → Q denote the inclusion. Then the cokernel of θ′gp is torsion free by construction.
We will check the conditions (ii) and (iii) of (3.6.2). Since P ′gp = Qgp, θ′ is logarithmic. For

the locally exactness, it suffices to show that θ′Q : P
′
Q → QQ is integral. This follows from

[Ogu14, I.4.5.3(2), I.4.5.3(1)]. The remaining is to show that θ′gp is torsion free.
Let G be a maximal θ′-critical face of Q. Then we have (Q)gp

Q = (P ′)gp
Q ⊕ (G)gp

Q by
[Ogu14, I.4.6.6]. Thus, for any q ∈ Qgp such that nq ∈ P ′gp for some n ∈ N+, the image of
q in P ′)gp

Q ⊕ (G)gp
Q should be in P ′)gp

Q . This means nq + p′ ∈ P ′ + Q∗ for some p′ ∈ P ′, so
n(q+ p) ∈ P ′+Q∗. Thus q+ p ∈ P ′ by the construction of P ′, so q ∈ P ′gp. This proves that
θ′gp is torsion free.

(III) Construction of S ′. The induced morphism X → S ×AP AP ′ is open by [Nak09, 5.7],
and let Y denote its image. Then Y has the chart P ′. Note that the induced morphism
Y → S is Kummer log smooth and that the order of the torsion part of the cokernel of ηgp

is invertible in OY .
The closed immersion Y ×AP ′ A(P ′,P ′+) → Y is an isomorphism since S has a constant log

structure. Thus the projection
Y ×AP ′ A(Q,Q+) → Y

of underlying schemes is an isomorphism since θ′ : P ′ → Q is logarithmic. Consider the
pullback

g′ : X ×AQ A(Q,Q+) → Y ×AP ′ A(Q,Q+)

of the induced morphism h : X → Y ×AP ′ AQ. Since θ is exact log smooth type, h is strict
étale, so g′ is also strict étale. Then there is a unique Cartesian diagram

X ×AQ A(Q,Q+) Y ×AP ′ A(Q,Q+)

S ′ Y

g′

g

of S -schemes where the right vertical arrow is the projection. The morphism g is automati-
cally strict étale. This verifies the condition (i) of (3.6.2), so we have checked the conditions
(i)–(iii) of (loc. cit) for our constructions of P ′ and S ′.
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(IV) Final step of the proof. Then we have the commutative diagram

S ′ ×AP ′ AQ S ′ ×AP ′ A(Q,Q+) X ×AQ A(Q,Q+) X

Y ×AP ′ A(Q,Q+) Y ×AP ′ AQ

S ′ Y

∼

v

p
g

of S -schemes. Note that the projection p is log smooth by the conditions (ii) and (iii) of
(loc. cit). Let u denote the complement of the closed immersion v : Y ×AP ′ A(Q,Q+) → Y .
Then by (Loc), we have distinguished triangles

p]u]u
∗MY×AP ′

AQ(X) −→MS(X) −→ p]v∗v
∗MY×AP ′

AQ(X) −→ p]u]u
∗MY×AP ′

AQ(X)[1],

p]u]u
∗MY×AP ′

AQ(S ′ ×AP ′ AQ) −→MS(S ′ ×AP ′ AQ) −→ p]v∗v
∗MY×AP ′

AQ(S ′ ×AP ′ AQ) −→ p]u]u
∗MY×AP ′

AQ(S ′ ×AP ′ AQ)[1].

Let r be a twist in τ . We have isomorphisms

v∗MY×AP ′
AQ(X) ∼= MY×AP ′

A(Q,Q+)
(X ×AQ A(Q,Q+))

∼= MY×AP ′
A(Q,Q+)

(S ′ ×AP ′ A(Q,Q+))

∼= v∗MY×AP ′
AQ(S ′ ×AP ′ AQ),

and MS(S ′ ×AP ′ AQ) is in 〈FS,α〉 by definition. Moreover, by induction on d,

p]u]u
∗MY×AP ′

AQ(X), p]u]u
∗MY×AP ′

AQ(S ′ ×AP ′ AQ){r}

are in 〈FS,α〉. Thus from the above triangles, we conclude that MS(X){r} is also in 〈FS,α〉.

Corollary 3.6.4. Assume that T satisfies (Htp–3). Let S be an S -scheme with a fs chart
α : P →MS. Consider the family of motives in T (S) of the form

MS(S ′){r}

where r is a twist and S ′ → S is a Kummer log smooth morphism with a fs chart θ : P → P ′

of Kummer log smooth type. Then the family generates T (S).

Proof. Let S ′ → S be a Kummer log smooth morphism with a fs chart θ : P → P ′ of
Kummer log smooth type, let θ′ : P ′ → Q is a logarithmic, locally exact, and injective
homomorphism of fs monoids such that the cokernel of θ′gp is torsion free, and let G be a
θ′-critical face of Q. Then the induced morphism

MS(S ′ ×AP ′ ,Aθ′ AQG)→MS(S ′ ×AP ′ ,Aθ′ AQ)
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in T (S) is an isomorphism by (Htp–3). Since the induced morphism

S ′ ×AP ′ ,Aθ′ AQG → S

is Kummer log smooth and has the fs chart P → QG of Kummer log smooth type, we are
done.
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Chapter 4

Purity

4.0.1. Throughout this chapter, we fix a full subcategory S of the category of fs log schemes
satisfying the conditions of (2.0.1). We also fix a eSm-premotivic triangulated category
satisfying (Adj), (Htp–1), (Loc), and (Stab).

4.1 Thom transformations

Definition 4.1.1. Let f : X → S be a morphism of S -schemes, and let i : S → X be its
section. Assume that i is a strict regular embedding. We have the following definitions.

(1) BSX denotes the blow-up of X with center S,

(2) BS(X × A1) denotes the blow-up of X × A1 with center S × {0},
(3) DSX = BS(X × A1)−BSX,

(4) NSX denotes the normal bundle of S in X.

The morphisms S
i→ X

f→ S induces the morphisms DSS → DSX → DSS, which is

S × A1 → DSX → S × A1 (4.1.1.1)

since DSS = S × A1.

Definition 4.1.2. Let h : X → Y and g : Y → S be morphisms of S -schemes, and we put
f = gh. Consider a commutative diagram

D0 D

X Y ×S X X

u0

b

u
q2

a p2

of S -schemes where a denotes the graph morphism and p2 denotes the second projection.
Assume that b is proper. Then we define the following functors:

Σg,f := p2]a∗, Ωg,f := a!p∗2, Ωg,f,D := u0∗b
!q∗2.
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The third notation depends on the morphisms, so we will use it only when no confusion
arises.

When b is a strict regular embedding, consider the diagrams

D0 D X

D0 × A1 DD0D X × A1

D0 X

b

γ1 β1

q2

α1

d

φ

s2

π

D0 ND0D X

D0 × A1 DD0D X × A1

D0 X

e

γ0 β0

t2

α0

d

φ

s2

π

(4.1.2.1)

of S -schemes where

(a) each square is Cartesian,

(b) α0 denotes the 0-section, and α1 denotes the 1-section,

(c) d and s2 are the morphisms constructed by (4.1.1.1),

(d) φ and π denotes the projections.

Then we define the following functors:

Ωd
g,f,D := u0∗π∗d

!s∗2π
∗, Ωn

g,f,D := u0∗e
!t∗2.

Now, assume u0 = id. Then we define the following functor:

Ωo
g,f,D := t′NXD.

Here, t′NXD is the right adjoint of an orientation of NXD, and it exists by (2.8.2). By (2.5.3),
the functor Ωn

g,f,D is an equivalence, and by a theorem of Morel and Voevodsky [CD12,

2.4.35], Ωd
g,f,D is also an equivalence. We denote by

Σd
g,f,D, Σn

g,f,D, Σo
g,f,D

the left adjoints (or equivalently right adjoints) of Ωd
g,f,D, Ωn

g,f,D, and Ωo
g,f,D respectively.

When h is the identity morphism, we simply put

Σf := Σf,f , Ωf := Ωf,f , Ωf,D := Ωf,f,D,

Ωd
f,D := Ωd

f,f,D, Ωn
f,D := Ωn

f,f,D, Ωo
f,D := Ωo

f,f,D,

Σd
f,D := Σd

f,f,D, Σn
f,D := Σn

f,f,D, Σo
f,D := Σo

f,f,D,

and when a is a strict regular embedding, we simply put

Σd
f := Σd

f,X×SX , Σn
f := Σn

f,X×SX .

These functors are called Thom transformations.
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4.1.3. Under the notations and hypotheses of (4.1.2), we will frequently assume that u0 = id
and there is a commutative diagram

I

X D X

w
r2c

b q2

with the following properties:

(i) w is an open immersion,

(ii) c is a strict closed immersion,

(iii) r2 is a strict smooth morphism.

4.2 Transition transformations

4.2.1. In this section, we will develop various functorial properties of Thom transformations.

4.2.2. Under the notations and hypotheses of (4.1.2), consider a commutative diagram

E0 E

D0 D

X Y ×S X X

v0

c

v

r2

u0

b

u
q2

a p2

of S -schemes, and assume that b and c are proper. Then we have a natural transformation

TD,E : Ωg,f,E −→ Ωg,f,D

in the below two cases. This is called a transition transformation. Here, when D = Y ×S X,
we put TY×SX,E = TE for simplicity.

(i) Assume that v0 is the identity and that the exchange transformation

id∗b! Ex−→ c!v∗

is defined and an isomorphism. Then the natural transformation Ωg,f,E

TD,E−→ Ωg,f,D is
given by

u0∗c
!r∗2

∼−→ u0∗c
!v∗q∗2

Ex−1

−→ u0∗b
!r∗2.

Note that when v is an open immersion and (Supp) is satisfied, then the condition is
satisfied.
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(ii) Assume that the unit id
ad−→ v∗v

∗ is an isomorphism. Then the natural transformation

Ωg,f,E

TD,E−→ Ωg,f,D is given by

u0∗v0∗c
!r∗2

Ex−→ u0∗b
!v∗r

∗
2
∼−→ u0∗b

!v∗v
∗q∗2

ad−1

−→ u0∗b
!q∗2.

(iii) Assume that v is strict étale, v0 is the identity, and (Supp) is satisfied. The purity
transformation

v! qnv−→ v∗

whose description is given in (4.4.2) is an isomorphism by [CD12, 2.4.50(3)]. Then

the natural transformation Ωg,f,E

TD,E−→ Ωg,f,D is given by

u0∗c
!r∗2

∼−→ u0∗c
!v∗q∗2

(qnv )−1

−→ u0∗c
!v!q∗2

∼−→ u0∗b
!q∗2.

Note that TD,E is an isomorphism.

4.2.3. Under the notations and hypotheses of (4.1.2), let η : X ′ → X be a morphism of
S -schemes, and we put f ′ = fη. Consider the commutative diagram

D′0 D′

X ′ Y ×S X ′ X ′

D0 D

X Y ×S X X

u′0
η0

b′

u′
q′2

ρ

a′ p′2

η

u0

b

u
q2

η

a

η′

p2

of S -schemes where the upper layer is a pullback of the lower layer. Then we have the
natural transformations

η∗Ωg,f,D
Ex−→ Ωg,f ′,D′η

∗, Ωg,f,Dη∗
Ex−→ η∗Ωg,f ′,D′ , Ωg,f ′,D′η

! Ex−→ η!Ωg,f,D

given by

η∗u0∗b
!q∗2

Ex−→ u′0∗η
∗
0b

!q∗2
Ex−→ u′0∗b

′!ρ∗q∗2
∼−→ u′0∗b

′!q′∗2 η
∗,

u0∗b
!q∗2η∗

Ex−→ u0∗b
!ρ∗q

′∗
2
Ex−1

−→ u0∗η0∗b
′!q′∗2

∼−→ η∗u
′
0∗b
′!q′∗2 ,

u′0∗b
′!q′∗2 η

! Ex−→ u′0∗b
′!ρ!q∗2

∼−→ u′0∗η
!
0b

!q∗2
Ex−→ η!u0∗b

!q∗2

respectively. These are called exchange transformations. Here, to define the first (resp.
second, resp. third) natural transformation, we assume the condition (CE∗) (resp. (CE∗),
resp. (CE!)) whose definition is given below:
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(CE∗) The exchange transformation η∗0b
! Ex−→ b′!ρ∗ is defined.

(CE∗) The exchange transformation η0∗b
′! Ex−→ b!ρ∗ is an isomorphism.

(CE!) (η is proper) or (η is separated and (Supp) is satisfied). Moreover, the exchange

transformation q′∗2 η
! Ex−→ ρ!q∗2 is defined.

For example, if b is a strict closed immersion, then by (2.6.2), (CE∗) and (CE∗) are satisfied.
On the other hand, if η is a strict closed immersion, then by (2.6.2), (CE!) is satisfied.

When b is a strict regular embedding, we similarly have the natural transformations

η∗Ωd
g,f,D

Ex−→ Ωd
g,f ′,D′η

∗, Ωd
g,f,Dη∗

Ex−→ η∗Ω
d
g,f ′,D′ ,

η∗Ωn
g,f,D

Ex−→ Ωn
g,f ′,D′η

∗, Ωn
g,f,Dη∗

Ex−→ η∗Ω
n
g,f ′,D′

because the corresponding versions (CE∗) and (CE∗) are always satisfied since the mor-
phisms d : D0 × A1 → DD0D and e : D0 → ND0D are strict regular embeddings. Since t2
is exact log smooth, if (η is proper) or (η is separated and (Supp) is satisfied), we have the
natural transformation

Ωn
g,f ′,D′η

! Ex−→ η!Ωn
g,f,D.

When s2 is exact log smooth, if (η is proper) or (η is separated and (Supp) is satisfied), we
also have the natural transformation

Ωd
g,f ′,D′η

! Ex−→ η!Ωd
g,f,D

because the corresponding version (CE!) is satisfied. However, s2 may not be exact log
smooth morphism. In this case, assume that (Supp) is satisfied and that the conditions of
(4.1.3) are satisfied. We put I ′ = I ×D D′, and consider the diagram

Ωg,f ′,I′η
! η!Ωg,f,I

Ωg,f ′,D′η
! η!Ωg,f,D

TD′,I′

Ex

TD,I

of functors. The horizontal arrow is defined since the induced morphism DXI → X × A1 is
strict smooth. The vertical arrows are isomorphism by (4.2.2). Now, the definition of

Ωd
g,f ′,D′η

! Ex−→ η!Ωd
g,f,D

is given by the composition

Ωg,f ′,D′η
!

(TD′,I′ )
−1

−→ Ωg,f ′,I′η
! Ex−→ η!Ωg,f,I

TD,I−→ η!Ωg,f,D.

Lemma 4.2.4. Under the notations and hypotheses of (4.2.3), the exchange transformation

Ωn
g,f,Dη∗

Ex−→ η∗Ω
n
g,f ′,D′

is an isomorphism.
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Proof. It follows from (eSm-BC) because the morphism ND0D → X in (4.1.2.1) is exact log
smooth.

Lemma 4.2.5. Under the notations and hypotheses of (4.2.3), assume that u0 is the identity.
If η is proper, then the exchange transformation

Ωn
g,f ′,D′η

! Ex−→ η!Ωn
g,f,D

is an isomorphism.

Proof. Note first that Ωn
g,f,D and Ωn

g,f ′,D′ are equivalences of categories by (2.8.2). Consider
the natural transformation

η!Σn
g,f ′,D′

Ex−→ Σn
g,f,Dη

!

given by the left adjoint of the exchange transformation

Ωn
g,f,Dη∗

Ex−→ η∗Ω
n
g,f ′,D′ .

Then consider the commutative diagram

Ωn
g,f ′,D′η

!Σn
g,f ′,D′ η!Ωn

g,f,DΣn
g,f ′,D′

Ωn
g,f ′,D′Σ

n
g,f,Dη

! η!

Ex

Ex ad′

ad′

of functors. By (4.2.4), the left vertical arrow is an isomorphism. The right vertical and
lower horizontal arrows are also isomorphisms since Ωn

g,f,D and Ωn
g,f ′,D′ are equivalences of

categories. Thus Ωn
g,f,D and Ωn

g,f ′,D′ are equivalences of categories. Then the conclusion
follows from the fact that Σn

g,f ′,D′ is an equivalence of categories.

Lemma 4.2.6. Under the notations and hypotheses of (4.2.3), assume that u0 is the identity.
if q2 is strict smooth separated and η is separated, then the exchange transformation

Ωg,f ′,D′η
! Ex−→ η!Ωg,f,D

is defined and an isomorphism.

Proof. It is a direct consequence of (2.5.10).

Lemma 4.2.7. Under the notations and hypotheses of (4.2.3), assume that u0 is the identity.
if η is an open immersion and (Supp) is satisfied, then the exchange transformation

Ωn
g,f ′,D′η

! Ex−→ η!Ωn
g,f,D

is an isomorphism.

Proof. It is a direct consequence of (Supp).
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Lemma 4.2.8. Under the notations and hypotheses of (4.2.3), assume that u0 is the identity.
if η is separated and (Supp) is satisfied, then then the exchange transformation

Ωn
g,f ′,D′η

! Ex−→ η!Ωn
g,f,D

is an isomorphism.

Proof. It follows from (4.2.5) and (4.2.7).

4.2.9. Under the notations and hypotheses of (4.1.2), we have the natural transformations

Ωn
g,f,D

(Tn)−1

←− Ωd
g,f,D

T d−→ Ωg,f,D

whose descriptions are given below. These are called transition transformations again.

(1) The natural transformation

T d : Ωd
g,f,D −→ Ωg,f,D

is given by

π∗Ωg×A1,f×A1,DXDπ
∗ ad−→ π∗α1∗α

∗
1Ωg×A1,f×A1,DXDπ

∗ ∼−→ u0∗α
∗
1Ωg×A1,f×A1,DXDπ

∗

Ex−→ Ωg,f,Dα
∗
1π
∗ ∼−→ Ωg,f,D.

(2) The natural transformation

(T n)−1 : Ωd
g,f,D −→ Ωn

g,f,D

is given by

π∗Ωg×A1,f×A1,DXDπ
∗ ad−→ π∗α0∗α

∗
0Ωg×A1,f×A1,DXDπ

∗ ∼−→ α∗0Ωg×A1,f×A1,DXDπ
∗

Ex−→ Ωn
g,f,Dα

∗
0π
∗ ∼−→ Ωn

g,f,D.

When (T n)−1 is an isomorphism, its inverse is denoted by T n.

When u0 is the identity, we also have the natural transformation

T o : Ωo
g,f,D −→ Ωn

g,f,D

given by the right adjoint of an orientation of NXD. It depends on the orientation.

4.2.10. Under the notations and hypotheses of (4.2.3), consider the commutative diagram

E ′0 E ′

D′0 D′ X ′

E E

D0 D X

ψ0

v′0

c′

v′

r′2

ψ
b′ q′2

ηc

v0 v

r2

b

ρ0

ρ

q2
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of S -schemes where each small square is Cartesian. Assume that one of the conditions (i)
and (ii) of (4.2.2) is simultaneously satisfied for both (D,E) and (D′, E ′). Consider the
diagrams

η∗Ωg,f,E η∗Ωg,f,D

Ωg,f ′,E′η
∗ Ωg,f ′,D′η

∗

TD,E

Ex Ex

TD′,E′

Ωg,f,Eη∗ Ωg,f,Dη∗

η∗Ωg,f ′,E′ η∗Ωg,f ′,D′

TD,E

Ex Ex

TD′,E′

Ωg,f ′,E′η
! Ωg,f ′,D′η

!

η!Ωg,f,E Ωg,f,D

TD′,E′

Ex Ex

TD,E

of functors. Here, in the first (resp. second, resp. third) case, we assume the condition (CE∗)
(resp. (CE∗), resp. (CE!)) in (4.2.3) for η and η′. We will show that the above diagrams
commute under suitable conditions. If the condition (i) of (4.2.2) is satisfied, then note that
v0 and v′0 are the identity, and the assertion can be checked by considering the diagrams

ρ∗0c
!r∗2 ρ∗0c

!v∗q∗2 ρ∗0b
!q∗2

c′!ψ∗r∗2 c′!ψ∗v∗q∗2

c′!v′∗ρ∗q∗2 b′!ρ∗q∗2

c′!r′∗2 η
∗ c′!v′∗q′∗2 η

∗ b′!q′∗2 η
∗

∼

Ex

Ex−1

Ex

Ex
∼

∼

∼

Ex−1

∼ ∼

∼ Ex−1

c!r∗2η∗ c!v∗q∗2η∗ b!q∗2η∗

c!v∗ρ∗q
′∗
2 b!ρ∗q

′∗
2

c!ψ∗r
′∗
2 c!ψ∗v

′∗q′∗2

ρ0∗c
′!r′∗2 ρ0∗c

′!v′∗q′∗2 ρ0∗b
′!q′∗2

∼

Ex

Ex

Ex−1

Ex

Ex−1

Ex

Ex−1∼

Ex−1 Ex−1

∼ Ex−1

c′!r′∗2 η
! c′!v′∗q′∗2 η

! b′!q′∗2 η
!

c′!v′∗ρ!q∗2 b′!ρ!q∗2

c′!ψ!r∗2 c′!ψ!v∗q∗2

ρ!
0c

!r∗2 ρ!
0c

!v∗q∗2 ρ!
0b

!q∗2

∼

Ex

Ex−1

Ex Ex

Ex−1

Ex

∼∼

∼ ∼

∼ Ex−1

of functors. If the condition (ii) of (loc. cit) is satisfied, then the assertion can be checked
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by considering the diagrams

ρ∗0v0∗c
!r∗2 ρ∗0b

!v∗r
∗
2 ρ∗0b

!v∗v
∗q∗2 ρ∗0b

!q∗2

v′0∗ψ
∗
0c

!r∗2 b′!ρ∗v∗r
∗
2 b′!ρ∗v∗v

∗q∗2

v′0∗c
′!ψ∗r∗2 b′!v′∗ψ

∗r∗2 b′!v′∗v
′∗ρ∗q∗2 b′!ρ∗q∗2

v′0∗c
′!r′∗2 η

∗ b′!v′∗r
′∗
2 η
∗ b′!v′∗v

′∗q′∗2 η
∗ b′!q′∗2 η

∗

Ex

Ex

∼

Ex Ex

ad−1

Ex

Ex

∼

Ex Ex
ad−1

Ex

∼ ∼

∼

∼

ad−1

∼

Ex ∼ ad−1

v0∗c
!r∗2η∗ b!v∗r

∗
2η∗ b!v∗v

∗q∗2η∗ b!q∗2η∗

v0∗c
!ψ∗r

′∗
2 b!v∗ψ∗r

′∗
2 b!ρ∗v

′
∗v
′∗q′∗2 b!ρ∗q

′∗
2

v0∗ψ0∗c
′!r′∗2 b!ρ∗v

′
∗r
′∗
2

ρ0∗v
′
0∗c
′!r′∗2 ρ0∗b

′!v′∗r
′∗
2 ρ0∗b

′!v′∗v
′∗q′∗2 ρ0∗b

′!q′∗2

Ex

Ex

Ex

∼ ad−1

Ex

Ex−1

Ex

∼

∼

Ex−1

ad−1

Ex−1

∼ Ex−1

Ex ∼ ad−1

v′0∗c
′!r′∗2 η

! b′!v′∗r
′∗
2 η

! b′!v′∗v
′∗q′∗2 η

! b′!q′∗2 η
!

v′0∗c
′!ψ!ψ∗r

′∗
2 η

! b′!v′∗ψ
!ψ∗r

′∗
2 η

! b′!ρ!v∗ψ∗r
′∗
2 η

! b′!ρ!ρ∗v
′
∗v
′∗q′∗2 η

! b′!ρ!ρ∗q
′∗
2 η

!

v′0∗c
′!ψ!r∗2η∗η

! b′!v′∗ψ
!r∗2η∗η

! b′!ρ!v∗r
∗
2η∗η

! b′!ρ!v∗v
∗q∗2η∗η

! b′!ρ!q∗2η∗η
!

v′0∗c
′!ψ!r∗2 b′!v′∗ψ

!r∗2 b′!ρ!v∗r
∗
2 b′!ρ!v∗v

∗q∗2 b′!ρ!q∗2

v′0∗η
!c!r∗2

ρ!
0v0∗c

!r∗2 ρ!
0b

!v∗r
∗
2 ρ!

0b
!v∗v

∗q∗2 ρ!b!q∗2

ad

Ex

ad

∼

ad

ad−1

ad

Ex−1

Ex

Ex−1

Ex

Ex−1

∼ ad−1

Ex−1

Ex

ad′ ad′

Ex

ad′

∼

ad′

ad−1

ad−1

∼

Ex Ex ∼

∼

ad−1

∼

Ex

Ex ∼ ad−1

of functors. When b is a strict regular embedding, we similarly have the commutative
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diagrams

η∗Ωd
g,f,D η∗Ωg,f,D

Ωd
g,f ′,D′η

∗ Ωg,f ′,D′η
∗

T d

Ex Ex

T d

Ωd
g,f,Dη∗ Ωg,f,Dη∗

η∗Ω
d
g,f ′,D′ η∗Ωg,f ′,D′

T d

Ex Ex

T d

Ωd
g,f ′,D′η

! Ωg,f ′,D′η
!

η!Ωd
g,f,D Ωg,f,D

T d

Ex Ex

T d

η∗Ωn
g,f,D η∗Ωd

g,f,D

Ωn
g,f ′,D′η

∗ Ωd
g,f ′,D′η

∗

(Tn)−1

Ex Ex

(Tn)−1

Ωn
g,f,Dη∗ Ωd

g,f,Dη∗

η∗Ω
n
g,f ′,D′ η∗Ω

d
g,f ′,D′

(Tn)−1

Ex Ex

(Tn)−1

Ωn
g,f ′,D′η

! Ωd
g,f ′,D′η

!

η!Ωn
g,f,D Ωd

g,f,D

(Tn)−1

Ex Ex

(Tn)−1

of functors. Here, in the third and sixth diagram, we assume that (η and η′ are proper) or
(η and η′ are separated and (Supp) is satisfied).

4.2.11. Under the notations and hypotheses of (4.2.2), if b and c are strict regular embed-
dings, we have the commutative diagrams

E0 E

D0 D X

E0 × A1 DE0E

D0 × A1 DD0D X × A1

E0 NE0E

D0 ND0D X

E0 × A1 DE0E

D0 × A1 DD0D X × A1

of S -schemes as in (4.1.2). Thus we similarly obtain the natural transformations

Ωd
g,f,E −→ Ωd

g,f,E, Ωn
g,f,E −→ Ωn

g,f,E
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as in (4.2.2) when one of the conditions (i)–(iii) of (loc. cit) is satisfied. These are again
denoted by TD,E and called transition transformations. We also have the commutative
diagram

Ωn
g,f,E Ωd

g,f,E Ωg,f,E

Ωn
g,f,D Ωd

g,f,D Ωg,f,D

TD,E

(Tn)−1

TD,E

T d

TD,E

(Tn)−1
T d

of functors. Note that in the case (iii), the horizontal arrows are isomorphisms as in (loc.
cit). In the case (i), if (Supp) is satisfied, then the horizontal arrows are isomorphisms.

4.2.12. Under the notations and hypotheses of assume that the conditions of (4.1.3) are
satisfied. Consider the commutative diagram

Ωn
g,f,I Ωd

g,f,I Ωg,f,I

Ωn
g,f,D Ωd

g,f,D Ωg,f,D

TD,I

(Tn)−1

TD,I

T d

TD,I

(Tn)−1
T d

of functors. By the proof of [CD12, 2.4.35], the upper horizontal arrows are isomorphisms.
The vertical arrows are isomorphisms by (4.2.2(i)), so the lower horizontal arrows are also
isomorphisms. In particular, the natural transformation

Ωn
g,f,D

(Tn)−1

←− Ωd
g,f,D

has the inverse T n.

4.2.13. Under the notations and hypotheses of (4.2.2), assume that we have a commutative
diagram

F0 F

E0 E

D0 D X

c′

w0

r′2

w

c

v0 v
r2

b q2

of S -schemes and that w : F → E and v : E → D simultaneously satisfy one of the
conditions (i)–(iii) of (loc. cit). Then the composition vw : F → D also satisfies it, and the
diagram

Ωg,f,F Ωg,f,E

Ωg,f,D

TE,F

TD,F TD,E

73



of functors commutes.
Assume further that b, c, and d are strict regular embeddings. Then we similarly have

the commutative diagrams

Ωd
g,f,F Ωd

g,f,E

Ωd
g,f,D

TE,F

TD,F TD,E

Ωn
g,f,F Ωn

g,f,E

Ωn
g,f,D

TE,F

TD,F TD,E

of functors.

4.3 Composition transformations

4.3.1. Let h : X → Y and g : Y → S be morphisms of S -schemes, and we put f = gh.
Consider a commutative diagram

X

D′ D

X ×Y X X ×S X

D′′

X Y ×S X X

bb′

u′

ρ

q′2

ρ′
u

q2

p′2

a′

ϕ

p2

a

u′′
q′′2

a′′

b′′

ϕ′

p′′2

of S -schemes. Assume that the exchange transformation

q′∗2 b
′′! Ex−→ ρ!ρ′∗ (4.3.1.1)

is defined. For example, when the diagram

D′ D

X D′′

q′2

ρ

ρ′

b′′

is Cartesian and the exchange transformation

b′′∗ρ′∗
Ex−→ q′2∗ρ

∗
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is an isomorphism, (4.3.1.1) is defined. Then the composition transformation

Ωh,D′Ωg,f,D′′
C−→ Ωf,D

is given by

b′!q′∗2 b
′′!q′′∗2

Ex−→ b′!ρ!ρ′∗q′′∗2
∼−→ b!q!

2.

Note that it is an isomorphism when the first arrow is an isomorphism. For example, if
(Supp) is satisfied and ρ′ is strict smooth separated, then the first arrow is an isomorphism
by (2.5.10).

4.3.2. Under the notations and hypotheses of (4.3.1), consider a commutative diagram

X

E ′ E

D′ D

E ′′

X D′′ X

cc′

v′

ψ

r′2

ψ′
v

r2

q′2

b′

ρ

q2

b

v′′

r′′2

b′′

c′′

ρ′

q′′2

of S -schemes. Assume that the exchange transformation

r′∗2 c
′′! Ex−→ ψ!ψ′∗

is also defined. Then in the below two cases, we will show that the diagram

Ωh,E′Ωg,f,E′′ Ωf,E

Ωh,D′Ωg,f,D′′ Ωf,D

C

TD′,E′TD′′,E′′ TD,E

C

(4.3.2.1)

of functors commutes where the horizontal arrows are define in (loc. cit).

(i) Assume that the exchange transformations

id∗b! Ex−→ c!v∗, id∗b′!
Ex−→ c′!v′∗, id∗b′′!

Ex−→ c′′!v′′∗

are defined and isomorphisms. Assume further that the exchange transformation

v′∗ρ! Ex−→ ψ!v∗
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is defined. Then the commutativity of (4.3.2.1) is equivalent to the commutativity of
the big outside diagram of the diagram

b′!q′∗2 b
′′!q′′∗2 b′!ρ!ρ′∗q′′∗2 b!q∗2

c′!v′∗q′∗2 b
′′!q′′∗2 c′!v′∗ρ!ρ′∗q′′∗2

c′!v′∗q′∗2 c
′′!v′′∗q′′∗2 c′!ψ!v∗ρ′∗q′′∗2 c!v∗q∗2

c′!r′∗2 c
′′!r′′∗2 c′!ψ!ψ′∗r′′∗2 c!r∗2

Ex

Ex

Ex

∼

Ex
Ex

Ex Ex

∼

∼

∼ ∼

Ex ∼

of functors. It is true since each small diagram commutes.

(ii) Assume that the units

id
ad−→ v∗v

∗, id
ad−→ v′∗v

′∗, id
ad−→ v′′∗v

′′∗

are isomorphisms. Then the commutativity of (4.3.2.1) is equivalent to the commu-
tativity of the big outside diagram of the diagram

c′!r′∗2 c
′′!r′′∗2 c′!ψ!ψ∗r

′∗
2 c
′′!r′′∗2 c′!ψ!ψ′∗c′′∗c

′′!r′′∗2 c′!ψ!ψ′∗r′′∗2 c!r∗2

c′!v′!v′∗r
′∗
2 c
′′!r′′∗∗ c′!ψ!v!v∗ψ∗r

′∗
2 c
′′!r′′∗2 c′!ψ!v!v∗ψ

′∗c′′∗c
′′!r′′∗2 c′!ψ!v!v∗ψ

∗r′′∗2 c!v!v∗r
∗
2

b′!v′∗v
′∗q′∗2 c

′′!r′′∗2 b′!ρ!ρ∗v
′
∗v
′∗q′∗2 c

′′!r′′∗2 c′!ψ!v!ρ′∗v′′∗c
′′
∗c
′′!r′′∗2 c′!ψ!v!ρ′∗v′′∗r

′′∗
2

b′!q′∗2 c
′′!r′′∗2 b′!ρ!ρ∗q

′∗
2 c
′′!r′′∗2 b′!ρ!ρ′∗b′′∗c

′′!r′′∗2 b′!ρ!ρ′∗v′′∗v
′′∗q′′∗2

b′!q′∗2 c
′′!v′′!v′′∗r

′′∗
2 b′!ρ!ρ∗q

′∗
2 c
′′!v′′!v′′∗r

′′∗
2 b′!ρ!ρ′∗b′′∗c

′′!v′′!v′′∗r
′′∗
2

b′!q′∗2 b
′′!v′′∗v

′′∗q′′∗2 b′!ρ!ρ∗q
′∗
2 b
′′!v′′∗v

′′∗q′′∗2 b′!ρ!ρ′∗b′′∗b
′′!v′′∗b

′′∗q′′∗2 b!v∗v
∗q∗2

b′!q′∗2 b
′′!q′′∗2 b′!ρ!ρ∗q

′∗
2 b
′′!q′′∗2 b′!ρ!ρ′∗b′′∗b

′′!q′′∗2 b′!ρ!ρ′∗q′′∗2 b!q∗2

ad

ad

Ex−1

ad

ad′

ad ad

∼

ad

∼

Ex−1

∼

ad′

Ex

∼

Ex

∼

ad

ad−1 ad−1

ad′

∼ ∼

ad

ad

Ex−1

ad ad

ad−1

ad

∼

Ex−1

∼ ∼

ad

ad−1

Ex−1

ad−1 ad−1

ad′

ad−1

ad Ex−1 ad′ ∼

of functors. It is true since each small diagram commutes.

4.4 Purity transformations

4.4.1. In this section, we will introduce purity transformations and their functorial proper-
ties.
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Definition 4.4.2. Let f : X → S be an exact log smooth morphism of S -schemes. Assume
that (f is proper) or (f is separated and T satisfies (Supp)). We also assume that we have
a commutative diagram

D

X X ×S X X

u
q2b

a p2

of S -schemes where

1. b is a strict regular embedding,

2. u satisfies one of the conditions (i)–(iii) of (4.2.2).

Then we denote by
qnf,D : Ωn

f,Df
! −→ f ∗, qof,D : Ωo

ff
! −→ f ∗

the compositions

f ∗
qf−→ Ωff

! TD−→ Ωf,Df
! T d−→ Ωd

f,Df
! Tn−→ Ωn

f,Df
!,

f ∗
qf−→ Ωff

! TD−→ Ωf,Df
! T d−→ Ωd

f,Df
! Tn−→ Ωn

f,Df
! T o−→ Ωo

f,Df
!

respectively. Their left adjoints are denoted by

pnf,D : f] −→ f!Σ
n
f,D, pof,D : f] −→ f!Σ

o
f,D

respectively.

4.4.3. Let h : X → Y and g : Y → S be separated P-morphisms of S -schemes, and we
put f = gh. Then we have the commutative diagram

X

X ×Y X X ×S X

X Y ×S X X

a′
a

p2

ϕ

ϕ′
p2

a′′ p′′2

of S -schemes, and the exchange transformation

p′∗2 a
′′! Ex−→ ϕ!ϕ′∗

is defined by (eSm-BC). Thus by (4.3.1), we have the composition transformation

C : ΩhΩg,f → Ωf .

77



Then the diagram

Ωhh
!Ωgg

! h∗g∗

ΩhΩg,fh
!g!

ΩhΩg,ff
!

Ωff
! f ∗

qhqg

Ex

∼∼

C

qf

of functors commutes by the proof of [Ayo07, 1.7.3].

4.4.4. Let f : X → S be a separated and vertical P-morphism of S -schemes, and let
i : S → X be its section. Then we have a commutative diagram

S X S

X X ×S X X

X S

i

i

f

i′ i

a

p1

p2

f

f

of S -schemes where

(i) a denotes the diagonal morphism, and p2 denotes the second projection,

(ii) each square is Cartesian.

Consider the diagram

Ωf,idi
!f ! Ωf,id

i!Ωff
! i!f ∗

∼

Ex

qf

of functors. It commutes since the big outside diagram of the diagram

i!f ∗i!f ! i!f ∗(fi)! i!f ∗

i!i′!p∗2f
! i!(p1a)!f ∗

i!a!p∗2f
! i!a!p!

1f
∗ i!f ∗

∼

Ex Ex

∼

∼

∼

∼

Ex ∼

of S -schemes commutes.
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4.4.5. Consider a Cartesian diagram

X ′ X

S ′ S

f ′

g′

f

g

of S -schemes where f is an exact log smooth morphism. Assume that (f is proper) or (f
is separated and (Supp) is satisfied). Then we have the commutative diagram

X ′ X ′ ×S′ X ′ X ′

X X ×S X X

a′

g′ g′′

p′2

g′

a p2

of S -schemes where each square is Cartesian and p2 denotes the second projection. We also
denote by p1 (resp. p′1) the first projection X ×S X → X (resp. X ′ ×S′ X ′ → X ′). In this
setting, we will show that the diagram

f ′]g
′∗ f ′! Σf ′g

′!

f ′! g
′∗Σf

g∗f] g∗f!Σf

Ex

pf ′

Ex

Ex

pf

of functors commutes. It is the big outside diagram of the diagram

f ′]g
′∗ f ′]p

′
1!a
′
∗g
′∗ f ′!p

′
2]a
′
∗g
′∗

f ′]g
′∗p1!a∗ f ′]p

′
1!g
′′∗a∗ f ′!p

′
2]g
′′∗a∗

f ′! g
′∗p2]a∗

g∗f] g∗f]p1!a∗ g∗f!p2]a∗

∼

Ex

∼

Ex

Ex
Ex

Ex

Ex

Ex

Ex

Ex

∼ Ex

of functors. Thus the assertion follows from the fact that each small diagram commutes.
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Chapter 5

Support property

5.0.1. Throughout this chapter, we fix a full subcategory S of the category of fs log schemes
satisfying the conditions of (2.0.1). We also fix a eSm-premotivic triangulated category
satisfying (Adj), (Htp–1), (Htp–2), (Htp–3), (Loc), (sét-Sep), and (Stab). In §5.6, we assume
also the axiom (ii) of (2.9.1) and (Htp–4).

5.1 Elementary properties of the support property

5.1.1. We will define the universal and semi-universal support property for not necessarily
proper morphisms, and we will show that our definition coincides with the usual definition
for proper morphisms in (5.1.4). Then we will study elementary properties of the universal
support property. Recall from (2.5.8) that any proper strict morphism of S -schemes satisfies
the support property.

Proposition 5.1.2. Let g : Y → X and f : X → S be proper morphisms of S -schemes. If
f and g satisfy the support property, then fg also satisfies the support property.

Proof. Consider a commutative diagram

W V U

Y X S

g′

j′′ j′

f ′

j

g f

of S -schemes where j is an open immersion and each square is Cartesian. Then the conclu-
sion follows from the commutativity of the diagram

j]f
′
∗g
′
∗ f∗j

′
]g∗ f∗g∗j

′′
]

j](f
′g′)∗ (fg)∗j

′′
]

∼

Ex Ex

Ex

of functors.
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Definition 5.1.3. Let f : X → S be a morphism of S -schemes. We say that f satisfies the
universal (resp. semi-universal) support property if any pullback of the proper morphism
X → X ×S S (resp. any pullback of the proper morphism X → X ×S S via strict morphism)
satisfies the support property.

Proposition 5.1.4. Let f : X → S be a proper morphism of S -schemes. Then f satisfies
the universal (resp. semi-universal) support property if and only if any pullback of f (resp.
any pullback of f via strict morphism) satisfies the support property.

Proof. If f satisfies the universal (resp. semi-universal) support property, let f ′ : X ′ → S ′ be
a pullback of f via a morphism (resp. strict morphism) S ′ → S. Consider the commutative
diagram

X ′ X ×S S ′ S ′

X X × SS S

u′

g′ g′′

v′

g

u v

of S -schemes. By assumption, u′ satisfies the support property. Since v′ is strict proper,
it satisfies the support property by (5.1.1). Thus f = v′u′ satisfies the support property by
(5.1.2).

Conversely, if the support property is satisfied for any pullback of f (resp. for any pullback
of f via strict morphism), we put T = X ×S S, and let p′ : X ×T T ′ → T ′ be a pullback
of X → T via a morphism (resp. strict morphism) T ′ → T . The morphism p′ has the
factorization

X ×T T ′
r→ X ×S T ′

q→ T ′

where r denotes the morphism induced by T → S, and q denotes the projection. Then the
morphism r is a closed immersion since it is a pullback of the diagonal morphism T → T×ST ,
so r satisfies the support property, and the morphism q satisfies the support property since
it is a pullback of f via the morphism (resp. strict morphism) T ′ → T . Thus by (5.1.2), the
morphism p′ = qr satisfies the support property.

Proposition 5.1.5. Let f : X → S be a morphism of S -schemes. Then the question that
f satisfies the universal (resp. semi-universal) support property is strict étale local on X.

Proof. Replacing f by X → X ×S S, we may assume that f is an isomorphism. Then the
question is strict étale local on S by (sét-Sep), which implies that the question is strict étale
local on X.

Proposition 5.1.6. Let g : Y → X and f : X → S be morphisms of S -schemes.

(1) If f is strict, then f satisfies the universal support property.

(2) If f and g satisfy the universal (resp. semi-universal) support property, then fg also
satisfies the universal (resp. semi-universal) support property.
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(3) Assume that g is proper and that for any pullback h of g via strict morphism, the unit

id
ad−→ h∗h

∗

is an isomorphism. If fg satisfy the semi-universal support property, then f satisfies
the semi-universal support property.

Proof. (1) It is true since the morphism X → X ×S S is an isomorphism when f is strict.

(2) The induced morphism p : Y → Y ×S S has the factorization

Y
r−→ Y ×X X

q−→ Y ×S S

where r denotes the morphism induced by Y → Y and Y → X, and q denotes the morphism
induced by X → S. Any pullback of r (resp. any pullback of r via strict morphism) satisfies
the support property by assumption, and any pullback of q (resp. any pullback of q via
strict morphism) satisfies the support property by assumption since q is a pullback of the
morphism X → X×S S. Thus by (5.1.2), any pullback of p (resp. any pullback of p via strict
morphism) satisfies the support property, i.e., fg satisfies the universal support property.

(3) Replacing f by X → X ×S S, we may assume that f is an isomorphism. The question is
also preserved by any base change via strict morphism to S, so we only need to prove that
f satisfies the support property. Consider the commutative diagram

W V U

Y X S

j′′

g′

j′

f ′

j

g f

of S -schemes where j is an open immersion and each square is Cartesian. We have the
commutative diagram

j]f
′
∗ f∗j

′
]

j]f
′
∗g
′
∗g
′∗ j](f

′g′)∗g
′∗ (fg)∗j

′′
] g
′∗ (fg)∗g

∗j] f∗g∗g
∗j′]

ad

Ex

ad

∼ Ex Ex ∼

of functors, and we want to show that the upper horizontal arrow is an isomorphism. The
right vertical arrow is isomorphisms by assumption, and the third bottom horizontal arrow is
an isomorphism by (eSm-BC). Moreover, the morphism f ′g′ : W → U satisfies the support
property by assumption, so the second bottom horizontal arrow is an isomorphism. Thus to
show that the upper horizontal arrow is an isomorphism, it suffices to show the left vertical
arrow is an isomorphism. To show this, we will show that the unit

id
ad−→ g′∗g

′∗
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is an isomorphism.
Consider the commutative diagram

id g′∗g
′∗

j′∗j′] j′∗g∗g
∗j′] g′∗j

′′∗g∗j′] g∗j
′′∗j′′] g

′∗

ad

ad ad

ad Ex Ex

of functors. The vertical arrows are isomorphisms by (2.2.1), and the lower left horizontal
arrow is an isomorphism by assumption. Moreover, the lower middle and right horizontal
arrows are isomorphisms by (eSm-BC). Thus the upper horizontal arrow is an isomorphism.

5.1.7. Let g : S ′ → S be a morphism of S -schemes. We will sometimes assume that

(i) for any pullback g′ of g, g′∗ is conservative,

(ii) for any commutative diagram

Y ′ Y

X ′ X

S ′ S

g′′

h′ h

g′

f ′ f

g

of S -schemes such that each square is Cartesian, the exchange transformation

g′∗h∗
Ex−→ h′∗g

′′∗

is an isomorphism.

Proposition 5.1.8. Consider a Cartesian diagram

X ′ X

S ′ S

g′

f ′ f

g

of S -schemes. Assume that g satisfies the conditions of (5.1.7). If f ′ satisfies the universal
support property, then f satisfies the universal support property.

Proof. Replacing f by X → X ×S S, we may assume that f is an isomorphism. Then f ′

is proper, so it satisfies the support property by (5.1.4). Since the question is preserved by
any base change of S, it suffices to show that f satisfies the support property.
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Consider a commutative diagram

V ′ V

X ′ X

U ′ U

S ′ S

p′

q′

u′

p
u

g′

f
q

j′

j

g

f ′

where j is an open immersion and each small square is Cartesian. We want to show that the
natural transformation

j]p∗
Ex−→ f∗u]

is an isomorphism. Consider the commutative diagram

j′]q
∗p∗ j′]p

′
∗q
′∗ f ′∗u

′
]q
′∗

g∗j]p∗ g∗f∗u] f ′∗g
′∗u]

Ex

Ex Ex

Ex

Ex Ex

of functors. The vertical arrows are isomorphisms by (eSm-BC), and the upper left and lower
right horizontal arrows are isomorphisms by the assumption that g satisfies the conditions
of (5.1.7). Moreover, the upper right horizontal arrow is an isomorphism since f ′ satisfies
the support property. Thus the lower left horizontal arrow is an isomorphism. Then the
conservativity of g∗ implies the support property for f .

5.2 Conservativity

Lemma 5.2.1. Let F : C → C ′ and G : C ′ → C ′′ be functors of categories. Assume that for
any objects X and Y of C, the function

τXY : HomC′(FX,FY )→ HomC′′(GFX,GFY )

defined by
f 7→ Gf

is bijective. If F is conservative, then GF is also conservative.

Proof. Let X and Y be objects of C, and let α : X → Y be a morphism in C such that GFα
is an isomorphism. We put β = GFα. Choose the inverse of φ : GFY → GFX of α. Then

id = τ−1
XX(id) = τ−1

XX(φ ◦ β) = τ−1
Y X(φ) ◦ τ−1

XY (β),

so Fα = τ−1
XY (β) has a left inverse. Similarly, Fα has a right inverse. Thus Fα is an

isomorphism. Then the conservativity of F implies that α is an isomorphism.
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5.2.2. Let f : X → S be a Kummer log smooth morphism of S -schemes with a fs chart
θ : P → Q of Kummer log smooth type. We will construct a homomorphism η : P → P ′ of
Kummer log smooth over S type with the following properties.

(i) Let g : S ′ → S denotes the projection S ×AP AP ′ → S. For any pullback u of g, u∗ is
conservative.

(ii) In the Cartesian diagram

X ′ X

S ′ S

g′

f ′ f

g

of S -schemes, f ′ is strict smooth.

This will be used in the proof of (5.3.1).
Consider the homomorphisms

λ : P → P ⊕Q, η : P → P gp ⊕Q

defined by p 7→ (p, θ(p)). Using these homomorphism, we construct the fiber products

S ′′ = S ×AP AP⊕Q, S ′ = S ×AP AP gp⊕Q.

Consider the commutative diagram

S S ′′ S ′

S

s

id
h

j

g

of S -schemes where s denotes the morphism constructed by the homomorphism P ⊕Q→ P
defined by (p, q) 7→ p, h denotes the projection, and j denotes the open immersion induced
by the inclusion P ⊕Q→ P gp ⊕Q.

From s∗h∗ ∼= id, we see that h∗ is conservative. We will show that g∗ is also conservative.
By (Htp–3), the composition

h]h
∗ ∼−→ g]j]j

∗g∗
ad′−→ g]g

∗

is an isomorphism, so for F,G ∈ T (S), the homomorphism

HomT (S′′)(h
∗F, h∗G)→ HomT (S′)(g

∗F, g∗G) (*)

is an isomorphism. Then (5.2.1) implies that g∗ is conservative. The same proof can be
applied to show that for any pullback u of g, u∗ is conservative.
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The remaining is to show that f ′ is strict. The homomorphism θ : P → Q factors through
P ′ = P gp ⊕Q via p 7→ (p, θ(p)) and (p, q) 7→ q, so the morphism f : X → S factors through
S ′. Consider the commutative diagram

X ′ X

X ′′ S ′

S ′ S

g′

p1 g

g

of S -schemes where each square is Cartesian. The morphism X → S ′ is strict, so to show
that f ′ is strict, it suffices to show that p1 is strict. This follows from (1.2.18).

5.2.3. Let f : X → S be a Kummer log smooth morphism of S -schemes. By (3.1.4), we
can choose a strict étale cover {ui : Si → S}i∈I such that for each i, there is a commutative
diagram

Xi X

Si S

vi

fi f

ui

of S -schemes such that fi has a fs chart of log smooth type and {vi}i∈I is a strict étale
cover. Then by (5.2.2), there is a Kummer log smooth morphism satisfying the conditions
(i) and (ii) of (loc. cit). Let g : S ′ → S denote the union of giui : S ′i → S. Then g satisfies
the condition (i) of (loc. cit) by (két-Sep), and g satisfies the condition (ii) of (loc. cit) by
construction.

5.3 Support property for Kummer log smooth mor-

phisms

Proposition 5.3.1. Let f be a Kummer log smooth morphisms of S -schemes. Then f
satisfies the universal support property.

Proof. By (5.1.5) and (3.1.4), we may assume that f has a fs chart θ : P → Q of Kummer log
smooth type. As in (5.2.2), choose a Kummer log smooth morphism g : S ′ → S satisfying
the condition (i) of (5.1.7) such that the pullback of f via g : S ′ → S is strict. Since g is an
exact log smooth morphism, the condition (ii) of (loc. cit) is satisfied by (eSm-BC). Now we
can apply (5.1.8), so replacing f by the projection X ×S S ′ → S ′, we may assume that f is
strict. Then the conclusion follows from (5.1.6(1)).

Proposition 5.3.2. Let f : X → S and g : Y → X be morphisms of S -schemes such
that g is proper. If f and fg satisfy the semi-universal support property, then g satisfies the
semi-support property.
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Proof. Consider a commutative diagram

T ′ T

Y X

S

β

α′ α

g

fg f

of S -schemes where the small square is Cartesian and α is strict. By (5.1.4), it suffices to
show that β satisfies the support property for any α. The morphisms α and α′ satisfy the
semi-universal support property by (5.1.6(1)) since they are strict, so the morphisms fα and
fgα′satisfies the semi-universal support property by (5.1.6(2)). Hence replacing (Y,X, S) by
(T ′, T, S), we reduce to showing that g satisfies the support property.

Consider a Cartesian diagram

W Y

V X

w

g′ g

v

of S -schemes where v is an open immersion. By (3.6.4), it suffices to show that for any
Kummer log smooth morphism p : X ′ → X of S -schemes and any object K of T (W ), the
homomorphism

HomT (X)(MX(X ′), v]g
′
∗K)→ HomT (X)(MX(X ′), g∗w]K)

is an isomorphism. It is equivalent to the assertion that

HomT (X′)(1X′ , p
∗v]g

′
∗K)→ HomT (X′)(1X′ , p

∗g∗w]K)

is an isomorphism since MX(X ′) = p]1X′ . By (5.3.1), p satisfies the universal support
property, so fp and gp satisfy the semi-universal support property by (5.1.6(2)). Since p∗

commutes with v], g
′
∗, g∗, and w], replacing Y → X → S by Y ×X X ′ → X ′ → S, we reduce

to showing that
HomT (X)(1X , v]g

′
∗K)→ HomT (X)(1X , g∗w]K)

is an isomorphism. It is equivalent to showing that

HomT (S)(1S, f∗v]g
′
∗K)→ HomT (S)(1S, f∗g∗w]K)

is an isomorphism. Hence it suffices to show that the natural transformation

v]g
′
∗

Ex−→ g∗w]

is an isomorphism.
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The induced morphism Y → X ×S S has the factorization

Y → Y ×S S → X ×S S.

The first arrow satisfies the semi-universal support property by assumption, and the sec-
ond arrow satisfies the semi-universal support property by (5.1.6(1)) since it is strict. Thus
the composition also satisfies the semi-universal support property by (5.1.6(2)). Since the
induced morphism X → X ×S S also satisfies the semi-universal support property by as-
sumption, replacing (Y,X, S) by (Y,X,X ×S S), we may assume that f is an isomorphism.

Then there is a unique commutative diagram

W Y

V X

U S

w

g′ g

v

f ′ f

u

of S -schemes such that the lower square is also Cartesian. Since v is an open immersion, u
is automatically an open immersion. In the commutative diagram

u]f
′
∗g
′
∗ f∗v]g

′
∗ f∗g∗w]

u](f
′g′)∗ (fg)∗w]

∼

Ex Ex

∼

Ex

of functors, the upper left arrow and lower arrows are isomorphisms by assumption. Thus
the upper right arrow is an isomorphism. This completes the proof.

Proposition 5.3.3. Let f : X → S be a proper morphism of S -schemes satisfying the
semi-universal support. Let g : S ′ → S be a Kummer log smooth morphism of S -schemes,
and consider the Cartesian diagram

X ′ X

S ′ S

f ′

g′

f

g

of S -schemes. Then the exchange transformation

g]f
′
∗

Ex−→ f∗g
′
]

is an isomorphism.
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Proof. Note first that by (5.3.1), g and g′ satisfies the universal support property, so fg′

satisfies the semi-universal support property by (5.1.6(2)). Then f ′ satisfies the support
property by (5.3.2). By (5.2.3), there is a Kummer log smooth morphism h : T → S of
S -schemes such that h∗ is conservative and that the pullback of g : S ′ → S via h is strict
smooth. Note also that h satisfies the universal support property by (5.3.1). Thus replacing
(X ′, X, S ′, S) by (X ′ ×S T,X ×S T, S ′ ×S T, T ), we may assume that g is strict smooth.

The question is Zariski local on S ′ since f ′ satisfies the support property, so we may
assume that g is a strict smooth morphism of relative dimension d. Choose a compactification

S ′
j−→ S ′′

p−→ S

where j is an open immersion and p is a strict proper morphism of S -schemes. Consider
the commutative diagram

X ′ X ′′ X

S ′ S ′′ S

j′

f ′ f ′′

p′

f

j p

of S -schemes where each square is Cartesian. Since g is strict smooth, as in [CD12, 2.4.50],
we have the purity isomorphisms

g]
∼−→ p∗j](d)[2d],

g′]
∼−→ p′∗j

′
](d)[2d].

with the commutative diagram

g]p
′
∗ p∗j]f

′
∗(d)[2d]

f∗g
′
] f∗p

′
∗j
′
](d)[2d] p∗f

′′
∗ j
′
](d)[2d]

Ex

∼

Ex

∼ ∼

of functors. The morphisms p and p′ satisfies the semi-support property by (5.1.6(1)) since
they are strict, so the morphism fp′ satisfies the semi-support property by (5.1.6(2)). Then
f ′′ satisfies the semi-support property by (5.3.2), so the right vertical arrow is an isomor-
phism. Thus the left vertical arrow is an isomorphism.

Proposition 5.3.4. Let f : X → S be a proper morphism of S -schemes satisfying the
semi-universal support property. Then f satisfies the projection formula.

Proof. We want to show that for any objects K of TX and L of TS, the morphism

f∗K ⊗S L
Ex−→ f∗(K ⊗X f ∗L)

is an isomorphism. By (3.6.4), it suffices to show that for any Kummer log smooth morphism
g : S ′ → S of S -schemes, the morphism

f∗K ⊗S g]1S′
Ex−→ f∗(K ⊗ f ∗g]1S′)
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is an isomorphism. Consider the Cartesian diagram

X ′ X

S ′ S

g′

f ′ f

g

of S -schemes. In the commutative diagram

f∗K ⊗S g]1S′ f∗(K ⊗ f ∗g]1S′)

f∗(K ⊗ g′]f ′∗1S′)

g](g
∗f∗K ⊗ 1S′) f∗g

′
](g
′∗K ⊗ f ′∗1S′)

g]g
∗f∗K g]f

′
∗g
′∗K f∗g

′
]g
′∗K

Ex

Ex

Ex

Ex

∼ ∼

Ex Ex

of S -schemes, the upper left vertical and the middle right vertical arrows are isomorphisms
by (eSm-PF), and the lower left horizontal and the upper right vertical arrows are iso-
morphisms by (eSm-BC). Moreover, the lower right horizontal arrow is an isomorphism by
(5.3.3), so the upper horizontal arrow is an isomorphism.

Proposition 5.3.5. Let f : X → S be a proper morphism of S -schemes satisfying the
semi-universal support property. Then the property (BCf,g) holds for any strict morphism
g : S ′ → S of S -schemes.

Proof. By (Zar-Sep), we may assume that g is quasi-projective. Then g has a factorization

S ′
i−→ T

p−→ S

where i is a strict closed immersion and p is strict smooth. By (eSm-BC), we only need to
deal with the case when g is a strict closed immersion.

Let h : S ′′ → S denote the complement of g. Then we have the commutative diagram

X ′ X X ′′

S ′ S S ′′

g′

f ′ f

h′

f ′′

g h

of S -schemes where each square is Cartesian. By (Loc), we have the commutative diagram

g∗f∗h
′
]h
′∗ g∗f∗ g∗f∗g

′
∗g
′∗ g∗f∗h

′
]h
′∗[1]

f ′∗g
′∗h′]h

′∗ f ′∗g
′∗ f ′∗g

′∗g′∗g
′∗ f ′∗g

′∗h′]h
′∗[1]

Ex

ad′

Ex

ad

Ex

∂g′

Ex

ad′ ad ∂g′

90



of functors where the two rows are distinguished triangles. To show that the second vertical
arrow is an isomorphism, it suffices to show that the first and third vertical arrows are
isomorphisms.

We have an isomorphism
f∗h

′
]
∼= h]f

′
∗

since f satisfies the support property, so we have

g∗f∗h
′
]h
′∗ ∼= g∗h]f

′
∗h
′∗ = 0, f∗g

′∗h′]h
′∗ = 0

since g∗h] = g′∗h′] = 0 by (eSm-BC). Thus the first vertical arrow is an isomorphism. The
assertion that the third arrow is an isomorphism follows from (Loc), which completes the
proof.

Proposition 5.3.6. Let g : Y → X and f : X → S be morphisms of S -schemes. Assume
that g is proper and that the unit

id
ad−→ g∗g

∗

is an isomorphism. If g and fg satisfy the semi-universal support propoerty, then f satisfies
the semi-universal support property.

Proof. By (5.1.6(3)), it suffices to show that for any Cartesian diagram

Y ′ X ′

Y X

g′

h′ h

g

of S -schemes such that h is a strict, the unit

id
ad−→ g′∗g

′∗

is an isomorphism.
By (5.3.4), for any object K of T (X ′), the composition

g′∗g
′∗1X′ ⊗X K

Ex−→ g′∗(g
′∗1S ⊗X g′∗K)

∼−→ g′∗g
′∗K

is an isomorphism, so we only need to show that the morphism

1X′
ad−→ g′∗g

′∗1X′

in T (X ′) is an isomorphism. It has the factorization

1X′
∼−→ h∗1X

ad−→ h∗g∗g
∗1X

Ex−→ g′∗h
′∗g∗1X

∼−→ g′∗g
′∗1X′

in T (X ′). The second arrow is an isomorphism by assumption, and the third arrow is an
isomorphism by (5.3.5). Thus the morphism

1X′
ad−→ g′∗g

′∗1X′

in T (X ′) is an isomorphism.
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5.4 Poincaré duality for a compactification of AN2 → AN

5.4.1. We fix an S -scheme S over AN, and we put

U = AN⊕N ×Aθ,AN S

where θ : N→ N⊕N denotes the diagonal morphism. We want to compactify the projection

h : U → S.

Then we will prove the Poincaé duality for the compactification.

5.4.2. Under the notations and hypotheses of (5.4.1), consider the lattice L = Zx1 ⊕ Zx2,
and consider the dual coordinates

e1 = x∨1 , e2 = x∨2 .

We denote by T the toric variety associated to the fan generated by

(a) e1, e2 ≥ 0,

(b) e1 + e2 ≥ 0, e1 ≤ 0,

(c) e1 + e2 ≥ 0, e2 ≤ 0.

We give the log structure on (a), (b), and (c) by

Nx1 ⊕ Nx2 → Z[x1, x2], N(x1x2)→ Z[x1x2, x
−1
1 ], N(x1x2)→ Z[x1x2, x

−1
2 ]

respectively. Then we denote by T the resulting S -scheme. Because the support of this fan
is {(e1, e2) : e1 + e2 ≥ 0}, the morphism T → AN induced by the diagonal homomorphism
N→ Nx1 ⊕ Nx2 is proper, so we have the compactification

AN2 T

AN

of the morphism AN2 → AN. Thus if we put X = S×AN T , then we have the compactification

U X

S

j

h
f

of h. Here, the meaning of compactification is that j is an open immersion and f is proper.
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5.4.3. Under the notations and hypotheses of (5.4.2), consider the lattice

(Zx1 ⊕ Zx2)⊕Z (Zy1 ⊕ Zy2)

with x1 + x2 = y1 + y2, and consider the dual coordinates

f1 = y∨1 , f2 = y∨2 .

We denote by T ′ the toric variety associated to the fan generated by

(a) e1, e2, f1, f2 ≥ 0, e1 + e2 = f1 + f2,

(b) e1 + e2 = f1 + f2 ≥ 0, e1, f1 ≤ 0,

(c) e1 + e2 = f1 + f2 ≥ 0, e2, f2 ≤ 0.

Then we have an open immersion T ′ → T ×A1 T . Thus if we denote by T ′ the S -scheme
whose underlying scheme is T ′ and with the log structure induced by the open immersion,
then we have the open immersion

T ′ → T ×S T.

We put D = (X ×S X)×T×ANT
T ′.

5.4.4. Under the notations and hypotheses of (5.4.3), we denote by T ′′ the toric variety
associated to the fan generated by

(a) e1, e2, f1, f2 ≥ 0, e1 + e2 = f1 + f2, e1 ≥ f1,

(a’) e1, e2, f1, f2 ≥ 0, e1 + e2 = f1 + f2, e1 ≤ f1,

(b) e1 + e2 = f1 + f2 ≥ 0, e1, f1 ≤ 0,

(c) e1 + e2 = f1 + f2 ≥ 0, e2, f2 ≤ 0.

We give the log structure on (a), (a’), (b), and (c) by

Ny1 ⊕ Nx2 ⊕ N(x1y
−1
1 )→ Z[y1, x2, x1y

−1
1 ],

Nx1 ⊕ Ny2 ⊕ N(y1x
−1
1 )→ Z[x1, y2, y1x

−1
1 ],

N(x1x2)→ Z[x1x2, x
−1
1 , y−1

1 ],

N(x1x2)→ Z[x1x2, x
−1
2 , y−1

2 ]

respectively. Then we denote by T ′′ the resulting S -scheme. The supports of this fan and
the fan in (5.4.3) are equal, so the morphism T ′′ → T ′ induced by the fans is proper. Thus
if we put E = Y ×T ′ T ′′, we have the proper morphism

v : E → D

of S -schemes.
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5.4.5. From (5.4.1) to (5.4.4), we obtain the commutative diagram

E

D

X X ×S X X

v

r2

u
q2

c

b

c p2

of S -schemes where

(i) p2 denotes the second projection,

(ii) a denotes the diagonal morphism, and b and c denotes the morphisms induced by a.

Note that u is an open immersion and that v and p2 are proper. The morphism E → D
satisfies the condition of (4.2.2(2)), and the morphism D → X ×S X satisfies the condition
of (4.2.2(1)). Consider the natural transformation

qof : Ωo
f,Ef

! −→ f ∗

in (4.4.2). Note that we have Ωo
f,E = (−1)[−2]. We also consider the pullback of the above

commutative diagram via i : Z → X where i denotes the complement of j : U → X:

E ′

D′

Z X Z

v′

r′2

u′
q′2

c′

b′

c′ p′2

Note that u′ and v′ are isomorphisms.

Proposition 5.4.6. Under the notations and hypotheses of (5.4.5), the natural transforma-
tion

f∗f
!(−1)[−2]

qof−→ f∗f
∗

is an isomorphism.

Proof. We put τ = (1)[2], and let
pof : f] −→ f∗τ
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denote the left adjoint of qof . We have the commutative diagram

Z1 Z2

U ′1 X U ′2

U1 U2

i′′1

i′1

i1 i′′2

i′2

i2

j′′1

j′1

j′′2

j′2

j1 j2

of S -schemes where

(i) j′1 and j′2 denote the open immersions induced by the convex sets (b) and (c) of (5.4.2)
respectively,

(ii) Z1 = U ′1 ×X (X − U) and Z2 = U ′2 ×X (X − U),

(iii) U1 and U2 denotes the complements of Z1 and Z2 respectively,

(iv) i1, i′1, i′′1, i2, i′2, and i′′2 are the closed immersions,

(v) j1, j′′1 , j2, j′′2 are the open immersions.

The key property of our compactification is that U1 and U ′1 (resp. U2 and U ′2) are log-homotopic
equivalent over S. The meaning is that the morphisms

MS(U ′1)→MS(U1), MS(U ′2)→MS(U2)

in T (S) are isomorphisms. More generally, we will show that the natural transformations

f]j1]j
′′
1]j
′′∗
1 j
∗
1f
∗ ad−→ f]j1]j

∗
1f
∗, f]j2]j

′′
2]j
′′∗
2 j
∗
2f
∗ ad−→ f]j2]j

∗
2f
∗ (5.4.6.1)

are isomorphisms. To show that the first one is an isomorphism, consider the Mayer-Vietoris
triangle

f]j
′′′
1]j
′′′∗
1 f ∗ → f]j

′
1]j
′∗
1 f
∗ ⊕ f]j]j∗f ∗ → f]j1]j

∗
1f
∗ → f]j

′′′
1]j
′′′∗
1 f ∗[1]

in T (S) where j′′′1 : U ′1×X U → X denotes the open immersion. It is a distinguished triangle
by (2.2.3), so it suffices to show that the morphism

f]j
′′′
1]j
′′′∗
1 f ∗ → f]j]j

∗f ∗

is an isomorphism since j′1 = j1j
′′
1 . It is true by (Htp–3) because

U ′1 ×X U ∼= U ×AN2
A(N2)F

where F is the face of N2 generated by (1, 0). Thus the first natural transformation of (5.4.6.1)
is an isomorphism. We can show that the other one is also an isomorphism similarly.
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Then guided by a method of [Ayo07, 1.7.9], consider the commutative diagram

f]i1∗i
!
1f
∗ f]f

∗ f]i2∗i
∗
2f
∗ f]i1∗i

!
1f
∗[1]

f∗i1∗i
!
1f
∗τ f∗f

∗τ f∗i2∗i
∗
2f
∗ f∗i1∗i

!
1f
∗τ [1]

ad′

pof

ad

pof pof

∂

pof

ad′ ad ∂

(5.4.6.2)

of functors. Assume that we have proven that

(1) the rows are distinguished triangles,

(2) the first and third vertical arrows are isomorphisms.

Then the second arrow is also an isomorphism, so we are done. Hence in the remaining, we
will prove (1) and (2).

(1) To show that the second row is a distinguished triangle, by (Loc), it suffices to show
that the composition

f∗i2∗i
∗
2f
∗ ∼−→ f∗j2∗i

′
2∗i
′∗
2 j
∗
2f
∗ ad′−→ f∗j2∗j

∗
2f
∗

is an isomorphism. We have shown that the natural transformation

f∗j2∗j
∗
2f
∗ ad′−→ f∗j2∗j

′′
2∗j
′′∗
2 j
∗
2f
∗

is an isomorphism, and we have fi2 = id. Hence, it suffices to show that the unit

g2]g
∗
2

ad′−→ id

is an isomorphism where g2 = fj′2. It is true by (Htp–1) since the morphism U ′2 → S
is the projection A1

S → S.

For the first row, first note that by (sSupp), we have an isomorphism

j1]i
′
1∗i
′!
1j
∗
1
∼−→ i1∗i

!
1.

Hence to show that the first row is distinguished, by (Loc), it suffices to show that
the natural transformation

f]j1]i
′
1∗i
′!
1j
∗
1f
∗ ad′−→ f]j1]j

∗
1f
∗

is an isomorphism. By (sSupp), we have an isomorphism

f]j
′
1]i
′′
1∗i
′′!
1 j
′∗
1 f
∗ ∼−→ f]j1]i

′
1∗i
′!
1j
∗
1f
∗,

and we have shown that the natural transformation

f]j1]j
′′
1]j
′′∗
1 j
∗
1f
∗ ad′−→ f]j1]j

∗
1f
∗
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is an isomorphism. Hence it suffices to show that the natural transformation

g1]i
′′
1∗i
′′!
1 g
∗
1

ad′−→ g1]g
∗
1

is an isomorphism where g1 = fj′1. By (Htp–1), the counit

g1]g
∗
1

ad′−→ id

is an isomorphism since the morphism U ′1 → S is the projection A1
S → S, and by

(2.5.3), the composition

g1]i
′′
1∗i
′′!
1 g
∗
1

ad′−→ g1]g
∗
1

ad′−→ id

is an isomorphism. Thus the first row is distinguished.

(2) Consider the diagram

Ωo
f,id,E′i

!f ! Ωn
f,id,E′i

!f ! Ωd
f,id,E′i

!f ! Ωf,id,E′i
!f ! Ωf,id,D′i

!f ! Ωf,idi
!f ! Ωf,id

i!Ωo
f,Ef

! i!Ωn
f,Ef

! i!Ωd
f,Ef

! i!Ωf,Ef
! i!Ωf,Df

! i!Ωff
! i!f ∗

∼ ∼

Ex

∼

Ex

∼

Ex

∼

Ex

∼

Ex

∼ qf

of functors. It commutes by (4.2.10), and the natural transformation Ωn
f,id,E′i

!f ! Ex−→
i!Ωn

f,Ef
! is an isomorphism by (4.2.5). Thus the composition of arrows in the second

row

i!Ωo
f,Ef

!
qof−→ i!f ∗

is also an isomorphism. Then the first vertical arrow of (5.4.6.2) is also an isomor-
phism. The third vertical arrow of (5.4.6.2) is also an isomorphism similarly.

Theorem 5.4.7. Under the notations and hypotheses of (5.4.5), the natural transformation

qof : f !(−1)[−2] −→ f ∗

is an isomorphism.

Proof. We put τ = (1)[2], and let
pof : f] −→ f∗τ

denote the left adjoint of qof . Guided by a method of [CD12, 2.4.42], we will construct
a right inverse φ1 and a left inverse φ2 to the morphism pof . Note first that the natural
transformation

f]f
∗ pof−→ f∗f

∗τ

is an isomorphism by (5.4.6). The left inverse φ2 is constructed by

φ2 : f∗τ
ad−→ f∗τf

∗f]
(pof,E)−1

−→ f]f
∗f]

ad′−→ f].
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To show φ2 ◦ pof = id, it suffices to check that the outside diagram of the diagram

f] f]f
∗f]

f∗τ f∗τf
∗f] f]f

∗f] f]

pof,E

ad

pof,E
ad′

ad (pof,E)−1 ad′

of functors commutes since the composition

f]
ad−→ f]f

∗f]
ad′−→ f]

is the identity. It is true since each small diagram commutes.
The right inverse φ1 is constructed by

φ1 : f∗τ
ad−→ f∗f

∗f∗τ
Ex−1

−→ f∗f
∗τf∗

∼−→ f∗τf
∗f∗

(pof,E)−1

−→ f]f
∗f∗

ad′−→ f].

To show pof ◦ φ1 = id, it suffices to check that the composition of the outer cycle starting
from upper f∗τ in the below diagram of functors is the identity:

f] f∗τ f∗f
∗f∗τ

f∗τ

f]f
∗f∗ f∗τf

∗f∗ f∗f
∗τf∗

pof,E ad

Ex−1

ad′

ad′

ad′
(pof,E)−1

ad′

∼

It is true since each small diagram commutes.
Then from the existences of left and right inverses, we conclude that

pof : f] −→ f∗τ

is an isomorphism.

Corollary 5.4.8. Under the notations and hypotheses of (5.4.5), the universal support prop-
erty holds for f : X → S.

Proof. We put E ′′ = E ×S V . Consider the Cartesian diagram

V ′ V

X S

µ′

f ′′

µ

f

98



of S -schemes where µ is an open immersion. Then by the above theorem, the support
property for f follows from the commutativity of the diagram

µ]f
′′
] f]µ

′
]

f∗τµ
′
]

µ]f
′′
∗ τ f∗τµ

′
]

∼

po
f ′′,E′′

pof,E

Ex−1

Ex

of functors.
Then because we can choose S arbitrary, f satisfies the universal support property.

Corollary 5.4.9. Under the notations and hypotheses of (5.4.5) the universal support prop-
erty holds for h : U → S.

Proof. The conclusion follows from (5.4.8) and (5.1.6(1),(2)).

5.5 Support property for the projection AN× ptN → ptN

5.5.1. Let x and y denote the first and second coordinates of N⊕ N respectively, and let S
be an S -scheme. Consider the morphisms

S × A(N⊕N,(x))
h−→ S × A(N⊕N,(xy))

g−→ S × A(N⊕N,(x))
f−→ S × ptN

of S -schemes where

(i) h denotes the obvious closed immersion,

(ii) g denotes the morphism induced by

N⊕ N 7→ N⊕ N, (a, b) 7→ (a, a+ b),

(iii) f denotes the morphism induced by

N 7→ N⊕ N, a 7→ (a, 0).

To simplify the notations, we put

X = S × A(N⊕N,(x)), Y = S × A(N⊕N,(xy)), T = S × ptN.

Then we have the sequence

X
h−→ Y

g−→ X
f−→ T

of morphisms of S -schemes.
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Proposition 5.5.2. Under the notations and hypotheses of (5.5.1), the morphism gh satis-
fies the semi-universal support property.

Proof. Consider the commutative diagram

X X

T

gh

q p

of S -schemes where p and q denote the morphisms induced by the homomorphisms

N→ N⊕ N, a 7→ (a, a),

N→ N⊕ N, a 7→ (a, 2a),

respectively. By (5.3.2), it suffices to show that p and q satisfy the semi-universal support
property.

The morphism fg satisfies the universal support property by (5.4.9), and the morphism
h satisfies the universal support property by (5.1.6(1)) since it is strict. Thus the morphism
p = fgh satisfies the universal support property by (5.1.6(2)). Hence the remaining is to
show that q satisfies the semi-universal support property.

The morphism q has the factorization

S × A(N⊕N,(x))
i−→ S × A(N⊕N⊕Z,(x))

u−→ S × A(N⊕N,(x))
p−→ S × ptN

where

(i) i denotes the morphism induced by the homomorphism

N⊕ N⊕ Z→ N⊕ N, (a, b, c) 7→ (a, b),

(ii) u denotes the morphism induced by the homomorphism

N⊕ N→ N⊕ N⊕ Z, (a, b) 7→ (a, 2b, b).

We already showed that p satisfies the universal support property. The morphism i satisfies
the universal support property by (5.1.6(1)) since it is strict, and the morphism u satisfies
the support property by (5.3.1) since it is Kummer log smooth. Thus by (5.1.6(2)), the
morphism q = pui satisfies the universal support property.

Corollary 5.5.3. Under the notations and hypotheses of (5.5.1), the morphism gh satisfies
the projection formula.

Proof. It follows from (5.5.2) and (5.3.4).
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Proposition 5.5.4. Under the notations and hypotheses of (5.5.1), the unit

id
ad−→ (gh)∗(gh)∗

is an isomorphism.

Proof. To simplify the notation, we put v = gh. By (5.5.3), for any object K of T (X), the
composition

v∗v
∗1X ⊗X K

Ex−→ v∗(v
∗1S ⊗X v∗K)

∼−→ v∗v
∗K

is an isomorphism, so we only need to show that the morphism

1X
ad−→ v∗v

∗1X

in T (X) is an isomorphism.
We denote by j : U → X the verticalization of X via f . Then we have the Cartesian

diagram

U U

X X

j

id

j

v

of S -schemes, and by (Htp–2), the morphism

1X
ad−→ j∗j

∗1X (5.5.4.1)

in T (X) is an isomorphism. In the commutative diagram

1X v∗v
∗1X

j∗j
∗1X v∗j∗j

∗v∗1X

ad

ad ad

ad

of functors, the vertical arrows are isomorphisms since the morphism (5.5.4.1) is an isomor-
phism and v∗1X ∼= 1X . The lower horizontal arrow is an isomorphism since vj = j. Thus
the upper horizontal arrow is an isomorphism, which completes the proof.

Proposition 5.5.5. Under the notations and hypotheses of (5.5.1), the morphism f satisfies
the semi-support property.

Proof. By (5.4.9), the morphism fg satisfies the semi-universal support property. The mor-
phism h satisfies the semi-universal support property by (5.1.6(1)) since it is strict, so by
(5.1.6(2)), the morphism fgh satisfies the semi-universal support property. Then by (5.5.2)
and (5.5.4), the morphism gh : X → X and f : X → S satisfy the condition of (5.3.6), so
(loc. cit) implies that f satisfies the semi-universal support property.
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5.6 Proof of the support property

5.6.1. Throughout this section, we assume (Htp–4) and the axiom (ii) of (2.9.1) for T .

Proposition 5.6.2. Let S be an S -scheme with a fs chart N. Then the quotient morphism
f : S → S satisfies the support property.

Proof. We have the factorization

S
i→ S × AM

g→ S × P1 p→ S

where

(i) i denotes the strict closed immersion induced by the chart S → AN,

(ii) p denotes the projection,

(iii) M denotes the fs monoscheme that is the gluing of specN and specN−1 along specZ,

(iv) g denotes the morphism removing the log structure.

Then by (sSupp), i and p satisfies the support property. Hence by (5.1.2), the remaining is
to show the support property for g. This question is Zariski local on S × P1, so we reduce
to showing the support property for the morphism

S × AN → S × A1

removing the log structure. This is the axiom (ii) of (2.9.1).

Proposition 5.6.3. Let S be an S -scheme with the trivial log structure. Then the semi-
universal support property is satisfied for the projection p : S × AN → S.

Proof. Let q denote the morphism S×AN → S×A1 removing the log structure. By definition,
we need to show that q satisfies the semi-universal support property. Any pullback of q
via strict morphism is the quotient morphism X → X for some S -scheme X. Thus the
conclusion follows from (5.6.2).

Proposition 5.6.4. Let f : X → S be a morphism of S -schemes, and assume that S has
the trivial log structure. Then f satisfies the semi-universal support property.

Proof. By (5.1.6(3)) and (Htp–3), the question is dividing local on X. Hence by [CLS11,
11.1.9], we may assume that X has a fs chart Nr. Then p has a factorization

X
i−→ X × ANr

Aθr−→ X × ANr−1

Aθr−1−→ · · · → X × AN
q−→ X

f
−→ S

where

(i) i denotes the morphism induced by the chart S → ANr ,

(ii) θs : Ns−1 → Ns denotes the homomorphism

(a1, . . . , as−2, as−1) 7→ (a1, . . . , as−2, as−1, as−1),
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(iii) q denotes the projection.

The morphism i and f satisfy the semi-universal support property by (5.1.6(1)) since they
are strict, and the morphisms Aθs for s = 2, . . . , r satisfy the universal support property by
(5.4.9). Thus the conclusion follows from the (5.6.3) and (5.1.6(2)).

Theorem 5.6.5. The support property holds for T .

Proof. Let f : X → S be a proper morphism of S -schemes. Consider the commutative
diagram

X S

X S

f

q p

f

of S -schemes where p and q denote the morphisms removing the log structures. Then p and
q satisfy the semi-universal support property by (5.6.4), and f satisfies the semi-universal
support property by (5.1.6(1)) since it is strict. Thus the composition fq satisfies the semi-
support property by (5.1.6(2)), and then f satisfies the semi-universal support property by
(5.3.2).
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Chapter 6

Homotopy and base change properties

6.0.1. Throughout this chapter, we fix a full subcategory S of the category of noetherian
fs log schemes satisfying the conditions of (2.0.1), and we fix a log motivic triangulated
category T over S .

6.1 Homotopy property 5

6.1.1. Let f : X → S be a morphism of S -schemes. In this section, we often consider the
following conditions:

(i) the morphism f : X → S of underlying schemes is an isomorphism,

(ii) the induced homomorphism Mgp

X,x →M
gp

S,s is an isomorphism.

Proposition 6.1.2. Consider the coCartesian diagram

P P ′

Q Q′

θ

η

θ′

η′

of sharp fs monoids such that

(i) θ′gp is an isomorphism,

(ii) if F is a face of P ′ such that F ∩ η(P ) = 〈0〉, then θ′(F ) is a face of Q′,

(iii) if G is a face of Q′ such that G∩ η′(Q) = 〈0〉, then G = θ′(F ) for some face F of P ′.

Then the induced morphism

f : A(Q′,(η′(Q+))) → A(P ′,(λ(P+)))

satisfies the conditions (i) and (ii) of (6.1.1).
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Proof. By [Ogu14, I.3.2.3], A(P ′,(λ(P+))) has the stratification⋃
F

(AF ∗ × ptP ′/F )

for face F of P ′ such that F ∩ η(P ) = 〈0〉. Similarly, A(Q′,(λ′(Q+))) has the stratification⋃
G

(AG∗ × ptQ′/G)

for face Q of Q′ such that G ∩ η(Q) = 〈0〉.
Thus by assumption, f is a union of the morphisms

fF : Aθ′(F )∗ × ptQ′/θ′(F ) → AF ∗ × ptP/F .

This satisfies the condition (i) and (ii) of (6.1.1) because θ′gp is an isomorphism. Then the
conclusion follows from [EGA IV.18.12.6].

Proposition 6.1.3. Let f : X → S be a morphism of S -schemes satisfying the conditions
(i) and (ii) of (6.1.1). Then the unit

id
ad−→ f∗f

∗

is an isomorphism.

Proof. (I) Locality of the question. The question is strict étale local on S, so we may assume
that S has a fs chart. Since f is an isomorphism, the question is also strict étale local on X,
so we may assume that X has a fs chart.

Let i : Z → S be a closed immersion, and let j : U → S denote its complement. By
(Loc) and (2.6.6), we reduce to the question for X ×S Z → Z and X ×S U → U . Hence
by the proof of [Ols03, 3.5(ii)], we reduce to the case when S has a constant log structure.
Since f is an isomorphism, we can do the same method for X, and by [Ols03, 3.5(ii)], we
reduce to the case when X has a constant log structure. Hence we reduce to the case when
f is the morphism

S × ptQ → S × ptP

induced by a homomorphism θ : P → Q of sharp fs monoids. By assumption, θgp is an
isomorphism.

(II) Induction. We will use an induction on n = dimP . If n = 1, then we are done since
P = Q, so we may assume n > 1.

(III) Reduction to the case when Q = (P + 〈a〉)sat. Choose generators a1, . . . , am of Q. Then
consider the homomorphisms

P −→ (P + 〈a1〉)sat −→ · · · −→ (P + 〈a1, . . . , am〉)sat
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of sharp fs monoids. If we show the question for each morphism

(P + 〈a1, . . . , ai〉)sat −→ (P + 〈a1, . . . , ai+1〉)sat,

then we are done, so we reduce to the case when Q = (P + 〈a〉)sat for some a ∈ P gp.

(IV) Construction of fans. We put

C = PQ, D = QQ,

and consider the dual cones C∨ and D∨. Choose a point v in the interior of D∨. We
triangulate D∨, and then we triangulate C∨ such that the triangulations are compatible.

Let {∆i}i∈I denote the set of (n− 1)-simplexes of the triangulation C∨ contained in the
boundary of C∨. We put

C∨i = ∆i + 〈v〉, D∨i = C∨i ∩D∨,

and we denote by Ci and Di the dual cones of Ci and Di respectively. Now we put

Pi = Ci ∪ P gp, Qi = Di ∩ P gp, H = (〈v〉)⊥, ri = ∆⊥i .

Then ri is a ray of C since ∆i is an (n − 1)-simplex, and H is an (n − 1)-hyperplane such
that H ∩ C = H ∩ D = 〈0〉 since v is in the interior of D∨. For each i ∈ I, we have the
following two cases: Ci 6= Di or Ci = Di.

If Ci 6= Di, then

Ci = 〈b1, . . . , bn−1, ri〉, Di = 〈b1, . . . , bn−1, a〉

for some b1, . . . , bn−1 ∈ H. Since H ∩ C = H ∩D = 〈0〉, if F (resp. G) is a face of Ci (resp.
Di), then

F ∩ C = 〈0〉 ⇔ F ⊂ 〈b1, . . . , bn−1〉,

G ∩D = 〈0〉 ⇔ G ⊂ 〈b1, . . . , bn−1〉.

Thus the coCartesian diagram

P Pi

Q Qi

satisfies the condition of (6.1.2), so by (loc. cit), the induced morphism

S × AQi ×AQ ptQ → S × APi ×AP ptP (6.1.3.1)

satisfies the conditions (i) and (ii) of (6.1.1).
If Ci = Di, then Ci = Di = 〈b1, . . . , bn−1, ri〉 for some b1, . . . , bn−1 ∈ H, and we can

similarly show that (6.1.3.1) satisfies the conditions (i) and (ii) of (6.1.1).
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Let M (resp. N) denote the fs monoscheme that is a gluing of specPi (resp. specQi) for
i ∈ I. Then consider the induced commutative diagram

S × AN ×AQ ptQ S × AM ×AP ptP

S × ptQ S × ptP

f ′

g′ g

f

of S -schemes. We have shown that f ′ satisfies the conditions (i) and (ii) of (loc. cit).
Consider the commutative diagram

id f∗f
∗

g∗g
∗ g∗f

′
∗f
′∗g∗ f∗g

′
∗g
′∗f ∗

ad

ad ad

ad ∼

of functors. The vertical arrows are isomorphisms by (Htp–4) since g and g′ are dividing
covers. Thus the question for f reduces to the question for f ′.

Then using Mayer-Vietoris triangle, by induction on dimP , we reduce to the questions
for (P,Q) = (Pi, Qi) for i ∈ I. In particular, we may assume

(Pi)Q = 〈b1, . . . , br−1, br〉, (Qi)Q = 〈b1, . . . , br−1, a〉.

(V) Final step of the proof. We put

F = 〈b1〉 ∩ P, G = 〈b1〉 ∩Q, P ′ = 〈b2, . . . , br〉 ∩ P, Q′ = 〈b2, . . . , br−1, a〉 ∩Q.

Consider the commutative diagram

S × ptQ S × A(Q,Q−G) S × (A(Q,Q−G) − ptQ)

S × ptP S × A(P,P−F ) S × (A(P,P−F ) − ptP )

S × AP ′ S × AQ′

i′

f f ′

j′

q
f ′′

i j

p

g

where

(i) g denotes the morphism induced by the homomorphism P ′ → Q induced by θ

(ii) p denotes the morphism induced by the inclusion P ′ → P ,

(iii) j denotes the complement of i,
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(iv) each square is Cartesian.

Then j (resp. j′) is the verticalization of S ×A(P,P−F ) (resp. S ×A(Q,Q−G)) via p (resp. f ′p).
Thus by (Htp–2), the natural transformations

p∗
ad−→ j∗j

∗p∗, q∗
ad−→ j′∗j

′∗q∗

are isomorphisms. From the commutative diagram

p∗ f ′∗f
′∗p∗

j∗j
∗p∗ j∗f

′′
∗ f
′′∗j∗p∗ p′∗j

′
∗j
′∗f ′∗p∗

ad

ad∼ ∼

ad
∼

∼

of functors, we see that the upper horizontal arrow is an isomorphism.
In the commutative diagram

i∗p∗ i∗f ′∗f
′∗p∗ f∗i

′∗f ′∗p∗

f∗f
∗i∗p∗

ad
∼

ad

Ex

∼

of functors, the upper right horizontal arrow is an isomorphism by (2.6.6). Thus the diagonal
arrow is an isomorphism. In particular, the morpism

1S
ad−→ f∗f

∗1S

in TS is an isomorphism.
For any object K of TS, we have the commutative diagram

K 1S ⊗K f∗f
∗1S ⊗K

f∗f
∗K

∼

ad

ad
∼

Ex

in TS. By (PF), the right vertical arrow is an isomorphism. Thus the diagonal arrow is also
an isomorphism, which completes the proof.

6.1.4. So far, we have proven the half of (Htp–5). In the remaining, we will first prove a
few lemmas. Then we will prove (Htp–5).

Lemma 6.1.5. Let θ : P → Q be a homomorphism of fs sharp monoids such that θgp :
P gp → Qgp is an isomorphism, and let η′ : Q→ Q′ be a homomorphism of fs monoids such
that η′ : Q→ Q′ is Kummer. Then there is a coCartesian diagram

P Q

P ′ Q′

η

θ

η′

of fs monoids.
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Proof. Let P ′ denote the submonoid of Q′ consisting of elements p′ ∈ Q′ such that np′ ∈
P+Q′∗ for some n ∈ N+. Since η′ is Kummer, by the construction of pushout in the category
of fs monoids, it suffices to verify P ′gp = Q′gp to show that the above diagram is coCartesian.

Let q′ ∈ Q′ be an element. Since η′ is Kummer, we can choose m ∈ N+ such that
mq′ = q + q′′ for some q ∈ Q and q′′ ∈ Q′∗. We put r = dimP , and choose r linearly
independent elements p1, . . . , pr ∈ P over Q. Then let (a1, . . . , ar) denote the coordinate of
q ∈ Q according to the basis {p1, . . . , pr}.

Choose b1, . . . , br ∈ N+ such that a1+mb1, . . . , ar+mbr > 0, and we put p = (b1, . . . , br) ∈
P . Then

q +mp = (a1 +mb1, . . . , ar +mbr) ∈ P,
so m(q′ + p) = q + mp + q′′ ∈ P + Q′∗. Thus q′ + p ∈ P ′, so q′ ∈ P ′gp. This proves
P ′gp = Q′gp.

Lemma 6.1.6. Let P be a sharp fs monoid, and let η : P → P ′ be a homomorhpism of fs
monoids such that η : P → P ′ is Kummer. We denote by I the ideal of P ′ generated by
η(P+). Then the induced morphism

A(P ′,P ′+) → A(P ′,I)

is a bijective strict closed immersion.

Proof. For any element p′ ∈ P ′+, for some n ∈ N+, we have np′ ∈ I since η is Kummer. Let
m (resp. n) denote the ideal of Z[P ′] induced by P ′+ (resp. I). Then by the above argument,
for some m ∈ N+, we have nm ⊂ m. This implies the assertion.

6.1.7. Let θ : P → Q be a homomorphism of sharp fs monoids such that θgp is an isomor-
phism, and consider a coCartesian diagram

P Q

P ′ Q′

η

θ

η′

θ′

of fs monoids where η : P → P ′ is Kummer. Note that η′gp is also an isomorphism by
the construction of the pushout in the category of fs monoids. Then we have the induced
commutative diagram

A(Q′,Q′+) A(P ′,P ′+)

A(Q′,J) A(P ′,I)

of schemes where I (resp. J) denote the ideal of P ′ (resp. Q′) generated by η(P ) (resp. η′(Q)).
By (6.1.6), the vertical arrows are bijective strict closed immersions, and the upper horizontal
arrow is an isomorphism since they are isomorphic to AQ′gp = AP ′gp . Thus the category of
strict étale morphisms to A(Q,J) is equivalent to that of A(P,I) by [EGA, IV.18.1.2].
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Proposition 6.1.8. Let θ : P → Q be a homomorphism of sharp fs monoids such that θgp

is an isomorphism, and let S be an S -scheme with the trivial log structure. Consider the
induced morphism f : S × ptQ → S × ptP of S -schemes. Then the functor f ∗ is essentially
surjective.

Proof. By (3.6.4), it suffices to show that for any Kummer log smooth morphism g′ : Y ′ →
S×ptQ with a fs chart η′ : Q→ Q′ of Kummer log smooth type, there is a Cartesian diagram

Y ′ Y

S × ptQ S × ptP

g′ g

f

of S -schemes such that g is Kummer log smooth. Note that η′ : Q→ Q′ is Kummer.
By definition (3.1.1), we can choose a factorization

Y ′ → S × ptQ ×AQ AQ′ → S

of g′ where the first arrow is strict étale and the second arrow is the projection. Then by
(6.1.5), there is a coCartesian diagram

P Q

P ′ Q′

η

θ

η′

θ′

of fs monoids such that η : P → P ′ is Kummer. Now we have the commutative diagram

Y ′

S × ptQ ×AQ AQ′ S × ptP ×AP AP ′

S × ptQ S × ptP

of S -schemes where the square is Cartesian. Since

ptQ ×AQ AQ′ = A(Q,J), ptP ×AP AP ′ = A(P,I)

where I (resp. J) denotes the ideal of P ′ (resp. Q′) generated by η(P ) (resp. η′(Q)), by
(6.1.7), there is a commutative diagram

Y ′ Y

S × ptQ ×AQ AQ′ S × ptP ×AP AP ′

S × ptQ S × ptP
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of S -schemes where each square is Cartesian and the arrow Y → S × ptP ×AP AP ′ is strict
étale. Thus we have constructed the diagram we want.

Theorem 6.1.9. The log motivic category T satisfies (Htp–5).

Proof. Let f : X → S be a morphism of S -schemes satisfying the conditions (i) and (ii) of
(6.1.1). By (6.1.3), it suffices to show that the counit

f ∗f∗
ad′−→ id

is an isomorphism.
Let {gi : Si → S}i∈I be a strict étale cover. Consider the Cartesian diagram

Xi X

Si S

fi

g′i

f

gi

of S -schemes. Then we have the commutative diagram

g′∗i f
∗f∗ f ∗i g

∗
i f∗ f ∗i fi∗g

′∗
i

g′∗i

ad′

∼ Ex

ad′

of functors, and the upper right horizontal arrow is an isomorphism by (eSm-BC). Since the
family of functors {g′∗i }i∈I is conservative by (két-Sep), we reduce to showing that for any

i ∈ I, the counit f ∗i fi∗
ad′−→ id is an isomorphism. Using this technique, we reduce to the case

when f has a fs chart θ : P → Q.
Then let i : S ′ → S be a strict closed immersion of S -schemes, and let j : S ′′ → S

denote its complement. Consider the commutative diagram

X ′ X X ′′

S ′ S S ′′

f ′

i′

f

j′

f ′′

i j

of S -schemes where each square is Cartesian. Then we have the commutative diagrams

i′∗f ∗f∗ f ′∗i∗f∗ f ′∗f ′∗i
′∗

i′∗
ad′

∼ Ex

ad′

j′∗f ∗f∗ f ′′∗j∗f∗ f ′′∗f ′′∗ j
′∗

j∗
ad′

∼ Ex

ad′
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of functors. As in the above paragraph, by (2.6.6) and (Loc), we reduce to showing that the
counits

f ′∗f ′∗
ad−→ id, f ′′∗f ′′∗

ad−→ id

are isomorphisms. Using this technique, by the proof of [Ols03, 3.5(ii)], we reduce to the case
when X → S is the morphism S × ptQ → S × ptP induced by the homomorphism P → Q.
In this case, the conclusion follows from (6.1.8) since f ∗ is fully faithful by (6.1.3).

6.2 Homotopy property 6

Theorem 6.2.1. The log motivic category T satisfies (Htp–6).

Proof. Let S be an S -scheme, and we put X = S × AN and Y = S × ptN. Consider the
commutative diagram

S × ptN S × AN S ×Gm

S S × A1 S ×Gm

S

i′

g′ f ′

j′

id

i

id
f

j

of S -schemes where

(i) each small square is Cartesian,

(ii) f denotes the projection, and f ′ denotes the morphism removing the log structure.

(iii) i denotes the 0-section, and j denotes its complement.

We want to show that the natural transformation

f∗f
′
∗f
′∗f ∗

ad−→ f∗f
′
∗i
′
∗i
′∗f ′∗f ∗

∼−→ g′∗g
′∗

is an isomorphism. By (Loc), it is equivalent to showing

f∗f
′
∗j
′
]j
′∗f ′∗f ∗ = 0.

Then by (Supp), it is equivalent to showing

f∗j]j
∗f ∗ = 0.

Thus by (Loc), it is equivalent to showing that the natural transformation

f∗f
∗ ad−→ f∗i∗i

∗f ∗

is an isomorphism, which follows from (Htp–1).
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6.2.2. Here, we give an application of (Htp–6). Let S be an S -scheme. Consider the
commutative diagram

S × ptN S × AN

S

i0

g
f

of S -schemes where f denotes the projection and i0 denotes the 0-section. Let i1 : S →
S × AN denote the 1-section. By (Htp–6), the natural transformation

f∗f
∗ ad−→ f∗i∗i

∗f ∗

is an isomorphism, and f ∗ is conservative since fi1 = id. Thus by (5.2.1), (fi)∗ = g∗ is
conservative.

6.3 Homotopy property 7

Theorem 6.3.1. Let S be an S -scheme with a fs chart P , let θ : P → Q be a vertical
homomorphism of exact log smooth over S type, and let G be a θ-critical face of Q. We
denote by

f : S ×AP (AQ − AQG)→ S

the projection. Then f!f
∗ = 0. In other words, T satisfies (Htp–7).

Proof. (I) Locality of the question. Note first that the question is strict étale local on S by
(eSm-BC).

Let i : Z → S be a strict closed immersion of S -schemes, and let j : U → S denote its
complement. Consider the commutative diagram

Z ×AP (AQ − AQG) S ×AP (AQ − AQG) U ×AP (AQ − AQG)

Z S U

g

i′

f

j′

h

i j

of S -schemes where each square is Cartesian. Then by (BC–3), we reduce to showing
g!g
∗ = 0 and h!h

∗ = 0. By the proof of [Ols03, 3.5(ii)], we reduce to the case when S has a
constant log structure.

(II) Reduction of G. Let G1 be a maximal θ-critical face of Q containing G. Consider the
induced commutative diagram

S ×AP (AQ − AQG) S ×AP (AQ − AQG1
) S ×AP (AQG − AQG1

)

S
f

f ′

f ′′
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of S -schemes. By (Loc), to show f!f
∗ = 0, it suffices to show f ′!f

′∗ = 0 and f ′′! f
′′∗ = 0.

Hence replacing f by f ′ or f ′′, we reduce to the case when G is a maximal θ-critical face of
Q.

(III) Reduction of P . We denote by P ′ the submonoid of Q consisting of elements q ∈ Q
such that nq ∈ P +Q∗ for some n ∈ N+. The induced homomorphism θ′ : P ′ → Q is again a
vertical homomorphism of exact log smooth over S×AP AP ′ type. Replacing S by S×AP AP ′ ,
we reduce to the case when the cokernel of θgp is torsion free and θ is logarithmic.

Then by (3.2.2), since the question is strict étale local on S, we may assume that P is
sharp and that the fs chart S → AP is neat at some point s ∈ S. Then P and Q are sharp,
and with (I), we may further assume that the fs chart S → AP factors through ptP .

(IV) Homotopy limit. Let G1 = G, . . . , Gr denote the maximal θ-critical faces of Q. The
condition that θ is vertical implies r ≥ 2. For any nonempty subset I = {i1, . . . , is} ⊂
{2, . . . , r}, we put

GI = Gi1 ∩ · · · ∩Gis ,

and we denote by
fI : S ×AP A(Q,Q−GI) → S

the projection. For any face H of Q, AH ⊂ AQ − AQH if and only if H 6= Q,G, which is
equivalent to H ⊂ G2 ∪ · · · ∪Gr. Thus the family

{S ×AP A(Q,Q−G2), . . . , S ×AP A(Q,Q−Gr)}

forms a closed cover of S ×AP (AQ − AQG), so for any object K of T (S), f∗f
∗K is the

homotopy limit of the Čech-type sequence⊕
|I|=1,|I|⊂{2,...,r}

fI∗f
∗
IK −→ · · · −→

⊕
|I|=r−1,|I|⊂{2,...,r}

fI∗f
∗
IK

in T (S). Hence we reduce to showing fI∗f
∗
IK = 0 for any nonempty subset I ⊂ {2, . . . , r}.

This is proved in (6.3.1) below.

Lemma 6.3.2. Let S be an S -scheme with a constant log structure S → ptP where P is a
sharp fs monoid, let θ : P → Q be a homomorphism of exact log smooth over S type, and let
G be a θ-critical face of Q such that G 6= Q∗. We denote by

f : S ×AP A(Q,Q−G) → S

the projection. Then f!f
∗ = 0.

Proof. We will use induction on dimQ. We have dimQ ≥ 1 since G 6= Q∗.

(I) Locality of the question. Note that by (eSm-BC), the question is strict étale local on S.

(II) Reduction of G. Let G′ be a 1-dimensional face of G, and choose generators b1, . . . , br
of the ideal Q−G′ in Q. For any nonempty subset I = {i1, . . . , is} ⊂ {1, . . . , r}, we denote
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by QI the localization Qbi1 ,...,bis
, and we denote by GI the face of QI generated by G. The

family
{S ×AP A(Qb1 ,Qb1−Gb1 ), . . . , S ×AP A(Qbs ,Qbs−Gbs )}

forms an open cover of S ×AP (A(Q,Q−G) − A(Q,Q−G′)). Thus if we denote by

fI : S ×AP A(QI ,QI−GI) → S,

f ′ : S ×AP A(Q,Q−G′) → S, f ′′ : S ×AP (A(Q,Q−G) − A(Q,Q−G′))→ S

the projections, then for any object K of T (S), f ′′! f
′′∗K is a homotopy colimit of⊕

|I|=r

fI∗f
∗
IK −→ · · · −→

⊕
|I|=1

fI∗f
∗
IK

in T (S). Since dimQI < dimQ, for any nonempty subset I ⊂ {1, . . . , r}, fI!f ∗I = 0 by
induction on dimQ. Thus f ′′! f

′′! = 0. Then by (Loc), f!f
∗ = 0 is equivalent to f ′!f

′∗ = 0.
Hence replacing G by G′, we reduce to the case when dimG = 1.

(III) Reduction of θ. Let a1 be a generator of G, let H be a maximal θ-critical face of Q
containing G, and choose a2, . . . , ad ∈ H where d = dimG such that a1, . . . , ad in Q are
independent over Q.

We denote by P ′ (resp. Q′) the submonoid of Q consisting of elements q ∈ Q such that
nq ∈ 〈a2, . . . , an〉+ P (resp. nq ∈ 〈a1, . . . , an〉+ P ) for some n ∈ N+. Then we denote by G′

the face of Q′ generated by a1, and we denote by θ′ : P ′ → Q′ the induced homomorphism.
Consider the induced morphisms

S ×AP A(Q,Q−G)
w→ S ×AP A(Q′,Q′−G′)

v→ S ×AP A(P ′,P ′)
u→ S

of S -schemes. The induced homomorphism Q′gp → Qgp is an isomorphism by [Ogu14,

4.6.6.4]. Thus by (6.1.3), the unit id
ad−→ w∗w

∗ is an isomorphism. Hence to show f!f
∗ = 0,

it suffices to show v!v
∗ = 0.

The cokernel of θ′gp is torsion free, and the diagram

P ′ P ′

Q′ Q′

θ′ θ′

is coCartesian where the horizontal arrows are the quotient homomorphisms. Thus we can
apply (3.2.2), so strict étale locally on S, we have a Cartesian diagram

S ×AP A(Q′,Q′−G′) A(Q′,Q′−G′)

S ×AP A(P ′,P ′) AP ′
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of S -schemes. The homomorphism θ′ : P ′ → Q′ is again a homomorphism of exact log
smooth over S ×AP A(P ′,P ′) type. Replacing (S ×AP A(Q,Q−G) → S, θ : P → Q) by

(S ×AP A(Q′,Q′−G′) → S ×AP A(P ′,P ′), θ′ : P ′ → Q′),

we may assume that

(i) P and Q are sharp,

(ii) QQ = PQ ⊕GQ,

(iii) dimG = 1.

(IV) Further reduction of θ. Since PQ and GQ generate QQ, as in (5.2.2), we can choose a
homomorphism P → P1 of Kummer log smooth over S type such that

1. P1 and G generate P1 ⊕P Q,

2. the functor g∗ is conservative where g : S ×AP AP1 → S denotes the projection.

We put Q1 = P1 ⊕P Q, and we denote by G1 the face of Q1 generated by G. Consider the
Cartesian diagram

S ×AP A(Q1,Q1−G1) S ×AP AP1

S ×AP A(Q,Q−G) S

g′

f ′

g

f

of S -schemes. Since g∗ is conservative, to show f!f
∗ = 0, it suffices to show f ′!f

′∗ = 0 by
(eSm-BC).

By (3.2.2), strict étale locally on S ×AP AP ′ , there is a Cartesian diagram

S ×AP A(Q1,Q1−G1) A(Q1,Q1−G1)

S ×AP AP1 AP1

f ′

of S -schemes. Replacing (S ×AP A(Q,Q−G) → S, θ : P → Q) by

(S ×AP A(Q1,Q1−G1) → S ×AP AP1 , P1 → Q1),

we may assume that

(i) P and Q are sharp,

(ii) Q = P ⊕G,

(iii) dimG = 1.

(V) Final step of the proof. Then S ×AP A(Q,Q−G) = S ×AP AQ. Let a1 denote the generator
of G. We denote by T the gluing of

Spec(Q→ Z[Q]), Spec(P → Z[P, a−1
1 ])
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along Spec(P → Z[P, a±1 ]). Consider the commutative diagram

S

S ×AP AQ S ×AP T S ×AP (AP × A1)

S

i1

id

f

j1

h

j2

p

of S -schemes where

(i) j1 and j2 denote the induced open immersions,

(ii) h and p denote the projections,

(iii) i1 is a complement of j1.

Then h is exact log smooth, and j2 is the verticalization of S×AP T via h. Thus by (Htp–2),
the natural transformation

h∗
ad−→ j2∗j

∗
2h
∗

is an isomorphism. By (Htp–1), the composition

id −→ p∗p
∗ ∼−→ h∗j2∗j

∗
2h
∗

is an isomorphism, so the unit id
ad−→ h∗h

∗ is an isomorphism. Then by (Loc), for any object
K of T (S), we have the distinguished triangle

h∗j1]j
∗
1h
∗K

ad′−→ h∗h
∗K

ad−→ h∗i1∗i
∗
1h
∗K −→ h∗j1]j

∗
1h
∗K[1]

in T (S). Since i1h = id, the second arrow is the inverse of the unit id
ad−→ h∗h

∗, which is
an isomorphism. Thus f!f

∗ ∼= h∗j1]j
∗
1h
∗ = 0.

6.4 Base change property 2

Proposition 6.4.1. Let T be an S -scheme, and consider the commutative diagram

X ′ X T × AN⊕N

S ′ S T × AN

f ′

g′

f p

g

of S -schemes where

(i) each square is Cartesian,
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(ii) p denotes the morphism induced by the diagonal homomorphism N → N ⊕ N of fs
monoids.

Then (BCf,g) is satisfied.

Proof. By (5.4.7), the purity transformations

f]
pof−→ f!(1)[2], f ′]

po
f ′−→ f ′! (1)[2]

are isomorphisms. Thus to show that the exchange transformation g∗f!
Ex−→ f ′! g

′∗ is an
isomorphism, it suffices to show that the exchange transformation

f ′]g
′∗ Ex−→ g∗f]

is an isomorphism. This follows from (eSm-BC).

Proposition 6.4.2. Let f : X → S be a separated morphism of S -schemes, and let g :
S × ptN → S denote the projection. Then (BCf,g) is satisfied.

Proof. Consider the commutative diagram

X ′′ X ′ X

S × ptN S × AN S

i′

f ′ f ′′

p′

f

i p

of S -schemes where

(i) each square is Cartesian,

(ii) i denotes the 0-section, and p denotes the projection.

Then (BCf,p) is satisfied by (eSm-BC), and (BCf ′′,i) is satisfied by (BC–3). These two imply
(BCf,g).

Proposition 6.4.3. Let T be an S -scheme, and let θ : P → Q be a locally exact homorphism
of sharp fs monoids. We put X = T × ptQ and S = T × ptP , and consider the morphism
f : X → S induced by θ. Then (BCf,g) is satisfied for any morphism g : S ′ → S of
S -schemes.

Proof. (I) Reduction method 1. Assume that we have a factorization

P
θ′−→ Q′

θ′′−→ Q

of θ where θ′ is locally exact, θ′′gp is an isomorphism, and θ′ is a sharp fs monoid. Consider
the morphism

f ′ : T × ptQ′ → T × ptP
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induced by θ′. Then by (Htp–5), (BCf,g) is equivalent to (BCf ′,g).

(II) Reduction method 2. Let u : S0 → S be a morphism of S -schemes, and consider a
commutative diagram

X ′0 X0

X ′ X

S ′0 S0

S S

f ′0

g′0

v′ v
f0

g′

f
g0

u′ u

f ′

g

of S -schemes where each small square is Cartesian. Then we have the commutative diagram

u′∗g∗f∗ u′∗f ′∗g
′∗ f ′0∗v

′∗g′∗

g∗0u
∗f∗ g∗0f0∗v

∗ f ′0∗g
′∗
0 v
∗

∼

Ex Ex

∼

Ex Ex

of functors. Assume that u′∗ is conservative. If (BCf,u), (BCf ′,u′), and (BCf0,g0) are satisfied,
then the lower left horizontal, upper right horizontal, and lower right horizontal arrows are
isomorphisms. Thus the upper left horizontal arrow is also an isomorphism. Then (BCf,g)
is satisfied since u′∗ is conservative.

We will apply this technique to the following two cases.

(a) When u is an exact log smooth morphism such that u′∗ is conservative, then (BCf,u)
and (BCf ′,u′) are satisfied by (eSm-BC). Thus (BCf0,g0) implies (BCf,g).

(b) When u is the projection S × ptN → S, u′∗ is conservative by (6.2.2). We also have
(BCf,u) and (BCf ′,u′) by (6.4.2). Thus (BCf0,g0) implies (BCf,g).

(III) Final step of the proof. Let G be a maximal θ-critical face of Q, and we denote by Q′

the submonoid of Q consisting of elements q ∈ Q′ susch that nq ∈ P + G for some n ∈ N+.
Then by [Ogu14, 4.6.6], Q′gp = Qgp. Thus by (I), we reduce to the case when Q = Q′. In
this case, we have

QQ = (P ⊕G)Q.

Then choose n ∈ N+ such that nq ∈ P+G for any q ∈ Q, and consider the homomorphism

P → P gp ⊕ P, a 7→ (a, na).

We put P ′ = P gp⊕P , and consider the projection u : S×APAP ′ → S. Then u∗ is conservative
as in (5.2.2). Thus by the case (a) in (II), we can replace P → Q by P ′ → P ′ ⊕P Q. Thus
we reduce to the case when

Q = P ⊕G.
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Since X = S × ptG, we reduce to the case when P = 0.
By [CLS11, 11.1.9], there is a homomorphism λ : Nr → Q of fs monoids such that λgp

is an isomorphism. Thus by (I), we reduce to the case when Q = Nr. Then we have the
factorization

S × ptNr → · · · → S × ptN → S

of f , so we reduce to the case when Q = N. By the case (b) of (II), we reduce to the case
when θ is the first inclusion N⊕ N⊕ N. Composing with the homomorphism

N⊕ N→ N⊕ N, (a, b) 7→ (a, a+ b)

of fs monoids, by (I), we reduce to the case when θ is the diagonal homomorphism N→ N⊕N.
Then f has the factorization

S × ptN⊕N
i−→ S × AN⊕N ×Aθ,AN ptN

p−→ S

where i denotes the induced strict closed immersion and p denotes the projection. By (6.4.1),
(BCp,g) is satisfied. If g′′ denotes the pullback of g : S ′ → S via p, (BCi,g′′) is satisfied by
(BC–3). These two implies (BCf,g).

Theorem 6.4.4. The log motivic triangulated category T satisfies (BC–2).

Proof. Consider a Cartesian diagram

X ′ X

S ′ S

f ′

g′

f

g

of S -schemes where f is a separated exact log smooth morphism. We want to show (BCf,g).

(I) Reduction method 1. Let {ui : Si → S}i∈I be a family of strict morphisms. For i ∈ I,
consider the commutative diagram

X ′i Xi

X ′ X

S ′i Si

S S

f ′i

g′i

v′ v
fi

g′

f
gi

u′ u

f ′

g
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of S -schemes where each square is Cartesian. Assume that the family of functors {u∗i }i∈I is
conservative. Then we have the commutative diagram

u′∗i g
∗f! u′∗i f

′
! g
′∗ f ′i!v

′∗
i g
′∗

g∗i u
∗
i f! g∗i fi!v

∗
i f ′i∗g

′∗
i v
∗
i

∼

Ex Ex

∼

Ex Ex

of functors. By (BC–3), the lower left horizontal and upper right horizontal arrows are
isomorphisms. If (BCfi,gi) is satisfied for any i, then the lower right horizontal arrow is an
isomorphism for any i, so the upper left horizontal arrow is an isomorphism for any i. This
implies (BCf,g) since {u∗i }i∈I is conservative.

We will apply this in the following two situations.

(a) When {ui}i∈I is a strict étale cover, the family of functors {u∗i }i∈I is conservative by
(két-sep).

(b) When u0 is a strict closed immersion and u1 is its complement, the pair of functors
(u∗0, u

∗
1) is conservative by (Loc).

(II) Reduction method 2. Let {vi : Xi → X}i∈I be a family of separated strict morphisms
such that the family of functors {v!

i}i∈I is conservative. Consider the commutative diagram

X ′i Xi

X ′ X

S ′ S

v′i

g′i

vi

g′

f ′ f

g

of S -schemes where each square is Cartesian. Then we have the commutative diagram

g∗f!vi! f ′! g
′∗vi! f ′! v

′
i!g
′∗
i

g∗(fvi)! (f ′v′i)!g
′∗
i

∼

Ex Ex

∼

Ex

of functors. The upper right horizontal arrow is an isomorphism by (BC–1). If (BCfvi,g)
is satisfied, then the lower horizontal arrow is an isomorphism, so the upper left horizontal
arrow is an isomorphism. This implies that the natural transformation

v!
ig
′
∗f

! Ex−→ v!
if

!g∗

is an isomorphism. This implies (BCf,g) since {v!
i}i∈I is conservative.

We will apply this technique in the following two situations.
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(a) When {vi}i∈I is a strict étale cover such that each vi is separated, by (két-sep) and
(2.5.9), the family of functors {v!

i}i∈I is conservative.

(b) When v0 : S0 → S is a strict closed immersion and v1 is its complement, by (Loc),
the pair of functors (v!

0, v
!
1) is conservative.

(III) Final step of the proof. By the case (a) of (I) and the case (a) of (II), we reduce to the
case when f has a fs chart θ : P → Q of exact log smooth type. Then by the case (b) of (I)
and the proof of [Ols03, 3.5(ii)], we may assume that S has a constant log structure.

Consider the commutative diagram

Y ptQ

X AQ

S AP

h

g′′

f

g′

g

of S -schemes where each square is Cartesian. By the case (b) of (II) and the proof of [Ols03,
3.5(ii)], we reduce to showing (BCfh,g).

Now, consider the the commutative diagram

Y ′ Y

T ′ Y ×S S

S ′ S

q′

g′′

q

p′

g′′′

p

g

of S -schemes where

(i) each square is Cartesian,

(ii) q denotes the induced morphism and p denotes the projection.

Then since p is strict, (BCp,g) is satisfied by (BC–1). By (6.4.3), (BCq,g′′′) is also satisfied.
These two implies (BCf,g).

122



Chapter 7

Localization property

7.1 Localization property for DA1,sèt(lSm,Λ)

7.1.1. We will prove the theorem of Morel and Voevodsky [Ayo07, 4.5.36] in the logarithmic
setting. We will closely follow the proof of [loc. cit] except Étape 2 of [Ayo07, 4.5.42] in
which some additional log geometry is need.

7.1.2. Let S be an S -scheme. Recall from (1.3.2) that for any presheaf F on ft/S, we
denote by ΛS(F ) the Λ-free presheaf

(X ∈ ft/S) 7→ ΛF (S).

For any topology t on S , we denote by Λt
S(F ) its associated t-sheaf.

7.1.3. Let t be a topology on S , let S be an S -scheme, and let AS be Sht(ft/S,Λ) or
PSh(ft/S, λ). Then we denote by A the collection of AS for S -schemes S. For any family
W of morphisms in C(A ) stable by twists, f] for f ∈ ft, and f ∗, we refer readers [CD12,
5.2.2] the W -local model structure on C(A ).

We denote by WA1,S the family

MS(X × A1)[n]→MS(X)[n]

for n ∈ Z and morphisms X → S of finite type. For any topology t′ on S finer than t, we
denote by Wt′,s the family

MS(X )[n]→MS(X)[n]

for n ∈ Z, morphisms X → S of finite type, and t′-hypercovers X → X. Then for brevity,
the Wt′ ∪WA1-local model structure is called (t′,A1)-local model structure.

7.1.4. Recall from [Ayo07, Following paragraph of 4.5.31] that the t∅ is the topology on S
generated by the empty cover of ∅.
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Theorem 7.1.5. Let i : Z → S be a closed immersion, and let j : U → S denote its
complement. For any log smooth morphism f : X → S of S -schemes, the commutative
diagram

Λ
t∅
S (U ×S X) Λ

t∅
S (X)

∗ i∗Λ
t∅
S (Z ×S X)

of S -schemes is homotopy coCartesian in C(Sht∅(ft/S,Λ)) with the (sèt,A1)-local model
structure.

7.1.6. Before proving the theorem, we recall several results in [Ayo07, §4.5].

Proposition 7.1.7. Let i : Z → S be a strict closed immersion of S -schemes. Then the
functor

i∗ : C(Sht∅(ft/S,Λ))→ C(Sht∅(ft/S,Λ))

preserves (sèt,A1)-weak equivalences.

Proof. In [Ayo07, 4.5.35], the statement is proved for the topos Sht∅(Sm/S,Λ)) (with S
usual scheme) instead of the topos Sht∅(ft/S,Λ). However, the proof of [loc. cit] can be
applied to our situation trivially.

Proposition 7.1.8. Let G → F be a morphism of presheaves of sets over ft/S. To show
that the morphism

ΛS(G)→ ΛS(F )

in C(PSh(ft/S,Λ)) is (sèt,A1)-weak equivalent, it suffices to show that for any morphism
p : P → S of finite type of S -schemes and a section s ∈ F (P ), the morphism

ΛS(p∗G×p∗F P )→ ΛS(P )

in C(PSh(ft/S,Λ)) is (sèt,A1)-weak equivalent. Here, the morphism X → p∗F used in the
fiber product is the right adjoint of

p]P ∼= P
s−→ F.

Proof. In [Ayo07, 4.5.40], the statement is proved for the topos PSh(Sm/S,Λ) (with S usual
scheme) instead of the topos PSh(ft/S,Λ). However, the proof of [loc. cit] can be applied
to our situation trivially.

Lemma 7.1.9. Under the notations and hypotheses of (7.1.5), to show (loc. cit), it suffices
to show that the commutative diagram

ΛS(U ×S X) ΛS(X)

ΛS(U) ΛS(i∗(Z ×S X))
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is homotopy coCartesian in C(PSh(ft/S,Λ)) with the (sèt,A1)-local model structure. Here,
the morphism ΛS(U) → Λ(i∗(Z ×S X)) used in the above diagram is induced by a unique
element of

HomS(U, i∗(Z ×S X)) = HomZ(∅, Z ×S X) = ∗.

Proof. It is due to [Ayo07, 4.5.41].

Lemma 7.1.10. Let X be an S -scheme over S, and let g : X ′ → X be a strict étale cover
of S -schemes. Then the functor

g∗ : C(PSh(ft/S,Λ))→ C(PSh(ft/S,Λ))

preserves and detects (sèt,A1)-weak equivalences.

Proof. In [Ayo07, 4.5.43], the statement is proved for the topos PSh(Sm/S,Λ) (with S usual
scheme) instead of the topos PSh(ft/S,Λ). However, the proof of [loc. cit] can be applied
to our situation trivially.

7.1.11. Now we start the proof of (7.1.5). By (7.1.9), it suffices to prove that the morphism

ΛS(X
∐
U×SX

U)→ ΛS(i∗(Z ×S X))

induced by the diagram of (loc. cit) is (sèt,A1)-weak equivalent. Here, X
∐

U×SX U is the
fibered coproduct of presheaves of sets. Note that for any morphism Y → S of S -scheme,
we have

(X
∐
U×SX

U)(Y ) =HomS(Y,X)
∐

HomS(Y,U×SX)

HomS(Y, U)

=

{
HomS(Y,X) if Y ×S Z 6= ∅

∗ if Y ×S Z = ∅.

By (7.1.8), it suffices to prove that for any morphism p : P → S of finite type of S -schemes
and a section s : P → i∗(Z ×S X), the morphism

ΛS(TX,P,s)→ P

in C(PSh(ft/S,Λ)) is (sèt,A1)-weak equivalent where

TX,P,s = p∗(X
∐
U×SX

U)×p∗i∗(Z×SX) P.

Note that for any morphism Y → P of S -schemes, we have

TX,P,s(Y ) =

{
HomS(Y,X)×HomZ(Z×SY,Z×SX) ∗ if Y ×S Z 6= ∅

∗ if Y ×S Z = ∅
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where the function ∗ → HomZ(Z ×S Y, Z ×SX) used in the fiber product is obtained by the
composition

Z ×S Y −→ Z ×S P
s−→ Z ×S X.

Because
TX,P,s = TX×SP,P,sP

where sP denotes the morphism (s, id) : Z ×S P → X ×S P , we may assume that P = S.
Hence to prove (7.1.5), the remaining is to prove the following proposition.

Proposition 7.1.12. Under the notations and hypotheses of (7.1.5), Let s : Z → X be a
partial section of f : X → S. We denote by TX,s the presheaf of sets defined by

TX,s(Y ) =

{
HomS(Y,X)×HomZ(Z×SY,Z×SX) ∗ if Y ×S Z 6= ∅

∗ if Y ×S Z = ∅

for any morphism Y → S of S -schemes. Then the morphism

ΛS(TX,s)→ ΛS(S)

in C(PSh(ft/S,Λ)) is (sèt,A1)-weak equivalent.

Proof. We denote by t the graph morphism Z → Z ×S X of s : Z → X. To help readers,
we include the description of TX,s(Y ) via diagrams as follows: when Y ×S Z 6= ∅, the set
TX,s(Y ) is the set of morphisms Y → X of S -schemes over S such that the diagram

Z ×S Y Y

Z

Z ×S X X

h′

q

b

h

t

a

(7.1.12.1)

of S -schemes commutes where a and q denotes the projections and the small square is
Cartesian. We will prove the proposition in several steps.

(I) Locality on S. Let {ui : Si → S}i∈I be a strict étale cover. Then the presheaf u∗i (TX,s)
is isomorphic to TXi,si where si and Xi denote the pullbacks of s and X via ui respectively.
Then (7.1.10) implies that the question is strict étale local on S. Hence from now, we will
assume that S has a fs chart.

(II) Comparison of presheaves. Consider a commutative diagram

X ′

Z X

gs′

s
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such that g is log étale. Then we will show that the evident morphism

TX′,s′ → TX,s

becomes an isomorphism after sheafification. To show this, we will construct the inverse of

TX′,s′(Y )→ TX,s(Y )

for any henselization Y of an S -scheme W over S. Here, the henselization means the fiber
product W ×W (W )h. Consider the commutative diagram (7.1.12.1). We put Y ′ = Y ×XX ′.
Then we have the commutative diagram

Y ′

Z ×S Y Y

Z Z ×S X ′ X ′

Z ×S X X

p1

p2
b

q
t′

t

g′

a′

g

a

h′ h

of S -schemes where

(i) p1 denotes the first projection, and p2 denotes the second projection,

(ii) a′ denotes the projection,

(iii) t and t′ denotes the morphisms induced by s and s′ respectively,

(iv) each small square is Cartesian.

Then the two compositions
Z ×S Y → Y → X,

Z ×S Y → Z → Z ×S X ′ → X ′ → X

are equal, so these two induce a morphism α : Z×S Y → Y ×SX ′ = Y ′ of S -schemes. Thus
we have the commutative diagram

Y ′

Z ×S Y Y

p1

b

α

of S -schemes, and by (3.3.4), there is a unique section β : Y → Y ′ of p1 extending α. Let
γ denote the composition p2β. Then the diagram

Z ×S Y Y

Z Z ×S X ′ X ′
q

γ′

b

γ

t′ a′
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of S -schemes commutes where the small square is Cartesian, so this gives an element of
TX′,s′(Y ). Thus we have constructed the inverse of TX′,s′(Y )→ TX,s(Y ).

(III) Locality on X. Note that we have assumed that S has a fs chart. Let {vi : Xi → X}i∈I
be a strict étale cover. We denote by wi : Zi → Z the pullback of vi via s : Z → X. By
[EGA, IV.18.1.1], for each i ∈ I, there is a Cartesian diagram

Zi Z

Si S

vi i

ui

such that ui is strict étale. Then we have the commutative diagram

Xi ×S Si

X ×S Si

Zi Si

si

s′i

of S -schemes where s′i is the morphism induced by the morphisms Zi → Xi and Zi → Si.
By (I), we reduce to the case when

(S,X,Z, s) = (Si, X ×S Si, Zi, si),

and by (II), we reduce to the case when

(S,X,Z, s) = (Si, Xi ×S Si, Zi, s′i)

since the morphism Xi ×S Si → X ×S Si is strict étale.
We will apply this to the following two situations. Assume that {vi : Xi → X}i∈I be a

strict étale cover such that each morphism Xi → S has a fs chart. Then each projection
Xi ×S Si → Si has also a fs chart, so we reduce to the case when the morphism f : X → S
has a fs chart.

Another application of this process is that when f : X → S is strict smooth. By [EGA,
IV.17.12.2], there is an open cover {vi : Xi → X}i∈I such that the composition fvi : Xi → S
has a factorization

Xi

u′i−→ An
S

ui−→ S

where u′i is strict étale and ui denotes the projection such that the composition u′is : Z → An
S

is the 0-section. Then the projection Xi ×S Si → Si has the factorization

Xi ×S Si −→ An
Si
−→ Si
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induced by the above sequence. Hence when f is strict smooth, we reduce to the case when
f has a factorization

X
u′−→ An

S
u−→ S

where u′ is strict étale and u denotes the projection such that the composition u′s : Z → An
S

is the 0-section.

(IV) Final step of the proof. By (III), we may assume that f has a chart. Then by [Ogu14,
IV.3.4.2], we have a commutative diagram

X ′

Z X

g

s

s′

of S -schemes where s′ is strict closed immersion and g is a log étale morphism with a fs
chart. By (3.3.3), we can choose a maximal open subscheme U ofX such that the composition

U → X ′
fg→ S is strict. Then s′ factors through U , so we have the commutative diagram

U

Z X

gj

s

s′′

of S -schemes where s′′ denote the morphism induced by s′, so by (II), we reduce to the case
when (X, s) = (U, s′′). In particular, we may assume that f is strict. Then by (III), we may
assume that f : X → S has a factorization

X
u′−→ An

S
u−→ S

where u′ is strict étale and u denotes the projection such that the composition u′s : Z → An
S

is the 0-section. Then by (II) again, we may assume that (X, s) = (An
S, s0) where s0 : Z → An

S

denotes the 0-section. We have the morphism

TAnS ,0 × A1 → TAnS ,0

of presheaves that maps (f, t) ∈ TAnS ,0(Y )× A1
S(Y ) to the composite

Y An
S × A1 An

S.
(x1,...,xn,t)7→(tx1,...,txn)

This map forms a homotopy between the identity of TAn,s0 and the zero morphism, which
completes the proof.

Corollary 7.1.13. Let i : Z → S be a strict closed immersion, and let j : U → S denote its
complement. For any log smooth morphism f : X → S, we have a distinguished triangle

j]j
∗MS(X) −→MS(X) −→ i∗i

∗MS(X) −→ j]j
∗MS(X)[1]

in DA1,sèt(ft/S,Λ).
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Proof. Because (7.1.5) and (7.1.7) are proved, we can argue as in the proofs of [Ayo07,
4.5.47].

Proposition 7.1.14. Let i : Z → S be a strict closed immersion, and let j : U → S denote
its complement. Then the functor

i∗ : DA1,sèt(ft/Z,Λ)→ DA1,sèt(ft/S,Λ)

admits a right adjoint.

Proof. It follows from the proof of [Ayo07, 4.5.46].

7.2 Localization property for DA1,pw(lSm,Λ)

7.2.1. Our final goal of this chapter is to show the localization property for Dlog,pw(lSm,Λ).
Our strategy is to use the following result.

Proposition 7.2.2. Let i : Z → S be a strict closed immersion of S -schemes, let j : U → S
denote its complement, let f : V → Z be a log smooth morphism of S -schemes, let t be a
topology on S , and let W be a family of morphisms stable by twists, f] for f ∈ lSm, and
f ∗. Assume that

(i) the functor
i∗ : DA1,t(ft/Z,Λ)→ DA1,t(ft/S,Λ)

maps W to W -weak equivalences, and it admits a right adjoint.

(ii) there is a distinguished triangle

j]j
∗MS(X) −→MS(X) −→ i∗i

∗MS(X) −→ j]j
∗MS(X)[1] (7.2.2.1)

in DA1,t(ft/S,Λ).

Then

(1) the functor
i∗ : DW ,t(ft/Z,Λ)→ DW ,t(ft/S,Λ)

admits a right adjoint,

(2) there is a distinguished triangle

j]j
∗MS(X) −→MS(X) −→ i∗i

∗MS(X) −→ j]j
∗MS(X)[1] (7.2.2.2)

in DW ,t(ft/S,Λ).

Proof. The assertion (1) follows from (1.6.4), and by (loc. cit), i∗ commutes with the functor

π : DA1,t(ft,Λ)→ DW ,t(ft,Λ).

Applying π to (7.2.2.1), we get a distinguished triangle

πj]j
∗MS(X) −→ πMS(X) −→ πi∗i

∗MS(X) −→ πj]j
∗MS(X)[1]

in DW ,t(ft/S,Λ). It is exactly (7.2.2.2) because π commutes with j], j
∗, i∗, and i∗.
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7.2.3. For the localization property for DA1,pw(lSm,Λ), out strategy is to apply Ayoub’s
following result.

Proposition 7.2.4. Let t be a topology on S such that any t-cover consists of morphisms
of finite type, and let i : Z → S be a strict closed immersion of S -schemes. Assume that
for any morphism X → S of finite type of S -schemes such that X ×S Z 6= ∅, the evident
functor

Covt(X)→ Covt(X ×S Z)

is cofinal where Covt(X) denote the category of t-cover of X. Then the functor

i∗ : DA1,t∅(ft/Z,Λ)→ DA1,t∅(ft/S,Λ)

preserves t-local equivalences.

Proof. It follows from the proof of [Ayo07, 4.5.34].

7.2.5. Hence the remaining is to study the cofinality for the pw-topology.

Proposition 7.2.6. Let i : Z → S be a strict closed immersion of S -schemes. Then the
evident functor

Φ : Covpw(S)→ Covpw(Z)

is cofinal.

Proof. Let g : Z ′ → Z be a morphism of S -schemes. We divide the question into 3 cases.

(I) Strict étale cover. Assume that g is a strict étale cover. Then g has a refinement that is
in the essential image of Φ by the proof of [Ayo07, 4.5.33].

(II) Piercing cover. Let v : Z → A1 be a morphism of S -schemes. We put

Z ′1 = Z ×A1 SpecZ, Z ′2 = Z ×A1 AN

where the morphisms SpecZ → A1 and AN → A1 used above are the 0-sections and the
morphism removing the log structure respectively. We want to show that the piercing cover

Z ′1
∐

Z ′2 → Z

has a refinement that is an essential image of Φ.
Zariski locally on S, the morphism v : Z → A1 can be extended to a morphism u : S →

A1. We put similarly
S ′1 = S ×A1 SpecZ, S ′2 = S ×A1 AN.

Then the image of S ′1 q S ′2 → S ′ via Φ is the cover Z ′1 q Z2 → Z.

(III) Winding cover. Assume that g is a pullback of a morphism

Aθ′ : AP ′1
→ AP ′
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where θ′ : P ′ → P ′1 is a Kummer homomorphism of fs monoids. We want to show that g has
a refinement that is an essential image of Φ.

Let x be a geometric point of Z. Strict étale locally on Z near x, we can choose a
factorization

P ′ → Q′
α′→MZ

of the homomorphism P ′ → MZ such that α′ is a chart exact at x by [Ogu14, II.2.3.2].
Moreover, strict étale locally on S near x, we may assume that S has a fs chart

α : Q→MS

neat at x by [Ogu14, 2.3.7]. Choose homomorphisms

β : Q→ Q⊕Q′gp,

β′ : Q′ → Q⊕Q′gp,

β′′ : Q⊕Q′gp →MZ

as in (3.2.1). Then β′ induces the homomorphism

P ′ → Q⊕Q′gp.

We put Q1 = P ′1 ⊕P ′ (Q⊕Q′gp), and we denote by ι : Q⊕Q′gp → Q1 the second inclusion.
For n ∈ N+, we denote by µn : Q → Q the multiplication homomorphism a 7→ na. By
(3.5.4), there is a Kummer homomorphism ζ : Q′gp → G of finitely generated abelian groups
and a commutative diagram

Q⊕Q′gp Q1

Q⊕G
µn⊕ζ

ι

of fs monoids. Then g has a refinement

Z ×AQ⊕Q′gp ,Aµn⊕ζ AQ⊕G → Z.

Choose a surjective homomorphism λ : Zr → Q′gp for some r. By (7.2.7) below, there is a
Kummer homomorphism ζ ′ : Zr → G′ of finitely generated abelian groups and a coCartesian
diagram

Q⊕ Zr Q⊕Q′gp

Q⊕G′ Q⊕G

id⊕λ

µn⊕ζ′ µn⊕ζ

of fs monoids. Thus g has a refinement

Z ×AQ⊕Zr ,Aµn⊕ζ′ AQ⊕G′ → Z.
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Strict étale locally on S near x, the composition

Q⊕ Zr id⊕λ→ Q⊕Q′gp → Γ(Z,MZ)

factors through Γ(S,MS) where the third arrow is the homomorphism induced by β′′ because
Zr is free and β′′ is induced by α. This gives a chart

Q⊕ Zr →MS.

Then the image of the winding cover

S ×AQ⊕Zr ,Aµn⊕ζ′ AQ⊕G′ → S

via Φ is a refinement of g.

Lemma 7.2.7. Let θ : G → H be a surjective homomorphism of finitely generated abelian
groups, and let η′ : H → H ′ be a Kummer homomorphism of finitely generated abelian
groups. Then there is a coCartesian diagram

G H

G′ H ′

θ

η η′

θ′

of finitely generated abelian groups such that η′ is Kummer.

Proof. Let a be an element of H ′. By induction on [H ′ : H], we may assume that H ′ is
generated by a and H. We denote by λ′ : Z → H ′ the homomorphism maps 1 to a, and
consider the Cartesian diagram

K H

Z H ′

λ

η′′ η′

λ′

of finitely generated abelian groups. Since η′(H) and λ′(Z) generate H ′, the above diagram
is also coCartesian. The assumption that η′ is Kummer implies that K is nontrivial, so K
is isomorphic to Z. Then λ has a factorization

K
µ→ G

ν→ H

since K is free. Consider the commutative diagram

K G H

Z G′ H ′

µ

η′′ η

ν

η′

µ′ ν

of finitely generated abelian groups where the left square is coCartesian. Then the right
square is also coCartesian, and η is Kummer.
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Corollary 7.2.8. Let i : Z → S be a strict closed immersion of S -schemes, let j : U → S
be its complement, and let f : V → Z be a log smooth morphism of S -schemes. Then

(1) the functor
i∗ : DA1,pw(ft/Z,Λ)→ DA1,pw(ft/S,Λ)

admits a right adjoint,

(2) there is a distinguished triangle

j]j
∗MS(X) −→MS(X) −→ i∗i

∗MS(X) −→ j]j
∗MS(X)[1]

in DA1,pw(ft/S,Λ).

Proof. By (7.2.4) and (7.2.6), the functor

i∗ : DA1,sèt(ft/Z,Λ)→ DA1,sèt(ft/S,Λ)

preserves pw-local equivalences. Then the conclusion follows from (7.1.13), (7.1.14), and
(7.2.2).

7.3 Dimensional density structure

Definition 7.3.1. Let S be a fs log scheme. Then we put

S(n) = {s ∈ S : rkMgp

S,s ≤ n}.

We consider it as an open subscheme of S.

Definition 7.3.2. Let S be a fs log scheme. We denote by Ddim
d (S) the family of open

immersions U → S such that dim(S − U) ≤ dimS − d. It is called dimensional density
structure. Note that Ddim

∗ (−) satisfies the conditions of [Voe10a, 2.20], so it is a density
structure whose definition is in [loc. cit]. Note also that any element of Ddim

d (S) is an
isomorphism if d > dimX. We also denote by Ddim

d,(n)(S) the family of open immersions

U → S such that U ∪ S(n−1) ∈ Ddim
d (S).

Proposition 7.3.3. The Zariski cd-structure is bounded by Ddim
∗ (−).

Proof. Let S be an S -scheme, and we put n = dimS. Consider a Zariski distinguished
square

W V

U S

v′

u′

v

u

of S -schemes with W0 ∈ Ddim
d−1(W ), U0 ∈ Ddim

d (U), and V0 ∈ Ddim
d (V ). Then

dim(U − U0), dim(V − V0) ≤ n− d,
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so dim(U − U0 ∪ V − V0) ≤ n − d where the closures are computed in S. Replacing S by
S − U − U0 − V − V0, we may assume that U = U0 and V = V0.

We put
Z = W −W0, C = S − U, D = S − V.

Then dimZ ≤ n− d+ 1. If Z ′ is an irreducible component of Z, then

Z ′ ∩ (C ∩D) ⊂ C ∩D = ∅,

so Z ′ 6⊂ C or Z ′ 6⊂ D. Thus we have a decomposition

Z = Z1 ∪ Z2

such that

(i) Zi is a union of irreducible components of Z for each i = 1, 2,

(ii) if Z ′ is an irreducible component of Z1 (resp. Z2), then Z ′ 6⊂ Z2 (resp. Z ′ 6⊂ Z1), and
Z ′ 6⊂ D (resp. Z ′ 6⊂ C).

The Cartesian diagram

W0 V − Z2

U − Z1 (U − Z1) ∪ (V − Z2)

of S -schemes where the closures are computed in S is a Zariski distinguished squares, and
we have

(U − Z1) ∪ (V − Z2) = S − (S − (U − Z1)) ∩ (S − (V − Z2))

= S − (C ∪ Z1) ∩ (D ∪ Z2)

= S − ((C ∪ Z2) ∪ (Z1 ∩D) ∪ (Z1 ∩ Z2)).

By construction,

dim(C ∪ Z2), dim(Z1 ∩D), dim(Z1 ∩ Z2) ≤ n− d,

so (U − Z1) ∪ (V − Z2) ∈ Ddim
d (S). We are done by putting S1 = (U − Z1) ∪ (V − Z2),

U1 = U − Z1, and V1 = V − Z2.

Definition 7.3.4. Let S be a fs log scheme with a Zariski log structure. We denote by
Ddv
d,(n)(S) the family of log étale monomorphisms U → S such that for some dividing cover

T → S, the projection U ×S T → T is an open immersion such that U ×S T ∈ Ddim
d,(n)(T ).

Lemma 7.3.5. Let f : X → S be a log étale monomorphism such that S = S(n). Then the
induced morphism

X −X(n−1) → S − S(n−1)

has fibers of dimension 0.
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Proof. The question is Zariski local on S and X, so by (3.4.1), we may assume that there is
a chart θ : P → Q with the conditions (i) and (ii) of (loc. cit). By [Ogu14, II.2.3.2], we may
assume that P is exact at some point of S. Then dimP ≤ n, so the conclusion follows from
the fact that the induced morphism

AQ − A(n−1)
Q → AP − A(n−1)

P

has fibers of dimension 0.

Lemma 7.3.6. Let f : X → S be a morphism of S -schemes such that S = S(n). Assume
that f is a dividing cover. If S0 ∈ Ddim

d,(n)(S), then S0 ×S X ∈ Ddim
d,(n)(X).

Proof. We have dimS ≤ dimX, and by (7.3.5), we have

dim(S − S0 − S(n−1)) ≥ dim(X − S0 ×S X −X(n−1)).

Thus S0 ×S X ∈ Ddim
d,(n)(X).

Definition 7.3.7. We denote by SZar the full subcategory of S consisting of S -schemes
having Zariski log structures.

7.3.8. Recall from [Voe10a, 2.1] that a B.G.-functor on SZar with respect to the union
of the dividing and Zariski cd-structures is a family of contravariant functors Tq, q ≥ 0
from SZar to the category of pointed sets together with pointed maps with pointed maps
∂C : Tq+1(X ′)→ Tq(S) for any Zariski or dividing distinguished square

C =
X ′ X

S ′ S

g′

f ′ f

g

of S -schemes such that

(i) the morphisms ∂C are natural with respect to morphisms of distinguished squares,

(ii) for any q ≥ 0 the sequence of pointed sets

Tq+1(X ′)→ Tq(S)→ Tq(X)× Tq(S ′)

is exact.

When C is a dividing distinguished square, the condition (ii) means that the morphism
Tq(S)→ Tq(X) is an isomorphism.

Definition 7.3.9. We denote by dZar the union of dividing and Zariski cd-structures on S .
Then we have dZar-topology on S

Proposition 7.3.10. For any B.G.-functor (Tq, ∂q) on SZar such that Tq(∅) is trivial and
that the dZar-sheaves associated with Tq are trivial, Tq is trivial for all q. Here, we say that
a pointed set is trivial if it is the one element set.
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Proof. Assume that Tq(S) is trivial if S is an SZar-scheme with S = S(n−1). We will show
that Tq(S) is trivial if S is an SZar-scheme with S = S(n). Assume that we have shown this.
Then this completes the proof by induction on n since the basic case (when S = S(−1)) is
true by the assumption that Tq(∅) is trivial.

(I) Reduction of S. Assume Tq(S) = 0 for any SZar-scheme S with a fs chart. For general
S, it has a finite Zariski cover {Ui → X}i∈I such that each Ui has a fs chart. Then any
intersection of Ui has also a fs chart, so we can apply the condition (ii) of (7.3.8) for the
Zariski cover {Ui → X}i∈I . Thus Tq(S) = 0, so we reduce to the case when S has a fs chart.
Loosening this, we may assume that there is a log étale monomorphism S → V such that V
has a fs chart. We denote this condition as (*).

(II) Voevodsky’s argument. Let a ∈ Tq(S) be an element. Consider the following assertion:
for any Zariski or dividing distinguished square

C =
X ′ X

S ′ S

g′

f ′ f

g

(7.3.10.1)

of SZar-schemes such that S satisfies (*) and that for some

S ′0 ∈ Ddv
d+1,(n)(S

′), X0 ∈ Ddv
d+1,(n)(X),

the restrictions of a to them are trivial, there is S1 ∈ Ddv
d+1,(n)(S) such that the restriction of

a to it is trivial.
If it is proven, then the proof of [Voe10a, 3.2] shows that for any SZar-scheme S with

the condition (*), there is S1 ∈ Ddv
∞,(n)(S) such that the pullback of a to S1 is trivial. Then

the morphism S1 → S has a factorization

S1
j→ V

p→ S

where

(a) j is an open immersion such that V = S1 ∪ V (n−1),

(b) p is a dividing cover.

By induction on n, Tq(S
(n−1)) and Tq+1(S(n−1) ∩ S1) are trivial. Thus the condition (ii) of

(7.3.8) implies that the pullback of a to V is trivial. Since p is a dividing cover, a = 0 by the
condition (ii) of (loc. cit). Therefore Tq(S) = 0. Hence the remaining is to show the above
assertion.

If C is a dividing distinguished square, then X0 ∈ Ddv
d+1,(n)(S), so we are done. Hence the

remaining case is when C is a Zariski distinguished square.

(III) Reduction to the case when S ′0 = S ′ and X0 = X. Consider the square C in (II).
Assume that for some S ′0 ∈ Ddv

d+1,(n)(S
′) and X0 ∈ Ddv

d+1,(n)(X), the pullbacks of a to them
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are trivial. We want to show that there is S1 ∈ Ddv
d+1,(n)(S) such that the pullback of a to it

is trivial.
By definition, there are dividing covers T ′ → S and T ′′ → S such that the projections

X0 ×S T ′ → T ′, S ′0 ×S T ′′ → T ′′

are open immersions, X0×S T ′ ∈ Ddim
d+1,(n)(X ×S T ′), and S ′0×S T ′′ ∈ Ddim

d+1,(n)(S
′×S T ′′). We

put T = T ′ ×S T ′′. Then the projections

X0 ×S T → T, S ′0 ×S T → T

are open immersions, and by (7.3.6), X0×ST ∈ Ddim
d+1,(n)(X×ST ) and S ′0×ST ∈ Ddim

d+1,(n)(S
′×S

T ). Since T also satisfies the condition (*), replacing S by T , we may assume that the mor-
phisms X0 → S and S0 → S are open immersions, X0 ∈ Ddim

d+1,(n)(X), and S0 ∈ Ddim
d+1,(n)(S).

Then since X ′ ∈ Ddim
d,(n)(X

′) and C is reducing with respect to Ddim
∗ by (7.3.3), there is

S1 ∈ Ddim
d+1,(n)(S) such that the projections

S ′ ×S S1 → S ′, X ×S S1 → X

factor through S ′0 and X0 respectively. Replacing S by S1, we may assume S ′0 = S ′ and
X0 = X, i.e., the pullbacks of a to S ′ and X are trivial.

(IV) Final step of the proof. Then for some b ∈ Tq+1(X ′), we have ∂C(b) = a by the condition
(ii) of (7.3.8). Now by induction on d, there is X0 ∈ Ddv

d,(n)(X
′) such that the pullback of b

to X ′0 is trivial. By definition, there is a dividing cover T ′ → S such that the projection

X ′0 ×S T ′ → T ′

is an open immersion and X ′0 ×S T ′ ∈ Ddim
d,(n)(X

′ ×S T ′). Then T ′ also satisfies the condition

(*), so replacing S by T ′, we may assume X ′0 ∈ Ddim
d,(n)(X

′).

By induction on n, Tq(X
′(n−1)) and Tq+1(X ′0∩X ′(n−1)) are trivial. Then by the condition

(ii) of (7.3.8), the pullback of b to X ′0 ∪ X ′(n−1) is trivial. Thus we can replace X ′0 by
X ′0 ∪X ′(n−1), so we may assume

X ′0 ∈ Ddim
d (X ′).

Since C is reducing with respect to Ddim
∗ (X ′) by (7.3.3), there is S2 ∈ Ddim

d+1(S) such that the
projection

X ′ ×S S2 → X ′

factors through X ′0. In particular, the pullback of b to X ′×SS2 is trivial. Then the restriction
of a to S2 is trivial by the condition (ii) of (7.3.8). This completes the proof of the assertion
given in (II).

Definition 7.3.11. For any SZar-scheme S, we denote by ftZar/S the family of mor-
phisms X → S of finite type of SZar-schemes. Then note that D(PSh(ftZar,Λ)) is a
ftZar-premotivic category over SZar.

138



Corollary 7.3.12. Let S be an SZar-scheme, and let K be an object of D(PSh(ftZar/S,Λ)).
Then the following conditions are equivalent.

(i) For any morphism p : T → S of SZar-schemes, and for any dividing or Zariski
distinguished square

X ′ X

T ′ T

f ′

g′

f

g

of SZar-schemes, the commutative diagram

p∗p
∗K p∗g∗g

∗p∗K

p∗f∗f
∗p∗K p∗h∗h

∗p∗K

ad

ad ad

ad

is homotopy Cartesian where h = fg′.

(ii) K satisfies tdZar-descent.

Proof. We have that (1.3.7) needs (1.3.6), (1.3.6) needs [Voe10a, 3.8], [Voe10a, 3.8] needs
[Voe10a, 3.5], and [Voe10a, 3.5] needs [Voe10a, 3.2]. However, (7.3.10) can be used to
[Voe10a, 3.5] instead of [Voe10a, 3.2], so (1.3.7) for P = dZar with the restriction to SZar

is also true.

Corollary 7.3.13. Let S be an SZar-scheme, and let K be an object of DZar(ftZar/S,Λ).
Then the following conditions are equivalent.

(i) For any morphism p : T → S of SZar-schemes, and for any dividing cover f : X → T
of SZar-schemes over S, the morphism

p∗p
∗K

ad−→ p∗f∗f
∗p∗K

in DZar(ftZar/S,Λ) is an isomorphism.

(ii) K satisfies tdZar-descent.

Proof. The conclusion follows from (1.3.7) for P = Zar and (7.3.12).

Remark 7.3.14. Note that the condition (i) of (7.3.13) is equivalent to the condition that
K is log′′-local. The restatement is that K is log′′-local if any only if k is dZar-local.

7.4 Localization property for Dlog′,pw(lSm,Λ)

Proposition 7.4.1. Let i : Z → S be a strict closed immersion of SZar-schemes. Then the
evident functor

Φ : CovdZar(S)→ CovdZar(Z)

is cofinal.
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Proof. Let g : Z ′ → Z be a morphism of SZar-schemes. We divide the question into 2 cases.

(I) Zariski cover. Assume that g is a strict étale cover. Then g has a refinement that is in
the essential image of Φ by the proof of [Ayo07, 4.5.33].

(II) Dividing cover. Assume that g is a pullback of a proper birational morphism M ′ →
specP ′ of fs monoschemes. We want to show that g has a refinement that is in the essential
image of Φ. Let x be a geometric point of Z. Strict étale locally near x, we can choose a
factorization

P ′ → Q′
α′→MZ

of the homomorphism P ′ → MZ such that α′ is a chart exact at x by [Ogu14, II.2.3.2].
Then strict étale locally on S near x, we may assume that S has a fs chart

α : Q→MS

neat at x by [Ogu14, II.2.3.7]. We put N ′ = M ′×specP ′ specQ′. By (3.2.3), there is a proper
birational morphism

N → specQ

of fs monoschemes such that

Z ′ = Z ×AQ′ AN ′
∼= Z ×AQ AN .

Then the image of the projection S ×AQ AN → S via Φ is the cover g : Z ′ → Z.

Corollary 7.4.2. Let i : Z → S be a strict closed immersion of SZar-schemes. Then the
functor

i∗ : Dt∅(ftZar/Z,Λ)→ Dt∅(ftZar/S,Λ)

preserves dZar-local equivalences.

Proof. It follows from (7.4.1) and the proof of [Ayo07, 4.5.32].

Corollary 7.4.3. Let i : Z → S be a strict closed immersion of SZar-schemes. Then the
functor

i∗ : DZar(ftZar/Z,Λ)→ DZar(ftZar/S,Λ)

preserves log′′-weak equivalences.

Proof. By (7.3.14), log′′-weak equivalences and tdZar-local equivalences are equivalent. Then
the conclusion follows from (7.4.2).

Corollary 7.4.4. Let i : Z → S be a strict closed immersion of S -schemes. Then the
functor

i∗ : DA1,pw(ft/Z,Λ)→ DA1,pw(ft/S,Λ)

preserves log′-weak equivalences.
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Proof. By (1.6.4), it suffices to show that for any dividing cover W → V in ft/Z, the induced
morphism

i∗MZ(W )→ i∗MZ(V )

in Dpw(ft/S,Λ) is an isomorphism. The question is strict étale local on S and V , so we
may assume that S and V have Zariski log structures. Then the conclusion follows from
(7.4.3).

Corollary 7.4.5. Let i : Z → S be a strict closed immersion of S -schemes, let j : U → S
be its complement, and let f : V → Z be a log smooth morphism of S -schemes. Then

(1) the functor
i∗ : Dlog′,pw(ft/Z,Λ)→ Dlog′,pw(ft/S,Λ)

admits a right adjoint,

(2) there is a distinguished triangle

j]j
∗MS(X) −→MS(X) −→ i∗i

∗MS(X) −→ j]j
∗MS(X)[1]

in Dlog′,pw(ft/S,Λ).

Proof. Then the conclusion follows from (7.2.2), (7.2.8), and (7.4.4).

Theorem 7.4.6. The localization property is satisfied for

Dlog′,pw(lSm,Λ).

Proof. By (7.4.5) and the proof of [CD12, 2.3.15(iv)], the remaining is to show that for any
strict closed immersion i : Z → S of S -schemes, the functor

i∗ : Dlog′,pw(lSm/Z,Λ)→ Dlog′,pw(lSm/S,Λ)

is conservative (here, the well-generatedness of the assumption of [loc. cit] can be ignored
because the conclusion of [CD12, 1.3.18] holds for Dlog′,pw(lSm,Λ) by construction). The
conservativity follows from (3.1.5) and the proof of [CD12, 2.3.16].

7.5 Localization property for Dlog,pw(lSm,Λ)

Proposition 7.5.1. Let i : Z → S be a strict closed immersion of S -schemes. Then the
functor

i∗ : DA1,pw(ft/Z,Λ)→ DA1,pw(ft/S,Λ)

preserves log-weak equivalences.

Proof. Consider the following situations for morphisms

W ′ h′−→ W
g′−→ V

f ′−→ Z

of S -schemes.
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(c) The morphism f ′ is log smooth, the morphism g′ is an exact log smooth morphism,
and the morphism h′ is the verticalization W ver → Y of W via f ′g′.

(d) The morphism f ′ is log smooth, the S -scheme V has a neat fs chart P , and the
morphism g′ is the projection

V ×AP AQ → V

where the homomorphism θ : P → Q is a locally exact vertical homomorphism of
fs monoids such that g is an exact log smooth morphism. The morphism h is the
morphism

V ×AP AQG → V ×AP AQ

induced by the localization Q→ QG where G is a maximal θ-critical face of Q.

By (1.6.4) and (7.4.4), the remaining is to show that for each type (c) and (d), the morphism

i∗MZ(W ′)→ i∗MZ(W )

in DA1,pw(ft/S,Λ) is a log-weak equivalence.
Strict étale locally on V , we will construct the following diagram

W ′ W V Z

Y ′ Y X S

w′

h′

w

g′

v

f ′

i

h g f

(7.5.1.1)

of S -schemes such that

(i) the sequence Y ′ → Y → X → S is one of the types (c) and (d) in (1.7.2),

(ii) each square is Cartesian.

By (3.1.5), strict étale locally on V , there is a Cartesian diagram

V Z

X S

v

f ′

i

f

of S -schemes such that f is log smooth. In the case (c), by (loc. cit), there is a Cartesian
diagram

W V

Y X

w

g′

v

g

of S -schemes such that g is exact log smooth. Then to show the claim, we only need to put
Y ′ = Y ver/X.
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In the case (d), let x be a point in v(V ). We may assume that P is exact at x by [Ogu14,
II.2.3.2]. we denote by P ′ the submonoid of Q consisting of elements q ∈ Q such that
nq ∈ P +Q∗ for some n ∈ N. Then P ′ is a fs monoid by Gordon’s lemma [Ogu14, I.2.3.17].
The morphism P ′ → Q is locally exact by [Ogu14, I.4.6.5], so the induced morphism

c : W = V ×AP AQ → V ×AP AP ′

is an open morphism by [Nak09, 5.7]. We denote by V ′ the image of c. Then the induced
morphism W → V ′ is an exact log smooth morphism. Moreover, the order of the torsion
part of the cokernel of P gp → P ′gp is invertible in OV ′ , so the induced morphism V ′ → V is
a Kummer log smooth morphism. Hence replacing (W → V → Z, P → Q) by (W → V ′ →
Z, P ′ → Q), we may assume that the cokernel of θgp is torsion free. In particular, there is a
homomorphism ϕ : Qgp → P gp such that ϕ ◦ θgp = id. By [Ogu14, II.2.3.7], we may assume
that X has a fs chart P ′′ neat at x. Then by (3.2.2), there is a coCartesian diagram

P P ′′

Q Q′′

θ θ′′

of fs monoids where the upper arrow is the quotient homomorphism P → P = P ′′ such that
we have an isomorphism

Z ×AP AQ
∼= Z ×AP ′′ AQ′′ .

If G′′ denote the face of Q′′ induced by G, then G′′ is also a maximal θ′′-critical face of Q′′.
Thus to show the claim, we only need to put

Y = X ×AP ′′ AQ′′ , Y ′ = X ×AP ′′ AQ′′
G′′
.

We have constructed (7.5.1.1). Then in the commutative diagram

j]j
∗MS(Y ′) MS(Y ′) i∗MZ(V ′) j]j

∗MS(Y ′)[1]

j]j
∗MS(Y ) MS(Y ) i∗MZ(V ) j]j

∗MS(Y )[1]

of S -schemes, the rows are distinguised triangles by (7.2.8). Moreover, the first and second
vertical arrows are log-weak equivalences by construction. Thus the third vertical arrow is a
log-weak equivalence.

Corollary 7.5.2. Let i : Z → S be a strict closed immersion of S -schemes, let j : U → S
be its complement, and let f : V → Z be a log smooth morphism of S -schemes. Then

(1) the functor
i∗ : Dlog,pw(ft/Z,Λ)→ Dlog,pw(ft/S,Λ)

admits a right adjoint,

143



(2) there is a distinguished triangle

j]j
∗MS(X) −→MS(X) −→ i∗i

∗MS(X) −→ j]j
∗MS(X)[1]

in Dlog,pw(ft/S,Λ).

Proof. Then the conclusion follows from (7.2.2), (7.2.8), and (7.5.1).

Theorem 7.5.3. The localization property is satisfied for

Dlog,pw(lSm,Λ), Dlog,pw(−,Λ).

Proof. By (7.5.2) and the proof of [CD12, 2.3.15(iv)], the remaining is to show that for any
strict closed immersion i : Z → S of S -schemes, the functors

i∗ : Dlog,pw(lSm/Z,Λ)→ Dlog,pw(lSm/S,Λ),

i∗ : Dlog,pw(−/Z,Λ)→ Dlog,pw(−/S,Λ),

are conservative (here, the well-generatedness of the assumption of [loc. cit] can be ignored
because the conclusion of [CD12, 1.3.18] holds for Dlog,pw(lSm,Λ) and Dlog,pw(−,Λ) by con-
struction). The conservativity follows from (3.1.5) and the proof of [CD12, 2.3.16].

7.5.4. We have proven the localization property for Dlog,pw(−,Λ). For future usage, we will
construct log′′′-weak equivalences and discuss the localization property for Dlog′′′,pw(eSm,Λ).

Definition 7.5.5. For an S -scheme S, we will consider the following situations for mor-
phisms

Y ′
h−→ Y

g−→ X
f−→ S

of S -schemes.

(a) The morphism f is of finite type, the morphism g is the identity, and the morphism
h is the projection Y × A1 → Y .

(b) The morphism f is of finite type, the morphism g is the identity, and the morphism
h is a dividing cover.

(c)’ The morphism f is exact log smooth, the morphism g is an exact log smooth morphism,
and the morphism h is the verticalization Y ver → Y of X via fg.

(d)’ The morphism f is exact log smooth, the S -scheme X has a neat fs chart P , and the
morphism g is the projection

X ×AP AQ → X

where the homomorphism θ : P → Q is a locally exact vertical homomorphism of
fs monoids such that g is an exact log smooth morphism. The morphism h is the
morphism

X ×AP AQF → X ×AP AQ

induced by the localization Q→ QF where F is a maximal θ-critical face of Q.
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Let T be a τ -twisted P-premotivic triangulated category over S . Then let Wlog′′′,S denote
the family of morphisms

MS(Y ′){i} →MS(Y ){i}

in T (S) where i ∈ τ and the morphism Y ′ → Y is of the type (a), (b), (c)’, and (d’).
Note that Wlog′′′ is stable by the operations f] for f ∈ eSm. To ease the notations, we often
remove W in the notation.

Proposition 7.5.6. Let i : Z → S be a strict closed immersion of S -schemes. Then the
functor

i∗ : DA1,pw(ft/Z,Λ)→ DA1,pw(ft/S,Λ)

preserves log′′′-weak equivalences.

Proof. The proof is parallel to the proof of (7.5.1).

Theorem 7.5.7. The localization property is satisfied for

Dlog′′′,pw(eSm,Λ).

Proof. The proof is parallel to the proof of (7.5.3).

7.6 Plain lower descent

7.6.1. As promised in (1.7.8), we will show the following result.

Proposition 7.6.2. Let S be an S -scheme. Consider the adjunction

ρ] : Dlog′,pw(lSm,Λ) � Dlog′,pw(ft,Λ) : ρ∗

of lSm-premotivic triangulated categories. For any object K of Dlog′,pw(lSm/S,Λ), the image
ρ]K satisfies the plain lower descent.

Proof. Let p : T → S be a morphism of finite type of S -schemes, and consider a plain lower
distinguished square

X ′ X

T ′ T

f ′

g′

f

g

of S -schemes. By (1.3.8), it suffices to show that the commutative diagram

p∗ρ]K f∗f
∗p∗ρ]K

g∗g
∗p∗ρ]K h∗h

∗p∗ρ]K

ad

ad

ad

ad
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in Dlog′,pw(ft/S,Λ) is homotopy Cartesian where h = fg′. By (7.4.6), we have a distinguished
triangle

u]u
∗p∗ρ]K

ad′−→ p∗ρ]K
ad−→ f∗f

∗p∗ρ]K −→ u]u
∗p∗ρ]K[1]

where u denotes the complement of f , so f∗f
∗p∗ρ]K is in the essential image of ρ]. In

particular, since ρ] is fully faithful, the natural transformation

ρ]ρ
∗f∗f

∗p∗ρ]K
ad′−→ f∗f

∗p∗ρ]K

is an isomorphism. The same is true for p∗ρ]K, g∗g
∗p∗ρ]K, and h∗h

∗p∗ρ]K, so it suffices to
show that the commutative diagram

ρ∗p∗ρ]K ρ∗f∗f
∗p∗ρ]K

ρ∗g∗g
∗p∗ρ]K ρ∗h∗h

∗p∗ρ]K

ad

ad

ad

ad

in Dlog′,pw(lSm/S,Λ) is homotopy Cartesian. Since ρ∗ commutes with f∗, g∗, h∗ , and ρ]
commutes with p∗, f ∗, g∗, h∗, it suffices to show that the commutative diagram

ρ∗ρ]p
∗K f∗ρ

∗ρ]f
∗p∗K

g∗ρ
∗ρ]g

∗p∗K h∗ρ
∗ρ]h

∗p∗K

ad

ad

ad

ad

in Dlog′,pw(lSm/S,Λ) is homotopy Cartesian. Then since ρ] is fully faithful, it suffices to
show that the commutative diagram

p∗K f∗f
∗p∗K

g∗g
∗p∗K h∗h

∗p∗K

ad

ad

ad

ad

in Dlog′,pw(lSm/S,Λ) is homotopy Cartesian. It follows from (2.6.7).

7.6.3. Note that we have discussed in (1.7.8) that for W = Wlog′ ,Wlog and P = lSm, eSm,
(7.6.2) implies that we have an equivalence

DW ,pw(P,Λ) ∼= DW ,qw(P,Λ)

of P-premotivic triangulated categories. In particular, DW ,pw(P,Λ) is compactly generated
by P and τ .

146



Chapter 8

Verification of the remaining axioms

8.0.1. In this chapter, we complete the proof that Dlog,pw(−,Λ) is a log motivic triangulated
category.

8.1 Isomorphisms in Dlog′,pw(ft,Λ)

8.1.1. We will study various isomorphisms in Dlog′,pw(ft,Λ). Using these, in (8.1.15), we
will prove that the functor

g∗ : Dlog′,pw(eSm/S,Λ)→ Dlog′,pw(eSm/Y,Λ)

admits a left adjoint where S is an S -scheme with a fs chart N and g : Y → S denotes the
projection S × ptN → S.

Proposition 8.1.2. The ft-premotivic triangulated category Dlog′,pw(ft,Λ) satisfies (Htp–
6).

Proof. Let S be an S -scheme, and consider the commutative diagram

S × ptN S × AN

S S × A1

S

i′

g′ g

id

i

p

of S -schemes where

(i) g denotes the morphism removing the log structure,

(ii) the inside square is Cartesian,

(iii) p denotes the projection,

147



(iv) i denotes the 0-section.

By (7.6.3) and (1.3.8), for any object K of Dlog′,pw(ft/S,Λ), the diagram

p∗p
∗K p∗i∗i

∗p∗K

p∗g∗g
∗p∗K p∗g∗i

′
∗i
′∗g∗p∗K

ad

ad ad

ad

is homotopy Cartesian. The upper horizontal arrow is an isomorphism by (Htp–1), so the
lower horizontal arrow is an isomorphism, which is (Htp–6).

Proposition 8.1.3. Let S be an S -scheme, and let θ : N → P be a homomorphism of fs
monoid such that θ(1) is not invertible, i.e., AP ×AN ptN is nonempty. Then the morphism

Mft/S(S × A(P,P+))→Mft/S(S × AP ×AN ptN)

in Dlog′,pw(ft/S,Λ) induced by the closed immersion i′ : A(P,P+) → AP ×AN ptN is an isomor-
phism.

Proof. Let I denote the ideal (θ(1)) of P . Then AP ×AN ptN
∼= A(P,I). We argue as in

[Ogu14, I.3.2.1.3]. By [Ogu14, I.2.2.1], we can choose a homomorphism h : P → N such that
h−1(0) = P ∗. Then we have a morphism

m′ : A(P,I) × A1 → A(P,I)

induced by the homomorphism

Z[P ]/(I)→ Z[P, t]/(I), (p ∈ P ) 7→ pth(p).

When we compose m′ with the 0-sections and 1-sections, we get morphisms

A(P,I) → A(P,P+) → A(P,I), A(P,I)
id→ A(P,I).

Thus the closed immersions i′ is an A1-homotopy equivalence, and this proves the statement.

Proposition 8.1.4. Let S be an S -scheme, and let θ : N → P be a homomorphism of fs
monoid. Then the morphism

Mft/S(S × A(P,P+))→Mft/S(S × AP )

in Dlog′,pw(ft/S,Λ) induced by the closed immersions i : A(P,P+) → AP is an isomorphism.

Proof. As in the proof of (8.1.3), we can show that i is an A1-homotopy equivalence.
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Proposition 8.1.5. Let S be an S -scheme, and let θ : N → P be a homomorphism of fs
monoid such that θ(1) is not invertible, i.e., AP ×AN ptN is nonempty. Then the morphism

Mft/S(S × AP ×AN ptN)→Mft/S(S × AP )

in Dlog′,pw(ft/S,Λ) induced by the projection S ×AP ×AN ptN → S ×AP is an isomorphism.

Proof. We put p = θ(1). We will use induction on r′(P ) where r′(P ) denotes the number of
rays of P not containing p. Let p1, . . . , pr denote the rays of P not containing p.

(I) Reduction method. Let µ : P → P denote the quotient homomorphism. For s = 0, . . . , r,
we put

Rs = (Np+ N(−p1) + · · ·+ N(−ps) + Nps+1 + · · ·+ Npr)Q ∩ P
gp
,

R′s = (Np+ N(−p1) + · · ·+ N(−ps−1) + Nps+1 + · · ·+ Npr)Q ∩ P
gp
,

R′′s = (Np+ N(−p1) + · · ·+ N(−ps−1) + Zps + Nps+1 + · · ·+ Npr)Q ∩ P
gp
.

Ps = µ−1(Rs), P ′s = µ−1(R′s), P ′′s = µ−1(R′′s).

Then the gluing of APs and APs−1 along AP ′′s is a dividing cover of AP ′s , so we have the
commutative diagram

Mft/S(S × AP ′′s ×AN ptN) Mft/S(S × APs ×AN ptN)⊕Mft/S(S × APs−1 ×AN ptN) Mft/S(S × AP ′s ×AN ptN) Mft/S(S × AP ′′s ×AN ptN)[1]

Mft/S(S × AP ′′s ) Mft/S(S × APs)⊕Mft/S(S × APs−1) Mft/S(S × AP ′s) Mft/S(S × AP ′′s )[1]

in Dlog′,pw(ft/S,Λ) where the rows are distinguished triangles by (2.2.3(8)). Assume

p /∈ P ∗s−1, P
∗
s , P

′∗
s , P

′′∗
s .

Since r′(P ′s), r
′(P ′′s ) < r′(P ), by induction on r′(P ), the question is true for P ′s and P ′′s . Then

the above diagram shows that the question for Ps−1 is equivalent to the question for Ps.

(II) Reduction of P . Assume r > dimP − 1. Then {p, p1, . . . , pr} is linearly dependent over
Q, so we may assume

a1p1 + · · ·+ atpt = ap+ at+1pt+1 + · · ·+ arpr + p′

for some 0 ≤ t ≤ r, p′ ∈ P ∗, and a, a1, . . . , ar ∈ N with at 6= 0. In Pt−1, pt is not a ray since

atpt = a1(−p1) + · · ·+ at−1(−pt−1) + at+1pt+1 + · · ·+ arpr + p.

Thus we can choose least u such that r′(Pu) < r′(P ).
Assume p ∈ P ∗s for some 1 ≤ s ≤ u. Then

−bp = b1(−p1) + · · ·+ bs(−ps) + bs+1ps+1 + · · ·+ brpr

for some b, b1, . . . , br ∈ N with b 6= 0. In Ps−1, ps is not a ray since

bsps = bp+ b1(−p1) + · · ·+ bs−1(−ps−1) + bs+1ps+1 + · · ·+ brpr,
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contradicting to the fact that r′(Ps−1) = r′(P ). Thus p /∈ P ∗1 , . . . , P ∗u .
For 1 ≤ s ≤ u, P ′s ⊂ Ps, so p /∈ P ′∗s . If p ∈ P ′′∗s , then for some

cs ∈ Z, c, c1, . . . , cs−1, cs+1, . . . , cr ∈ N, c 6= 0,

we have
−cp = c1(−p1) + · · ·+ cs−1(−ps−1) + csps + · · ·+ crpr.

This means p ∈ P ∗s or p ∈ P ∗s−1, which is a contradiction. Thus p /∈ P ′′∗s .
Because P0 = P and p /∈ P ∗s , P

′∗
s , P

′′∗
s for 1 ≤ s ≤ u, the question is true for P if and

only if the question is true for Pu by (I). Since r′(Pu) < r′(P ), by induction on r′(P ), the
question is true for Pu.

Hence we reduce to the case when r = dimP − 1. Then PQ is simplicial, and p is a ray
of P . The question is winding local on AP , so we may further assume that P is isomorphic
to Nr+1 by [CLS11, 11.1.9]. Choose minimal q such that p ∈ 〈q〉. Then P ∼= 〈q〉 ⊕ Nr. By
(3.5.2), we have an isomorphism

P ∼= 〈q〉 ⊕ Nr ⊕ P ∗.

(III) Final step of the proof. We put P ′ = P/〈q〉. Then we have isomorphisms

S × AP ×AN ptN
∼= S × A〈q〉 ×Aη ,AN ptN × AP ′ , S × AP

∼= S × AN × AP ′

where η : N→ 〈q〉 denotes the homomorphism 1 7→ p. Hence replacing S by S×AP ′ , we may
assume P = N. Then AP ×AN ptN has ptN as a strict closed subscheme. Thus by (2.2.3(4)),
it suffices to show that the morphism

Mft/S(S × ptN)→Mft/S(S × AN)

in Dlog′,pw(ft/S,Λ) induced by the 0-section ptN → AN is an isomorphism. This follows from
(8.1.2).

Proposition 8.1.6. Let S be an S -scheme, and let u : M → specN be a vertical morphism
of fs monoschemes. Then we have the distinguished triangle

Mft/S(S × AM ×AN ptN)→Mft/S(S × AM)⊕Mft/S(S × AM ×AN ptN)

→Mft/S(S × AM)→Mft/S(S × AM ×AN ptN)[1]

in Dlog′,pw(ft/S,Λ).

Proof. The question is Zariski local on M , so we may assume that M = SpecP where P is
a fs monoid. Let θ : N→ P the morphism induced by u. When AP ×N ptN = ∅, P is a group
since θ is vertical. Thus S×AP = S×AP . Hence the remaining case is when AP ×N ptN 6= ∅.

In this case, the morphisms

Mft/S(S × AP ×AN ptN)→Mft/S(S × AP ),

Mft/S(S × AM ×AN ptN)→Mft/S(S × AM)

are isomorphisms by (8.1.5), (8.1.3), and (8.1.4). This implies the statement.
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Corollary 8.1.7. Under the notations and hypotheses of (8.1.5), if θ : N → P is vertical,
then the morphism

Mft/S(S × AP ×AN ptN)→Mft/S(S × AP )

in Dlog′,pw(ft/S,Λ) induced by the projection S ×AP ×AN ptN → S ×AP is an isomorphism.

Proof. It follows from (8.1.5) and (8.1.6).

Proposition 8.1.8. Under the notations and hypotheses of (8.1.5), the morphism

Mft/S(S × Aver
P ×AN ptN)→Mft/S(S × Aver

P )

in Dlog′,pw(ft/S,Λ) induced by the closed immersion Aver
P ×AN ptN → Aver

P is an isomorphism.
Here, Aver

P denotes the verticalization of AP via the morphism Aθ : AP → AN.

Proof. (I) Usage of (8.1.6). By (8.1.6), we reduce to showing that the morphism

Mft/S(S × Aver
P ×AN ptN)→Mft/S(S × Aver

P )

in Dlog′,pw(ft/S,Λ) induced by the projection S × AP → S is an isomorphism. When P is
already vertical over N, we are done by (8.1.7). Hence we will assume that P is not vertical.

(II) Dual cones. We denote by (SpecP )ver the set of faces F such that PF is vertical over N.
Then (SpecP )ver consists of the faces F of P such that 〈F + θ(1)〉 = P .

We also have the one-to-one correspondence

Φ : SpecP → SpecP
∨
, F 7→ (P F )∨.

Then Φ((SpecP )ver) consists of the faces G of P
∨

such that G ∩ Φ(〈θ(1)〉) = 〈0〉.
(III) Zariski descent. Let F1, . . . , Fr denote the elements of (SpecP )ver, and for any nonempty
subset I = {i1, . . . , il} of {1, . . . , r}, let FI denote the face 〈Fi1 + · · · + Fil〉 of P . Then we
denote by V the set of nonempty subsets I ⊂ {1, . . . , r} such that APFI

×AN ptN 6= ∅. We
have Aver

P = APF1
∪ · · · ∪ APFr

, so the motives

Mft/S(S × Aver
P ), Mft/S(S × Aver

P ×AN ptN)

are the homotopy colimits of the Čech-type sequences⊕
|I|=r

Mft/S(S × APFI
) −→ · · · −→

⊕
|I|=1

Mft/S(S × APFI
), (8.1.8.1)

⊕
|I|=r

Mft/S(S × APFI
×AN ptN) −→ · · · −→

⊕
|I|=1

Mft/S(S × APFI
×AN ptN) (8.1.8.2)

respectively. Then by (8.1.7), the sequence (8.1.8.2) is isomorphic to⊕
|I|=r,I∈V

Mft/S(S × APFI
) −→ · · · −→

⊕
|I|=1,I∈V

Mft/S(S × APFI
). (8.1.8.3)
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Comparing (8.1.8.1) and (8.1.8.3), we get the following result: to show the question, it
suffices to show that the homotopy colimit of the sequence⊕

|I|=r,I /∈V

Mft/S(S × APFI
) −→ · · · −→

⊕
|I|=1,/∈V

Mft/S(S × APFI
) (8.1.8.4)

extracted from (8.1.8.1) is 0.

(IV) Reduction to a topological problem. If I /∈ V , then θ(1) ⊂ FI , so FI = P since 〈F +
θ(1)〉 = P . Thus APFI

= AP ∗ , which has the trivial log structure. With this identification,
morphisms

Mft/S(S × APFI
)→Mft/S(S × APFI′

)

in (8.1.8.4) are either id : Mft/S(S×AP ∗)→Mft/S(S×AP ∗) or −id. Thus to show that the
homotopy colimit of the sequence (loc. cit) is 0, it suffices to show that the sequence

0
αr−→

⊕
|I|=r,I /∈V

ZI
αr−1−→ · · · α1−→

⊕
|I|=1,/∈V

ZI
α0−→ 0 (8.1.8.5)

is exact. Here, each ZI is Z, and morphisms ZI → ZI′ in (8.1.8.5) are either id or −id. It is
equivalent to the assertion that the morphism

· · · 0
⊕
|I|=r,I∈V ZI · · ·

⊕
|I|=1,I∈V ZI 0 · · ·

· · · 0
⊕
|I|=r ZI · · ·

⊕
|I|=1 ZI 0 · · ·

(8.1.8.6)
of complexes of abelian groups is a quasi-isomorphism. Here, each ZI → ZI′ in (8.1.8.6)
is either id or −id, whose sign is the same as the corresponding sign in (8.1.8.1). By the
universal coefficient theorem, it is equivalent to the assertion that the morphism

· · · 0 HomZ(Z,
⊕
|I|=r,I∈V ZI) · · · HomZ(Z,

⊕
|I|=1,I∈V ZI) 0 · · ·

· · · 0 HomZ(Z,
⊕
|I|=r ZI) · · · HomZ(Z,

⊕
|I|=1 ZI) 0 · · ·

(8.1.8.7)
of complexes of abelian groups is a quasi-isomorphism.

We put

GI = (Φ(FI))R, G′I = GI − {0}, K = G1 ∪ · · · ∪Gr, K ′ = K − {0}.

Then {G1, . . . , Gr} (resp. {G′1, . . . , G′r}) is a closed cover of K (resp. K ′). Moreover, the
topological space GI is always contractible, and G′I is contractible (resp. empty) if I ∈ V
(resp. I /∈ V ). Thus the cohomology of the first row (resp. second row) of (8.1.8.7) is
exactly the Čech cohomology of K (resp. K ′) associated to the closed cover {G1, . . . , Gr}
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(resp. {G′1, . . . , G′r}), and the cohomology is isomorphic to the singular cohomology H i(K,Z)
(resp. H i(K ′,Z)). Because K is contractible to {0}, to show that the morphism of complexes
in (8.1.8.7) is a quasi-isomorphism, it suffices to show that the reduced singular cohomology

H̃ i(K ′,Z)

vanishes for all i. It is equivalent to the assertion that the reduced singular homology

H̃i(K
′,Z)

vanishes for all i by the universal coefficient theorem.

(V) Final step of the proof. Choose a hyperplane H of (P
∨
)gp
R such that

V := H ∩ (P )R

is a polytope and that the cone generated by v is equal to (P
∨
)R. Then K ′ ∩H is homotopy

equivalent to K ′, so it suffices to prove that the reduced singular homology

H̃i(K
′ ∩H,Z)

vanishes for all i. The topological space V is homeomorphic to Dd where d = dimP , and
the boundary ∂V is homeomorphic to Sd. We also have

V = V int q ∂V = V int q (K ′ ∩H)q (∂V −K ′ ∩H),

so by the Alexander duality, we have an isomorphism

H̃i(K
′ ∩H,Z) ∼= H̃d−i−1(∂V −K ′ ∩H).

Hence it suffices to show that ∂V −K ′ ∩H is contractible.
A face G of P

∨
is in the image of Φ if and only if G∩Φ(〈θ(1)〉) = 〈0〉, so ∂V −K ′ ∩H is

the union of (G ∩H)int for faces G of P
∨

such that G ∩Φ(〈θ(1)〉) 6= 〈0〉 and G 6= P
∨
. Then

the conclusion follows from this description and (8.1.9) below.

Lemma 8.1.9. Let P be a real polytope, let G be a face of P , and let F be a family of faces
of P such that

(i) G is in F ,

(ii) if F is in F , then F ∩G 6= ∅,
(iii) if F is in F , and if F ′ is a face of F , then F ′ ∩G = ∅ or F ′ ∈ F .

Then the union
U :=

⋃
F∈F

F int

is contractible.
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Proof. We will use an induction on r = dimG and s = |F|. If s is equal to the number of
faces of G, then we are done since U = G is contractible. Hence assume that s is bigger than
that number.

Choose an element H 6= G of F maximal among F . Then we put

U1 =
⋃

F∈F−{H}

F int, U2 =
⋃

F∈F ,F⊂H

F int, U12 =
⋃

F∈F−{H},F⊂H

F int.

We will show that these are contractible. If x is any point in H int, then U2 is contractible to
x. If G is not a face of H, then dim(H ∩G) < dimG, so U12 is contractible by induction on
r. If G is a face of H, then U12 is contractible by induction on s. Finally, U1 is contractible
by induction on s.

The topological space U is the gluing of U1 and U2 along U12, so it is also contractible.

8.1.10. Let S be an S -scheme with a fs chart α : N→MS. We put

X = S × AN, Y = S × ptN, P = N⊕ N, F1 = N⊕ 0.

Then X has the fs chart v : X → AN×AN ∼= AP induced by α, and we have the commutative
diagram Consider the commutative diagram

Y X

S

i

g
f

of S -schemes where f and g denote the projections and i denote the 0-section.

Proposition 8.1.11. Under the notations and hypotheses of (8.1.10), let θ : P → Q be an
injective homomorphism of monoids such that there is a face G1 of Q such that θ−1(G1) = F1.
Then the motive

Mft/S(Y ×AP AQ)

in Dlog′,pw(ft/S,Λ) is in the essential image of the functor

ρ],S : Dlog′,pw(eSm/S,Λ)→ Dlog′,pw(ft/S,Λ)

Proof. We put p = θ(1, 0) and p′ = θ(0, 1). We will use induction on r′(Q) where r′(Q)
denotes the number of rays of Q not containing p and p′. By (8.1.12) below, there is a face G
containing p and not containing p′ such that dimG = dimQ− 1. Let q1, . . . , qr′ denote the
rays of Q not containing p. Among them, we may assume q1, . . . , qr are the rays contained
in G.

(I) Reduction of G. We will first reduce to the case when GQ is simplicial and p is a ray of
G. Let µ : Q→ Q denote the quotient homomorphism. For s = 0, . . . , r, we put

Rs = (Np+ Np′ + N(−q1) + · · ·+ N(−qs) + Nqs+1 + · · ·+ Nqr′)Q ∩Q
gp
,
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R′s = (Np+ Np′ + N(−q1) + · · ·+ N(−qs−1) + Nqs+1 + · · ·+ Nqr′)Q ∩Q
gp
,

R′′s = (Np+ Np′ + N(−q1) + · · ·+ N(−qs−1) + Zqs + Nqs+1 + · · ·+ Nqr′)Q ∩Q
gp
,

Qs = µ−1(Rs), Q′s = µ−1(R′s), Q′′s = µ−1(R′′s).

Then the gluing of AQs and AQs−1 along AQ′′s is a dividing cover of AQ′s , so by (2.2.3(8)), we
have a distinguished triangle

Mft/S(Y ×AP AQ′′s ) −→Mft/S(Y ×AP AQs)⊕Mft/S(Y ×AP AQs−1)

−→Mft/S(Y ×AP AQ′s) −→Mft/S(Y ×AP AQ′′s )[1]

in Dlog′,pw(ft/S,Λ). We have r′(Q′s), r
′(Q′′s) < r′(Q), and the homomorphisms

P → Qs, P → Qs′ , P → Qs′′

again satisfy the condition of the statement. Thus by induction on r′(Q), the question is
true for Q′s and Q′′s . Then the above diagram shows that the question for Qs−1 is equivalent
to the question for Qs. Because Q0 = Q, to show the question for Q, it suffices to show the
question for Qs.

Assume r > dimG− 1. Then {p, q1, . . . , qr} is linearly dependent, so we may assume

a1q1 + · · ·+ asqs = ap+ as+1 + · · ·+ arqr + q

with as 6= 0, a1, . . . , ar ∈ N, and q ∈ Q∗. In Qs−1, qs is not a ray since

asqs = a1(−q1) + · · ·+ as−1(−qs−1) + as+1qs+1 + · · ·+ arqr + q.

Thus r′(Qs−1) < r′(Q), so by induction on r′(Q), the question is true for Qs−1, which implies
the question for Q. Hence we may assume that r = dimG− 1. In this case, p is a ray of G,
and GQ is simplicial.

(II) Reduction of Q. Assume that we have two different rays qr+1 and qr+2 not containing
p′ and not in G. Then {p, q1, . . . , qr+2} is linearly dependent, and {p, q1, . . . , qr+1} is linearly
independent. Hence we may assume that

a1q1 + · · ·+ asqs + ar+2qr+2 = ap+ as+1qs+1 + · · ·+ ar+1qr+1 + q

for some 0 ≤ s ≤ r, q ∈ Q∗, and a, a1, . . . , ar+2 ∈ N with ar+2 6= 0. In Qs, qr+2 is not a ray
since

ar+2qr+2 = ap+ a1(−q1) + · · ·+ as(−qs) + as+1qs+1 + · · ·+ ar+1qr+1 + q.

Then by induction, the question is true for Qs, which implies the question for Q. Hence we
may assume that there are no two different rays not containing p′ and not in G.

Assume that QQ is not simplicial. In this case, there is a unique ray qr+1 not containing
p′ and not in G. Then {p, p′, q1, . . . , qr+1} is linearly dependent, and {p, q1, . . . , qr+1} and
{p, p′, q1, . . . , qr} are linearly independent. Moreover, there is a homomorphism h : Q → N
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with h−1(0) = G by [Ogu14, I.2.2.1], and then we have h(p′), h(qr+1) > 0. Hence we may
assume that one of the two equations

a1q1 + · · ·+ asqs + ar+1qr+1 = ap+ a′p′ + as+1qs+1 + · · ·+ arqr + q,

a′p′ + a1q1 + · · ·+ asqs = ap+ as+1qs+1 + · · ·+ ar+1qr+1 + q

holds for some q ∈ Q∗ and a, a′, a1, . . . , ar+1 ∈ N with a′, ar+1 6= 0.
If the first equation holds, then qr+1 is not a ray in Qs, so r′(Qs) < r′(Q). Thus by

induction, the question is true for Qs, which implies the question for Q. If the second
equation holds, then p′ is not a ray in Qs, so (Qs)Q is simplicial. Since it suffices to show
the question for Qs, we reduce to the case when QQ is simplicial.

The question is winding local on AQ, so we may further assume that Q is isomorphic to
Nr+1 by [CLS11, 11.1.9]. Then Q ∼= 〈q〉 ⊕ Nr where q is a minimal element in Q such that
p ∈ 〈q〉. By (3.5.2), we have an isomorphism

Q ∼= 〈q〉 ⊕ Nr ⊕Q∗.

(III) Final step of the proof. Let

η1 : Q→ 〈q〉 ∼= N, η2 : Q→ Nr, η3 : Q→ Q∗

denote the projections. Consider the ideals

I := (η1(p′), η2(p′), 0), I1 := (η1(p′), 0, 0), I2 := (0, η2(p′), 0), I12 := I1 ∩ I2

of Q, and we put

W = X ×AP A(Q,I), W1 = X ×AP A(Q,I1), W2 = X ×AP A(Q,I2), W12 = X ×AP A(Q,I12).

Then we put Q′ = Q/〈p〉, and let Q′ : N→ Q′ denote the composition

N→ P
θ→ Q→ Q′

where the first arrow is the second inclusion and the third arrow is the quotient homomor-
phism. We have

W ∼= Y ×AP AQ, W1
∼= (S ×AN ptN)× AQ′ ,

W2
∼= S × (AQ′ ×Aθ,AN ptN), W12

∼= (S ×AN ptN)× (AQ′ ×Aθ′AN ptN).

By (8.1.5), the morphism
Mft/S(W12)→Mft/S(W1)

in Dlog′,pw(ft/S,Λ) induced by the closed immersion W12 → W1 is an isomorphism. Since
W1 qW2 → W is a plain lower cover, we have a distinguished triangle

Mft/S(W12)→Mft/S(W1)⊕Mft/S(W2)→Mft/S(W )→Mft/S(W12)[1]
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in Dlog′,pw(ft/S,Λ). Thus the morphism

Mft/S(W2)→Mft/S(W )

in Dlog′,pw(ft/S,Λ) is also an isomorphism. Since W2
∼= S × (AQ′ ×Aθ,AN ptN), by (8.1.5), the

morphism
Mft/S(W2)→Mft/S(S × AQ′)

in Dlog′,pw(ft/S,Λ) induced by the closed immersion W2 → S×AQ′ is an isomorphism. This
completes the proof since the projection S × AQ′ → S is exact log smooth.

Lemma 8.1.12. Let θ : N⊕N→ Q be an injective homomorphism of fs monoids such that
there is a face G1 of Q with θ−1(G1) = N ⊕ 0. We put p = θ(1, 0) and p′ = θ(0, 1). Then
there is a face G containing p and not containing p′ such that dimG = dimQ− 1.

Proof. We put F1 = N⊕ 0. Consider the homomorphism

θ′ : N ∼= (N⊕ N)F1 → QG1

of fs monoids induced by θ. Since θ−1(G1) = F1, θ′ is injective. Choose a maximal proper
face G′′ of QG1 not containing θ′(1), and we denote by G the inverse image of G′′ under the
localization homomorphism Q→ QG1 . Then G satisfies the condition.

Proposition 8.1.13. Under the notations and hypotheses of (8.1.11), we assume further
that the fs chart N→MS induces a constant log structure. Then the morphism

Mft/S(Y ×AP AQ)→Mft/S(X ×AP AQ)

in Dlog′,pw(ft/S,Λ) induced by i : Y → X is an isomorphism.

Proof. We can follow the proof of (8.1.11) until the end of the step (II). Hence we may
assume that Q is isomorphic to Nr+1. Let us use the notations in the step (III) of the proof
of (loc. cit). We want to show that the homomorphism

Mft/S(W ) = Mft/S(Y×AP ) = Mft/S(X ×AP A(Q,I))→Mft/S(X ×AP AQ)

in Dlog′,pw(ft/S) is an isomorphism.
If η1(p′) 6= 0, then W ∼= W1

∼= X ×AP AQ, so we are done. If η1(p′) = 0, then W2
∼= W .

As in the proof of (loc. cit), the morphism

Mft/S(S × (AQ′ ×Aθ,AN ptN))→Mft/S(S × AQ′)

in Dlog′,pw(ft/S,Λ) is an isomorphism by (8.1.5), so we are done because W ∼= W2
∼= S ×

(AQ′ ×Aθ,AN ptN) and X ×AP AQ
∼= S × AQ′ .

Proposition 8.1.14. Under the notations and hypotheses of (8.1.10), the essential image
of

g],ftρ],Y : Dlog′,pw(eSm/Y,Λ)→ Dlog′,pw(ft/S,Λ)

is in the essential image of

ρ],S : Dlog′,pw(eSm/S,Λ)→ Dlog′,pw(ft/S,Λ).
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Proof. We put P = N ⊕ N. Then Y has the fs chart P → MS. By (3.6.3), it suffices to
prove that

Mft/S(Y ′ ×AP ′ AQ)

is in the essential image of ρ],S where

(i) h : Y ′ → Y is a Kummer log smooth morphism with a fs chart η : P → P ′ of Kummer
log smooth type,

(ii) θ′ : P ′ → Q is an injective homomorphism of fs monoids such that the cokernel of θ′gp

is torsion free,

(iii) θ′ is logarithmic and locally exact.

We put T = ptN, and consider the diagram

Y T

S

g

of S -schemes where the horizontal arrow is the projection. Then the new question is winding
local on S and T , so by (1.2.18), we may assume that η is an isomorphism. In this case, h
is strict smooth, so there is a unique Cartesian diagram

Y ′ Y

S ′ S

h

g

of S -schemes since the morphism g : Y → S of underlying schemes is an isomorphism.
Then the morphism S ′ → S is automatically strict smooth. Replacing Y ′ → Y → S by
Y ′ → Y ′ → S ′, we may assume that Y = Y ′ and P = P ′. Then we are done by (8.1.11).

8.1.15. Under the notations and hypotheses of (8.1.10), by (8.1.14) and (1.5.4), we have the
adjunction

g] : Dlog′,pw(eSm/Y,Λ) � Dlog′,pw(eSm/S,Λ) : g∗.

Moreover, g] commutes with ρ], and g∗ commutes with ρ∗.

8.1.16. Let S be an S -scheme with the trivial log structure. Consider the Cartesian diagram

(S × ptN)× AN S × AN

(S × ptN)× A1 S × A1

g′

f ′ f

g

of S -schemes where f denotes the morphism removing the log structure and g denotes the
projection. Then by (8.1.15) and (1.5.5), the exchange transformation

g∗f∗
Ex−→ f ′∗g

′∗

in Dlog′,pw(eSm,Λ) is an isomorphism.
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Proposition 8.1.17. Under the notations and hypotheses of (8.1.10), the natural transfor-
mation

f∗f
∗ ad−→ f∗i∗i

∗f ∗

in Dlog′,pw(eSm,Λ) is an isomorphism.

Proof. Let us add subscripts eSm and ft to functors for distinction. By (8.1.2), the natural
transformation

f∗,ftf
∗
ft

ad−→ f∗,fti∗,fti
∗
ftf
∗
ft

is an isomorphism. Thus the natural transformation

ρ∗f∗,ftf
∗
ftρ]

ad−→ ρ∗f∗,fti∗,fti
∗
ftf
∗
ftρ]

is an isomorphism. Since ρ∗ commutes with f∗,ft and i∗,ft, and ρ] commutes with f ∗ft and
i∗ft, the natural transformation

f∗,eSmρ
∗ρ]f

∗
eSm

ad−→ f∗,eSmi∗,eSmρ
∗ρ]i

∗
eSmf

∗
eSm

is an isomorphism. Then the conclusion follows from the fact that ρ] is fully faithful.

8.2 log′′′-weak equivalences in Dlog′,pw(eSm,Λ)

8.2.1. We will study various log′′′-weak equivalences Dlog′,pw(eSm,Λ). Using these, in (8.2.9),
we will prove that the functor

g∗ : Dlog′′′,pw(eSm/S,Λ)→ Dlog′′′,pw(eSm/Y,Λ)

admits a left adjoint where S is an S -scheme with a fs chart N and g : Y → S denotes the
projection S × ptN → S.

Proposition 8.2.2. Let S be an S -scheme with the trivial log structure, and we put Y =
S × ptN. Let

(i) h : W → Y be a log smooth morphism of S -schemes,

(ii) Q be a fs chart of W ,

(iii) η : Q → Q0 be a vertical homomorphism of fs monoids of exact log smooth over W
type,

(iv) F be a η-critical face of Q.

We put Q1 = (Q0)F . Then the morphism

g]MY (W ×AQ AQ1)→ g]MY (W ×AQ AQ0) (8.2.2.1)

in Dlog′,pw(eSm/S,Λ) induced by the open immersion AQ1 → AQ0 is an isomorphism.
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Proof. We will use an induction on

d := max
x∈W
Mgp

W,x.

If d = 1, then h is Kummer log smooth, so F = 0. Thus (8.2.2.1) is an isomorphism. Hence
assume d > 1.

(I) Reduction of Q. We denote by R the submonoid of Q0 consisting of elements q ∈ Q0

such that nq = η(q′) + q′′ for some ninN+, q′ ∈ Q, and q′′ ∈ Q∗0. Then the induced
homomorphism ν : R → Q0 is again a vertical homomorphism of fs monoids of exact log
smooth over W ′ := W×AQAR type, and F is a ν-critical face of Q0. Moreover, the projection
W ′ → W is Kummer log smooth. Hence replacing

W ×AQ AQ1 → W ×AQ AQ0 → W

by
W ′ ×AR AQ1 → W ′ ×AR AQ0 → W ′,

we may assume that the cokernel of ηgp is torsion free.

(II) Reduction of Y . The question is strict étale local on W , so by [Ogu14, IV.3.3.1], we may
assume that h : W → Y has a fs chart θ′ : N → Q′ of log smooth type. Let y be a point of
Y . Then we may further assume that the chart Q′ →MW is exact at y by [Ogu14, II.2.3.2].
We denote by P ′ the submonoid of Q′ consisting of elements q ∈ Q′ such that nq = θ(p) + q′

for some n ∈ N+, p ∈ N, and q ∈ Q′. Then P ′ is a fs monoid by Gordon’s lemma [Ogu14,
I.2.3.17], and P ′ ∼= N. Moreover, the induced homomorphism µ : P ′ → Q′ is logarithmic, so
the commutative diagram

P ′ Q′

P ′ Q′

µ

µ

of fs monoids where the vertical arrows are the quotient homomorphisms is coCartesian.
Replacing (W → Y → S, θ : N→ Q′) by (W → Y ×AN AP ′ → S ×AP ′∗ , µ : P ′ → Q′), we

may assume further assume that

(i) Q′ is sharp,

(ii) the cokernel of θgp is torsion free.

Then the chart Q′ →MW is neat at y because Q′ is sharp.

(III) Further reduction of Q. We denote by κ the composition Q → MY,y
∼→ Q′ where

the first arrow is the chart homomorphism and the second arrow is the inverse of the chart
homomorphism. We put

Q′0 = Q0 ⊕Q Q′, Q′1 = Q1 ⊕Q Q′.

Then since the cokernel of ηgp is torsion free by (I), we have isomorphisms

W ×AQ AQ0
∼= W ×AQ′ AQ′0

, W ×AQ AQ1
∼= W ×AQ′ AQ′1
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by (3.2.2). Hence replacing Q→ Q0 → Q1 by Q′ → Q′0 → Q′1, we may assume that

(i) Q is neat at y,

(ii) g : Y → X has a fs chart θ : N→ Q of log smooth type,

(iii) the cokernel of of θgp is torsion free.

(IV) Induction. The induced morphism

Y ×AN ptQ → Y

of schemes is an isomorphism since Q is sharp, so there is a unique Cartesian diagram

W ×AQ ptQ Y ×AN ptQ

Y ′ Yt

of S -schemes where the right vertical arrow is the projection and the upper horizontal arrow
is a pullback of the strict étale morphism W → Y ×AN AQ. Then the morphism Y ′ → Y is
automatically strict étale. Now we have the commutative diagram

Y ′ ×AN AQ1 Y ′ ×AN ptA ×AQ AQ1 W ×AQ ptQ ×AQ AQ1 W ×AQ AQ1

Y ′ ×AN AQ0 Y ′ ×AN ptA ×AQ AQ0 W ×AQ ptQ ×AQ AQ0 W ×AQ AQ0

Y ′ ×AN AQ Y ′ ×AN ptQ W ×AQ ptQ W

Y ×AN ptQ Y ×AN AQ

Y ′ Y

∼

∼

∼

v

p
t

of S -schemes. Let u denote the complement of the closed immersion v : Y ×AN ptQ →
Y ×AN AQ. Then by (Loc), we have the commutative diagrams

p]u]u
∗MY×ANAQ(W ×AQ AQ1) MY (W ×AQ AQ1) p]v∗v

∗MY×ANAQ(W ×AQ AQ1) p]u]u
∗MY×ANAQ(W ×AQ AQ1)[1]

p]u]u
∗MY×ANAQ(W ×AQ AQ0) MY (W ×AQ AQ0) p]v∗v

∗MY×ANAQ(W ×AQ AQ0) p]u]u
∗MY×ANAQ(W ×AQ AQ0)[1]

p]u]u
∗MY×ANAQ(Y ′ ×AN AQ1) MY (Y ′ ×AN AQ1) p]v∗v

∗MY×ANAQ(Y ′ ×AN AQ1) p]u]u
∗MY×ANAQ(Y ′ ×AN AQ1)[1]

p]u]u
∗MY×ANAQ(Y ′ ×AN AQ0) MY (Y ′ ×AN AQ0) p]v∗v

∗MY×ANAQ(Y ′ ×AN AQ0) p]u]u
∗MY×ANAQ(Y ′ ×AN AQ0)[1]
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of S -schemes whose rows are distinguished triangles. We have isomorphisms

v∗MY×ANAQ(W ×AQ AQ0)
∼= MY×ANptQ(W ×AQ ptQ ×AQ AQ0)

∼= v∗MY×ANAQ(Y ′ ×AN AQ0),

v∗MY×ANAQ(W ×AQ AQ1)
∼= MY×ANptQ(W ×AQ ptQ ×AQ AQ0)

∼= v∗MY×ANAQ(Y ′ ×AN AQ1),

and by induction on d, the morphisms

g]p]u]u
∗MY×ANAQ(W ×AQ AQ1)→ g]p]u]u

∗MY×ANAQ(W ×AQ AQ0),

g]p]u]u
∗MY×ANAQ(Y ′ ×AN AQ1)→ g]p]u]u

∗MY×ANAQ(Y ′ ×AN AQ0)

are log′′′-weak equivalent in Dlog′,pw(eSm/S,Λ). Thus from the above commutative diagrams,
we see that the question for W ×AQ AQ1 → W ×AQ AQ0 is equivalent to the question for
Y ′×ANAQ1 → Y ′×ANAQ1 . In other words, we may assume W = Y ′×ANAQ. Since t : Y ′ → Y
is strict étale, there is a unique Cartesian diagram

Y ′ Y

S ′ S

t

g

of S -schemes. Then the lower horizontal arrow is automatically strict étale. Replacing
W → Y → S by W → Y ′ → S ′, we may further assume that Y = Y ′, i.e., W = Y ×AN AQ.

(V) Final step of the proof. We put X = S × AN. Then X has the chart N. We also put

W0 = Y ×AN AQ0 , W1 = Y ×AN AQ1 , V0 = X ×AN AQ0 , V1 = X ×AN AQ1 .

We want to show that the morphism

g]MY (W1)→ g]MY (W0)

in Dlog′,pw(eSm/S,Λ) is a log′′′-weak equivalence. If θ(1) is invertible in Q, then W1 = W0 =
∅, so we are done. If not, then the image of θ(1) in Q1 is not invertible since (Q1)Q ∼= QQ by
[Ogu14, 4.6.6]. Thus by (8.1.5), we have isomorphisms

g]MY (W0)→ g]MY (V0), g]MY (W1)→ g]MY (V1)

in Dlog′,pw(eSm/S,Λ). This completes the proof since the morphism

g]MY (V1)→ g]MY (V0)

in Dlog′,pw(eSm/S,Λ) is a log′′′-weak equivalence by definition.

Proposition 8.2.3. Let S be an S -scheme with the trivial structure, and we put Y =
S× ptN. Let h : W → Y be a log smooth morphism. Consider the verticalization W ver → W
of W via h. Then the morphism

g]MS(W ver)→ g]MS(W )

in Dlog′,pw(eSm/S,Λ) is a log′′′-weak equivalence.
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Proof. The question is strict étale local on W , so we may assume that h has a fs chart
θ : N→ Q of log smooth type. We can follow the proof of (8.2.2) from Step (I) to Step (IV),
so we reduce to the case when W = Y ×AN AQ. We put X = S ×AN. Then X has the chart
N. We also put

W0 = W = Y ×AN AQ, W1 = W ver = Y ×AN A
ver
Q , V0 = X ×AN AQ, V1 = X ×AN A

ver
Q .

We want to show that the morphism

g]MY (W1)→ g]MY (W0)

in Dlog′,pw(eSm/S,Λ) is a log′′′-weak equivalence. If θ(1) is invertible in Q, then W1 = W0 =
∅, so we are done. If not, then by (8.1.8) and (8.1.5), we have isomorphisms

g]MY (W0)→ g]MY (V0), g]MY (W1)→ g]MY (V1)

in Dlog′,pw(eSm/S,Λ). This completes the proof since the morphism

g]MY (V1)→ g]MY (V0)

in Dlog′,pw(eSm/S,Λ) is a log′′′-weak equivalence by definition.

Corollary 8.2.4. Let S be an S -scheme with the trivial log structure, and let g : S×ptN → S
denote the projection. Then the functor

g] : Dlog′,pw(eSm/Y,Λ)→ Dlog′,pw(eSm/S,Λ)

preserves log′′′-weak equivalences.

Proof. It follows from (8.2.2) and (8.2.3).

8.2.5. Under the notations and hypotheses of (8.1.10), assume further that the chart α :
N→MS induces a constant log structure. We put

P ′ = N⊕ N, X ′ = X ×AP ,Aη AP ′ , Y ′ = Y ×AP ,Aη AP ′

where η : P → P ′ denotes the homomorphism

(a, b) 7→ (a+ b, b).

Consider the commutative diagram

Y ′ X ′

Y X

S

g′

i′

f ′

i

g
f

where f ′ denotes the projection and the square is Cartesian. Then gg′ : Y ′ → S is the
projection S × AN → S, and in particular it is exact log smooth.
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Proposition 8.2.6. Under the notations and hypotheses of (8.2.5), consider the natural
transformation

(gg′)]g
′∗ → g]

that is the left adjoint of

g∗
ad−→ g′∗g

′∗g∗.

Then for any object K of DA1,pw(eSm/Y,Λ), the morphism

(gg′)]g
′∗K → g]K

is a log′′′-weak equivalence.

Proof. Note first that the functor g] is defined by (8.1.15). As in the proof of (8.1.14), we
reduce to the case when

K = MY (Y ×AP ,Aθ AQ)

where

(i) θ : P → Q is an injective homomorphism of fs monoids such that the cokernel of θ′gp

is torsion free,

(ii) θ is logarithmic and locally exact.

By (8.1.13), the morphism

g]MY (Y ×AP AQ)→MS(X ×AP AQ)

in Dlog′,pw(eSm/S,Λ) is an isomorphism. Hence to show the question, it suffices to show
that the morphism

MS(Y ′ ×AP AQ)→MS(X ×AP AQ)

in Dlog′,pw(eSm/S,Λ) is a log′′′-weak equivalence.
Consider the coCartesian diagram

P P ′

Q Q′

θ

η

θ′

η′

of fs monoids. Then θ′ is again local and locally exact. Let G′ be a maximal θ′-critical face
of Q′. Then η′−1(G′) is a maximal θ-critical face of Q. The morphisms

MS(Y ′ ×AP AQG)→MS(Y ′ ×AP AQ), MS(X ×AP AQG)→MS(X ×AP AQ)

in Dlog′,pw(eSm/S,Λ) are log′′′-weak equivalences by definition, so replacing Q by QG, we
may assume θ is Kummer by [Ogu14, I.4.6.6].

164



We put T = ptN, and consider the diagram

Y T

S

g

of S -schemes where the horizontal arrow is the projection. Then the question is winding
local on S and T , so by (1.2.18), we may assume that θ is an isomorphism. In this case, the
projection p : Y ×AP AQ → Y is strict smooth, so there is a unique Cartesian diagram

Y ×AP AQ Y

S ′ S

p

g

of S -schemes since the morphism g : Y → S of underlying schemes is an isomorphism.
Then the morphism S ′ → S is automatically strict smooth. Replacing Y ×AP AQ → Y → S
by Y ×AP AQ → Y ×AP AQ → S ′, we may assume that P = Q.

Then the remaining is to show that the morphism

MS(Y ′)→MS(X)

in Dlog′,pw(eSm/S,Λ) is log′′′-weak equivalent. The morphisms

MS(Y ′)→MS(X ′), MS(X ′ver/S)→MS(X ′), MS(Xver/S)→MS(X)

in Dlog′,pw(eSm/S,Λ) is are log′′′-weak equivalent by definition, so this proves the question
since Xver/S = X ′ver/S.

Proposition 8.2.7. Under the notations and hypotheses of (8.2.5), the functor

g] : Dlog′,pw(eSm/Y,Λ)→ Dlog′,pw(eSm/S,Λ)

preserves log′′′-weak equivalences.

Proof. By (8.2.6), it suffices to prove that the functor

(gg′)] : Dlog′,pw(eSm/Y ′,Λ)→ Dlog′,pw(eSm/S,Λ)

preserves log′′′-weak equivalences. This is true since gg′ is exact log smooth.

Proposition 8.2.8. Under the notations and hypotheses of (8.1.10), the functor

g] : Dlog′,pw(eSm/Y,Λ)→ Dlog′,pw(eSm/S,Λ)

preserves log′′′-weak equivalences.
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Proof. We put S ′ = S ×AN ptN. Let i : S ′ → S denote the closed immersion, and let
j : S ′′ → S denote its complement. Consider the commutative diagram

Y ′ Y Y ′′

S ′ S S ′′

g′

i′

g

j′

g′′

i j

of S -schemes where each square is Cartesian.
If K → L is a log′′′-weak equivalence in Dlog′,pw(eSm/Y,Λ), then by (Loc), we have a

commutative diagram

j]j
∗g]K g]K i∗i

∗g]K j]j
∗g]K[1]

j]j
∗g]L g]L i∗i

∗g]L j]j
∗g]L[1]

ad′ ad ∂i

ad′ ad ∂i

in Dlog′,pw(eSm/Y,Λ) whose rows are distinguished triangles. By (8.1.15) and (1.5.5), the
exchange transformations

g′]i
′∗ Ex−→ i∗g], g′′] j

′∗ Ex−→ j∗g]

are isomorphisms. Applying these to the above diagram, we get the commutative diagram

j]g
′′
] j
′∗K g]K i∗g

′
]i
′∗K j]g

′′
] j
′∗K[1]

j]g
′′
] j
′∗L g]L i∗g

′
]i
′∗L j]j

∗g]j]g
′′
] j
′∗L[1]

ad′ ad ∂i

ad′ ad ∂i

in Dlog′,pw(eSm/Y,Λ) whose rows are distinguished triangles. Since i∗ preserves log′′′-weak
equivalences by (7.5.6), to show that g] preserves log′′′-weak equivalences, it suffices to show
that g′] and g′′] preserves log′′′-weak equivalences. It follows from (8.2.4) and (8.2.7).

8.2.9. Under the notations and hypotheses of (8.1.10), by (8.2.8) and (1.6.5), we have the
adjunction

g] : Dlog′′′,pw(eSm/Y,Λ) � Dlog′′′,pw(eSm/S,Λ) : g∗.

Moreover, g] commutes with π : Dlog′,pw(eSm,Λ) → Dlog′′′,pw(eSm,Λ), and g∗ commutes
with O : Dlog′′′,pw(eSm,Λ)→ Dlog′,pw(eSm,Λ).

8.2.10. Under the notations and hypotheses of (8.1.16), by (loc. cit), (8.2.8), and (1.6.6),
the exchange transformation

g∗f∗
Ex−→ f ′∗g

′∗

in Dlog′′′,pw(eSm,Λ) is an isomorphism.
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Proposition 8.2.11. Under the notations and hypotheses of (8.1.10), the natural transfor-
mation

f∗f
∗ ad−→ f∗i∗i

∗f ∗

in Dlog′′′,pw(eSm,Λ) is an isomorphism.

Proof. Let us add subscripts log′′′ and log′ to functors for distinction. By (8.1.17), the
natural transformation

f∗,log′f
∗
log′

ad−→ f∗,log′i∗,log′i
∗
log′f

∗
log′

is an isomorphism. Thus its adjunction

g],log′g
∗
log′ −→ f],log′f

∗
log′

is an isomorphism. Then the natural transformation

πg],log′g
∗
log′O −→ πf],log′f

∗
log′O

is an isomorphism. Since π commutes with f],log′ and g],log′ , and O commutes with f ∗log′ and
g∗log′ , the natural transformation

g],log′′′πOg∗log′′′ −→ f],log′′′πOf ∗log′′′

is an isomorphism. Then the conclusion follows from the fact that O is fully faithful.

Corollary 8.2.12. Under the notations and hypotheses of (8.1.10), the functor

g∗ : Dlog′′′,pw(eSm/S,Λ)→ Dlog′′′,pw(eSm/Y,Λ)

is conservative.

Proof. The functor f ∗ is conservative since f has a section. Thus the conclusion follows from
(8.2.11) and (5.2.1).

8.3 Homotopy properties 1, 2, 3, and 4

Proposition 8.3.1. The lSm-premotivic triangulated category

Dlog,pw(lSm,Λ)

satisfies (Htp–1), (Htp–2), (Htp–3), and (Htp–4).

Proof. For any log smooth morphism f : X → S of S -schemes and any object K of
Dlog,pw(lSm/S,Λ), we have

f]f
∗K ∼= MS(X)⊗K

by (lSm-PF). Thus to show (Htp–1), (Htp–3), and (Htp–4), it suffices to show that the
morphism

MS(Y ′)→MS(Y )
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in Dlog,pw(lSm/S,Λ) for each type (a), (c), and (d) in (1.7.2) is an isomorphism. It follows
from the fact that the morphism is a log-weak equivalence.

For (Htp–2), let f : X → S be an exact log smooth morphism of S -schemes, and let
j : Xver/S → X denote its verticalization of X via f . Since Dlog,pw(lSm,Λ) is generated by
lSm and τ , it suffices to show that the morphism

f]j]j
∗MX(V )→ f]MX(V )

in Dlog,pw(lSm/S,Λ) is an isomorphism for any log smooth morphism V → S. Consider the
commutative diagram

MS((V ×X Xver/S)ver/S) MS(V ver/S)

MS(V ×X Xver/S) MS(V )

in Dlog,pw(lSm/S,Λ). We want to show that the lower horizontal arrow is an isomorphism.
This follows from the fact that the vertical arrows are log-weak equivalences, i.e., they are
isomorphisms in Dlog,pw(lSm/S,Λ).

Remark 8.3.2. The method of (8.3.1) can be applied to Dlog′′′,pw(eSm,Λ) to conclude that
it satisfies (Htp–1), (Htp–2), and (Htp–3) (but not (Htp–4)).

Proposition 8.3.3. The eSm-premotivic triangulated category

Dlog,pw(−,Λ)

satisfies (Htp–1), (Htp–2), (Htp–3), and (Htp–4).

Proof. Consider the adjunction

ρ] : Dlog,pw(−,Λ) � Dlog,pw(lSm,Λ) : ρ∗.

Let us prove (Htp–2). It suffices to show that the natural transformation

f∗,eSm
ad−→ f∗,eSmj∗,eSmj

∗
eSm
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is an isomorphism. Consider the commutative diagram

f∗,eSm f∗,eSmj∗,eSmj
∗
eSm

f∗,eSmj∗,eSmj
∗
eSmρ

∗ρ]

f∗,eSmρ
∗ρ] f∗,eSmj∗,eSmρ

∗j∗lSmρ]

f∗,eSmρ
∗j∗,lSmj

∗
lSmρ]

ρ∗f∗,lSmρ] ρ∗f∗,lSmj∗,lSmj
∗
lSmρ]

ad

∼ad

∼ad

∼

∼

∼

∼

ad

of functors. The lower horizontal arrow is an isomorphism by (Htp–2) for Dlog,pw(lSm,Λ)
proved in (8.3.1), so the upper horizontal arrow is also an isomorphism. This proves (Htp–2).

The other properties can be similarly proved.

8.3.4. By (8.3.3), (7.6.3), (7.5.3) and (2.9.5), we have proved that Dlog,pw(−,Λ) satisfies the
axiom (i) of (2.9.1) for . We also have proved (Adj), (Htp–1), (Htp–2), (Htp–3), (sét-Sep),
(Loc), and (Stab) by (2.9.5), (7.5.7), (7.6.3), and (8.3.2).

8.4 Axiom (ii) of (2.9.1)

Theorem 8.4.1. Let S be an S -scheme with the trivial log structure. Then the support
property holds in Dlog′′′,pw(eSm,Λ) for the morphism

f : S × AN → S × A1

of S -schemes removing the log structure.

Proof. Consider the Cartesian diagram

S × ptN × AN S × AN

S × ptN × A1 S × A1

g′

f ′ f

g

of S -schemes where g denotes the projection. Then by (8.2.10), the exchange transformation

g∗f∗
Ex−→ f ′∗g

′∗
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in Dlog′′′,pw(eSm,Λ) is an isomorphism, and by (8.2.12), the functor

g∗ : Dlog′′′,pw(eSm/(S × A1),Λ)→ Dlog′′′,pw(eSm/(S × ptN × A1),Λ)

is conservative. Thus to show the support property for f , it suffices to show that the support
property for f ′.

By (8.3.4), we can use (5.5.5), and this proves the support property for f ′.

8.4.2. Let S be an S -scheme with a trivial log structure. For any open subscheme X of
S × AN or S × A1, we have lSm/X = eSm/X by [Ogu14, I.4.5.3.5]. Thus for these X, we
have

Dlog′′′,pw(eSm/X,Λ) = Dlog,pw(X,Λ).

Then (8.4.1) implies the axiom (ii) of (2.9.1) for Dlog,pw(−,Λ). Therefore we have proved the
following theorem.

Theorem 8.4.3. The eSm-premotivic triangulated category

Dlog,pw(−,Λ)

is a log motivic triangulated category.
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Chapter 9

Premotivic triangulated prederivators

9.1 Axioms of premotivic triangulated prederivators

9.1.1. Through this section, fix a category S with fiber products and a class of morphisms
P of S containing all isomorphisms and stable by compositions and pullbacks.

Definition 9.1.2. We will introduce several notations and terminology.

(1) An S -diagram is a functor
X : I → S

where I is a small category. The 2-category of S -diagrams is denoted by S dia. We
often write X = (X , I) for X . The category I is called the index category of X ,
and an object λ of I is called an index of X .

(2) Let f : I → J be a functor of small categories, and let µ be an object of J . We denote
by Iµ the full subcategory of I such that λ is an object of Iµ if and only if u(λ) is
isomorphic to µ in J .

We denote by I/µ the category where

(i) object is a pair (λ ∈ ob(I), a : f(λ)→ µ),

(ii) morphism (λ, a)→ (λ′, a′) is the data of commutative diagrams:

λ λ′b
f(λ) f(λ′)

µ
a

b

a′

(3) Let f : (X , I)→ (Y , J) be a 1-morphism of S -diagrams. Abusing the notation, we
denote by f the induced functor I → J . For an object µ of J , we denote by Xµ and
X /µ the S -diagrams

Iµ −→ I
X−→ S , I/µ −→ I

X−→ S
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respectively where the first arrows are the induced functors. Then we denote be

µ : Xµ →X , µ : X /µ→X

the induced functors.

(4) Let f : X → Y be a 1-morphism of S -diagrams, and let µ be an index of Y .
Consider the induced 2-diagrams

Xµ X

Yµ Y

µ

⇐⇒
f

µ

X /µ X

Yµ Y

µ

⇐=
f

µ

X /µ X

Y /µ Y

µ

⇐⇒
f

µ

of S -diagrams. Here, the arrows ⇔ and ⇒ express the induced 2-morphisms. Then
we denote by

fλ : Xµ → Yµ, fµµ : X /µ→ Yµ, fµ : X /µ→ Y /µ

the 1-morphisms in the above 2-diagrams.

Let λ be an index of X such that f(λ) is isomorphic to µ. Then we denote by

fλµ : Xλ → Yµ

the induced 1-morphism.

(5) Let f : X → Y be a 1-morphism of S -diagrams. For a property P of morphisms
in S , we say that f is a P morphism if for any index λ of X , the morphism fλµ :
Xλ → Yµ where µ = f(λ) is a P morphism in S .

(6) We denote by dia the 2-category of small categories.

(7) We denote by Tri⊗ the 2-category of triangulated symmetric monoidal categories.

(8) We denote by e the trivial category.

Definition 9.1.3. A P-premotivic triangulated prederivator T over S is a 1-contravariant
and 2-contravariant 2-functor

T : S dia −→ Tri⊗

with the following properties.

(PD–1) For any 1-morphism f : X → Y of S -diagrmas, we denote by f ∗ : T (Y )→ T (X )
the image of f under T : S dia −→ Tri⊗. Then the functor f ∗ admits a right adjoint
denoted by f ∗.
For any 2-morphism t : f → g of 1-morphisms f, g : X → Y of S -diagrams, we
denote by t∗ : g∗ → f ∗ the image of t under T .

(PD–2) For any P-morphism f : X → Y , the functor f ∗ admits a left adjoint denoted by
f].
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(PD–3) For any S -diagram X = (X , I), if I is a discrete category, then the induced functor

T (X ) −→
∏

λ∈ob(I)

T (Xλ)

is an equivalence of categories.

(PD–4) For any S -diagram X = (X , I), the family of functors λ∗ for λ ∈ ob(I) is conserva-
tive.

(PD–5) For any object S of S , the fibered category

T (−, e)

is a P-premotivic triangulated category.

(PD–6) For any morphism f : X → Y of S -diagrams and any index µ of Y , in the 2-diagram

X /µ X

Yµ Y

fµµ

µ

t⇐=
f

µ

of S -diagrmas, the exchange transformation

µ∗f∗
ad−→ fµµ∗f

∗
µµµ

∗f∗
t∗−→ fµµ∗µ

∗f ∗f∗
ad′−→ fµµ∗µ

∗

is an isomorphism.

Remark 9.1.4. Our axioms are selected from [Ayo07, 2.4.16] and the axioms of algebraic
derivators in [Ayo07, 2.4.12].

Definition 9.1.5. Let T be a P-premotivic triangulated prederivator.

(1) A cartesian section of T is the data of an object AX of T (X ) for each S -diagram
X and of isomorphisms

f ∗(AY )
∼−→ AX

for each morphism f : X → Y of S -diagrams, subject to following coherence condi-
tions as in (1.1.5). The tensor product of two cartesian sections is defined termwise.

(2) A set of twists τ for T is a set of Cartesian sections of T stable by tensor product.
For short, we say also that T is τ -twisted .

Proposition 9.1.6. Let T be a P-premotivic triangulated prederivator, and let X be an
S -diagram. Then λ]K is compact for any index λ of X and any compact object K of
T (Xλ).
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Proof. We have the isomorphism

HomT (Z )(λ]K,−) ∼= HomT (Xλ)(K,λ
∗(−)).

Using this, ther conclusion follows fom the fact that λ∗ preserves small sums.

Definition 9.1.7. Let T be a τ -twisted P-premotivic triangulated prederivator. For any
object S of S , we denote by FP/S the family of motives of the form

MS(X){i}

for P-morphism X → S and twist i ∈ τ . Then for any S -diagram X , we denote by FP/X

the family of motives of the form
λ]K

for index λ of X and object K of FP/Xλ
.

Proposition 9.1.8. Let T be a τ -twisted P-premotivic triangulated prederivator. Assume
that T (−, e) is compactly generated by P and τ . Then FP/X generates T (X ).

Proof. Let K → K ′ be a morphism in T (X ) such that the homomorphism

HomT (X )(λ]L,K)→ HomT (X )(λ]L,K
′)

is an isomorphism for any index λ of X and any element L of FP/Xλ
. We want to show

that the morphism K → K ′ in T (X ) is an isomorphism.
The homomorphism

HomT (Xλ)(L, λ
∗K)→ HomT (Xλ)(L, λ

∗K ′)

is an isomorphism, and FP/Xλ
generates T (Xλ) by assumption. Thus the morphism λ∗K →

λ∗K ′ in T (Xλ) is an isomorphism. Then (PD–4) implies that the morphism K → K ′ in
T (X ) is an isomorphism, which completes the proof.

9.2 Consequences of axioms

9.2.1. Throughout this section, fix a category S with fiber products and a class of mor-
phisms P of S containing all isomorphisms and stable by compositions and pullbacks.

Definition 9.2.2. Let f : (X , I)→ (Y , J) be a 1-morphism of S -diagrams.

(1) We say that f is reduced if the functor f : I → J is an equivalence.

(2) We say that f is Cartesian if f is reduced and for any morphism µ → µ′ in J , the
diagram

Xµ Xµ′

Yµ Yµ′

in S is Cartesian.
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9.2.3. Let f : (X , I) → (Y , J) and g : (Y ′, J ′) → (Y , J) be 1-morphisms of S -diagrams.
Consider the category J ′ ×J I. We have the functors

u1 : J ′ ×J I
p1→ J ′

Y ′→ S ,

u2 : J ′ ×J I
p2→ J ′

X→ S ,

u : J ′ ×J I
p→ J ′

Y→ S

where p1, p2, and p denote the projections. Then we denote by

(Y ′ ×Y X , J ′ ×J I)

the functor J ′ ×J I → S obtained by taking fiber products u1(λ) ×u(λ) u2(λ) for λ ∈
ob(J ′ ×J I). Note that by [Ayo07, 2.4.10], the commutative diagram

Y ′ ×Y X X

Y ′ Y

g′

f ′ f

g

of S -diagrams is Cartesian where g′ and f ′ denote the first and second projections respec-
tively.

Proposition 9.2.4. Let f : X → Y be a Cartesian P-morphism of S -diagrams, and let
µ be an index of Y . Then in the Cartesian diagram

Xµ X

Yµ Y

fµ

µ

f

µ

of S -diagrams, the exchange transformation

f ∗µ∗
Ex−→ µ∗f

∗
µ

is an isomorphism.

Proof. Let λ be an index of X (so an index of Y since f is Cartesian). By (PD–4), it
suffices to show that the natural transformation

λ∗f ∗µ∗
Ex−→ λ∗µ∗f

∗
µ

is an isomorphism.
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Consider the 2-diagrams

Xµ/λ Xλ

Xµ X

Yµ/λ

Yµ Y

(fµ)λ

⇐=λ

µλλ

λ

fµ

µ

⇐⇒

⇐⇒ f

λ

µ

Xµ/λ Xλ

X

Yµ/λ Yλ

Yµ Y

(fµ)λ ⇐⇒

µλλ

λ

fλ

⇐⇒
f

λ

µλλ

λ
⇐=

µ

of S -diagrams. Then we have the commutative diagram

λ∗f ∗µ∗ f ∗λλ
∗µ∗ f ∗λµλλ∗λ

∗

λ∗µ∗f
∗
µ µλλ∗λ

∗
f ∗µ µλλ∗(fµ)∗

λ
λ
∗

Ex

∼ Ex

Ex

Ex ∼

of functors. By (PD–6), the lower left horizontal and upper right horizontal arrows are
isomorphisms. Thus it suffices to show that the right vertical arrow is an isomorphism. We
have the identification

Xµ/λ = Xµ × HomJ(µ, λ), Yµ/λ = Yµ × HomJ(µ, λ)

where J denotes the index category of Y . Thus by (PD–3), it suffices to show that for any
morphism µ→ λ in J , in the induced Cartesian diagram

Xµ Xλ

Yµ Yλ

fµ

idµλ

fλ

idµλ

in S , the exchange transformation

f ∗λ idµλ∗
Ex−→ idµλ∗f

∗
µ

is an isomorphism. This follows from (PD–5) and the assumption that f is a Cartesian
P-morphism.

Proposition 9.2.5. Consider a Cartesian diagram

X ′ X

Y ′ Y

f ′

g′

f

g
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of S -diagrams where f is a Cartesian P-morphism. Then the exchange transformation

f ′]g
′∗ Ex−→ g∗f]

is an isomorphism.

Proof. Note that f ′ is also a Cartesian P-morphism. Let µ′ be an index of Y ′. By (PD–4),
it suffices to show that the natural transformation

µ′∗f ′]g
′∗ Ex−→ µ′∗g∗f]

is an isomorphism. We put µ = g(µ′).
Consider the commutative diagrams

X ′
µ′ X ′ X

Y ′
µ′ Y ′ Y

fµ′

µ′

f ′

g′

f

µ′ g

X ′
µ′ Xµ X

Y ′
µ′ Yµ Y

fµ′

g′
µ′µ

fµ

g′

f

gµ′µ g

of S -diagrams. Then we have the commutative diagram

f ′µ′]µ
′∗g′∗ µ′∗f ′]g

′∗ µ′∗g∗f]

f ′µ′]g
∗
µ′µµ

∗ g∗µ′µfµ]µ
∗ g∗µ′µµ

∗f]

∼

Ex Ex

∼

Ex Ex

of functors. The upper left horizontal and lower right horizontal arrows are isomorphisms
by (9.2.4), and the lower left horizontal arrow is an isomorphism by (PD–5) since the com-
mutative diagram

X ′
µ′ Xµ

Y ′
µ′ Yµ

f ′
µ′

g′
µ′µ

fµ

gµ′µ

is Cartesian by assumption. Thus the upper right horizontal arrow is also an isomorphism.

Proposition 9.2.6. Let X be an S -diagram. Assume that the index category of X has a
terminal object λ. Consider the 1-morphisms

Xλ
λ−→X

f−→Xλ

where f denotes the morphism induced by the functor I → e to the terminal object λ. Then
the natural transformation

λ]λ
∗f ∗

ad−→ f ∗

is an isomorphism.
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Proof. Let λ′ be an index of X . By (PD–4), it suffices to show that the natural transfor-
mation

λ′∗λ]λ
∗f ∗

ad′−→ λ′∗f ∗

is an isomorphism. We will show that its right adjoint

f∗λ
′
∗

ad−→ f∗λ∗λ
∗λ′∗

is an isomorphism.
Consider the diagram

Xλ′ Xλ′

Xλ X Xλ

idλ′λ

id

λ′
idλ′λ

λ f

of S -diagrams. Then we have the commutative diagram

f∗λ
′
∗

f∗λ∗λ
∗λ′∗ f∗λ∗idλ′λ∗id

∗

ad
∼

Ex

of functors, so it suffices to show that the horizontal arrow is an isomorphism. This follows
from (PD–6) since Xλ′ = Xλ′/λ.

Proposition 9.2.7. Let f : X → Y be a reduced morphism of S -diagrams, and let µ be
an index of Y . Consider the Cartesian diagram

Xµ X

Yµ Y

fµ

µ

f

µ

of S -diagrams. Then the exchange transformation

µ∗f∗
Ex−→ fµ∗µ

∗

is an isomorphism.

Proof. Consider the 2-diagram

Xµ

X /µ X

Yµ Y

fµ

µ

idµµ

⇐⇒

⇐
⇒

µ

⇐=fµµ f

µ
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of S -diagrams. Then the exchange transformation

µ∗f∗
Ex−→ fµ∗µ

∗

has the decomposition

µ∗f∗
Ex−→ fµµ∗µ

∗ ad−→ fµµ∗idµµ∗id
∗
µµµ

∗ ∼−→ fµ∗µ
∗.

By (PD–6), the first arrow is an isomorphism. Thus it suffices to show that the second arrow
is an isomorphism.

Consider the 1-morphisms

Xµ
idµµ→ X /µ

idµµ→ Xµ
fµ→ Yµ

of S -diagrams. Then it suffices to show that the natural transformation

idµµ∗idµµ∗id
∗
µµ

ad−→ idµµ∗

is an isomorphism, which follows from (9.2.6).

Proposition 9.2.8. Consider a Cartesian diagram

X ′ X

Y ′ Y

f ′

g′

f

g

of S -diagrams where

(i) f is reduced,

(ii) for any index µ′ of Y ′, in the Cartesian diagram

X ′
µ′ Xµ

Y ′
µ′ Yµ

f ′
µ′

g′
µ′µ

fµ

gµ′µ

in S where µ = g(µ′), the exchange transformation

g∗µ′µfµ∗
Ex−→ f ′µ′∗g

′∗
µ′µ

is an isomorphism.

Then the exchange transformation

g∗f∗
Ex−→ f ′∗g

′∗

is an isomorphism.
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Proof. Note that f ′ is also reduced. Let µ′ be an index of Y ′. By (PD–4), it suffices to show
that the natural transformation

µ′∗g∗f∗
Ex−→ µ′∗f ′∗g

′∗

is an isomorphism. We put µ = g(µ′).
Consider the commutative diagrams

X ′
µ′ X ′ X

Y ′
µ′ Y ′ Y

fµ′

µ′

f ′

g′

f

µ′ g

X ′
µ′ Xµ X

Y ′
µ′ Yµ Y

fµ′

g′
µ′µ

fµ

g′

f

gµ′µ g

of S -diagrams. Then we have the commutative diagram

µ′∗g∗f∗ µ′∗f ′∗g
′∗ fµ′∗µ

′∗g′∗

g∗µ′µµ
∗f∗ g∗µ′µfµ∗µ

∗ g∗µ′µf
′
µ′∗g

′∗

∼

Ex Ex

∼

Ex Ex

(9.2.8.1)

of functors. The upper right horizontal and lower left horizontal arrows are isomorphisms
by (9.2.7), and the lower right horizontal arrow is an isomorphism by (PD–5) since the
commutative diagram

X ′
µ′ Xµ

Y ′
µ′ Yµ

f ′
µ′

g′
µ′µ

fµ

gµ′µ

is Cartesian by assumption. Thus the upper left horizontal arrow of (9.2.8.1) is also an
isomorphism.

9.2.9. Under the notations and hypotheses of (9.2.8), we will give two examples satisfying
the conditions of (loc. cit).

(1) When f is reduced and g is a P-morphism, the conditions are satisfied by (P-BC).

(2) Assume that T (−, e) satisfies (Loc). Then the conditions are satisfied when f is a
reduced strict closed immersion by (2.6.2).

9.2.10. Let i : Z → X be a Cartesian strict closed immersion of S -diagrmas. Then for
any morphism λ→ λ′ in the index category of X , we have the commutative diagram

Zλ Xλ Uλ

Zλ′ Xλ′ Uλ′

iλ

idλλ′ idλλ′

jλ

iλ′ jλ′
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in S where each square is Cartesian and jλ (resp. jλ′) denotes the complement of iλ (resp.
iλ′). From this, we obtain the Cartesian open immersion j : U → X . It is called the
complement of i.

9.2.11. We have assumed or proven the axioms DerAlg 0, DerAlg 1, DerAlg 2d, DerAlg 2g,
DerAlg 3d, and DerAlg 3g in [Ayo07, 4.2.12]. With the additional assumption that T (−, e)
satisfies (Loc), the following results are proved in [Ayo07, Section 2.4.3].

(1) Let i : Z → X be a Cartesian strict closed immersion, and let j : U → X denote
its complement. Then the pair of functors (i∗, j∗) is conservative.

(2) Let i : Z →X be a strict closed immersion. Then the counit

i∗i∗
ad′−→ id

is an isomorphism.

(3) Consider a Cartesian diagram

X ′ X

Y ′ Y

f ′

g′

f

g

of S -diagrams where f is a P-morphism and g is a Cartesian strict closed immersion.
Then the exchange transformation

f]g
′
∗

Ex−→ g∗f
′
]

is an isomorphism.

9.2.12. The notion of P-premotivic triangulated prederivators can be used to descent theory
of P-premotivic triangulated categories. Let t be a Grothendieck topology on S . Recall
from [CD12, 3.2.5] that T satisfies t-descent if the unit

id
ad−→ f∗f

∗

is an isomorphism for any t-hypercover (see [CD12, 3.2.1] for the definition of t-hypercover)
f : X → Y of S -diagrams. In (9.5.1), we will construct a eSm-premotivic triangulated
prederiator satisfying strict étale descent.

9.3 Localizing subcategories

9.3.1. Throughout this section, we fix a category S and classes of morphisms P ′ ⊂ P of
S containing all isomorphisms and stable by compositions and pullbacks. We fix also a τ -
twisted P-premotivic triangulated prederivator T such that T (−, e) is compactly generated
by P and τ . Then by (9.1.8), T (X ) is compactly generated for any S -diagram X .
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For an S -diagram X , we denote by FP/X the family of motives of the form

λ]K

for index λ of X and object K of FP/Xλ
(see (1.5.1) for the definition of FP/Xλ

). Then we
denote by T (P ′/X ) the localizing subcategory of T (X ) generated by FP′/X . Note that
T (P ′/X ) is compactly generated by (9.1.6).

We denote by T (P ′) the collection of T (P ′/X ) for object X of S . The purpose of this
section is to show that T (P ′) has a structure of P ′-premotivic triangulated prederivator.

9.3.2. We denote by ρ] the inclusion functor

T (P ′)→ T .

Then the set of twists τ for T gives a set of twists for T (P ′). It is denoted by τ again. By
(9.3.1), T (P ′) is compactly generated, so by [Nee01, 8.4.4], ρ] has a right adjoint

ρ∗ : T → T (P ′)

since ρ] respects small sums. For any S -diagram X , we denote by

ρ],X : T (P ′/X ) T (X ) : ρ∗X

the specification of ρ] and ρ∗ to X .

9.3.3. Let X and Y be S -diagrams. Consider a diagram

T (P ′/X ) T (P ′/Y )

T (X ) T (Y )

ρ],X ρ∗X ρ],Y ρ∗Y

α

β

such that α is left adjoint to β. Suppose that α maps FP′/X into T (P ′/Y ) and that α
commutes with twists. Then as in (1.5.3), we define

αP′ : T (P ′/X )→ T (P ′/Y ),

βP′ : T (P ′/Y )→ T (P ′/X )

as αP′ = ρ∗Sαρ],X and βP′ = ρ∗Xβρ],Y . We often omit P ′ in αP′ and βP′ for brevity. Then
as in (1.5.4), α commutes with ρ], and αP′ is left adjoint to βP′ . Note that β commutes
with ρ∗ in this case.

Proposition 9.3.4. Let X be an S -diagram. For any indices λ and λ′ of X and any
object K of T (Xλ) in T (P ′/Xλ), the object λ′∗λ]K of T (Xλ′) is in T (P ′/Xλ′).
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Proof. Consider the 2-diagram

Xλ′/λ Xλ′

Xλ X

λ′
λλ

λ

⇐= λ′

λ

of S -diagrams. Then the exchange transformation

λ′
λλ]
λ
∗ Ex−→ λ′∗λ]

is an isomorphism by (PD–6), so we need to show that λ′
λλ]
λ
∗
K is in T (P ′/X ). This

follows from the identification

Xλ′/λ = Xλ′ × HomI(λ
′, λ)

where I denotes the index category of X .

Proposition 9.3.5. Let X be an S -diagram, and let K be an object of T (X ). If λ∗K is
in T (P ′/Xλ) for any index λ of X , then K is in T (P ′/X ).

Proof. We denote by T ′ the full subcategory of T (X ) consisting of objects K of T (X )
such that λ∗K is in T (P ′/Xλ) for any index λ of X . Then T ′ is a triangulated subcategory
of T (X ). By (9.3.4), FP′/X is in T ′. We will first show that the family FP′/X generates
T ′.

Let K → K ′ be a morphism in T ′ such that the homomorphism

HomT (X )(λ]L,K)→ HomT (X )(λ]L,K
′)

is an isomorphism for any index λ of X and any element L of FP′/Xλ
. We want to show

that the morphism K → K ′ in T (X ) is an isomorphism.
The homomorphism

HomT (Xλ)(L, λ
∗K)→ HomT (Xλ)(L, λ

∗K ′)

is an isomorphism, and FP′/Xλ
generates T (P ′/Xλ). Thus the morphism λ∗K → λ∗K ′ in

T (Xλ) is an isomorphism since λ∗K and λ∗K ′ are in T (P ′/Xλ). Then (PD–4) implies
that the morphism K → K ′ in T (X ) is an isomorphism. Thus so far we have proven that
the family FP′/X generates T ′.

Since FP′/Xλ
consists of compact objects by (9.1.6), T is compactly generated. Thus

by (1.4.4), T ′ is the localizing subcategory generated by FP′/Xλ
, which is T (P ′/X ) by

definition. This completes the proof.

9.3.6. Let f : X → Y be a 1-morphism of S -diagrams. Then by (9.3.5), f ∗ maps FP′/Y

into T (P ′/X ). Thus by (9.3.3), f ∗ commutes with ρ], f∗ commutes with ρ∗, and we have
the adjunction:

f ∗P′ : T (P ′/Y ) T (P ′/X ) : fP′∗
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When f is a P-morphism, f] maps FP′/X into T (P ′/Y ) by definition. Thus by (9.3.3),
f] commutes with ρ], f

∗ commutes with ρ∗, and we have the adjunction:

fP′] : T (P ′/X ) T (P ′/Y ) : f ∗P′

9.3.7. Now, we will verify the axioms of (9.1.3) for T (P ′).

(1) As in (1.5.6), T (P ′) satisfies (PD–1), (PD–2), and (PD–5).

(2) Axiom (PD–3). Let (X , I) be an S -diagram such that I is a discrete category.
Consider the diagram

T (P ′/X )
∏

λ∈ob(I) T (P ′/Xλ)

T (X )
∏

λ∈ob(I) T (Xλ)

ρ]

α′

ρ]

α

(9.3.7.1)

where α and α′ are the functors induced by λ∗ : T (X ) → T (Xλ) and λ∗ :
T (P ′/X ) → T (P ′/Xλ) for λ ∈ ob(I) respectively. By (9.3.6), it commutes. The
lower horizontal arrow is an equivalence by (PD–3) for T , and the vertical arrows are
fully faithful. Thus α′ is fully faithful.

Then consider the diagram

T (P ′/X )
∏

λ∈ob(I) T (P ′/Xλ)

T (X )
∏

λ∈ob(I) T (Xλ)

ρ]

β′

ρ]

β

where β and β′ are the functors induced by

λ] : T (Xλ)→ T (X ), λ] : T (P ′/Xλ)→ T (P ′/X )

for λ ∈ ob(I) respectively. By (9.3.6), it commutes. The lower horizontal arrow is an
equivalence by (PD–3) for T , and the vertical arrows are fully faithful. Thus β′ is
fully faithful. Then α′ is an equivalence since both α′ and β′ are fully faithful and α′

is left adjoint to β′. Thus T (P ′) satisfies (PD–3).

(3) Axiom (PD–4). Let (X , I) be an S -diagram. Consider the commutative diagram
(9.3.7.1). The lower horizontal arrow of (loc. cit) is conservative by (PD–4) for T ,
and the vertical arrows of (loc. cit) are fully faithful. Thus the upper horizontal arrow
of (loc. cit) is conservative, so T (P ′) satisfies (PD–4).

(4) Axiom (PD–6). Let f : X → Y be a 1-morphism of S -diagrams, and let µ be an
index of Y . Consider the 2-diagram

X /µ X

Yµ Y

fµµ

µ

⇐=
f

µ
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of S -diagrmas. The horizontal arrows are P ′-morphisms, so µ∗ and µ∗ commutes
with ρ∗ by (9.3.6). Then we can apply the technique of (1.5.5) to conclude that (PD–6)
for T implies (PD–6) for T (P ′).

9.3.8. Thus by (9.1.6) and (9.3.7), we have proven that

(i) T (P ′) is a τ -twisted P-premotivic triangulated prederivator,

(ii) T (P ′) is compactly generated.

9.4 Bousfield localization

9.4.1. Throughout this section, we fix a category S and a class of morphisms P of S
containing all isomorphisms and stable by compositions and pullbacks. We fix also a τ -
twisted P-premotivic triangulated prederivator T such that T (−, e) is compactly generated
by P and τ . Then by (9.1.8), T (X ) is compactly generated for any S -diagram X . For
any object S of S , we also fix an essentially small family of morphisms WS in T (S) stable
by twists in τ , f] for P-morphism f in S , and f ∗ for morphism in S . Assume that any
cone of WS is compact in T (S).

Definition 9.4.2. Let X be an S -diagram.

(1) For an S -diagram X , we denote by WX the family of morphisms of the form

λ]K → λ]K
′

for index λ of X and morphism K → K ′ in WXλ
(see (1.6.2) for the definition of

WXλ
).

(2) We denote by TW ,X the localizing subcategory of T (X ) generated by the cones of
WX . Note that TW ,X is compactly generated since any cone of WX consists of compact
objects by (9.1.6).

(3) We denote by T (X )[W −1] the Verdier Quotient T (X )/TW ,W . Then we denote by
T [W −1] the collection of T (X )[W −1] for S -diagrams X .

(4) We say that an object L of T (X ) is W -local if

HomT (X )(K,L) = 0

for any object K of T (X ) which is the cone of a morphism in W . Equivalently,

HomT (X )(K,L) = 0

for any object K of TW ,X .

(5) We say that a morphism K → K ′ in T (X ) is a W -weak equivalence if the cone of
the morphism is in TW ,X . Equivalently, the induced homomorphism

HomT (X )(K
′, L)→ HomT (X )(K,L)

is an isomorphism for any W -local object L of T (X ). This equivalence follows from
[Nee01, 9.1.14].
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9.4.3. The purpose of this section is to show that T [W −1] has a structure of P-premotivic
triangulated prederivator. The set of twists τ for T gives a set of twists for T [W −1]. It
is denoted by τ again. By [Nee01, Introduction 1.16], T (S)[W −1] is well generated, so by
[Nee01, 9.1.19], we have the adjunction

πX : T (X ) T (S)[W −1] : OX

of triangulated categories where πX denotes the Verdier quotient functor and OX denotes
the Bousfield localization functor. Note that by [Nee01, 9.1.16], the functor OX is fully
faithful, and its essential images are exactly W -local objects of T (X ). We denote by π and
O the collections of πX and OX for S -diagrams X respectively.

9.4.4. Let X and Y be S -diagrams. Consider a diagram

T (X ) T (Y )

T (X )[W −1] T (X )[W −1]

α

β

πX OX πX OY

such that α is left adjoint to β. Suppose that α maps the cones of WX into TW ,Y and
commutes with twists. Then as in (1.6.4), we define

αW : T (X )[W −1]→ T (Y )[W −1],

βW : T (Y )[W −1]→ T (X )[W −1]

as αW = πY αOX and βW = πX βOY . We often omit W in αW and βW for brevity. Then as
in (1.6.5), α commutes with π, and αW is left adjoint to βW . Note that β commutes with O
in this case.

Proposition 9.4.5. Let X be an S -diagram. For any indices λ and λ′ of X and any
object K of TW ,Xλ

in T (Xλ)[W −1], the object λ′∗λ]K of T (Xλ′) is in TW ,Xλ′
.

Proof. The proof is parallel to the proof of (9.3.4).

Proposition 9.4.6. Let X be an S -diagram, and let K be an object of T (X ). If λ∗K is
in T (Xλ)[W −1] for any index λ of X , then K is in T (X )[W −1].

Proof. The proof is parallel to the proof of (9.3.5).

9.4.7. Let f : X → Y be a 1-morphism of S -diagrams. Then by (9.4.6), f ∗ maps the
cones of WY into T (X )[W −1]. Thus by (9.4.4), f ∗ commutes with π, f∗ commutes with O,
and we have the adjunction:

f ∗W : T (Y )[W −1] T (X )[W −1] : fW ∗

When f is a P-morphism, f] maps the cones of WX into T (Y )[W −1] by definition. Thus
by (9.4.4), f] commutes with π, f ∗ commutes with O, and we have the adjunction:

fW ] : T (X )[W −1] T (Y )[W −1] : f ∗W
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9.4.8. Now, we will verify the axioms of (9.1.3) for T [W −1].

(1) As in (1.6.7), T [W −1] satisfies (PD–1), (PD–2), and (PD–5).

(2) Axiom (PD–3). Let (X , I) be an S -diagram such that I is a discrete category.
Consider the diagram

T (X )
∏

λ∈ob(I) T (Xλ)

T (X )[W −1]
∏

λ∈ob(I) T (Xλ)[W −1]

O

α

O

α′

(9.4.8.1)

where α and α′ are the functors induced by λ∗ : T (X ) → T (Xλ) and λ∗ :
T (X )[W −1] → T (Xλ)[W −1] for λ ∈ ob(I) respectively. By (9.4.7), it commutes.
The upper horizontal arrow is an equivalence by (PD–3) for T , and the vertical arrows
are fully faithful. Thus α′ is fully faithful.

Then consider the diagram

T (X )
∏

λ∈ob(I) T (Xλ)

T (X )[W −1]
∏

λ∈ob(I) T (Xλ)[W −1]

O

β

O

β′

where β and β′ are the functors induced by

λ∗ : T (Xλ)→ T (X ) quadλ∗ : T (Xλ)[W
−1]→ T (X )[W −1]

for λ ∈ ob(I) respectively. By (9.4.7), it commutes. The upper horizontal arrow is an
equivalence by (PD–3) for T , and the vertical arrows are fully faithful. Thus the β′

is fully faithful. Then α′ is an equivalence since both α′ and β′ are fully faithful and
α′ is left adjoint to β′. Thus T [W −1] satisfies (PD–3).

(3) Axiom (PD–4). Let (X , I) be an S -diagram. Consider the commutative diagram
(9.4.8.1). The upper horizontal arrow of (loc. cit) is conservative by (PD–4) for T ,
and the vertical arrows of (loc. cit) are fully faithful. Thus the lower horizontal arrow
of (loc. cit) is conservative, so T [W −1] satisfies (PD–4).

(4) Axiom (PD–6). Let f : X → Y be a 1-morphism of S -diagrams, and let µ be an
index of Y . Consider the 2-diagram

X /µ X

Yµ Y

fµµ

µ

⇐=
f

µ

of S -diagrmas. The horizontal arrows are P ′-morphisms, so µ∗ and µ∗ commutes
with O by (9.3.6). Then we can apply the technique of (1.6.6) to conclude that (PD–6)
for T implies (PD–6) for T [W −1].
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9.4.9. Thus we have proven that T [W −1] is a τ -twisted P-premotivic triangulated pred-
erivator,

9.5 Construction

9.5.1. Consider the ft-premotivic triangulated category

DA1,qw(ft,Λ).

It can be extend to S -diagrmas by [CD12, 5.2.7]. Then it satisfies (PD–5) by construction,
and it satisfies (PD–1) and (PD–2) by [CD12, 3.1.11]. It also satisfies (PD–3) and (PD–4) by
[CD12, 3.1.10] and [CD12, 3.1.6] respectively. Finally, it satisfies (PD–6) by [CD12, 3.1.15,
3.1.16]. We denote by τ the set of twists generated by (1) and [1]. Then DA1(ft,Λ) is a
ft-premotivic triangulated prederivator.

9.5.2. By (1.7.5), the ft-premotivic triangulated category

DA1,qw(ft/(−, e),Λ)

restricted to S -schemes is compactly generated by ft and τ . Consider Wlog defined in (1.7.2).
Then every cone of Wlog,S is compact for any S -scheme S since DA1(ft/S,Λ) is compactly
generated by P and τ , so the conditions of (9.4.1) are satisfied. Thus by (9.4.9), we obtain
the ft-premotivic triangulated prederivator DA1,qw(ft,Λ)[W −1

log ]. It is also denoted by

Dlog,qw(ft,Λ).

9.5.3. By (1.7.5), the ft-premotivic triangulated category

Dlog,qw(ft/(−, e),Λ)

is compactly generated by ft and τ . Then the conditions of (9.3.1) are satisfied for eSm ⊂ ft.
Thus by (9.3.8), we obtain the eSm-premotivic triangulated prederivator

Dlog,qw(eSm,Λ).

It is also denoted by Dlog,qw(−,Λ). Note that for any S -scheme S, we have the equivalence

Dlog,qw(S,Λ) ∼= Dlog,pw(S,Λ).

by (1.7.8). Thus the restriction of Dlog,qw(−,Λ) to S -schemes is a log motivic category by
(2.9.4). Note that it satisfies strict étale descent by [CD12, 5.2.10].
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Chapter 10

Poincaré duality

10.0.1. Throughout this chapter, we fix a full subcategory S of the category of fs log schemes
satisfying the conditions of (2.0.1). We also fix a log motivic triangulated category T over
S . In Sections 6 and 7, we further assume that T can be extended to an eSm-premotivic
triangulated prederivator satisfying strict étale descent.

10.1 Compactified exactifications

10.1.1. Compactification via toric geometry. Let θ : P → Q be a homomorphism of fs
monoids such that θgp is an isomorphism. Choose a fan Σ of the dual lattice (P

gp
)∨ whose

support is (P )∨ and containing (Q/θ(P ∗))∨ as a cone. This fan induces a factorization

spec(Q/θ(P ∗))→M → specP

of the morphism spec (Q/θ(P ∗)) → specP for some fs monoscheme M . Consider the open
immersions specPi → M of fs monoschemes induced by the fan, and, we denote by P ′i
the preimage of Pi via the homomorphism P gp → P

gp
. Then the family of P ′i forms a fs

monoscheme M ′ with the factorization

specQ→M ′ → specP

of the morphism specQ → specP . Here, the first arrow is an open immersion, and the
second arrow is a proper log étale monomorphism.

We will sometimes use this construction later.

Definition 10.1.2. Let f : X → S be an exact log smooth separated morphism of S -
schemes, let a : X → X ×S X denote the diagonal morphism, and let p1, p2 : X ×S X ⇒ X
denote the first and second projections respectively. A compactified exactification of the
diagram X → X ×S X ⇒ X is a commutative diagram

D

X X ×S X X

ub

a
p1

p2
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of S -schemes such that

(i) there is an open immersion v : I → D of fs log schemes such that the compositions
p1uv and p2uv are strict,

(ii) b is a strict closed immersion and factors through I,

(iii) u is a proper and log étale monomorphism of fs log schemes.

We often say that u : D → X is a compactified exactification of a if no confusion seems
likely to arise. We also call I an interior of E. Then p1uv and p2uv are strict log smooth,
and the morphism X → I of S -schemes induced by b is a strict regular embedding. Note
also that the natural transformation

id
ad−→ u∗u

∗

is an isomorphism by (Htp–4) and that the natural transformation

Ωf,I

TD,I−→ Ωf,D

given in (4.2.2) is an isomorphism by construction.

10.1.3. Under the notations and hypotheses of (10.1.2), let CEa denote the category whose
objects consist of compactified exactifications of a and morphisms consist of commutative
diagrams

E

D

X X ×S X X

r2

v

q2
u

a

b

c

p2

of S -schemes. Note that v is a proper log étale monomorphism. For such a morphism in
CEa, we associate the natural transformation

TD,E : Ωf,E −→ Ωf,D

given in (4.2.2). We will show that it is an isomorphism. Let I be an interior of D, and let
J be an interior of E contained in I ×D E. Consider the induced commutative diagram

J

I

X X ×S X X

r′2

v′

q′2
u′

a

b′

c′

p2
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of S -schemes. Then v′ is a strict étale monomorphism, so it is an open immersion by [EGA,
IV.17.9.1]. Consider the diagram

Ωf,J Ωf,E

Ωf,I Ωf,D

TI,J

TE,J

TD,E

TD,I

of functors. It commutes by (4.2.13), and the horizontal arrows are isomorphisms by (10.1.2).
The left vertical arrow is also an isomorphism since v′ is an open immersion, so TD,E is an
isomorphism.

Definition 10.1.4. Let θ : P → Q be a homomorphism of fs monoids. Then the submonoid
of P gp consisting of elements p ∈ P gp such that nθgp(p) ∈ Q for some n ∈ N+ is called the
fs exactification of θ. It is the fs version of [Ogu14, I.4.2.12].

10.1.5. Let f : X → S be an exact log smooth separated morphism of S -schemes with a
fs chart θ : P → Q of exact log smooth type, and let Q1 denote the fs exactification of the
summation homomorphism of Qgp ⊕P gp Qgp. Applying (10.1.1), we obtain the morphisms

specQ1 →M → spec(Q⊕P Q)

of fs monoschemes. If we put

I = (X ×S X)×AQ⊕PQ AQ1 , D = (X ×S X)×AQ⊕PQ AM ,

then the projection u : D → X×SX is a compactified exactification of the diagonal morphism
a : X → X ×S X with an interior I. In particular, a has a compactified exactification.

Proposition 10.1.6. Let f : X → S be an exact log smooth separated morphism of S -
schemes, and let a : X → X ×S X denote the diagonal morphism. For any compactified
exactifications u : D → X×SX and u′ : D → X×SX, the morphism D×X×SXD′ → X×SX
is a compactified exactification.

Proof. Consider the induced commutative diagram

I I ′

X X ×S X X

w

r2

w′
r′2

c

c′

a
p2

of S -schemes where I (resp. I ′) is an interior of D (resp. D′). To show the claim, it suffices
to construct an open immersion I ′′ → I ×X×SX I ′ such that a factors through I ′′ and that
the morphisms I ′′ ⇒ X induced by p1 and p2 are strict.
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We have the induced morphisms

X
α→ I ×X×SX I ′

β→ I ×r2,X,r′2 I
′

of S -schemes. Let x ∈ X be a point. Consider the associated homomorphisms

MI×r2,X,r′2
I′,βα(x)

λ→MI×X×SXI
′,α(x)

η→MX,x

of fs monoids. Then ηλ is an isomorphism since r2 and r′2 are strict. In particular, λ is
injective. Since β is a pullback of the diagonal morphism X ×S X → (X ×S X) ×p2,X,p2
(X×SX) that is a closed immersion, λ is a pushout of a Q-surjective homomorphism. Thus
λ is Q-surjective, so λ is Kummer. Then by (3.3.6), η is an isomorphism, i.e., α is strict.
Thus the conclusion follows from (3.3.3).

Corollary 10.1.7. Let f : X → S be an exact log smooth separated morphism of S -schemes,
and let a : X → X×SX denote the diagonal morphism. Then the category CEa is connected.

Proof. It is a direct consequence of (10.1.6).

10.2 Functoriality of purity transformations

10.2.1. Let h : X → Y and g : Y → S be exact log smooth separated morphisms of
S -schemes. We put f = gh. Consider the commutative diagram

X

X ×Y X X ×S X

X Y ×S X X

Y Y ×S Y Y

a′
a

p′2

ϕ

ϕ′
p2

h

a′′ p′′2

ϕ′′ h

a′′′ p′′′2

of S -schemes where

(i) a, a′, and a′′′ denote the diagonal morphisms,

(ii) p2, p′2, and p′′′2 denote the second projections,

(iii) each small square is Cartesian.
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10.2.2. Under the notations and hypotheses of (10.2.1), assume that we have a commutative
diagram

X

D′ D

X ×Y X X ×S X

D′′

X Y ×S X X

D′′′

Y Y ×S Y Y

bb′

u′

ρ

q′2

ρ′
u

q2

p′2

a′

ϕ

p2

a

u′′ρ′
q′′2

a′′

h

b′′

ϕ′

p′′2

h

u′′′
q′′′2b′′′

a′′′

ϕ′′

p′′′2

(10.2.2.1)

of S -schemes where each small square is Cartesian and u (resp. u′, resp. u′′′) is a compactified
exactification of a (resp. a′, resp. a′′′).

We will use these notations and hypotheses later.

10.2.3. Under the notations and hypotheses of (10.2.2), let α : S0 → S be a morphism of
S -schemes, and consider the commutative diagrams

X0 Y0 S0

X Y S

β

h0 g0

α

h g
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X0

X

D′0 D0

D′ D

X0 D′′0 X0

X D′′ X

b′0

β b0

ρ0

γ′

q′02

ρ′0 γ
q02

ρ

b′
b

q2

β

b′′0

γ′′

q′′02

β

b′′

q′2

q′′2

ρ′

of S -schemes where each small square is Cartesian. We put f0 = g0h0. Then the diagram

β∗Ωh,D′Ωg,f,D′′ β∗Ωf,D

Ωh0,D′0
β∗Ωg,f,D′′

Ωh0,D′0
Ωg0,f0,D′′0

β∗ Ωf0,D0β
∗

C

Ex

Ex

Ex

C

of functors commutes since it is the big outside diagram of the commutative diagram

β∗b′!q′∗2 b
′′!q′′∗2 β∗b′!ρ!ρ′∗q′′∗2 β∗b!q∗2

b′!0γ
′∗q′∗2 b

′′!q′′∗2 b′!0γ
′∗ρ!ρ′∗q′′∗2

b′!0q
′∗
02β
∗b′′!q′′∗2 b′!0ρ

!
0γ
∗ρ′∗q′′∗2 b!

0γ
∗q∗2

b′!0q
′∗
02b
′′!
0 γ
′′∗q′′∗2

b′!0q
′∗
02b
′′!
0 q
′′∗
02α

∗ b′!0ρ
!
0ρ
′∗
0 q
′′∗
2 β

∗ b!
0q
∗
02β
∗

Ex

Ex

Ex

∼

Ex

∼

Ex

Ex

Ex

∼

∼

∼

∼

Ex ∼

of functors.
We will use these notations and hypotheses later.
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10.2.4. Under the notations and hypotheses of (10.2.2), we denote by I (resp. I ′, resp. I ′′)
the ideal sheaf of X on D (resp. D′, resp. D′′′). Then by [Ogu14, IV.3.2.2], the morphisms

I/I2 → b∗Ω1
D/X , I ′/I ′2 → b′∗Ω1

D′/X , I ′′/I ′′2 → b′′∗Ω1
D′′/X

of quasi-coherent sheaves on X are isomorphisms, and by [Ogu14, IV.3.2.4, IV.1.3.1], the
morphisms

Ω1
D/X → u∗Ω1

X×SX/X → u∗p∗1Ω1
X/S,

Ω1
D′/X → u′∗Ω1

X×YX/X → u′∗p′∗1 Ω1
X/Y ,

Ω1
D′′/X → u′′∗Ω1

Y×SX/X → u′′∗p′′∗1 Ω1
Y/S

of quasi-coherent sheaves on X are isomorphisms where

p1 : X ×S X → X, p′1 : X ×Y X → X, p′′1 : Y ×S X → Y

denote the first projections. Then from the exact sequence

0 −→ h∗Ω1
Y/S −→ Ω1

X/S −→ Ω1
X/Y −→ 0

of quasi-coherent sheaves on X given in [Ogu14, IV.3.2.3], we have the exact sequence

0 −→ I ′′/I ′′2 −→ I/I2 −→ I ′/I ′2 −→ 0

of quasi-coherent sheaves on X. This shows that the induced diagram

NXD
′ NXD

X NXD
′′

t′2

χ

χ′

e2

(10.2.4.1)

of S -schemes is Cartesian. Thus the induced diagram

DXD
′ DXD

X × A1 DXD
′′

of S -schemes is also Cartesian. Then as in (4.3.1), we have the natural transformations

Ωd
h,D′Ω

d
g,f,D′′

C−→ Ωd
f,D,

Ωn
h,D′Ω

n
g,f,D′′

C−→ Ωn
f,D (10.2.4.2)

These are called again composition transformations. Note that the left adjoint versions are

Σd
f,D

C−→ Σd
h,D′Σ

d
g,f,D′′ ,
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Σn
f,D

C−→ Σn
h,D′Σ

n
g,f,D′′ .

In the Cartesian diagram (10.2.4.1), the morphisms e2, t′2, χ, and χ′ are strict, χ′ are strict
smooth, and e2 is a strict closed immersion. Thus by (2.5.10) and (4.3.1), the natural
transformation (10.2.4.2) is an isomorphism.

Applying (10.2.3) to the cases when the diagram

X0 D0 X0

X D X

β

b′′0

γ

q02

β

b′′ q2

is equal to one of the diagrams in (4.1.2.1) and similar things are true for D′ and D′′, we
have the commutative diagram

Ωn
h,D′Ω

n
g,f,D′′ Ωn

f,D

Ωd
h,D′Ω

d
g,f,D′′ Ωd

f,D

Ωh,D′Ωg,f,D′′ Ωf,D

C

TnTn Tn

C

T dT d T d

C

of functors.

10.2.5. Under the notations and hypotheses of (10.2.2), consider the diagram

f] f!Σ
n
f,D

f!Σ
n
g,f,D′′Σ

n
h,D′

g!h!Σ
n
g,f,D′′Σ

n
h,D′

g]h] g!Σ
n
g,D′′′h!Σ

n
h,D′

pnf,D

∼

C

∼

Ex
pn
g,D′′′p

n
h,D′

(10.2.5.1)

of functors. We will show that it commutes. Its right adjoint is the big outside diagram of
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the diagram

Ωn
h,D′h

!Ωn
g,D′′′g

! Ωd
h,D′h

!Ωd
g,D′′′g

! Ωh,D′h
!Ωg,D′′′g

! Ωhh
!Ωgg

! h∗g∗

Ωn
h,D′Ω

n
g,f,D′′h

!g! Ωd
h,D′Ω

d
g,f,D′′h

!g! Ωh,D′Ωg,f,D′′h
!g! ΩhΩg,fh

!g!

Ωn
h,D′Ω

n
g,f,D′′f

! Ωd
h,D′Ω

d
g,f,D′′f

! Ωh,D′Ωg,f,D′′f
! ΩhΩg,ff

!

Ωn
f,Df

! Ωd
f,Df

! Ωf,Df
! Ωff

! f ∗

TnTn

Ex

T dT d

Ex

TD′TD′′′

Ex Ex

qhqg

∼

TnTn

∼

T dT d

∼

TD′TD′′

∼ ∼

TnTn

C

T dT d

C C

TD′TD′′

C

Tn T d TD qf

of functors. It commutes by (4.2.10), (4.3.2), (4.4.3), and (10.2.4). Thus (10.2.5.1) also
commutes.

Note also that the right vertical top arrow of (10.2.5.1) is an isomorphism by (10.2.4)
and that the right vertical bottom arrow of (10.2.5.1) is an isomorphism by (4.2.8).

10.2.6. Let h : X → Y and g : Y → S be exact log smooth separated morphisms of S -
schemes. Assume that f (resp. g) has a fs chart θ : Q → R (resp. η : R → P ) of exact
log smooth type. In this setting, we will construct the diagram (10.2.2.1) and verify the
hypotheses of (10.2.2).

We denote by T and T ′′′ the fs exactification of the summation homomorphisms

Q⊕P Q→ Q, R⊕P R→ R

respectively. Then we put
T ′ = T ⊕Q⊕PQ (Q⊕R Q).

By (10.1.1), we have the factorization

specT ′′′ →M ′′′ → specR⊕P R

such that the first arrow is an open immersion of fs monoschemes and the second arrow is a
proper log étale monomorphism of fs monoschemes. We put

M ′′ = M ′′′ ×spec(R⊕PR) spec(R⊕P Q).

Consider the induced morphism

specT →M ′′ ×spec(R⊕PQ) spec(Q⊕P Q).

By the method of (10.1.1), it has a factorization

specT →M →M ′′ ×spec(R⊕PQ) spec(Q⊕P Q)
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where the first arrow is an open immersion of fs monoschemes and the second arrow is a
proper log étale monomorphism of fs monoschemes. We put

M ′ = M ×spec(Q⊕PQ) spec(Q⊕R Q),

and we put

I = (X ×S X)×AQ⊕PQ AT , I ′ = (X ×Y X)×AQ⊕RQ AT ′ , I ′′′ = (Y ×S Y )×AR⊕PR AT ′′′ ,

D = (X ×S X)×AQ⊕PQ AM , D′ = (X ×Y X)×AQ⊕RQ AM ′ , D′′′ = (Y ×S Y )×AR⊕PR AM ′′′ .

Then we have the commutative diagram (10.2.2.1). By construction, D (resp. D′, resp.
D′′′) are compactified exactifications of the diagonal morphism a : X → X ×S X (resp.
a′ : X → X ×Y X, resp. a′′′ : Y → Y ×S Y ) with an interior I (resp. I ′, resp. I ′′′).

Proposition 10.2.7. Let f : X → S be an exact log smooth separated morphism of S -
schemes, let D be a compactified exactification of the diagonal morphism a : X → X ×S X,
and let g : S ′ → S be a morphism of S -schemes. We put

X ′ = X ×S S ′, D′ = D ×X×SX (X ′ ×S′ X ′).

Then the diagram

f ′]g
′∗ f ′! Σ

n
f ′,D′g

′!

f ′! g
′∗Σn

f,D

g∗f] g∗f!Σ
n
f,D

Ex

pn
f ′

Ex

Ex

pnf

(10.2.7.1)

of functors commutes.

Proof. The right adjoint of (10.2.7.1) is the big outside diagram of the diagram

Ωn
ff

!g∗ Ωd
ff

!g∗ Ωff
!g∗ f ∗g∗

Ωn
fg
′
∗f
′! Ωd

fg
′
∗f
′! Ωfg

′
∗f
′!

g′∗Ω
n
f ′f
′! g′∗Ω

d
f ′f
′! g′∗Ωf ′f

′! g′∗f
′∗

Ex

Tn

Ex

T d

Ex

qf

Ex

Ex

Tn

Ex

T d

Ex

Tn T d qf ′

of functors. By (4.2.10) and (4.4.5), each small diagram commutes. The conclusion follows
from this.

198



10.3 Poincaré duality for Kummer log smooth sepa-

rated morphisms

Proposition 10.3.1. Let f : X → S be a strict smooth separated morphism of S -schemes.
Then the natural transformation

pnf : f] −→ f!Σ
n
f

is an isomorphism.

Proof. It follows from (2.5.9) and (4.2.9).

10.3.2. Let f : X → S be a Kummer log smooth separated morphism of S -schemes. Then
the diagonal morphism a : X → X ×S X is a strict regular embedding by (3.3.5). In
particular, we can use the notation Σn

f .

Proposition 10.3.3. Let f : X → S be a Kummer log smooth separated morphism of
S -schemes. Then the natural transformation

pnf : f] −→ f!Σ
n
f

is an isomorphism.

Proof. By (5.2.2), there is a Cartesian diagram

X ′ S ′

X S

g′

f ′

g

f

of S -schemes such that

(i) g is Kummer log smooth,

(ii) g∗ is conservative,

(iii) f ′ is strict.

Hence we reduce to showing that the natural transformation

g∗f]
pnf−→ g∗f!Σ

n
f

is an isomorphism.
Consider the commutative diagram (10.2.7.1). The left vertical arrow and right lower

vertical arrow are isomorphisms since f and g are exact log smooth. The right upper vertical
arrow is an isomorphism by (4.2.4). Thus we reduce to showing that the upper horizontal
arrow is an isomorphism. It follows from (10.3.1).
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10.4 Poincaré duality for AQ → AP

Definition 10.4.1. In this section, we will consider the following conditions:

(PDf,D) Let f : X → S be an exact log smooth separated morphism of S -schemes, and let D
be a compactified exactification of the diagonal morphism a. We denote by (PDf,D)
the condition that the natural transformation

pnf : f] −→ f!Σ
n
f,D

is an isomorphism.

(PDf ) Let f : X → S be an exact log smooth separated morphism of S -schemes, and let
a : X → X ×S X denote the diagonal morphism. We denote by (PDf ) the conditions
that

(i) there is a compactified exactification of a,

(ii) for any compactified exactification D of a, (PDf,D) is satisfied.

(PDm) We denote by (PDm) the condition that (PDf ) is satisfied for any vertical exact log
smooth separated morphism f : X → S with a fs chart θ : P → Q such that θ is a
vertical homomorphism of exact log smooth type and

max
x∈X

rkMgp

X,x + max
s∈S

rkMgp

S,s ≤ m.

Note that by (2.8.2), we get equivalent conditions if we use Σo
f,D instead of Σn

f,D

Proposition 10.4.2. Let f : X → S be a vertical exact log smooth separated morphism of
S -schemes, and let E → D be a morphism in CEa where a : X → X ×S X denotes the
diagonal morphism. Then (PDf,D) is equivalent to (PDf,E).

Proof. The diagram

Ωn
g,f,E Ωd

g,f,E Ωg,f,E Ωff
! f ∗

Ωn
g,f,D Ωd

g,f,D Ωg,f,D Ωff
! f ∗

TD,E

Tn

TD,E

T d

TD,E

TE qf

Tn T d TD qf

of functors commutes by (4.2.11) and (4.2.13). The left vertical arrow is an isomorphism
because the normal cones NXD and NXE are isomorphic to the vector bundle associated
to the sheaf Ω1

X/S. Then the conclusion follows from the fact that the composition of row
arrows are qnf,E and qnf,D respectively.

Corollary 10.4.3. Let f : X → S be a vertical exact log smooth separated morphism
of S -schemes such that there is a compactified exactification D of the diagonal morphism
a : X → X ×S X. Then (PDf ) is equivalent to (PDf,D).
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Proof. Since CEa is connected by (10.1.6), the conclusion follows from (10.4.2).

Proposition 10.4.4. Under the notations and hypotheses of (10.2.2), if (PDg,D′′′) and
(PDh,D′) are satisfied, then (PDf,D) is satisfied.

Proof. By (10.2.6), we can use (10.2.5). Then by (loc. cit), in the commutative diagram
(10.2.5.1), the upper horizontal arrow is an isomorphism if and only if the lower horizontal
arrow is an isomorphism. The conclusion follows from this.

Proposition 10.4.5. Let f : X → S be an exact log smooth separated morphism of S -
schemes, and let D be a compactified exactification of the diagonal morphism a : X →
X ×S X. Then (PDf ) is strict étale local on X.

Proof. Let {ui : Xi → X}i∈I be a strict étale cover of X. We put

fi = fui, Di = D ×X×SX (Xi ×S Xi), D′′i = D ×X×SX (Xi ×S Xi)

Then Di is a compactified exactification of the diagonal morphism ai : Xi → Xi ×S Xi.
Hence by (10.4.3), it suffices to show that (PDf,D) is satisfied if and only if (PDfi,Di) is
satisfied for all i. Note that by (2.1.3), (PDf,D) is equivalent to the condition that the
natural transformation

f]ui]
pnf,D−→ f!Σ

n
f,Dui]

is an isomorphism for any i ∈ I.
By (10.2.6), we can use (10.2.5) for ui : Xi → X and X → S. Then by (loc. cit), in the

commutative diagram

fi] fi!Σ
n
fi,Di

fi!Σ
n
ui,fi,D′′i

Σn
ui

f!ui!Σ
n
ui,fi,D′′i

Σn
ui

f]ui] f!Σ
n
f,Dui] f!Σ

n
f,Du!Σ

n
ui

pnfi,Di

∼

C

∼

Ex

pnf,D pnui

of functors, the right vertical top arrow and the right vertical bottom arrow are isomor-
phisms. The lower horizontal right arrow is also an isomorphism by (10.3.3). Thus the
upper horizontal arrow is an isomorphism if and only if the lower horizontal left arrow is an
isomorphism, which is what we want to prove.

201



10.4.6. Let S be an S -scheme with a fs chart P that is exact at some point s ∈ S, and
let θ : P → Q be a locally exact, injective, logarithmic, and vertical homomorphism of fs
monoids such that the cokernel of θgp is torsion free. We put

X = S ×AP AQ, m = dimP + dimQ,

and assume m > 0. By (10.1.1), there is a compactified exactification D of the diagonal
morphism a : X → X ×S X.

Proposition 10.4.7. Under the notations and hypotheses of (10.4.6), the natural transfor-
mation

f]f
∗ pnf,D−→ f!Σ

n
f,Df

∗

is an isomorphism.

Proof. Let G be a maximal θ-critical face of Q, and we put

U = S ×AP AQF , D′ = D ×X×SX (U ×S U).

We denote by j : U → X the induced open immersion. Then the diagram

(fj)]j
∗f ∗ f]j]j

∗f ∗ f]f
∗

(fj)!Σ
n
fj,D′f

∗f ∗ f!j]Σ
n
fj,D′j

∗f ∗ f!Σ
n
f,Dj]j

∗f ∗ f!Σ
n
f,Df

∗

∼

pn
fj,D′ pnf,D

ad′

pnf,D

∼ Ex ad′

of functors commutes by (10.2.5) and (10.2.6). By (Htp–3) and (Htp–7), the upper and lower
right side horizontal arrows are isomorphisms, and the lower middle horizontal arrow is an
isomorphism by (4.2.7). The composition fj : U → S is Kummer log smooth and separated,
so the left vertical arrow is an isomorphism by (10.3.3). Thus the right vertical arrow is also
an isomorphism.

Proposition 10.4.8. Under the notations and hypotheses of (10.4.6), (PDm−1) implies
(PDf ).

Proof. Assume (PDm−1). By (10.4.3), it suffices to show (PDf,D). We put

d = rkQgp − rkP gp, τ = (d)[2d].

Then it suffices to show that the natural transformation

pof,D : f] −→ f!τ

is an isomorphism. Guided by a method of [CD12, 2.4.42], we will construct its left inverse
φ2 as follows:

φ2 : f!τ
ad−→ f!τf

∗f]
(pof,D)−1

−→ f]f
∗f] −→ f]
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Here, the second arrow is defined and an isomorphism by (10.4.7). We have φ2 ◦ pof,D = id
as in the proof of (5.4.7).

To construct a right inverse of pof,D, consider the Cartesian diagram

Z AQ − A(Q,Q+)

X AQ

i

of S -schemes, and we put g = fi. Note that the morphism g : Z → S of underlying schemes
is an isomorphism by assumption on θ. Consider the commutative diagram

f]j]j
∗ f] f]i∗i

∗ f]j]j
∗[1]

f!τj]j
∗ f!τ f!τi∗i

∗ f!τj]j
∗[1]

ad′

pof,D

ad

pof,D

∂i

pof,D pof,D

ad′ ad ∂i

of functors where j denotes the complement of i. The two rows are distinguished triangles by
(Loc). The first vertical arrow is an isomorphism by (PDm−1), and φ2 induces the left inverse
to the third vertical arrow. If we show that the third vertical arrow is an isomorphism, then
the second vertical arrow is also an isomorphism. Hence it suffices to construct a right inverse
of the natural transformation

f]i∗
pof,D−→ f!τi∗.

Consider also the commutative diagram

f]j]j
∗f ∗ f]f

∗ f]i∗i
∗f ∗ f]j]j

∗f ∗[1]

f!τj]j
∗f ∗ f!τf

∗ f!τi∗i
∗f ∗ f!τj]j

∗f ∗[1]

ad′

pof,D

ad

pof,D

∂i

pof,D pof,D

ad′ ad ∂i

of functors. The two rows are distinguished triangles by (Loc), and the first vertical arrow is
an isomorphism by (PDm−1). Since the second vertical arrow is an isomorphism by (10.4.7),
the third vertical arrow is also an isomorphism.

Then a right inverse of f]i∗
pof,D−→ f!τi∗ is constructed by

φ′1 : f!τi∗
Ex−→ f!i∗τ

∼−→ g∗τ
ad−→ g∗g

∗g∗τ
Ex−1

−→ g∗g
∗τg∗

∼−→ f!i∗τg
∗g∗

Ex−1

−→ f!τi∗g
∗g∗

(pof,D)−1

−→ f]i∗g
∗g∗

ad′−→ f]i∗.

Here, the fourth and sixth natural transformations are defined and isomorphisms by (Stab),
and the seventh natural transformation is an isomorphism by the above paragraph. To show
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that φ′1 is a right inverse of f]i∗
pof,D−→ f!τi∗, it suffices to check that the composition of the

outer cycle of the diagram

f]i∗ f!τi∗ g∗τ g∗g
∗g∗τ

f!τi∗ g∗τ

f]i∗g
∗g∗ f!τi∗g

∗g∗ f!i∗τg
∗g∗ g∗g

∗τg∗

ad′

pof,D

ad′

∼ ad

Ex−1∼

ad′

(pof,D)−1 Ex−1

ad′

∼

of functors is the identity. It is true since each small diagram commutes.

Proposition 10.4.9. Let f : X → S be a vertical exact log smooth separated morphism
of S -schemes with a fs chart θ : P → Q where θ is a vertical homomorphism of exact log
smooth type. Then (PDm−1) implies (PDf ).

Proof. By (10.4.5) and [Ogu14, II.2.3.2], we may assume that f has a factorization

X
u→ S0

v→ S

such that

(i) v strict étale,

(ii) the fs chart S0 → AP is exact at some point of s0 ∈ S0,

(iii) s0 is in the image of u.

By (10.2.6), we can use (10.4.4) for the morphisms X → S0 and S0 → S, and by (10.3.3),
(PDv) is satisfied. Hence replacing S by S0, we may assume that the fs chart S → AP is
exact at some point of s ∈ S and that s is in the image of f .

By assumption, the induced morphism

X → S ×AP AQ

is strict étale and separated. We denote by P ′ the submonoid of Q consisting of elements
q ∈ Q such that nq ∈ P+Q∗ for some n ∈ N+. Then the induced homomorphism θ′ : P ′ → Q
is locally exact, injective, logarithmic, and vertical, and the cokernel of θgp is torsion free.
In particular, the induced morphism

S ×AP AQ → S ×AP AP ′

is exact log smooth, so it is an open morphism by [Nak09, 5.7].
We denote by S ′ the image of X via the composition

X → S ×AP AQ → S ×AP AP ′ .
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we consider S ′ as an open subscheme of S ×AP AP ′ . Then the induced morphism g : S ′ → S
has the fs chart θ′ : P → Q′ of Kummer log smooth type. Consider the factorization

X
g3→ S ′ ×AP ′ AQ

g2→ S ′
g1→ S

of f : X → S. Then (PDg1) and (PDg3) are satisfied by (10.3.3) since g1 and g3 are Kummer
log smooth and separated. The set g−1

1 (a) is nonempty since s is in the image of f , and the
chart S ′ → AP ′ is exact at a point in g−1

1 (s). Thus (PDg2) is satisfied by (10.4.8), so (PDf )
is satisfied by (10.2.6) and (10.4.4).

Theorem 10.4.10. Let f : X → S be a vertical exact log smooth separated morphism of
S -schemes with a fs chart θ : P → Q where θ is a vertical homomorphism of exact log
smooth type. Then (PDf ) is satisfied.

Proof. It suffices to show (PDm) for any m. By (10.3.3), (PD0) is satisfied. Then the
conclusion follows from (10.4.9) and induction on m.

Corollary 10.4.11. Under the notations and hypotheses of (10.4.10), let D be a compactified
exactification of the diagonal morphism a : X → X ×S X. Then the composition

Ωf,Df
! TD−→ Ωff

! qf−→ f ∗

is an isomorphism.

Proof. By (10.4.10), the composition

Ωn
f,Df

! Tn−→ Ωd
f,Df

! T d−→ Ωf,Df
! TD−→ Ωff

! qf−→ f ∗

is an isomorphism. By (4.2.9), the first and second arrows are isomorphisms, so the compo-
sition of the third and fourth arrows are also an isomorphism.

10.5 Purity

Proposition 10.5.1. Let f : X → S be a vertical exact log smooth separated morphism
of S -schemes with a fs chart θ : P → Q where θ is a vertical homomorphism of exact log
smooth type. Consider a Cartesian diagram

X ′ X

S ′ S

f ′

g′

f

g

of S -schemes. Then the exchange transformation

Ex : g∗f! −→ f ′! g
′∗

is an isomorphism.
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Proof. By (10.1.5), there is a compactified exactification D of the diagonal morphism a :
X → X ×S X. Then by (10.2.7), the diagram

f ′]g
′∗ f ′! Σ

n
f ′,D′g

′!

f ′! g
′∗Σn

f,D

g∗f] g∗f!Σ
n
f,D

Ex

pn
f ′

Ex

Ex

pnf

of functors commutes. The left vertical arrow is an isomorphism by (eSm-BC), and the
right upper vertical arrow is an isomorphism by (4.2.8). The horizontal arrows are also
isomorphisms by (10.4.10). Thus the right lower vertical arrow is an isomorphism. Then the
conclusion follows from the fact that the functor

Σn
f,D
∼= Σo

f,D

is an equivalence of categories.

10.5.2. Under the notations and hypotheses of (4.2.3), note that by (10.5.1), the condition
(CE!) is satisfied when η in (loc. cit) is a vertical exact log smooth separated morphism of
S -schemes with a fs chart a fs chart θ : P → Q where θ is a vertical homomorphism of
exact log smooth type.

Proposition 10.5.3. Let f : X → S be a vertical exact log smooth separated morphism of
S -schemes with a fs chart θ : P → Q where θ is a vertical homomorphism of exact log smooth
type, and let D be a compactified exactification of the diagonal morphism a : X → X ×S X.
Then the transition transformation

TD : Ωf,D −→ Ωf

is an isomorphism.

Proof. Let v : I → D be an interior of D. Consider the commutative diagram

D′

X ′ Y ×S X ′ X ′

D

X Y ×S X X

u′
q′2

ρ
b′

p2

a′ p′2

p2

u
q2b

a

η′

p2
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of S -schemes where p2 denotes the second projection and each square is Cartesian. We
denote by v′ : I ′ → D′ the pullback of v : I → D. Then I ′ is also an interior of D′. By
(10.5.2) and (4.2.3), we have the exchange transformations

Ωp2p
!
2

Ex−→ p!
2Ωf , Ωp2,D′p

!
2

Ex−→ p!
2Ωf,D, Ωp2,I′p

!
2

Ex−→ p!
2Ωf,I ,

and we have the commutative diagram

a!Ωf ′,I′p
!
2 a!Ωp2,D′p

!
2 a!Ωp2p

!
2

a!p!
2Ωf,I a!p!

2Ωf,D a!p!
2Ωf

Ωf,D Ωf a!p∗2

TI,D

Ex Ex

T ′D

Ex

qfTI,D

∼

TD

∼

TD

(10.5.3.1)

of functors. The natural transformations

a!p!
2Ωf,I

TI,D−→ a!p!
2Ωf,D, a!Ωf ′,I′p

!
2

TI,D−→ a!Ωf ′,D′p
!
2

are isomorphisms by (4.2.7), and the natural transformation

a!Ωf ′,I′p
!
2

Ex−→ a!p!
2Ωf,I

is an isomorphism by (4.2.6) since r2 = q2v is strict by definition of interior. The composition

a!Ωn
p2,D′p

!
2

Tn−→ a!Ωd
p2,D′p

!
2

T d−→ a!Ωp2,D′p
!
2

TD′−→ a!Ωp2p
!
2

qf−→ a!p∗2

is also an isomorphism by (10.4.11). Applying these to (10.5.3.1), we conclude that the
natural transformation

TD : Ωf,D −→ Ωf

is an isomorphism.

Proposition 10.5.4. Let f : X → S be a vertical exact log smooth separated morphism of
S -schemes. Then (Purf ) is satisfied.

Proof. We want to show that the purity transformation

qf : Ωff
! −→ f ∗

is an isomorphism. It is equivalent to showing that the natural transformation

pf : f] −→ f!Σf

is an isomorphism.
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(I) Locality on S. Let {ui : Si → S}i∈I be a strict étale separated cover of S. Consider the
Cartesian diagram

Xi X

Si S

fi

u′i

f

ui

of S -schemes. Then by (4.4.5), the diagram

fi]u
′∗
i fi!Σfiu

′∗
i

fi!u
′∗
i Σf

u∗i f] u∗i f!Σf

Ex

pfi

Ex

Ex

pf

of functors commutes. The left vertical arrow is an isomorphism by (eSm-BC), and the right
lower vertical arrow is an isomorphism since ui is exact log smooth. The right upper vertical
arrow is also an isomorphism by (2.5.10). Thus the upper horizontal arrow is an isomorphism
if and only if the lower horizontal arrow is an isomorphism.

Since the family of functors {u∗i }i∈I is conservative by (két-sep), the lower horizontal
arrow is an isomorphism if and only if the natural transformation

pf : f] −→ f!Σf

is an isomorphism. Thus we have proven that the question is strict étale separated local on
S.

(II) Locality on X. Let {vi : Xi → X}i∈J be a strict étale separated cover of X. By (4.4.3),
we have the commutative diagram

Ωviv
!
iΩff

! v∗i Ωff
! v∗i f

∗

ΩviΩf,fviv
!
if

!

ΩviΩf,fvi(fvi)
!

Ωfvi(fvi)
! (fvi)

∗

qvi

Ex

qf

∼∼

C

qfvi

of functors. The left top vertical arrow is an isomorphism by (2.5.10), and the left bottom
vertical arrow is an isomorphism by (4.3.1). The upper left horizontal arrow is also an
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isomorphism by (2.5.9), so the upper right horizontal arrow is an isomorphism if and only if
the lower horizontal arrow is an isomorphism.

Since the family of functors {v∗i }i∈J is conservative, the lower horizontal arrow is an
isomorphism if and only if the natural transformation

qf : Ωff
! −→ f ∗

is an isomorphism. Thus we have proven that the question is strict étale separated local on
X.

(III) Final step of the proof. Since the question is strict étale separated local on X and S,
we may assume that f : X → S has a fs chart θ : P → Q of exact log smooth type by (3.1.4)
(in (loc. cit), if we localize X and S further so that X and S are affine, then the argument
is strict étale separated local instead of strict étale local). Localizing Q further, since f is
vertical, we may assume that θ is vertical.

By (10.1.5), there is a compactified exactification D of the diagonal morphism a : X →
X ×S X. Then we have the natural transformation

Ωf,Df
! TD−→ Ωff

! qf−→ f !.

The composition is an isomorphism by (10.4.11), and the first arrow is an isomorphism by
(10.5.3). Thus the second arrow is an isomorphism.

Theorem 10.5.5. Let f : X → S be an exact log smooth separated morphism of S -schemes.
Then (Purf ) is satisfied.

Proof. Let j : U → X denote the verticalization of f . By (4.4.3), the diagram

Ωjj
!Ωff

! j∗Ωff
! j∗f ∗

ΩjΩf,fjj
!f !

ΩjΩf,fj(fj)
!

Ωfj(fj)
! (fj)∗

qj

Ex

qf

∼∼

C

qf

of functors commutes. The left top vertical arrow is an isomorphism by (??), and the left
bottom vertical arrow is an isomorphism by (4.3.1). The upper left horizontal arrow is an
isomorphism by (2.5.9), and the lower horizontal arrow is an isomorphism by (10.5.4). Thus
the upper right horizontal arrow is an isomorphism.
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Then consider the commutative diagram

Ωff
! f ∗

j∗j
∗Ωff

! j∗j
∗f ∗

ad

qf

ad

qf

of functors. We have shown that the lower horizontal arrow is an isomorphism. Since the
right vertical arrow is an isomorphism by (Htp–2), the remaining is to show that the left
vertical arrow is an isomorphism.

Consider the commutative diagram

U X

U ×S X X ×S X

U X

a′

j

a

p′2

j′

p2

j

of S -schemes where

(i) p2 denotes the second projection.

(ii) a denotes the diagonal morphism,

(iii) each square is Cartesian.

Then j′ is the verticalization of p2, so by (Htp–2), the natural transformation

p∗2
ad−→ j′∗j

′∗p∗2

is an isomorphism. Consider the natural transformations

Ωf
∼−→ a!p∗2

ad−→ a!j′∗j
′∗p∗2

Ex←− j∗a
′!j′∗p∗2

Ex←− j∗j
∗a!p∗2

∼←− j∗j
∗Ωf .

We have shown that the second arrow is an isomorphism. The third arrow is an isomorphism
by (eSm-BC), and the fourth arrow is an isomorphism by (Supp). This completes the
proof.

10.6 Purity transformations

10.6.1. Throughout this section, assume that T can be extended to an eSm-premotivic
triangulated prederivator satisfying strict étale descent.
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Definition 10.6.2. Let i : (X , I) → (Y , I) be a Cartesian strict regular embedding of
S -diagrams. For any morphism λ→ µ in I, there are induced morphisms

DXλ
Yλ → DXµYµ, NXλ

Yλ → NXµYµ

of S -schemes. Using these, we have the following S -schemes.

(1) DX Y denotes the S -diagram constructed by DXλ
Yλ for λ ∈ I,

(2) NX Y denotes the S -diagram constructed by NXλ
Yλ for λ ∈ I.

Note that if the induced morphism Yλ → Yµ is flat for any morphism λ→ µ in I, then the
induced morphisms X → DX Y and X → NX Y are Cartesian strict regular embeddings
by [Ful98, B.7.4].

Definition 10.6.3. Let f : X → S be an exact log smooth morphism of S -schemes, and
let h : X → X be a morphism of S -diagrams. Then we denote by

NX (X ×S X )

the vector bundle of X associated to the dual free sheaf (h∗ΩX/S)∨. Note that when the
induced morphism X → X ×S X is a Cartesian strict regular embedding, this definition is
equivalent to the definition in (10.6.2).

10.6.4. Let f : X → S be a separated vertical exact log smooth morphism of S -schemes.
We will construct several S -diagrams and their morphisms.

(1) Construction of X . Let {hλ : Xλ → X}λ∈I0 be a strict étale cover such that there is a
commutative diagram

Xλ X

Sλ S

hλ

fλ f

lλ

of S -schemes where

(i) Xλ and Sλ are affine,

(ii) fλ has a fs chart θλ : Pλ → Qλ of exact log smooth type,

(iii) lλ is strict étale.

Then we denote by X = (X , I) the Čech hypercover associated to {hλ : Xλ → X}λ∈I0 .
(2) Construction of D . For λ ∈ I0, we denote by h′λ the induced morphism

X ×S Xλ → X ×S X

of S -schemes, and let Uλ denote the open subscheme

X ×S Xλ − (h′λ)
−1(a(X)).
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Then we denote by Dλ the Čech hypercover of X ×S Xλ associated to

{Xλ ×Sλ Xλ → X ×S Xλ, Uλ → X ×S Xλ},

and we denote by D = (D , J) the Čech hypercover of X ×S X associated to

{Dλ → X ×S X}λ∈I0 .

Note that from our construction, we have the morphism

u : D → X ×S X

of S -diagrams.

(3) Construction of E . For λ ∈ I0, we put Yλ = Xλ ×Sλ×SX Xλ. Then the composition

Yλ →Xλ → AQλ

where the first arrow is the first projection gives a fs chart of Yλ. The induced morphism
Yλ → Sλ also has a fs chart Pλ → Qλ. As in (10.1.5), choose a proper birational morphism

Mλ → spec(Qλ ⊕Pλ Qλ)

of fs monoschemes, and we put

Eλ = (Xλ ×Sλ Xλ)×AQλ⊕PλQλ
AMλ

,

and let u′′λ : Eλ → Xλ ×Sλ Xλ denote the projection. Note that the diagonal morphism
Xλ →Xλ×Sλ Xλ factors through Eλ by construction in (loc. cit). Let b′′λ : X → Eλ denote
the factorization. We will show that the projection

Yλ ×Xλ×SλXλ
Eλ → Yλ

is an isomorphism. Consider the commutative diagram

E ′λ Eλ AMλ

Yλ Yλ ×Sλ Yλ Xλ ×Sλ Xλ AQλ⊕PλQλ

AMλ
AQλ⊕PλQλ

ι1

of S -diagrams where

(i) ι1 denotes the fs chart induced by the fs charts Pλ → Qλ of Yλ → Sλ defined above,
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(ii) the arrow Yλ ×Sλ Yλ → Xλ ×Sλ Xλ is the morphism induced by the first projection
Yλ →Xλ, the identity Sλ → Sλ, and the second projection Yλ →Xλ,

(iii) E ′λ = (Yλ ×Sλ Yλ)×Xλ×SλXλ
Eλ.

By (3.2.3), we have an isomorphism

(Yλ ×Sλ Yλ)×ι1,AQλ⊕PλQλ AM
∼= E ′λ,

and this shows the assertion since the morphism AMλ
→ AQλ⊕PλQλ is a monomorphism of fs

log schemes.
Now, we denote by Eλ the Čech hypercover of X ×S Xλ associated to

{Eλ → X ×S Xλ, Uλ → X ×S Xλ},

and we denote by E = (E , J) the Čech hypercover of X ×S X associated to

{Eλ → X ×S X}λ∈I0 .

Note that from our construction, we have the morphism

v : E → D

of S -diagrams. We put
Y = X ×X×SX D .

Then the assertion in the above paragraph shows that the projection Y ×D E → Y is an
isomorphism, so the projection b : Y → D factors through c : Y → E .

(4) Commutative diagrams. Now, we have the commutative diagram

E

Y D

X X ×S X X

X X ×S X X

r2

vc

b

u0 u
q2

a′

h h′

p′2
h

a p2

(10.6.4.1)

of S -diagrams where

(i) each small square is Cartesian,

(ii) u, v, and c are the morphisms constructed above.
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As in (4.1.2), we also have the commutative diagrams

Y E X

Y × A1 DY E X × A1

Y X

γ1

c

β1

r2

α1

φ

d s2

π

Y E X

Y × A1 DY E X × A1

Y X

γ0

e

β0

t2

α0

φ

d s2

π

of S -diagrams where

(i) each square is Cartesian,

(ii) α0 denotes the 0-section, and α1 denotes the 1-section,

(iii) d and s2 are the morphisms constructed as in (4.1.2.1),

(iv) π and φ denotes the projections.

Then we have the commutative diagram

Y NY E

X NX (X ×S X ) X

X NX(X ×S X) X

u0

e

u1
t2

h

e′

h1

t′2

h

e′′ t′′2

of S -diagrams where

(i) each small square is Cartesian,

(ii) e′′ denotes the 0-section, and t′′2 denotes the projection.

For λ ∈ I, we also have the corresponding commutative diagrams

Eλ

Yλ Dλ

Xλ X ×S Xλ Xλ

r2λ

vλ
cλ

bλ

u0λ uλ q2λ

a′λ p′2λ
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Yλ Eλ Xλ

Yλ × A1 DYλEλ Xλ × A1

Yλ Xλ

γ1λ

cλ

β1λ

r2λ

α1λ

φλ

dλ s2λ

πλ

Yλ NYλEλ Xλ

Yλ × A1 DYλEλ Xλ × A1

Yλ Xλ

γ0λ

eλ

β0λ

t2λ

α0λ

φλ

dλ s2λ

πλ

Yλ NYλEλ

Xλ NXλ
(X ×S Xλ) Xλ

u0λ

eλ

u1λ
t2λ

e′λ t′2λ

of S -schemes. We also put
g = fh, gλ = fhλ,

10.6.5. Under the notations and hypotheses of (10.6.4), we have an isomorphism NY E ∼=
NX (X ×S X ) ×X Y by [Ogu14, IV.1.3.1]. In particular, the morphism u1 : NY E →
NX (X ×S X ) is a strict étale hypercover. We have the natural transformation

Ωn
f,g

Tn
′

−→ Ωn
f,g,E

given by

e′!t′∗2
ad−→ e′!u1∗u

∗
1t
′∗
2
∼−→ e′!u1∗t

∗
2
Ex−1

−→ u0∗e
!t∗2.

Here, the first arrow is an isomorphism since T satisfies strict étale descent, and the third
arrow is defined and an isomorphism by (9.2.9) since e′ is a Cartesian strict closed immersion.
Thus the composition is an isomorphism.

We similarly have the natural transformation

Ωn
f,gλ

Tn
′

−→ Ωn
f,gλ,Eλ

,

which is also an isomorphism.

10.6.6. Under the notations and hypotheses of (10.6.4), for λ ∈ I0, we temporary put

Aλ = X ×S Xλ, Bλ = Xλ ×Sλ Xλ

for simplicity. We had the Cartesian diagram

Eλ AMλ

Bλ AQλ⊕PλQλ

215



of S -schemes. Consider the commutative diagram

Eλ ×Aλ Eλ Eλ ×Aλ Bλ AMλ

Bλ ×Aλ Eλ Bλ ×Aλ Bλ AQλ⊕PλQλ

AMλ
AQλ⊕PλQλ

ζ′′2

ζ′1

ζ′2

ζ1

ζ2

of S -schemes where

(i) each square is Cartesian,

(ii) ζ1 denotes the composition Bλ×Aλ Bλ → Bλ → AQλ⊕PλQλ where the first arrow is the
first projection,

(iii) ζ2 denotes the composition Bλ×Aλ Bλ → Bλ → AQλ⊕PλQλ where the first arrow is the
second projection.

By (3.2.3), we have isomorphisms

Bλ ×Aλ Eλ ∼= Bλ ×ζ1,AQλ⊕PλQλ AM
∼= Bλ ×ζ2,AQλ⊕PλQλ AM

∼= Eλ ×Aλ Bλ,

so using this, we have the Cartesian diagram

Eλ ×Aλ Eλ Eλ ×Aλ Bλ

Eλ ×Aλ Bλ Bλ ×Aλ Bλ

ζ′′2

ζ′1

ζ′1

of S -schemes. Since ζ ′1 is a pullback of AM → AQλ⊕PλQλ that is a monomorphism, the
morphism ζ ′′1 is an isomorphism. From this, we conclude that the induced morphism

Eλ ×X×SXλ
Eλ → Eλ ×X×SXλ

Dλ

is an isomorphism for λ ∈ I0.
Now, for λ ∈ I instead of λ ∈ I0, if Dλ = Dλ1×X×SX · · ·×X×SXDλr for some λ1, . . . , λr ∈

I0, we put
Eλ = Eλ1 ×X×SX · · · ×X×SX Eλr .

From the result in the above paragraph, we see that the induced morphism

Eλ ×X×SXλ
Eλ → Eλ ×X×SXλ

Dλ

is an isomorphism. In particular, the the first projection

Eλ ×X×SXλ
Eλ → Eλ

is a strict étale Čech hypercover.
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10.6.7. Under the notations and hypotheses of (10.6.6), consider the commutative diagram

Eλ

Yλ E ′λ D ′λ Dλ

Xλ Eλ Xλ ×Sλ Xλ X ×S Xλ Xλ

vλ

c′′λ

u0λ

w′′λ

v′′λ

v′λ

u′λ

w′λ

uλ
q2λ

b′′λ u′′λ wλ p′2λ

of S -diagrams where each small square is Cartesian and wλ denotes the induced morphism.
Then we have the commutative diagram

Ωn
f,gλ,E

′
λ

Ωd
f,g,E ′λ

Ωf,g,E ′λ
Ωf,gλ,D

′
λ

Ωf,gλ,Dλ

Ωn
f,gλ,Eλ

Ωd
f,g,Eλ

Ωf,g,Eλ Ωf,gλ,Xλ×SλXλ
Ωf,gλ

TEλ,E
′
λ

(Tn)−1

TEλ,E
′
λ

T d

TEλ,E
′
λ

TD′
λ
,E ′
λ

TXλ×Sλ
Xλ,D

′
λ

TDλ,D
′
λ

TDλ

(Tn)−1 T d TXλ×Sλ
Xλ,Eλ

TXλ×Sλ
Xλ

(10.6.7.1)
of functors. Here, the arrows are defined by the S -diagram versions of (4.2.2), (4.2.9),
and (4.2.11). Since uλ is an exact log smooth morphism and a′λ is reduced, the exchange
transformation

u0λ∗b
!
λ

Ex−→ a′!λuλ∗

for the commutative diagram

Yλ Dλ

Xλ X ×S X

u0λ

bλ

uλ

a′λ

is an isomorphism by (9.2.9). The unit id
ad−→ uλ∗u

∗
λ is also an isomorphism since T satisfies

strict étale descent. Thus by construction in (4.2.2(ii)), the transition transformation TDλ is
an isomorphism. Similarly, the other vertical arrows of (10.6.7.1) are isomorphisms.

By construction in (10.6.4) using (10.1.5), the conditions of (4.1.3) are satisfied, so by
(4.2.12), the lower horizontal arrows of (10.6.7.1) denoted by (T n)−1 and T d are isomor-
phisms. The lower horizontal arrow of (10.6.7.1) denoted by TXλ×SλXλ,Eλ is an isomorphism
by (10.5.3), and the lower horizontal arrow of (10.6.7.1) denoted by TXλ×SλXλ

is an isomor-
phism by construction (4.2.2(iii)). Thus we have shown that the lower horizontal arrows of
(10.6.7.1) are all isomorphisms, so the upper horizontal arrows of (10.6.7.1) are also isomor-
phisms.
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Now, consider the commutative diagram

Ωn
f,gλ,E

′
λ

Ωd
fλ,g,E

′
λ

Ωfλ,g,E
′
λ

Ωf,gλ,D
′
λ

Ωf,gλ,Xλ×SλXλ

Ωn
f,gλ,Eλ

Ωd
fλ,g,Eλ

Ωfλ,g,Eλ Ωf,gλ,Dλ Ωf,gλ

TEλ,E
′
λ

(Tn)−1

TEλ,E
′
λ

T d

TEλ,E
′
λ

TD′
λ
,E ′
λ

TDλ,D
′
λ

TXλ×Sλ
Xλ,D

′
λ

TXλ×Sλ
Xλ

(Tn)−1
T d TDλ,Eλ

TDλ

of functors. Here, the arrows are defined by the S -diagram versions of (4.2.2), (4.2.9), and
(4.2.11). We have shown that the upper horizontal arrows and the right side vertical arrow
are isomorphisms, and the other vertical arrows are also isomorphisms by (4.2.2) and (4.2.11).
The lower horizontal arrows are isomorphisms. In particular, the natural transformation

Ωn
f,gλ,Eλ

(Tn)−1

←− Ωd
fλ,g,Eλ

is an isomorphism. Let T n denote its inverse.

10.6.8. Under the notations and hypotheses of (10.6.7), as in (4.2.3), we have several ex-
change transformations (or inverse exchange transformations) as follows.

(1) We put Ωf,g,λ = a′!λ∗p
∗
2λ′ . Then we have the natural transformations

λ∗Ωf,gλ

Ex−→ Ωf,g,λ
Ex−→ Ωf,gλ∗

given by

λ∗a
′!
λp
′∗
2λ

Ex−→ a′!λ∗p
′∗
2λ

Ex−1

−→ a′!p′∗2 λ∗.

Here, the first arrow is an isomorphism by (9.2.7), and the second arrow is defined
and an isomorphism by (9.2.5) since p′2 is Cartesian exact log smooth.

(2) We put Ωf,g,D ,λ = u0∗b
!λ∗q

∗
2λ. Then we have the natural transformations

λ∗Ωf,gλ,Dλ
Ex−→ Ωf,g,D ,λ

Ex−1

←− Ωf,g,Dλ∗

given by

λ∗u0λ∗b
!
λq
∗
2λ

∼−→ u0∗λ∗b
!
λq
∗
2λ

Ex−→ u0∗b
!λ∗q

∗
2λ

Ex←− u0∗b
!q∗2λ∗.

(3) We have the inverse exchange transformation

Ωf,g,Eλ∗
Ex−1

−→ λ∗Ωf,gλ,Eλ

given by

u0∗c
!r∗2λ∗

Ex−→ u0∗c
!λ∗r

∗
2λ

Ex−1

−→ u0∗λ∗c
!
λr
∗
2λ

∼−→ λ∗u0λ∗c
!
λr
∗
2λ.

Here, the second arrow is defined and an isomorphism by (9.2.9) since c is a Cartesian
strict closed immersion.

218



(4) We have the inverse exchange transformation

Ωd
f,g,Eλ∗

Ex−1

−→ λ∗Ω
d
f,gλ,Eλ

given by

u0∗φ∗d
!s∗2π

∗λ∗
Ex−→ u0∗φ∗d

!s∗2λ∗π
∗
λ

Ex−→ u0∗φ∗d
!λ∗s

∗
2λπ
∗
λ

Ex−1

−→ u0∗φ∗λ∗d
!
λs
∗
2λπ
∗
λ
∼−→ λ∗u0λ∗φλ∗d

!
λs
∗
2λπ
∗
λ.

Here, the third arrow is defined and an isomorphism by (9.2.9) since d is a Cartesian
strict closed immersion.

(5) We have the inverse exchange transformation

Ωn
f,g,Eλ∗

Ex−1

−→ λ∗Ω
n
f,gλ,Eλ

given by

u0∗e
!t∗2λ∗

Ex−→ u0∗e
!λ∗t

∗
2λ

Ex−1

−→ u0∗λ∗e
!
λt
∗
2λ

∼−→ λ∗u0λ∗e
!
λt
∗
2λ.

Here, the second arrow is defined and an isomorphism by (9.2.9) since e is a Cartesian
strict closed immersion.

(6) We have the inverse exchange transformation

Ωn
f,gλ∗

Ex−1

−→ λ∗Ω
n
f,gλ

given by

e′!t′∗2 λ∗
Ex−→ e′!λ∗t

′∗
2λ

Ex−1

−→ λ∗e
′!
λt
′∗
2λ.

Here, the first arrow is an isomorphism by (9.2.5) since t′2 is Cartesian exact log
smooth, and the second arrow is defined and an isomorphism by (9.2.9) since e′ is a
Cartesian strict closed immersion. Thus the composition is also an isomorphism.

(7) We have the exchange transformation

λ∗Ωd
f,g,E

Ex−→ Ωd
f,gλ,Eλ

λ∗

given by

λ∗u0∗φ∗d
!s∗2π

∗ Ex−→ u0λ∗λ
∗φ∗d

!s∗2π
∗ Ex−→ u0λ∗φλ∗λ

∗d!s∗2π
∗

Ex−→ u0λ∗φλ∗d
!
λλ
∗s∗2π

∗ ∼−→ u0λ∗φλ∗d
!
λs
∗
2λπ
∗
λλ
∗.

Here, the first and second arrows are isomorphisms by (9.2.8), and the third arrow is
defined and an isomorphism by (9.2.11) since d is a Cartesian strict closed immersion.
Thus the composition is an isomorphism.
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(8) We have the exchange transformation

λ∗Ωn
f,g,E

Ex−→ Ωn
f,gλ,Eλ

λ∗

given by

λ∗u0∗e
!t∗2π

∗ Ex−→ u0λ∗λ
∗e!t∗2π

∗ Ex−→ u0λ∗e
!
λλ
∗t∗2π

∗ ∼−→ wλ∗e
!
λt
∗
2λπ
∗
λλ
∗.

Here, the first arrow is an isomorphism by (9.2.8), and the second arrow is defined
and an isomorphism by (9.2.9) since e is a Cartesian strict closed immersion. Thus
the composition is an isomorphism.

We also have the natural transformation

Ωf,g,D ,λ
TD−→ Ωf,g,λ

given by

u0∗b
!λ∗q

∗
2λ

Ex−→ a′!u∗λ∗q
∗
2λ

∼−→ a′!λ∗uλ∗u
∗
λp
∗
2λ

ad−1

−→ a′!λ∗p
∗
2λ.

Here, the third arrow is defined and an isomorphism since T satisfies strict étale descent.

10.6.9. Under the notations and hypotheses of (10.6.8), for λ ∈ I, we have the commutative
diagram

λ∗Ωn
f,g,E λ∗Ωd

f,g,E

Ωn
f,gλ,Eλ

λ∗ Ωd
f,gλ,Eλ

λ∗

Ex

(Tn)−1

Ex

(Tn)−1

of functors. By (loc. cit), the vertical arrows are isomorphisms, and by (10.6.7), the lower
horizontal arrow is an isomorphism. Thus the upper horizontal arrow is also an isomorphism.
Then by (PD–4), the natural transformation

Ωn
f,g,E

(Tn)−1

←− Ωd
f,g,E

is an isomorphism. Let T n denote its inverse.
Now, consider the commutative diagram

λ∗Ω
n
f,gλ

λ∗Ω
n
f,gλ,Eλ

λ∗Ω
d
f,gλ,Eλ

λ∗Ωf,gλ,Eλ λ∗Ωf,gλ,Dλ λ∗Ωf,gλ

Ωf,g,λ Ωf,g,λ

Ωn
f,gλ∗ Ωn

f,g,Eλ∗ Ωd
f,g,Eλ∗ Ωf,g,Eλ∗ Ωf,g,Dλ∗ Ωf,gλ∗

Ex−1

Tn
′

Ex−1

Tn

Ex−1

T d

Ex−1

TDλ,Eλ

Ex

TDλ

Ex

Ex−1

TD

Ex

Tn
′

Tn T d TD,E TD
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of functors. Here, the arrows are constructed in (10.6.8), (10.6.5), and the S -diagram
version of (4.2.2). The top horizontal arrows are isomorphisms by (10.6.5) and (10.6.8), and
we have shown in (loc. cit) that the left side vertical and the right side vertical arrows are
isomorphisms. Thus the composition of the five lower horizontal arrows

Ωn
f,gλ∗ −→ Ωf,gλ∗

is an isomorphism. Then its left adjoint

λ∗Σf,g −→ Σn
f,gλ

∗

is also an isomorphism where

Σf,g = p′2]a
′
∗, Σn

f,g = t′2]e
′
∗.

We also denote by T nE the composition

Ωn
f,g

Tn
′

−→ Ωn
f,g,E

Tn−→ Ωd
f,g,E

T d−→ Ωf,g,E
TD,E−→ Ωf,g,D

TD−→ Ωf,g.

It is called again a transition transformation. Then its left adjoint

Σf,g −→ Σn
f,g

is an isomorphism by (PD–4) and the above paragraph. Therefore, we have proven the
following theorem.

Theorem 10.6.10. Under the notations and hypotheses of (10.6.8), the transition transfor-
mation

Ωn
f,g

TnE−→ Ωf,g

is an isomorphism.

10.6.11. Under the notations and hypotheses of (10.6.8), we put

Ωf,X×SX = h∗Ωf,gh
∗, Ωn

f = h∗Ω
n
f,gh

∗.

Then the natural transformation

Ωn
f = h∗Ω

n
f,gh

∗ TnE−→ h∗Ωf,gh
∗ = Ωf,X×SX

is an isomorphism by (10.6.10). We also have the natural transformation

TX×SX : Ωf,X×SX −→ Ωf

given by

h∗a
′!p′∗2 h

∗ Ex−→ a!h′∗p
′∗
2 h
∗ ∼−→ a!h′∗h

′∗p∗2
ad−1

−→ a!p∗2.
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Here, the first arrow is an isomorphism by (9.2.9), and the third arrow is defined and an
isomorphism since T satisfies strict étale descent. Thus the composition is also an isomor-
phism.

Now, consider the natural transformations

Ωn
f

TnE−→ Ωf,X×SX

TX×SX−→ Ωf .

The composition is also denoted by T nE . It is an isomorphism by (10.6.10) and the above
paragraph.

Then consider the natural transformations

Ωn
ff

! TnE−→ Ωff
! qf−→ f ∗.

The composition is denoted by qnf,E . By (10.5.5) and the above paragraph, we have proven
the following theorem.

Theorem 10.6.12. Under the notations and hypotheses of (10.6.5), the natural transfor-
mation

Ωn
ff

!
qnf,E−→ f ∗.

is an isomorphism.

10.7 Canonical version of purity transformations

10.7.1. Assume that T can be extended to an eSm-premotivic triangulated prederivator
satisfying strict étale descent. Let f : X → S be a separated vertical exact log smooth mor-
phism of S -schemes. The category of localized compactified exactifications of the diagonal
morphism a : X → X ×S X, denoted by LCEa, is the category whose object is the data of
vλ : Ei →Xλ ×Sλ Xλ and commutative diagram

Xλ X

Sλ S

hλ

fλ f

lλ

for λ ∈ I where

1. I is a set, and the diagram commutes,

2. fλ and lλ are strict étale,

3. vi is a compactified exactification of the diagonal morphism Xλ →Xλ ×Sλ Xλ.

Morphism is the data of
S ′λ → Sλ, X ′

λ →Xλ, E ′λ → Eλ

compatible with the morphisms in (10.6.4.1).
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Then LCEa is not empty by (10.6.4), and as in (10.1.7), it is connected since we can take
the fiber products of (Xλ, Sλ,Eλ)λ∈I and (X ′

λ, S
′
λ,E

′
λ)λ∈I . For any object ω of LCEa, as in

(10.6.10), we can associate the natural transformation

Ωn
f

Tnω−→ Ωf .

Then as in (4.2.13), we have the compatibility, i.e., this defines the functor

T n : LCEa → Hom(Ωn
f ,Ωf ).

To make various natural transformations T nω canonical, we take the limit

lim←−
ω

T(ω)n.

It is denoted by T n : Ωn
f → Ωf . Now, the definition of the purity transformation is the

composition

Ωn
ff

! Tn−→ Ωff
! qf−→ f ∗,

and it is denoted by qnf . By (10.6.12), we have the following theorem.

Theorem 10.7.2. Let f : X → S be a separated vertical exact log smooth morphism. Then
the purity transformation

Ωn
ff

!
qnf−→ f ∗.

is an isomorphism.
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additive property, 34
adjoint property, 34

base change properties, 42
BCP -local, 15

cartesian section, 2, 173
compact, 16
compactified exactification, 189
compactly generated, 16
generated by P and τ , 16

density structure, 8
standard density structure, 9

dZar-topology, 136

ecd-structure, 5
additive, 6
bounded, 9
complete, 8
dividing, 7
Galois, 7
piercing, 7
plain lower, 6
quasi-piercing, 7
regular, 8
strict Nisnevich, 7
winding, 7
Zariski, 6

fs exactification, 191

generated by P and τ , 16
generating, 16

homotopy properties, 39

interior, 190

localization property, 35
log motivic triangulated category, 46
log smooth type, 48

exact log smooth over S type, 48
exact log smooth type, 48
Kummer log smooth type, 48
Kummer log smooth over S type, 48
log smooth over S type, 48

log-weak equivalences, 28
log′-weak equivalences, 28
log′′-weak equivalences, 28
log′′′-weak equivalences, 145

morphisms of S -diagrams
Cartesian, 174
reduced, 174

orientation, 46

P-base change, 1
P-premotivic triangulated prederivator, 172
P-projection formula, 1
premotivic triangulated category, 1
projection formula, 45
pure, 41
pw-topology, 12

qw-topology, 12

S -diagram, 171
stability property, 40
support property, 36

semi-universal support property, 81
universal support property, 81

t-local, 13
τ -twisted, 2, 173
t-descent, 14
t∅-topology, 5
t-flasque, 13
Thom transformations, 63
tP -local, 15
t-separated, 34
twist, 2, 173
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W -local, 22, 185
W -weak equivalence, 22
W -weak equivalence, 185
well generated, 16
well generated by P and τ , 16
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Index of notations

1S(1), 40

BSX, 63
BCP , 14

C, 75
CEa, 190
C(Sht(P/S,Λ)), 13

DSX, 63
Ddim
d (S), 134

Ddim
d,(n)(S), 134

Ddv
d,(n)(S), 135

dia, 172
DW ,t(P,Λ), 29
DX Y , 211

e, 172
eSm, 13

ft, 13
ftZar/S, 138

HomS, 2

K{i}, 2
C(Kt(P/S,Λ)), 13

ΛS(F ), 13
Λt
S(X), 13

Λt
S(X ), 13
LCEa, 222
lSm, 13

MS(X), 2

NSX, 63
NX (X ×S X ), 211
NX Y , 211

Ωf , 41
Ωg,f,D, 64
Ωd
g,f,D, 64

Ωn
g,f,D, 64

Ωo
g,f,D, 64

pf , 41
pnf,D, 77
PSht(P/S,Λ), 5

qf , 41
qnf,D, 77
qnf,E , 222
qnf , 223

Sht(P/S,Λ), 5
Σf , 41
Σg,f,D, 64
Σd
g,f,D, 64

Σn
g,f,D, 64

Σo
g,f,D, 64

S(n), 134
SZar, 136

T d, 69
TD , 220
TD,E, 65, 73
tE, 46
tE′ , 46
T nE , 221
T n, 69, 218, 220, 223
T o, 69
Tri⊗, 172
T [W −1], 22, 185
TW ,S, 22
TW ,X , 185
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