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Differential Effects of Heparin, Fibronectin, and Laminin on 
The Phosphorylation of Basic Fibroblast Growth Factor by 
Protein Kinase C and the Catalytic Subunit of Protein Kinase A 
Jean-Jacques  Feige, John  D. Bradley,* Kars ten  Fryburg,  J ames  Farris, Lawrence  C. Cousens,* 
Philip J. Barr,* and  Andrew Baird 

Department of Molecular and Cellular Growth Biology, The Whittier Institute, La Jolla, California 92037; and * Chiron Corporation, 
Emeryville, California 94608 

Abstract. Basic fibroblast growth factor (FGF) is syn- 
thesized as a phosphoprotein by both bovine capillary 
endothelial and human hepatoma cells in culture. Be- 
cause basic FGF is characterized by its high affinity 
for heparin and its association in vivo with the ex- 
tracellular matrix, we examined the possibility that the 
phosphorylation of this growth factor by purified pro- 
tein kinase C (PK-C) and the catalytic subunit of 
cAMP-dependent protein kinase-A (PK-A) can be 
modulated by components of the extracellular matrix. 

Heparin and other glycosaminoglycans (GAGs) in- 
hibit the ability of PK-C to phosphorylate basic FGE 
In contrast, heparin can directly increase the phos- 
phorylation of basic FGF by PK-A. While fibronectin, 
laminin, and collagen IV have no effect on the ability 
of PK-C to phosphorylate basic FGE they all can in- 
hibit the effects of PK-A. Thus, there is a differential 
effect of extracellular matrix-derived proteins and 
GAGs on the phosphorylation of basic FGE The en- 
hanced phosphorylation of basic FGF that is mediated 
by heparin is associated with a change in the kinetics 
of the reaction and the identity of the amino acid tar- 
geted by this enzyme. The amino acids that are tar- 
geted by PK-C and PK-A have been identified by phos- 
phopeptide analyses as Ser 64 and Thr "2, respectively. 
In the presence of heparin, basic FGF is no longer 

phosphorylated by PK-A at the usual PK-A consensus 
site (Thr"2), but instead is phosphorylated at the ca- 
nonical PK-C site (SetS4). Accordingly, heparin in- 
hibits the phosphorylation of basic FGF by PK-C pre- 
sumably by masking the PK-C dependent consensus 
sequence surrounding Set 64. Thus, when basic FGF is 
no longer phosphorylated by PK-A in the receptor 
binding domain (ThrU2), it loses the increased receptor 
binding ability that characterizes PK-A phosphorylated 
basic FGE 

The results presented here demonstrate three novel 
features of basic FGE First, they identify a functional 
effect of the binding of heparin to basic FGE Second, 
they establish that the binding of beparin to basic FGF 
can induce structural changes that alter the substrate 
specificity of protein kinases. Third, and perhaps most 
important, the results demonstrate the existence of a 
novel interaction between basic FGF, fibronectin, and 
laminin. Although the physiological significance of 
this phosphorylation is not known, these results 
clearly suggest that the biological activities of basic 
FGF are regulated by a complex array of biochemical 
interactions with the proteins, proteoglycans, and 
glycosaminoglycans present in the extracellular milieu 
and the cytoplasm. 

H 
EPARIN and related glycosaminoglycans (GAGs) ~ 
appear to be important regulators of the activity and 
binding of basic FGE It is the discovery that basic 

FGF has a high affinity for beparin that first established the 
link between GAGs and this growth factor (20, 31). Since that 

J.-J. Feige is a visiting scientist from INSERM (Unit 244; Grenoble, France). 
Some of these studies were performed at the Laboratories for Neuroen- 

docrinology, the Salk Institute for Biological Studies, La .lolla, CA. 

1. Abbreviations used in this paper: ECM, extracellular matrix; FGE 
fibroblast growth factor; GAG, glycosaminoglycan; PK-A and PK-B, protein 
kinase A and protein kinase B. 

time, heparin has been demonstrated to protect the growth 
factor from enzymatic degradation and modulate its biologi- 
cal activities (19, 32). Even its binding to target cells has been 
linked to the presence of GAGs (28). As an example, two dis- 
tinct binding components have been identified on the surface 
of basic FGF-responsive cells. The first is a high-affinity gly- 
coprotein membrane receptor that appears to interact with 
both acidic and basic FGF (12, 29, 30). The second compo- 
nent is a cell surface GAG that is heparinase-sensitive (28), 
and thus considered to be heparin related. Recently, several 
groups have established that basic FGF is associated with the 
extracellular matrix and associated with heparin-like GAGs 
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(2, 33). Although the functional significance of this discov- 
ery is currently the topic of extensive research, it has been 
suggested that the association of basic FGF with the base- 
ment membrane regulates the bioavailability of the growth 
factor (1, 16). For this reason, we have been examining the 
possibility that mechanisms exist to regulate the interaction 
between basic FGF and GAGs. In the course of these studies, 
we have discovered that basic FGF is in fact a phospho- 
protein. 

In a recent study we established (13) that basic FGF is a 
substrate for phosphorylation by the catalytic subunit of the 
cAMP-dependent protein kinase-A (PK-A) and the phospho- 
lipid and calcium dependent protein kinase-C (PK-C) and 
suggested that these processes might be involved in the regu- 
lation of basic FGE Although the physiological significance 
of phosphorylation remains unknown, basic FGF is phos- 
phorylated by endothelial and hepatoma cells in culture (13), 
establishing that it exists in vivo as a phosphoprotein. Be- 
cause the phosphorylation of basic FGF did not alter the 
growth factor's affinity for immobilized heparin, we exam- 
ined the possibility that interactions with the extracellular 
matrix (ECM) might modify the phosphorylation of basic 
FGE We report here that ECM-derived proteins and GAGs 
have differential effects on the capacity of PK-A and PK-C 
to phosphorylate the growth factor. The identification of a 
novel interaction between basic FGF, fibronectin, collagen, 
and laminin establishes that the growth factor interacts with 
the protein as well as with GAG-related components of the 
extracellular matrix. 

Materials and Methods 

Materials 
Recombinant human basic FGF (4) was generously provided by Chiron 
Corporation. PK-C purified from bovine brain was a generous gift from Dr. 
J.-M. Pelosin (Unit~ INSERM 244, Grenoble, France), and PK-A from por- 
cine skeletal muscle was a generous gift from Dr. S. Taylor (University of 
California, San Diego, CA). Fibronectin was purchased from Calbiochem- 
Behring Corp. (La Jolla, CA). Laminin was obtained from E. Y. Laborato- 
ries, Inc. (San Marco, CA), collagen IV, GAGs, and other reagents were pur- 
chased from Sigma Chemical Co. Trypsin-TICK was purchased from Wor- 
thington (Freehold, NJ). [ynP]ATP (3,000 Ci/mmol) was purchased from 
ICN Radiochemicals (Irvine, CA) and 125I-Na from Amersham Corp. 
(Arlington Heights, IL). 

Phosphorylation Assay 
Aliquots of recombinant human basic FGF were incubated with purified 
PK-C or the catalytic subunit of PK-A for 10 rain at 30°C in a 20-t~l reaction 
volume containing 10 mM Tris-HCI, pH 7.5, 10 mM MgCh, 10 ¢zM 
[y32p]ATP (5,000 cpm/pmol) and the indicated amounts of GAGs and 
adhesion proteins. The buffers also contained 0.6 mM CaCl2, 40 ~g/l~ 
phosphatidyl serine and 0.8 ttg/ml dioctanoylglycerol in PK-C assays. The 
reactions were stopped by boiling for 2 rain aRer the addition of 5/~1 of a 
5× concentrated Laemmii sample buffer (25). Phosphorylated proteins 
were separated on 0.8-ram-thick, 15 % polyacrylamide SDS gels and visual- 
ized by autoradiography. 

Specificity Studies 
The possibility that the GAGs and ECM proteins were interacting directly 
with PK-C or PK-A to modify the phosphorylation of basic FGF was exam- 
ined using historic HI and histonc IIA as substrates. The phosphorylations 
were performed as described above except that the reaction solutions con- 
rained 25/Lg of historic HI (PK-C) or 100 #g of histone RA (PK-A). The 
incubations were stopped by precipitation with 30 ;d of BSA (50 mg/ml) 
and 20% TCA. The pellet obtained by centrifugation was dissolved in 200 

~tl of I N NaOH and reprecipitated with 20% "ICA. The solution was then 
centrifuged and the pellet resuspended in 100 ~,1 of 1 N NaOH, neutralized 
with 1 N HCI, and counted. 

Phosphoamino Acid Analysis and Tryptic Mapping 
Radiolabeled peptides were extracted from polyacrylamide gels with 0.05 M 
ammonium bicarbonate pH 7.3-7.6 supplemented with 0.1% SDS and 1% 
2-mercaptoethanol. After precipitation with 50% TCA, the pellet was dis- 
solved in 6 N HCI and the protein was hydrolyzed for 60 rain at II0°C. 
Phosphoamino acids were separated by two-dimensionni high voltage elec- 
trophoresis as described by Cooper et al. (7). The plates were run for 20 
min at 1.5 kV (pH 1.9) and then for 16 min at 1.3 IN (pH 3.5). Standard 
phosphoamino acids were mixed with the samples before electrophoresis 
and were visualized by ninhydrin staining. Radioactive phosphoamino acids 
were detected by autoradiography using films and intensifying screens 
(XAR5; Eastman Kodak Co., Rochester, NY). For tryptic mapping, the 
phosphoproteins were extracted from the gel, alkylated, and subjected to 
proteolytic cleavage as described by Hunter and Seflon (22). The phos- 
phopeptides generated were resolved on 100-~m cellulose thin-layer plates 
by electrophoresis at pH 1.9 for 25 rain at 1 kV in the first dimension fol- 
lowed by ascending chromatography in the second dimension. Approxi- 
mately 500 Cerenhov cpm were routinely loaded per plate and the phos- 
phopeptides were localized by autoradiography overnight using films and 
intensifying screens from Eastman Kodak Co. 

Identification of the Sites of Phosphorylation 
Peptide mapping of the fragments generated by the Staphylococcus aureus 
V8 protease digestion of recombinant human basic FGF was used to identify 
the sites of phosphoryiation. Phosphorylated recombinant human basic 
FGF was prepared with PK-C, PK-A, of PK-A + heparin as described ear- 
lier. The reactions were stopped by heating at 80°C for 3 rain. The solution 
was cooled, and basic FGF was immunoprecipitated with antibodies to basic 
FGF(1-24) conjugated to Al~gel-10 beads (Bio-Rnd Laboratories, Cam- 
bridge, MA). After mixing for 30 rain, the solution was centrifuged and the 
pellet washed with 1.0 M NaC1 in 10 mM Tris-CI (pH 7.4). After a second 
wash, the pellet was resuspended in water, centrifuged and basic FGF was 
eluted from the pellet with 1 ml of I N acetic acid. A total of 150000 cpm 
was recovered in the PK-C phosphorylated basic FGF and 500,000 cpm in 
the PK-A phosphorylated basic FGF and 160,000 cpm in the PK-A/heparin 
phosphorylated basic FGF. 

Before enzymatic degradation, carrier recombinant human basic FGF 
(500 Itg) was added to the samples of radiolabeled FGF and dissolved in 
I mi 0.2 M N-ethyl morpholine acetate, pH 8.6, 6 M guanidine-HCl, 3 raM 
EDTA, 1 mM DTT. After purging with argon, and incubating at 3'7°C for 
1 h, the cysteine residues were pyridylethylated by the addition of I/~1 of 
@vinyl pyridine (Aldrich Chemical Co., Milwaukee, WI) to achieve a final 
concentration of ~ raM. The samples were then purged with argon, and 
incubated at room temperature for over 2 h. The reaction was stopped by 
either the addition of 50 ~1 of 50 mM DTT, or by immediate desalting by 
reverse-phase chromatography on a 25.0 x 0.46 cm C-4 column. 

The desalted samples, dried in vacuo, were dissolved in 100/tl 0.1 M 
ammonium acetate, pH 4.0, and digested by the addition of Staphylococcus 
V8 protease (1:20 tool, enzyme: basic FGF). The samples were incubated 
overnight at room temperature. An equal amount of protease in the absence 
of human basic FGF was incubated in parallel as a control. The peptides 
generated during the digestion were separated on a 25 × 0.46 cm C-18 
reverse-phase column (Vydac). Samples were loaded onto the column in 
100% Buffer A (0.1% TFA) and eluted with a 50-rain linear gradient from 
10 to 40% Buffer B (0.1% TFA in acetonitrile). Absorbance at 230 nm was 
monitored, and the peaks collected and identified by amino acid analysis. 
The identities of the peaks were deduced by comparison with the expected 
amino acid content of the predicted peptide products. In an effort to identify 
the fragments containing phosphorylated amino acids, aliquots of each 
column fraction were collected, counted, and matched to their correspond- 
ing peaks. Recovery of the radiolabel was 30--50% after reverse-phase 
HPLC. 

Biological Assays of FGF Activity 
Basic FGF was phosphorylated with the catalytic subunit of PK-A in the 
presence or absence of heparin under the conditions described above hut 
with unlabeled ATP. Under these conditions, 0f~-0.8 phosphates are incor- 
porated into basic FGE Controls consisted of basic FGF treated under iden- 
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Figure 1. Effect of GAGs and adhesion proteins on the phosphoryla- 
tion of human basic FGF by PK-C and PK-A. Recombinant human 
basic FGF (1 #g) was phosphorylated in the absence (Ctl) or pres- 
ence of 5 #g heparin (Hep), chondroitin sulfate A (CSA), chondroi- 
tin sulfate B (CSB), hyaluronic acid (HA), collagen IV (Coil), lami- 
nin (/am), or of 3 #g fibronectin (Fib). A, Purified PK-C (40 ng), 
or B, purified PK-A (80 ng) were present in the reaction. After elec- 
trophoresis on a 15% polyacrylamide, 0.1% SDS gel, the radiola- 
beled proteins were visualized by autoradiography (XAR5 film, 
Eastman Kodak Co.). 

tical conditions, but in the absence of kinase. The recovery of basic FGF 
from the reaction tubes was determined by the addition of trace amounts 
of radiolabeled growth factor. In these experiments, the phosphorylation of 
basic FGF with cold ATP was monitored by the addition of trace amounts 
of [~2P]ATP to the reaction mixture and autoradiography after SDS-PAGE 
confirmed the phosphorylatiou reaction. The phosphorylated mitogens 
were tested for their capacity to compete with the binding of 125I-basic 
FGF to its high and low affinity receptor using the baby hamster kidney 
(BHK) cell assay described by Moscatelli (28). Serial dilutions of the phos- 
phorylated FGFs and their respective unphosphorylated controls were added 
to BHK cells. After a 2-h incubation with 500 pg radioiodinated recom- 
binant human basic FGE the cells were washed twice with 1 ml PBS, twice 
with 0.5 ml of 2 M NaC! in 10 mM Tris-Cl, and then the membranes were 
solubilized with 0.1% Triton in PBS (pH 8.4) and counted on a V-counter. 

The effect of the PK-A-phosphorylated basic FGF was compared to a prepa- 
ration of unphosphorylated basic FGF that was treated in an identical fash- 
ion as the phosphorylated protein except that no kinase was present in the 
reaction. Similarly, the effects of the PK-A/beparin-phosphorylated basic 
FGF was compared to an unphosphorylated basic FGF that was treated in 
an identical fashion as the phosphorylated protein including incubation 
buffer in the presence of heparin. Thus, the only difference between the 
phosphorylated and unphosphorylated forms tested in the receptor assay is 
the presence (or absence) of kinase in the binding medium. In a separate 
series of experiments, the various phosphorylated FGFs were prepared as 
described, and the "mock" phosphorylated basic FGFs were prepared in the 
absence of ATP. This approach gave identical results. 

Results 

GAGs and Basement Membrane Proteins Affect the 
Phosphorylation of  Basic FGF by PK-C and PK-A 

Recombinant human basic F G F  was phosphorylated with 
purified PK-C or with the catalytic subunit of  PK-A and a 
fivefold excess (wt/wt) of  various GAGs or  adhesion-stimu- 
lating proteins. As shown in Fig. 1 A, heparin, heparan sul- 
fate, chondroitin sulfate A,  chondroitin sulfate B, and hyalu- 
ronic acid reduced the amount of  phosphate incorporated 
into basic F G F  by PK-C. At the concentrations used, Hep-S, 
CSB, and HA were clearly the most effective, however, no 
dose curve analyses were performed.  In contrast, fibronec- 
tin, collagen IV, and laminin had only small effects. When 
basic F G F  was phosphorylated by the catalytic subunit of  
PK-A (Fig. 1 B) ,  a very different profile was obtained. Hepa- 
rin markedly increased the phosphorylat ion of  basic F G F  
while the other GAGs had no apparent effect. Fibronecrin, 
collagen IV, and laminin completely prevented the phosphor- 
ylation of  basic F G F  by PK-A. 

A series of  control experiments were performed to estab- 
lish the specificity of  these observations. First ,  we examined 
the possibili ty that the GAGs and proteins might be compet- 
ing with basic F G F  for phosphorylation.  None of  these mol- 
ecules was found to be a substrate for either kinase (data not 
shown). Accordingly, an examination of  the autoradiogram 
shown in Fig. 1 fails to show the presence of  phosphorylated 
products other than the autophosphorylated kinase and basic 
F G E  Because GAGs are known to modulate the activity of  
casein kinases (14), we also tested the possibili ty that the 
GAGs or  proteins were directly inhibiting PK-C/PK-A activ- 
ity. The addition of  any of  these molecules to the reaction did 
not affect the ability of  PK-C to phosphorylate histone H1 or  
that of  PK-A to phosphorylate histone HIIA (Fig. 2). There- 
fore, we concluded that the effects outlined in Fig. 1 were be- 
cause of  direct interactions with basic F G F  and not interac- 
tions with the kinases. Thus, the suitability of  basic F G F  as 
a substrate for PK-C decreases as a function of  its interaction 
with GAGs. The interaction between basic F G F  and proteins 
of  the ECM results in a decrease in its suitability as a sub- 
strate for PK-A. Because one of  the most remarkable effects 
of  the GAGs and ECM proteins was the ability of  heparin to 
increase the phosphorylarion of  basic F G E  it was further in- 
vestigated. 

Heparin Modifies the Kinetics of  the Phosphorylation 
Reaction 

The kinetics of  the phosphorylat ion of  basic F G F  by the cata- 
lyric subunit of  PK-A were examined to identify the mecha- 
nism through which the addition of  heparin to the reaction 

Feige et al. Phosphorylation of Basic FGF 3107 



Figure 2. Effects of GAGs and ECM proteins on the phosphoryla- 
tion of histones by PK-C and PK-A. A, Histone 1 (1.25 mg/ml) was 
incubated as described in the text with PK-C in the presence of 
heparin (Hep), heparan sulfate (HS), chondroitin sulfate A (CSA), 
chondroitin sulfate B (CSB), hyaluronic acid (HA), fibronectin 
(Fib), collagen IV (Col), laminin (Lain), or no additive (Ctl), and 
the amounts of radioactivity incorporated into TCA precipitable 
protein was measured by liquid scintillation counting. The Km for 
the reaction is 150 #g/ml. B, Histone IIA was incubated as de- 
scribed in the text with the catalytic subunit of PK-A and the same 
various additives. Results are the mean of three determinations. The 
K~ of this reaction is 200/~g/ml. 

mixture increases the phosphorylation reaction. A Line- 
weaver-Burke analysis of the reaction was carded out in the 
absence or presence of 50/~g/ml heparin (Fig. 3). Although 
the previous specificity studies established that the effects of 
heparin were because of interactions with basic FGF itself 
and not on the kinases, the Km value for this reaction, while 
decreased, was only reduced from 17 t~M in the absence of 
heparin to 13/zM in its presence. Thus, the binding of basic 
FGF to heparin had very little effect on the affinity of PK-A 
for basic FGE In contrast, these concentrations of heparin 
dramatically increased the Vm~ of the reaction, suggesting 
that either the enzyme was in fact directly affected by the 
presence of heparin or that when bound to heparin, basic 
FGF was phosphorylated at a novel, distinct site. Because of 
these significant changes in the kinetics of phosphorylation, 
it was necessary to establish whether the site of PK-A depen- 
dent phosphorylation was changed by the presence of hepa- 

rin. For this reason, the PK-C, PK-A and PK-A/heparin sites 
of phosphorylation were all identified. 

Heparin Changes the Amino Acid Targeted by PK-A 

In a previous study (13), we showed that human basic FGF 
is phosphorylated on a serine by PK-C and is phosphorylated 
by PK-A on a threonine. As expected from the consensus se- 
quences that are required for phosphorylation, the sites are 
thus distinct. It was thus unexpected that when human basic 
FGF is phosphorylated by PK-A in the presence of heparin 
the site of phosphorylation is changed to a serine residue 
(Fig. 4 B). There is in fact no evidence for threonine phos- 
phorylation and the partial hydrolysis products are remark- 
ably different. In the case of PK-A/heparin (Fig. 4 B), the 
partially hydrolyzed products are very hydrophobic and dra- 
matically different from those observed after phosphoryla- 
tion by PK-A alone. Thus, the presence of heparin in the 
reaction buffer changes the site targeted by PK-A presumably 
by conferring a tertiary structure to the growth factor that re- 
veals a cryptic site for PK-A dependent phosphorylation. It 
is presumably this change in the site of phosphorylation that 
accounts for the changes in V ~  rather than Km of the reac- 
tion observed earlier (Fig. 3). 

Several methods were used to identify the sites of phos- 
phorylation. Tryptic peptide mapping of the phosphorylated 
basic FGFs confirmed that the sites of PK-A-dependent phos- 
phorylation in the presence or absence of heparin are differ- 
ent (Fig. 5). When basic FGF is phosphorylated by PK-A 
alone, only one major phosphopeptide is detected (Fig. 5 A). 
This peptide has considerable chromatographic mobility and 
has the features of a charged molecule. In contrast, when ba- 

.,~ 300" S 

¢ • = 17uM 
,~--~EO 200 / Vmax = 0.023 pmol/min 

> ~- 100 
Kin. 13 uM 
Vmax - 0.22 pmol/min. 

-10 0 10 20 30 
11s (mg/ml)" 1 

Figure 3. Effect of heparin on the kinetic parameters of the phos- 
phorylation of basic FGF by PK-A. Various amounts of recom- 
binant human basic FGF (0.05-0.14 mg/ml; 1 mM = 18 mg/ml) 
were phosphorylated under the standard conditions described in 
Materials and Methods. The assay was performed in the presence 
of 4 #g/ml purified PK-A and in the absence (e) or presence (l) 
of 0.05 mg/ml heparin. After a 15-rain incubation at 30"C, the reac- 

• tion was stopped by 50% TCA precipitation. After addition of BSA 
as a carder, the solutions were centrifuged. The pellets were dis- 
solved in0.1 ml in NaOH N and reprecipitated with IV_A. The final 
pellets were dissolved in 0.1 ml in NaOH, neutralized with HCI, 
and the radioactivity content were determined by liquid scintillation 
counting. The results were plotted according to Lineweaver and 
Burke, and the kinetic parameters were calculated from each linear 
regression. 
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Figure 4. Phosphoamino acid 
analysis of human basic FGF phos- 
phorylated by PK-A in the ab- 
sence or presence of heparin. Re- 
combinant human basic FGF was 
phosphorylated by PK-A in the 
absence (A) or presence (B) of 
heparin under the same condi- 
tions described in the legend to 
Fig. 1. The 32p-labeled basic FGF 
was localized by autoradiography 
of the 15% SDS-PAGE, cut and 
extracted from the gel, hydro- 
lyzed with HCI and analyzed by 
two-dimensional high voltage 
electrophoresis on cellulose thin- 
layer plates. Radiolabeled phos- 
phoamino acids were identified 
after overnight autoradiography 
with intensifying screens. Aster- 
isks represent the origin of migra- 
tion of the samples, the circles 
show the position of the phos- 
phoserine (P-ser), phosphothreo- 
nine (P-thr), and phosphotyrosine 
(P-tyr) standards. The results were 
obtained with 200 (A) and 500 
(B) Cerenkov cpm. 

sic FGF is phosphorylated PK-A/heparin, at least four phos- 
phopeptides are detected (Fig. 5 B) ,  all of  which are con- 
siderably less hydrophobic than the one found with PK-A 
alone. The profiles are, in fact, clearly distinct as illustrated 

when phosphopeptides are analyzed in combination (Fig. 5 
C) suggesting that the sites of  phosphorylation are not in 
physical proximity. 

An analysis of  the tryptic peptide maps generated after the 

Figure 5. Phosphotryptic mapping analysis of human basic FGF phosphorylated by PK-A in the absence or presence of heparin. Recom- 
binant human basic FGF was phosphorylated by PK- A in the absence (A) or presence (B) of heparin under the same conditions described 
in Fig. 1. The 3zP-labeled basic FGF was localized by autoradiography after 15% SDS-PAGE, cut and extracted from the gel, digested 
extensively with TPCK-trypsin and the phosphopeptides were separated as described in the text. Asterisks indicate the points of sample 
application with ascending chromatography in the vertical direction. Electrophoresis of tryptic phosphopeptides generated from basic FGF 
phosphorylated in the absence of heparin (100 Cerenkov cpm, A), of basic FGF phosphorylated in the presence of heparin (500 Cerenkov 
cpm, B), and of a mixture of the phosphopeptides (C) was performed in the horizontal dimension with the anode on the left. 
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Figure 6. Comparative phosphotryptic mapping analysis of basic FGF phosphorylated by PK-C and PK-A/heparin. Recombinant human 
basic FGF was phosphorylated by PK-C (A) or by PK-A/heparin (B) as described in the text. The 32P-labeled basic FGF was localized 
by autoradiography after 15% SDS-PAGE, cut and extracted from the gel and digested extensively with TPCK-trypsin as described in the 
text. The phosphopeptides were separated in two-dimensions after the application of 400 (A) and 600 (B) Cerenkov cpm. Asterisks indicate 
the points of sample application. 

phosphorylafion of basic FGF by PK-C shows a similar pat- 
tern to the PK-A/heparin phosphorylation and reveals the 
presence of highly hydrophobic radiolabeled peptides (Fig. 
6 A). These peptides are characterized by the fact that they 
are phosphorylated on serine residues (Fig. 4) (13) and that 
they are hydrophobic and lack significant charge. The first 
interpretation of this finding was the surprising possibility 
that, in the presence of heparin, PK-A phosphorylates basic 
FGF at a PK-C consensus sequence. In an effort to determine 
if indeed the PK-C site and the PK-A/heparin site are one and 

the same, the peptides were analyzed by peptide mapping of 
human basic FGF on HPLC. 

Identification of the PK-C, PK-A, and PK-A Heparin 
Sites of Phosphorylation 

Staphylococcus aureus 1/8 protease digestion of recombinant 
human basic FGF generates five peptides (P[-8] - [+5] ;  P6- 
45; P46-58; P60-78; and P70-91) each of which contains a 
single serine residue (Ser[-5];  Ser9; Ser47; Set64; and 

V8 PROTEASE MAPPING OF RECOMBINANT HUMAN BASIC FGF 

Q (-8) (1) (5) 
AAGSlTTL PALPE 

Q (6) (45) 
DGGSGAFPPGHFKDPKRLYCKNGGFFLRtHPDGRVDGVRE 

~(60) ( (78) t"~(46' (58) /~'~ (59) Ser-84 
KSDPHIKLQLQAE ~ E  ÷ ~ , J  RGVV~VCANRYLANKE 

PK-C 
Q ( 7 9 )  (91) /~ (92)  (96) (99) 

DGRLLASKCVTDE ~ CFFFE Q (97) RLE 

fThr-112 
t, '~(ioo) (146) 

SNNYNTYRSRKYTSWYVALKRTGQYKLGSKTGPGQKAILFLPNSAKS 

PK-A 

Figure 7. Staphylococcus I/8 digestion of human basic FGE 
Recombinant human basic FGF was resolved to nine major 
peptides after digestion with V8 protease by reverse phase 
HPLC. Peptides 5 and 9 contain classical PK-C sites of phos- 
phorylation characterized by the S-X-K and S-X-R sequence 
shown. Peptide 9 contains two PK-A sites characterized by 
RXXT and KXXS. The numbering system corresponds to 
the 146 amino acid sequence reported by Eschet al. (10). 
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Figure 8. Distribution of radioactivity in the peptides generated by 
V8 protease digestion. The pepfides generated by the enzymatic 
degradation of human basic FGF were resolved and identified by 
reverse phase HPLC and fractions were assayed for the presence 
of 3,p. Relative incorporation of label is expressed as the percent- 
age of the total counts recovered. 

Ser85, respectively) and a sixth C-terminal peptide (P100- 
146) containing 5 serine residues (Fig. 7). Phosphorylation 
was accomplished in vitro by incubation with pKoC, PK-A, 
or PK-A in the presence of heparin. For FGF phosphorylated 
by PK-C, the radioactivity eluted with a single peptide which 
by sequencing was identified as basic FGF(60--78) (Fig. 8 A). 
Because this peptide contains only one serine (at position 
64), it was concluded that Set ~ is the site of PK-C-depen- 
dent phosphorylation of basic FGE A significant portion 
(15 %) of the radioactivity also comigrated with a minor pro- 
tein peak that was designated as the partial cleavage product 
1)59-78 (see Fig. 7). Although this peptide is an unusual pro- 
duct that is not normally detected in the digests, it is possible 
that the phosphorylation of the Ser s4 makes the neighboring 
cleavage site less susceptible to digestion by the S. aureus V8 
protease. 

Unlike PK-C, PKoA phosphorylates basic FGF at a site in 
the C-terminus (P100-146, Fig. 8 B). The purified radiola- 
beled phosphopeptide contains four threonlne residues of 
which only one (Thr u2) meets the criteria ofa  PK-A-depen- 
dent consensus sequence (Fig. 7). We used the fact that bovine 
basic FGF has a substituted serine at this site (Ser m) to 
help identify Thr '~2 as the residue phosphorylated by PK-A 
in human basic FGE As such, when bovine basic FGF is 
phosphorylated by PK-A, a phospho serine is identified by 
phosphoamino acid analyses (Fig. 9 B). 

Mapping of the basic FGF phosphorylated by PK-A/hepa- 
rin established that heparin confers a new site of PK-A-de- 
pendent phosphorylation to basic FGE Peptide maps (Fig. 
8 C) gave results similar to those seen with PK-C and in 
agreement with the 2D-tryptic maps. The fact that the la- 
beled peptide contains only 1 serine (Fig. 7) thus establishes 
the identity of Ser ~ as the site targeted by PK-A/heparin. 
Heparin thus conceals the site Thr 'm2 and induces a struc- 
tural conformation to a PK-C site to make it compatible for 
PK°A phosphorylation. 

Figure 9. Phosphorylation of hu- 
man and bovine basic FGF by the 
catalytic subunit of PK-A. The 
growth factors, by the substitution 
of Thr u2 for Ser ~12 were phos- 
phorylated according to Materials 
and Methods and the phospho- 
amino acids identified by two-di- 
mensional, high voltage electro- 
phoresis in cellulose thin layer 
plates. 
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Figure 10. Effect of phosphorylation by PK-A and PK-A/heparin on 
the binding of basic FGF to its cell surface receptor. Recombinant 
human basic FGF (2.5/~g) was phosphorylated for 25 rain at 30°C 
in the presence (e) or absence (n) of PK-A (A) andin the presence 
(o) or absence (m) of heparin (B), and each of the FGFs were 
tested for their capacity to displace [~2sI]-basic FGF in a radiore- 
ceptor assay. The binding to low affinity sites was assessed in a 2 M 
NaCI wash of the cells and the binding to high affinity sites was 
measured in a Triton X-J00 extract of the cells. No differences were 
seen in the low affinity sites and the results presented are those oh- 
mined for the high affinity receptor. 

binding domain (Thr m) prevents the generation of a func- 
tionally activated basic FGE 

Discussion 

The results presented in Fig. 11 summarize the effects of 
GAGs and proteins derived from the ECM on the phosphory- 
lation of basic FGE Basic FGF is a substrate for both PK-A 
and PK-C. PK-A phosphorylates basic FGF in the receptor 
binding domain and this phosphorylated basic FGF has a 
greater affinity for its receptor on BHK cells. When basic 
FGF is associated with ECM proteins like fibronectin, lami- 
nin, and collagen, the site of phosphorylation is masked and 
the mitogen is no longer a substrate for PK-A. In the presence 
of heparin, basic FGF is phosphorylated by PK-A at a cryptic 
site that is not a PK-A consensus sequence. Phosphorylation 
at this site is dependent on the interaction between heparin 
and basic FGE It is thus consistent that the changes con- 
ferred by heparin that make Ser 6~ recognizable by PK-A 
mask this sequence to the phosphorylation by PK-C. 

In view of the fact that phosphorylation is generally re- 
garded as an intracellular event (21), it would appear difficult 
to reconcile the findings reported here with a physiological 
role for heparin, phosphorylation, and the regulation of ba- 
sic FGF activity. Recently however, there have been reports 
suggesting the existence of ecto kinases capable of phos- 
phorylating proteins outside of the cell (8, 9, 24) and which 
might phosphorylate the basic FGF that is localized in the 
ECM. Furthermore, a series of intracellular heparinlike 
molecules have been detected (11, 17, 23) that could poten- 
tially be capable of modulating the phosphorylation of basic 
FGF inside the cell. Basic FGF is potentially available at 
multiple sites for phosphorylation. Clearly, it will be of para- 
mount importance to establish the functional significance of 
this posttranslational change. 

Among the substances tested, only heparin enhanced the 
phosphorylation of basic FGE The increase in phosphoryla- 
tion was because of an increase in the velocity of the reaction 

Heparin Modifies the Functional Effects of 
PK-A-dependent Phosphorylation 
Previous studies in our laboratory had demonstrated that 
Thr m is in the receptor binding domain of human basic 
FGF. Furthermore, its phosphorylation results in the genera- 
tion of a form of basic FGF that has an increased capacity 
to displace [t25I]basic FGF from its receptor on BHK cells 
(13). We reasoned that if basic FGF is no longer phos- 
phorylated in the receptor binding domain when it is phos- 
phorylated by PK-A/heparin, it should be indistinguishable 
from recombinant FGF. We had previously shown just such 
an effect when basic FGF is phosphorylated by PK-C (13). 
As expected then, when basic FGF is phosphorylated by PK- 
A in the receptor domain, it is more potent than unphosphor- 
ylated recombinant basic FGF at displacing the radiolabeled 
ligand (Fig. 10 A). In contrast, this increased activity is not 
detected when basic FGF is phosphorylated by PK-A/hepa- 
rin. Like PK-C-phosphorylated FGF, it is equipotent to the 
recombinant growth factor (Fig. 10 B). Thus, the failure of 
PK-A/hepaxin to phosphorylate basic FGF in its receptor 

The Phosphorylation of Basic FGF 

[PK-A } 

~ l dte? 
+GAGs ~ ~+ECM (inhibition)" proteins 

[PK-Cl 
Figure 11. Summary of the effects of ECM components on the phos- 
phorylation of basic FGF by PK-A or PK-C. The two sites ofphos- 
phorylation in the sequence of human basic FGF are shown in cir- 
cles. For comparative purposes, the amino acid numbers are based 
on the sequence of basic FGF originally reported for bovine pitu- 
itary basic FGE 
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and a change in the site of phosphorylation from Thr "2 to 
S e ~ .  Heparin thus induces conformational changes in ba- 
sic FGF that result in the masking of the normal phosphory- 
lation site and the unmasking of a new one. The fact that 
Ser ~ is phosphorylated by PK-C or PK-A/heparin agrees 
with the PK-C consensus sequence (ser/thr-x-arg/lys) pro- 
posed by Woodgett et al. (34), but does not correspond to the 
consensus sequence required for a PK-A site (6). The se- 
quence (Fig. 7) surrounding the targeted serine (-gly-val-val- 
SER-ile-lys-) does not have any basic amino acid on the 
N-terminal side of the phosphorylated serine residue. Thus, 
heparin binding presumably alters the tertiary structure to 
basic FGF to turn a classical PK-C site (Ser ~) into a PK-A 
site. Accordingly, in the presence of heparin these same 
residues lack the features ofa PK-C consensus sequence, and 
basic FGF becomes a weak substrate for PK-C. 

A close examination of the differential effects of the GAGs 
and ECM-derived proteins on the phosphorylation of basic 
FGF can suggest that sequences of basic FGF are interacting 
with each of these molecules. The ability of fibronectin, 
laminin, and collagen to inhibit the effects of PK-A but not 
PK-C suggests that they are associating themselves with the 
receptor binding domain of basic FGF and preventing the ac- 
cessibility of PK-A to the consensus substrate sequence lo- 
cated around Thr "2. This possibility is supported by the ob- 
servation that the proteins have no effect on PK-C-catalyzed 
phosphorylation that targets sequences outside of this do- 
main (Ser~). The effects of GAGs appear more complex, 
presumably because their interactions with basic FGF confer 
changes in its tertiary structure. These changes are suggested 
by the results here but also by the fact that heparin protects 
basic FGF from proteolysis and denaturation (19, 32). Both 
results are consistent with the observation that heparin has 
multiple binding sites on basic FGF (2). 

The identification of a functional effect of heparin on the 
phosphorylation of basic FGF coupled with the demonstra- 
tion of a novel interaction between basic FGF, fibronectin, 
and laminin emphasizes the potential role of components of 
the ECM in regulating the activity, stability, and storage of 
basic FGF (1, 2, 16, 33). While it remains premature to pro- 
pose a specific physiological function for the phosphoryla- 
tion of basic FGF, the results presented here would be consis- 
tent with a regulatory function. Certainly, the effects reported 
here establish the fact that basic FGF is interacting with a 
complex array of GAGs, proteoglycans, and basement mem- 
brane proteins in the ECM. It will thus be important to con- 
sider the contribution of each of these molecules in the regu- 
lation of this growth factor's activity in vivo and the 
possibility that they modulate phosphorylation dependent 
activities of the FGFs. 
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