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Strain WA_211, Isolated in Washington State
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aFaculty of Medicine, University of Brasília, Brasília, Federal District, Brazil
bThe Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
cDepartment of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA

ABSTRACT Coccidioides fungi are widely distributed in the American continents,
with an expanding western range documented by a recently discovered cryptic pop-
ulation of Coccidioides immitis in Washington State. The assembled and annotated
reference genome sequence of the soil-derived C. immitis strain WA_211 will support
population and functional genomics studies.

Coccidioides immitis and Coccidioides posadasii are fungal species found in desert-like
areas of the American continents (1) and are the causative agents of coccidioido-

mycosis or “valley fever.” While C. posadasii is broadly distributed, C. immitis is restricted
to southern California and northern Mexico. Infections due to C. immitis in California are
increasing and reached alarming rates in 2017 (2). The disease range appears to be
expanding, with uncommon autochthonous infections reported in Washington State
(3). Washington C. immitis isolates from the soil and clinic are reciprocally monophyletic
within C. immitis (4, 5) and rarely hybridize with C. posadasii (6). As most assembled
genomes of C. immitis are patient-derived isolates, we annotated and assembled the
genome of the soil-derived strain WA_211, as it represents a unique emerging lineage
of C. immitis, for comparative, population, and functional genomics research.

The WA_211 strain was cultured from soil on yeast extract medium at 37°C for 5 days
(5), and its DNA was isolated after growth on Sabouraud’s medium using the DNeasy
blood and tissue kit (Qiagen, Hilden, Germany). The sequencing library was prepared
with a Kapa Biosystems (Woburn, MA) kit (catalog number kk8201) and sequenced with
an Illumina MiSeq platform (2 � 300 bp) (4, 5). The 2.8 million read pairs (1.7 Gbp) were
obtained from the SRA and processed with shovill v.1.0.4 (https://github.com/
tseemann/shovill) using “–minlen 500 –trim” and shovill defaults for downstream tools.
The shovill pipeline trimmed reads for adaptors and low quality using Trimmomatic
v.0.39 (7), corrected bases using Lighter v.1.1.2 (8), and merged overlapping read pairs
using FLASH v.1.2.11 (9) to produce 1.6 million merged reads and 1 million unmerged
read pairs. Contigs were assembled with SPAdes v.3.10.1 (10), polished with one round
of Pilon v.1.22 (11), and cleaned of vector sequence and redundant contigs by AAFTF
v.0.2.1 (12), using default parameters. The 297 contigs were scaffolded to the C. immitis
RS genome (GenBank accession number AAEC00000000) (13) with RagOO v.1.1 (14),
with default parameters, to produce a 27.4-Mb assembly of 62 scaffolds (N50, 3.79 Mb;
longest scaffold length, 8.24 Mb; G�C content, 46.4%). This scaffolding assumes the
colinearity of WA_211 and RS, but no breakpoints were observed within contigs in a
comparison of a dotplot by D-GENIES (15).

The genome contains 15% repetitive sequences masked by RepeatMasker v.open-
4.0.7 using a Coccidioides repeat element library (16). Genes were predicted in the
masked genome with Funannotate v.1.5.2 (17). Gene prediction parameters were
generated by “funannotate train” using alignments of C. immitis spherule and hyphal
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RNA sequencing (RNA-seq) (18). Gene prediction (“funannotate predict”) was per-
formed running ab initio predictors Augustus (19), SNAP v.2013-11-29 (20), Coding-
Quarry v.2.0 (21), and GeneMark-ES v.4.33 (22) using exon hints from spliced alignments
of transcripts, Onygenales proteins (13, 23, 24), and the Swiss-Prot database (25).
Consensus gene models were generated by Funannotate running EVidenceModeler
v.1.1.1 (26). Funannotate assigned putative gene products by searches to the Swiss-
Prot, InterPro (27), eggNOG (28), MEROPS (29), and dbCAN (30) databases, using default
parameters. A total of 7,815 protein-coding gene models were predicted, of which
5,477 had InterPro domains. Twenty-one secondary metabolite clusters were predicted
by antiSMASH 4.0 (31), comprising 8 polyketide synthases (PKS), 4 nonribosomal
peptide synthetases (NRPS), 2 hybrid PKS-NRPS, 1 indole-NRPS, 3 terpene, and 4 “other”
type clusters. The annotation and assembly pipeline steps, full parameters, and log files
are archived in the GitHub repository (32).

Data availability. This whole-genome shotgun project has been deposited at DDBJ/
ENA/GenBank under the accession number RHJW00000000. The version described in this
paper is version RHJW02000000. The genomic sequence reads used in this assembly
were previously deposited under SRA project accession number SRR1292227, and the
RNA-seq reads used had been deposited under BioProject number PRJNA169242 and
SRA accession number SRP013923.
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