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Abstract

Mining and Modeling Processes on Graphs

by

Arlei Lopes da Silva

Graphs are a powerful tool for the study of dynamic processes, where a set of in-

terconnected entities change their states according to the time-varying behavior of an

underlying complex system. For instance, in a social network, an individual’s opinions

are influenced by their contacts; while, in a traffic network, traffic conditions are spa-

tially localized due to the fact that vehicles are often constrained to move along roads.

Understanding the interplay between structure and dynamics in networked systems en-

ables new models, algorithms, and data structures for managing and learning from large

amounts of data arising from these processes.

This dissertation is focused on recent work on the analysis of dynamic graph processes.

More specifically, we will show how sampling and spectral graph theory can be applied

to effectively represent data from such processes. We also present efficient algorithms

for learning Interleaved Markov Models (IHMMs). These are powerful latent variable

models that enable the clustering of discrete sequences without training data and lead

to interesting challenges in terms of inference. Furthermore, we also discuss how graphs

can be modified in order to control a process of interest via network design and introduce

three ongoing projects on the subject of this dissertation. The statement of the thesis

is that mining and modeling processes on graphs leads often to problems that are not

not only hard computationally but also in terms of inference. They can be solved using

spectral, probabilistic, and combinatorial optimization algorithms, and must take into

account the graph structure and also large amounts of data traces from these processes.
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Chapter 1

Introduction

A common characteristic of the problems investigated in this dissertation is that they are

motivated by real applications and the availability of real data. Recently, an incipient

field, called Data Science, has emerged as an umbrella for related research topics. Data

Science is at the intersection between computer science, statistics, and application do-

main knowledge. According to David Donoho, a Statistician at Stanford: “Data Science

concerns the recognition, formalization and exploitation of data phenomenology emerging

from the digital transformation of business, society, and science.”1 Examples of this

transformation include advances in hardware, IoT and cloud computing in addition to

the popularization of the Web, social media and smartphones.

Graphs, or networks, are a powerful theoretical framework for modeling complex data.

They are a common language in which different communities can communicate problems

and their solutions. As a consequence, a significant part of this dissertation is on the

design and application of graph algorithms. For instance, how can we identify attributes

(eg., age, gender) that explain the rise of communities in society [1]? Or how to compress

vehicle traffic data over time [2]? Or, given a large system log, how to break apart traces

1David Donoho. Data Science: The End of Theory? Talk at Univ. Wien.
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of different components running concurrently in the system [3]? These problems can not

only be described in the language of graphs but also be solved based on fundamental

results from graph theory and algorithms.

Another emerging area also related to the topic of this dissertation is Network Science.

The general paradigm of network science is that networks (or graphs) arising from differ-

ent applications unexpectedly share many interesting properties. Thus, the motivation to

create a science that studies networks. Newman et al.[4] emphasizes the following prop-

erties of network science: (1) Focuses on properties of real networks; (2) takes the view

that networks evolve; and (3) applies networks as a framework for dynamical systems.

Most of the problems discussed in this dissertation assume a graph as a space in which

a process is taking place. Broadly speaking, a process is a sequence of events that changes

the state of a system. In the case of graph processes, event effects are correlated for some

pairs of variables and these correlations can be represented as a graph. For instance, in

a social network, an individual’s opinions are influenced by their contacts; while, in a

traffic network, traffic conditions are spatially localized due to the fact that vehicles are

often constrained to move along roads. Understanding the interplay between structure

and dynamics in networked systems enables new models, algorithms, and data structures

for managing and learning from large amounts of data arising from these processes.

The main challenges related to mining and modeling graph processes are: (1) The

scale and complexity of the system and (2) the limited knowledge of states and events.

In particular, real graphs might have billions of vertices and edges representing hetero-

geneous time-evolving relationships. Moreover, the graph structure might be partially or

completely missing, which requires efficient inference of the structure of such processes.

Figure 1.1 shows how the subject of this dissertation relate with a few research areas.

In particular, we divide such areas into three groups. Applications (Databases, Web,

Social Networks) are those areas that we use as a motivation and a source of data for

2
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Mining and Modeling 
Processes on Graphs

● Databases
● Web
● Social networks

Applications
● Graphs
● Linear Algebra
● Statistics

Tools

● Graph mining
● Signal processing on graphs
● Machine learning

Potential Impact

Figure 1.1: Relationship between the topic of this dissertation and other subject areas.

our research. Tools (Graphs, Linear Algebra, Statistics) are those areas that provide

theoretical background for the solutions we propose. Potential Impact (Graph Mining,

Signal Processing on Graphs, and Machine Learning) are areas that are the closest to

our research and also where we aim to have a direct impact on.

1.1 Contributions, Organization and Thesis State-

ment

The contributions of this dissertation can be summarized as follows:

1. Hierarchical In-Network Compression via Importance Sampling [5] (Chapter 2):

Many real-world complex systems can be modeled as dynamic networks with real-

valued vertex/edge attributes. Examples include users’ opinions in social networks

and average speeds in a road system. When managing these large dynamic net-

works, compressing attribute values becomes a key requirement, since it enables

the answering of attribute-based queries regarding a node/edge or network region

3
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based on a compact representation of the data. To address this problem, we intro-

duce a lossy network compression scheme called Slice Tree (ST), which partitions

a network into smooth regions with respect to node/edge values and compresses

each value as the average of its region. ST applies a compact representation for

network regions, called slices, that are defined as a center node and radius distance.

We propose an importance sampling algorithm to efficiently prune the search space

of candidate slices in the ST construction by biasing the sampling process towards

the node values that most affect the compression error. The effectiveness of ST in

terms of compression error, compression rate, and running time is demonstrated

using synthetic and real datasets. ST scales to million-node instances and removes

up to 87% of the error in attribute values with a 103 compression ratio. We also

illustrate how ST captures relevant phenomena in real networks, such as research

collaboration patterns and traffic congestions.

2. Graph Wavelets via Sparse Cuts [2] (Chapter 3): Modeling information that resides

on vertices of large graphs is a key problem in several real-life applications, ranging

from social networks to the Internet-of-things. Signal Processing on Graphs and,

in particular, graph wavelets can exploit the intrinsic smoothness of these datasets

in order to represent them in a compact and accurate manner. However, how to

discover wavelet bases that capture the geometry of the data with respect to the

signal as well as the graph structure remains an open problem. In this paper, we

study the problem of computing graph wavelet bases via sparse cuts in order to pro-

duce low-dimensional encodings of data-driven bases. This problem is connected

to known hard problems in graph theory (e.g. multiway cuts) and thus requires an

efficient heuristic. We formulate the basis discovery task as a relaxation of a vector

optimization problem, which leads to an elegant solution as a regularized eigenvalue

4



Introduction Chapter 1

computation. Moreover, we propose several strategies in order to scale our algo-

rithm to large graphs. Experimental results show that the proposed algorithm can

effectively encode both the graph structure and signal, producing compressed and

accurate representations for vertex values in a wide range of datasets (e.g. sensor

and gene networks) and significantly outperforming the best baseline.

3. Spectral Algorithms for Temporal Graph Cuts [6] (Chapter 4): The sparsest cut

problem consists of identifying a small set of edges that breaks the graph into bal-

anced sets of vertices. The normalized cut problem balances the total degree, in-

stead of the size, of the resulting sets. Applications of graph cuts include community

detection and computer vision. However, cut problems were originally proposed for

static graphs, an assumption that does not hold in many modern applications where

graphs are highly dynamic. In this paper, we introduce sparsest and normalized

cuts in temporal graphs, which generalize their standard definitions by enforcing

the smoothness of cuts over time. We propose novel formulations and algorithms

for computing temporal cuts using spectral graph theory, divide-and-conquer and

low-rank matrix approximation. Furthermore, we extend temporal cuts to dynamic

graph signals, where vertices have attributes. Experiments show that our solutions

are accurate and scalable, enabling the discovery of dynamic communities and the

analysis of dynamic graph processes.

4. Learning Interleaved Hidden Markov Models [3] (Chapter 5): Interleaved hidden

Markov models (IHMMs) extend the classical hidden Markov models (HMMs) by

simulating multiple HMMs that concurrently produce a sequence of observations.

Our investigates the problem of learning the parameters of IHMMs from interleaved

data. Exact inference for IHMMs is intractable, and thus we focus on approximate

inference via Loopy Belief Propagation (LPB).

5
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5. Other Problems (Chapter 6): Here, we grouped problems that, although related,

are not part of the core idea of this dissertation.

(a) Network Design [7, 8, 9] (Section 6.1): Network design is a recent area of study

focused on modifying or redesigning a network in order to achieve a desired

property. As networks become a popular framework for modeling complex

systems (e.g. VLSI, transportation, communication), network design provides

key controlling capabilities over these systems, especially when resources are

constrained. As part of this dissertation, we have investigated three network

design problems: (1) How to maximize the centrality of a target set of users in

a social network [7]; (2) how to minimize the size of the k-core of a network [8];

and (3) how to minimize the influence of a target set of users in a social network

[9]. In all these optimization problems, we assume that the number of network

(edge) modifications is bounded by a budget. We have shown that these

problems are NP-hard, and some of them are hard to approximate even by a

constant. Moreover, we have proposed efficient algorithms for these problems,

showing that they outperform their respective baselines in real datasets.

(b) Outlier Detection Outlier from Network Data with Subnetwork Interpretation

[10] (Section 6.2): Detecting a small number of outliers from a set of data

observations is always challenging. This problem is more difficult in the set-

ting of multiple network samples, where computing the anomalous degree of

a network sample is generally not sufficient. In fact, explaining why a given

network is exceptional, expressed in the form of subnetwork, is also equally

important. We develop a novel algorithm to address these two key problems.

We treat each network sample as a potential outlier and identify subnetworks

that help discriminate it from nearby samples. The algorithm is developed in

6
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the framework of network regression combined with the constraints on both

network topology and L1-norm shrinkage to perform subnetwork discovery.

Our method thus goes beyond subspace/subgraph discovery. We also show

that the developed method converges to a global optimum. Empirical evalu-

ation on various real-world network datasets demonstrates the advantages of

our algorithm over various baseline methods.

Statement of the thesis: Mining and modeling processes on graphs

leads often to problems that are not not only hard computationally

but also in terms of inference. They can be solved using

spectral, probabilistic, and combinatorial optimization algorithms, and must

take into account the graph structure and also large amounts of data traces

from these processes.

7



Chapter 2

Hierarchical In-Network

Compression via Importance

Sampling

2.1 Introduction

Managing large dynamic networks that represent data-rich complex systems is a chal-

lenge in terms of processing time, communication, and storage. In social networks, for

instance, users’ opinions regarding different topics along time generate a large amount

of data that describes the network opinion dynamics. Similarly, sensors spread over a

road network provide massive, real-time data about the traffic conditions across multiple

regions (see Figure 2.1). In these scenarios, each node of the network has an attribute

(e.g., opinion, speed) and these attributes describe properties of a subnetwork (e.g. a

community’s opinion on a topic) and the overall network, such as major traffic jams

affecting several neighborhoods of a city. Therefore, compressing vertex/edge attributes

is a fundamental problem in the management of these large dynamic networks.

8
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An important step towards compressing real-world network attributes is understand-

ing the processes that generate attribute values. In social networks, opinion dynamics is

affected by word-of-mouth dissemination [11]. Similarly, bad traffic conditions in a given

location are likely to affect nearby locations. These are examples of network processes,

which change node/edge values via connections in the network [12]. Network processes

arise in many domains, thus we can exploit them to better compress network attributes.

We can view network attributes as a signal over the network, where each node/edge

has a value. Signals generated by network processes are expected to be smooth with

respect to the network structure (i.e. values are similar at neighboring nodes) [13].

As a consequence, attributes can be expressed in terms of smooth regions, which are

network regions with similar values. Examples of smooth regions in real networks include

communities whose members share a similar opinion and neighborhoods affected by the

same traffic conditions. In this work, we study the problem of compressing network

attributes by decomposing the network into smooth regions.

While there is a rich body of research on compressing network topologies [14, 15],

compressing network attributes is an emerging problem [13]. In a traffic network, for

instance, the structure is mostly fixed but traffic conditions change along time due to

seasonal patterns (e.g. rush hours) and events (e.g. accidents). In this context, the

compressed data provides, in a compact form, key information for answering queries re-

garding the traffic conditions in a particular location or region. In a hypothetical case

where traffic conditions are random with respect to the network, accurately answering

such queries would require keeping a large fraction of node values. However, if condi-

tions are smooth over the structure, we can exploit such locality and represent network

attributes in terms of average values of few regions (e.g., streets, neighborhoods).

We propose a network compression strategy called Slice Tree (ST), which is a hi-

erarchical decomposition of a snapshot of the network in terms of smooth regions. ST

9
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(a) Traffic network (b) Slice tree (c) Reconstructed state values

Figure 2.1: Slice Tree (ST) compression of a real traffic network (a). We set colors and
sizes of nodes according to the average speed in the locations (large/red: very slow,
medium/yellow: slow, small/green: fast). The attributes (speeds) are compressed
as an ST with 2 slices (b) that decomposes the network into three smooth regions.
The reconstruction of the original speed values (c) demonstrates that the compression
captures the two major congestions in the network..

regions are represented in a compact form as a center and radius. A slice partitions a set

of nodes into two regions: one composed of nodes within radius distance from a center

node and the other containing the remaining nodes. An ST is constructed by recursive

applications of such operations. Leaves of an ST define regions whose values are approx-

imated as their average. To enable the reconstruction of regions, ST intermediate nodes

retain information about each slice applied in the decomposition. Since ST is a lossy

compression, we compute its error as the sum of squared errors (SSE) of the recovered

values with respect to the original node values in the network.

Figure 2.1 shows the ST compression of a real traffic network (Figure 2.1a), where

node values represent average speeds. Node colors and sizes emphasize low-speed loca-

tions. An ST (Figure 2.1b) decomposes the network into two congested regions and one

non-congested region. Reconstructed speed values from the ST (Figure 2.1c) show that

it captures the two major congestions (see more details in Section 2.6.4).

Figure 2.2 illustrates the ST compression of an example network (Figure 2.2a) with

one (Figure 2.2b) and two slices (Figures 2.2c and 2.2d). We define the error of the

network (14.22) w.r.t. its average (2.44). The slice S1 (Figure 2.2b), which is centered

10
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(d) Opt. ST, SSE =
0.65

Figure 2.2: An illustrative example of the ST compression. A network with node
values and error (SSE) w.r.t. the average (a). First (b) and second (c) slice STs with
respective errors. A slice divides nodes into two regions, one with nodes within radius
distance from a center node and other with the remaining nodes. STs are constructed
by choosing slices recursively and leaves of the ST define regions. Node values are
compressed as the average of their region. Optimal ST with 2 slices (d).

at node a and has radius 3, separates the nodes into regions {a, b, c, d, e} and {f, g, h, i}

with averages 1.4 and 3.75, respectively. The error of the resulting ST (1.9) is the total

SSE of the region values w.r.t. the original values. The ST given in Figure 2.2b can be

extended by a new slice S2 (center f and radius 2) that separates {a, b, c, d, e} into two

new regions {d, e} (average 2) and {a, b, c} (average 1). Figure 2.2d shows an alternative

ST with 2 slices which is optimal, i.e. it minimizes the SSE of the region values.

Computing an optimal ST with k slices is an NP-hard problem. We propose a greedy

scheme for ST construction which recursively selects the next slice that minimizes the

compression error. While this solution achieves good results in practice, it is prohibitive

for large networks due to the cost of searching over the set of possible slices. Therefore,

we devise an efficient probabilistic approximation algorithm that prunes suboptimal slices

with theoretical guarantees. In particular, we design an importance sampling strategy

that biases the sampling process towards nodes for which the values are more likely

to affect the error of the compression. We show that importance sampling requires less

samples than uniform sampling for computing slices with the same error guarantees. Our

main contributions are outlined as follows:
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• We introduce Slice Tree as a novel network attribute compression strategy, show

that computing an optimal ST, which minimizes the compression error, is NP-hard

and present a greedy heuristic for ST construction.

• We propose an importance sampling algorithm, with associated approximation

guarantees, which enables the application of ST to million-node networks by ef-

fectively pruning the search space of candidate slices.

• We show that ST is an effective compression scheme, removing up to 87% of the

error in node values with a 103 compression ratio. Case studies illustrate how

STs model relevant properties of real networks, such as collaboration patterns and

traffic congestions.

2.2 Problem Definition

We define a network as a triple G(V,E,W ), where V and E are the sets of vertices

and edges, while W is a function over the vertices (W : V → R) that gives the vertex

attributes. The value of a vertex v is denoted as w(v) and d(u, v) is the shortest path

distance between u and v. The network compression problem is posed as follows.

Definition 1 Network attribute compression. Given a budget b and a network

G(V,E,W ), compute a compression Γ : V → R, such that Γ can be encoded using b bits

and Γ(v) gives an approximate value for w(v).

The function Γ is a lossy compression of W . We quantify the compression error

of Γ as a sum of squared errors:
∑

v∈V (w(v) − Γ(v))2. A good compression recovers

the values given by W with small error. Moreover, Γ must be computed efficiently for

large networks. While we define the problem in terms of SSE minimization and node

12
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attributes, our general framework can be adapted to other error metrics including those

based on edge attributes. Also, we focus on the problem of compressing a single snapshot

of the network at a time.

2.3 Slice Tree

Our approach for the network attribute compression problem is Slice Tree (ST), which

decomposes a fixed network structure into hierarchical regular regions that are smooth

with respect to the attribute values. ST encodes information for reconstructing the

regions and their averages, thus providing a compact representation for attribute values

based on the network structure.

A slice divides a set of nodes into two subsets, one containing nodes within radius

distance from a center node and the other composed of the remaining nodes in the set.

Definition 2 Slice. Given a network G, nodes X ⊆ V , a center c ∈ V , and a radius

r ≥ 0, a slice s(c, r,X) partitions X into P = {u ∈ X|d(c, u) ≤ r} and X \ P .

Slices are compact representations for regular partitions. A slice encodes a separation

of a set of nodes X into two subsets (P and X \ P ) using only two parameters (center

and radius). Figure 2.2b, shows a slice S1(a, 3, V ) applied to the set of nodes from the

network shown in Figure 2.2a. New slices can be applied to the resulting partitions P and

X \ P , producing a hierarchical data structure. The sequence of slices is a compressed

representation for the final regions in the ST.

Definition 3 Slice Tree (ST). A slice tree ST (G, k) is a binary tree that encodes k

recursive slices in G. The first slice is applied to V and subsequent slices are applied

(recursively) to the resulting partitions (P and X \ P ).

13
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Leaves of an ST define partitions (or regions) in the network and the representation

cost of an ST is linear in the number of slices k. To compress the network attribute

values W , we assign to each leaf node of the ST a value µ(P ) that is the average value of

nodes in P (µ(P ) = 1/||P ||
∑

v∈P w(v)). Values of nodes v ∈ Pi are compressed as µ(Pi).

An ST with two slices (i.e. k = 2) for the network from Figure 2.2a is shown in

Figure 2.2c. The partitions {a, b, c}, {d, e}, and {f, g, h, i} are produced by the slices

S1 and S2. We compress the value w(f) as 3.75, since this is the average µ({f, g, h, i}).

The error of an ST is computed as a sum of squared errors with respect to the original

values. For instance, the error of the ST in Figure 2.2c is 0.75. An optimal Slice Tree

ST ∗(G, k) minimizes the compression error
∑

P∈{P1,...,Pk+1}
∑

v∈P (w(v)− µ(P ))2. Figure

2.2d shows an optimal ST (SSE= 0.65) with two slices for the network shown in Figure

2.2a. Computing ST ∗(G, k) is NP-hard.

Theorem 1 Optimal Slice Tree. The slice tree compression problem is NP-hard.

Proof: Let V C(G(V , E), q) be an instance of the (NP-complete) Vertex Cover prob-

lem, which asks whether there exists a set of vertices V ′ ∈ V such that |V ′| = q and,

for each edge (u, v) ∈ E , u ∈ V ′ or v ∈ V ′ (or both). There is a corresponding instance

ST (G(V,E,W ), 2q) of the ST problem, where G is a 4-partite graph defined as follows.

The set of nodes is V = V 1 ∪ V 2 ∪ V 3 ∪ V 4, where for each node vi ∈ V we create

nodes v1i ∈ V 1 and v2i ∈ V 2, and for each edge ej ∈ E we create nodes e3j,1, e
3
j,2 ∈ V 3

and e4j,1, e
4
j,2 ∈ V 4. The set E contains edges (v1i , v

2
i ) for all nodes vi ∈ V , (e3j,1, e

4
j,1) and

(e3j,2, e
4
j,2) for all edges ej ∈ E , and (v2i , e

3
j,1) for all edges ej adjacent to node vi in G. W

is such that w(vhi ) = 1 if vhi ∈ V 3 and w(vhi ) = 0, otherwise.

We show that V C(G, q) is true iff ST (G, 2q) has 0-error. Given a vertex cover V ′,

we generate a 0-error ST by placing a slice s(v1i , 2, Xi) followed by a slice s(v1i , 1, X
′
i)

for every vi ∈ V ′. The order in which these slices are placed and the sets Xi and X ′i

14
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involved do not matter. The resulting ST isolates nodes in V3 from the remaining ones.

Conversely, given a 0-error ST, we can generate a vertex cover by first applying some

simple transformations to the ST and then selecting each vertex vi ∈ V for which there

is a slice s(v1i , 2, X) as part of the cover V ′. These transformations enforce all slices in

the ST to be centered at nodes in V 1 and the cases to be considered are slices centered

at nodes in V 2 and V 3. Slices centered in V 2 with radius 1 can be replaced by slices

centered in V 1 with radius 2 for an equivalent solution. Moreover, each pair of slices

separating nodes e3j,1 and e3j,2 from the rest are replaced by two slices with any center v1i

such that ej is adjacent to vi, one with radius 2 followed by another with radius 1.

Theorem 1 shows that finding the best ST from G with k slices might require searching

over anO(d(G)||V ||k) space of candidate STs, where d(G) is the diameter ofG. Candidate

STs combine possible choices of centers and radii and are order-sensitive. In the rest of

this work, we devise efficient heuristics for computing accurate STs in large networks.

2.4 Fast Slice Tree Compression

We outline a greedy procedure that computes an ST by repeatedly selecting the

slice that minimizes the compression error. To scale this solution to large networks, we

introduce a probabilistic approximation algorithm that applies sampling and pruning in

the ST construction.

2.4.1 Greedy Slice Tree Construction

While building an optimal ST is a computationally hard problem, a single optimal

slice can be found in polynomial time by searching over all possible center-radius com-

binations. Therefore, a greedy algorithm, which builds an ST by selecting consecutive

slices that minimize the compression error, is a natural approach for the ST problem.
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We can express the benefit of adding a slice to an ST as follows.

Definition 4 The error reduction φ(s) of a slice

s(c, r,X) is defined as:

φ(s) = SSE(X)− SSE(P )− SSE(X \ P ),

where P and X \ P are regions produced by s and SSE(Y ) =
∑

v∈Y (w(v)− µ(Y ))2.

An important property of φ(s) is that it can be computed in terms of the mean values

and the sizes of partitions X and P (or X \ P ), as shown in Theorem 2.

Theorem 2 The error reduction φ(s) can be computed in terms of average values µ(X),

µ(P ) and µ(X \ P ):

φ(s) = (µ(X)− µ(P ))2
||P ||||X||
||X \ P ||

= (µ(X)− µ(X \ P ))2
||X \ P ||||X||
||P ||

Proof: The SSE of the average µ(Y ) w.r.t. values y ∈ Y can be expressed as:

∑
y∈Y

(y − µ(Y ))2 =
∑
y∈Y

y2 − 1

||Y ||

(∑
y∈Y

y

)2
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Thus,

φ(s) =
∑
v∈X

w(v)2 − 1

||X||

(∑
v∈X

w(v)

)2

−
∑
v∈P

w(v)2 +
1

||P ||

(∑
v∈P

w(v)

)2

−
∑

v∈X\P

w(v)2 +
1

||X \ P ||

 ∑
v∈X\P

w(v)

2

= − 1

||X||

(∑
v∈X

w(v)

)2

+
1

||P ||

(∑
v∈P

w(v)

)2

+
1

||X \ P ||

 ∑
v∈X\P

w(v)

2

= (µ(X)− µ(P ))2
||P ||||X||
||X \ P ||

We derive an expression w.r.t. µ(X \P ) by replacing µ(P ) by (µ(X)||X||−µ(X \P )||X \

P ||)/||P || in this equation.

Intuitively, a good slice produces new regions, P and X \ P , for which averages,

µ(P ) and µ(X \ P ), deviate from the average value of X. Theorem 2 supports an

efficient approach for computing the error reduction of concentric slices of increasing

radii. Moreover, we apply it to compute sampling-based upper bounds on the error

reduction of candidate slices, as described in Section 2.4.2. Our greedy algorithm selects,

at each step, the slice that maximizes the error reduction.

The Slice function (Algorithm 1), identifies the slice t with maximum error reduction

φ(t) for a partition X. It iterates over all possible centers and increasing radii up to a

maximum radius(c,G,X) that splits X into non-empty regions. A center-radius pair

(c, r) defines a candidate slice s in X (step 3). The error reduction of a candidate slice

s is computed according to Theorem 2 (step 4) and the slice that maximizes the error
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Require: Network G, set of nodes X
Ensure: Best slice t

1: for All centers c ∈ X do
2: for All radii r ∈ [0, radius(c,G,X)] do
3: s← (c, r,X)

4: φ(s)← (µ(X)− µ(P ))2 ||P ||||X||||X−P ||
5: t← s, if φ(s) is the largest observed reduction
6: end for
7: end for

Algorithm 1: Slice

Require: Network G, budget k
Ensure: ST

1: Slice ST ← empty Slice Tree
2: Candidate slices C ← ∅
3: Add best slice s(c, r)← Slice(G, V ) to C
4: while Number of slices less than k do
5: Retrieve best slice t(c, r) from C
6: Add t(c, r) to ST
7: Let P and X \ P be the partitions produced by t(c, r)
8: Add best slice s(c, r)← Slice(G,P ) to C
9: Add best slice s(c, r)← Slice(G,X \ P ) to C

10: end while
Algorithm 2: Greedy Slice Tree

reduction is selected (step 5). Iterating over all possible radii for a given center c is

equivalent to performing a breadth first search (BFS) starting from c.

Algorithm 2 describes our greedy strategy for computing an ST. It takes an input

network G and a budget k and computes a slice tree ST (G, k) by consecutively selecting

the next slice with highest error reduction. The greedy ST algorithm proceeds in k itera-

tions. In each iteration (steps 4-10), it selects the slice incurring highest error reduction,

removes it from the priority queue C and inserts it in the corresponding branch of the

ST (steps 4,5). Next, we compute the best slice for the new regions, P and X \ P , and

add them to C (steps 8-9).

In our running example (Figure 2.2), the first slice S1 (Figure 2.2b) selected by our
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greedy algorithm has center a, radius 3 and an error reduction of φ(S1) = 12.27 (the

error of the network with respect to its global mean µ(V ) is 14.22). The next best slice

S2 (Figure 2.2c) further divides the partition {a, b, c, d, e} into {a, b, c} and {d, e} using

center f and radius 3. The error reduction φ(S2) of S2 is 1.25. The following Lemma

gives the complexity of our greedy ST algorithm.

Lemma 2.4.1 The greedy slice tree algorithm (Algorithm 2) runs in time O(k||V ||||E||).

Proof: A slice s over X produces regions X1 and X2. Let E(X) = {(vi, vj) ∈

E|vi, vj ∈ X} . Slice applies ||X|| BFSs, in time O(||E(X)||) each. In the worst case, s

generates X1 and X2 such that ||X1|| = ||E(X1)|| = 1, ||X2|| = ||X|| − 1 and ||E(X2)|| =

||E(X)|| − 1, resulting in a complexity:

O

(
k−1∑
i=0

(||V || − i)(O(||E|| − 1))

)
= O(k||V ||||E||)

This complexity imposes a challenge to the application of our greedy algorithm to

large networks. The ST from Figure 2.2c was built using the greedy algorithm described

in this section and we show that it is not optimal. An optimal ST with two slices

for the same network is shown in Figure 2.2d. While the proposed algorithm achieves

good results in practice (see Section 2.6), whether there is a constant-factor polynomial

approximation for the ST problem remains an open question.

2.4.2 Error Reduction via Sampling

The challenge in selecting the next best slice in ST construction stems from the need to

explore all the node values at a given radius from a center to compute its error reduction.

The idea behind our sampling schemes is that we do not need to observe all nodes within
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“good” slices to identify them, but instead can utilize a small sample of nodes. We

propose two sampling schemes for computing upper bounds on the error reduction of

slices: one based on uniform sampling and one based on importance sampling. The

resulting bounds enable a scalable and accurate slice search algorithm.

As part of our uniform sampling approach, we generate a uniform node sample U

with replacement from a set of nodes X. For a given slice s(c, r,X), we estimate the

average values of its regions µ(P ) and µ(X \ P ) based on values of nodes in U ∩ P

and U ∩ (X \ P ), respectively. We employ the Hoeffiding inequality [16] to compute

probabilistic errors for these estimates. The average estimates and their errors are then

used to obtain probabilistic upper bounds on the error reduction of a slice according to

Theorem 2.

In the uniform sampling scheme, nodes are sampled with equal probability regardless

of whether they are part of a region with outlier values. Theorem 2 shows that high error

reduction slices create regions P and X \P with values deviating from the average µ(X).

To increase the likelihood of nodes from high error reduction regions to be sampled,

we apply importance sampling [17]. Importance sampling is a statistical technique that

biases the sampling procedure towards values that are more relevant for computing a

given estimate. In our case, we bias the samples based on how much their values deviate

from the average µ(X).

Definition 5 An importance sample from X is a multiset of nodes B where each

node v ∈ X is selected (with replacement) with probability:

p(v) =
|w(v)− µ(X)|

λ

where λ =
∑

v∈X |w(v)− µ(X)|

The importance sample B is biased and hence, in order to obtain unbiased estimates
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for the average values in resulting regions µ(P ) and µ(X \ P ) we need to correct the

sampled attribute values using a weighted average.

Definition 6 The weighted average µ(BP ) is defined as:

µ(BP ) =
1

Ψ(BP )

∑
v∈BP

λ

|w(v)− µ(X)|
w(v)

where BP = B ∩ P and Ψ(BP ) =
∑

v∈BP

λ
|w(v)−µ(X)| .

We can compute a weighted average value µ(BX\P ) as an estimate of µ(X \ P ) in a

similar fashion. In the following lemma, we show that the weighting scheme produces an

unbiased estimate for the average values of regions.

Lemma 2.4.2 If Ψ(BP ) and
∑

v∈BP

λ
|w(v)−µ(X)||w(v) are independent, then µ(BP ) is an

unbiased estimate for µ(P ).

Proof: The expected value of µ(BP ) can be written as:

E[µ(BP )] =
1

E[Ψ(BP )]
E[
∑
v∈BP

λ

|w(v)− µ(X)|
w(v)]

Simplifying the two expectations:

E[Ψ(BP )] = ||BP ||E[
λ

|w(v)− µ(X)|
]

= ||BP ||
∑
v∈P

|w(v)− µ(X)|
λ

× λ

|w(v)− µ(X)|

= ||BP |||P ||
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E[
∑
v∈BP

λ

|w(v)− µ(X)||
w(v)] = ||BP ||E[

λ

|w(v)− µ(X)|
w(v)]

= ||BP ||
∑
v∈P

|w(v)− µ(X)|
λ

× λ

|w(v)− µ(X)|
w(v)

= ||BP ||
∑
v∈P

w(v)

Combining the two:

E[µ(BP )] =
||BP ||
||BP ||||P ||

∑
v∈P

w(v) =
1

||P ||
∑
v∈P

w(v) = µ(P )

Lemma 2.4.2 provides an unbiased average estimate µ(BP ) that can be used as a

uniform sampling-based estimate µ(U ∩ P ). In case the independence assumption does

not hold, the covariance between the two variables must be considered. We omit this

discussion here for simplicity. Next, we derive upper bounds on the error reduction of a

slice based on unbiased estimates for region average values.

Theorem 3 Given a (uniform or importance) sample S, a confidence parameter δ (0 ≤

δ < 1) and a slice s, the error reduction φ(s) can be bounded as:

Pr[φ(s) < max{φ1(s), φ2(s)}] > 1− δ
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where:

φ1(s) = (µ(X)− µ(SP )− ε)2 ||P ||||X||
||X \ P ||

φ2(s) = (µ(X)− µ(SP ) + ε)2
||P ||||X||
||X \ P ||

ε =

√
−θ2

2||SP ||
log (

δ

2
)

θ = max
u,v∈X

|w(u)− w(v)|

SP = S ∩ P

Proof: According to the Hoeffiding inequality [16]:

Pr[|µ(SP )− µ(P )| ≥ ε] ≤ δ

where ε =
√

−θ2
2||SP ||

log ( δ
2
)

Thus,

Pr[φ(s) < max{φ1(s), φ2(s)}] = Pr[|µ(X)− µ(P )| <

max{|µ(X)− µ(P )− ε|, |µ(X)− µ(P ) + ε|}]

= Pr[µ(SP )− ε < µ(P ) < µ(SP ) + ε] > 1− δ

A similar upper bound with the same confidence exists based on the samples from

X \ P , and hence we can apply either of them with the same probabilistic guarantees.

The theorem applies to both uniform and importance sampling as long as an unbiased

estimate of the average is used.

While the expected number of sampled values ||U∩P || from a region P is proportional
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to ||P || in a uniform sample U , regions that include many node values deviating from the

average value µ(X) will be oversampled in the importance sample. For instance, consider

the case of a small region P ′ with many values deviating from µ(X). Although a high

error reduction slice might separate P ′ from X, only importance sampling is likely to

produce enough samples from P ′ to induce the selection of such slice. In Theorem 4, we

relate the size of ||P ∩ B|| to the error reduction φ(s) of the slice s, enabling a second

upper bound for importance sampling.

Theorem 4 For an importance sample B, confidence δ and slice s, the error reduction

φ(s) can be bounded as:

Pr[φ(s) <
(p′ + ε)2λ2

||P ||
||X||
||X \ P ||

] > 1− δ

where p′ = ||P∩B||
||B|| and ε =

√
−1

2||B|| log(δ).

Proof: The probability p of selecting a node from P is:

p =
∑
v∈P

|w(v)− µ(X)|
λ

≥ 1

λ
|
∑
v∈P

w(v)− µ(X)|

=
||P |||µ(P )− µ(X)|

λ

The Hoeffiding inequality gives that:

Pr[p < p′ + ε] > 1− δ

Thus,

24



Hierarchical In-Network Compression via Importance Sampling Chapter 2

Pr[p′ + ε >
||P |||µ(P )− µ(X)|

λ
]

= Pr[|µ(P )− µ(X)| < (p′ + ε)λ

||P ||
]

= Pr[φ(s) <
(p′ + ε)2λ2

||P ||
||X||
||X − P ||

] > 1− δ

According to this bound, regions that get few samples will likely have a low error

reduction. Also, different from Theorem 3, this bound does not depend on the range (θ)

of node values in the network. This is a desired property when dealing with outliers and

skewed value distributions. In the next section, we introduce a sampling-based algorithm

for identifying approximate optimal slices using uniform or importance sampling. This

algorithm employs Theorems 3 and 4 to prune the search space of candidate slices.

2.4.3 Approximate Slice Tree Construction

In Section 2.4.1, we described a greedy algorithm for slice tree construction. It applies

the Slice routine to choose the best slice in set of nodes X (see Algorithm 1). In order to

speedup this exhaustive scheme, we next show how to find approximate optimal slices,

with probabilistic guarantees using sampling.

Algorithm 3 (Approx-Slice) takes as input the network G, a set of nodes X ⊆ V , a

confidence parameter δ (0 < δ ≤ 1), an approximation constant ρ (0 ≤ ρ ≤ 1), and a

sampling rate π (0 ≤ π ≤ 1). As its output, it returns a slice t = (c, r,X) such that c ∈ X

and the error reduction φ(t) is at least ρ.OPT with probability 1− δ, where OPT is the

optimal error reduction for a slice in X. In particular, the algorithm finds the optimal

slice with probability 1 − δ if ρ is 1. We replace the previously defined Slice routine by
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Require: Network G, Set of nodes X, Confidence parameter δ, Approximation
constant ρ, Sampling rate π

Ensure: Approximate best slice t
1: L← ∅
2: for All centers c ∈ X do
3: for All radii r ∈ [0, radius(c,G,X)] do
4: s← (X, c, r)
5: L← L ∪ {s}
6: end for
7: end for
8: φ(t)← 0
9: S ← ∅

10: while L is not empty do
11: Add dπ.||X||e new samples from X to S
12: for All candidate slices s ∈ L do
13: Compute φmax(s), φ

′(s)
14: end for
15: q ← maxs∈L{φ′(s)}
16: if φ′(q) ≥ φ(t) then
17: Compute φ(q)
18: if φ(q) ≥ φ(t) then
19: t← q
20: end if
21: end if
22: L← {s ∈ L|ρ× φmax(s) ≥ φ(t)}
23: end while

Algorithm 3: Approx-Slice

Approx-Slice in Algorithm 2 after setting the additional parameters δ, ρ and π. This new

version of our solution, which we call Approximate Greedy Slice Tree, returns an ST for

which each slice is approximate optimal according to the given parameters.

Approx-Slice first generates the set of candidate slices L (steps 1-7) and then performs

iterative sampling and pruning (steps 10-23) in the search for an approximate optimal

slice. On each iteration, the set of samples S is increased by dπ.||X||e samples from X

(step 11). The sampling scheme applied can be either uniform sampling or importance

sampling as long as proper upper bounds are considered. For each slice s ∈ L, we
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t s1 s2 s3 s4

e
rr

o
r

slices

φ(t)
φmax(si)

φ(si)
φ’(s)

Figure 2.3: Example of slice pruning: t is the current top slice and s1-s4 are candi-
date slices with their respective error reduction upper bounds φmax(si), actual error
reductions φ(si), and estimated error reductions φ′(si). Slices s2 and s3 are pruned
and the next slice to be computed is s4.

compute two values based only on the samples in S: an upper bound on the error

reduction φmax(s) and an estimate on the error reduction φ′(s) (step 13). The value of

φmax(s) is set according to Theorem 3 for uniform sampling and both Theorems 3 and 4

for importance sampling. Also, it follows from Definition 4 that the error reduction for

any slice in X cannot be larger than the error of X (SSE(X)).

For a given slice s, we can estimate the error reduction φ(s) based on the estimate for

the average attribute value of the regions P and X \P and by considering the number of

samples in P , in case importance sampling is applied. We compute φ′(s) as the harmonic

mean of these different estimates to enforce that the slice with highest φ′(s) has high

error reduction estimates across different measures.

Figure 2.3 illustrates the Approx-Slice pruning strategy for ρ set to 1, a current best

slice t and 4 candidate slices (s1-s4). The actual error reduction is known only for t

(φ(t)). For all candidate slices, the algorithm computes the error reduction upper bound

φmax(si) and the error reduction estimate φ′(si) based on the sample S. The actual error

reductions for candidate slices (φ(si)) are shown only for explanation. Slices s2 and s3

are pruned, since their upper bounds (φmax(s2) and φmax(s3), respectively) are lower

than φ(t). Nevertheless, the actual error reduction of s3 (φ(s3)) is greater than the error
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reduction of t, which means that s3 should not be pruned. Approx-Slice is a probabilistic

approximation algorithm in the sense that the probability of such an error is bounded by

a small (user-defined) constant δ. The new set of candidate slices will contain only those

slices with error reduction upper bound φmax(si) greater than φ(t) (s1 and s4). Moreover,

the slice s4 is a candidate to replace t, since its error reduction estimate is greater then

φ(t). After computing φ(s4), the algorithm will not replace t because φ(s4) < φ(t).

In every iteration, new samples are added to S in order to improve the error reduction

estimates and upper bounds of candidate slices until the candidate set L is empty. The

execution time of Approx-Slice depends on how many iterations it takes to identify an

approximate optimal slice. Some implementation decisions and associated complexity

are discussed in Section 2.5. We show (see Section 2.6) that this algorithm can efficiently

find a good slice s in X by pruning a large portion of the search space of candidate slices

using a small sample S. It is important to notice that the constant factor approximation

(ρ) given by our algorithm is for each single slice and not the resulting ST.

2.5 Implementation details

This section covers our implementation 1 of the ST algorithm (Algorithm 2).

Estimating the sizes of regions: Theorems 3 and 4 depend on the sizes of regions

P (||P ||) and X \ P (||X \ P ||), which cannot be computed based only on a sample of

nodes. Computing exact sizes of regions for a candidate slice s(c, r,X) takes a prohibitive

O(||E||) time in the worst case, since it requires a BFS starting from c up to distance r.

To avoid such a cost, we propose simple upper bounds d||P ||e and d||X \ P ||e and lower

bounds b||P ||c and b||X \ P ||c on ||P || and ||X \ P ||, respectively, that depend on the

network structure and are calculated in constant time based on a pre-computed index.

1https://code.google.com/p/graph-compression
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This index contains the number z(v, r) of vertices at distance r from every vertex v ∈ V .

For any slice s, d||P ||e = max{z(c, r), ||X||} and b||X \ P ||c = max{||X|| − d||P ||e, 0}.

To compute the remaining bounds, we keep the maximum radius rf (v) for which a slice

centered at v does not overlap with the border of any existing slice in the ST. We define

b||P ||c = z(c,min{r, rf (c)}) and d||X \ P ||e = max{||X|| − b||P ||c, 1}. A region size is

replaced by its upper bound if it appears as a numerator and by its lower bound if it

appears as a denominator in Theorems 3 and 4.

Maximum radius: Our algorithm searches over all slices centered at every center

c ∈ X to identify the best one. However, we expect high error reduction slices to have

small radius in real datasets, specially small-world networks [18]. Therefore, we set a

maximum radius rmax as an extra parameter of our algorithm.

In-memory distance structure for sampling: One of the advantages of using

sampling in ST construction is that we can keep a distance structure D which gives

the set D(c, r) ⊆ S of distinct samples at distance r(r ≤ rmax) from c in G. Such

a data structure requires O(||V ||||S ′||) space and can be computed in worst-case time

O(||S ′||||E||), where S ′ is the set of distinct samples in S. Computing and maintaining

a similar data structure with full data would not be feasible for large networks. For

each center c, we can traverse D(c, rmax) in worst-case time O(||S ′||) in order to compute

the error reduction of all slices centered in c. For this implementation, each iteration of

Algorithm 3 (steps 10-23) runs in O(||S ′||(||E||+ ||X||)) time.

2.6 Experiments

We evaluate Slice Tree as a network attribute compression approach using real and

synthetic networks. All algorithms are implemented in C++ and experiments were per-

formed on a single core of a 2.67GHz Intel Core i7 with 12GB RAM.
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Figure 2.4: Execution time for finding the first slice (k = 1) in synthetic networks for
greedy slice tree (ST ), approximate slice tree with uniform sampling (STU ), and two
versions of slice tree with importance sampling using different parameters (STI and
STIF ) varying the approximation constant ρ and the number of regions, size (||V ||),
error reduction, and radius of slices of the network. By applying importance sampling,
we can efficiently discover accurate STs for large networks in various settings.

2.6.1 Datasets

Table 2.1 lists four real-world datasets applied in our experiments. The Traffic dataset

is the highway network of Los Angeles, CA (from the PeMS website2) with node values

corresponding to average speeds at highway locations along time. The Human dataset

is a gene network for Homo sapiens with gene and protein interactions as edges and

tissue expression as node values (114 tissues) [19]. DBLP is an academic co-authorship

network in which author nodes are annotated with publication counts for 15 research

areas3. Twitter is a combination of the (undirected) social graph provided in [20], the

tweets from [21] and the tweet sentiments from [22]. We averaged the sentiment of the

2http://pems.dot.ca.gov/
3Areas of venues were obtained from the classification in Wikipedia http://en.wikipedia.org/

wiki/List_of_computer_science_conferences
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Figure 2.5: Approximation for finding the first slice (k = 1) in synthetic networks for
greedy slice tree (ST ), approximate slice tree with uniform sampling (STU ), and two
versions of slice tree with importance sampling using different parameters (STI and
STIF ) varying the approximation constant ρ and the number of regions, size (||V ||),
error reduction, and radius of slices of the network. By applying importance sampling,
we can efficiently discover accurate STs for large networks in various settings.

tweets for each user and weighted these sentiments with the users’ number of retweets as

means to compute popularity-aware sentiments.

We also generate synthetic data by combining a network structure from the BA model

[23] and node values defined by an ST. Values inside a region follow a Normal distribution

with standard deviation set as to produce the desired SSE.

2.6.2 Scalability and Accuracy of Sampling

We start by evaluating our approximate algorithm applying different sampling strate-

gies and under varied conditions using synthetic data. Figures 2.4, 2.5, and 2.6 compare

the greedy slice tree construction algorithm (ST ) and three versions of the approximate

algorithm: STU, STI, and STIF. STU applies uniform sampling with δ = 0.1, ρ =
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Figure 2.6: Effectiveness of the pruning based on the number of samples (Theorem
4) for finding the first slice (k = 1) in synthetic networks for greedy slice tree (ST ),
approximate slice tree with uniform sampling (STU ), and two versions of slice tree
with importance sampling using different parameters (STI and STIF ) varying the
approximation constant ρ and the number of regions, size (||V ||), error reduction, and
radius of slices of the network. By applying importance sampling, we can efficiently
discover accurate STs for large networks in various settings.

0.6, π = 0.1. STI applies importance sampling with the same parameters as STU. STIF

also uses importance sampling, but with more relaxed parameters δ = 0.4, ρ = 0.1, π =

0.01, thus being faster than STI. Maximum radius rmax is set to 2. We will make clear

whenever these parameters are changed. Synthetic networks have 105 vertices, 5 edges for

each new vertex, 32 regions (31 slices), slice radius 2, error of 2.105 and error reduction of

105, unless specified. The task for all algorithms is finding the first slice and we evaluate

them in terms of average execution time and approximation (i.e. fraction of the optimal

error reduction achieved). We also compute how often the pruning based on the number

of samples (Theorem 4) is used by STI and STIF as means to measure the importance

of this pruning strategy compared to the one based on mean estimates (Theorem 3).
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name vertex edge value ||V || ||E||
Traffic sensor highway speed 2k 6k
Human gene interaction expression 4k 9k
DBLP author collaboration #papers 1.3m 5.2m

Twitter user following sentiment .7m 19.2m

Table 2.1: Dataset description and statistics.

The constant ρ sets the compromise between the approximations given by STU, STI,

and STIF, and their execution time (Figure 2.4a). However, the algorithms achieve much

higher approximation than ρ in practice (Figure 2.5a). For instance, STI achieves at least

a 0.95 approximation for any ρ and STIF obtains a 0.6 approximation in 2% of the time

taken by ST (ρ = 0). Also, pruning based on the number of samples plays an important

role for STI and STIF (Figure 2.6a).

Increasing the number of regions in the network has a small impact over the algorithms

for all the evaluation metrics (Figures 2.4b, 2.5b and 2.6b). This shows that they can

still quickly find a good slice in the presence of many candidates.

In terms of scalability with the network size (Figure 2.4c), STU, STI, and STIF

achieve speedups up to 1.5×, 6× and 47× w.r.t. ST with at least 0.95, 0.97, and 0.75

approximation, respectively (Figure 2.4c). These results show how importance sampling

enables the identification of approximate optimal slices using much less samples than the

uniform sampling approach, which translates into effective pruning (Figure 2.6c).

The higher the input network error reduction, the better it matches an ST model,

which leads to better performance for all the strategies except ST (Figure 2.4d) with

no significant effect over approximation (Figure 2.5d). As the error reduction increases,

uniform and importance sampling behave more similar and the pruning based on the

number of samples becomes less effective for STI and STIF (Figure 2.6d). This analysis

shows how a low-sampling version of the importance sampling algorithm enables users

to assess whether ST is a suitable for the compression of a given network.
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Figure 2.7: Execution time (a,d), approximation (b,e) and effectiveness of pruning
based on the number of samples (c) in finding the first slice in DBLP for greedy slice
tree (ST ) and two versions of approximate slice tree using different parameters (STI
and STIF ). Four research areas (algorithms (AL), security (SE), data management
(DM), and networks (NT)) are considered in (a,b,c). Results in (d,e) are for AL.
Importance sampling enables the computation of accurate STs in large real networks.

Because uniform sampling is not value-sensitive, it needs more samples to detect slices

with good approximation (Figures 2.5e and 2.4e)4. The use of the pruning reflects how

importance sampling is more appropriate when slices are more condensed (Figure 2.6e).

After evaluating several aspects of different versions of our approximate algorithm

using synthetic data, we next study its effectiveness on a real dataset. Figure 2.7 compares

ST, STI and STIF in finding the first slice w.r.t. execution time, approximation, and

use of the pruning based on number of samples for DBLP. STU was not considered in

this evaluation because it does not scale to such a network. Default parameters for the

importance sampling algorithm are set as follows: δ = 0.1, ρ = 0.9, , π = 0.02 for STI ;

4For this experiment, networks have 50k vertices and rmax is 3.
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Figure 2.8: Error reduction for the wavelets with BFS (BFS ), Haar trees (HC ), graph
Fourier (GF ), and slice tree (ST ) in the Traffic (a,b) and Human (c,d) datasets. We
selected four network attributes (tissues and snapshots) from each dataset (a,c) and
also a fixed attribute for increasing budget (b,d). ST compresses attribute values with
high accuracy in real datasets.

δ = 0.4, ρ = 0.1, π = 10−3 for STIF and rmax = 2 (STI and STIF ).

Figures 2.7a, 2.7b, and 2.7c show the performance of the algorithms for four research

areas: algorithms(AL), security (SE), data management (DM) and networks (NT). STI

achieves speedups between 5× (NT) and 25× (AL) with average approximations between

0.79 (DM) and 1.0 (NT). STIF achieves speedups between 56× (NT) and 544× (DM)

with approximations between 0.68 (SE) and 0.96 (NT). For all areas, the number of

samples gives a tighter bound on the error reduction in more than 93% of the time.

In Figures 2.7d and 2.7d, we evaluate the performance of the algorithms for the re-

search area algorithms (AL) varying the approximation constant ρ. STI and STIF obtain

a similar approximation average of 0.80 with a speedup of 56× and 596×, respectively,

when ρ = 0. When the best slice is to be returned with high probability (ρ = 1), STI
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and STIF get speedups of 23× and 56×, respectively.

2.6.3 Slice Tree for Network Compression

We evaluate ST compression in terms of compression ratio, error, and running time

using real and synthetic data. We also consider the following baselines: Graph Fourier

(GF) [24], Wavelets over a BFS vector (BFS), and Haar trees with Average Linkage

(HC) [25]. GF applies the eigenvectors of the Laplacian matrix of the network as a basis

to represent the attribute values. Compression is achieved by selecting a small set of

high-energy coefficients in the spectral domain. BFS maps node values to a vector by

performing a BFS starting from an arbitrary node. This search tends to assign nodes

that are close in the network structure to close positions in the vector and the values are

further compressed using Haar wavelets [26]. HC is based on a tree representation of

the network structure using hierarchical clustering [27]. Node values projected over this

hierarchical structure are further compressed using a Haar-like wavelet basis. Average

Linkage [25] and shortest path distances were applied in the hierarchical clustering.

Here, instead of computing the budget of an ST in number of slices (k), we convert

this measure to bytes (see Definition 1). This enables a fair comparison between ST and

the baselines. Figure 2.8 shows relative error reduction results for ST, BFS and HC.

The relative SSE reduction is the ratio between the SSE of the dataset with respect

to its overall average and the SSE of the compression. Since these datasets are small

(up to 4k edges), we do not show the running time results. All the methods run in time

in the order of seconds for both datasets. We first evaluate the compression approaches

across different network attributes (Figures 2.8a and 2.8c). For Traffic, we selected four

snapshots of the network that cover well the span of compression results. Similarly, we

show results for four tissues5 from the Human dataset. Budgets were set to 1% of the size

5T1: frontal cortex, T2 : stomach pylorus, T3 : placenta and T4 : tonsil.
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Figure 2.9: Execution time (a,c,e,g) and error reduction (b,d,f,h) for BFS and two
versions of approximate slice tree with importance sampling using different parameters
(STI and STIF ) in synthetic datasets (a,b), Twitter (c,d) and DBLP (e-g). For
synthetic, Twitter, and DBLP (DM), we evaluate how the execution time and error
reduction increase with the budget (a-d, g,h). We also show time and error reduction
results for a fixed budget and four areas in DBLP (e,f). BFS is more efficient than
STI and STIF but achieves much poorer performance in terms of compression error.

of the dataset (154 and 292 bytes for Traffic and Human, respectively). We also show

results for a single attribute (S4 and T4) increasing the budget (Figures 2.8b and 2.8d).

ST consistently outperforms the baselines for both datasets in all settings considered,

achieving up to a 2-fold improvement over the best baseline (GF ).
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Next, we evaluate ST compression using large networks (synthetic, DBLP and Twit-

ter). However, because HC requires the computation of a distance matrix and GF

requires an spectral decomposition of the Laplacian matrix of the network, these meth-

ods cannot be applied to such large datasets. We restrict our results to our approximate

algorithm using importance sampling and BFS. Figures 2.9a and 2.9b show the running

time and SSE reduction as the budget is increased for two versions of the approximate

algorithm using δ = 0.1, ρ = 0.6, π = 0.1 (STI ) and δ = 0.4, ρ = 0.1, π = 0.01 (STIF )

in synthetic networks. Maximum radius rmax is set to 2. The parameters used in the

generation of the networks are the same ones described in Section 2.6.2 and thus the

optimal relative SSE reduction achievable using an ST with 32 regions (350 bytes) is 0.5.

BFS is the most efficient algorithm, but it obtains poor error reduction results. For a

budget of 320 bytes, BFS, STI and STIF achieve average error reductions of 0.04, 0.45

and 0.44, respectively. As expected, once this budget is reached and there are no more

new regions to be captured in the network, the benefit of adding extra budget is reduced.

Figures 2.9c and 2.9d show the compression results for the Twitter dataset. Default

parameters for the versions of the importance sampling algorithm are set as: δ = 0.1, ρ =

0.9, π = 0.02 for STI ; δ = 0.4, ρ = 0.1, π = 0.001 for STIF and rmax = 2 (STI and

STIF ). Maximum radius rmax is set to 1. As for the synthetic networks, BFS is fast but

cannot produce accurate compression. While both STI and STIF achieve 87% relative

SSE reduction with only 400 bytes (103 compression rate), BFS is not able to achieve

any significant error reduction in any of the experiments. These results contrast with the

performance of BFS for small datasets, where it was able to achieve up to 50% of the

relative SSE reduction of ST.

Compression results for DBLP are given in Figures 2.9e-2.9h. Default parameters for

the algorithms are set as for the experiments using Twitter. Maximum radius rmax is set

to 2. Figures 2.9e and 2.9f show the execution time and error reduction of the algorithms
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Figure 2.10: First slices for DBLP combining paper counts for Data Management and
Networks. ST captures publications patterns across different research areas.

for four research areas and a fixed budget of 400 bytes (31 slices). The compression

results for STI and STIF vary according to the research area considered. For instance,

the compression of Algorithms (AL) resulted in twice as much relative error reduction as

achieved for Networks (NT) (Figure 2.9f). This is due to the fact that NT is a much more

prolific area, with three times as many publications and active researchers compared to

AL. Similarly, compressing NT takes 4 and 25 times longer than AL for STI and STIF,

respectively. The gains in SSE reduction vanish quickly as we increase the budget for a

fixed research area (AL). Figure 2.9h shows that both STI and STIF achieve a maximum

relative SSE reduction of 30% with a 103 compression rate.

2.6.4 Slice Trees in Real-World Networks

In what follows, we illustrate ST compressions of real-world networks. We show that

STs capture in a compact form important properties of networks, such as collaboration

patterns in DBLP and major congestions in the Traffic network.

Figure 2.10 shows how authors from two areas (Data Management (DM) and Networks

(NT)) are distributed among the first slices of an ST based only on combined publication
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counts. Moreover, we assign authors to a single main area in which they are most

prolific as means to characterize the regions discovered. We color-code both slice nodes

(rectangles) and resulting regions (circles) based on the fraction of authors in DM and

NT. The leaf region nodes list the 10 most prolific authors with their respective areas.

The ST naturally separates the communities from the two areas as they are both distinct

within the structure (researchers within areas are more likely to collaborate among each

other) and also in terms of number of publications. The first slice separates the majority

of the DM community within 2 hops from Divesh Srivastava from the NT community.

Further slices separate authors based on how prolific they are (average paper count for

each leaf ST node is reported in the first line of the label).

In Figure 2.1, we show how one snapshot of Traffic (Figure 2.1a) is compressed using 2

slices (Figure 2.1b). Nodes in the network have their sizes and colors set based on average

speed values. The largest (red) node has an average speed of 10mph while the smallest

(green) node has an average speed of 85mph. Medium (yellow) nodes have average speed

around 45mph. Intermediate and leaf regions of the ST are also colored according to their

average speeds (from left to right: 41, 15, and 65). The values reconstructed from the

ST are projected back in the network (Figure 2.1c). ST captures two major congestions

with smooth regions while the remaining locations are covered by a third region. Further

slices can isolate more congested regions.

2.7 Related Work

The majority of existing work on network summarization and compression focuses on

providing compact representations of a network structure [14, 15]. Prior work on net-

work compression has proposed information-theoretic approaches for encoding structural

data [14, 28]. More recent studies applied OLAP-like aggregations to networks, providing
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a multi-resolution summarization of nodes and their relationships [29, 15]. Our work is

complementary to these efforts, since we focus on compressing attribute values.

The compression of network attributes is related to a recent effort to generalize signal

processing techniques to network data [27, 30, 13]. More specifically, although harmonic

analysis has been successfully applied to problems that range from image compression [31]

to query processing [26], applying these techniques to networks remains a challenge.

A natural solution would be first to embed the network structure into an Euclidean

space and then process the embedded values using existing signal processing approaches.

However, Bourgain [32] has shown that such an embedding requires, in the worst case, a

logarithmic number of dimensions w.r.t. to the size of the graph. An existing alternative,

which is known as graph Fourier, constructs an orthonormal basis for a network using

spectral analysis [24, 13]. The first eigenvectors of the network Laplacian matrix define

a basis that is expected to capture the smoothness of node values over the network.

Similarly to the traditional Fourier analysis in Euclidean spaces, graph Fourier is

unable to localize signals in both time (space) and frequency domains [27, 33, 13]. Recent

efforts attempt to address this limitation by generalizing the wavelet analysis [31] to

networks. Examples of such efforts include graph wavelets [34, 33], diffusion wavelets [35],

and Haar trees [27]. Similar to ST, graph wavelets [34] also average values within a radius

distance from a center node. However, these wavelets are based on deviations in values

on a disc and a surrounding ring, which is suitable for summarizing communication data

but not for compressing network attributes under budget constraints. In [36], the authors

propose a lossy compression of attributes over a grid structure. However, their approaches

do not assume budget constraints and depend on either a rigid topology or the ordering

of node identifiers. We show that ST achieves better compression accuracy than graph

Fourier and Haar trees under a fixed budget. The main advantage of ST compared to

these existing techniques is that ST performs an efficient value-sensitive search for slices
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that maximize the compression accuracy using sampling.

ST applies the network as a space where attributes are embedded and can be rep-

resented in a compact form using slices. It differs from existing work on traditional

clustering [25], which does not consider the network structure, and community detection

based on attributes, which has no constraints on the representation cost [37]. Finally,

while compression is a key problem in sensor networks, existing approaches [38] are fo-

cused on power consumption and routing, which is out of the scope of this work.

2.8 Conclusions

We introduced Slice Tree as a network compression strategy for attribute values. ST

is a hierarchical decomposition scheme using slices, which partition the network into

regions that are smooth w.r.t. attribute values. Computing an ST that minimizes the

compression error is NP-hard, thus we proposed an efficient greedy heuristic for ST

construction. In order to scale ST to large networks, we devised an importance sampling

strategy that efficiently computes approximate optimal slices with high probability.

We evaluated our approach in terms of compression error and scalability using syn-

thetic and real-world datasets. Results showed that ST produces accurate compression,

achieving up to 87% error reduction in node values, with 103 compression ratio, and up

to 2-fold improvements over the best baseline method considered. Moreover, importance

sampling enables the efficient compression of million-node networks with speedups up

to 47× over our scheme using full data. We also demonstrated the effectiveness STs

in capturing relevant phenomena in real networks, such as collaboration patterns in co-

authorship networks and congestions in traffic networks.

This work opens promising directions for future research. A key question is how to

update STs over time. We also plan to generalize our framework to other error metrics
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and more complex data (e.g. attribute vectors). Finally, distributed algorithms might

enable the compression of even larger networks than those considered in this work.
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Chapter 3

Graph Wavelets via Sparse Cuts

3.1 Introduction

Graphs are the model of choice in several applications, ranging from social networks

to the Internet-of-things (IoT). In many of these scenarios, the graph represents an un-

derlying space in which information is generated, processed and transferred. For instance,

in social networks, opinions propagate via social interactions and might produce large

cascades across several communities. In IoT, different objects (e.g. cars) collect data

from diverse sources and communicate with each other via the network infrastructure.

As a consequence, exploiting the underlying graph structure in order to manage and

process data arising from these applications has become a key challenge.

Signal processing on graphs (SPG) is a framework for the analysis of data residing

on vertices of a graph [13, 39]. The idea generalizes traditional signal processing (e.g.

compression, sampling) as means to support the analysis of high-dimensional datasets.

In particular, SPG has been applied in the discovery of traffic events using speed data

collected by a sensor network [40]. Moreover, graph signals are a powerful representation

for data in machine learning [27, 41]. As in traditional signal processing, the fundamental
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operation in SPG is the transform, which projects the graph signal in the frequency (or

other convenient) domain. Real signals are expected to be smooth with respect to the

graph structure—values at nearby vertices are similar—and an effective transform should

lead to rapidly decaying coefficients for smooth signals. The most popular transform

in SPG, known as Graph Fourier Transform [30, 13], represents a signal as a linear

combination of the eigenvectors of the graph Laplacian. However, as its counterpart in

traditional signal processing, Graph Fourier fails to localize signals in space (i.e. within

graph regions). This limitation has motivated recent studies on graph wavelets [34, 33,

42].

An open issue in SPG is how to link properties of the signal and underlying graph

to properties of the transform [13]. Gavish et al. [27] makes one of the first efforts in

this direction, by relating the smoothness of the signal with respect to a tree structure

of increasingly refined graph partitions and the fast decay of the wavelet coefficients in a

Haar-like expansion. However, as explicitly stated in their paper, their approach “raises

many theoretical questions for further research, in particular regarding construction of

trees that best capture the geometry of these challenging datasets”.

In this work, we study the problem of computing wavelet trees that encode both

the graph structure and the signal information. A wavelet tree defines a hierarchical

partitioning used as basis for a graph wavelet transform. Good wavelet trees should

produce fast decaying coefficients, which support a low-dimensional representation of

the graph signal. The particular application scenario we consider is the lossy graph

signal compression. This task arises in many relevant data management and analytics

applications, including IoT and social networks, where values associated to interconnected

entities have to be represented in a compact form.

Figure 3.1 shows two wavelet trees, A and B, and their respective transforms for

a piecewise smooth graph signal defined over seven vertices. The wavelet transform
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Figure 3.1: Graph wavelet transforms for two different wavelet trees and the same
piecewise smooth graph signal (values set to vertices). A wavelet tree contains one
average coefficient and several weighted difference coefficients associated with vertex
partitions. Basis A is better than B because it produces fast decaying difference
coefficients. Moreover, basis A can be approximately encoded as a sequence of sparse
graph cuts (first {(b, d), (c, d)} then {(e, f), (e, g)}), which leads to a compact and
accurate representation of the graph signal.

contains a single average coefficient and a set of weighted difference coefficients associated

to each node of the tree. Weighted difference coefficients are computed as a function

of the values in each partition and the partition sizes (see Equation 3.2 for a formal

definition). Notice that these two bases produce very different wavelet transforms for the

same signal. While tree A is characterized by fast decaying difference coefficients, tree

B has relatively large coefficients at every level. This indicates that tree A supports a
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better representation for the signal than does tree B. However, good wavelet trees must

also capture properties of the graph structure.

We measure the relationship between a wavelet tree and the graph structure using

the notion of sparse cuts. A graph cut is a set of edges that connect two disjoint sets

of vertices and sparse cuts (i.e. a small number of edges) are a natural way to model

graph partitions [43]. As each node of the wavelet tree separates a set of vertices into

two subsets, a sparse wavelet tree can be approximately encoded by a sequence of sparse

cuts. This work is the first effort to connect graph cuts and graph signal processing. In

particular, we show how problems that arise in the construction of optimal wavelet trees

are related to hard cut problems, such as graph bisection [44] and multiway-cuts [45].

In Figure 3.1, we also show the cuts associated to each level of the wavelet tree together

with the signal approximation for the respective level. Basis A can be approximately

encoded by the cutting four edges: {(b, d), (c, d)} (level 1) and {(e, f), (e, g)} (level 2).

The resulting compact wavelet tree can effectively represent the graph signal using only

the two top wavelet coefficients, leading to a relative L2 error of 1%. On the other hand,

basis B does not have such a compact approximation with small error via sparse cuts.

In this work, we formalize the problem of computing sparse wavelet bases (or trees)

for graph wavelet transforms. This problem, which we call sparse graph wavelet transform

(SWT) consists of identifying a sequence of sparse graph cuts that leads to the minimum

error in the reconstruction of a given graph signal. We show that this problem is NP-

hard, even to approximate by a constant. In fact, we are able to show that computing

each individual cut in the tree construction is an NP-hard problem.

As the main contribution of this work, we propose a novel algorithm for computing an

SWT via spectral graph theory. The algorithm design starts by formulating a relaxation

of our problem as an eigenvector problem, which follows the lines of existing approaches

for ratio-cuts [46], normalized-cuts [47] and max-cuts [48]. We further show how the
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proposed relaxation leads to a regularization of pairwise values by the graph Laplacian,

which relates to existing work on graph kernels [49, 50]. In order to improve the com-

putational efficiency of our algorithm, we design a fast graph wavelet transform (FSWT)

using several techniques including Chebyshev Polynomials and the Power method.

3.2 Related Work

Generalizing the existing signal processing framework to signals that reside on graphs

is the main focus of Signal Processing on Graphs (SPG) [13, 39]. Operations such as filter-

ing, denoising, and downsampling, which are well-defined for signals in regular Euclidean

spaces, have several applications also when signals are embedded in sparse irregular spaces

that can be naturally modeled as graphs. For instance, sensor networks [40], brain imag-

ing [51], computer network traffic [34], and statistical learning [49, 50, 41], are examples

of scenarios where graph signals have been studied. The main idea in SPG is the so

called Graph Fourier Transform (GFT) [30], which consists of applying eigenvectors of

the Laplacian matrix of a graph as a basis for graph signals. Laplacian eigenvectors os-

cillate at different frequencies over the graph structure, capturing a notion of frequency

similar to complex exponentials in the standard Fourier Transform.

As is the case for its counterpart for Euclidean spaces, GFT fails to localize graph

signals, i.e. capture differences within graph regions. This aspect has motivated the

study of graph wavelets [34, 27, 33, 42]. Crovella and Kolaczyk [34] introduced wavelets

on graphs for the analysis of network traffic. Their design extracts differences in values

within a disc (i.e. a center node and a fixed radius) and a surrounding ring as means to

identify traffic anomalies. Coiffman and Maggioni [42] proposed a more sophisticated de-

sign, known as diffusion wavelets, based on compressed representations of dyadic powers

of a diffusion operator. In [33], Hammond et al. present a wavelet design using kernel
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functions that modulate eigenvectors around vertices at multiple scales.

An assumption shared by existing work on graph wavelets is that good bases can

be computed based solely on the graph structure. However, as shown in Figure 3.1, a

proper choice of graph wavelet bases can lead to significantly more effective transforms.

In this work, we study the problem of computing optimal graph wavelet bases for a given

signal via sparse graph cuts. A graph cut partitions the vertices of a graph into two

disjoint subsets and optimization problems associated with graph cuts are some of the

most traditional problems in graph theory [52, 53]. In particular, graph cuts (e.g. min-

cut, max-cut) are a natural way to formulate graph partitioning problems [43]. Here, we

constraint the size of the cut, in number of edges, associated to a graph wavelet basis in

order to discover bases that are well-embedded in the graph. A similar constraint also

appears in the min-cut [52], graph bisection [44], and multiway-cut [45] problems.

Learning bases tailored for classes of signals is an important problem in signal pro-

cessing, known as dictionary learning [54]. This problem differs from ours since our

wavelet bases are adapted to each signal, which leads to more compact representations.

In [5], the authors show how importance sampling can support the discovery of center-

radius partitions for attribute compression. However, their approach does not generalize

to arbitrarily shaped partitions.

Many relevant problems on graphs have been solved using the framework of Spectral

Graph Theory (SPG) [55], which studies combinatoric graph properties via the spectrum

of matrices associated with them. For instance, the relationship between eigenvectors

of the Laplacian and graph partitions can be traced back to Cheeger’s inequality [56].

More recently, SPG has led to efficient graph partitioning algorithms (e.g. ratio-cuts [46],

normalized-cuts [47]). Here, we propose a spectral algorithm for computing sparse graph

wavelet bases. Interestingly, our analysis show that these bases are related to existing

work on graph kernels [49, 50], including the wavelet design by Hammond et al. [33].
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3.3 Wavelets on Graphs

A graph is a tuple G(V,E), where V is a set of n vertices and E is a set of m

(unweighted) edges, respectively. A signal W :V → R is a real-valued function defined on

the set of vertices V . In other words, W (v) is the value of the signal for a vertex v ∈ V .

In Figure 3.1 we show an example of a graph G for which we define a signal W .

A graph wavelet tree is a binary tree structure X (G) that partitions the graph recur-

sively as follows. A root node X1
1 contains all the vertices in the graph (i.e. X1

1 = V ).

In general, X`
k ⊆ V is the k-th node at level ` with children X`+1

i and X`+1
j at level `+ 1

such that X`+1
i ∩X`+1

j = ∅ and X`+1
i ∪X`+1

j = X`
k. We focus on binary trees since they

have the same encoding power as n-ary trees in this model.

The tree X (G) defines spaces of functions, V` and W`, analogous to Haar wavelet

spaces in harmonic analysis [31]. The space V1 contains functions that are constant on

V . And, in general, V` contains functions that are piecewise constant on nodes in X`
k

at the `-level of X (G). Let V be the space of functions that are constant on individual

nodes in V . Bases to span such spaces can be constructed using functions 1X`
k

equal to 1

for v ∈ X`
k and 0, otherwise (box functions). This formulation leads to a multiresolution

V1 ⊂ V2 ⊂ . . .V for function spaces. Another set of function spaces in the form W`

contains wavelet functions ψk,` with the following properties: (1) are piecewise constant

on X`+1
i and X`+1

j , (2) are orthogonal to 1X`
k

defined on X`
k and (3) are 0 everywhere

else. It follows that any function inW` can be represented using V`+1. Also, for any level

`, V` ⊥ W` and V` ⊕W` = V`+1, where ⊕ is the orthogonal sum.

We combine wavelet functions with 1V to produce an orthonormal basis for G. In-

tuitively, this basis supports the representation of any graph signal W as a linear com-

bination of the average µ(W ) plus piecewise functions defined on recursive partitions of

the vertices V (see Figure 3.1). A graph wavelet transform ϕW is a set of difference
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coefficients ak,`:

ak,` =


µ(W ), if ` = k = 0

〈W,ψk,`〉, otherwise

(3.1)

In particular, except for a0,0, we can write ak,` as:

ak,` =
|X`+1

j |
|X`

k|
∑

v∈X`+1
i

W (v)− |X
`+1
i |
|X`

k|
∑

v∈X`+1
j

W (v) (3.2)

The sizes |X`
k|, |X`+1

i | and |X`+1
j | are taken into account because partitions might be

unbalanced. Analogously, the wavelet inverse ϕ−1W is defined as:

ϕ−1W (v) = a0,0 +
∑
k

∑
`

νk,`(v)ak,` (3.3)

where:

νk,`(v) =


1/|X`+1

i |, if v ∈ X`+1
i

−1/|X`+1
j |, if v ∈ X`+1

j

0, otherwise

(3.4)

Figure 3.1a shows the graph wavelet transform for a toy example. For instance, the

value of a2,2 = (2.(−4 + (−6)) − 2.(−9 + (−9)))/4 = 4 and the inverse ϕ−1W (e) =

0 + (−28)/4 + 4/2 + (−1)/1 = −6 = W (e). An important property of the graph wavelet

transform, known as Parseval’s relation, is that the signal and its transform are equivalent

representations (i.e. ϕ−1ϕW = W ) for any signal W and wavelet tree X (G). More

formally, we can define the L2 energy of a graph wavelet coefficient as:
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||ak,`||2 =
|X`+1

i |.a2k,`
|X`+1

i |2
+
|X`+1

j |.a2k,`
|X`+1

j |2
=

a2k,`

|X`+1
i |

+
a2k,`

|X`+1
j |

(3.5)

Using Equation 3.2, we can show the Parseval’s relation:

∑
k

∑
`

||ak,`||2 =
∑
v

|W (v)|2 (3.6)

In particular, a lossy compressed representation of W can be constructed by the

following procedure: (1) Compute transform ϕW , (2) set the lowest energy coefficients

ak,` to 0, (3) return the non-zero wavelet coefficients ϕ′W from ϕW . In this setting, the

error of the compression is the sum of the energies of the dropped coefficients. If W has

a sparse representation in the transform (frequency domain), where most of the energy

is concentrated in a few high-level coefficients, it can be compressed with small error.

Figure 3.1a illustrates a sparse representation of a graph signal W (basis A). The fast

decay of the difference coefficients ak,` in the wavelet transform as the level ` increases

leads to a high compression using the aforementioned algorithm. The signal can be

approximated within L2 error of 1% using the top coefficients a1,1 and a2,2. However, by

keeping the top coefficients for basis B (Figure 3.1b), the error is 22%.

In [27] (see theorems 1-3), the authors show that, if the energy of a wavelet coefficient

ak,` is bounded as a function of the size of its corresponding vertex set X`
k and the tree

X (G) is almost balanced, then there is a sparse representation of W as a wavelet trans-

form. Here, we tackle the problem from a more practical and data-driven perspective,

where a tree X (G) that leads to a sparse representation of W is unknown. Moreover, we

add sparsity constraints to the description size of X (G) in order to enforce wavelet bases

that are embedded in the graph structure. In the next section, we formalize the problem

of computing wavelet basis using sparse cuts and characterize its hardness.
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3.4 Wavelet Bases via Sparse Cuts

The existence of a good basis (or tree) for a signal W in a graph G provides relevant

information about both W and G. We measure the description length of a wavelet tree

X (G) as the size |X (G)|E of its edge cut. The edge cut of a wavelet tree is the number

of edges in the set E ′ ⊆ E that, if removed, separates the leaf nodes of X (G). In other

words, there is no path between any pair of vertices u ∈ Xa
i , v ∈ Xb

j in G(V,E − E ′)

whenever Xa
i and Xb

j are leaves of X (G). A tree X (G) associated with a sparse cut

requires a few edges to be removed in order to disconnect its leaf nodes.

If |X (G)|E < |E|, the energy of at least one coefficient a`k of any transform ϕW will

be always set to 0 and, as a consequence, the inverse ϕ−1ϕW (v) will be the same for any

vertex v ∈ X`
k. As graphs have a combinatorial number of possible cuts, we formalize the

problem of finding an optimal sparse wavelet basis in terms of (L2) error minimization.

Definition 7 Optimal graph wavelet basis via sparse cuts. For a given graph

G(V,E), a signal W , and a cut size q compute a wavelet tree X (G) with a cut |X (G)|E

of size q that minimizes ||W − ϕ−1ϕW ||2.

Figure 3.2 shows two candidate wavelet trees with cut size q = 4 for the same graph

signal shown previously in Figure 3.1a. While the tree from Figure 3.2b achieves an error

of 22%, the one from Figure 3.2a is the optimal basis of cut size 4 for our example, with an

error of 1%. As discussed in Section 3.3, a good basis generates sparse transforms, which

maximize the amount of energy from the signal that is conserved in a few coefficients.

In the remainder of this section, we analyze the hardness of computing sparse wavelet

bases by connecting it to well-known problems in graph theory.

Theorem 5 Computing an optimal graph wavelet basis is NP-hard.
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(a) Optimal wavelet basis
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a3,3 = 0 -8a1,3 = 0 a2,3 = 0  

9 3 3 -8 -89

(b) Alternative wavelet basis

Figure 3.2: Two graph wavelet bases with cut of size 4 for the same signal. Recon-
structed values are set to leaf nodes. The basis from Figure 3.2a achieves 1% error
and is optimal. An alternative basis with 22% error is shown in Figure 3.2b.

Please refer to the extended version of this work [57] for proofs of Theorems 5, 6 and

10. Theorem 5 shows that finding an optimal basis is NP-hard using a reduction from

the 3-multiway cut problem [45], which leads to the question of whether such problem

can be approximated within a constant factor in polynomial time. Theorem 6 shows that

our problem is also NP-hard to approximate by any constant.

Theorem 6 The optimal graph wavelet basis is NP-hard to approximate by a constant.

Connecting the construction of sparse wavelet basis to a hard problem such as the
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3-multiway cut is a key step for proving Theorems 5 and 6. However, these constructions

assume wavelet trees X (G) with a number of levels ` strictly larger than 2 (i.e. with more

than two partitions). A final question we ask regarding the hardness of our problem is

whether there is an efficient algorithm for partitioning a set of nodes X`
k into children

X`+1
i and X`+1

j . If so, one could apply such an algorithm recursively in a top-down

manner in order to construct a reasonably good wavelet basis. We can pose such a

problem using the notion of L2 energy of graph wavelet coefficients from Equation 3.5.

Definition 8 Optimal graph wavelet cut. Given a graph G(V,E), a signal W , a

constant k, and a set of nodes X`
k ⊆ V , compute a partition of X`

k into X`+1
i and X`+1

j

that maximizes ||ak,`||2.

Theorem 7 rules out the existence of an efficient algorithm that solves the aforemen-

tioned problem optimally.

Theorem 7 Computing an optimal sparse graph wavelet cut is NP-hard.

Our proof (in the appendix) is based on a reduction from the graph bisection [53]

and raises an interesting aspect of good graph wavelet bases, which is balancing. The

problem of finding balanced partitions in graphs has been extensively studied in the

literature, specially in the context of VLSI design [46], image segmentation [47] and

other applications of spectral graph theory [55]. In the next section, we propose a spectral

algorithm for computing graph wavelet bases.

3.5 Spectral Algorithm

Our approach combines structural and signal information as a vector optimization

problem. By leveraging the power of spectral graph theory, we show how a relaxed
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version of this formulation is a regularized eigenvalue problem, which can be solved using

1-D search and existing eigenvalue computation procedures. Our discussion focuses on

computing a single cut (Definition 8) and extends to the computation of a complete basis.

Section 3.5.3 is focused on performance.

3.5.1 Formulation

First, we introduce some notation. The degree dv of a vertex v is the number of

vertices u ∈ V such that (u, v) ∈ E. The degree matrix D of G is an n × n diagonal

matrix with Dv,v = dv for every v ∈ V and Du,v = 0, for u 6= v. The adjacency matrix A

of G is an n × n matrix such that Au,v = 1 if (u, v) ∈ E and Au,v = 0, otherwise1. The

Laplacian of G is defined as L = D−A. We also define a second matrix C = nI− 1n×n,

where I is the identity matrix and 1n×n is an n × n matrix of 1’s. The matrix C can

be interpreted as the Laplacian of a complete graph with n vertices. The third matrix,

which we call S, is a matrix of pairwise squared differences with Su,v = (W (u)−W (v))2

for any pair of nodes u, v ∈ V . Notice that these matrices can also be computed for an

induced subgraph G′(X`
k, E

′), where E ′ = {(u, v)|u ∈ X`
k ∧ v ∈ X`

k}.

In order to formulate the problem of finding an optimal sparse wavelet cut in vectorial

form, we define a |X`
k| dimensional indicator vector x for the partition of X`

k into X`+1
i

and X`+1
j . For any v ∈ X`

k, xv = −1 if v ∈ X`+1
i and xv = 1 if v ∈ X`+1

j . By combining

the matrices (C, S, L) and the indicator vector x, the following Theorem shows how the

problem from Definition 8 can be rewritten as an optimization problem over vectors (see

appendix for the proof).

Theorem 8 The problem of finding an optimal sparse graph wavelet partition (Definition

1Our method can be generalized to weighted graphs.
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8) can be written as:

x∗ = min
x∈{−1,1}n

a(x) st. xᵀLx ≤ 4q (3.7)

where a(x) = xᵀCSCx
xᵀCx

and q is the maximum cut size.

Theorem 8 does not make the problem of computing an optimal wavelet basis any

easier. However, we can now define a relaxed version of our problem by removing the

constraint that xi ∈ {−1, 1}. Once real solutions (xi ∈ R) are allowed, we can compute

an approximate basis using eigenvectors of a well-designed matrix. The next corollary

follows directly from a variable substitution and properties of Lagrange multipliers in

eigenvalue problems [58, chapter-12].

Corollary 9 A relaxed version of the problem from Definition 8 can be solved as a reg-

ularized eigenvalue problem:

x∗ = min
x
a(x)

= min
x

xᵀCSCx

xᵀCx+ βxᵀLx

= ((C + βL)+)
1
2y∗

(3.8)

where y∗ = miny
yᵀMy
yᵀy

, M = ((C+βL)+)
1
2CSC((C+βL)+)

1
2 , y = (C+βL)

1
2x, (C+βL)+

is the pseudoinverse of (C + βL) and β is a regularization factor.

This eigenvalue problem is well-defined due to properties of the matrix M , which is

real and symmetric. In fact, M is negative semidefinite, since the energy ||ak,`||2 of a

wavelet coefficient is non-negative. We apply the pseudoinverse (C+βL)+ because C and

L are positive semidefinite and thus their standard inverses are not well-defined—they

both have at least one zero eigenvalue.
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At this point, it is not clear how the matrix M captures both signal and structural

information as means to produce high-energy sparse wavelet cuts. In particular, we want

to provide a deeper insight into the role played by the regularization factor β in preventing

partitions that are connected by many edges in G. To simplify the notation and without

loss of generality, let us assume that X`
k = V and that V has 0-mean. The next theorem

gives an explicit form for the entries of M based on the node values and graph structure:

Theorem 10 The matrix M is in the form:

Mij = 2n2

n∑
v=1

(
n∑
u=1

(
n∑
r=2

(
1√
λr
er,ier,u

)

W (u).W (v)

)
n∑
r=2

1√
λr
er,ver,j

) (3.9)

where (λr, er) is an eigenvalue-eigenvector pair of the matrix (C + βL) such that λr > 0.

Based on Theorem 10, we can interpret M as a Laplacian regularized matrix and

Expression 3.8 as a relaxation of a maximum-cut problem in a graph with Laplacian

matrix −M . In this setting, the largest eigenvalue of −M is known to be a relaxation of

the maximum cut in the corresponding graph. The matrix (C + βL) is the Laplacian of

a graph G′′ associated to G with the same set of vertices but edge weights wu,v = 1 + β

if (u, v) ∈ G, and wu,v = 1, otherwise. Intuitively, as β increases, G′′ becomes a better

representation of a weighted version of G with Laplacian matrix βL. For instance, if

β = 0, G′′ is a complete graph with all non-zero eigenvalues equal to n and G has

no effect over the weights of the cuts in M . In other words, the wavelet cut selected

will simply maximize the sum of (negative) products −W (u).W (v) and separate nodes

with different values. On the other hand, for large β, the eigenvalues λr will capture

the structure of G and have a large magnitude. The relative importance of a product
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−W (u).W (v) will be reduced whenever u and v are well-connected to nodes i and j,

respectively, in G. As a consequence, the cuts selected will rather cover edge pairs (i, j)

for which far away nodes u and v in G have different values for the signal W .

Require: Graph G, values W , set X`
k, regularization constant β, cut size q

Ensure: Partitions X`+1
i and X`+1

j

1: C ← n× n Laplacian of complete graph
2: L← n× n Laplacian of G
3: S ← n× n squared difference matrix of G
4: x∗ ← minx a(x)
5: (X1, X2)z ← cut ({1, 2 . . . z}, {z + 1 . . . n})
6: (X`+1

i , X`+1
j )← max(X1,X2)j ||ak,`||2 st. cut size |(X1, X2)| ≤ q

Algorithm 4: Spectral Algorithm

10

-4

-6

10

-9 -9

8a

b c

d

e

fg
(a) Graph signal
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(b) Eigenvector/cut

Figure 3.3: Example of a cut of size q = 2 found by the spectral algorithm. The
eigenvector x is rounded using a sweep procedure and the best wavelet cut is selected.

Expressions in the form
∑

r g(λr)eie
ᵀ
i define regularizations via the Laplacian, which

have been studied in the context of kernels on graphs [49, 50] and also wavelets [33, 51].

Notice that the regularization factor β is not known a priori, which prevents the direct

solution of the relaxation given by Expression 3.8. However, we can apply a simple 1-D

search algorithm (e.g. golden section search [59]) in order to compute an approximate

optimal β within a range [0, βmax].
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(x∗, β∗) = min
β

min
x
a(x) st. xᵀLx ≤ 4q (3.10)

3.5.2 Algorithm

Algorithm 4 describes our spectral algorithm for computing sparse graph wavelet cuts.

Its inputs are the graph G, the signal W , a set of nodes X`
k from G, the regularization

constant β, and the cut size q. As a result, it returns a cut (X`+1
i , X`+1

j ) that partitions

X`
k by maximizing the energy ||ak,`||2 and has at most q edges. The algorithm starts by

constructing matrices C, L and S based on G and W (lines 1-3). The best relaxed cut x∗

is computed using Equation 3.8 (line 4) and a wavelet cut is obtained using a standard

sweeping approach [47] (lines 5-6). Vertices in X`
k are sorted in non-decreasing order of

their value in x∗. For each value xu, the algorithm generates a candidate cut (X1, X2)j by

setting xv = −1 if v < u, and xv = 1, otherwise (line 5). The cut with size |(X`+1
i , X`+1

j )|

at most q that maximizes the energy ||ak,`|| is selected among the candidate ones (line

6) and is returned by the algorithm.

Figure 3.3 illustrates a wavelet cut of size q = 2 discovered by our spectral algorithm.

The input graph and its signal are given in Figure 3.3a. Moreover, we show the value

of the eigenvector x that maximizes Expression 3.8 for each vertex and the resulting

cut after rounding in Figure 3.3b. Notice that x captures both signal and structural

information, assigning similar values to vertices that have small difference regarding the

signal and are near in the graph. The energy ||ak,`||2 associated with the cut is 457 (96%

of the energy of the signal), which is optimal in this particular setting.

We evaluate Algorithm 4 using several datasets in our experiments. However, an

open question is whether such an algorithm provides any quality guarantee regarding its

solution (for a single cut). One approach would be computing a lower bound on the L2

60



Graph Wavelets via Sparse Cuts Chapter 3

energy of the wavelet cuts generated by the rounding algorithm, similar to the Cheeger’s

inequality for the sparsest cut [55]. Unfortunately, proving such a bound has shown to

be quite challenging and will be left as future work. For a similar proof regarding an

approximation for the max-cut problem, please refer to [48].

We apply Algorithm 4 recursively in order to construct a complete graph wavelet

basis. Starting with the set of nodes V , we repeatedly compute new candidate wavelet

cuts and select the one with maximum L2 energy (i.e. it is a greedy algorithm). Once

there is no feasible cut given the remaining budget of edges, we compute the remaining

of the basis using ratio-cuts, which do not depend on the signal.

3.5.3 Efficient Approximation

Here, we study the performance of the algorithm described in the previous section

and describe how it can be approximated efficiently. Although performance is not the

main focus of this work, we still need to be able to compute wavelets on large graphs. The

most complex step of Algorithm 4 is computing the matrix M (see Corollary 9), which

involves (pseudo-)inverting and multiplying dense matrices. Moreover, the algorithm also

requires the computation of the smallest eigenvalue/eigenvector of M .

A naive implementation of our spectral algorithm would take O(n3) time to compute

the pseudo-inverse (C + βL)+, O(n3) time for computing matrix products, and other

O(n3) time for the eigen-decomposition of M . Assuming that the optimal value of β

(Equation 3.10) is found in s iterations, the total complexity of this algorithm is O(sn3),

which would hardly enable the processing of graphs with more than a few thousand

vertices. Therefore, we propose a fast approximation of our algorithm by removing its

dependence of β and using Chebyshev polynomials and the Power Method.

Our original algorithm searches for the optimal value of the regularization constant
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(a) Scalability (b) Energy

(c) Noise (d) Sparsity

Figure 3.4: Scalability and L2 energy associated to the cuts discovered by the sparse
wavelet transform (SWT) and its fast approximation (FSWT-p) for different number
of polynomial coefficients (p) and varying the graph size (a), the energy of the cut
in the data (b), the noise level (c), and the sparsity of the cut (d) using synthetic
datasets. Our fast approximation is up to 100 times faster than the original algorithm
and achieves accurate results even when p is relatively small (20).

β using golden-search, which requires several iterations of Algorithm 4. However, our

observations have shown that typical values of β found by the search procedure are large,

even for reasonable values of q, compared to the number of edges in G. Thus, we propose

simplifying Equation 3.8 to the following:

xᵀCSCx

xᵀLx
(3.11)

As a consequence, we can compute a wavelet cut with a single execution of our
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spectral algorithm. Using Theorem 10, we can show that dropping the matrix C from

the denominator has only a small effect over the resulting matrix M . First, consider

the eigenvalue-eigenvector pairs (λr, er) of (C + βL) and let (λl, el) and (λc, ec) be the

eigenvalue-eigenvector pairs for non-zero eigenvalues of L and C, respectively. Given

that C is the Laplacian of a complete graph, we know that λc = n, for any c, and every

vector orthogonal to the constant vector 1n is an eigenvector of C. In particular, any

eigenvector el of L is an eigenvector of C. Thus, we get that (C + βL)el = (n + βλl)el

and thus (n+ βλl, el) is an eigenvalue-eigenvector pair of (C + βL).

Nevertheless, computing all the eigenvalues of the graph Laplacian L might still be

prohibitive in practice. Thus, we avoid the eigen-decomposition by computing an approx-

imated version of M using Chebyshev polynomials [33]. These polynomials can efficiently

approximate an expression in the form 〈υ, f〉, where υi =
∑

r g(λr)er,ier,j and f is a real

vector. We can apply the same approach to approximate the product ((L+)
1
2 × CSC)i,j

by setting g and f as:

g(λr) =
1√
λr
, f = CSC:,j (3.12)

where λr ∈ [1, n] and :, j is an index for a matrix column.

Chebyshev polynomials can be computed iteratively with cost dominated by a matrix-

vector multiplication by L. By truncating these polynomials to p terms (i.e. iterations),

each one with cost O(mn), where m is the number of edges, and n is the number of

nodes, we can approximate this matrix product in O(pmn) time. For sparse matrices

(m = O(n)) and small p, pmn � n3, which leads to significant performance gains over

the naive approach. In order to compute M , we can repeat the same process with

f = ((L+)
1
2 × CSC)j,:, where j, : is an index for a matrix row.

Once the matrix M is constructed, it remains to compute its eigenvector associated
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to the smallest eigenvalue. A trivial solution would be computing all the eigenvectors of

M , which can be performed in time O(n3). However, due to the fact that our matrix is

negative semidefinite, its smallest eigenvector can be approximated more efficiently using

the Power Method [60], which requires a few products of a vector and M . Assuming

that such method converges to a good solution in t iterations, we can approximate the

smallest eigenvalue of M in time O(tn2). Moreover, the computation of x from y using

(L+)
1
2 can also be performed via Chebyshev polynomials in time O(pm).

The time taken by our improved algorithm to compute a single cut is O(pmn+ tn2),

where p is the number of terms in the Chebyshev polynomial, m = |E|, n = |V |, and

t is the number of iterations of the Power method. This complexity is a significant

improvement over the O(sn3) time taken by its naive version whenever p, m, and t are

small compared to n. For computing all the cuts, the total worst-case time complexity of

the algorithm is O(qpmn+ qtn2), where q is the size of the cut of the wavelet tree X (G).

However, notice that good bases tend to be balanced (see Theorem 7) and in such case

our complexity decreases to O(pmn+ tn2).

3.6 Experiments

We evaluate our algorithms for computing sparse wavelet bases using synthetic and

real datasets. We start by analyzing the scalability and quality of our efficient approx-

imation compared to the original algorithm. Next, we compare our approach against

different baselines and using four real datasets in the signal compression task. This

section ends with some visualizations of the sparse wavelet formulation, which provides

further insights into our algorithm. All the implementations are available as open-source

and we also provide the datasets applied in this evaluation2.

2https://github.com/arleilps/sparse-wavelets
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(a) Traffic (b) Human

(c) Wiki (d) Blogs

Figure 3.5: Compression results for the Traffic, Human, Wiki, and Blogs. Our ap-
proach (FSWT) outperforms the baselines in most of the settings considered. In
particular, FSWT achieves up to 80 times lower error than the best baseline (GWT).

3.6.1 Scalability and Approximation

The results discussed in this section are based on a synthetic data generator for both

the graph and an associated signal. Our goal is to produce inputs for which the best

wavelet cut is known. The data generator can be summarized in the following steps:

(1) Generate sets of nodes V1 and V2 such that |V1| = |V2|; (2) Generate m edges such

that the probability of an edge connecting vertices in V1 and V2 is given by a sparsity

parameter h; (3) Assign average values µ1 and µ2 to V1 and V2, respectively, so that the

energy of the cut (V1, V2) is equal to an energy parameter α; (4) Draw values from a

Gaussian distribution N(µi, σ) for each vertex set Vi, where σ is a noise parameter.
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Proper values for the averages are computed using Equation 3.5. We set default

values for each parameter as follows: number of vertices n = 500 and edges m = 3n,

sparsity h = .5, and noise σ = |µi|. These parameters are varied in each experiment

presented in Figure 3.4. For SWT, we fix the value of βmax in the golden search to 1000

and, for the fast approximation (FSWT), we vary the number of Chebyshev polynomials

applied (5, 20, and 50). The number of iterations of the Power method to approximate

the eigenvectors of M is fixed at 10, which achieved good results in our experiments.

Figure 3.4a compares FSWT and the original algorithm (SWT) varying the graph size

(n), showing that FSWT is up to 100 times faster than SWT. In Figures 3.4b-3.4d, we

compare the approaches in terms of the energy ||a1,1||2 of the first wavelet cut discovered

varying the synthetic signal parameters. The results show that FSWT achieves similar

or better results than SWT for relatively few coefficients (p = 20) in all the settings.

3.6.2 Compression

We evaluate our spectral algorithm for sparse wavelet bases in the signal compression

task. Given a graph G and a signal W , the goal is to compute a compact representation

W ′ that minimizes the L2 error (||W −W ′||2). For the baselines, the size of the repre-

sentation is the number of coefficients of the transform kept in the compression, relative

to the size of the dataset. We also take into the account the representation cost of the

cuts (log(m) bits/edge) for our approach.

Datasets: Four datasets are applied in our evaluation. Small Traffic and Traffic

are road networks from California for which vehicle speeds –measured by sensors– are

modeled as a signal, with n = 100 and m = 200, and n = 2K and m = 6K, respectively

[61]. Human is a gene network for Homo Sapiens with expression values as a signal where

n = 1K and m = 1K [19]. Wiki is a sample of Wikipedia pages where the (undirected)
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link structure defines the graph and the signal is the number of page views for each page

with n = 5K and m = 25K. Blogs is a network of blogs with political leaning (-1 for

left and 1 for right) as vertex attributes [62] (n = 1K and m = 17K). Notice that

these graphs have sizes in the same scale as the ones applied by existing work on signal

processing on graphs [13, 27, 41]. We normalize the values to the interval [0, 1] to make

the comparisons easier.

Baselines: We consider the Graph Fourier Transform (FT) [30, 13] and the wavelet

designs by Hammond et al. (HWT) [33] and Gavish et al. (GWT) [27] as baselines.

Instead of the original bottom-up partitioning algorithm proposed for GWT, we apply

ratio-cuts [46], which is more scalable and achieves comparable results in practice.

Figure 3.6a shows compression results for Small Traffic. The best baselines (GWT

and FT) incur up to 5 times larger error than our approaches (SWT and FSWT). Fig-

ures 3.5a-3.5d show the results for FSWT, GWT, and FT using the remaining datasets.

Experiments for HWT and SWT took too long to finish and were terminated. FSWT

outperforms the baselines in most of the settings, achieving up to 5, 6, 2, and 80 times

lower error than the best baseline (GWT) for Traffic, Human, Wikipedia, and Blogs,

respectively. FT performs surprisingly well for Blogs because vertex values are almost

perfectly separated into two communities, and thus some low frequency eigenvectors are

expected to approximately match the separation (see [62, Fig. 3]). As the size of the

representation increases, FSWT is the only method able to separate values at the border

of the communities.

These results offer strong evidence that our sparse wavelet bases can effectively encode

both the graph structure and the signal. The main advantage of our approach is building

bases that are adapted to the signal by cutting few edges in the graph. The compression

times of our algorithm are comparable with the baselines, as shown in Table 3.6b.
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(a) Compression for Small Traffic

Small Traffic Traffic Human Wiki Blogs
HWT 8 - - - -
FT 1 35 2 381 7

GWT 1 5 11 386 47
SWT 1 - - - -
FSWT 1 18 14 425 38

(b) Average compression times (in secs).

Figure 3.6: Compression results for Small Traffic and compression times for all meth-
ods and the datasets. Our approaches (SWT and FSWT) outperform the baselines
while taking comparable compression time.

3.6.3 Visualization

Finally, we illustrate some interesting features of our sparse wavelet formulation using

graph drawing. Eigenvectors of the Laplacian matrix are known to capture the commu-

nity structure of graphs, and thus can be used to project vertices in space. In particular,

if e2 and e3 are the second (Fiedler) and the third eigenvectors of the Laplacian matrix,

we can draw a graph in 2-D by setting each vertex vi ∈ V to the position (e2(i), e3(i)).

Following the same approach, we apply the smallest eigenvectors of the matrix M (see

Corollary 9) to draw graphs based on both the structure and a signal.

Figure 3.9 presents drawings for two graphs, one is the traditional Zachary’s Karate

network with a synthetic heat signal starting inside one community and the other is Small

Traffic. Three different drawing approaches are applied: (1) The Scalable Force Directed

Placement (SFDP) [63]3, the Laplacian eigenvectors, and the wavelet eigenvectors. Both

3Implemented by GraphViz : http://www.graphviz.org/
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(a) SFDP (b) Laplacian (c) Wavelet

Figure 3.7: Zachary’s karate club.

(a) SFDP (b) Laplacian (c) Wavelet

Figure 3.8: Traffic.

Figure 3.9: Drawing graphs using SFDP (a,d) and Laplacian (b,e) and wavelet eigen-
vectors (c,f). Vertices are colored based on values (red is high, green is average and
blue is low). Different from the other schemes, wavelet eigenvectors are based on both
signal and structure (better seen in color).

SFDP and the Laplacian are based on the graph structure only. The drawings demon-

strate how our wavelet formulation separates vertices based on values and structure.

3.7 Conclusion

Signal Processing in Graphs (SPG) is a powerful framework for modeling complex

data arising from several applications. A major challenge in SPG is relating properties

of the graph signal, the graph structure and the transform. Graph wavelets are able to

effectively model a smooth graph signal conditioned to the existence of a hierarchical
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partitioning of the graph that captures the geometry of the graph structure as well as

the signal. Our work is the first effort to build such hierarchies in a compact fashion. We

first introduced the problem of computing graph wavelet bases via sparse cuts and show

that it is NP-hard—even to approximate by a constant—by connecting it to existing

problems in graph theory. Then, we proposed a novel algorithm for computing sparse

wavelet bases by solving regularized eigenvalue problems using spectral graph theory.

While naively considering both structure and values can lead to computationally intensive

operations, we introduced an efficient solution using several techniques. These approaches

are evaluated using several datasets and the results provide strong evidence that our

solution produces compact and accurate representations for graph signals in practice.

This work opens several lines for future investigation: (i) It remains an open question

whether approximating a single optimal wavelet cut is NP-hard. (ii) The wavelet design

applied in this work maps only to a particular type of wavelets (Haar); extending our

approach to other wavelet functions (e.g. Mexican hat, Meyer [31]) might lead to better

representations for particular classes of signals. (iii) Generalizing the ideas presented

here to time-varying graph signals might lead to novel algorithms for anomaly detection,

event discovery, and data compression.
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Chapter 4

Spectral Algorithms for Temporal

Graph Cuts

4.1 Introduction

Temporal graphs represent how a graph changes over time, being ubiquitous in data

mining and Web applications. Users in social networks present dynamic behavior, leading

to the evolution of communities [64]. In hyperlinked environments, such as blogs, new

topics drive modifications in content and link structure [65]. Communication, epidemics

and mobility are other scenarios where temporal graphs can enable the understanding of

complex processes. However, several key concepts and algorithms for static graphs have

not been generalized to temporal graphs [66, 67].

This work focuses on cut problems in temporal graphs, which consist of finding a small

sets of edges that break the graph into balanced sets of vertices. Two traditional graph

cut problems are the sparsest cut [68, 46] and the normalized cut [47, 55]. In sparsest

cuts, the resulting partitions are balanced in terms of size, while in normalized cuts, the

balance is in terms of total degree (or volume) of the resulting sets. Graph cuts have
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applications in community detection, image segmentation, clustering, and VLSI design.

Moreover, the computation of graph cuts based on eigenvectors of graph-related matrices

is one of the earliest results in spectral graph theory [55], a subject with great impact in

information retrieval [69], graph sparsification [70], and machine learning [50].

One of our motivations to study graph cuts in this new setting is the emerging field

of Signal Processing on Graphs (SPG) [13]. SPG is a framework for the analysis of

data residing on vertices of a graph, as a generalization of traditional signal processing.

Temporal cuts can be applied as bases for signal processing on dynamic graphs.

Our Contributions. We propose formulations of sparsest and normalized cuts in a

sequence of graph snapshots. The idea is to extend classical definitions of these problems

while enforcing the smoothness (or stability) of cuts over time. Our formulations can be

understood using a multiplex view of the temporal graph, where additional edges connect

the same vertex in different snapshots.

Figure 4.1 shows a sparse temporal graph cut for a school network [71], where children

are connected based on proximity. Vertices are naturally organized into communities re-

sulting from classes. However, there is a significant amount of interaction across classes

(e.g. during lunch). Major changes in the contact network can be noticed during the

experiment, causing several vertices to move across partitions—identified with vertex

shapes/colors. The temporal cut is able to capture such trends while keeping the re-

maining vertex assignments mostly unchanged.

Traditional spectral solutions, which compute approximated cuts as rounded eigen-

vectors of the Laplacian matrix, do not generalize to our setting. Thus, we propose new

algorithms, still within the framework of spectral graph theory, for the computation of

temporal cuts. We further exploit important properties of our formulation to design

efficient approximation algorithms for temporal cuts combining divide-and-conquer and

low-rank matrix approximation.
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(a) Time I (b) Time II (c) Time III

Figure 4.1: Temporal graph cut capturing major changes in the network interactions.
Figure is better seen in color.

In order to also model dynamic data embedded on the vertices of a graph, we apply

temporal cuts as data-driven wavelet bases. Our approach exploits smoothness in both

space and time, illustrating how the techniques presented in this work provide a powerful

and general framework for the analysis of dynamic graphs.

Summary of contributions.

• We generalize sparsest and normalized cuts to temporal graphs; we further extend

temporal cuts to graph signals.

• We propose efficient approximate algorithms for temporal cuts via spectral graph

theory and divide-and-conquer.

• We evaluate our methods extensively, applying them for community detection and

signal processing on graphs.

Related Work. Computing graph cuts is a traditional problem [68, 72] with a diverse

set of applications, ranging from image segmentation [47] to community detection [73].

We focus on the sparsest and normalized cut problems, which are of particular interest due

to their connections with the spectrum of the Laplacian matrix, mixing time of random

walks, geometric embeddings, effective resistance, and graph expanders [46, 70, 55].
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Community detection in temporal graphs has attracted great interest in recent years.

An evolutionary spectral clustering technique was proposed in [74]. The idea is to mini-

mize a cost function α.CS + β.CT , where CS is a snapshot cost and CT is a temporal

cost. FacetNet [75] and estrangement [76] apply a similar approach under different clus-

tering models. An important limitation of these solutions is that they perform community

assignments in a step-wise manner, being highly subject to local optima. In incremental

clustering [77, 78], the main goal is to avoid recomputation, and not to capture long-term

structural changes. Multi-view clustering [79, 80] combines different subsets of features

(or views) from a given dataset but does not model how objects navigate across clusters

over time. Different from spatio-temporal data clustering [81, 82], we do not assume that

our data is embedded in an Euclidean space.

A formulation for temporal modularity that simultaneously partitions snapshots us-

ing a multiplex graph [83] was proposed in [84]. A similar idea was applied in [85] to

generalize eigenvector centrality. We propose generalizations for temporal cut problems

by studying spectral properties of multiplex graphs [86, 87]. As one of our contributions,

we exploit the link between multiplex graphs and block tridiagonal matrices to efficiently

approximate temporal cuts [88, 89]. While extending spectral graph theory to tensors

seems to be a more natural approach to our problems, eigenvectors are well-studied only

for symmetric tensors [90], which is not our case due to the time dimension.

Our definition of temporal cuts is a special case of non-uniform cuts [91]—the second

graph is a sequence of disconnected cliques to enforce cuts over time. Different from the

general case, which requires more sophisticated (and computationally intensive) schemes

[92], a relaxation for temporal cuts can be computed as an eigenvector of a linear com-

bination of two matrices (see Theorem 11).

Signal processing on graphs [13, 2] is an interesting application of temporal cuts.

Traditional signal processing operations are also relevant when the signal is embedded
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into sparse irregular spaces. For instance, in machine learning, object similarity can

be represented as a graph and labels as signals to solve semi-supervised learning tasks

[27, 93]. In this work, we show how temporal cuts can be applied as bases for representing

dynamic graph signals, even in the case where the graph structure also changes over time.

4.2 Temporal Graph Cuts

This section introduces temporal cuts (Section 4.2.1) and spectral algorithms for

these problems (Section 4.2.2). Faster algorithms, using divide-and-conquer and low-

rank matrix approximation, are presented in Section 4.2.3. We also discuss theoretical

guarantees (Section 4.2.4) and generalizations for temporal cuts (Section 4.2.5).

4.2.1 Definitions

A temporal graph G is a sequence of snapshots 〈G1, G2, . . . Gm〉 where Gt is the

snapshot at timestamp t. Gt is a tuple (V,Et,Wt) where V is a fixed set with n vertices,

Et is a dynamic set of undirected edges and Wt : Et → R is an edge weighting function.

We model temporal graphs as multiplex graphs, which connect vertices from different

graph layers. We denote as χ(G) = (V , E ,W) the multiplex view of G, where V = {vt|v ∈

V ∧ t ∈ [1,m]} (|V| = nm) and E = E1∪ . . . Et∪{(vt, vt+1)|v ∈ V ∧ t ∈ [1,m−1]}. Thus,

E also includes ’vertical’ edges between nodes vt and vt+1. The edge weighting function

W : E → R is defined as:

W(ur, vs) =


Wt(u, v), if (u, v) ∈ Et ∧ r = t ∧ s = t

β, if u = v ∧ |r − s| = 1

0, otherwise

(4.1)
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As a result, each vertex v ∈ V has m representatives {v1, . . . vm} in χ(G). Besides the

intra-layer edges corresponding to the connectivity of each snapshot Et, temporal edges

(vt, vt+1) connect consecutive versions of a vertex v at different layers, which is known

as diagonal coupling [94]. Intra-layer edge weights are the same as in G while inter-layer

weights are set to β.

Sparsest Cut

A graph cut (X,X) divides V into two disjoint sets: X ⊆ V and X = V − X. We

denote the weight of a cut |(X,X)| =
∑

u∈X,v∈XW (u, v). The cut sparsity σ is the ratio

of the cut weight and the product of the sizes of the sets [68]:

σ(X) =
|(X,X)|
|X||X|

(4.2)

Here, we extend the notion of cut sparsity to temporal graphs. A temporal cut

〈(X1, X1), . . . (Xm, Xm)〉 is a sequence of graph cuts where (Xt, X t) is a cut of the graph

snapshot Gt. The idea is that in temporal graphs, besides the cut weights and partition

sizes, we also care about the smoothness (i.e. stability) of the cuts over time. We

formalize the temporal cut sparsity σ as follows:

σ(X1, . . . Xm; β) =

∑m
t=1 |(Xt, X t)|+

∑m−1
t=1 ∆(Xt, X t+1)∑m

t=1 |Xt||X t|
(4.3)

where ∆(Xt, X t+1) = β|(Xt, X t+1)| is the number of vertices that move from Xt to X t+1

(or |Xt ∩X t+1|) times the constant β, which allows different weights to be given to the

cut smoothness.

Figure 4.2 shows two alternative cuts for a temporal graph (β = 1). Cut I (Figure

4.2a) is smooth, since no vertex changes partitions, and it has weight 5. Cut II (Figure

4.2b) is a sparser temporal cut, with weight 3 and only one vertex changing partitions.
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G1 G2
(a) Temporal cut I

G1 G2
(b) Temporal cut II

G1 G2
(c) Multiplex cut II

Figure 4.2: Two temporal cuts for the same graph and multiplex view of cut II. For
β = 1, cut I has a sparsity of (2+3+0)/(4×4+4×4) = 0.16 while cut II has sparsity
of (2 + 1 + 1)/(4× 4 + 5× 3) = 0.13. Thus, II is a sparser cut.

Notice that cut I becomes sparser than cut II if β is set to 2 instead of 1. We formalize

the sparsest cut problem in temporal graphs as follows.

Definition 9 Sparsest temporal cut. The sparsest cut of a temporal graph G, for a

constant β, is defined as:

arg minX1...Xmσ(X1, . . . Xm; β)

The sparsest temporal cut is a generalization of the sparsest cut problem and thus

also NP-hard [46].

An interesting property of the multiplex model is that temporal cuts in G become

standard—single graph—cuts in the multiplex view χ(G). We can evaluate the sparsity

of a cut in G by applying the original formulation (Expression 4.2) to χ(G), since both

edges cut and partition changes in G become edges cut in χ(G). As an example, we
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show the multiplex view of cut II (Figure 4.2b) in Figure 4.2c. However, notice that

not every standard cut in χ(G) is a valid temporal cut. For instance, cutting all the

temporal edges (i.e. separating the two snapshots in our example) would be allowed

in the standard formulation, but would lead to an undefined value of sparsity as the

denominator in Expression 4.3 will be 0. Therefore, we cannot directly apply existing

sparsest cut algorithms to χ(G) and expect to achieve a sparse temporal cut for G.

The connection between temporal cuts and multiplex networks is one of the main

motivations for our formulation. Moreover, Equation 4.3 is general enough to capture

different dynamic behaviors depending on the constant β. More specifically, if β → ∞,

the sparsity σ will be minimized for a constant cut over the snapshots. On the other

hand, if β → 0, σ approximates the sparsity of single snapshot cuts. These two extreme

regimes have been studied in the context of random-walks on dynamic graphs [95].

Normalized Cut

A limitation of Equation 4.2, is that it favors sparsity over partition size balance. In

community detection, this often leads to “whisker communities” [73, 96]. Normalized cuts

[47] take into account the volume (i.e. sum of the degrees of vertices) of the partitions,

being less prone to this effect. The normalized version of the cut sparsity is defined as:

φ(X) =
|(X,X)|

vol(X).vol(X)
(4.4)

where vol(Y ) =
∑

v∈Y deg(v) and deg(v) is the degree of v.

We also generalize the normalized sparsity φ to temporal graphs:

φ(X1, . . . Xm; β) =

∑m
t=1 |(Xt, X t)|+

∑m−1
t=1 ∆(Xt, X t+1)∑m

t=1 vol(X t)vol(Xt)
(4.5)

Next, we define the normalized cut problem for temporal graphs.
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Definition 10 Normalized temporal cut. The normalized temporal cut of G, for a

constant β, is defined as:

arg minX1...Xmφ(X1, . . . Xm; β)

Computing optimal normalized temporal cuts is also NP-hard. The next section

introduces spectral approaches for temporal cuts.

4.2.2 Spectral Approaches

Similar to the single graph case, we also exploit spectral graph theory in order to

compute good temporal graph cuts. Let A be an n× n weighted adjacency matrix of a

graph G(V,E), where Au,v = W (u, v) if (u, v) ∈ E or 0, otherwise. The degree matrix

D is a an n × n diagonal matrix, with Dv,v = deg(v) and Du,v = 0 for u 6= v. The

Laplacian matrix of G is defined as L = D − A. Let Lt be the Laplacian matrix of the

graph snapshot Gt and Iz be an z × z identity matrix. We define the Laplacian of the

temporal graph G as the Laplacian of its multiplex view χ(G):

L =



L1 + βIn −βIn 0 . . . 0

−βIn L2 + 2βIn −βIn . . . 0

...
. . . . . . −βIn

0 0 . . . −βIn Lm + βIn


The matrix L can be also written in a more compact form using the Kronecker product

as diag(L1, . . . Lm) + β(L`⊗ In), where L` is the Laplacian of a line graph. Similarly, we

define the degree matrix D of G as diag(D1, D2 . . . Dm), where Dt is the degree matrix of

Gt. Let C = nIn − 1n×n be the Laplacian of a clique with n vertices. We define another
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nm × nm Laplacian matrix C = Im ⊗ C, which is the Laplacian of a graph composed

of m isolated cliques. This matrix will be applied to enforce valid temporal cuts over

the snapshots of G. Further, we define a size-nm indicator vector x where each vertex

v ∈ V is represented m times, one for each snapshot. The value x[vt] = 1 if vt ∈ Xt and

x[vt] = −1 if vt ∈ X t.

Sparsest Cut

The next lemma shows how the matrices L and C can be applied to compute the

sparsity of temporal cuts.

Lemma 4.2.1 The sparsity σ of a temporal cut is equal to xᵀLx
xᵀCx .

Proof: Since L is the Laplacian of χ(G):

xᵀLx =
∑

(u,v)∈E

(x[u]− x[v])2W (u, v)

= 4
m∑
t=1

|(Xt, X t)|+ 4
m−1∑
t=1

∆(Xt, X t+1)

Regarding the denominator:

xᵀCx =
m∑
t=1

∑
u6=v

(x[vt]− x[ut])
2

= 4
m∑
t=1

|Xt||X t|

Based on Lemma 4.2.1, we can obtain a relaxed solution, x ∈ [−1, 1]nm, for the

sparsest temporal cut problem (Definition 9) in O(n3m3) time via generalized eigenvalue

computation [60], or an approximate solution in O(n2m log2(n2m)) time using a fast
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Laplacian linear system solver [97, 98]. Solutions are later rounded to adhere to the

original (discrete) constraint x ∈ {−1, 1}nm. The next lemma supports a more efficient

solution for our relaxation.

Lemma 4.2.2 The matrices C and L commute.

Proof: First, we show that C commutes with any Laplacian Lt:

CLt = (nIn − 1n×n)Lt = nLt = LtC

Using the Kronecker product notation (see Section 4.2.2):

CL = (Im ⊗ C)[diag(L1, . . . Lm)− β(L` ⊗ In)]

= diag(CL1, . . . CLm)− β(ImL
`)⊗ (CIn)

= diag(L1C, . . . LmC)− β(L`Im)⊗ (InC)

= LC

A relaxation of the sparsest temporal cut can be computed based on a linear combi-

nation of matrices C and L.

Theorem 11 A relaxed solution for the sparsest temporal cut problem can, alternatively,

be computed as:

y∗ = arg max
y∈[−1,1]nm

yᵀ[(3(n+ 2β)C − L]y

yᵀy
(4.6)

which is the largest eigenvector of 3(n+ 2β)C − L.

Proof:

The spectrum of C is in the form (e1, λ1) = (1n, 0) and λ2 = . . . = λn = n for any

vector ei ⊥ 1n. As a consequence, the spectrum of C is in the form λ1 = . . . = λm = 0
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and λm+1 = . . . λnm = n for any ei ⊥ span{e1, . . . em}. Lemma 4.2.2 implies that any

linear combination of C and L has the same eigenvectors as L [99]. Upper bounding the

eigenvalues of a Laplacian matrix [100]:

0 ≤ yᵀLy

yᵀy
≤ 2(n+ 2β) (4.7)

This implies that:

(y∗)ᵀC(y∗)
(y∗)ᵀ(y∗)

= n (4.8)

as it guarantees a strictly positive ratio (i.e. eigenvalue) in Equation 4.6. Based on

Equation 4.8, we can re-write y∗ as:

y∗ = arg min
y∈[−1,1]nm,yᵀCy>0

yᵀLx

yᵀy
(4.9)

Moreover, from Lemma 4.2.1:

x∗ = arg min
x∈[−1,1]nm,xᵀCx>0

xᵀLx

xᵀCx
(4.10)

Equations 4.9 and 4.10 are related to an eigenvalue and a generalized eigenvalue

problem, respectively, and can be written as follows:

Ly = λy, Lx = λ′Cx (4.11)

where λ and λ′ are minimized and yᵀCy,xᵀCx > 0. From Equation 4.8, we know that

Cy = ny. Thus, Ly = (λ/n)Cy is a corresponding solution (same eigenvector) to the

generalized problem.

The matrix 3(n + 2β)C − L is a Laplacian of a multiplex graph in which temporal

edges have weight w′(vt, vt+1)= −β and intra-layer edges have weight w′(u, v) = 3(n +
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2β)−w(u, v). This leads to a reordering of the spectrum of L where cuts containing only

temporal edges have negative associated eigenvalues and sparse cuts for each Laplacian

Lt become dense cuts for a new Laplacian [3(n + 2β))C − Lt]. In terms of complexity,

computing the difference 3(n+ 2β)C − L takes O(n2m) time and the largest eigenvector

of [3(n+2β)C−L] can be calculated in O(n2m). The resulting complexity is a significant

improvement over the O(n3m3) alternative, specially if the number of snapshots is large.

Normalized Cut

We follow the steps of the previous section to compute normalized temporal cuts. See

the extended version of this work [101] for proofs of Lemma 4.2.3 and Theorem 12.

Lemma 4.2.3 The normalized sparsity φ of a temporal cut is equal to xᵀLx
xᵀD

1
2 CD

1
2 x

.

We also define an equivalent of Theorem 11 for normalized cuts.

Theorem 12 A relaxed solution for the sparsest temporal cut problem can, alternatively,

be computed as:

y∗ = arg max
y∈[−1,1]nm

yᵀ[(3(n+ 2β)C − (D+)
1
2L(D+)

1
2 ]y

yᵀy
(4.12)

the largest eigenvector of 3(n+ 2β)C − (D+)
1
2L(D+)

1
2 .

The interpretation of matrix 3(n + 2β)C − (D+)
1
2L(D+)

1
2 is similar to the one for

sparsest cuts, with temporal edges having negative weights. Moreover, the complexity of

computing the largest eigenvector of such matrix is also O(n2m). This quadratic cost on

the size of the graph, for both sparsest and normalized cut problems, becomes prohibitive

even for reasonably small graphs. The next section is focused on faster algorithms for

temporal graph cuts.
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4.2.3 Fast Approximations

By definition, sparse temporal cuts are sparse in each snapshot and smooth across

snapshots. Similarly, normalized temporal cuts are composed of a sequence of good

normalized snapshot cuts that are stable over time. This motivates divide-and-conquer

approaches for computing temporal cuts that first find a good cut on each snapshot

(divide) and then combine them (conquer). These solutions have the potential to be

much more efficient than the ones based on Theorems 11 and 12 if the conquer step is

fast. However, they could lead to sub-optimal results, as optimal temporal cuts might not

be composed of each snapshot’s best cuts. Instead, better divide-and-conquer schemes

can explore multiple snapshot cuts in the conquer step to avoid local optima. Since

we are working in the spectral domain, it is natural to take eigenvectors of blocks of

MS = 3(n+ 2β)C −L andMN = 3(n+ 2β)C − (D+)
1
2L(D+)

1
2 , as continuous notions of

snapshot cuts. This strategy is supported by the well-known connections between higher-

order eigenvectors of the Laplacian matrix and the sparsity of multiway cuts [102, 103].

This section will describe our general divide-and-conquer approach. We will focus our

discussion on the sparsest cut problem and then briefly show how it can be generalized

to normalized cuts. The following theorem is the basis of our algorithm.

Theorem 13 The eigenvalues of the matrix MS = 3(n+ 2β)C − L are the same as the

ones for the matrix Q:

Q = Λ− β



In −Uᵀ
1U2 0 . . . 0

−Uᵀ
2U1 2In −Uᵀ

2U3 . . . 0

...
. . . . . . Uᵀ

m−1Um

0 0 . . . Uᵀ
mUm−1 In


where UtΛtU

ᵀ
t is the eigendecomposition of the matrix Mt = (3(n + 2β)C − Lt) and Λ=
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diag(Λ1 . . .Λm). An eigenvector ej of MS is computed as U .eQj , where U = diag(U1 . . .

Um) and eQj is an eigenvector of Q.

Proof: We show that MS and Q are similar matrices under the change of basis

Uᵀ and thus M = (Uᵀ)−1QUᵀ. Let’s define matrices B = β(L` ⊗ In) and Mt = 3(n −

2β)C −Lt. Because Lt is symmetric, U−1 = Uᵀ. For an eigenvector matrix U , UUᵀ is an

nm× nm identity matrix I. We rewrite MS as:

MS = diag(M1,M2 . . .Mm)− B

= UΛUᵀ − IBI

= UΛUᵀ − UUᵀBUUᵀ

= U(Λ− UᵀBU)Uᵀ

= (Uᵀ)−1QUᵀ

Q has O(n2m) non-zeros, being asymptotically as sparse asMS. However, Q can be

block-wise sparsified using low-rank approximations of the matrices Mt. Given a constant

r ≤ n, we approximate each Mt as UtΛ
′
tU

ᵀ
t , where Λ′i contains only the top-r eigenvalues

of Mt. The benefits of such a strategy are the following: (1) The cost of computing

the eigendecomposition of Mt changes from O(n3) to O(rn2); (2) the cost of multiplying

eigenvector matrices decreases from O(n3) to O(r3); and (3) the number of non-zeros in

Q is reduced from O(n2m) to O(r2m). Similar to the case of general block tridiagonal

matrices [89], we can show that the error associated with such approximation is bounded

by 2λmaxr+1 , where λmaxr+1 is the largest (r+1)-nth eigenvalue of the approximated matrices

Mt.

We improve our approach by speeding-up the eigendecomposition of the matrices Mt.

The idea is to operate over the original Laplacians Lt, which are expected to be sparse.
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The eigendecomposition of a matrix with |E| non-zeros can be performed in time O(n|E|)

and for real-world graphs |E| << n2. The following Lemma shows how the spectrum of

Mt can be computed based on Lt.

Require: Temporal graph G, rank r, constant β
Ensure: Temporal cut 〈(X1, X1), . . . (Xm, Xm)〉

1: for Gt ∈ G do
2: Compute bottom-r eigendecomposition U ′tΛ

′L
t U

′ᵀ
t ≈ Lt

3: Fix Λt ← diag(0, 3(n+ 2β)n− λn, . . . 3(n+ 2β)n− λ2)
4: end for
5: Q ← diag(Λ1, . . .Λm)− B
6: for t ∈ [1,m− 1] do
7: Qt,t+1 ← U ′ᵀt U

′
t , Qt+1,t ← U ′ᵀt U

′
t

8: end for
9: Compute largest eigenvector x*← arg maxx xᵀQx/xᵀx

10: return rounded cut sweep(U .x∗,G, β)
Algorithm 5: Spectral Algorithm

Lemma 4.2.4 Let λL1 , λ
L
2 . . . λ

L
n be the eigenvalues of a Laplacian matrix L in increasing

order with associated eigenvectors eL1 , e
L
2 . . . e

L
n . The eigenvectors eLi are also eigenvectors

of 3(n+ 2β)C − L with eigenvalues λ1 = 0 and λi = 3(n+ 2β)n− λn−i+1 for i > 0.

Proof: The spectrum of C is (e1, λ1) = (1n, 0) and λ2 = . . . = λn = n for any

vector ei ⊥ 1n. As Mi is also a Laplacian, it follows that λ1 = 0 and e1 = eL1 . Also, by

definition L.eLi = λLi .e
L
i , and thus (3(n + 2β)C − L)eLi = (3(n + 2β)n − λi)eLi for i > 0.

Algorithm 5 describes our divide-and-conquer approach for approximating the spars-

est temporal cut. Its inputs are the temporal graph G, the rank r that controls the

accuracy of the algorithm, and a constant β. It returns a cut 〈(X1, X1) . . . (Xm, Xm)〉

that (approximately) minimizes the sparsity ratio defined in Equation 4.3. In the divide

phase, the top-r eigenvalues/eigenvectors of each matrix Mt—related to the bottom-r
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eigenvalues/eigenvectors of Lt—are computed using Lemma 4.2.4 (steps 1-4). The con-

quer phase (steps 5-9) consists of building the matrix Q—based on the blocks Qt,t+1

adjacent to the diagonal—and then computing its largest eigenvector as a relaxed ver-

sion of a temporal cut. The resulting eigenvector is discretized using a standard sweep

algorithm (sweep) over the vertices sorted by their corresponding value of x*. The

selection criteria for the sweep algorithm is the sparsity ratio (Equation 4.3).

The time complexity of our algorithm is O(mr
∑m

t=1 |Et| +mr3). The divide step

has cost O(mr
∑m

t=1 |Et|), which corresponds to the computation of r eigenvectors (and

eigenvalues) of matrices Lt with O(|Et|) non-zeros each. As snapshots are processed

independently, this part of the algorithm can be easily parallelized. In the conquer step,

the most time consuming operation is computing m − 1 r × r matrix products in the

construction of Q, which takes O(r3m) time. Our algorithm has space complexity of

O(r2m) due to the number of non-zeros in the sparse representation of Q.

We follow the same general approach discussed in this section to efficiently com-

pute normalized temporal cuts. As in Theorem 13, we can compute the eigenvec-

tors of MN using divide-and-conquer. However, each block Mt will be in the form

3(n − 2β)C − (D+
t )

1
2Lt(D

+
t )

1
2 . Moreover, similar to Lemma 4.2.4, we can also compute

the eigendecomposition of Mt based on (D+
t )

1
2Lt(D

+
t )

1
2 .

4.2.4 Approximation Guarantees

The algorithms presented in Sections 4.2.2 and 4.2.3 are based on eigenvector com-

putations that are relaxations of temporal cut problems. A natural question to ask is:

Do they provide any approximation guarantees with respect to the optimal solution for

the problems? Notice that, for the fast solutions discussed in the previous section, the

number of top eigenvalues (r) considered by Algorithm 5 gives some control over the
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quality of the approximations. Therefore, we focus on bounding the error induced by the

relaxations described in Lemmas 4.2.1 and 4.2.3 and by Theorems 11 and 12.

Our analysis is heavily based on a recent generalization of the Cheeger inequality

[104, 92], which relates the ratio between the weights of the same cut on two graphs,

G and H, with the same set of vertices, and the generalized eigenvalue involving their

Laplacian matrices LG and LH . This generalization is the main ingredient to proof the

following Lemma regarding our spectral algorithm for the sparsest temporal cut problem

(Definition 9):

Lemma 4.2.5 The temporal sparsity ratio λ(G) achieved by our relaxation is such that:

λ(G) ≥ ϕ(χ(G)) min(σX1,...Xm(X1, . . . Xm; β))

8
(4.13)

where λ(G) = minxᵀCx>0
xᵀLx
xᵀCx and ϕ(χ(G)) is the (standard) conductance of the multiplex

view of G.

The lemma follows directly from [104, Theorem 1], by setting G to our temporal

graph G and H to the sequence of cliques with Laplacian C, and thus the proof is omitted.

Similar to the classical Cheeger inequality [55], the proof of its generalized version is also

constructive, and the rounding algorithm applied by our solutions achieves this bound.

We can interpret Lemmma 4.2.5 as follows. If the temporal graph G has a low-sparsity

cut compared to the conductance of its multiplex view χ(G), then our relaxations will

find a good approximate (possibly different) temporal cut. A similar bound also holds

for normalized temporal cuts (Definition 10).
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4.2.5 Generalizations

Here, we briefly address several generalizations of temporal cuts that aim to increase

the applicability of this work.

Arbitrary swap costs: While we have assumed uniform swap costs β, generalizing

our formulation to arbitrary (non-negative) costs for pairs (vt, vt+1) is straightforward.

Multiple cuts: Multi-cuts can be computed based on the top eigenvectors of our

temporal cut matrices, as proposed in [47]. We use k-means to obtain a k-way partition.

(a) Synthetic (b) School

(c) Stock (d) DBLP

Figure 4.3: Sparsity ratios for sparsest cuts. STC achieves the smallest ratio in most
of the settings. FSTC also achieves good results, specially for r = 64, being able to
adapt to different swap costs.
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(a) Synthetic (b) School

(c) Stock (d) DBLP

Figure 4.4: Sparsity ratios for normalized cuts. STC achieves the smallest ratio in
most of the settings. FSTC also achieves good results, specially for r = 64, being able
to adapt to different swap costs.

4.3 Signal Processing on Graphs

We apply graph cuts as data-driven wavelet bases for dynamic signals. Given a

sequence of signals 〈f(1), . . . f(m)〉, f(i) ∈ Rn, on a temporal graph G, our goal is to discover

a temporal cut that is sparse, smooth, and separates vertices with dissimilar signal values.

A previous work [2] has shown that a relaxation of the L2 energy (or importance) ||a||2

of a wavelet coefficient a for a single graph snapshot with signal f can be computed as:

(|X|
∑

v∈X f[v]− |X|
∑

u∈X f[u])2

|X||X|
∝ −xᵀCSCx

xᵀCx
(4.14)
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where x is an indicator vector and Su,v = (f[v] − f[u])2. Sparsity is enforced by adding

a Laplacian regularization factor αxᵀLx, where α is a user-defined constant, to the

denominator of Equation 4.14. This formulation supports an algorithm for computing

graph wavelets, which we extend to dynamic signals. Following the same approach as in

Section 4.2.1, we apply the multiplex graph representation to compute the energy of a

dynamic wavelet coefficient:

∑m
t=1 Θ2

t +
∑m−1

t=1 ΘtΘt+1∑m
t=1 |Xt||X t|

(4.15)

where Θt = |Xt|
∑

v∈Xt
f[v]−|X t|

∑
u∈Xt

f[u]. The first term in the numerator of Equation

4.15 is the sum of the numerator of Equation 4.14 over all snapshots. The second term

acts on sequential snapshots and enforces the partitions to be consistent over time —i.e.

Xt’s to be jointly associated with either large or small values. Intuitively, the energy is

maximized for partitions that separate different values and are also balanced in size. The

next theorem provides a spectral formulation for the energy of dynamic wavelets.

Theorem 14 The energy of a dynamic wavelet is proportional to −xᵀCSCx
xᵀCx , where Su,v =

(f[u]− f[v])2 for values within one snapshot from each other.

We apply Theorem 14 (see proof in [101]) to compute a relaxation of the optimal

dynamic wavelet as a regularized eigenvalue problem:

x∗ = arg min
x∈[−1,1]nm

xᵀCSCx
xᵀCx + αxᵀLx

(4.16)

where C and L are matrices defined in Section 4.2.1. Optimizations discussed in [2] can be

applied to efficiently approximate Equation 4.16. The resulting algorithm has complexity

O(pn
∑

t |Et| + qn2m2), where p and q are small constants. Similar to Algorithm 5, we

apply a sweep procedure to obtain a cut from x∗.
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4.4 Experiments

4.4.1 Eigenvector Computation

We applied the Lanczos method [60, 105] to implement the algorithms discussed in

this work1. However, our algorithms can also be implemented using other eigensolvers

from the literature.

4.4.2 Datasets

School is a contact network where vertices represent children from a primary school

and edges are created based on proximity detected by sensors [71], with 242 vertices,

17K edges and 3 snapshots. Stock is a correlation network of US stocks’ end of the

day prices2 with 500 vertices, 27K edges, and 26 snapshots (one for each year in the

interval 1989-2015). DBLP is a sample from the DBLP collaboration network. Vertices

corresponding to two authors are connected in a given snapshot if they co-authored a

paper in the corresponding year. We selected authors who published at least 5 papers one

of the following conferences: KDD, CVPR, and FOCS. The resulting temporal network

has 3.4K vertices, 16.4K edges, and 4 snapshots.

We also use a synthetic data generator. Its parameters are a graph size n, partition

size k < n, number of hops h, and noise level 0 ≤ ε ≤ 1. Edges are created based on a

d
√
ne×d

√
ne grid, where each vertex is connected to its h-hop neighbors. A partition is a

sub-grid initialized with d
√
ke×d

√
ke dimensions (k = n/2). A value π(v) = 1.+N(0, ε) is

assigned to vertices inside the partition and the remaining vertices receive iid realizations

of a Gaussian N(0, ε). Given the node values, the weight w of an edge (u, v) is set as

exp (|π(v)− π(u)|). To produce the dynamics, we move the partition along the main

1Data and code: https://github.com/arleilps/time-cuts
2Qualdl data: https://www.quandl.com/data/
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diagonal of the grid.

To evaluate our wavelets for dynamic signals, we apply our approach to Traffic [2],

a road network from California with 100 vertices, 200 edges, and 12 snapshots. Average

vehicle speeds measured at the vertices were taken as a dynamic signal for the timespan

of a Friday in April, 2011. Moreover, we apply the heat equation to generate synthetic

signals over the School network. Different from Traffic, which has a static structure, the

resulting dataset (School-heat) is dynamic in structure and signal (see details in [101]).

4.4.3 Approximation and Performance

Two general approaches for computing temporal cuts, for both sparsest and normal-

ized cuts, are evaluated in this section. The first approach, STC, combines Theorems 11

and 12, for sparsest and normalized cuts, respectively, and the same rounding scheme

applied by Algorithm 5. The second approach, FSTC-r, for a rank r, applies the fast

approximation described in Section 4.2.3.

We consider three baselines in this evaluation. SINGLE discovers the best cut on each

snapshot and then binds them into one temporal cut. UNION computes the best average

cut over all the snapshots. LAP is similar to our approach, but operates directly on the

Laplacian matrix L. Notice that each of these baselines can be applied to either sparsest

and normalized cuts as long as the appropriate (standard or normalized) Laplacian matrix

is used. Each experiment was repeated 10 times and we report the average results.

Figures 4.3 and 4.4 show quality results (sparsity ratios) of the methods. We vary

the swap cost (β) within a range that enforces local and global (or stable) patterns.

The values of β shown are normalized to integers for ease of comparison. STC and

LAP took too long to finish for the Stock and DBLP datasets, and thus their results

are omitted. Our approach, STC, achieves the best results (smallest ratios) in most
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of the settings. For the School dataset, LAP also achieves good results, which is due

to the small number of snapshots in the graph. As expected, UNION performs well

for large swap costs, while SINGLE achieves good results when swap costs are close to

0. Our fast approximation (FSTC ) is able to identify low-sparsity cuts in most of the

settings, outperforming SINGLE and UNION. Notice that even though a larger value

of r generates a better approximation for the temporal matrix, as discussed in Section

4.2.3, the quality of the temporal cut is not guaranteed to increase monotonically with

the value of r (see Figure 4.4c). However, a larger r often leads to a better approximation

(i.e. lower sparsity ratio).

Figures 4.5 and 4.6 show the performance results (running time) using synthetic data

for sparsest (Figure 4.5a-4.5d) and normalized (Figures 4.6a-4.6d) cuts. We vary the

number of vertices, density, number of snapshots, and also the rank of FSTC. Similar

conclusions can be drawn for both problems. UNION is the fastest method, as it operates

over an n×n matrix. STC and LAP, which process nm×nm matrices, are the most time

consuming methods. STC is even slower than LAP, due to its denser matrix. SINGLE

and FSTC achieve similar performance, with running times close to UNION ’s. Figures

4.5d and 4.6d illustrate how the rank r of the matrix approximation performed by FSTC

enables significant performance gains compared to STC.

4.4.4 Community Detection

Dynamic community detection is an interesting application for temporal cuts. Two

approaches from the literature, FacetNet [75] and GenLovain [94], are used as the base-

lines. We focus our evaluation on School and DBLP, which have most meaningful com-

munities. The following metrics are considered for comparison:

Cut: Total weight of edges across partitions,
∑m

t=1

∑
v,u∈Gt

w(u, v)(1 − δ(cv, cu)),
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(a) #Vertices (b) Density

(c) #Snapshots (d) Rank

Figure 4.5: Running time results for sparsest cuts on synthetic data.

where cv and cu are the partitions to which v and u are assigned, respectively.

Sparsity: Sparsity ratio (Equation 4.3) for k-cuts [47]:

k∑
i=1

∑m
t=1 |(Xi,t, X i,t|+ β

∑m−1
t=1 |(Xi,t, X i,t+1)|∑m

t=1 |Xi,t||X i,t|

N-sparsity: Normalized k-cut ratio (similar to sparsity).

Modularity: Temporal modularity, as defined in [94].

Baseline parameters were varied within a range of values and the best results were

chosen. For GenLovain, we fixed the number of partitions by agglomerating pairs that
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(a) #Vertices (b) Density

(c) #Snapshots (d) Rank

Figure 4.6: Running time results for normalized cuts on synthetic data.

(a) I (b) II (c) III (d) IV

Figure 4.7: Dynamic communities discovered using sparsest cuts for the DBLP dataset
(4 snapshots). Better seen in color.

maximize modularity [94] and for FacetNet, we assign each vertex to its highest weight

partition.
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Community detection results, for 2 and 5 communities, are shown in Table 4.1. For

School, both GenLovain and our methods found the same communities (β = 0.25) when

k = 2, outperforming FacetNet in all the metrics. However, for k = 5, different com-

munities were discovered by the methods, with Sparsest and Normalized Cuts achieving

the best results in terms of sparsity and n-sparsity, respectively. Our methods also

achieve competitive results in terms of modularity. Similar results were found using

DBLP (β = 0.5), although Sparsest and Normalized Cuts switch as the best method

for each other’s metric in some settings. This is possible because our algorithms are

approximations (i.e. not optimal). We illustrate the communities found in the School

(k = 2) and DBLP (k = 5) datasets in Figures 4.1 and 4.7, respectively.

S

k Method Cut Sparsity N-sparsity Modularity

2

GenLovain 2.6 1.0e-4 5.0e-3 102.0
Facetnet 6.0 3.8e-4 .012 95.7
Sparsest 2.6 1.0e-4 5.0e-3 102.0
Norm. 2.6 1.0e-4 5.0e-3 102.0

5

GenLovain 8.0 6.8e-4 2.7e-2 110.0
Facetnet 10.0 8.4e-4 3.0e-2 106.0
Sparsest 8.3 6.4e-4 2.6e-2 109.0
Norm. 6.1 9.9e-4 1.8e-2 110.0

(a) School

k Method Cut Sparsity N-sparsity Modularity

2

GenLovain 80. 3.9e-4 1.3e-5 38,612
Facetnet 267.0 2.6e-3 8.9e-5 33,091
Sparsest 9.0 7.6e-5 3.6e-6 38,450
Norm. 19.0 1.2e-4 3.8e-6 38,516

5

GenLovain 174. 1.3e-3 4.1e-5 39,342
Facetnet 501.0 7.2e-3 2.8e-4 30,116
Sparsest 40.0 5.2e-4 6.2e-5 38,498
Norm. 31.0 4.0e-4 1.0e-5 39,015

(b) DBLP

Table 4.1: Community detection results for Sparsest and Normalized Cuts (and two
baselines) using School and DBLP datasets. Our methods achieve the best results for
most of the metrics and are competitive in terms of modularity.
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4.4.5 Signal Processing on Graphs

We finish our evaluation with the analysis of dynamic signals on graphs. In Figure

4.8, we illustrate three dynamic wavelets for Traffic discovered using our approach under

different settings. First, in Figures 4.8a-4.8d, we consider cuts that take only the graph

signal into account by setting both the regularization parameter α and the smoothness

parameter β to 0, which leads to a cut that follows the traffic speeds but has many

edges and is not smooth. Next (Figures 4.8e-4.8h), we increase α to 200, producing a

much sparser cut that is still not smooth. Finally, in Figures 4.8i-4.8l, we increase the

smoothness β to 10, which forces most of the vertices to remain in the same partition

despite of speed variations.

We also evaluate our approach in signal compression, which consists of computing

a compact representation for a dynamic signal. As a baseline, we consider the Graph

Fourier scheme [13] applied to the temporal graph (i.e. the multiplex view of the graph).

The size of the representation (k) is the number of partitions and the number of top

eigenvectors for our method and Graph Fourier, respectively. Figures 4.9a and 4.9b show

the compression results in terms of L2 error using a fixed representation size k for the

Traffic and School-heat datasets, respectively. We vary the value of the regularization

parameter α, which controls the impact of the network structure over the wavelets com-

puted, for our method. As expected, a larger value of α leads to a higher L2 error.

However, even for a high regularization, our approach is still able to compute wavelets

that accurately compress the signal, outperforming the baseline.

4.5 Conclusion

This work studied cut problems in temporal graphs. Extensions of two existing graph

cut problems, sparsest and normalized cuts, by enforcing the smoothness of cuts over
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(a) I (b) II (c) III (d) IV

(e) I (f) II (g) III (h) IV

(i) I (j) II (k) III (l) IV

Figure 4.8: Wavelet cut of a 4-snapshot dynamic traffic network with vehicle speeds
as a signal. Vertex colors correspond to speed values (red for high and blue for low)
and shapes indicate the partitions for 3 different settings: α = 0. and β = 1 (a-d, no
network effect), α = 200. and β = 1. (e-h, large network effect with low smoothness),
and α = 200. and β = 10. (i-l, large network effect and high smoothness) .

(a) Traffic (b) School-heat

Figure 4.9: L2 error with different representation sizes k for Graph Fourier and our
approach while setting the regularization parameter α to 200, 100, and 0.
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time, were introduced. To solve these problems, we have proposed spectral approaches

based on multiplex graphs by computing relaxed temporal cuts as eigenvectors. Scalable

versions of our solutions using divide-and-conquer and low-rank matrix approximation

were also presented. In order to compute cuts that take into account also graph signals,

we have extended graph wavelets to the dynamic setting. Experiments have shown that

our temporal cut algorithms outperform the baseline methods in terms of quality and are

competitive in running time. Moreover, temporal cuts enable the discovery of dynamic

communities and the analysis of dynamic graph processes.

This work opens several lines for investigation: (i) temporal cuts can be applied to

many scenarios other than the ones considered in this work (e.g., computer vision); (ii)

Perturbation Theory can support fast updates for temporal cuts in graph streams [85];

finally, (iii) we want to investigate the relationship between cuts and random-walks on

temporal graphs [95].
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Chapter 5

Learning Interleaved Hidden

Markov Models

5.1 Introduction

Hidden Markov models (HMMs) are popular probabilistic models for sequential data

[106]. More recently, extensions of HMMs have been proposed to support modern ap-

plications in speech and activity recognition, bioinformatics, intrusion detection, among

others [107, 108]. Interleaved hidden Markov models (IHMMs), as one of such extensions,

assumes that a set of HMMs concurrently produce a single sequence of observations [109].

This work is focused on the problem of learning IHMMs from data.

The main motivation for this work is syslog analytics [110, 111, 112]. Syslogs are

sequential textual files with traces of system events, providing valuable information for

failure detection and diagnosis. However, these systems often integrate multiple work-

flows (e.g., login, credit card processing) executing concurrently, and thus isolating events

from different workflows is required. The most accurate solution for this problem is in-

strumentation (records are tagged with global IDs), but many enterprise systems have
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black-box components (e.g. proprietary software) that cannot be annotated [113]. This

work investigates whether these workflows, with their associated events, can be recog-

nized from a single unlabeled syslog (see Figure 5.1).

There are many other scenarios where interleaved processes occur. In the internet-

of-things, where sensors collect data from multiple users in an environment, interleaved

activity recognition has become an important challenge [109, 114]. In particular, tracking

many activities of a user might enable its identification even if activities are anonymized.

Interleaved processes also have applications in bioinformatics, where genome sequences

combine both coding and noncoding regions [115, 116].

While IHMMs have been introduced in the last decade [109], many questions about

their inference remain unanswered. For instance, there is no efficient algorithm for learn-

ing IHMM parameters in general settings. In fact, even the conditions that enable IHMM

inference (e.g. identifiability and sampling complexity) are still not well understood.

These are challenges addressed in this work.

As in other extensions of HMMs, exact inference for IHMMs is intractable. Variational

Inference (VI) [117, 118], an alternative to Markov Chain Monte Carlo (MCMC) [119],

is a promising approach to approximate such complex probabilistic models. One of the

contributions of this work is an efficient algorithm for learning IHMMs based on loopy

belief propagation (LBP). IHMMs are a generalization of HMMs, and thus we can apply

several existing from HMM inference to our problem. For instance, IHMMs are also hard

to learn in general [120] and might not even be identifiable [121].

5.2 Related work

From an empirical standpoint, it is a common understanding that many relevant pro-

cesses are naturally interleaved. In both the workflow mining and the systems research
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Program 1 Program 2

1: START

2: START

3: READ

4: READ

5: WRITE

6: SUSPEND

7: RESUME

8: WRITE

9: READ

10: READ ...

LOG

Program 1 Program 2

1: START

2: START

3: READ

4: READ

5: WRITE

6: SUSPEND

7: RESUME

8: WRITE

9: READ

10: READ ...

LOG

Figure 5.1: Interleaved syslog analysis of black-box components. Programs, for which
workflows are modeled as Markov chains, write concurrently to a system event log
(left). Due to the lack of instrumentation, events are not tagged with program IDs
(right). Using interleaved hidden Markov processes, we can learn program workflows
directly from log data.

literature, interleaving is mostly treated as noise, and thus some combination of count-

ing and thresholding is expected to detect transitions within the same workflow/system

component [111, 113]. A costlier but more accurate alternative is to isolate processes

in controlled experiments [122]. The development of statistical models for interleaving

processes can have a great impact in these application scenarios.

In the machine learning community, latent models for interleaved processes have been

motivated by other extensions of HMMs, such as factorial hidden Markov models [107],

mixed memory Markov models [123], and mixed hidden Markov models [124]. The work

closest to ours is the chainwise Viterbi algorithm for the inference of the most likely

sequence of hidden states in an interleaved process [109]. However, the author assumes a

supervised setting and leaves parameter estimation as future work. More recent studies

focused on parameter estimation in simplified settings, such as disjoint alphabets [125],

identical sources [126], and observed interleaving [116] or state sequences [127].

This work investigates how the parameters of an IHMM can be learned from data, sim-

ilar to the Baum-Welch algorithm for HMMs [106]. Exact IHMM inference is intractable,
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due to its combinatorial structure, and thus we resort to the classical Markov Chain

Monte Carlo (MCMC) sampling [119, 128] and variational approaches [129, 118, 130, 117].

5.3 The Model

We first briefly review classical Hidden Markov Models (HMMs). An HMM is a prob-

abilistic model for a sequence of observations Y = Y1, . . . YT , where Yt ∈ {1 . . .W} is one

of W discrete symbols. Each observation Yt is generated by a hidden state Xt ∈ {1, . . . K}

with probability P (Yt|Xt) and a sequence of hidden states X = X1 . . . XT is associated

to the observations Y. Hidden states change according to first-order Markov chain with

transition probabilities P (Xt|Xt−1) and the first state is chosen with probability P (X1).

We show a graphical representation of an HMM in Figure 5.2 (a). The joint distribution

of observations Y and hidden states X in the model is given by:

P (X,Y) = P (X1)P (Y1|X1)
T∏
t=2

P (Xt|Xt−1)P (Yt|Xt)

We apply the following notation for HMM parameters: πk=P (X1 =k), Ai,j =P (Xt=

j|Xt−1 = i), and bk,w = P (Yt = w|Xt = k). For a detailed review on HMMs and their

applications, please refer to [106].

An IHMM combines multiple concurrent Markov processes that produce a single

sequence of observations Y. At each time t, the active process Zt ∈ {1 . . .M} transitions

to a new state Xt and emits Yt while the remaining processes are kept frozen. The

switching behavior can then be described by the sequence of active models Z = Z1 . . . ZT

with independent process probabilities cm=P (Zt=m).

To simplify the notation, we add a fixed starting state X
(m)
1 =0, which does not emit

any symbol, to the set of states of each Markov chain. As a consequence, processes will
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often be described in terms of their transition probabilitiesA
(m)
i,j and emission probabilities

b
(m)
k,w only. Symbols emitted by the processes may overlap and we assume, without loss of

generality, that the models have the same number of states K. We also assume that the

number of processes and states is known a priori.

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

Xt-1
(3) Xt

(3) Xt+1
(3)

Yt-1 Yt Yt+1

Xt-1
(2) Xt

(2) Xt+1
(2)

Xt-1
(1) Xt

(1) Xt+1
(1)

Zt-1 Zt Zt+1

Figure 5.2: Hidden Markov model (top) and interleaved independent hidden Markov
model (bottom).

The joint probability for the sequence of activations, states and observations for

IHMMs can be factored as:

P (Z,X,Y) =
T∏
t=1

P (Zt)P (Yt|X(1)
t . . . X

(M)
t , Zt)

×
M∏
m=1

P (X
(m)
t |X

(m)
t−1 , Zt)

(5.1)
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At each timestamp t, only the active process Zt emits a symbol, as described by the

following emission probability distribution for the interleaved process:

P (Yt = w|X(1)
t = k1, . . . X

(M)
T = kM , Zt = m) = b

(m)
km,w

Moreover, only the active process transitions to the next state. Inactive processes

remain at their current state:

P (X
(m)
t = j|X(m)

t−1 , Zt = `) =


A

(m)
i,j m = `

δ(i, j) m 6= `

(5.2)

where δ(i, j) is the Kronecker delta function.

Figure 5.2 shows the graphical representation of an IHMM (Figure 5.2(a)) compared

with the same representation for a standard HMM (Figure 5.2(b)). Notice that our

model differs from the one proposed by [109] as we assume that processes are activated

independently.

5.4 Inference

As a generalization of HMMs, IHMMs share many inference problems with its pre-

decessor. In this work, we focus on how to learn the parameters of IHMMs, in the

same spirit as the Baum-Welch algorithm [106]. In particular, we also apply Expectation

Maximization (EM) to solve our estimation problem (Section 5.4.1). Furthermore, we

propose both exact (Section 5.4.2) and approximate (Section 5.4.3) inference algorithms

for IHMM inference.
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5.4.1 EM Algorithm

Categorical variables in the IHMM are represented using an 1-to-K scheme. The

following properties hold for activations, states, and symbols, respectively: Z
(m)
t ∈{0, 1}

with
∑M

m=1 Z
(m)
t =1, X

(m)
t,k ∈{0, 1} with

∑K
k=1X

(m)
t,k =1, and Yt,w∈{0, 1} with

∑W
w=1 Yt,w=

1. We apply such representation to formulate IHMM probabilities:

P (Zt) =
M∏
m=1

cZ
(m)
t

m

P (Yt|Xt) =
M∏
m=1

W∏
w=1

K∏
k=1

(b
(m)
k,w )Yt,wX

(m)
t,k Z

(m)
t

P (X
(m)
t |X

(m)
t−1 , Zt)=

K∏
i,j=1

[(A
(m)
i,j )Z

(m)
t δ1−Z

(m)
t ]X

(m)
t−1,iX

(m)
t,j

where Xt = 〈Zt, X(1)
t , . . . X

(M)
t 〉 and we applied δ as a short for δ(i, j). In the E step of

the algorithm, parameters Θ = {cm, A(m)
i,j b

(m)
k,w , } are updated to maximize the expected

log likelihood of the complete data:

Q(Θnew|Θ) =E{logP (Z,X,Y|Θnew)|Θ,Y}

=− logZ +
T∑
t=1

M∑
m=1

〈Z(m)
t 〉 log cm

+
T∑
t=1

M∑
m=1

W∑
w=1

K∑
k=1

Yt,w〈Z(m)
t X

(m)
t,k 〉 log b

(m)
k,w

+
T∑
t=1

M∑
m=1

K∑
i=1

K∑
j=1

〈Z(m)
t X

(m)
t−1,iX

(m)
t,j 〉 logA

(m)
i,j

+
T∑
t=1

M∑
m=1

K∑
i=1

K∑
j=1

〈(1− Z(m)
t )X

(m)
t−1,iX

(m)
t,j 〉 log δ(i, j)

107



Learning Interleaved Hidden Markov Models Chapter 5

where 〈Z(m)
t 〉, 〈Z

(m)
t X

(m)
t,k 〉, 〈Z

(m)
t X

(m)
t−1,iX

(m)
t,j 〉, and 〈(1 − Z

(m)
t )X

(m)
t−1,iX

(m)
t,j 〉 are expected

values involving hidden variables and Z is a constant. Parameters are updated in the M

step using the following equations:

cm =

∑T
t=1

∑K
k=1〈Z

(m)
t , X

(m)
t,k 〉∑M

m=1

∑T
t=1

∑K
k=1〈Z

(m)
t , X

(m)
t,k 〉

A
(m)
i,j =

∑T
t=2〈Z

(m)
t , X

(m)
t−1,i, X

(m)
t,j 〉∑K

k=1

∑T
t=2〈Z

(m)
t , X

(m)
t−1,iX

(m)
t,k 〉

b
(m)
k,w =

∑T
t=1 Yt,w〈Z

(m)
t , X

(m)
t,k 〉∑T

t=1〈Z
(m)
t , X

(m)
t,k 〉

In the next sections, we discuss how to compute the statistics 〈.〉 using both ex-

act and approximate inference. Notice that the parameters do not depend on 〈(1 −

Z
(m)
t )X

(m)
t−1,iX

(m)
t,j 〉, due to the fact that this value is always zero (from Equation 5.2). This

property will be a major challenge in the design of approximate inference algorithms for

IHMMs, which will be discussed in Section 5.4.3.

5.4.2 Exact Inference

Inference in IHMMs is trivial if process activations Zt are known. Emitted symbols

can be separated according to the process that generated them and the Baum-Welch

algorithm can be applied for the inference within each process. While we do not assume

that Zt’s are given, this simple approach can still be applied to learn the expected values

〈.〉 by marginalizing over the O(MT ) possible activation settings. Time complexity of

such algorithm is O(K2TMT ), making it prohibitive in practice.

An alternative exact algorithm for IHMM inference can be designed by observing the

graphical model from Figure 5.2 (b). The interleaved process is modeled as the cartesian
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product of M + 1 variables representing hidden states and activations. More specifically,

a larger Markov chain with states in the form Xt = 〈Zt, X(1)
t , . . . X

(M)
t 〉 simulates the

IHMM. The standard Baum-Welch algorithm can be applied to learn the parameters of

the joint model that are used to compute expectations 〈.〉. However, the new chain has

O(MKM) states, leading to a, still prohibitive, time complexity of O(M2K2MT ).

Faster exact inference for HMMs can be performed via the Junction tree algorithm

for directed graphical models [131]. More specifically, we can obtain an undirected rep-

resentation for the graphical model shown in Figure 5.2 (b) after moralization and tri-

angulation. Inference is performed via local message passing over a spanning tree of the

resulting undirected graph. The complexity of the resulting algorithm is O(MKM+1T ).

Due to the performance limitations of the exact inference approaches presented in

this section, the next two sections are focused on approximate inference for IHMMs.

5.4.3 Approximate Inference: Loopy Belief Propagation

The graphical model for IHMMs (see Figure 5.2) has loops, and thus we apply LBP

to design an approximate inference algorithm for our problem. We define T factors

gt = P (Zt) and M × T factors f
(m)
t as follows:

f
(m)
t = P (Yt|X(m)

t , Z
(m)
t )P (X

(m)
t |X

(m)
t−1 , Z

(m)
t )

The joint probability for IHMMs (Equation 5.1) can then be expressed as a product of

factors gt and f
(m)
t :

P (Z,X,Y) =
T∏
t=1

gt

M∏
m=1

f
(m)
t

Inference is performed via messages between hidden variables, (X,Z), and factors f
(m)
t .

Let mx→y be a message from x to y, we use the following notation to describe messages
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in the IHMM factor graph:

αk,m,t = m
f
(m)
t →X(m)

t
(X

(m)
t = k)

βk,m,t = m
f
(m)
t+1→X

(m)
t

(X
(m)
t = k)

γm,m′,t = m
Zt→f (m)

t
(Zt = m′)

λm,m′,t = m
f
(m)
t →Zt

(Zt = m′)

According to BP, these probabilities are related as follows:

αk,m,t =b
(m)
t,k γm,m,t

K∑
i=1

A
(m)
i,k αi,m,t−1

+ (1− γm,m,t)αk,m,t−1

βk,m,t =γm,m,t+1

K∑
j=1

A
(m)
k,j b

(m)
t+1,jβj,m,t+1

+ (1− γm,m,t+1)βk,m,t+1

γm,m′,t =cm′
∏

`=1,`6=m

λ`,m′,t

λm,m′,t =


K∑
i=1

αi,m,t−1
K∑
j=1

A
(m)
i,j b

(m)
t,j βj,m,t m = m′

K∑
k=1

αk,m,t−1βk,m,t m 6= m′

where b
(m)
t,k =

∑W
w=1 Yt,wb

(m)
k,w . The M-step of our EM algorithm requires expected values

〈.〉, which can be approximated based on the messages α, β, γ, and λ:

〈Z(m)
t , X

(m)
t,k 〉 ∝cmβk,m,tb

(m)
k,t

×
M∏

`=1,`6=m

λ`,m,t

K∑
i=1

A
(m)
i,k αi,m,t−1

〈Z(m)
t , X

(m)
t−1,i, X

(m)
t,j 〉 ∝A

(m)
i,j b

(m)
k,t αi,m,t−1βj,m,tγm,m,t
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One iteration of our algorithm—assuming that every message is sent once—takes time

O(MT (M2 +MK +K2)) and estimating expected values 〈.〉 takes time O(MK2T ).

5.5 Experiments

We evaluate several algorithms for exact and approximate inference for IHMMs in

terms of accuracy and running time using synthetic datasets.

5.5.1 Accuracy Metrics

These metrics will be applied to evaluate IHMM accuracy:

• Likelihood (Like): Log-likelihood of a sequence of observations to be generated by

the IHMM. For synthetic data, we distinguish between Like-train and Like-test, for

training and test sequences, respectively, and also show the likelihood relative to

the True model.

• Adjusted Rand-score (Rand): Modification of the rand-score—ratio of agreement

between two assignments of observations to processes—adjusted for chance.

• KL-Divergence (KLD): KL-divergence between IHMMs estimated via Monte Carlo

[132].

5.5.2 Approaches and Experimental Settings

We consider the following approaches in our experiments:

• True: Available only for synthetic data, this the true IHMM that generated the

input sequence.
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• BOW : Simple bag-of-words classifier that predicts the process of an observation

without learning an IHMM.

• Offline: Each process is learned independently using the standard Baum-Welch

algorithm.

• Single: Standard Baum-Welch algorithm assuming a single process with KM states,

thus being able to compute likelihoods but not to de-interleave an input sequence.

• IHMM-E : Exact inference for IHMMs using the junction tree algorithm for M=2

and the cartesian product scheme for M>2 (see Section 5.4.2).

• IHMM-G : Approximate inference for IHMMs using Gibbs sampling, as described

in the Appendix.

• IHMM-(V/H/R): Approximate IHMM inference based on BP (see Section 5.4.3).

The V, H, and R stand for vertical, horizontal, and residual inference.

The number of iterations of EM was set to 50 for all the approaches. For an input

sequence, we run each solution with 10 different random initializations and select the

resulting model with highest likelihood. For Gibbs sampling, we warm-up the sampling

procedure by throwing away the first 100 samples and then apply the following 100 ones

for inference. For BP (IHMM-V/H/R), we perform a maximum of 100 message-passing

iterations or stop at convergence—if message values do not change by more than 10−5.

5.5.3 Results

For a fixed number of processes M and states K, we generate 20 K ×K transition

matrices A(m) and K×MK emission matrices b(m) (m ∈ {1, . . .M}). Entries of matrices

A(m) are sampled uniformly in the interval [0, 1]. For emission matrices b(m), we assign
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M K Method Like-train Like-test Rand-
train

Rand-test KLD

2

2

True 0. ± 0. 0. ± 0. 0.96 ± 0.02 0.96 ± 0.03 0. ± 0.
Offline -129.56 ± 8.78 16.44 ± 31.1 0.96 ± 0.02 0.95 ± 0.03 0.41 ± 1.13
Single -9.71 ± 4.08 23.77 ± 22.32 - - 0.36 ± 0.57
IHMM-E -4.35 ± 2.91 6.34 ± 4.47 0.46 ± 0.29 0.46 ± 0.31 0.12 ± 0.15
IHMM-G 3.07 ± 5.02 10.62 ± 10.71 0.07 ± 0.2 0.07 ± 0.21 0.15 ± 0.27
IHMM-V -2.27 ± 2.85 11.45 ± 11.68 0.71 ± 0.37 0.72 ± 0.37 0.25 ± 0.43
IHMM-H -1.97 ± 3.19 9.46 ± 7.58 0.72 ± 0.34 0.72 ± 0.33 0.27 ± 0.64
IHMM-R -2.09 ± 3.3 10.14 ± 9.28 0.69 ± 0.37 0.69 ± 0.38 0.17 ± 0.28

4

True 0. ± 0. 0. ± 0. 0.92 ± 0.03 0.92 ± 0.03 0. ± 0.
Offline -148.49 ± 4.89 99.6 ± 64.18 0.94 ± 0.04 0.8 ± 0.08 1.79 ± 1.84
Single -90.86 ± 12.08 884.0 ±

296.77
- - 7.46 ± 4.11

IHMM-E -25.82 ± 4.92 68.4 ± 26.65 0.21 ± 0.18 0.17 ± 0.14 0.7 ± 0.53
IHMM-G 5.22 ± 5.99 32.64 ± 13.15 0.01 ± 0.04 0.01 ± 0.03 0.72 ± 0.51
IHMM-V -14.44 ± 5.53 44.83 ± 28.54 0.29 ± 0.27 0.22 ± 0.23 0.64 ± 0.68
IHMM-H -16.56 ± 5.39 54.99 ± 20.8 0.23 ± 0.22 0.17 ± 0.18 0.74 ± 0.67
IHMM-R -12.78 ± 6.21 49.63 ± 38.82 0.18 ± 0.17 0.14 ± 0.12 0.68 ± 0.64

3 2

True 0. ± 0. 0. ± 0. 0.95 ± 0.03 0.94 ± 0.03 0. ± 0.
Offline -209.38 ± 6.59 16.31 ± 21.47 0.95 ± 0.03 0.94 ± 0.03 0.49 ± 0.75
Single -41.13 ± 6.16 98.64 ± 35.85 - - 1.45 ± 1.22
IHMM-E -10.25 ± 3.16 13.03 ± 8.5 0.31 ± 0.16 0.32 ± 0.18 0.19 ± 0.3
IHMM-G 1.55 ± 8.32 17.51 ± 10.39 0.1 ± 0.16 0.11 ± 0.19 0.37 ± 0.47
IHMM-V -2.95 ± 5.74 15.44 ± 7.75 0.35 ± 0.21 0.36 ± 0.24 0.25 ± 0.34
IHMM-H -2.42 ± 5.77 14.45 ± 6.07 0.33 ± 0.23 0.35 ± 0.23 0.25 ± 0.35
IHMM-R -3.83 ± 4.5 11.74 ± 8.32 0.4 ± 0.26 0.4 ± 0.25 0.18 ± 0.22

Table 5.1: Accuracy results (averages and standard deviations) for synthetic data
varying the number of processes (M) and states per process (K) for some of the
approaches described in Section 5.5.2 using the metrics given in Section 5.5.1.

one distinct symbol to each state of each process (MK symbols) and add a small (1%)

noise uniformly at random. Training and test sequences with 200 symbols are generated

from each IHMM. Three configurations for M and K were considered: (i) M=2, K=2;

(ii) M = 2, K = 4; and (iii) M = 3, K = 2. The KL-divergence was estimated using 100

sequences sampled from the model with 20 observations each.

Table 5.1 shows the results obtained by True, Offline, Single, IHMM-E, IHMM-G,

IHMM-V, IHMM-H, and IHMM-R using synthetic data. Offline achieves high accuracy,

but it overfits the data, as shown by its likelihood and divergence results. Single is even

more prone to overfitting due to its exponential model complexity. IHMM-E is less af-
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fected by overfitting than Offline, but also achieves significantly lower accuracy results.

IHMM-G did not perform well for most of the metrics, even when the number of samples

applied turned its running time prohibitive. BP approaches (IHMM-V/H/R) often out-

perform exact inference in terms of rand-score and were less affected by overfitting when

M = 2 and K= 4—the same did not hold for K= 2. A similar trend can be noticed for

the KL-divergence. A more complex message schedule (IHMM-R) did not consistently

lead to better inference results, being competitive with IHMM-H and IHMM-V.

Figure 5.3(a) shows the convergence of IHMM inference methods for increasing num-

ber of EM iterations (M = 2,K = 4). Results agree with our analysis of Table 5.1,

with IHMM-G underfitting, IHMM-E overfitting, and BP providing a tradeoff between

convergence and generalization.

We also evaluate the impact of different parameters over the running time of the

algorithms in Figures 5.3(b-d). Default values for number of observations (T ), states

(K), and processes (M) were set to 100, 5, and 2, respectively. When varying the

number of observations and processes, we consider both the cartersian product (IHMM-

EC) and the junction tree (IHMM-EJ) approaches for exact inference. IHMM-EJ is the

fastest among the algorithms due to the small number of processes—but would still be

prohibitive for larger M . BP solutions, especially IHMM-H and IHMM-V, achieve good

scalability across parameters.

5.6 Conclusions and Ongoing Work

In this work, we have studied the problem of learning interleaved hidden Markov mod-

els (IHMMs). After formalizing IHMMs, we have introduced exact inference algorithms

for the model, which are shown to be intractable. Thus, we focused on the problem

of efficiently learning IHMM parameters via approximate inference. In particular, we
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(a) Convergence (b) Runtime vs size

(c) Runtime vs # states (d) Runtime vs # processes

Figure 5.3: Convergence and running times of the IHMM inference approaches using
synthetic data.

have proposed a Loopy Belief Propagation (LBP) algorithm for IHMMs. Using synthetic

data, we show that our algorithm is a good alternative to exact inference in terms of

running time, outperforming a different solution based on Gibbs sampling. However, we

have noticed in our experiments that IHMMs with many processes and states can easily

overfit without a large number of observations. However, such settings are challenging

even for our LBP algorithm. This is the main motivation for our ongoing work.

We are currently working on a different approach for IHMM inference using the so

called method-of-moments (MoM) [133, 134]. The idea is to compute low-order moments
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of an IHMM process—frequencies of sequences with one, two, and three symbols—and

learn a model by matching these moments. A major advantage of this approach is

allowing polynomial-time minima-free learning (consistency). However, such an estimator

is known to be biased, which is often remedied by the application of an iterative method

(e.g. exact inference of belief propagation) after the MoM.
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Other Problems

In this chapter, we summarize our work on a few problems that, though related to the

topic of this thesis, are not its core contributions. First, we discuss network design, which

is a set of problems where, given a graph, the goal is induce some property of interest

using a budgeted number of (node or edge) modifications. Three design problems are

introduced—centrality maximization, k-core minimization, and influence limitation—and

our main results are briefly described. Please refer to [7, 8, 9] for more details. Next,

we change our focus to outlier detection on graphs. The problem consists not only

on finding abnormal graph instances, based on both the graph structure and real-valued

node attributes, but also identifying subnetworks that explain a given outlier. We address

this problem using a classification framework (SVM), which is shown to achieve effective

results. More details on this work are given in [10].
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6.1 Network Design

6.1.1 Overview

Network design is a recent area of study focused on modifying or redesigning a network

in order to achieve a desired property [135]. As networks become a popular framework for

modeling complex systems (e.g. VLSI, transportation, communication, society), network

design provides key controlling capabilities over these systems, especially when resources

are constrained. Existing work has investigated the optimization of global network prop-

erties, such as minimum spanning tree [136], shortest-path distances [137, 138, 139],

diameter [140], and information diffusion-related metrics [141, 142] via a few local (e.g.

vertex, edge-level) upgrades. Due to the large scale of real networks, computing a global

network property becomes time-intensive. For instance, computing all-pairs shortest

paths in large networks is prohibitive. As a consequence, design problems are inherently

challenging. Moreover, because of the combinatorial nature of these local modifications,

network design problems are often NP-hard, and thus, require the development of efficient

approximation algorithms.

6.1.2 Group Centrality Maximization via Network Design

We focus on a novel network design problem, that improves the group centrality.

Given a node v, its coverage centrality is the number of distinct node pairs for which

a shortest path passes through v, whereas its betweenness centrality is the sum of the

fraction of shortest paths between all distinct pair of nodes passing through v. The

centrality of a group X is a function of the shortest paths that go through members of X

[143]. Our goal is to maximize group centrality, for a target group of nodes, via a small

number of edge additions.
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Dataset Name |V | |E|
email-Eu-core (EU) 1k 25k

ca-GrQc (CG) 5K 14K
email-Enron (EE) 36K 183K

loc-Brightkite (LB) 58K 214K
loc-Gowalla (LG) 196K 950K

web-Stanford (WS) 280K 2.3M
DBLP (DB) 1.1M 5M

Table 6.1: Dataset description and statistics.

10 12 14 16 18 20
Budget (k)

103

104

105

Im
pr

ov
em

en
t i

n 
Co

ve
ra

ge

(a) Quality on EU

10 12 14 16 18 20
Budget (k)

105

106

107

Im
pr

ov
em

en
t i

n 
Co

ve
ra

ge
GES
BUS
High-ACC
High-Degree
Random

(b) Quality on CG

Figure 6.1: BUS vs. Greedy: Improvement in coverage centrality produced by different
algorithms.

The main contributions of this work can be summarized as follows: (1) We study

a novel general network design problem, the group centrality optimization, and prove

that it is NP-hard as well as APX-hard; (2) we propose a greedy algorithm and faster

sampling algorithms for group centrality maximization; and (3) we show the effectiveness

of our algorithms on several datasets and also prove their theoretical guarantees for a

constrained version of the problem.

We evaluate our algorithms on real-world networks. All experiments were conducted

on a 3.30GHz Intel Core i7 machine with 30 GB RAM and Ubuntu. Algorithms were

implemented in Java. We consider three baselines in our experiments: 1) High-ACC

[143, 144]: Finds the top k central nodes based on maximum adaptive centrality coverage
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Coverage of BUS (relative to baselines) Time [sec.] # Samples

Budget GES High-ACC High-Degree Random GES High-ACC BUS BUS

k = 10 0.96 3.3 5.1 10.1 271 2.3 1.8 2093

k = 15 0.97 5.8 6.7 11.1 423 2.4 3.4 3139

k = 20 0.97 5.2 5.7 8.2 531 2.5 4.5 4186

Table 6.2: EU data: Comparison of our sampling algorithm (BUS) and the baselines
using the EU dataset.

and adds edges between target nodes X and the set of top-k central nodes; 2) High-

Degree: Selects edges between the target nodes X and the top k high degree nodes; 3)

Random: Randomly chooses k edges from Γ. We compare our sampling algorithm (BUS)

against our Greedy solution (GES) and show that BUS is more efficient while producing

similar results in terms of quality. The quality of a solution set (edges produced by the

algorithm) is the number of newly covered pairs by the target set of nodes after addition

of these edges to the initial graph. We call it improvement in coverage. The datasets

applied in the experiments are summarized in Table 6.1.

Fig. 6.1 shows the number of new pairs covered by the algorithms. Table 6.2 shows

the running times and the quality of BUS relative to the baselines—i.e. how many times

more pairs are covered by BUS compared to a given baseline on EU data. BUS and

GES produce results at least 2 times better than the baselines. Moreover, BUS achieves

results comparable to GES while being 2-3 orders of magnitude faster.

We compare our sampling algorithm against the baseline methods on large graphs

(EE, LB, LG, WS and DB). Due to the high cost of computing all-pairs shortest paths, we

estimate the centrality based on 10K randomly selected pairs. For High-ACC, we also use

sampling for adaptive coverage centrality computation [143, 144] and the same number

of samples is used. The budget and target set sizes are set as 20 and 5, respectively.

Table 6.3 shows the results, where the quality is relative to BUS results. BUS takes

a few minutes (8, 15, 17, 45, 85 minutes for EE, LB, WS, LG and DB respectively) to run
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and significantly outperforms the baselines. This happens as the existing approaches do

not take into account the dependencies between the edges selected. BUS selects the edges

sequentially, considering the effect of edges selected in previous steps.

BUS (relative to baselines) # Samples
Data High-ACC High-Degree Random BUS
EE 4.88 2.74 51 6462
LB 3.3 2.3 33.8 6796
LG 3.3 4.2 62 4255
WS 1.89 1.95 4.8 2000
DB 2.5 1.6 5 875

Table 6.3: Coverage centrality of BUS relative to baselines.

6.1.3 A Game Theoretic Approach For Core Resilience

K-cores play an important role in revealing the higher-order organization of networks.

A k-core [145] is a maximal induced subgraph where all vertices have internal degree of at

least k. These cohesive subgraphs have been applied to model users’ engagement and viral

marketing in social networks [146, 147]. Other applications include anomaly detection

[148], community discovery [149], protein function prediction [150], and visualization [151,

152]. However, the k-core structure can be quite unstable under network modification.

For instance, removing only a few edges from the graph might lead to the collapse of its

core structure. This motivates the k-core minimization problem: Given a graph G and

constant k, find a small set of b edges for which the removal minimizes the size of the

k-core structure [153].

The algorithm for k-core minimization proposed in this work applies the concept

of Shapley values (SVs), which, in the context of cooperative game theory, measure

the contribution of players in coalitions [154]. Our algorithm selects edges with largest

Shapley value to account for the joint effect (or cooperation) of multiple edges. Since
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(a) b = 5 (b) b = 10

Figure 6.2: K-core (k = 3) minimization on the Newman’s Karate network: (a) b = 5
and (b) b = 10. Unfilled circle nodes are not in the 3-core of the original network.
After removal of b dashed (red) edges, filled (blue) circle nodes remain in the 3-core
and unfilled (red) square nodes are removed from the 3-core.

computing SVs is NP-hard, we approximate them in polynomial time via a randomized

algorithm with quality guarantees.

Our main contributions are summarized as follows: (1) We study k-core minimization

(KCM), which consists of finding a small set of edges, removal of which minimizes the

size of the k-core structure of a network; (2) we show that KCM is NP-hard, even to

approximate by a constant for k ≥ 3, and also discuss the parameterized complexity of

KCM and show the problem is W [2]-hard for the same values of k; (3) given the above

inapproximability result, we propose a randomized Shapley Value based algorithm that

efficiently accounts for the interdependence among the candidate edges for removal; and

(4) we show that our algorithm is both accurate and efficient using several datasets and

illustrate how KCM can be applied to profile the structural resilience of real networks.

In Figure 6.2, we demonstrate the application of our algorithm for KCM using the

popular Newman’s Karate network with two different budget settings, b = 5 and b = 10,

and k fixed to 3. Unfilled circles are nodes initially out of the 3-core. The dashed

(red) edges are removed by our algorithm—often connecting fringe nodes. Filled (blue)

circles and unfilled (red) squares represent nodes that remain and are removed from the
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3-core, respectively, after edge removals. All our experiments were conducted on a 2.59

GHz Intel Core i7-4720HQ machine with 16 GB RAM running Windows 10. Algorithms

were implemented in Java. The real datasets used in our experiments are available

online and are mostly from SNAP1. The Human and Yeast datasets are available in

[19]. In these datasets the nodes and the edges correspond to genes and interactions

(protein-protein and genetic interactions) respectively. The Facebook dataset is from

[155]. Table 6.4 shows dataset statistics, including the largest k-core (a.k.a. degeneracy).

These are undirected and unweighted graphs from various applications: EE is from email

communication; FB is an online social network, WS is a Web graph, DB is a collaboration

network and CA is a product co-purchasing network. We also apply a random graph (ER)

generated using the Erdos-Renyi model.

Our algorithm is the Shapley Value Based Cut (SV). Besides Greedy Cut (GC) [153],

we also consider three more baselines in our experiments. Low Jaccard Coefficient (JD)

removes the k edges with lowest Jaccard coefficient. Similarly, Low-Degree (LD) deletes

k edges for which adjacent vertices have the lowest degree. We also apply Random (RD),

which simply deletes k edges from the candidate set Γ uniformly at random. Notice that

while LD and JD are quite simple approaches for KCM, they often outperform GC.

We apply the percentage DN(%) of vertices from the initial graph G that leave the

k-core after the deletion of a set of edges B (produced by a KCM algorithm):

DN(%) =
Nk(G)−Nk(G

B)

Nk(G)
× 100 (6.1)

KCM algorithms are compared in terms of quality (DN(%)) for varying budget (b),

core value k, and the error of the sampling scheme applied by the SV algorithm (ε).

Figure 6.3 presents k-core minimization results for k= 5—similar results were found

1https://snap.stanford.edu
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Dataset Name |V | |E| kmax Type
Yeast 1K 2.6K 6 Biological

Human 3.6K 8.9K 8 Biological
Facebook (FB) 60K 1.5M 52 OSN

DBLP (DB) 317K 1M 113 Co-authorship

Table 6.4: Dataset descriptions and statistics. The value of kmax (or degeneracy) is
the largest k among all the values of k for which there is a k-core in the graph.
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Figure 6.3: K-core minimization (DN(%)) for different algorithms varying
(a-d) the number of edges in the budget; (e-f) the core parameter k; (g-h)
and the sampling error ε. Some combinations of experiments and datasets
are omitted due to space limitations, but those results are consistent with
the ones presented here. The Shapley Value based Cut (SV) algorithm
outperforms the best baseline (LD) by up to 6 times. On the other hand,
the Greedy approach (GC) achieves worse results than the baselines, with
the exception of RD, in most of the settings. SV error increases smoothly
with ε and LD becomes a good alternative for large values of k.
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Figure 6.4: Running times by SV using FB while varying (a) the sampling error ε and
(b) the core parameter k; SV is efficient even for small values of sampling error and
its running time decreases with k.

for k=10—using four different datasets. SV outperforms the best baseline by up to six

times. We evaluate the impact of k over quality for the algorithms using FB in Figure

6.3c. The budget (b) is set to 400. As in the previous experiments, SV outperforms the

competing approaches. The parameter ε controls the sampling error of the SV algorithm.

We show the effect of ε over the quality results for FB in Figure 6.3d. The values of b

and k are set to 400 and 12 respectively. The trade-off between ε and the running time

of our algorithm enables both accurate and efficient k-core minimization.

Running times for SV varying the sampling error (ε) and the core parameter (k) using

the FB dataset are given in Figures 6.4a and 6.4b, respectively. Even for small error,

the algorithm is able to process graphs with tens of thousands of vertices and millions of

edges in, roughly, one minute.

K-cores have been previously applied in the analysis of functional modules in protein-

protein networks [151, 156]. Here, we compare the k-core stability of Human and Yeast

(Figs. 6.5a, 6.5b). Human is shown to be more stable, as can be inferred from the

range of values in the profile—1% to 35% for Human and 3.4% to 100% for Yeast.

Moreover, the profile for Human is smoother than Yeast. These results confirm our
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(a) Human (Core resilience) (b) Yeast (Core resilience)

Figure 6.5: Core resilience for the Human and Yeast protein-protein interaction networks.

intuition that proteins have a more complex functional structure in Humans compared

to other organisms [157].

6.1.4 Data-driven Influence Limitation

Online social networks, such as Facebook and Twitter, were popularized mostly as

platforms for sharing entertaining content and maintaining friendship. However, they

have been quickly transformed into major battlegrounds for political campaigns, viral

marketing, and the dissemination of news. With this shift, the increase in the number

of “bad actors”, such as tyrannical governments, spammers, and bullies exploiting these

platforms has become a key challenge for their administrators, businesses and society. A

questionable approach to control the diffusion of misinformation in social platforms is via

stricter laws and regulations by governments. This control often happens in detriment of

the democratic and organic structure that are central to these platforms. Instead, a more

sensible approach is to limit the impact of bad actors in the network while minimizing

the disruption of its structure.

This work formalizes the influence limitation problem. We focus on a setting where
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the network is modified via the removal (or blocking) of a few edges or nodes. These

modifications can be implemented by social network administrators or induced by other

organizations or governments via advertising campaigns. Although we focus on influence

limitation, our problem is also relevant from the perspective of an agent that aims to

maintain the influence of a set of users. Nodes/edges discovered by our algorithm are

those that should be protected by such an agent. Similarly, while we focus on the edge

version of our problem, the techniques discussed here also apply to the node version.

We propose a data-driven approach for influence minimization based on historical

data. Moreover, we study the influence limitation problem not only under a budget

constraint but also under a more general set of matroid constraints [158, 159]. Our con-

tributions are summarized as follows: (1) We investigate the novel data-driven influence

limitation problem via node/edge removals, showing that the edge version is more general

and covers the node version of the problem; (2) we study our problem under both budget

and matroid constraints, discussing how these affect algorithmic design; (3) we show that

the influence limitation problem is APX-hard and propose constant-factor approxima-

tions for both versions of the problem—deterministic and probabilistic approximation

for the budget and matroid version, respectively; and (4) we show that our methods

outperform baseline solutions by up to 35% while scaling to large graphs.

BIL (Budgeted Influence Limitation) assumes that any k edges in the candidate set

can be removed. As a consequence, an optimal solution for BIL might make the network

disconnected or disproportionately affect particular portions of the network. Fig. 6.6

exemplifies this issue using the Newman’s karate2 network. BIL modifications are strongly

biased towards a small set of nodes. ILM (Influence Limitation under Matroid) enforces

network modifications that are more uniformly distributed across the network. Notice

that a valid solution for the budget constrained version (BIL) might not necessarily be a

2http://www-personal.umich.edu/ mejn/netdata/
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(a) BIL (b) ILM

Figure 6.6: We perform our methods for BIL (a) and ILM (b) on the Newman’s
Karate network with |X| = 5, k = 9. Square (red) nodes are in the target set, |X|,
and dotted (red) edges are in the solution set. The edges are incident to few nodes in
the solution for BIL, being strongly biased towards a small set of nodes. For ILM, we
have considered b = 2, which leads to a solution with more uniform set of edges.

valid solution for ILM and vice-versa.

Our solutions were implemented in Java and experiments were conducted on 3.30GHz

Intel core with 30 GB RAM. We show results using the ca-AstroPh (CA) dataset, with

18K vertices, 197K edges 1K actions and 56K tuples. Influence probabilities are learned

using the method proposed in [160]. The quality of a solution set B (a set of edges) is

the percentage of Decrease in Influence (DI) of X:

DI(B) =
(σcd(G,X)− σcd(Gm, X))

σcd(G,X)
× 100 (6.2)

The set X is randomly selected from the set of top 150 nodes with highest number of

actions. The candidate set C contains edges that appear at least once in any action

graph. The number of MC simulations for IC and LT-based baselines is at least 1000.

Baselines for BIL: 1) IC-Gr [161]: Finds the top k edges based on the greedy

algorithms that minimize influence via edge deletion under the IC model. 2) LT-Gr

[141]:Finds the top k edges based on the greedy algorithm proposed in [141]. Here, the

authors minimize the influence of a set of nodes according to the LT model via edge
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Figure 6.7: [BIL] (a) Decrease in Influence (DI) produced by different algorithms. (b)
DI produced by different algorithms varying the size of the target set, X with k = 30.
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Figure 6.8: [ILM] Decrease in Influence produced by different algorithms on CA.
Our algorithm, CG outperforms the baselines by up to 20%.
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deletion. Note that we also apply optimization techniques proposed in [141] for both of

these baselines. 3) High-Degree: Selects edges between the target nodes X and the

top-k high degree nodes. Other heuristics (Friends of a Friend and random selection)

did not produce better results than High-Deg.

We compare our Greedy algorithm against the baselines on three datasets (CA, FXS

and FCS) in Figure 6.7a (target size is set as 30). Greedy takes a few seconds to run

and significantly outperforms the baselines (by up to 35%) in terms of DI(%). The

running time of Greedy is low as it avoids expensive Monte-Carlo simulations. For CA,

the action graphs are generated by IC model and hence, IC-Gr produces good results.

We also analyze the impact of varying the number of target nodes (|X|) in Figure 6.7b.

Greedy provides better DI (by up to 35%) across all |X| and datasets.

Baselines for ILM: 1) Greedy with Restriction (GRR): Finds the feasible

edges (respecting the matroid constraint) using BIL (greedy). (2-3) We also apply IC-

Gr and LT-Gr with the edge removal constraint. The number of samples and iterations

used in CG are s=20 and τ=100, respectively. After obtaining the solution vector from

CG, we run randomized rounding for 50 times and choose the best solution.

We compare the Continuous Greedy (CG) algorithm against the baseline methods on

CA (|X| = 30) varying the number of edges removed in Figure 6.8 using b = 1 and b = 2.

CG outperforms the baselines by up to 20%. GRR does not produce good results as it

has to select the feasible edge that does not violate the maximum edge removal constraint

b. While maintaining feasibility, GRR cannot select the current true best edge.
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6.2 Outlier detection on graphs with subnetwork in-

terpretation

6.2.1 Overview

Detecting and characterizing exceptional patterns is an important task in many do-

mains ranging from fraud detection, environmental surveillance, to various health care

applications [162]. This problem is often referred to as outlier or anomaly detection

in the literature. Although identifying anomalous subjects has been widely studied in

high dimensional data and recently extended to the network context [162], the problem

remains very challenging. In the network setting, most existing works focus on searching

individual nodes [163], or groups of linked nodes [164] whose structures or behaviors are

irregular. Though these studies have provided intuitive concepts about outlying patterns

defined in the respect of network connectivity, most results are limited to the setting

of a single static network. Other recent studies have extended the scope of analysis to

evolving networks [165], but the focus is on event/change detection where the temporal

dimension is a key factor for defining outliers.

In this work, we address the problem of identifying anomalous networks from a

database of multiple network samples while at the same time investigating why a network

is exceptional. An outlier is defined at the global level of an entire network sample but we

use local subnetworks to explain its exceptionality. Although the outlierness of a network

sample can be quantified via the outlier degree, such a single measure only bears limited

explanatory information [166] since it lacks the capability of showing in what data view,

i.e. local subnetworks, an anomalous network is most exceptional. Moreover, although

two networks may have similar outlier degrees, the local subnetworks that make them

abnormal might be quite different since the anomalous networks themselves are usually
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not homogeneous. For example, exploring a database of gene networks for outliers can

lead to the isolation of subjects suffering from cancer. However, the gene pathway (local

subnetwork) that causes the disease can vary from subject to subject due to the com-

plexity of the disease [167], or even depending on different stages of the disease. Spotting

an unhealthy subject is generally not sufficient. Figuring out what abnormal gene sub-

network leads to the disease is usually more important since it helps to develop possible

and effective treatments.

We develop a novel algorithm that exploits network regression models combined with

network topology regularization to concurrently address the two important problems

mentioned above. Specifically, we treat each network sample as a potential outlier and

determine local subnetworks that help discriminate it from nearby regular network sam-

ples. Our objective function is formulated under the framework of network regression

where we first upsample the outlier candidate network in order to make the binary re-

gression problem balanced. The objective function is then regularized by the network

topology and further penalized by L1-norm shrinkage to perform subnetwork discovery.

It can be shown that the combined objective function has a form closely related to the

dual SVM [168, 169], which can be further optimized in the primal form using Newton’s

method. The objective function is proven to be convex, which is key to guaranteeing the

convergence of the algorithm. Our algorithm, therefore, goes beyond the simple strategy

of subspaces/subgraphs examination by directly learning the most discriminative sub-

networks with respect to each network sample. Consequently, the outlier degree can be

appropriately computed within the space spanned by these selected subnetworks and,

collectively, they form a ranking of all network samples based on the outlier scores.
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Figure 6.9: ROC curve performance of all algorithms on identifying outlier networks
from the CMUFace and LATraffic datasets.

6.2.2 Results

We name our algorithm ODeSM (Outlier Detection with Subgraph Mining), and com-

pare its performance against techniques in both network studies and high dimensional

studies: (1) Netspot [165] without temporal constraint so allowing it to uncover network

regions from each individual network; (2) HiCS [170] that seeks outliers through contrast

subspaces for high dimensional data; (3) ABOD [171] which discovers outliers via vari-

ance of angles between vector triples; (4) ODesMw/o, a variant of our method without

exploiting network regularization. The parameter setting for ODesM and ODesMw/o

follows the best-effort-approach [172].

CMUFace graph data

Since most network datasets (presented next) lack ground-truth subnetworks, we

conduct an experiment on the CMUFace image data (http://archive.ics.uci.edu) as it

allows us to evaluate the relevance of uncovered subnetworks via visualization. The

network dataset is generated with the procedure described in [173], with the following

modification: we select all networks with open-eye images as inliers, and randomly select

one with sunglasses from any of 4 poses (straight/up/left/right) as an outlier. This allows

us to evaluate whether an algorithm can deal with the heterogeneity in the data. The
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dataset consists of 303 regular network samples and 20 anomalous ones.

Outlier identification: In Fig.6.9a, we plot the ROC curve performance of all five

algorithms. As seen from this figure, both techniques HiCS and ABOD designed for

high dimensional data perform moderately well on this dataset. ABOD explores the

variance over angles between an outlier candidate and every pair of other two samples,

so its approach explores global outliers deviating from a single distribution of inliers. For

this dataset, however, we have multiple distributions, and thus true outliers are harder

determined by solely relying on the angles. HiCS, on the other hand, attempts to find

most contrasting subspaces using a bottom-up approach and it starts with those of 2-

dimension (from a pool of
(
1920
2

)
= 1844160 possible subspaces). If such low dimensional

subspaces are not well sampled, the quality of contrasting subspaces found in higher

dimensional subspaces can be compromised. Netspot performs better than these two

techniques by relying on the p-value defined at each node. However, by converting to a

p-value, Netspot also removes the contrast among node values and thus is less successful

in seeking the most potential seed-nodes. ODesM performance is the best with its AUC

at 0.84, as compared to 0.78 obtained by the second best ODesMw/o. This large gap in

AUC also confirms the key role of network topology exploited by ODesM.

Explanatory subnetworks: We further explore the set of subnetworks discovered by

ODesM as the explanation for top ranking outliers. Out of top 20 anomalous networks,

8 are true outliers. We plot in Fig.6.10(a-c) the three top ranked networks that are also

truly labeled as outliers, and their corresponding images. As observed, despite coming

from different poses, the outlier networks are still well-identified and the subnetworks

located around the sunglasses are appropriately selected by ODesM, though they can

vary across different outliers. Fig.6.10(d) shows a network sample ranked high by ODesM

but not a true outlier according to the labeling based on sunglasses.

ABOD, ODesMw/o and HiCS are not network-based techniques. Hence, we se-
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(a) (b) (c)

(d) (e) (f)

Figure 6.10: Subnetworks selected by ODesM ((a)-(d)) and Netspot ((e)-(f)) in CM-
UFace. In each figure, the network topology is shown in grey and the selected subnet-
works are shown in blue, while the corresponding full image is shown in background
with dimmed colors to improve the visualization.
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lect Netspot for comparison based on its discovered anomalous subnetwork regions. In

Fig.6.10(e-f), we plot two typical true outliers found from 20 top networks ranked by

Netspot. Unlike the subnetworks discovered by our method, it is harder to justify why

the corresponding images are exceptional though the uncovered subnetworks are strongly

connected. In both figures, the substructures from entire faces have been selected. This

performance probably comes from the fact that, other than p-value, Netspot also relies

on the adjacency of network samples to derive the time interval at which significant

anomalous regions can appear. However, once the interval is set to 1 (i.e. for each indi-

vidual network and no temporal development), it has limited information to justify the

relevance of a network region. Thus, the p-value computed at each node is likely playing

the key role. And as long as its values do not change abruptly, Netspot tends to select

all of them, forming a large subnetwork structure. The patterns discovered by Netspot

and our ODesM are thus fundamentally different. For this reason, we do not attempt to

compare their uncovered subnetworks in subsequent experiments.

Road traffic networks

The last dataset we use for evaluation is LATraffic—the highway traffic network data

of Los Angeles, California (http://pems.dot.ca.gov) during April 2011. Based on the

distribution of the average speed computed for each network snapshot, we randomly

select 300 snapshots around the mean of this distribution to label as regular networks,

and other 30 snapshots from two extreme tails (15 each) to label as anomalous networks.

Outlier identification: The ROC curve performance of all algorithms on the LATraffic

is shown in Fig.6.9b. HiCS handles the subspace candidates well and its Monte-Carlo

sampling based approach tends to select highly contrasting subspaces. Netspot is less

successful in uncovering both types of low and high speed outliers. Among all examined

techniques, ODesM is still the best performer with an AUC of 0.9.
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Figure 6.11: Top four outlier networks discovered by ODesM from the LATraffic
dataset. Road segments involved in the explanatory subnetworks are shaded.

Explanatory subnetworks: We further explore the set of subnetworks ranked top by

ODesM. Fig.6.11 depicts the uncovered subnetworks for the top four outlier networks.

The networks in (a) and (d) are the true outliers with low speed while the ones in (b)

and (c) are the true outliers with high speed. The sets of discovered subnetworks in both

cases are quite consistent. An interesting point emerges upon closer inspection of these

explanatory substructures. We would expect the explanatory subnetworks for two types

of outliers to be different since one considers low speeds while the other one considers high

speeds. However, it turns out that they share one large subnetwork spanned by nodes

11, 6, 9, 12 and 25. The common selection of this subnetwork may suggest that such

a set of adjacent road segments is highly sensitive to traffic congestion. For monitoring

purposes, these road segments should be the top candidate since they are likely to reflect

the overall condition of the entire traffic network.
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Chapter 7

Conclusions, Ongoing and Future

Work

In this closing section, we first summarize three ongoing projects (Section 7.1), re-visit

the main conclusions of this work including the statement of the thesis (Section 7.2), and

list a few promising directions for future research (Section 7.3).

7.1 Ongoing Work

This section summarizes three ongoing projects that were motivated by the research

developed as part of this thesis.

7.1.1 Multiscale Network Embedding

Many relevant network processes are multiscale. For instance, flights in a airport net-

work might be local, national, or international. Another example is hyperlinked content,

such as the Web and Wikipedia, where links between pages might be due to semantic re-

lationships at multiple levels (e.g. shared topic or sub-topic). Understanding the impact
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(a) t=10−5 (b) t=102 (c) t=105

Figure 7.1: Embedding single network at multiple scales.

of processes at multiple scales is particularly relevant for learning representations (or

embeddings) for networked data, such as nodes, edges and subgraphs. Representation

learning is a powerful approach for learning problems on graphs—e.g. link prediction

and node classification. In these settings, embeddings might be optimized for different

scales depending on the task at hand. In the case of link prediction, an embedding

able to predict links inside dense communities might perform poorly when predicting

links across communities. Similarly, an embedding suitable for classifying pages into

sub-topics might not be ideal for higher level topics. Here, we propose addressing these

challenges via multiscale embedding.

Our approach is based on the concept of Markov Stability [174], which is a function

of the auto-covariance of a Random-Walk process within bounded time. Our goal is to

efficiently embed nodes in a network by approximating the auto-covariance matrix using

a few dimensions. Figure 7.1 shows the embedding of a synthetic network using the

proposed scheme at multiple time scales—small scale corresponds to small communities

and large scale to large communities. We will apply the resulting embedding to solve

multiscale downstream task on several datasets (power grid, airport, and Wikipedia) and

analyze its performance against state-of-the-art approaches [175].
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7.1.2 Event Detection on Dynamic Graphs

Learning complex graph features (e.g. cuts, subgraphs) is often computationally hard.

However, in many applications the end goal is not to compute the features themselves but

to apply them in order to perform a machine learning task (e.g. classification, regression,

outlier detection) [176, 175]. In these settings, one natural question to be asked is whether

relevant features can be learned directly from data? Automatic feature engineering is at

the core of recent advances in machine learning, specially on deep learning applied to

natural language processing, speech recognition and computer vision tasks. Our goal is

to apply the same approach to graph settings.

The task we will focus on in our work is is event detection [177, 178, 179]. Given a

dynamic graph with a few labels marking the occurrence of events of interest, the goal is

to learn how to detect such events based on the graph evolution. Figure 7.2 illustrates our

framework. We will train a machine learning model (a Neural Network) to predict events

based on multiple global and local graph features over time. We will apply our framework

to several real datasets, including the Enron emails, NY cab traces, and Twitter data.

7.1.3 Semantic Segmentation with Social Context

The Reddit Place experiment was a large-scale online social experiment launched by

Reddit in 2017 [180]. Reddit users were allowed change the colors of few pixels/minute

in a 1000x1000 canvas. In total, 16 colors were available and pixels changed by one

user could be overwritten by others. After 72 hours, 1 million users placed 16 million

updates (time,user,x,y,color) to the canvas. The dataset was later released to the Reddit

community and several related projects were developed using the experiment data1. One

of the projects was an atlas were users tagged more than 1500 different artworks in the

1https://www.reddit.com/r/place/
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Figure 7.2: Event Detection Framework.

canvas. The atlas dataset was also made available to the community2.

Our goal is to apply machine learning and graph algorithms to understand the user

dynamics in the experiment. In particular, we are interested in analyzing engagement,

collaboration, and competition patterns. In order to achieve such a goal, we first will

segment the updates in the dataset into artworks. This will allow us to capture the

intention of each update made to the canvas. Notice that this segmentation task is quite

challenging due to the limited amount of information associated to each update. We

will extend existing semantic segmentation algorithms[181] to exploit specific properties

of the experiment (e.g. user information). Moreover, we will also apply more recent

segmentation schemes based on Convolutional Neural Networks [182].

2https://www.reddit.com/r/place/comments/64zn88/the_rplace_atlas_an_interactive_

map_with_details/
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(a) Final Canvas (b) Progress

Figure 7.3: Reddit Place Experiment

7.2 Conclusions

In this thesis, we have investigated how to mine and model graph processes, where a

set of interconnected entities change their states according to the time-varying behavior

of an underlying complex system. Several problems and their respective solutions were

discussed and validated using real datasets arising from many applications. In particular,

we have emphasized the computational hardness of these problems and the theoretical

justification and or empirical effectiveness of the algorithms proposed. The breadth and

depth of the problems and techniques applied in this work together with their rigorous

analysis has led as to the following thesis:

Mining and modeling processes on graphs leads often to problems that are not not

only hard computationally (Chapters 2-4 and Section 6.1) but also in terms of inference

(Chapters 2 and 5 and Section 6.1). They can be solved using spectral (Chapters 3,

4 and 5 and Sections 6.2 and 7.1.1), probabilistic (Chapter 2 and 5 and Section 6.1),

and combinatorial optimization (Chapters 2-4 and Section 6.1) algorithms, and must

take into account the graph structure and also large amounts of data traces from these
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processes (Chapters 2-5 and Sections 7.1.1-7.1.3)

From a more personal perspective, these are some of the lessons learned along the

development of the research described in this dissertation:

• Surprising effectiveness of spectral theory: Spectral graph theory, which connects

combinatorial optimization problem on graphs to linear algebra, is problem one

of the most elegant results in Algorithms. The more recent discovery of moment-

based inference algorithms for graphical models is a result of similar stature that we

expect to attract the attention of the research community in the upcoming years.

• Importance of real, high-quality data: Data science research is mostly driven by

the availability of real data and by the challenges that arise when models and

algorithms are applied in the real-world. However, and unfortunately, real high-

quality data is often unavailable for academic research. Besides partnering with an

organization that owns the data or performing expensive large-scale experiments,

there seems to be no clear solution for this problem.

• Challenges in multidisciplinary research: While there is an increasing emphasis on

multidisciplinary research recently, there are a few challenges that prevent such

type of research efforts. Communication seems to be the major one. Moreover, it

is hard to share the credit among the parts involved in an interdisciplinary project.

Researchers tend to see their field as central and other fields as complementary.

• The hardest part of optimization is often selecting the objective: Many problems

in data science involve proposing a novel objective function and then searching for

efficient ways to optimize it. However, the novelty of the objective and the hardness

of its optimization are often not of interest to the potential users of the solution

being proposed. Selecting the right objective is key to the impact of the research.
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• The route from theory to practice is long: It is easy to assume that an elegant

theoretical result will work on practice, but it might not be the case. For instance,

the connection between sparse graph cuts and Laplacian eigenvectors is a quite

powerful idea. However, many real-world graphs do not seem to have sparse cuts as

the ones assumed by the formulation. Moreover, real graphs might be disconnected,

or have many trivial cuts that have low values of conductance/sparsity. Validating

the main assumptions of a theoretical result on real data is a good first step before

investing further time on applying the result on a data science problem.

• Only well-established problems deserve a sophisticated solution: A new problem

might look quite hard at first, which induces the development of a sophisticated

solution for any problem. However, the problem might later be found not to be

relevant a significant number of people. Thus, in case the problem is not well-

established, it is more effective to propose a simpler solution and then see if there

is a real need for a better solution (or for a solution at all). Often times a solution

to a different problem can be easily adapted to the new problem at hand.

Again, these lessons were not validated by experiments but are personal opinions

based on the experience of writing this dissertation.

7.3 Future Work

Our work opens several venues for future research, which we summarize as follows:

Controlling network processes: In this thesis, we have focused on the modelling

and mining of network processes. However, a more challenging task is to change the

process towards a desired property. This line of work is related to network design (Section

6.1), but the models considered in our work were quite simple. In order to control
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many relevant large-scale processes that arise in real applications, we need to better

understand causality [183]. More specifically, we are interested in studying how models

of counterfactual inference, can be combined with network design. Another related field

of interest is control theory [184, 185], which, different from network design, does not focus

on the combinatorial effect of decisions. Instead, control theory often imposes stronger

assumptions on the behavior of a system (e.g. it is linear) and then studies conditions for

the observability, identifiability, and controlability of the system. We are interested in

connecting control theory, network design, and the analysis of network processes based

on data traces. One particular scenario we will focus in the study of physical networks

(e.g. power grids, water distribution systems, and road networks).

Probabilistic inference via spectral methods: Graphical models can capture

complex relationships between different types of objects in a dataset. However, as dis-

cussed in Chapter 5, learning dense graphical models is often intractable in general.

There are three major alternatives to address this challenge in the literature. The first

is sampling (e.g. Gibbs) [119, 128], which is known to be an accurate but often slow

solution. An alternative is approximate inference, which, as the name says, attempts

to approximate the original model by a more treatable one [129, 118, 130, 117]. The

second line of work is to define a class of models that enables efficient inference using the

method of moments [133, 134]. While the second approach is more recent and promising,

its application is much more difficult than for the first approach, as discussed for the

case of IHMMs (Section 5). Moreover, the consistency guarantees of the MoM come at

the cost of bias. Our knowledge of the trade-off between these three approaches, both

theoretically and empirically is very limited. Addressing such questions might enable

efficient inference for graphical models way beyond the ones we are able to process today.

Applications: While developing this thesis, we have found several interesting ap-

plications of network processes that we were unable to study in depth due to the lack
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of time. The Reddit place project (Section 7.1.3) is a good example of such project,

where the focus is more on the findings than on the novelty of the methods employed. As

discussed in the introduction, data science is a field that emerged on the frontier between

computer science, statistics and specific applications. However, these applications often

require some domain knowledge and additional steps to enable the use of existing algo-

rithms such as those discussed here. As businesses, governments, and the general public

increase their expectations and awareness regarding the use data for decision-making,

other requirements, such as the privacy [186], fairness [187], and accountability [188] of

algorithms will have increasing importance. Today, data scientists do not possess the

proper tools to explore these intricate trade-offs.
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[71] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton, M. Quaggiotto,
W. Van den Broeck, C. Régis, B. Lina, et. al., High-resolution measurements of
face-to-face contact patterns in a primary school, PloS one 6 (2011), no. 8 e23176.

[72] S. Arora, S. Rao, and U. Vazirani, Expander flows, geometric embeddings and
graph partitioning, Journal of the ACM 56 (2009), no. 2 5.

[73] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, Community structure
in large networks: Natural cluster sizes and the absence of large well-defined
clusters, Internet Mathematics 6 (2009), no. 1 29–123.

[74] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng, Evolutionary spectral
clustering by incorporating temporal smoothness, in KDD, (New York, NY, USA),
pp. 153–162, ACM, 2007.

151



[75] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, Facetnet: A framework
for analyzing communities and their evolutions in dynamic networks, in WWW,
(New York, NY, USA), pp. 685–694, ACM, 2008.

[76] V. Kawadia and S. Sreenivasan, Sequential detection of temporal communities by
estrangement confinement, Scientific reports 2 (2012) 794–794.

[77] M. Charikar, C. Chekuri, T. Feder, and R. Motwani, Incremental clustering and
dynamic information retrieval, SIAM Journal on Computing 33 (2004), no. 6
1417–1440.

[78] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. S. Huang, Incremental spectral
clustering by efficiently updating the eigen-system, Pattern Recognition 43 (2010),
no. 1 113–127.

[79] S. Bickel and T. Scheffer, Multi-view clustering., in ICDM, (Washington, DC,
USA), pp. 19–26, IEEE, 2004.

[80] C. Xu, D. Tao, and C. Xu, “A survey on multi-view learning.”
https://arxiv.org/pdf/1304.5634.pdf, 2013.

[81] Y. Li, J. Han, and J. Yang, Clustering moving objects, in KDD, (New York, NY,
USA), pp. 617–622, ACM, 2004.

[82] J. Rosswog and K. Ghose, Detecting and tracking spatio-temporal clusters with
adaptive history filtering, in ICDMW, (Washington, DC, USA), pp. 448–457,
IEEE, 2008.
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