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ABSTRACT OF THE DISSERTATION

A Multidisciplinary Approach for Identifying Stage-specific Transcription Factor
Binding Sites in the Irish Potato Famine Pathogen, Phytophthora Infestans

by
Sourav Roy
Doctor of Philosophy, Genetics, Genomics and Bioinformatics Graduate Program
University of California, Riverside, December 2011
Dr. Howard Judelson, Chairperson

Phytophthora infestans, an oomycete within the phylum Heterokontophyta
is one of the most devastating phytopathogens, causing late blight in potato and
tomato. Its pathogenic success depends on the formation of different asexual
spores such as sporangia and zoospores. My goal was to identify what regulates
transition between each of the five different asexual stages viz. hyphae, spores,
cleaving sporangia, swimming zoospores and germinating cysts, by
understanding what determines stage-specific transcription. To help accomplish
this, | have identified potential binding sites for regulatory elements within the
promoters of stage-specific, co-expressed Phytophthora infestans genes, by
integrating bioinformatics and traditional molecular biology techniques. Promoter
sets, of co-expressed genes identified from expression data, were searched for
over-represented motifs using motif discovery algorithms. Approximately 15 to 30
over-represented motifs were detected for each of the five stages. Phylogenetic

footprinting and positional bias analyses increased the robustness of
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Transcription Factor Binding Site (TFBS) predictions. Some of the over-
represented motifs, which were evolutionarily conserved and showed bias for a
certain position within the promoters, were tested for their functionality. Putative
TFBSs related to each of the above-mentioned asexual stages, other than the
short and transient swimming zoospore stage, were shown to be biologically
active. Molecular biology techniques like promoter-reporter fusion assay, serial
deletion, target-specific mutation, RNA-blotting and electromobility shift assay,
were used for the functional validation of these potential TFBSs, all of which
acted as proximal promoter elements. In addition to these elements, we also
looked at the core promoter elements of P. infestans genes. A novel core
promoter element, specific to the group Pythiales and named DPEpyth, was
identified. We have also come up with better Phytophthora specific definitions
(consensus sequence), for ‘FPR’ that has been previously detected within the
oomycete core promoters and also for the very well known Initiator element
(‘Inr’). I believe that the identification of these putative TFBSs should lead to a
better understanding of signaling pathways regulating spore and infection
structure development and provide insight into new disease control strategies in

the future.
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Introduction
Developmental regulation has always been a key area of research and the
involvement of extracellular and intracellular signals has intrigued researchers for
decades. Much of the pathogenic success of eukaryotic microbes like
Phytophthora infestans depends on events such as sporulation and infection
structure formation. These stages are induced by a variety of environmental and
physiological factors. However, very little is known at the molecular level of how
such signals are translated into the cellular responses, but the end result is
usually a changed transcriptome due to direct or indirect alteration of
transcription factors (TFs). We are interested in knowing what causes transition
from one developmental stage to another, but our knowledge is limited only to
sets of genes that are up or down regulated during these transitions. Studies of
genes induced during different stages of development, especially very early in
these stages, including analyses of their promoter motifs that regulate
transcription, will advance our understanding of what triggers development.
Finding the molecular mechanism behind the activation of these transcription
factors (TFs) and identification of their binding sites (TFBSs) will lead to new
ways of disease control. Here in this study a multidisciplinary approach has been
taken to learn what regulates life-stage differentiation in P. infestans with special
emphasis on sporulation and zoosporogenesis-induced transcription. In the

following sections the concepts important for this study are discussed.



Heterokonts:

Heterokonts make up a major eukaryotic phylum that contains more than
100,000 known species (van den et al., 1995), many of which are diatoms and
are part of the Chromalveolates supergroup (Kemen et al., 2011). The
name heterokonts is due to the presence of two differently-shaped flagella in a
life cycle stage, in which the cells are motile. The flagella include a posteriorly
directed whiplash and an anteriorly directed fibrous and ciliated one (Rossman
and Palm, 2006). Heterokonts also include brown algae and many important
pathogens and saprophytes in the oomycete ("water mold") class that is
discussed in the next section.

Oomycetes:

Oomycetes are a highly diverse class of eukaryotic organisms and are
found all over the world; from terrestrial mountains to open sea environments
(Thines and Kamoun, 2010), from the hot deserts of Iran (Mirazee et al., 2009) to
the freezing arctic regions including Antarctica (Bridge et al., 2008, Hughes et al.,
2003). The large round oogonia, structures that contain the female gametes, are
responsible for the name oomycete or “Oomycota” which means “egg fungi’.
Most of these are filamentous microorganisms and are similar to fungus in
morphology but have evolved independently (Gijzen, 2009). Unlike true fungi that
are unikonts (have one flagellum) and are related to animals, oomycetes as

mentioned before are heterokonts and belong to the chromalveolates (Gijzen,



2009). There are striking similarities between true fungi and oomycetes.
Dissemination by spores, filamentous growth, pathogenic types and lifestyles are
some of the basic similarities. Some of the major differences between oomycetes
and true fungi include diploidy instead of haploidy, nonseptate hyphae, cellulose
instead of chitin in the cell wall and different lysine synthesis pathways
(Latijnhouwers et al., 2003). Even though this group is a collection of diverse
species that include saprophytes and pathogens of plants, vertebrates, insects,
fishes and microbes, more than 60% of the oomycete species are plant parasites
(Thines and Kamoun, 2010) and Phytophthora infestans is one of the most
devastating ones.

Phytophthora:

Within the class Oomycota, Phytophthora (“the plant-destroyer”)is a
genus that consists of species responsible for damaging plants. In 1875, Heinrich
Anton de Bary first described this genus that we now know contains over 100
species of plant pathogens causing serious economic and environmental
damage. Even though Phytophthora species in most cases are pathogenic to
dicotyledons, some infect monocots too. These are relatively host-specific
parasites, with the exception of a few species like P. cinnamomi and P. palmivora
that can infect more than 900 (Zentmyer, 1980), and more than 130 (Chee, 1969)
different hosts respectively. Some of the major diseases that the Phytophthora
species cause to the economically important plants are late blight in potato and

tomato by P. infestans, root and stem rot in Soya bean by P. sojae, and sudden



oak death by P. ramorum. In general, the two main strategies for control of the
plant diseases caused by Phytophthora species are growing resistant cultivars
(Forbes and Jarvis, 1994) and chemical control (Fernandez-Northcote et al.,
2000). These management strategies are not optimal, due to insufficient
resistance levels of available cultivars (Andrade-Piedra et al, 2005) and growing
fungicide resistance (Hakiza, 1999). Phytophthora being diploid has a genetic
system that is more similar to that of higher organisms than true fungi. This along
with its economical importance and a range of reproductive mechanisms make
Phytophthora an interesting genus for research (Braiser, 1992).

Phytophthora infestans:

P. infestans is a heterothallic oomycete that causes late blight disease in
potatoes, tomatoes and some other members of the Solanaceae family. P.
infestans was the causal agent for the great Irish potato famine of the 1840s,
which resulted in a loss of 1.5 million lives. Another 1.5 million people had to
immigrate to other parts of the world (Bourke, 1964). The great Irish famine,
continues to be one of the most destructive plant disease epidemic ever
documented. Late blight was also one of the first documented plant diseases
linked to a microbe (Berkeley, 1846; DeBary, 1876). But, this organism is not just
historically important; it is one of the most economically important plant
pathogens too. Current conservative estimates show an annual worldwide loss of
~$6.7 billion (Haverkort et al., 2008) in the yield of potato, the fourth largest food

crop (Reader, 2009), due to late blight. This pathogen is known for its adaptive



capability to control strategies like genetically resistant cultivars (Fry, 2008),
thereby making its management extremely difficult. Its rapid growth within the
susceptible host tissue is due to the asexual cycle (Fry, 2008) and therefore, the
asexual cycle is extremely important for successful pathogenicity.

Asexual cycle:

The asexual life cycle in P. infestans can broadly be divided into five
different stages before infection in plants viz. hyphae, spores, cleaving
sporangia, swimming zoospores and germinated cysts (Fig 1). Some hyphae
develop into sporangiophores, which go on to bear sporangia. The sporangia can
easily detach from the sporangiophores, and can be dispersed aerially to other
plant tissues (Aylor et al., 2001). These sporangia under cold (below 15 °C) and
moist conditions cleave and release wall-less, biflagellate and motile zoospores.
The zoospores are motile for a very shot period; they often encyst within an hour
from the time they are released. A germ tube comes out of the germinating cyst
under favorable conditions to penetrate leaf or stem tissue (Fry, 2008). There is
some knowledge about the conditions required for the transition between the
different stages but not much is known about what triggers these transitions.
Checking what causes the differential expression of genes during the various

stages can provide some clues.



Fig 1 legend:

Asexual cycle in P. infestans:

Shown is the asexual cycle for development in P. infestans. Thread-like
structures called mycelia (hyphae) gives rise to sporangia on the terminus of
specialized structures called sporangiophores. Sporangia cleaves and releases
biflagellate swimming zoospores, which encysts, forms germtube and infects the

plant with the help of infection structure called appressoria.
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Gene expression and stage-specificity:

A 2008 research paper by Judelson and his colleagues (Judelson et al.
2008) showed that approximately 60% of the P. infestans genes exhibit greater
than two-fold changes in mRNA levels over the life cycle and ~15% are stage
specific. This number is relatively high in comparison with other plant pathogens
and is most likely due to huge structural and physiological differences between
zoospores and other life stages (Judelson et al. 2008). What causes these genes
to express differentially during a certain stage, most likely depends on the
elements present in their non-coding regions.

Non-coding regions:

Non-coding regions are under less evolutionary pressure as compared to
the coding regions. As a result, the degree of conservation in the non-coding
regions is much more varied, with most of the sequences drifting randomly, and
only a few showing conservation due to positive selection pressure (Jareborg et
al., 1999). Conserved sequences within the non-coding regions might have
important functions related to regulation of gene expression, maintenance of the
structural organization of the genome, or other chromosomal functions that are
not yet known (Koop and Hood 1994). These conserved sequences might
regulate gene expression by binding proteins responsible for transcription, known

as the transcription factors (TFs).



Transcription Factor Binding Sites (TFBS):

TFBSs are DNA sequences typically 5-15 base-pairs (bp) long (Bulyk,
2003), close to and upstream of the transcription start site, that control gene
expression by activation or inhibition of the transcription machinery (Tompa et al.
2005). There are few TFs for which there are well-characterized TFBSs (Bulyk,
2003). TFBSs are often degenerate and the sequence degeneracy selected
through evolution is beneficial (Bulyk, 2003). The degeneracy helps in
determining different levels of activity in different gene promoters and thereby
varied levels of expression, as per the requirement of the cell (Stromo 2000).
Orientation, most of the times does not determine the function of a TFBS (Bulyk,
2003). Identifying TFBSs in higher eukaryotes is challenging as a TFBS can be
close to or far from the genes that it regulates and can be found upstream,
downstream, or even within the introns of these genes. TFBSs can broadly be
divided in two categories based on their distance from the TSS viz. promoter
elements (within 1 kb upstream of the TSS) and distal regulatory elements (>1 kb
upstream of the TSS).

Core promoter elements:

Core promoter elements, unlike proximal promoter elements or distal
regulatory elements, are present within ~50 bases on either side of the TSSs in
most protein-coding genes transcribed by RNA polymerase Il. The minimal
stretch of contiguous DNA required by the RNA polymerase Il machinery for

accurate transcription initiation can be defined as the core promoter (Butler and



Kadonaga 2002, Struhl 1987, Weis and Reinberg 1992, Smale 1994, 1997, 2001
Smale et. al. 1998, Burke et al. 1998). The core promoter elements interact
directly with the components that make up the basal transcription machinery
(Hochheimer and Tjian 2003, Woychik and Hampsey 2002, Hampsey 1998) and
direct the assembly of pre-initiation complex (MclLeod et. al, 2004), general
transcription factors and a mediator, thereby orchestrating the initiation of
transcription (Burke and Kadonaga, 1997).

Upstream regulatory elements:

Upstream regulatory elements are those TFBSs that are not within the
core promoter region. These can be further classified into proximal promoter
elements and distal regulatory elements, which can be enhancers, silencers,
insulators, or locus control regions (Manston et al., 2006). These are responsible
for the determination of the strength of the promoter, by enhancing or repressing
transcription (Manston et al., 2006) and in most cases do not have a role in
initiation of transcription. Little is known about the binding sites of most
transcription factors, and this is an area of great interest. Both molecular biology
techniques and computational tools are used for the discovery of novel regulatory
elements and there is great hope regarding the computational methods (Tompa
et al, 2005). For the de novo TFBS identification, usually a collection of regions
upstream of the start sites of coregulated genes are used as input, from which
the computational tool identifies short, statistically overrepresented DNA

sequence ‘motifs’ (Tompa et al. 2005).
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Overrepresented motifs:

It is highly likely that most stage-specific genes with identical expression
profile are controlled by TFs that are similar in nature and would in all likelihood
bind to identical TFBSs. Therefore, in a set of promoters from co-expressed
genes the TFBSs would appear as motifs that are overrepresented. Any motif
present in a set of sequences more than the number of times it is supposed to be
identified by random chance, based on the background sequences, is an
overrepresented motif. There are several softwares that follow different
algorithms for the discovery of overrepresented motifs. But, overrepresentation of
a motif does not assure that it has relevance in transcription or any other
biological process.

Positional Bias:

One of the most challenging aspects of bioinformatics promoter analysis is
determining the biological relevance of the predicted TFBSs (overrepresented
motifs; Waveren and Moraes, 2008). Many TFBSs identified to date show a bias
for a certain position within the gene promoters (Waveren and Moraes, 2008).
This is probably because similar TFs binding to the sequence would maintain the
distance from the TSS in order to control proper expression. Previous studies
have adopted an approach of checking the positional bias along with the
conservation of predicted TFBSs, and found that there is high likelihood for
TFBSs with a positional bias of being biologically significant (FitzGerald et al.,

2004).
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Evolutionary conservation and Phylogenetic Footprinting:

As discussed previously, conservation within non-coding regions across
species suggest purifying selection pressure and therefore these regions are
expected to carry elements that are functional. Islands of highly conserved
functional regions surrounded by a background of sequences evolving without
any selection pressure are known as Phylogenetic footprints and the process of
identifying them has been termed as Phylogenetic footprinting (Tagle et al.,
1988). With sequencing getting cheaper by the day and the number of alignable
genome sequences increasing rapidly, phylogenetic footprinting is being used
widely for the identification of binding sites (Levy and Hannenhalli, 2002;
Wasserman and Fickett, 1998; Xie et al., 2005). Checking for evolutionary
conservation can be an effective means for reducing the false-positive rate in
binding site prediction, but one has to keep in mind that conservation is neither a
sufficient (Nobrega et al., 2004) nor a necessary condition for biological
functionality (Dermitzakis and Clark, 2002). Also, conserved regions might have
a number of functional roles other than binding transcription factors (Hannenhalli,
2008).

Aims of this study:

As discussed earlier, Phytophthora infestans has five key stages in the
asexual life cycle which are immensely important for this organism to succeed as
a pathogen. Not much is known about what is responsible for the transition from

one stage to another. But we know that certain genes show high or low levels of
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expression during each of these stages (Judelson et al. 2008). Transcription
factors recognize specific nucleotide sequences (Babu et al. 2007), called TFBS
within the promoter region of a gene. We believe that knowledge about these
binding sites would lead us to the transcription factors, which in turn would
enhance our understanding of the signaling pathways involved in the transition
between the stages. This should then help in the development of new and
improved disease control strategies that are economically viable and
environment friendly. To identify the TFBSs and to get an idea about the
promoter structure in P. infestans, | have studied both proximal promoter
(Chapterl and Il) and core promoter (Chapter Ill) regions in detail.

Chapter | presents the proof of the concept that bioinformatics tools when
combined with molecular biology techniques can increase the robustness of
transcription factor binding site (TFBS) prediction, thereby decreasing the time
required to prove their functionality. Stage-specific, co-expressed genes,
upregulated in sporangia and cleavage were identified from microarray data. The
promoter regions (1 kb) upstream of the translation start sites (ATG) were
extracted from the Phytophthora infestans database, created and maintained by
the Broad Institute (http://www.broadinstitute.org/annotation/genome), and were
used as inputs for the motif finding programs. ‘CGTCCTCG’, one of the
overrepresented motifs within the promoters of the genes up-regulated in
cleaving sporangia, showed bias for a certain position. This motif was also found

to be conserved in the promoters of the P. sojae and P. ramorum orthologs of a
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P. infestans gene (PITG_16321). The bioinformatics data thus suggested that
this motif might be functional. Therefore, the functionality of this motif within the
promoter of the said gene was tested by promoter-reporter fusion assay.
Different sized promoters created by serial deletion were tested for function.
Position-specific mutations and oligo-chimera assays were also employed to
access the function of these promoters. GUS (B-glucuronidase, reporter gene)
staining and RNA-blots confirmed the functionality of this motif. Specific binding
activity was detected by electromobility shift assays (EMSA). Once it was
observed that the bioinformatics analyses were increasing the robustness of the
predicted TFBS, another motif, ‘CTTCAAC’, was chosen for functional analyses.
This motif is overrepresented in the gene promoters of hyphae, sporangia and
cleaving sporangia genes and showed positional bias within the hyphae and
sporangia gene promoters and was conserved in all three stages. The
functionality was proven by GUS staining of the sporangia stage tissue. This
resulted in considerable reduction of the time required to prove that the motif is
functional, in comparison with the time one needs for conventional blind promoter
bashing techniques. The aim of this chapter was to show that bioinformatics
combined with molecular biology can be a very powerful method for TFBS
prediction.

In Chapter Il, the upstream regulatory elements that are specific to one or
more of the five key asexual stages, viz. hyphe, sporangia, cleavage, swimming

zoospore and germinating cysts, were studied. Promoters of genes specific to
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each of these developmental stages were searched for overrepresented motifs.
These motifs along with those from sporangia and cleavage, were then subjected
to positional bias and evolutionary conservation analyses. The idea behind these
bioinformatics analyses was to increase the level of confidence for these
overrepresented motifs being biologically functional. Three motifs, TACATGTA’
that is overrepresented in all developmental stages, ‘GTCGTCG’ that is
overrepresented in hyphae, sporangia, and ‘TATTAATA’ that is overrepresented
in hyphae and germinating cyst stages, were checked for their functionality. It
was also checked if these motifs showed any binding activity with nuclear
proteins using electrophoretic mobility shift assays. The aim of this chapter, was
to not only detect overrepresented motifs within the promoters of genes specific
to each of the five developmental stages, but also to check how many of these
putative TFBSs are shared by the promoters of genes specific to other stages. |
have also analyzed if the motifs showed positional bias and evolutionary

conservation.

Chapter lll describes the results of a computational study to identify core
promoter elements in Phytophthora infestans. Putative transcription start sites
(TSSs) for certain genes were identified based on the EST data available. DNA
sequences, 50 bases on either side of these putative TSSs, were extracted and
subjected to in-silico search for overrepresented motifs, and their bias for a
certain position within this region. To include those genes that lacked EST data a

genome-wide analysis was done by searching 200 bases upstream of the
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predicted translation start sites of all P. infestans genes. The effects of the core
promoter elements on gene expression were analyzed with the help of
microarray data. The conservation of the P. infestans core promoter elements
among eight other heterokont species was checked. The aim of this chapter was
to understand the core promoter structure of P. infestans genes, and throw some
light on the evolution of the core promoter elements within the phylum
Heterokontophyta and gives some idea about the correlation between the
elements and gene expression.

This research should lead to the identification of TFs for selected TFBSs
with the help of biochemical approaches and the study of pathways that activate
these TFs with genetic, biochemical and cell-biological methods. That eventually
should lead to a detailed understanding of what triggers the formation of spores
and will give some insight on the other developmental stages. This certainly
would lead to the signaling pathways regulate development in oomycetes and
how oomycetes communicate with their environment. In terms of broader impact
this study can be a first step towards new and improved strategies for blocking
the disease. Transgenic plants that degrade molecules found to trigger
development or chemicals that block the receptors of those molecules can be

used to arrest the disease cycle.
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Chapter I

Integrating bioinformatics with molecular biology increases robustness and

decreases the time required for identification of transcription factor binding sites

ABSTRACT:

In this chapter it is shown how bioinformatics tools and techniques
increase the robustness of transcription factor binding site (TFBS) prediction and
thus can reduce the time required to prove that a predicted TFBS is functional,
when compared to molecular biology techniques. Phytophthora infestans, a
microbial eukaryote and an oomycete, is one of the most devastating plant
pathogens. It causes late blight in potato and tomato, resulting in a loss of around
20% of the annual global yield. The principal inoculum for the disease is the
zoospore, which develops from sporangia wupon chilling. Therefore,
understanding the mechanisms that activate transcription during the formation of
spores is important. | believe that better management of the disease will result
from improved understanding of what causes spores to cleave and release the
motile zoospores. A big step towards achieving that goal is to identify regulatory
motifs, such as Transcription Factor Binding Sites (TFBSs), responsible for
controlling gene expression in sporangia and cleaving sporangia. Promoters of
genes specific to these two stages were searched for over-represented motifs

with the help of different algorithms. Five overrepresented motifs for each of
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these stages were checked for any positional bias within the promoters.
Phylogenetic footprinting involving three sequenced Phytophthora genomes, was
employed to check for evolutionary conservation and thereby increase the
robustness of the putative TFBS prediction. One putative TFBS, specific to the
cleaving sporangia stage, was selected for functional analyses. A promoter with
this motif was subjected to serial deletion to show that the region carrying this
motif was important for the promoter to be functional. Target-specific mutations
and an oligo-chimera assay were done to prove that the said motif with the help
of core promoter elements was able to drive the expression of the reporter gene.
Nuclear extracts from cleaving sporangia tissue were used to prove the binding
affinity of nuclear proteins for this motif by electrophoretic mobility shift assay.
Once it was proved that this overrepresented, positionally biased and
evolutionarily conserved motif was functional, the functionality of a similarly high
confidence, sporangia-specific motif, was confirmed in much less time. The
results led us to believe that, the approach of integrating multiple bioinformatics
techniques for TFBS prediction can reduce the time required for functional

analyses considerably, by increasing the robustness of the predictions.

INTRODUCTION:
Many critical biological processes are dependent upon regulation of gene
expression, and promoters have an essential role to play in controlling these

processes. Therefore, to have a clear understanding of gene expression,
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knowing the promoter strength and regulation is absolutely necessary (Bajic et
al., 2004). Characterization of eukaryotic promoters is very difficult due to their
extreme diversity (Smale and Kadonaga, 2003). In eukaryotes, promoters
typically lie upstream of the genes (Tompa et al., 2005). The promoter elements
can broadly be divided into core promoter and proximal promoter elements
(Manston et al., 2006) based on their distance from the TSS. Core promoter
elements in most cases interact with RNA polymerase Il and the components
that make up the basal transcription machinery (Hochheimer and Tjian, 2003;
Woychik and Hampsey, 2002; Hampsey, 1998), and are primarily responsible for
initiation of transcription (Butler and Kadonaga, 2002; Struhl, 1987; Weis and
Reinberg, 1992, Smale, 1994, 1997, 2001; Smale et. al., 1998, Burke et al.,
1998). Proximal promoter elements, unlike the core elements, are mainly
responsible for the regulation of transcription and usually do a have stronger
influence than the distal regulatory elements that are further upstream (Manston
et al., 2006; Weis and Reinberg, 1997; Emami et al., 1995, Martinez et al. 1994),
even though exceptions have been observed (Crawford et al., 1999; Yean and
Gralla, 1997). Here in this study, a few proximal promoter elements in the
sporulation and cleavage-induced genes were analyzed for one of the most
destructive phytopathogens, Phytophthora infestans.

P. infestans spores play an essential role in plant-to-plant dissemination
and in infection structure generation, and only certain genes are activated during

the spore cycle. Understanding the regulatory elements like TFs and DNA
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binding sites in the promoters of the genes, is therefore a promising approach to
identify new control strategies for crop protection. Once these are identified,
chemical libraries can be screened for compounds inhibiting TFs or proteins
regulating such factors. The oomycetes are a group that has not been studied
extensively, as a result, data on oomycete promoters are limited and no
systematic genome-wide survey of promoter structure has been reported. Non-
oomycete promoters do not work in Phytophthora, indicating the presence of
unique transcription machinery (Judelson et al., 1991, 1992). Checking P.
infestans promoters against motif databases like TRANSFAC is not productive
due to the taxonomic distance of oomycetes from well-studied organisms. Most
P. infestans promoters appear to be small as the intergenic regions average only
603 nt (Hass et. al., 2009) with some of the shortest untranslated regions noted
for eukaryotes (Pesole et al., 1994). Also, oomycete promoters lack CpG islands,
as there is no cytosine methylation (Judelson and Tani, 2007). Motifs for only a
few TFs have been identified experimentally by approaches like promoter
bashing, such as motifs that induce genes during spore formation (6 nucleotide
long spore box; Ah Fong et. al, 2007) and zoospore release (7 nucleotide long
cold box; Tani and Judelson, 2006). Identification of TFBSs by molecular biology
techniques, even though reliable, is highly laborious and time consuming.

A number of computational approaches have been developed in the post-
genomic era to counter the challenge of identifying the short and often

degenerate binding sites in DNA for TFs (Bulyk, 2003). This has been a
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frustrating problem for standard methods in computational sequence analysis.
Simple cis-regulatory TFBSs, which usually are short and often degenerate DNA
segments known as motifs, do not have enough sequence information on their
own for dependable predictions. Thus, de novo motif identification has proved to
be extremely difficult (Tharakaraman et al., 2008). Recent advances in genome
sequence availability and high-throughput gene expression analysis technologies
have facilitated the development of computational methods for motif discovery.
This has lead to the implementation of a large number of motif discovery
algorithms, which have been applied to various motif models over the past
decade (Das and Dai, 2007). Methods to find new regulatory motifs such as
TFBSs usually start from genes having similar expression patterns or sequences
from chromatin immunoprecipitation (Tyler et al., 2006; Wakefield et al., 2005).
The idea is to find overrepresented sequences in a dataset, versus control DNA,
that in all likelihood binds TFs. To discover putative regulatory motifs in sets of
co-regulated genes from the same genome, several pattern discovery algorithms
have been developed (Hertz et al., 1990; Lawrence et al., 1993; Neuwald et. al,
1995; Bailey and Elkan, 1995; van Helden et al., 1998; Brazma et al. 1998; Hertz
et al. 1999; van Helden et al., 2000; Thijs et al., 2001; Liu et. al. 2001). The
detection usually starts from a random motif model, which is represented as a
probabilistic weight matrix and is iteratively refined by different algorithms. The
main algorithmic strategies used are expectation-maximization, Gibbs sampling

and statistical overrepresentation. Each of these approaches has pros and cons.
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Gibbs sampling and statistical overrepresentation methods are faster but tend to
produce many spurious hits and may miss motifs due to the flexibility of the
bases within the TFBSs, whereas the expectation-maximization approach is time
consuming and the results may vary with the number of iterations used.

There is a particular position for a TF within the transcriptional complex
that is anchored by the TSS. Therefore, it is highly likely that a TFBS, with which
the TF interacts, is constrained positionally with respect to the TSS
(Tharakaraman et al., 2008). The concept of using positional information with
respect to TSS, for the prediction of TFBSs, has been used by multiple studies
(Ptashne at al., 1982; Kielbasa et al., 2001; FitzGerald et al., 2004; Xie et al.,
2005; Tharakaraman et al. 2005; Zhang et al., 2006; Marino-Ramirez et al.
2006). A major drawback for this method is that one needs proper annotations
for robust predictions, and therefore, merely the sequence is not enough
(Tharakaraman et al., 2008).

Another common strategy to predict cis-acting regulatory elements is the
detection of conserved motifs in promoters of orthologous genes (phylogenetic
footprints). Several software tools are routinely used to test hypotheses about
regulation (Janky and van Helden, 2008). The premise behind this method is that
selective pressure causes functional elements to evolve more slowly than non-
functional sequences. Thus, conserved regions within orthologous promoters are
candidate TFBSs. Phylogenetic footprinting has been applied with success in

bacteria, fungi, plants and animals to identify TFBSs (Dermitzakis et al., 2002,
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McCue et al., 2002, Cliften et al., 2003, Guo et al. 2003, Hong et al., 2003,
Bowser and Tobe, 2007). It is likely that footprinting of distantly related species
would only identify ancient regulatory elements. Ultilizing the conservation
patterns in multiple closely related species can identify more recently evolved
regulatory elements. This technique is known as a phylogenetic shadowing and
has been proposed by Boffelli et al. (2003). Like motif discovery methods the
phylogenetic footprinting approaches too have pluses and minuses. These
approaches rely on having suitably evolved sequences; if the species being used
are too closely related, TFBSs may not be more conserved than the bases
lacking function, due to the lack of sequence divergence. On the other hand, it is
unlikely that a good alignment can be obtained if the species are too distant.
Another limitation for this method is the assumption that the orthologs have the
same expression pattern and hence the same TFBSs.

Therefore, based on the above discussion it can be concluded that both
molecular biology techniques and computational methods for TFBS predictions
have their own share of pros and cons. Computational algorithms are fast but not
very reliable whereas molecular biology techniques even though reliable are
laborious and highly time consuming. This is the reason that | decided to
integrate bioinformatics approaches with molecular methods. | decided to use
different computational algorithms to predict overrepresented motifs within the
promoters of co-regulated genes, increase the robustness of these predictions by

computational methods like positional bias analysis and phylogenetic footprinting
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and finally test the functionality of some of these motifs by molecular biology
techniques (Fig 1). | wanted to test this approach on a small scale before going
ahead and predicting high confidence putative TFBSs for all the five asexual
stages. Five overrepresented motifs from the cleaving sporangia stage were
selected randomly and analyzed for positional bias. All of these five motifs
showed a bias for a certain position within the promoters and were checked for
evolutionary conservation by phylogenetic footprinting with P. sojae and P.
ramorum orthologus promoters. Only one out of the five was found to be
conserved in both species. The motif that was found to be conserved among
more than one orthologus gene promoters in both P. sojae and P. ramorum, was
tested for functionality. Promoter-reporter fusion assays, histochemical staining,
RNA-blots showed that this was functional. Analyzing another motif that was
associated with sporangia-specific expression, by fusing the motif to a minimal
promoter, proved that the approach of using three different algorithms for
identifying overrepresented motifs and integrating the three TFBS prediction

methods indeed helped in making robust TFBS predictions.
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Fig 1 legend:

The approach adopted for identification of robust putative TFBSs:

Shown is the approach adopted for this study, where stage-specific genes are
identified from the microarray data, extract their promoters and look for over-
represented motifs within the promoter data sets with three different motif-finding
programs. The common motifs from the outputs are considered to be putative
TFBSs, which are checked for their positional bias and evolutionary
conservation. A motif that is overrepresented, shows a bias for a certain position
and is conserved evolutionarily is considered to be a high confidence candidate

for a TFBS, which is then tested for functionality by oligo-chimera assay.
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MATERIALS AND METHODS:
Selection of genes and development of promoter data sets:

94 genes that were >10 fold up-regulated in cleaving sporangia tissue
when compared to sporangia, and 99 genes >10 fold up-regulated in sporangia
when compared to hyphae, were selected from microarray data (Judelson et al.,
2008).

Gene models created and maintained by the Broad Institute
(http://www.broadinstitute.org/annotation/genome/phytophthora_infestans/MultiH
ome.html) were manually curated using stand-alone java applet, ‘argoc-1'.
Promoter regions (1 kb upstream of the coding region) for most of these genes
were extracted from the same database with the help of an in-house PERL script;
some of the promoters were extracted manually. The above-mentioned and all
other PERL scripts, used for this study, were developed by myself.

Detection of overrepresented motifs:

Stand-alone versions of three different motif-finding programs were used.
Background models created with 1000 base pairs (bp) upstream of the coding
region for each of 100 randomly selected P. infestans genes. Also, degeneracy
was allowed at two positions for two of these programs viz MEME and YMF.
MEME (Multiple EM for Motif Elicitation; Baily and Elkan, 1994) version 4.3.0,
with @ minimum width (minw) of 5 and a maximum width (maxw) of 8, was used.
The default gap opening cost (wg) and gap extension cost (ws) for multiple

alignments were 11 and 1, respectively. The distribution of motifs (mod) used

34



was “anr” with a default E-value cut-off (evt) of 1e-05 and the maximum number
of EM iterations (maxiter) was set at 5. The minimum sites for each motif
(minsites) used were 5 with the rest of the parameters being default.

YMF (Yeast Motif Finder; Sinha and Tompa, 2000) version 3.0 was used
specifying lenRegion (the length of the upstream regions in which motif is to be
searched) for each set. The lenOligo i.e. the significant length or the number of
non-spacer characters of the motifs to find was specified to be 8. The motifs were
sorted by z-score using the sort (-sort) command line parameter.

BioProspector (Liu et al., 2001) Release 2 was used with motif width (-w)
specified as 8. The number specified for top motifs to be reported (-r) was 100
and rest of the parameters used were default. BioProspector was run for ten
times on each set of promoters and a PERL script was used to get rid of the
redundant motifs and generate an output file with the non-redundant motifs from
all ten runs.

Detection of positional biased and Phylogenetic footprinting:

To analyze the positional bias, the frequency of the motifs within each 50
base windows that the 1 kilobase promoters were divided into, were obtained by
a PERL script developed in-house. The p-values for the frequencies within the
five 200 base regions (four 50 base windows) were then calculated from their z-
scores. For phylogenetic footprinting P. infestans gene promoters were aligned
with the promoters of their orthologs in P. sojae and P. ramorum with the help of

three different alignment programs on the web. The webtools that were used
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were CLUSTALW (Thompson et al., 1994), MultAlin (Corpet, 1988) and DIALIGN
(Morgenstern et al., 2004) and the source for the P. sojae and P. ramorum
sequences was Joint Genome Institute (http://genome.jgi-psf.org). For
CLUSTALW, the ‘gap open’ and the ‘gap extension’ penalties were set at 10 and
0.1 respectively. The ‘gap open’ and extension penalties for MultAlin were 10 and
1 respectively. All other parameters for both CLUSTALW and MultAlin were set
to default. For DIALIGN all parameters including the threshold (T; default value,
0) and the regions of maximum similarity used (default value, 5) were set to
default.

P. infestans strain, culture and manipulations:

Isolates from the 1306 strain were cultured on rye-sucrose media at 18°C
in the dark. P. infestans stable transformants were generated by the protoplast
method described previously by Judelson et al. (1993). Non-sporulating mycelia
were obtained by inoculating clarified rye-sucrose broth with a sporangial
suspension, followed by 48 hours of incubation. Cultures on rye-sucrose agar
plates that were 9 to 11 days old, were used for sporulating mycellia. Sporangia
were obtained from 7 to 9 day old sporulating mycelia by adding water, rubbing
with a glass rod, and passing the fluid through a 50-um mesh to remove hyphal
fragments. To induce cleavage, sporangia were placed in 100 mm petri plates
which were kept on ice for ~60 mins. RNA was extracted using the RNeasy Plant

Mini Kit (Qiagen, Valencia, CA, USA).
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Construction of vectors:

Clone 38.2, also known as pNPGUS, is a modified version of pOGUS
(Clone3d8; Cvitanich C, Judelson HS, 2003) vector which contains a promoterless
GUS (B-glucuronidase) reporter gene and a neomycin phosphotransferase (nptll)
gene driven by the ham34 promoter for G418 selection. To construct the
Clone38.2 vector, | first removed the multiple cloning site between Notl and
EcoRl restriction sites downstream of the GUS reporter gene and then re-ligated
the vector, after blunting the cut sites with Klenow polymerase. This version was
named Clone 38.1. A double stranded oligonucleotide was then made by
annealing two synthetically designed single stranded oligonucleotides (Table 1).
The double stranded oligonucleotide contained the entire region with multiple
cloning sites, which was removed from pOGUS. The oligonucleotide in addition
to the multiple cloning sites contained two stop codons in two different frames at
the 5’ end, downstream of the overhang for the Apal site. Overhang for the Clal
site was at the 3’ end (Table 1). This double stranded oligonucleotide was then
inserted between the Apal and Clal sites upstream of the GUS reporter gene.

For construction of the NIFS+Clone38.2 vector, a 74 bp long minimal
promoter of the P. infestans NIFS gene (nuclear LIM factor interactor-interacting
protein, spore-specific form) was added to the Clone 38.2 vector, upstream of the

GUS gene, using the Xmal and EcoRl restriction digestion sites.
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Promoter::Reporter plasmid construction and sequencing:

Full length (500 bp upstream of ATG) and different-sized 5’ promoter
fragments (for serial deletion analysis) from the cleavage specific PITG_16321
gene were obtained by PCR amplification, using 1306 genomic DNA, Taqg DNA
polymerase, and primers (Table 1) specific to the promoter regions based on the
sequence provided by the Broad Institute database. Primers (Table 1) for motif
specific mutation analyses and oligos for oligo-chimera and EMSA assays along
with those for serial deletion were designed with the primer designing Oligo
software version 4.0, developed by “Molecular Biology Insights” (Cascade, CO,
USA).

The fragments for serial deletion and motif-specific mutation analysis were
cloned into transformation vector Clone38.2 (pNPGUS) in between the Xbal and
the EcoRI restriction sites. Oligos for the oligo-chimera assay were cloned into
the NIFS+Clone38.2 plasmid in between the Xbal and Xmal restriction sites.
Chemically competent DH5« cells were used for bacterial transformation. Clones

found to be positive by restriction digestion were sequenced.
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Table 1:

Primers and oligonucleotides used in this study:

Shown below is a list of primers and oligonucleotides used for this study. All of
primers/oligonucleotides are in 5-3’ direction. The number 4671 refers to the Pi
(cDNA) number of the PITG_16321 gene, from the microarray study of Prakob
and Judelson (2007). The last column describes the usage of these

primers/oligonucleotides.

Primer/Oligo Primer/Oligo Used for
5-3
name
CTAAAATAGATAAGGCGGCCGCTCTAG Construction of
C38.2U AACTAGTGGATCCCCCGGGCTGCAGGA Clone38.2 vect
ATTCAATAAAAT onese.s vector
CGATTTTATTGAATTCCTGCAGCCCGG Construction of Clone38.2
C38.2L  |GGGATCCACTAGTTCTAGAGCGGCCG ; '
CCTTATCTATTTTAGGGCC vector
4671U GCTCTAGAAGAAACTGAGCCTCG Amplifying 500 bp
GTATGA upstream of 4671 gene
46711 CGGAATTCAGAAATGCTAAGCGAA Amplifying 500 bp
GACTG upstream of 4671 gene
Del1 GCTCTAGAGCCGTCGGTATCCAAG Amplifying 312 bp
AGGTA upstream of 4671 gene
Del2 GCTCTAGAGCCTCCCTGCTGTCG Amplifying 187 bp
TCCTC upstream of 4671 gene
Del3 GCTCTAGAGCGGGTCCGTCTTCTA Amplifying 104 bp
GTCCA upstream of 4671 gene
Mut1 GCTCTAGAGCAGAAACCTCACCGTCCT | Q:‘;F;'r';yg%gz P
CGAACCACA pSieam. ot 4> 9
with 1°° mutation
Mut2 GCTCTAGAGCCTCCCTGCTGTACAATCC Amplifying 187 bp
GAACCACATGGCAT upstream of 4671 gene
with 2" mutation
Mut2 GCTCTAGAGCCTCCCTGCTGTCGTCCT Amplifying 187 bp
CGTTGTTGTATTTATGTGCTCCCATCCG upstream of 4671 gene
with 3rd mutation
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Primer/Oligo Primer/Oligo Used for
5-3’
name
NifSU TCCCCCCGGGGGGATTGAAGATTCGAC | Amplifying NIFS minimal
GG promoter
NifSL GGAATTCCCGTTGTAGCCGTGGT Amplifying NIFS minimal
promoter
BLKU CTAGACTCCCTGCTGTCGTCCTCGAAC Oligo-chimera with all 3
CACATGGCTTCCCGTCTTCTCGTCTC conseved blocks (motifs)
BLKL CCGGGAGACGAGAAGACGGGAAGCCA | Oligo-chimera with all 3
TGTGGTTCGAGGACGACAGCAGGGAGT | conseved blocks (motifs)
OC-upper CTAGACGTCCTCGGGTTGGTGCAATTTC Oligo-chimera with
CCGTCTTCTCGTCTC conseved motif
CGTCCTCG
OC-lower CCGGGAGACGAGAAGACGGGAAATTGC Oligo-chimera with
ACCAACCCGAGGACGT conseved motif
CGTCCTCG
SP2_0OC CTAGACTTCAACGAGTTGGTGCAATTTC Oligo-chimera with
upper CCGTCTTCTCGTCTACGTCCC conseved motif
CTTCAAC
SP2_0OC CCGGGGGACGTAGACGAGAAGACGGG Oligo-chimera with
lower AAATTGCACCAACTCGTTGAAGT conseved motif
CTTCAAC
EMSA CL_ | CTCCTAGACTCCCTGCTGTCGTCCTCGA Specific probe of
SPEC_UP ACCACATGGCTCCCGTCT CGTCCTC motif
EMSA_CL_ | AGACGGGAGCCATGTGGTTCGAGGACG Specific probe of
SPEC _LO ACAGCAGGGAGTCTAGGAG CGTCCTCG motif
EMSA_CL_N | TCGAGTACTTCTACACCATCATGGCACT Non-Specific probe of
S UP GTACTCCTCTAGTCTGTA CGTCCTCG motif
EMSA_CL_N | TACAGACTAGAGGAGTACAGTGCCATG Non-Specific probe of
S LO ATGGTGTAGAAGTACTCGA CGTCCTCG motif
EMSA CL_M | CTCCTAGACTCCCTGCTGTACAATCCGA Mutated probe of
UT_UP ACCACATGGCTCCCGTCT CGTCCTCG motif
EMSA CL_M | AGACGGGAGCCATGTGGTTCGGATTGT Mutated probe of
UT_LO ACAGCAGGGAGTCTAGGAG CGTCCTCG motif
EMSA_SP2_ | CTGCCTCCTCCAATTTGCACTTCAACTT Specific probe of
SPEC_UP GTGTAGCCATCTGACGACC CTTCAAC motif
EMSA_SP2_ | GGTCGTCAGATGGCTACACAAGTTGAA Specific probe of
SPEC LO GTGCAAATTGGAGGAGGCAG CTTCAAC motif
EMSA _SP2_ | CTGCCTCCTCCAATTTGCAAGGTCAATT Mutated probe of
Mut_UP GTGTAGCCATCTGACGACC CTTCAAC motif
EMSA_SP2_ | GGTCGTCAGATGGCTACACAATTGACCT Mutated probe of
Mut_ LO TGCAAATTGGAGGAGGCAG CTTCAAC motif
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Gene expression analysis:

Gene expression analyses were done by two different methods. The first
one was histochemical staining of stage specific tissues for B-glucuronidase
(GUS), performed as described by Judelson et al. (1993). The staining solution is
made up of 50 mM sodium phosphate (pH 7.0), 0.1% Triton X-100, 0.1% X-Gluc
(bromochloroindoyl-b-glucuronide) in dimethyl formamide, 5 mM potassium
ferricyanide, 5 mM potassium ferrocyanide. Tissues were stained at 37°C in the
dark, overnight. Northern blotting was the second method that was used for gene
expression analyses and was performed as described (Judelson & Roberts,
2002). Five micrograms of total RNA was separated on 1.2% agarose/6.6%
formaldehyde gels. This was then transferred to nylon membranes by capillary
blotting in 20x SSPE (3.6M NaCl, 0.2M sodium phosphate, 0.02M EDTA pH 7.7).
The membranes were then fixed by UV crosslinking, and hybridized overnight, at
65°C with *?P-labeled probes made from p-glucuronidase (GUS) DNA. Two
rounds of washing were carried out, the membrane was first washed in 1x SSPE,
0.2% sodium dodecyl sulfate (w/v), and 0.1% sodium pyrophosphate at 65°C.
The second wash was in 0.2x SSPE, 0.2% sodium dodecyl sulfate (w/v), and
0.1% sodium pyrophosphate at 65°C. The blots were placed under phosphor
screens in autoradiography cassettes and left overnight in the dark. Signals were
detected by phosphorimager analysis using Quantity One software developed by

BIO-RAD (Philadelphia, PA, USA).
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Electrophoretic mobility shift assay (EMSA):

Nuclear protein isolation and EMSA were performed as described by Ah
Fong et al. (2007), except that heparin agarose was not used for the extractions.
In short, EMSA involved mixing 5 ug of nuclear protein with 1 ug poly dI-dC,1.6
ng of y**P-ATP, 15 mM HEPES pH 7.9, 25 mM MgCl,, 100 mM KCI, 15%
glycerol, 1 mM DTT for 15 mins at room temperature followed by 30 min on ice,
followed by electrophoresis on a 4.5% acrylamide gel in 0.5x TBE buffer (89mM
Trisborate, 2mM EDTA) for 3 h at room temperature. The gel was dried for an
hour, placed under the phosphor screens in autoradiography cassettes and left
for overnight in the dark. The screen was then analyzed with a phosphorimager.
For competition assays, protein was incubated with unlabeled DNA for 15 min
and then with the labeled probe for 30 mins in ice. Double-stranded
oligonucleotides described in the ‘Results’ section were used as hot probes and

cold competitors.

RESULTS:

Identification of cleavage genes and development of promoter dataset:
Ninety-four genes (Table 2) that were more than 10 fold up-regulated in

cleaving sporangia when compared to sporangia were considered for this study.

All 94 gene models were manually curated before extraction of their promoters (1

kb upstream of the translation start site). The promoters of the 17 genes for

which the translation start site (ATG) had to be altered during the manual
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curation were extracted manually (from the Broad Institute database). The rest of
the promoters were extracted with the help of a PERL script developed in-house.
Detection of overrepresented motifs in cleavage-induced gene promoter
set:

Overrepresented motifs within the promoter dataset were detected by
three different motif finding programs as mentioned in the “Materials and
Methods’ section. MEME detects overrepresented motifs using the expectation
maximization algorithm, YMF based on an enumerative approach, and
BioProspector uses a Gibbs sampling technique. MEME was set to detect 100
most overrepresented motifs. YMF detected 221 motifs and there were 82 non-
redundant motifs from ten runs of BioProspector. The PERL script that was used
to detect common motifs found 35 motifs which were detected by at least two out
of the three programs. Six of these motifs were merged manually with six other
motifs within the set. Two motifs were manually merged only when, no more than
two bases among the motifs were different. The motifs were detected as different

motifs as in most cases these had different terminal bases.
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Table 2:
The following table shows the PITG numbers of the 94 cleavage-induced

genes used for this study:

# PITG # # PITG # # PITG #

1 PITG_00591 33 PITG_03162 65 PITG_12903
2 PITG_01266 34 PITG_03467 66 PITG_13036
3 PITG_02008 35 PITG_03525 67 PITG_13115
4 PITG_03346 36 PITG_03590 68 PITG_13419
5 PITG_04322 37 PITG_04281 69 PITG_13601
6 PITG_04477 38 PITG_04701 70 PITG_13644
7 PITG_05149 39 PITG_04999 71 PITG_13755
8 PITG_05203 40 PITG_05204 72 PITG_13881
9 PITG_05205 M PITG_05296 73 PITG_14228
10 PITG_05714 42 PITG_05670 74 PITG_15282
11 PITG_05738 43 PITG_07355 75 PITG_16321
12 PITG_06049 44 PITG_07444 76 PITG_16473
13 PITG_06835 45 PITG_07961 77 PITG_16727
14 PITG_07345 46 PITG_08258 78 PITG_16967
15 PITG_11239 47 PITG_08404 79 PITG_17344
16 PITG_11504 48 PITG_08707 30 PITG_17420
17 PITG_17675 49 PITG_09410 81 PITG_17591
18 PITG_17951 50 PITG_09899 82 PITG_18174
19 PITG_20590 51 PITG_09979 83 PITG_18240
20 PITG_20710 52 PITG_10337 84 PITG_18386
21 PITG_03034 53 PITG_10507 85 PITG_18393
22 PITG_05111 54 PITG_10523 86 PITG_18428
23 PITG_06236 55 PITG_10571 87 PITG_18680
24 PITG_06965 56 PITG_10630 38 PITG_19451
25 PITG_00321 57 PITG_10847 89 PITG_19483
26 PITG_00539 58 PITG_11102 90 PITG_20681
27 PITG_00891 59 PITG_11238 91 PITG_20886
28 PITG_02028 60 PITG_11470 92 PITG_21207
29 PITG_02029 61 PITG_12293 93 PITG_21452
30 PITG_02030 62 PITG_12352 94 PITG_11400
31 PITG_02110 63 PITG_12507

32 PITG_02227 64 PITG_12524

44




Analysis of positional bias for five motifs overrepresented in cleavage
induced gene promoters:

Five overrepresented motifs (Table 3) from the list of 29 motifs were
randomly selected for analyses of their positional bias. A PERL script developed
in-house, was used to compute the frequencies of each of the motifs within a 50
base (bp) window that the 1 kilobase (kb) promoters were divided into. These
frequencies were used to calculate the positional bias of each motif within the
five 200 base regions (four 50 base windows). Equality of proportions for the
observed and expected values were calculated to get the z-scores, which were
then used to calculate the p-values. All five motifs showed a clear bias for one or
more 200 base regions. The ‘TACATGTA’ and the ‘AGAGAGAG’ motifs showed
a bias for 400 bases (two 200 base regions; Table 3), 201 to 600 and 1 to 400
bases upstream of ATG respectively. The ‘TCGTC[GT]TC motif showed a bias
for the first 600 bases upstream of ATG. The other two motifs, ‘GATGCTG’
‘CGTCCTCG’, showed a clear bias for only one 200 base region (Table 3). The
‘CGTCCTCG’ motif that showed a bias for a single 200 base region (Fig 2A) that
was closest to the translation start site (1-200 bases) and was analyzed further.

Promoter sets, from 99 sporangia-induced genes, and all P. infestans
genes (18124 when the study was conducted) were searched to find out if the
‘CGTCCTCG’ motif showed a bias for any positions within these sets (Fig 2A).
The bias for its reverse complement was also checked in all the three sets. It was

observed the motif ‘CGTCCTCG’ and its reverse complement ‘CGAGGACG’ had
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a clear bias for the first 200 bases upstream of ATG, within the cleavage-induced
genes promoters. The bias of ‘CGTCCTCG’ was six times that of ‘CGAGGACG’
within 100 to 200 bases upstream of ATG. No significant bias could be detected
within the sporangia or the total gene promoter sets (Fig 2A).

Analysis of evolutionary conservation of ‘CGTCCTCG’ motif:

Orthologs of four genes that carried this motif, within the first 200 bases
upstream of ATG, were identified in P. sojae and P. ramorum, by BLASTP
(Altshul et al., 1997), from the Joint genome Institute (JGI; http://genome.jgi-
psf.org/) database. The promoters of these orthologs were extracted manually
and aligned along with the P. infestans gene promoters by three different
alignment programs as mentioned in the “Materials and methods’ section. The
‘CGTCCTCG’ motif was found to be conserved in three out of the four gene
promoters aligned, in all three Phytophthora species. One out of the three genes

mentioned above, PITG_16321 (Fig 2B), was chosen for functional analyses.
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Table 3:

Distribution of five overrepresented motifs within promoters of genes

specific to cleaving sporangia:

The table shows the distribution of five of the overrepresented motifs within the

cleavage-induced gene promoters. The 1kb regions are divided into five 200 nt

windows. The raw frequency of the motifs within the windows is shown along with

the total number of hits and the positions for which the motifs show a bias. The

‘CGTCCTCG’ (in bold) was chosen for further analyses. The numbers in bold

specify the region of bias for each motif (5’ to 3’ direction).

MOTIF
Bases
from ATG | AGAGAGAG | CGTCCTCG | TACATGTA | TCGTC[GT]TC | GATGCTG

1-200 9 7 1 6 3
201-400 8 1 7 5 12
401-600 3 0 4 5 5
601-800 0 0 2 1 2
801-1000 0 2 5 1 2
Total hits 20 12 19 18 24
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Fig 2 legend:

Positional bias and evolutionary conservation of ‘CGTCCTCG’ motif:

A) The figure shows the positional bias of the motif ‘CGTCCTCG’, for the first
200 bases upstream of ATG, within the cleavage-induced gene promoters
(CLSP) set. Also shown is the distribution of this motif within the sporangia-
induced gene promoters (SP) and the promoters of all P. infestans genes (TS).
The frequencies for the ‘CGTCCTCG’ motif and its reverse complement
‘CGAGGACG’ within ‘the first 100 bases windows were similar but the frequency
of ‘CGTCCTCG’ was 6 times that of ‘CGAGGACG’ within “100-200’ window. B)
Shown is the evolutionary conservation of the motif ‘CGTCCTCG’ in the
promoters of P. sojae and P. ramorum orthologs of the PITG_16321 gene in P.
infestans. The three positions indicated with numbers starting with the minus

signs show where the deletions were made.
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Fig 2

Distribution of CGTCCTC/CGAGGACG in stage-
specific promoters
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Table 4:

Transformants used for the functional analyses of ‘CGTCCTCG’ and

‘CTTCAAC’ motifs:

Shown below is the list of transformants used for the functional analyses of the

cleaving sporangia-specific ‘CGTCCTCG’ motif and the sporangia-specific

‘CTTCAAC’ motif.

Cleaving sporangia specific motif: CGTCCTCG
Construct name Transformant #
Full length 1.2 1.3 1.4
Del 1 188-8 188-48 188-50
Del2 313-2 313-27 313-52
Del3 396-6.1 396-30 313-36
Mut1 4.2 1.3
Mut2 17.1 17.2
Mut3 5.1 2.3
oC 6.3 8.4
Block 2 3.1 9.1 11.1 2.3
-ve control H2
Sporangia specific motif: CTTCAAC (SP2)
Construct name Transformant #
SP2: 38 | 316 | 4.8 4.29 2.1
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Expression analyses of full length (500 bases) PITG_16321 promoter:

The full length promoter fragment was amplified by PCR using ‘4671U’
and ‘4671L" upper and lower primers (Table 1), with isolate 1306 genomic DNA
as template. This 500 bp fragment was then inserted into Clone 38.2 vector to
create a promoter::reporter plasmid (Fig 3A). P. infestans was then transformed
with the plasmid DNA. The transformants were subcultured in rye-sucrose agar
plates with G418 for selection. Sporangia and cleaving sporangia were obtained
and stained for GUS expression as described previously. Staining showed that
GUS was expressed (Fig 3B, 3D) in the cleaving sporangia of nine out of 62
transformants. The rest of the transformants did not show expression in any of
the tissues presumably due to position effects. Hyphae and sporangia (Fig 3C)
from the same transformants did not show any GUS expression (not shown),
suggesting that the promoter, which is from a gene induced in cleaving
sporangia, was driving the expression of the reporter gene only during that stage.
RNA was extracted for blotting from the sporangia and cleaving (chilled)
sporangia tissues of three of the transformants (Table 4) that had shown GUS
expression. RNA was transferred into a membrane, crosslinked and hybridized
with *P-labeled, randomly primed probes made with DNA from the GUS gene.
Signals for GUS expression were visible in the cleaving sporangia RNA of all
three transformants, but no signal could be detected from any of the sporangia
RNA. This showed that the 500 bp promoter fragment of the PITG_16321 gene,

which had the ‘CGTCCTCG’ motif, was able to drive GUS expression only in
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cleaving sporangia suggesting that the motif has a role to play in the expression

of genes during cleavage.
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Fig 3 legend:

Conformation of functionality for full length (500 bp) PITG_16321 promoter:
A) Shown is a diagram of the promoter::reporter plasmid where a promoter
fragment is inserted in front of the GUS reporter gene. The NPT gene driven by
the HAM 34 promoter is used as a selection marker. B) Shown are the unstained
sporangia (left) and stained cleaving (chilled) sporangia (right) from 1306 strain
transformed with the plasmid where the PITG_16321 promoter fragment (500 bp)
is inserted in front of the GUS reporter gene, after overnight incubation with the
GUS staining solution. C) Shown are unstained sporangia, after overnight
incubation with the GUS staining solution, under the microscope. D) Shown are
stained cleaving sporangia, after overnight incubation with the GUS staining

solution, under the microscope.
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Fig 3
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Serial deletion of PITG_16321 promoter:

Three 5’ to 3’ deletion fragments were generated from 1306 genomic DNA
by PCR as described previously. The deletions were based on the conservation
shown in Fig 2B; ‘4671L’ was used as the lower primer for all three fragments.
‘Del1’, ‘Del2’ and ‘Del3’ (Table 1) were used as upper primers for 312 bp long
‘del1’, 187 bp long ‘del2’, and 104 bp long ‘del3’ fragments, respectively. As
evident from Fig 2B, ‘del1’ and ‘del2’ contained the ‘CGTCCTCG’ motif, but ‘del3’
did not. Each of the three fragments was inserted into Clone38.2 to get three
different plasmids. For the ‘del1’ fragment 49 transformants were analyzed, 58
and 65 transformants each were analyzed for ‘del2’ and ‘del3’ fragments
respectively. The results from GUS staining and northern blots of P. infestans,
transformed with the three above mentioned plasmid DNAs, showed that GUS
expression was driven by the ‘del1’ (12 transformants showed staining, all three
tested by northern were positive) and ‘del2’ (11 transformants showed staining,
all three tested by northern were positive) promoter fragments in cleaving
sporangia (Figs 4A, 4B), but not by the ‘del3’ fragment (6 transformants showed
light GUS staining but none of the three tested by northern were positive; Fig
4C). No signal was detected from any of the sporangial samples taken from the
same transformants. Ribosomal RNA was used as a loading control. This proved
that the region between 187 bases (-187) and 104 bases (-104), upstream of
PITG_16321 translation start site, was responsible for the expression from the

GUS gene.
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Oligo-chimera assay with a block containing the ‘CGTCCTCG’ motif:

The ‘CGTCCTCG’ motif is present within the -187 to -104 region (Fig 2B),
but the alignment shows that there are two other conserved motifs, viz.
‘CCCTGCTG’ and ‘ACCACATGGC’, on either side of this motif. There is also
another conserved motif ‘ACTCTGCC’, 51 bp downstream of ‘CGTCCTCG’
within this region. Therefore, to check if the ‘CGTCCTCG’ functioned on its own,
or was influenced by the other sequences, a 47 bp double stranded DNA
fragment (‘BLKU’ ‘BLKL’ oligos annealed; Table 1) carrying the ‘CGTCCTCG’
motif along with the two other conserved motifs next to it was made. This was
then inserted in front of the NIFS minimal promoter (which by itself cannot drive
GUS expression; Ah-Fong et al. 2007) within the NIFS+Clone38.2 vector, using
the Xbal and Xmal restriction sites. The results (Fig 4D) showed that this
fragment was able to drive GUS expression. It should be mentioned that only
‘CGTCCTCG’ motif was found to be overrepresented within the cleaving
sporangia promoter set and not the other two. Therefore, it was most likely that
the ‘CGTCCTCG’ motif was driving the expression of the GUS reporter gene on
its own with the help of core promoter elements (required for initiation of

transcription), within the NIFS minimal promoter.
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Fig 4 legend:

Deletion analyses for PITG_16321 promoter and oligo-chimera assay with a
block containing all 3 conserved motifs:

‘CGTCCTCG’ (2) is the cleavage-specific motif, ‘CCCTGCTG’ (1) and
‘ACCACATGGC'’ (3) are the two other conserved motifs.

A) Shown is the result of GUS expression analysis by RNA blot for the 312 bp
long ‘del1’ promoter fragment. The (+) sign denotes RNA from cleaving (chilled)
sporangia as a result of cold treatment. RNA from sporangia without cold
treatment is shown by the (-) sign. ribosomal-RNA was used as loading control.
RNA from three stable transformants viz. ‘188-8’, “188-48’ and ‘188-50" were
loaded from left to right respectively. B) Shown is the result for the 187 bp long
‘del2’ promoter fragment. RNA from three stable transformants viz. ‘313-2’, ‘313-
27’ and ‘313-52" were loaded from left to right respectively. C) The results for 104
bp long promoter fragment is shown here. RNA from three stable transformants
viz. ‘396-6.1", ‘396-30" and ‘396-36 were loaded from left to right respectively. D)
Shown is the result from the oligo-chimera assay with a 47 bp long DNA
fragment carrying all thee conserved motifs mentioned above. RNA from two
stable transformants ‘OC 6.3° and ‘OC 8.4’ was loaded from left to right,
ribosomal-RNA and actinA were used as loading controls. Native gene was used

as a control for stage specific samples.
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Motif-specific mutations:

To check if the ‘CGTCCTCG’ motif could function on its own, motif-
specific mutations and another oligo-chimera assay with the oligo carrying the
‘CGTCCTCG’ motif only, were performed. Promoter fragments for motif-specific
mutations were designed in such a way that each fragment had all bases of one
motif mutated (all bases were changed), but that of the other two remained
unchanged. Using ‘Mut1’, ‘Mut2’ and ‘Mut3’ (Table 1) as the upper primers and
‘4671L" as the lower primer all three fragments were generated by PCR, using
the previously made ‘del1’ promoter fragment as template DNA. The results from
the analyses of ‘Mut1’ transformants showed that GUS expression in cleaving
sporangia was not affected by mutating the ‘CCCTGCTG’ motif, as the ‘Mut1’
promoter fragment was able to drive GUS expression based on RNA blot
analysis (Fig 5A). No signal could be detected in any of the sporangia samples;
ribosomal RNA along with actinA (PITG_ 15117), were used as loading controls.
The native gene was used to make sure that the samples were actually
sporangia and cleavage as the native gene being cleavage specific would
express only in cleaving sporangia tissue. | wanted to confirm that the sporangia
samples did not start to cleave. The ‘Mut2’ promoter fragment which had a
mutated ‘CGTCCTCG’ motif, was unable to drive GUS expression in cleaving
sporangia, showing that this is the functional motif (Fig 5B) was responsible for
driving the GUS gene and acted on its own. For ‘Mut3’ (‘(AACCACATGGC’

mutated), expression in cleaving sporangia was not eliminated (Fig 5C). But,
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some signals could be detected in sporangia samples too. The quantification of
signals, from the native gene when compared to that from the GUS reporter in
case of different samples, were ambiguous, suggesting that the signals in
sporangia might have been due to the samples getting chilled and starting to
cleave. Another probable explanation for the signals in sporangia is that the
‘AACCACATGGC’ motif that was mutated in the ‘Mut3, fragment acts as a
repressor for some other motif in sporangia.

Oligo-chimera assay with ‘CGTCCTCG’ motif:

As a confirmatory test another oligo-chimera assay was done with a 37 bp
long oligo (‘OC_upper’ and ‘OC_lower’ oligos annealed; Table 1) containing just
the ‘CGTCCTCG’ motif, along with 25 random bases. The results (Fig 5E)
confirmed that this motif by itself was sufficient to drive GUS expression in
cleaving sporangia. It was also confirmed that the N/FS minimal promoter used

for this study could not drive GUS expression on its own (Fig 5D).
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Fig 5 legend:

Mutation analyses for PITG_16321 promoter and oligo-chimera assay with
an oligo containing the ‘CGTCCTCG’ motifs:

A) Shown is the result of GUS expression analysis by RNA blot for 1306
transformants carrying the ‘Mut1’ promoter fragment, which had a mutated
‘CCCTGCTG’ motif. The (+) sign denotes RNA from cleaving (chilled) sporangia
as a result of cold treatment. RNA from sporangia without cold treatment is
shown by the (-) sign. RNA from two stable transformants ‘1.3’ and ‘4.2 were
loaded from left to right. Staining of r-RNA with Ethidium Bromide and
hybridization with actinA probe served as loading controls. Native gene was used
as a control for stage-specific samples. B) Shown is the result for mutating the
‘CGTCCTCG’ motif within the promoter fragment. RNA from two stable
transformants ‘17.1" and ‘17.2’ were loaded from left to right. C) Shown is the
result for mutating the ‘AACCACATGGC’ motif within the promoter fragment.
RNA from two stable transformants ‘2.3" and ‘5.1’ were loaded from left to right.
D) Shown is the result from GUS expression by the NIFS minimal promoter. E)
Shown is the result from the oligo-chimera assay with a 37 bp long oligo carrying
the ‘CGTCCTCG’ motif by itself. RNA from three stable transformants ‘2.3’ and

‘9.1" and 11.1 were loaded from left to right.
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Electrophoretic mobility shift assay to test the binding affinity of
‘CGTCCTG’ motif:

To test if the ‘CGTCCTCG’ motif has any binding affinity for any of the
proteins within a nucleus-enriched extract a 46 bp double-stranded
oligonucleotide was designed by annealing single-stranded
‘EMSA_CL_SPEC_UP’ and ‘EMSA_CL_SPEC_LO’ (Table 1) oligonucleotides.
This was run on a 10% polyacrylamide gel, purified, and then radio-labeled.
Binding reactions as mentioned in the ‘Materials and methods’ section were done
with nuclear extracts from sporulating mycelia, sporangia and cleaving sporangia
tissues. Two different bands (Fig 6A), an upper band ‘@’ and a lower band ‘C’
could be detected for the sporangia and cleaving sporangia nuclear extracts. A
different band ‘b’, at a position slightly lower than ‘a’, could be seen for the
nuclear extracts from sporulating mycelia, and this was tested by repeating the
experiment three times.

To test the specificity of these bands, two separate competition analyses
were done, one with nuclear extracts from cleaving sporangia (Fig 6A) and the
other with that from sporulating mycelia (Fig 6B). The results showed that both
band ‘a’ and ‘c’ in cleaving sporangia were due to some specific binding activities
between the ‘CGTCCTCG’ motif and some proteins. This could be deduced as
higher concentrations (5x, 25x and 125x) of unlabeled specific probe were able
to out-compete the labeled probe. As a result the signals from the radioactive

probe became weaker and was lost ultimately (Fig 6A). In contrast, the signals
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from the labeled specific probe was not affected by increasing the concentrations
(5%, 25x and 125x) of either the non-specific (‘EMSA_CL_NS_UP’ and
‘EMSA_CL_NS LO’ oligos annealed; Table 1) or the mutated
(‘EMSA_CL_Mut_UP’ and ‘EMSA_CL_Mut_LO’ oligos annealed; Table 1) cold
probes. It is mention-worthy that the mutated probe had only the ‘CGTCCTCG’
motif mutated with the other bases remaining unchanged, while all bases for the
non-specific probe were randomly changed.

Similar results from competition assay with the sporulating mycelia nuclear
extracts (Fig 6B) proved that the band ‘b’ was specifically due to the binding
activity between the ‘CGTCCTCG’ motif and some sporulating mycelia nuclear
protein/proteins.

It is worth mentioning that there was an apparent shift in mobility of the
proteins in cleavage when compared to that of sporangia. This can be said as
the band ‘a’, which could be seen when the binding reactions were done with
nuclear extracts from cleaving sporangia, was not seen for the reaction that had
extracts from sporangia. But a different band ‘b’, at a position slightly lower than

band ‘a’, could be detected.

65



Fig 6 legend:

EMSA competition assays for motif ‘CGTCCTCG’ within a 46 bp
oligonucleotide, to show specific binding affinities for nuclear proteins:

A) Shown are the binding activities of the ‘CGTCCTCG’ motif with nuclear
extracts from cleaving sporangia. The first three lanes (from left) were loaded
with reactions having sporulating mycelia, sporangia and cleaving sporangia
nuclear extracts respectively, along with the labeled specific probes. The next
three lanes were loaded with reactions having cleaving sporangia nuclear
extracts, along with the labeled specific probes and increasing concentrations
(5%, 25x and 125x of the labeled probe) of cold specific probe. The three lanes
further to the right were loaded with reactions similar to the previous three lanes,
only the cold probes used, were non-specific. The last three lanes were loaded
with reactions similar to the previous six lanes, but the mutated probe was used

as the cold probe. ‘a@’, ‘b’ and ‘c’ are the three different sized bands. The
cartoons for structures of the specific (self), non-specific (non-self) and mutated
(mutself) DNA fragments are shown at the bottom. B) Shows binding activities of
the ‘CGTCCTCG’ motif with nuclear extracts from sporulating mycellia. The first
and the last lanes (from left) were loaded with reactions having non-sporulating
mycellia and cleaving sporangia nuclear extracts along with labeled specific
probes. The nine lanes in the middle were loaded with reactions similar to the

nine lanes panel ‘A’. These had reactions with both hot and cold probes, the only

difference was that the nuclear extracts were from sporulating mycelia tissues.
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Overrepresentation and positional bias towards selection of a sporangia
specific motif:

From a set of 99 promoters of genes >10 fold induced in sporangia,
compared to hyphae, 26 overrepresented motifs (detected by at least 2 motif
finding programs) were detected. After looking for the common motifs and
merging 4 of them, based on the criteria (no more than 2 bases different) used in
case of the cleaving sporangia set (all data shown in Chapter Il) | had a set of 22
candidate TFBSs. Five of the overrepresented motifs were chosen randomly and
looked for their positional bias within the 1 kb promoter regions of these 99
sporangia-specific genes.

The results showed that all of these motifs have biases for one or more
regions within their promoters (Table 5). Two of the motifs, ‘CTTCAAC’ and
‘AGC[AG]CAAG’ showed bias for two 200 bp regions. ‘CTGCAAG and
‘GATCGAG’ and ‘GTGCIAT]GCA’ motifs had a bias for one 200 bp region each.
The ‘CTTCAAC’ motif, which has a bias for a region closest to the ATG (1-200
bases) when compared to the other motifs, was picked for further analyses. It
was observed the reverse complement of the ‘CTTCAAC’ motif ‘GTTGAAG’ did
not have much of a bias for the first 200 bp. The cleaving sporangia and the set
with all P. infestans gene promoters were searched, to find out if the ‘CTTCAAC’
motif and its reverse complement ‘GTTGAAG’ had any bias for certain positions
within those sets. No clear bias could be detected in any of the two above

mentioned promoter sets (Fig 7A).
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Analysis of evolutionary conservation for the CTTCAAC motif:

Orthologs in P. sojae and P. ramorum of five genes carrying this motif
within the first 200 bp upstream of ATG were identified from the Joint Genome
Institute (JGI; http://genome.jgi-psf.org/) database using BLASTP. These
orthologus gene promoters were then aligned with the respective P. infestans
promoters as described previously. The ‘CTTCAAC’ motif was found to be
conserved in two out of five gene promoters, in all three species. The alignment

of one such gene, PITG_03886, is shown in Fig 7B.

69



Table 5:

Distribution of five overrepresented motifs within promoters of genes

specific to cleaving sporangia:

The table shows the distribution of the five overrepresented motifs within the
sporangia induced gene promoters. The 1 kb regions are divided into five 200 nt
windows. The raw frequency of the motifs (in 5 to 3’ direction) within the
windows is shown along with the total number of hits and the positions for which
the motifs show a bias. The regions for positional bias are in bold. The motif

‘CTTCAAC’, and its bias for the first 200 bps, is shown in bold. This motif was

chosen for further analyses.

MOTIF
Bases from
ATG AGC[AG]CAAG | CTGCAAG | CTTCAAC | GATCGAG | GTGCIAT]GCA
1-200 2 4 15 2 2
201-400 5 8 4 8 4
401-600 8 3 0 5 7
601-800 0 0 2 2 4
801-1000 2 0 8 1 0
Total hits 17 18 | 29 18 16
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Fig 7 legend:

Positional bias and evolutionary conservation of ‘CTTCAAC’ motif:

A) The figure shows the positional bias for the first 200 bases upstream of ATG
for the motif ‘CTTCAAC’ within the sporangia-induced gene promoter set. The
frequency of ‘CTTCAAC’ is 3 times, 2 times and 6 times of its reverse
complement ‘GTTGAAG’ in the first three windows upstream of ATG,
respectively. Also shown is the distribution of this motif within the cleavage-
induced gene promoters and the promoters of all P. infestans genes. B) Shown is
the evolutionary conservation of the motif ‘CTTCAAC’ in the promoters of P.
sojae and P. ramorum orthologs of the PITG_03886 gene of P. infestans with the
help of multiple sequence alignment using ClustalWW webtool. The star symbol
shows conserved bases and the shaded region shows the conservation for the
‘CTTCAAC’ motif. ‘CLSP’, 'SP’ and ‘TS’ refers to cleaving sporangia, sporangia

and total set of promoters respectively.
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Oligo-chimera assay with ‘CTTCAAC’ motif:

To prove the functionality of the overrepresented, positionally biased and
evolutionarily conserved ‘CTTCAAC’ motif, an oligo-chimera assay was done
directly, without deletion or mutation analyses. A 43 bp long double stranded
oligonucleotide carrying the ‘CTTCAAC’ motif was designed by annealing the
‘SP2_0OC _upper’ and ‘SP2_0OC_lower’ oligos. This was then inserted in front of
the NIFS minimal promoter within the NIFS+ Clone38.2 vector. The plasmid DNA
was used to transform P. infestans. Sporangia and sporulating mycelia from the
70 transformants were incubated with GUS staining solution as described in the
‘Materials and methods’ section. 10 of these transformants showed GUS staining
in sporulating mycelia and sporangia tissues, 5 of which were studied in detail
(Table 4). Evidence for GUS expression could be detected as early as the start of
sporangiophore development from the sporangiophore initials (Fig 8A). GUS
staining could be seen in some sporulating mycelia (Fig 8B), in sporangiophores
(Fig 8C) and in early sporangia (Fig 8D). This signal faded in mature sporangia
(not shown). 48 hr old non-sporulating mycelia were stained as a control, but no
staining could be seen, confirming that this motif is able to drive the expression of
a reporter gene with the help of a minimal promoter in sporangia, more

specifically in early sporangial development.
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Fig 8 legend:

Histochemical staining of P. infestans transformed with a plasmid carrying
the ‘CTTCAAC’ motif and the GUS reporter gene:

‘CTTAAC’ is the motif in front of the NIFS minimal promoter driving GUS
expression. A) GUS stained sporangiophore initials (stained greenish blue) that
gives rise to a sporangiophore. B) GUS stained sporulating mycelia. C) Shown is

GUS stained sporangiophore. D) GUS stained sporangia.
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Fig 8
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Electrophoretic mobility shift assay to test the binding affinity of
‘CTTCAAC’ motif:

To test the binding affinity of the ‘CTTCAAC’ motif for nuclear proteins,
sets of double stranded oligonucleotides carrying this motif was made with single
standed synthetic oligonucleotides (mentioned in Table 1). This was then
purified, radio-labeled and incubated with nuclear extracts from sporulating
mycelia, non-sporulating mycelia, sporangia and cleaving sporangia tissues. The
reactions were run in a 4.5% polyacrylamide gel, dried and put under a
phosphorimager screen. A single band ‘a’ could be detected in reactions with
sporangial nuclear extracts. As a result a competition assay was done to check
the binding specificity of this motif as described in the ‘Materials and methods’
section with nuclear extracts from sporangia tissues.

The results showed that the band ‘@’ was a result of specific binding
affinity of the ‘CTTCAAC’ motif for some nuclear proteins. This was evident as
the band faded and finally disappeared with competition from increasing
concentrations (5x, 25x and 125x of labeled probe) of unlabeled specific probe
(Fig 9). The non-specific and mutated probes did not have any effect on the
signal. This proved that the signal was a result of specific to the ‘CTTCAAC’

motif.
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Fig 9 legend:

EMSA competition assays for motif ‘CTTCAAC’ to show specific binding
affinity with nuclear proteins:

Shown is the binding activity of the ‘CTTCAAC’ motif with nuclear extracts from
sporangia. The first lane (from left) was loaded with reactions having sporangial
nuclear extracts along with labeled specific probe. The next three lanes were
loaded with reactions having nuclear extracts from sporangia, along with the
labeled specific probes and increasing concentrations (5x, 25x and 125x of the
labeled probe) of cold specific probe. The three lanes further to the right were
loaded with reactions having nuclear extracts from sporangia, along with the
labeled specific probes and increasing concentrations (5x, 25x and 125x) of cold
non-specific probe. The last three lanes were loaded with reactions having
nuclear extracts from sporangia, along with the labeled specific probes and

increasing concentrations (5x, 25x and 125x) of cold mutated probe.
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DISCUSSION:

One of the key issues in understanding regulatory networks is the
identification of transcription factor binding sites. Most studies try to solve this
problem by either bioinformatics approaches or by molecular biology techniques.
But, the reliability of bioinformatics approaches has always been questioned
whereas molecular biology approaches remained laborious and time-consuming.
High-throughput experimental methods, like ChIP-chip and ChlP-sequencing, are
not used widely as these involve high cost and are strongly dependent on cellular
type (Vallania et al. 2009). As a result, in recent times, there has been a growing
tendency for combining bioinformatics and molecular biology techniques
(Vallania et al. 2009). The combined approach seems to be the way forward in
solving the puzzle of fast and reliable TFBS prediction. With bioinformatics tools
providing fast and reliable predictions, molecular techniques can validate the
functionality and specific binding affinity for the candidate TFBSs coming out of
the bioinformatics tools.

A key step towards robust TFBS prediction is to search the correct region
for these elements and for that one should have a clear idea about where the
coding region actually starts. Keeping this in mind, we manually curated all genes
before extracting their promoters. It was found that ~15% of the gene models in
the Broad Institute database did not have a correct 5’ start, when the manual
curation was done. Therefore, | believe that doing manual curation was worth the

effort.
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Identification of overrepresented motifs in a set of co-expressed genes is a
well established and much used approach for TFBS predictions but the false
discovery rates for this approach is pretty high (Tompa et al., 2005) There are
numerous software that are used for identification of overrepresented motifs, but
each of these have their own share of pros and cons. Therefore, three different
motif finding programs using three different algorithms were picked and then
looked for the common motifs. The goal was not to discover the maximum
number of overrepresented motifs but to come up with robust predictions for
putative TFBSs. To achieve that goal three softwares each of which uses
different algorithms were employed and then only those motifs that were
detected by at least two of the programs were considered. | believe that by
considering only the common motifs detected by two or by all three programs |
started with a robust set of overrepresented motifs.

The specific position of a motif within the promter (Tharakamaran et al.,
2008) and its evolutionary conservation (Janky and Helden, 2008) has been the
focus of attention in the recent years. We found that most overrepresented
motifs, that were detected by at least two of the programs, did indeed have a bias
for a certain position within the gene promoters. Evolutionary conservation was
comparatively more difficult to detect, the most likely reason behind this is
probably the incorrect gene models for P. sojae and P. ramorum. It is worth
mentioning that P. sojae and P. ramorum gene models, unlike the Phytophthora

infestans models, were not curated manually. Therefore, some of these models
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might not have their translation start properly annotated. As a result | decided to
consider a motif to be evolutionarily conserved only if it was conserved in all
three species, in case of two gene promoters.

Multistep functional analyses like serial deletion or mutation are highly
labor intensive and time consuming. This is especially true for an organism like
P. infestans, for which one has to wait ~15 days after transformation and
subculture to collect tissue samples for staining. For the PITG_16321 gene
carrying the ‘CGTCCTCG’ motif, even though | did not have to perform promoter
bashing blindly, it took several months to complete the analyses. The oligo-
chimera assay, where transforming P. infestans with just one plasmid can
confirm if a motif is functional, is therefore a much faster approach.

It is worth mentioning that in all cases only 15% to 20% of the
transformants showed GUS expression. This might be a result of heterokaryosis.
But, | also wanted to confirm that the minimal promoter (already shown to be non
functional; Ah-Fong et al., 2007) was not driving the expression of the reporter
gene, as that would influence the conclusion drawn from the assay. That was the
reason behind transforming P. infestans with just the minimal promoter by itself.
No expression could be detected in sporulating mycelia (by histochemical
staining) or in sporangia and chilled (cleaving) sporangia (by histochemical
staining and northern blot) as shown in ‘Results’, which confirmed that the
minimal promoter was not functional. NIFS is a gene up-regulated in the

sporangia, therefore it was important to check if the promoter was able to drive
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GUS expression in sporangia tissue samples. It should be mentioned that the
staining results from the oligo-chimera assay were comparable to that of the
deletion and mutation analysis. In case of the serial deletion and mutation
analyses, where unlike the oligo-chimera assays | had the functional
PITG_16321 promoter fragments, | could not detect GUS expression in more
than 20% of the transformants.

The results from EMSA competition assays for the ‘CGTCCTCG’ motif
suggested that a single TFBS could be responsible for binding different proteins
during the course of various life stages. The presence of two different sized
bands, with the nuclear extracts from sporulating mycelia and cleaving sporangia
also suggests that a single motif might be performing different functional roles by
binding to different proteins. It might also be a result of the formation of different
complexes due to multiple proteins interacting. The shift in mobility might also be
a result of a change in charge of the complex due to phosphorylation. This assay,
therefore, apart from showing that a motif has specific binding affinities for certain
proteins, also throws light on the potentially complex stage-specific interactions
that might be going on during the various life stages.

It was observed that the ‘CGTCCTCG’ motif that was overrepresented
showed a bias for a certain position and was evolutionarily conserved within the
promoters of genes up-regulated in cleaving sporangia, was actually functional.
Also, it showed binding activities with nuclear proteins from the cleaving

sporangia tissue. This led us to hypothesize that the combination of
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bioinformatics approaches was adopted for TFBS predictions can give us robust
candidate TFBSs. Also, these candidate TFBSs can be tested for their
functionality fairly quickly without labor intensive and time consuming deletion or
mutation analyses. To confirm this hypothesis the sporangia specific ‘CTTCAAC’
motif was tested for its function by oligo-chimera assay, and its functionality was
confirmed.

The method that was developed and tested in the study combines three
different bioinformatics approaches for predicting robust candidate TFBS and
then validating the functionality of these candidates by relatively fast experiments
like oligo chimera assay and EMSA analyses. | combined gene expression
(microarray), regulatory genomics (overrepresentation), positional regulomics
(positional bias), comparative genomics (phylogenetic shadowing), functional
genomics (oligo-chimera) and protein-DNA binding affinity (EMSA) data for TFBS
identification. To the best of my knowledge, this is the only study to date where
information from so many different sources have been used for TFBS discovery.
The results suggest that this approach on one hand is pretty robust and
inexpensive, on the other hand it is not very laborious or time-consuming.
Therefore, | believe that with the cost of sequencing going down, and the number
of genomes sequenced going up every day, this approach can be applied in case

of any organism to great effect.
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Chapter Il
Identification of putative transcription factor binding sites from five key
asexual stages in the Irish potato famine pathogen,
Phytophthora infestans.
ABSTRACT:

In this chapter | present a systematic study of the proximal promoter
elements that might be involved in the regulation of gene expression, during five
key asexual stages in Phytophthora infestans. | have employed the approach of
integrating different bioinformatics tools with molecular techniques, which was
proposed and tested in Chapter |, for the identification of these promoter
elements. Promoters of genes specific to each of the five stages viz. hyphae,
sporangia, cleaving sporangia, swimming zoospore and germinating cyst, were
searched for overrepresented motifs. Motifs which were found to be
overrepresented within these sets were then subjected to positional bias and
evolutionary conservation analyses. These were done to increase the level of
confidence that these overrepresented motifs are true transcription factor binding
sites. Forty one overrepresented motifs that were not only positionally biased but
also showed evolutionary conservation, were detected. It was also checked if any
of these putative TFBSs were shared between two or more stages to get an idea
about their role in the developmental biology of P. infestans. The functionality of
three overrepresented motifs, namely ‘TACATGTA’, overrepresented in

promoters of genes expressed all developmental stages, ‘GCTGCTG,
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overrepresented hyphae and sporangia and ‘TATTAATA’, overrepresented in
hyphae and germinating cysts, were checked. | was able to show that the
‘GCTGCTG’ and the ‘TATTAATA’ motifs are able to drive the expression of the
reporter gene in sporangia and germinating cysts respectively and demonstrated
specific binding affinity in EMSA when incubated with nuclear extracts from the
same stages. For the ‘TACATGTA’ motif, which was overrepresented in all
stages, no significant staining or binding activity could be detected in any of the
five stages. This suggested that the TACATGTA’ motif might not be functional on
its own. The hypothesis that “TACATGTA’ probably binds to a transcription factor
that may not be able to drive the expression of the reporter gene on its own is
supported by the presence of the ‘TATTAATA’ motif in the promoters of the bZIP-
like transcription factors that are up-regulated in germinating cysts, at a specific

distance upstream of the ‘TACATGTA’ motif.

INRODUCTION:

P. infestans has two separate reproductive cycles, sexual and asexual.
Here in this chapter, the focus is specifically on five key asexual stages in P.
infestans, before plant infection. The thread-like vegetative stage called hyphae
that gives rise to sporangia. The sporangia stage forms upon the termini of
specialized hyphae called sporangiophores, can easily detach (Aylor et al., 2001)
and can be transported by wind. These sporangia releases zoospores,

(Judelson, 1997) by cleaving (cleaving sporangia stage), under wet and cool
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conditions (Schumann and D’Arcy, 2000). During the swimming zoospore stage
the organism is biflagellate, can swim to and encyst in the host. The germinating
cyst is a stage when the germ tubes (with appressoria) develop from the cysts
and invade the host tissue allowing P. infestans to draw nutrients from its host
(Schumann and D’Arcy, 2000). Various environmental and physiological factors
are known to favor sporulation (Ribeiro, 1983) and other Phytophthora infestans
stages. However, very little is known about the molecular mechanisms that result
in the transition from one stage to another. | believe that a better understanding
of spore development and the other stages, at the molecular level, might unravel
the mechanisms behind these transitions. A key step towards this goal is to find
an answer for what causes differential expression of genes during the different
asexual stages. Analyses of the promoters of these differentially regulated genes
and the TFs responsible for their stage-specific expression can give us that
answer, and is therefore essential. Only a few genes have been identified which
seem to have importance in the function of sporangia, zoospores or appressoria
(Ah-Fong et al., 2007; Latijnhouwers, 2003, 2004; Blanco et al., 2005). There is
also evidence that de novo transcription is required to complete sporulation
(Griffin et al.,1969), direct germination (Clark et al., 1978; Penington et al., 1989)
and appressoria formation (Penington et al., 1989; Hardham, 2001; Tyler, 2002;
Deacon et al., 1993). A great deal about the biology related to the asexual cycle,

at the molecular level, is yet to be known.
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| believe that performing studies of promoters of differentially expressed
genes, activated during the transition from one stage to another, should help us
understand the molecular events occurring during these transitions. To study the
gene promoters and identify the elements that most likely bind the transcription
factors responsible for the expression of these genes, a method was developed
and tested in Chapter I. In brief, three different bioinformatics approaches to find
over-represented motifs, were combined, and positional bias and phylogenetic
conservation were checked, to robustly predict putative transcription factor
binding sites (TFBS). Functional analyses of three motifs were done by
histochemical staining of stage-specific tissues and RNA blots. Binding affinity
was tested by EMSA.

The goal of this chapter (Chapter II) was not only to detect
overrepresented motifs within the proximal promoter regions of genes specific to
each of the five developmental stages, but also to come up with robust
predictions for putative TFBSs by checking which show positional bias and
evolutionary conservation. Testing a few motifs for their functionality within

specific stages, was also within the scope of this chapter.
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MATERIALS AND METHODS:

Identification of genes and development of promoter data set:

Aprroximately 100 genes from each of the three stages viz. sporangia,
cleaving sporangia and germinating cysts and 47 genes from swimming
zoospores, that were >10 fold up-regulated (Table 1) when compared to the
preceding stages were selected from microarray data (Judelson et al., 2008). For
the 100 hyphal genes (Table 1), those that were >10 induced in hyphae when
compared to sporangia were selected. For a better understanding of the gene
sets we refer the reader to Fig 4 in page 437 of the ‘Molecular Plant-Microbe
Interaction’ paper by Judelson et al. (2008). The right panel of the referred figure
shows the expression profiles of the P. infestans genes in the five asexual
stages. Subsets of the genes induced in during these stages were used for this
analysis. Gene sets for hyphae, sporangia, cleaving sporangia, swimming
zoospore and germinating cysts comprised of subsets of genes shown in panels
‘e’, ‘g, T, J and ‘b’ of the referred figure, respectively.

Models for the genes selected were manually curated, by accessing the
Broad Institute database using stand-alone java applet, ‘argoc-1'. Promoter
regions (1 kb upstream of the coding region) for most of these genes were
extracted from the same database with the help of an in-house PERL script;

some of the promoters for which the 5 start of the coding region had to be

changed were extracted manually.
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Detection of overrepresented motifs:

Stand-alone versions of three different motif-finding programs viz. MEME,
YMF and BioProspector, were used with background models that were created
with 1000 base pairs (bp) upstream of the coding region for each of 100
randomly selected P. infestans genes. Also, degeneracy was allowed at two
positions by two of these programs.

MEME (Multiple EM for Motif Elicitation; Baily and Elkan, 1994) version
4.3.0, with a minimum width (minw) of 5 and a maximum width (maxw) of 8, was
used. The minimum sites for each motif (minsites) used was 5, and the maximum
number of iterations was 5 with the rest of the parameters were as described in
Chapter I.

YMF (Yeast Motif Finder; Sinha and Tompa, 2000) version 3.0 was used
specifying lenRegion (the length of the upstream regions in which motif is to be
searched) for each set. The lenOligo i.e. the significant length or the number of
non-spacer characters of the motifs to find was specified to be 8. The motifs were
sorted by z-score using the sort (-sort) command line parameter.

BioProspector (Liu et al., 2001) Release 2 was used with motif width (-w)
specified as 8. The number specified for top motifs to be reported (-r) was 100
and rest of the parameters used were as described in Chapter |. BioProspector
was run for 10 times on each set of promoters and a PERL script was used to get
rid of the redundant motifs coming out of the ten runs, and generate an output file

with the non-redundant motifs only.
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A PERL script was used to detect motifs which were detected by at least
two out of the three programs. Two motifs coming out of a particular set of co-
expressed genes were manually merged, only when those had no more than two
different bases. The motifs were originally considered to be different by the
programs, as in most cases these had differed only at terminal bases.

Detection of Positional bias:

A PERL script developed in-house was used to get the frequencies of
each motif within a 50 base (bp) window that the 1 kilobase (kb) promoters were
divided into. The frequencies within each of the five 200 base windows (sum of 4
50 base windows) were used to calculate the positional bias for each motif. The
z-score for the equality of proportions was used to calculate the p-value. A p-
value cut-off of 0.1 (90% level of confidence) was used. The frequencies of these

motifs were calculated by using their 5’ to 3’ orientation only

Phylogenetic footprinting:

For phylogenetic footprinting, P. infestans gene promoters were aligned
with the promoters of their orthologs in P. sojae and P. ramorum, which were
extracted manually from the Joint Genome Institute (JGI) database
(http://genome.jgi-psf.org/). The promoters were aligned with the help of two
alignment programs on the web. The webtools that were used were CLUSTALW
(Thompson et al., 1994) and DIALIGN (Morgenstern et al., 2004). For

CLUSTALW, the ‘gap open’ and the ‘gap extension penalties’ were set at 10 and
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0.1 respectively. For DIALIGN the threshold (T) and the regions of maximum
similarity used were the default values of zero and five. While checking for
conservation, if the motif in P. sojae or P. ramorum aligned with the one in P.
infestans, or was within 20 bases of the P. infestans motif, a score of ‘1’ was
assigned. A two base degeneracy was tolerated in these cases. A motif got a
score of ‘0.5’ if it was detected at a site more than 20 bp away (excluding gaps)
from the P. infestans site, and only one base degeneracy was tolerated in these
cases. For most motifs five promoters carrying those, within the established

region of positional bias, were looked at.

P. infestans strain, culture and manipulations:

The 1306 strain of P. infestans was cultured on rye-sucrose media at 18°C
in the dark. P. infestans stable transformants were generated by the protoplast
method described previously (Judelson et al., 1993). Non-sporulating mycelia
were obtained by inoculating clarified rye-sucrose broth with a sporangial
suspension, followed by 48 hours of incubation. Cultures on rye-sucrose agar
plates that were 9 to 11 days old were used for sporulating mycellia. Sporangia
were obtained from 7 to 9 day old sporulating mycelia by adding water, rubbing
with a glass rod, and passing the fluid through a 50-um mesh to remove hyphal
fragments. To induce cleavage, sporangia were placed in 100 mm petri plates
which were kept on ice for ~60 mins. Germinating cysts were obtained by

encystment of motile zoospores (coming out of cleaved sporangia) by adding 0.5

103



mM calcium chloride, vortexing at medium speed for 1 min and then incubating
them at 18°C.
Plasmid construction for oligo-chimera assay and sequencing:

Double stranded oligonucleotides were obtained by annealing two single
stranded synthetically designed oligonucleotides (Table 2). These were then
cloned into the NIFS+Clone38.2 (Chapter |) vector in front of the N/IFS minimal
promoter using the Xbal and Xmal restriction sites. Chemically competent DH5«
cells were used for bacterial transformation. Clones found to be positive by

restriction digestion were sequenced.

Gene expression analysis:

Gene expression analyses were done by histochemical staining for -
glucuronidase (GUS) in tissues from various stages that were stained by the
method described by Judelson et al. (1993). The recipe of the staining solution
was similar to that described in Chapter I. Tissues were stained at 37°C in the
dark, overnight.

Electrophoretic mobility shift assay (EMSA):

Nuclear protein isolation and EMSA were performed as described in
Chapter I. In brief, | used the same ingredients like 5 ug of nuclear protein, 1 ug
poly dI-dC, 1.6 ng of y*’P-labeled probe and 1 mM DTT, and incubated these
with the binding buffer (recipe described in Chapter I) for 15 mins at room

temperature followed by 30 min on ice, followed by electrophoresis on a 4.5%
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acrylamide gel in 0.5x TBE. The electrophoresis was for 2% hr at room
temperature, unlike 3 hr as used in Chapter I. The gel was dried for an hour,
placed under the phosphor screens in autoradiography cassettes and left
overnight in the dark. The screen was then analyzed with a phosphorimager. For
competition assays, protein was incubated with unlabeled DNA for 15 min and
then with the labeled probe for 30 mins in ice. Double-stranded oligonucleotides
described in the ‘Results and Discussion’ section were used as hot probes and

cold competitors.
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Table 2:

Oligonucleotides used for this study:

Shown below is a list oligonucleotides used for this study. All of the

primers/oligonucleotides are in 5’-3’ direction. The prefixes used in the names

stand for asexual developmental stages; SP and GC are for sporangia and

germinating cyst, respectively.

Oligonucleotide Oligonucleotides Used for
name 5-3
STpB(ZrC_ CTAGAGCTGCTGCGGTTGGTGA | Qligo-chimera assay with
TTTCCCGTCTTCTCGTCTACGTC ey
SP1_0C_ CCGGGGGACGTAGACGAGAAGAG | O'do-chimera assay with
GGAAATTGCACCAACCGCAGCAGT ey
GC1_0C_ CTAGAGTACATGTAGTTGGTGCAAT O'c'%ﬂsZTZ’ de;ﬁo"t‘ﬂth
upper TTCCCGTCTTCTCGTCTACGTCCC A
GC1 0C_ CCGGGGGACGTAGACGAGAAGAG Ogg(r)]-scer:/l(rende:ﬁo\i[\ﬁ‘th
lower GGAAATTGCACCAACTACATGTACT A
GC2 OC_ CTAGACTATTAATAGTTGGTGCAAT Ogg‘r’ls‘z:/';“ de:ﬁo"t‘ﬂth
upper TTCCCGTCTTCTCGTCTACGTCCC nseved me
GC2 OC_ CCGGGGGACGTAGACGAGAAGAG O'c'%ﬂsZTZ’ de;ﬁo"t‘ﬂth
lower GGAAATTGCACCAACTATTAATAGT nseved me
EMSA_SP1_ AGCGAGTCGATGTCTCCGCCGCTG Specific probe of
SPEC_UP CTGTGCACGTCACCAACCAGGGA GCTGCTG motif
EMSA_SP1_ TCCCTGGTTGGTGACGTGCACAGC Specific probe of
SPEC LO AGCGGCGGAGACATCGACTCGCT GCTGCTG motif
EMSA_SP1_MUT | AGCGAGTCGATGTCTCCGCCAAGC Mutated probe of
“uP TATTGCACGTCACCAACCAGGGA GCTGCTG motif
EMSA_SP1_MUT | TCCCTGGTTGGTGACGTGCAATAG Mutated probe of
Lo CTTGGCGGAGACATCGACTCGCT GCTGCTG motif
CTGCCTCCTCCAATTTGCATACATG -
EMSA_GC1_ Specific probe of
SPEG U TATTGTGTAGCCATCTGACGACC Speane prove o
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Oligonucleotide

name

Oligonucleotides
5-3

Used for

EMSA_GC2_
SPEC UP

CTGCCTCCTCCAATTTGCATATTAA
TATTGTGTAGCCATCTGACGACC

Specific probe of
TATTAATA motif

EMSA_GC2_
SPEC _LO

GGTCGTCAGATGGCTACACAATATT
AATATGCAAATTGGAGGAGGCAG

Specific probe of
TATTAATA motif

EMSA_GC2_
Mut_UP

CTGCCTCCTCCAATTTGCAACTACG
CGTTGTGTAGCCATCTGACGACC

Mutated probe of
TATTAATA motif

EMSA_GC2_
Mut LO

GGTCGTCAGATGGCTACACAACGC
GTAGTTGCAAATTGGAGGAGGCAG

Mutated probe of
TATTAATA motif
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RESULTS AND DISCUSSION:
Motifs overrepresented in the five asexual stages:

Gene sets for each of the five stages were identified using the information
on their expression profile from the microarray data, as described in the
‘Materials and methods’ section. The promoter sets of these genes were
assembled and subjected to search for overrepresented motifs by the three
programs as described earlier (‘Materials and methods’). 125 overrepresented
motifs (Table 3A) which were detected by two or more programs were identified. |
manually merged 18 of these into other motifs using the criteria of ‘< 2 different
bases’ described in the ‘Materials and methods’ section. That left us with 107
overrepresented motifs within the promoter sets of the five different stages. To
check how significantly these motifs are overrepresented, the p-value, from the z-
score obtained by calculating the equality of proportions between the observed
and the expected values of each motif, was calculated. It was observed that 100
out of the 107 motifs were significantly overrepresented at the 90% level of
confidence. Out of the 7 motifs that had a p-value of >0.1, 3 motifs ACCGGAA
(Table 4), GCGCTC (Table 6) and CC[CT][TG]JCACG (Table 7), had a p-value of
<0.12. Three motifs, viz. ACGCCGG (Table 4), AGAGACGC (Table 5) and
CTTTTG had a p-value of <0.18. One motif, CCGTTG had a p-value of <0.3.
Maximum (29) and minimum (13) numbers of overrepresented motifs were
detected within the cleavage and swimming zoospore promoter sets, respectively

(Table 3A).
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Overrepresentation does not guarantee the biological functionality of these
motifs; two landmark studies (Tompa et al., 2005; Hu et al. 2005) showed that
the prediction accuracy of the motif finding programs are pretty low and the false
discovery rates are high. Therefore, even though three motif finding programs
were used, only those motifs which were detected by at least two or all of the
three programs were selected, | wanted to strengthen the predictions further and
increase my confidence in the motifs being biologically functional as TFBSs. As a
first step towards increasing the confidence the positional bias of all 107
overrepresented motifs were analyzed.

Detection of positional bias:

To analyze the positional bias a script built in-house was used. The script
detected the frequency of each motif within 50 base windows that the 1 kb stage-
specific promoter datasets were divided into. The bias was calculated as
described in the ‘Materials and methods section’. In brief, it was checked if a
motif had a bias for any 200 bp region (four 50 base windows) by calculating the
p-value (from its z-score) for the number of hits within the said regions. The cut-
off used for determination of bias was 0.1(90% level of confidence). The average
intergenic region in P. infestans is 603 bases (Haas et al., 2009) therefore, | also
checked which of the motifs had a bias only for a region that was more than 600
bp upstream of ATG.

It was observed that 68 motifs had a bias for one or more regions and 39

motifs did not show any bias (Tables 3A, 4, 5, 6, 7, 8; 3A is a summary for all
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motifs and 4-8 are tables showing motifs overrepresented in the five stages,
respectively). Cleavage promoter set carried the maximum number of motifs (12)
that did not show any bias (Table 6). Whereas, hyphae and sporangia sets had
the maximum number of motifs with positional bias (Tables 4 and 5).

It was also observed that 63 out of 68 motifs, with positional bias, had a
bias for at least one region that was less than 600 bases upstream of the
translation start site. Unlike in human, there has been no evidence of distal
regulators in P. infestans, as most functional promoters identified are small, in
whatever little data that is available related to the promoters. Also, the average
intergenic region in P. infestans is 603 bp, therefore, it is highly likely that these
promoter elements would work in close co-ordination with the core promoter
elements, from a short distance to control gene expression.

Recent studies (Bellora et al., 2007; Tharakaraman et al, 2008 et al.) have
also shown that positional bias could be used as an important tool for
identification of TFBSs. The premise behind using positional bias is that the
TFBSs would show a bias for a particular position within the promoter, as the TFs
that bind to these are positionally constrained with respect to the TSS
(Tharakamaran et al. 2008). Once | was able to assess the positional bias for all

motifs, | went ahead to check if the motifs were evolutionarily conserved.
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Analysis of evolutionary conservation by phylogenetic footprinting:

The evolutionary conservation of the motifs was analyzed by phylogenetic
footprinting as described in the ‘Materials and and methods’ section. In brief, for
each biased motif, five gene promoters carrying the motif within the region of its
bias, were aligned, with their orthologus promoters from P. sojae and P.
ramorum, the only two sequenced Phytophthora genomes at the time when |
started this analysis. For the motifs within the hyphae, cleavage and sporangia
sets that did not show a bias, promoters that carried the motif within the first 600
bases were aligned. Evolutionary conservation was not analyzed for six and
seven unbiased motifs within the swimming zoospore and germinating cyst
promoter sets, respectively. A scoring system was devised for the analysis
(‘Materials and methods’) where ‘1’ point was awarded if the P. sojae and/or P.
ramorum motif aligned perfectly with the P. infestans motif (Fig 1A), or was within
20 bases of the P. infestans motif (Fig 1C), a two base degeneracy (Fig 1B) was
tolerated in these cases. ‘0.5’ points was awarded if the motif was found in P.
sojae and/or P. ramorum promoters, but at a position more than 20 bases (Fig
1D) away from the P. infestans, only one base degeneracy was allowed in these
cases. ‘0’ points were awarded for each gene that did not show any conservation
(Fig 1E). Tables A,B,C,D,E in the ‘Appendices’ shows the gene wise score for
each of the motifs. These points were then added up and a motif was said to be
conserved in one or both species only when the score for one or both species

added up to 2’ points, i.e. the motif was found to be conserved in at least 2
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genes (Tables 4, 5, 6, 7, 8). It should be mentioned that a motif was not
considered to be conserved if a total score of ‘2" was a result of the sum of ‘1’
and two ‘0.5’ points e.g. ‘GATGCTG’ motif (Table 6, Appendices Table C ).

A recent study (Elemento and Tavazoie, 2005) found that motifs can be
conserved within orthologus promoters independent of their specific positions
within the respective promoters. | wanted to check if such motifs could be
detected and therefore searched the orthologus promoters in case no
conservation was observed for a motif in its alignment. Some of the motifs were
found to be present in P. sojae and/or P. ramorum promoters at a distance
greater than 20 bases away from the sites of the P. infestans motif, these were
scored (Appendices Tables A, B, C, D, E) but as mentioned previously were not
counted when the final conservation score (Tables 4, 5, 6, 7, 8) was determined.
| did not count them towards the final score as these being far off from the site of
P. infestans motif, might be interacting with a different transcription factor and
cannot be regarded as a conserved putative TFBS.

The premise behind checking evolutionary conservation is that selective
pressure causes functional elements to evolve more slowly than non-functional
sequences. Thus, conserved regions within orthologous promoters are candidate
TFBSs. But one has to be careful in the selection of species while checking
conservation. If the species selected are too closely related TFBSs may not be
much different from the bases lacking function. On the other hand it is hard to

come up with a good alignment if the species are too distant. | believe that in P.
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sojae and P. ramorum | had two species that were phylogenetically neither too
distant nor too close for this analysis. However, it is worth mentioning that
promoters evolve at different rates within species.

Five P. infestans gene promoters were aligned with their orthologs from P.
soaje and P. ramorum in most cases, as checking one or two genes may not give
a clear idea about the conservation. A motif was considered to be conserved only
if it showed conservation in two or more (40% or greater) promoters. Twenty-
three motifs were found to be conserved in both P. sojae and P. ramorum, while
eleven motifs each were found to be conserved only in P. sojae or only in P.
ramorum, respectively. Multinucleate sporangia cleave to release uninucleate
and biflagellate zoospores that infect the plant. During zoosporogenesis, 15% of
genes show greater than two-fold induction (Judelson et al., 2008) therefore, one
would expect to find more putative TFBSs within the sporangia and cleaving
sporangia due to the complexity of these stages. This was true, as we were able
to detect 16 putative TFBSs, each for sporangia and cleaving sporangia
respectively respectively, that were evolutionarily conserved (Table 3A). One
motif ‘CTTCAAC’ was found to be conserved in hyphae, sporangia and cleavage.
Two motifs ‘CCGTTG’ and ‘CTCCTTC’ were found to be conserved in P. sojae
and P. ramorum, but in different genes.

After the analyses of overrepresentation, positional bias and evolutionary
conservation | can say that 41 of these motifs are highly-likely candidates for

being putative TFBSs. Seven of these motifs, as mentioned previously, were not
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overrepresented at the 90% level of confidence as mentioned previously. The
motif finding programs yielded these as these had more hits than the number of
specified minimum sites to be found. | have included these motifs in the analysis
as the p-values for most cases were close to 0.1. All of these motifs were found
to be show evolutionarily conserved. | believe that the conservation shows that
these are elements might have important biological functions related to
transcription | must also acknowledge the fact that not all TFBSs are

overrepresented.
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Fig 1 legend:

Alignments to show the scoring scheme for evolutionary analysis:

Shown is the alignments of motifs for which different scores were assigned. The
score of ‘1’ was assigned to ‘conservation in both organisms’ in case of (A) and
(B). Score of 1" was assigned due to ‘conservation in P. sojae’ only in case of
(C). ‘0.5’ was assigned to ‘conservation in both organisms’ in case of (D). (E) got

a score of ‘0’. The motifs are highlighted.
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Fig 1

A
P.sojae_131162
P.ramorum 74238
PITG_18680

B
P.sojae_131855
P.ramorum 76916
PITG_09954

c

PITG_10630
P.sojae_135657
P.ramorum_ 79450

D

PITG_20590
P.sojae_140954
P.ramorum_ 72860

PITG_20590
P.sojae_140954
P.ramorum_ 72860

PITG_20590
P.sojae_140954
P.ramorum_ 72860

E

PITG_02972
P.ramorum 84624
P.sojae_136264

344
375
403

496
529
493

465
470
464

353
346
359

406
403
417

465
462
474

264
269
260

CTCGTCCTCGCTCGGCCATCGAGGACGCGAGCGAGATAACTCAATCCGGCACTTGCCTGA
CTCGTCCTCGCTCGGCAATCGAGGACG-—————— GATAACTCAATCCAACCCAAGGCAGG
CGCGTCCTCGTTGAGCTATCGAG-—=—========—= AACTCAATCCGACACTCG-——-~-

AGAAGCGCACCGCCGACTTCGGAGACGCCGTGGAGTTCCTGCTACGCAAGCACGGCAAGA
AGAAGCGCACAGGTGATTTCGGCGATGCAGTGGAGTTCCTGCTGCGCAAGCACGGAAAGA
AGAAACGAACGGCTGATTTTGGTGACGCTGTGGAGTTTCTTCTTCGTAAACACGGCAAGA

CCTTATTGATCTCCCTCCACCACTCACCCAAGTGGCTTCACATTTCATTCCACCGGCACG

CCGCGTT-————=————— ACCGGCCACCAAAGTGACTGCA-—————— TTCCCCCTGCAT-
GAAGAT-———————————— CCGGTT-CCTGCGCTGCTCCA-—————— TCTCGCCATCGC-
CAAGTCAAGCCCCCTGCTTCATCTTGGTGCAGTA-———— CCCAA--CGGCCCTCTTTGCG

CAAGGAAAGCTTGCCTCCC-GTC--GGCACATCCTTTCTCCCAAGGCTGCGCGCACTGCG
CAAGCAAACCTTCCGTCACAGAC--AGCACATCGCTTCTCAGCTTCCAGCTTGCT---CG

ACATCG-GGCTCATTCGTCAAAAGCCTTCGCGGCGAGCAAGCACGAC-—-—- CCCCGCTG
ACAGCG-AGCTCATTCGGCAACCCACCGCCCAGCGCTCAAGCCATCT————- GTCCGCCC
ACAGCGaGGCTCATTCGCCTATCTGCCTCGACGCGAACAAGTCCGCCGGTCTCCTCCTAG

ACAAGCAAATCCAAGCAAAGTACTCCGGA-
TAAGGCCAAAGCAACTTCA--ACTCCGACT
CAAATCCCGAGCAACTTCA--ACGCCGCCA

CTGGACAGTGCAATGTTCTCCGCAACTATTAATA-————— ACTCCATCAAGGCTGCCCTC
TT--ACGGTTCACCCCCATCAAGAGCAGTT-——-—- CGTT-CTCCGCCAAGGCTGTCCTC
CTGAGCTCTCCGGCTCCTCCTTCACGTATTTTCTTTCGCGGCGACACCAGGGC-GCTATC
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Some other features related to the motifs:

| also checked some other features related to the motifs such as how
many of these are palindromic sequences, how many were overrepresented in
both orientations and how many are overrepresented in more than one stage. It
was found that two motifs each in sporangia, cleavage and swimming zoospore
to be plaindromic (Table 3A). Three motifs in hyphae and four in germinating
cysts were palindromic (Fig 3A). Out of these the “TACATGTA’ motif was found
in all stages. Six motifs each in hyphae and cleaving sporangia were found to be
overrepresented in both orientations. Seven sporangia motifs and two and four
swimming zoospore and germinating cyst motifs, respectively, were found to be
overrepresented in both orientations (Fig 3A).

The possible overrepresentation of a motif in multiple stages was checked
(Table 3B, 3C) to get an idea about their role in developmental biology. The
results were interesting as most of the motifs that were found to be in more than
one stage were actually in two sequential stages, e.g. TAT]GAAGCT’ motif which
was overrepresented in hyphae, sporangia or ‘TATTAATA’ in germinating cyst
and hyphae, but were either not conserved or conserved in later stage,
suggesting that these are present in the preceding stage as these are required at
the later stage. One motif “TACATGTA’ was found to be overrepresented in all
the stages and | have done functional analyses of this motif (results shown later

in the chapter).
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Table 3:

A) Shown is a summary of the entire analysis related to the promoter sets of
stage-specific genes. The table is divided into five parts, the ‘Genes in dataset’
part gives information about the genes that were analyzed. The ‘Over-
represented motif discovery’ summarizes the results from all three programs
used. The ‘Positional bias’ section shows the overall results of the positional bias
analysis that was conducted for each overrepresented motif. The ‘Evolutionary
conservation’ section gives consolidated data for conservation of motifs in the
two other species P. sojae (shown as P. soj) and P. ramorum (shown as P. ram).
The last section ‘Other features’ shows data related palindromic sequences,
motifs overrepresented in both orientations and motifs present in more than one
stage. B) Shown is the stage-wise distribution of motifs present in more than one
stage. The stages are in bold. C) Shows the list of motifs overrepresented in
multiple stages, the stages these are overrepresented in and their conservation

data.
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Table 4:

Shown is the frequency of the overrepresented motifs within each of the 50 base
window that the 1 kilobase hyphal gene promoter set were divided into. The
region for its bias, as per the criteria set in the ‘Materials and methods’ section
are shown in bold. ‘bps’ refers to bases and ‘P.s’ and ‘P.r stands for
Phytophthora sojae and Phytophthora ramorum respectively. ‘Consv’ stands for
positionally conserved. HY, SP, CL, ZO and GC stands for hyphae, sporangia,
cleaving sporangia, swimming zoospore and germinating cyst respectively. ‘NA’
refers to not applicable and ‘NC’ denotes not checked. The motifs that are not

significantly overrepresented at the 90% level of confidence are denoted by *
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Table 5:

A) Shown is the frequency of the overrepresented motifs within each of the 50
base window that the 1 kilobase sporangia specific gene promoter set were
divided into. The region for its bias, as per the criteria set in the ‘Materials and
methods’ section are shown in bold. ‘bps’ refers to bases and ‘P.s’ and ‘P.r’
stands for Phytophthora sojae and Phytophthora ramorum respectively. ‘Consv’
stands for conserved. HY, SP, CL, ZO and GC stands for hyphae, sporangia,
cleaving sporangia, swimming zoospore and germinating cyst respectively. ‘NA’

refers to not applicable and ‘NC’ denotes not checked, The motifs that are not

significantly overrepresented at the 90% level of confidence are denoted by -
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Table 6:

A) Shown is the frequency of the overrepresented motifs within each of the 50
base window that the 1 kilobase clavage specific gene promoter set were divided
into. The region for its bias, as per the criteria set in the ‘Materials and methods’
section are shown in bold. ‘bps’ refers to bases and ‘P.s’ and ‘P.r' stands for
Phytophthora sojae and Phytophthora ramorum respectively. ‘Consv’ stands for
conserved. HY, SP, CL, ZO and GC stands for hyphae, sporangia, cleaving
sporangia, swimming zoospore and germinating cyst respectively. ‘NA’ refers to

not applicable and ‘NC’ denotes not checked. The motifs that are not significantly

overrepresented at the 90% level of confidence are denoted by *’.
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Table 7:

A) Shown is the frequency of the overrepresented motifs within each of the 50
base window that the 1 kilobase promoter set of genes specific to swimming
zoospore were divided into. The region for its bias, as per the criteria set in the
‘Materials and methods’ section are shown in bold. ‘bps’ refers to bases and ‘P.s’
and ‘P.r’ stands for Phytophthora sojae and Phytophthora ramorum respectively.
‘Consv’ stands for conserved. HY, SP, CL, ZO and GC stands for hyphae,
sporangia, cleaving sporangia, swimming zoospore and germinating cyst

respectively. ‘NA'’ refers to not applicable and ‘NC’ denotes not checked.
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Table 8:

A) Shown is the frequency of the overrepresented motifs within each of the 50
base window that the 1 kilobase germinatin cyst specific gene promoter set were
divided into. The region for its bias, as per the criteria set in the ‘Materials and
methods’ section are shown in bold. ‘bps’ refers to bases and ‘P.s’ and ‘P.r
stands for Phytophthora sojae and Phytophthora ramorum respectively. ‘Consv’
stands for conserved. HY, SP, CL, ZO and GC stands for hyphae, sporangia,
cleaving sporangia, swimming zoospore and germinating cyst respectively. ‘NA’

refers to not applicable and ‘NC’ denotes not checked.
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Functional analyses of three overrepresented motifs:

Once the overrepresented motifs in all stage-specific promoter sets were
identified and analyzed for their positional bias and evolutionary conservation, |
decided to test the functionality of some of the motifs. Three motifs were picked,
‘TACATGTA’, which is overrepresented in all developmental stages, ‘GCTGCTG’
which is overrepresented hyphae and sporangia and ‘TATTAATA', which is
overrepresented in hyphae and germinating cysts. There were several reasons
for selecting these motifs. “TACATGTA’ was chosen as it was the only motif
overrepresented in all stages. ‘GCTGCTG’ was chosen as this motif, even
though present in both hyphae and sporangia- induced genes, showed
evolutionary conservation only in the sporangia set. Similarly, TATTAATA’ was
present in both germinating cyst and hyphae sets and showed positional bias in
both but some conservation only in germinating cyst genes. This motif is also
overrepresented in the promoters of the RXLR effector genes (Morgan and
Kamoun, 2007) that are very important for successful pathogenicity.

To prove the functionality of these overrepresented motifs, an oligo-
chimera assay was done. Forty-three bp single-stranded oligonucleotides were
designed for each motif (Table 2). These were then annealed with their reverse
complements to make them double stranded. These were then inserted in front
of the NIFS minimal promoter within the N/IFS+Clone38.2 vector (as described in

Chapter ) and the plasmid DNA was used to transform P. infestans.
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For the ‘GCTGCTG’ motif | stained sporangia and sporulating mycelia
from 59 transformants of P. infestans, with GUS staining solution as described in
the ‘Materials and methods’ section. GUS staining could be detected in 11 out of
the 59 transformants and was limited to sporulating mycelia and sporangia
tissues. Five of these (Appendices Table F) were studied in details. Evidence of
GUS expression could be detected mostly in mature spores (Figs 2A, 2D) and
also in maturing spores (Figs 2C, 2D). Nonsporulting mycelia (48 h old in liquid
culture) that was stained as a control did not show any staining. GUS staining
could be seen in sporulating mycelia. This showed us that this motif is capable of
driving the expression of the reporter gene in sporangia with the help of the
minimal promoter which by itself is incapable of driving GUS expression (shown
in Chapter ).

For the ‘TATTAATA’ motif that is overrepresented in germinating cysts
and hyphae genes, | analyzed germinating cyst and sporulating hyphae tissues
from 6 expressing transformants out of a total of 37 transformants. Tissues were
stained at different time points from 30 min to 12 hr after encystment. No staining
could be seen in tissues 30 mins or 1 hr after encystment. It was observed that
for five transformants (Appendices Table F) staining was visible 2 hr after
encystment (Fig 3) in germinating cysts. The staining disappeared 9 hrs after
inducing encystment. This suggested that this motif is functional when the cyst is
geminating. The reason behind losing the signal after 9 hr, even though the germ

tubes were present, is probably because these cysts have stopped germinating

147



due to loss of energy, as the assay was done in water. The results might be
different in a plant, where the organism can get its nutrients from the plant, even
after 9 hrs of encystment with the help of appressoria.

For the TACATGTA’' motif tissues from sporulating mycelia, sporangia
and germinating cysts of 52 transformants were stained at different time points
from 30 min to 12 hr. (Fig 4) No staining could be detected in sporangia or
geminating cysts. Very light staining was visible in 5 day old hyphae of three of
the transformants (Appendices Table F). This might suggest that this motif is
functional only in presence of some other motif that is tissue-specific, as it binds

a transcription factor that needs the help of other factors for gene expression.

148



Fig 2 legend:

‘GCTGCTG’ motif can drive GUS expression in sporangia:

Shown is the result of histochemical staining of sporangia in P. infestans
transformed with a double stranded oligonucleotide carrying the ‘GCTGCTG’
motif in front of the NiFS minimal promoter. GUS staining can be seen in mature

sporangia (A and D) and in maturing sporangia (B and C).
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Fig 2
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Fig 3 legend:

‘TATTAATA’ motif can drive GUS expression in germinating cysts:

Shown is the result of histochemical staining of germinating cysts in P. infestans
transformed with a double-stranded oligonucleotide carrying the ‘TATTAATA’
motif in front of the NiFS minimal promoter. GUS staining can be seen in
germinating cysts. The labels (c), (gt) and (a) signifies cyst, germtube and

appressoria, respectively.
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Fig 3
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Fig 4 legend:

‘TACATGTA'’ motif can drive GUS expression at very low levels in hyphae:
Shown is the result of histochemical staining of germinating cysts in P. infestans
transformed with a double stranded oligonucleotide carrying the ‘TACATGTA’
motif in front of the NiFS minimal promoter. Very light GUS staining can be seen

in hyphae.
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Electrophoretic mobility shift assay the three selected motifs:

To test the binding affinity of the “TACATGTA’ motif for nuclear proteins,
sets of double-stranded oligonucleotides carrying this motif were made
(mentioned in Table 2). These were then purified, radiolabeled, and then
incubated with nuclear extracts from sporulating mycelia, non-sporulating
mycelia, sporangia, cleaving sporangia and germinating cyst tissues. The
reactions were run in a 4.5% polyacrylamide gel, dried and put under a
phosphorimager screen. No band of any significant level (Fig 5) could be
detected.

A single band was observed when EMSA was performed with a double
stranded oligonucleotide carrying the ‘GCTGCTG’ motif, that is overrepresented
and evolutionarily conserved sporangia. To test the specificity of this band a
competition analysis was done, using nuclear extracts from sporangia (Fig 6).
The results showed that the band was a due to specific binding affinity of the
‘GCTGCT’ motif for nuclear proteins. This was evident as the band faded and
finally disappeared with increasing concentrations (5x, 25x and 125x of the
labeled probe) of unlabeled specific probe. The cold specific probe was able to
out-compete the labeled probe but there was no effect on the signals with
increasing concentrations of the non-specific and mutated probes. This
suggested that the signal was most likely a result of specific binding between the

‘GCTGCT’ motif and some sporangial nuclear proteins.
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| was able to detect binding activity when EMSA assays for the
‘TATTAATA’ motif was done with nuclear extracts from non-sporulating mycelia,
sporulating mycelia, sporangia, and germinating cysts. Two bands were visible
when the probe was incubated with nuclear extracts from germinating cyst. The
lower band (b) disappeared in competition (Fig 7) with specific cold probe but not
with that of non-specific or mutated probes. This suggested that the signal was
most likely a result of specific binding between the “TATTAATA’ motif and some
germinating cyst nuclear proteins. The upper band (a) was probably due to non-
specific binding activity as the band could still be seen with increasing

concentration of specific competitor.
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Fig 5 legend:

Electrophoretic mobility shift assay with ‘TACATGTA’ motif:

Results from electrophoretic mobility shift assay with double stranded oligo-
nucleotide carrying the ‘TACATGTA’ motif. NM, MY, SP, CL and GC stands for
nuclear extracts from hyphae, sporangia, cleaving sporangia, swimming
zoospore and germinating cyst respectively, with which the oligonucleotide was

incubated.
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Fig 5.
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Fig 6 legend:

Electrophoretic mobility shift competition assay with ‘GCTGCTG’ motif:
Results from electrophoretic mobility shift competition assay with double
stranded oligo-nucleotide carrying the ‘GCTGCTG’ motif. This was incubated
with nuclear extracts from sporangia and specific, non-specific and mutated
probes. 5x, 25x and 125x signifies the amount of cold competitors added with

respect to the hot probe. The specific band is denoted by ‘a’.
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Fig 6
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Fig 7 legend:

Electrophoretic mobility shift competition assay with ‘TATTAATA’ motif:
Results from electrophoretic mobility shift competition assay with double
stranded oligo-nucleotide carrying the ‘TATTAATA’ motif. This was incubated
with nuclear extracts from germinating cyst and specific, non-specific and
mutated probes. 5x, 25x and 125x signify the amount of competitors added with
respect to the hot probe. The non-specific band is denoted by ‘a’ and the specific

band is denoted by ‘b’
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Fig7

Nuclear extracts from
germinating cysts
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A reverse analysis by checking the presence of stage-specific motifs within
the promoters of transcription factor genes:

To check if the stage-specific overrepresented motifs that were detected
during the course of this analysis, could be found in the promoters of genes up-
regulated during the specific stages, a reverse analyses was done. | searched for
the known motifs within the promoters of genes. For this analysis | took the
promoters of the 18 genes that belong to the bZIP family in P. infestans. The
expression profiles of 17 of these genes are known (unpublished data Gamboa-
Melendez and Judelson). These can broadly be divided into two groups, the nine
canonical bZIPs and nine bZIP-like transcription factors. The bZIP like
transcription factors show stage-specific expression. Out of the nine bZIP-like
transcription factors four (PITG_09198, PITG_09199, PITG_ 09200 and
PITG_09201) show similar expression patterns, these are induced in cysts and
germinating cysts. Another gene (PITG_09190) is induced in hyphae along with
being induced in cysts and germinating cysts. The ‘TATTAATA’ motif, which is
overrepresented and shows some conservation in germinating cyst was detected
in all five promoters, 299 to 763 bases upstream of ATG. In three of the
promoters it is present along with the “TACATGTA’ motif (overrepresented in all
stages) and the ‘TACAGTA’ a motif (overrepresented in germinating cyst
promoters), approximately 300 bases and 500 bases downstream respectively,

of the ‘TATTAATA’ motif. In the other two genes viz. PITG_09198 and
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PITG_09190 the ‘TATTAATA’ motif is present along with ‘GTTGAAG’
(overrepresented in hyphae) and ‘TACCGGTA’ (overrepresented in hyphae,
cleavage and germinating cysts) motifs, which are approximately 50 bases
downstream of the ‘TATTAATA’ motif. Another bZIP-like transcription factor
(PITG_11668) that is induced only in cysts, carried the TACAGTA’
(overrepresented in germinating cysts) motif 215 bases upstream of ATG. Two of
the other bZIP like transcription factor genes, PITG_11664 and PITG_13521,
show induction during sporangia and both carried sporangia-specific motifs in
their promoters, PITG_11664 had ‘CTTC[TC]C" 151 bases upstream of ATG,
whereas, PITG_13521 had ‘C[AG]JACAAC’ motif 256 bases upstream of ATG.
PITG_11671 that is induced in germinating cysts had a cleaving sporangia
specific motif, ‘AAGC[AG]A'’ in its promoter 147 bases upstream of ATG.

Almost all of the nine canonical bZIP encoding genes show high
expression in sporangia cleaving sporangia, cysts and germinating cysts. Motifs
overrepresented in sporangia and/or cleavage were detected in the promoters of
each of these genes. Genes like PITG_09279, PITG_13196, PITG_18417, which
showed higher expression in cysts and germinating cysts carried the TACAGTA’,
the ‘TACATGTA’ and the ‘TACCGGTA’ motifs in their promoters respectively.
The presence of all 41 conserved motifs in the 19 bZIP gene promoters was
checked and in most cases the motifs detected were in agreement with their

expression profiles i.e the motifs detected were either from the stage where the
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gene showed high expression or from a preceding stage. This analysis showed
that the motifs detected are indeed highly likely to be real TFBSs.
CONCLUSION:

In this chapter | have done a systematic prediction of putative TFBSs in
five key stages of the asexual cycle in one of the most devastating
phytopathogens, P. infestans. The method described in Chapter | was adopted
and each of the five asexual stages was analyzed. | was able to make robust
predictions for more than 40 stage-specific motifs that were not only
overrepresented, but were also positionally biased and showed evolutionary
conservation. It was not surprising that most of these putative TFBSs were within
the promoters of genes induced in sporangia and cleaving sporangia stages, as
those are the stages when the organism prepares for zoospore release and a lot
of genes are induced. Also, most of the motifs that were overrepresented in more
than one set were in sets of promoters from consecutive stages.

Another interesting observation was that the number of conserved motifs
was not proportional to that of the overrepresented motifs or the number of
genes. Four conserved motifs within a set of 47 genes and 13 overrepresented
motifs in swimming zoospore stage, were detected, whereas the hyphae set that
consisted of 100 genes and 27 overrepresented motifs had only six conserved
motifs. This shows that genes within a particular stage like hyphae might be
controlled by fewer transcription factors than those in sporangia or cleavage.

There are not many genes that are upregulated solely during the swimming
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zoospore stage, in the microarray data that was used. This was the reason
behind the smaller promoter set for this stage. It was also observed that the motif
overrepresented in all the sets did not show much conservation. This motif,
‘TACATGTA’ when tested for functional activity or binding affinity did not show
much staining or any binding activity. | hypothesized that this binds a general
transcription factor working in tandem with other stage-specific motifs to drive
gene expression. The hypothesis was supported by the presence of this motif in
approximately 25% of P. infestans genes.

The reverse analysis with the genes encoding for b-ZIP transcripton
factors showed that the expression pattern of the genes were consistent with the
stage-specificity of the motifs detected in their promoters. The genes with stage-
specific motifs showed high expression either in the same or in the following
stage. This result was again in congruence with the findings related to
overrepresented motifs within multiple stages. In the said analysis too it was
found that the motifs overrepresented in more than one stage were actually
present in sequential stages.

To conclude, the motifs coming out of this study should help in
identification of stage-specific transcription factors and thereby help in having a
better idea about the regulatory networks involved in the asexual development of

P. infestans.
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APPENDICES:

List A: Stage-specific overrepresented motifs detected by two or more motif finding
programs:

Hyphal Motifs:

1. TACATGTA

2. TACCGGTA

3. TAC[AT]GTAC
4. T[AG]CTGTAC
5. TGCCCGGA

6. C[AT]GCAGC
7. AAGCAGCA

8. AAAAAAAT

9. GCTGCAGT

10.  TGCTG[TG]C
11.  CTTCAAC

12.  CAATCAG

13.  CGCTGGT

14. CGACGCC

15.  TATTTTT

16. AAATAAA

17.  ACGGACG

18.  AAGTGGT

19.  T[AT]TTAATA
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20. [AT]JGAAGCTG
21.  CA[AG]TGC
22. ACGCCGG

23.  AGAAAAA

24. ACCGGAA

25. [CGJATTTTG
26.  GTTGAAG

27.  GTACTAC

28. CTGGAAA

29.  CCTCCAGC

TAC[AT]GTAC and T[AG]JCTGTAC merged to T [AG]C[AT]GTAC.
C[AT]GCAGC and AAGCAGCA merged to [AC][AT]GCAGCA.

Sporangia Motifs :

L. [CG]AAGAAG
2. CA[AG]CAAC
3. GCTGC[AT]G

4. CTTC[AG]AC

5. AGC[AG]CAAG
6. GAAGCGAC

7. GAAGCTG

8. CCGTTG
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9.  CTTCT[TC]C
10.  ATGGCTAC
11.  AGAGACGC
12. GTGGGGTG
13.  T[GC]GAGTTT

14.  TGGCTGG
15. CCTGCC

16. TACATGTA
17.  GTGC[AT]GCA

18.  TTTATTT

19. CTTTTT

20.  [CT]GCTCGAG

21.  GAAGAGA

22. GAAAAG

23.  TTGAAGT

24.  GTCGTTT

25.  GATCGAG

26. CTGCAAG

GAAGAGA and GAAAAG merged to GAA[AG]AGA
GAAGCTG and GAAGCGAC merged to GAAGC[GT][AG]C

ITTTATTT and CTTTTT merged to TT[CT][AT]TTTT
TGGCTGG and CCTGCC merged to TG[CG]CTG[CG]C
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Cleavage Motifs:

1. AGAGAGAG

2. TACATGTA

3. TCGTC[GT]TC
4. CGTCGTC

5. TTTAAAAA

6. TACCGGTA

7. CTTCGAG

8. GATGCTG

9. CAACA[GA]CA
10. CTTCAAC

11.  AAGCAJAG]A
12.  GAGCT[CG]C
13.  CGCCACC

14. [AT]GGAGGAG
15. AAAAATAT

16. AAAATGAA

17. TAAATAA

18.  [ACJAAGTGGC
19.  GAAGT[AC]GA
20. AGTTGJAC]A

21.  GCTC[ACJAA
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22.  ATT[CT]TTA
23.  CGTCCTCG

24.  AGCATC

25. [AT]CCACCA

26.  GAAGCCA

27.  GCAGCCG

28.  CATCCAT

29.  ATC[ACJACG

30. ACTCG[AG]AG

3. AACTTGC

32.  GCAC[CGJAC

33. CTTTTG

34, GCGCTC

35.  CTCCTTC

AAAAATAT and AAAATGAA merged to AAAAAT[GA][AT]
[ACJAAGTGGC and GAAGT[AC]GA merged to [ACG]JAAGT[ACG]G
ACTCG[AG]AG and AACTTGC merged to ACT[CT]G[AGC]AG
CATCCAT and ATC[AG]JACG merged CATC[ACG]JA[CT]G

GAAGCCA and GCAGCCG merged to GIAC]AGCC[AG]
TCGTC[GT]TC and CGTCGTC merged to TCGTC[GT]TC

Swimming Zoospore Motifs:
1. TACATGTA
2. GAAGAAG

3. A[CG]GAAGA[AC]G
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4. CCTTCTTC
5. [ACIC[GT]TCTTC

6.  CC[CT]TCAGC

7. CCGCAGC

8.  GCTGCGGG

9.  AGAGCCTG

10. ACCGCGAG

11.  AGCTGAAG

12 AGAAACGA

13.  CTGTAGCC

14.  CG[GC]TGGAG

15.  GTCACTGA

16. CCAGCACG

CCTTCTTC and [AC]JC[GT]TCTTC merged to [AC]C[CGT]TCTTC

GAAGAAG and A[CG]JGAAGA[AC]G merged to A[CG]JGAAGA[ACG]G
CC[CT]TCAGC and CCGCAGC merged to CC[CT][TG]CAGC

Germinating Cyst Motifs:
1. ATACTGTA
2. CTACTGTA
3. GTAC[ACT]GTA
4. TACATGTA

3. TACCGGTA
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6.  GCCGGCA
7. TATTAATA[GA]

8.  GCAGCAC

9.  CAGCTAA

10. AAAAGAAG

11.  CTCACTTC

12.  CGCCGAAG

13.  AACGGGGT

14.  TTTAAAAA

15. GTGTCACA

16.  AAAGCTTT

17.  CGTGTTGC

18.  ACTCGAGC

19. TAATATTA

20.  AAAAATAT

ATACTGTA, CTACTGTA and GTAC[ACT]GTA merged to [ACG]TAC[ACT]GTA.

GCAGCAC and CAGCTAA merged to GCAGC[AT][CA]A.
TACCGGTA and GCCGGCA merged to TTAG]CCGG[TC]A
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Table A: Shows the genewise conservation for hyphae motifs:

[AC][AT]GCAGCA
PITGs 1124 2598 4131 9753 20102 Totzls
hit in sojae 1 1 i} 1 1 4
kit in ram 1 1 ] 1 1 4
consy in soj a ] a 0 a 0
Cconsy in ram ] 0.5 i 0 i 0.3
consv in both 0.5 0 Q 0.5 0.5 1.5
T[AT]TTAATA
PITGs 2972 135390 8193 8377 13239 5524 14003
hit in sojae 1 1 1 1 1 1 1 7
kit in ram 1 1 1 1 1 1 1 7
consy in soj a ] a 0 a 1] a 0
cons inm ram ] o i 0 i o i ]
consv in both 1] 0 Q 1] Q 1] Q 1]
[CGIATTTTG
FITGs 1124 1732 Jele 6454 11883
hit in sojae 1 1 1 1 1 5
kit in ram 1 1 1 1 1 5
consy in soj a 0.3 a 0 1 1.3
cons inm ram i o i 0.5 i 1.5
consv in both 1] 0 Q 1] Q 1]
AAAAAAAT
FITGs 1124 3067 14493 14950 13807
hit in sojae 1 1 1 1 1 5
kit in ram 1 1 1 1 1 5
Consy in soj a ] i 1] 0.3 0.3
cons im ram ] o i i} i ]
consv in both 1] 0 Q 1] Q 1]
AANTAARA
FITGs Fled 11294 13448 14721 12351
hit in sojae 1 1 1 1 1 5
kit in ram 1 1 1 1 1 5
Consy in soj a ] i 1] i 0
cons im ram ] o i i} i ]
consv in both 1] 0 Q 1 Q 1
AAGTEET
FITGs 4131 4717 13448 1oe4B 21293
hit in sojae 0 1 1 1 1 4
kit in ram ] 1 1 1 1 4
Consy in soj a 0.3 0.5 1] 0.3 1.5
cons im ram ] 0.5 i i} 0.5 1
consv in both 1] 0 Q 1] Q 1]
ACOEZAA
FITGs 1325 1398 404
hit in sojae 1 1 1 3
kit in ram ] 1 1 2
Consy in soj a ] i 0
cons in ram ] o 1 1
consv in both 1] 1 Q 1
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Table A Contd.

ADGOCGE
PITGs 1329 2598 4131 97593 15731 Totals
hit in sojze 1 1 i} 1 1 4
hit in ram a 1 i i i 3
consy in soj 1 1] 0 i i 1
Cons in ram 0 o i} i i ]
consv in both 1] 1 1] 1] 1] 1
ADGGACG
PITGs 6478 9334 12551 18312
hit in sojae 0 1 1 1 3
hit in ram 0 1 1 1 3
Consy in so] 0 0 i i 0
cons in rami 0 o i} i ]
consv in bath 1] 1] i 1] 1]
ACAAAAA
FITGs 1752 2335 478 14053 15398
hit in sojae 1 1 1 1 1 5
hit in ram 1 1 1 1 1 5
consy in soj 0 ] 0.5 a a 0.3
Cons im ram 0 0 0 0 0 0
consy in both 1] 1 1] Q Q 1
[AT]GAAGCTG
PITGs 10230 11883 14357 17307 18312
hit in sojze 1 1 1 1 1 5
hit in ram 1 1 1 i i 5
consy in soj a 0.3 0.5 0 0 1
cons in ram 0.5 o i} 0.5 i 1
consv in both 1] 1] i 1] 1] 1]
CAATCAG
PITGs 1732 10643 11450 12308 17161
hit in sojze 1 1 1 1 1 3
hit in ram 1 1 1 1 1 5
Consy in so] 0.3 1 1 1 i 3.3
cons in rami 0 o 0.5 0.5 i 1
consv in both 1] 1] i 1] 1] 1]
CCTOCAGT
FITGs 127 2047 T340 954 21293
hit in sojze 1 1 1 1 1 5
hit in ram 1 1 1 1 1 5
consy in soj a 0 a a 0.5 0.3
Cons im ram 0 1 0 0 0 1
consv in both 1] 1] ] 1] 1] 1]
CFACEIC
PITGs 1325 4010 6357 13762 14055
hit in sojze 1 1 1 1 1 5
hit in ram ] 1 1 i i 4
consy in soj a 0.3 0 0 1 1.5
cons in ram 0 0.3 0.3 i i 1
consv in both 1] 1] i 1] 1] 1]
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Table A Contd.

CGCTEET
FITGs S0e7 10674 Totals
hit in sojae 1 1 2
kit in ram 1 1 2
Consy in 50 a a 0
Consy in ram 0 0 0
consv in both i i 2
CTEEAAA
FITGs 734 2398 3117 7321 17507
hit in sojae 1 1 1 1 1 3
kit in ram 1 1 1 1 1 5
Consy in 50 a a i 0.5 0.3 1
Cons im ram 0.3 0 0 0 0 0.3
consv in both 1] i 1] 1] 1] 1
CTTCAAC
FITGs 1357 1358 TO6eE
hit in sojae 1 1 1 3
kit in ram 1 1 1 3
Consy in 50 a a i 0
Cons im ram 0 0 0 0
consv in both 1 1 1 3
GCA[AG]TGC
FITGs B33 2277 Jele  &370 14435
hit in sojae 1 1 1 1 1 3
kit in ram 1 1 1 1 1 5
Consy in 50 0.5 a i 1 i 1.5
cons in ram ] ] 0.3 ] i 0.5
consv in both 1] 1 1] 1] 0.5 1.5
GCTGC[TAJGT
FITGs 5117 7340 10674 11573 13660
hit in sojae 1 1 1 1 1 3
kit in ram 1 1 1 1 1 5
Consy in 50 0.5 0.5 i a i 1
Cons im ram 0 0 0 0.3 0 0.3
consv in both 1] 1] 1] 1] 1 1
GTACTAC
FITGs 1218 2277 S007 12808 14695
hit in sojae 1 1 1 1 1 3
kit in ram 1 1 1 1 1 5
COnMSY in 5o] a a i a i [
Cons im ram 0.3 0 0 0 0.5 1
consv in both 1] 1] 1] 1] 1] 1]
CTTZAAG
FITGs 287 653 3639
hit in sojae 1 1 1 3
kit in ram 1 1 1 3
Conmsy in soj a a a 0
Cons im ram 0 0 0 0
consv in both 1 1] 1 2
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Table A Contd.

T[AG]CIATIGTAC

FITGs T34 FoeE Fled 14930 13731 Totals
hit in scjae 1 1 1 1 1 3
kit in ram 1 1 1 1 1 5
Consy in 5oj 1 o 0 0.3 0 1.5
Cons im ram 0.3 0 0 0 0 0.3
consv in both 1] 0 1] 0 1] 1]
TACATETA
FITGs B33 13259 BY0D4 93534 12562 14357 16926 17936
hit in scjae 1 1 1 1 1 1 1 i 2
hit in ram i i 1 i i 1 1 1 2]
COnsY in 50 a 0 1] a i 1] 1] 1] 0
Cons im ram 0 0 0 0 0 1 0 0.3 1.3
consv in both 1] i 1] 1] ] 1] 1] 1] 1]
TADCGETA
FITGs 15607 17161 18083 182599 21410
hiz in sojze 1 1 1 i 1 5
kit in ram 1 1 1 1 1 5
COnsY in 50 a 0 1] a i 0
cons inm ram ] 0 i} i i} 1
consv in both 1] 0 1] 0 1] 1]
TATITTIT
PITGs 1218 4370 14055 14124 14375
hit in scjae 1 1 1 1 1 3
kit in ram 1 1 1 1 1 5
Consy in soj a 0 1 0.3 0.3 2
Cons im ram 0.3 0 0 0 0.5 1
consv in both 1] 0 1] 0 1] 1]
TEOODEEA
FITGs 1325
hit in scjae 1 1
kit in ram 014 hits in 4] 1]
COnsY in 50 a 0
Cons im ram 0 0
consv in both 1] 1]
TGCTG[TG|C
FITGs 2335 2398 3117 B35S 10642
hit in scjae 1 1 1 1 1 3
kit in ram 1 1 1 1 1 5
COnsY in 50 a 0 1] a i 0
Cons im ram i 0 0 0.5 0 1.3
consv in both 1] 0 1] 1] a 1]
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Table B: Shows the genewise conservation for sporangia motifs:

[CEIAAGAAG
PITGs 2245  B41% 2847 12827 20749 Totals
hit in sojae i 1 1 1 1 5
hit in ram 1 1 1 i i 5
oonsy in soj a 1] 0 a a o
consy in ram 0 o i} i i} 0
consv in bath 1] 1] 1 i 1 3
AGAGACED
PITGs 2784 4073 72BE 16465 17315
hit in sojze i 1 1 1 1 5
hit in ram 1 1] 1 i i 4
COnSY In 50] 0 0 0 a0 0 0
cons in ram 0 o i i 1 2
consv in beth 1 1] 1] Q i 1
AGC[AG]CAAG
FITGs 2460 3Ve0 12368 14635 20221
hit in sojae 0 0 1 1 1 3
hit in ram ] 1] 1 1 1 3
Consy in 50 0 1] 0 i i 0
cons in ram 0 o 0 i i} 0
consv in bath 1] 1] 1] 1] 1] (1]
ATGECITAC
PFITGs 10162 12827 13461 12885
hit in sojze i 1 1 1 4
hit in ram i 1 1 i 4
Consy in 5o i 1] 0 i 1
cons in ram 0 o i} i 0
consv in bath 1] 1] 1 1] 1
[CTIGCTCGAG
FITGs 5447 10162 12577 17002 17975 12568
hit in sojze i 1 1 1 1 1 &
hit in ram 1 1 1 1 1 1 &
Consy in 5o a 1] 0 1 1 1 3
conms im ram i 0.3 i} i i} o 1.3
consv in bath 1] 1] 1] 1] 1] 1] (1]
CTGCAAG
PFITGs 2784 3534 F2BE 9086 12827 16262
hit in sojze 1 1 1 1 1 1 &
hit in ram 1 1 1 i i 1 [
Consy in 5o a 1] 0 0 1 1] 1
Cons im ram 0 o i} i i} o 0
consv in bath 1] 1] 1] 1] 1] 1] (1]
CA[AGICAAC
FITGs 3833 13011 13414 13858 17002 17973
hiz in sojae 1 1 1 1 1 1 &
hit in ram 1 1 1 i i 1 [
Consy in 50 a 1] 0 i 1 1] 1
Cons in ram 0 i 0 0 0 0 1
consv in bath a 1] 1] 1] i 1] (1]
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Table B Contd.

COGTTG
FITGs 123 17002 16002 4121 G833 12567 14222 Totals
hit in sojae 1 1 1 1 1 i 1 7
kit in ram 1 1 1 ] 1 1 1 [
COnSY in 50 0.3 1] 1 1 1 1] 1 4.3
Cons im ram i 0 0 0 0.3 i 0 2.3
consv in both 1] 1 i i ] 1] ] 1
CTTC[AG]AC
FITGs 45 14222 1415 2886 4333 13765 9560
hit in sojae 1 1 1 1 1 1 1 7
kit in ram 1 1 1 1 1 1 1 7
COnSY in 50 a 1 ] i i 1] i 1
cons inm ram i o 1 i} 1 o i 3
consv in both 1] 1] 1] 1 Q 1 1 3
CTTCT[TCIC
PITGs 2932 13895 166564
hit in sojae 1 1 1 3
kit in ram 1 1 1 3
Consy in 5oj a 1] 1 1
Cons im ram i 0 0 1
consv in both 1] 1 1] 1
GAA[AGIAGA
FITGs 2784 12827 14388 5477 15414
hit in sojae 1 1 1 1 1 3
hit in ram i 1 1 1 1 5
COnSY in 50 a 1] ] i i 0
Cons im ram 0 0 0 0 0 0
consv in both i 1] 1 1] 1 3
GAAGC[GT][AGIC
FITGs 1416 13461 14365 15867 13873
hiz in sojze 1 1 1 1 1 5
kit in ram 1 1 1 1 1 5
COnSY in 50 a 0.3 ] i i 0.3
Cons im ram 0 0.3 0 0 0 0.3
consv in both 1 0 ] 1] 1 2
EATOGAG
FITGs G847 998l 12182 15402 20800
hit in sojae 1 1 1 1 1 3
kit in ram 1 1 1 1 1 5
COnSY in 50 a 1] 0.3 i i 0.3
Cons im ram 0 0 0 0 0 0
consv in both 1 1 ] 1] 1 3
GTGC[AT)GCA
FITGs a72 2952 10184
hit in sojae 1 1 1 3
kit in ram 1 1 1 3
COnSY in 50 a 1] ] 0
Consy in ram 0 0 0 0
consv in both 1] 1 1 2
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Table B Contd.

GTCGTIIT
FITGs 121 1416 3835 17975 14222 14281 Totals
hit in sojze 1 1 1 1 1 1 &
kit in ram 1 1 1 1 1 1 [
consy in s a a a a 1 1] 1
Comsy in ram 0 0 0.5 0 0 0 0.3
consv in both 1] i 1] 1 1] 1] 2
GCTGCAT]G
PITGs 937 4454 12367 10162 2833
hit in sojae 1 1 1 1 1 3
kit in ram 1 1 1 1 1 5
Consy in 50j a a i a i 0
Comsy in ram 0 0 0 0 0 0
consv in both i 1] 1] 1] 1 2
CTEEEGTE
PITGs 121 13001 13858 15338
hit in sojae 1 1 1 1 4
hit in ram i i i 1 4
Consy in 50j a a i a 0
Comsy in ram 0 0 0 0 0
consv in both 1] 1 Q 1 2
TACATETA
FITGs 1101 3192 4549 5152 13196 e0&7
hit in sojae 1 0 1 1 1 i 3
hit in ram i ] 1 ] 1 1 4
Consy in 50j a a i 1 i 1] 1
consy in ram ] ] i 0 i o ]
consv in both 1] 1] 1] 0 1] 1] 1]
T[GCIGAGTTT
FITGs 2342 2460 3760 o741 T2BE 10332 10746
hit in sojae 1 0 i} i 1 1 1 5
kit in ram 1 ] ] 1 1 1 1 5
Consy in 50j a a i a i 1 1] 1
Comsy in ram 0 0 0 0 0 0 0 0
consv in both 1] 1] 1] 0 1] 1] 1] 1]
TE[CE)CTEIOG]C
FITGs 125367 13769 14087 17975 2035327
hit in sojze 1 1 1 i 1 5
kit in ram 1 1 1 1 1 5
Consy in 5o a 1 i a i 1
Comsy in ram 0 0.3 0 0 0 0.3
consv in both 1] 1] 1] 0 1] 1]
TT[CTJAT]TTTT
FITGs 2342 4075 13183 15875 1e0B8% 20042
hit in sojze 1 0 1 1 1 1 3
kit in ram 1 ] 1 1 1 1 5
Consy in 50 a a i a i 1] [
Comsy in ram 0 0 0 0 0 0 0
consv in both 1] 1] 1] 1] 1] 1] 1]
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Table B Contd.

TTEAAGT
FITGs 937 1416 3325 12367 12827 153873 16262 Totals
hit in scjae 1 1 1 1 1 1 1 7
kit in ram 1 1 1 1 1 1 1 7
Consy in soj a 1 i i 1 ] 0.3 3.3
Consy in ram 0.3 0 0 0 0 ] 0.3 1
consv in both 1] 1] 0.5 0 1] 1 1] 1.5
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Table C: Shows the genewizse conservation for cleavage maotifs:

[AT]CCACCA
FITGs 5714 10630 12293 13755 12524 Totals
hit in scjae 1 i 1 1 1 3
kit in ram 1 1 1 1 1 5
COnsY in 50 1 1 i i i 2
Consy in ram 0 0 0 1 0 1
consv in both 1] 1] 1 1] 1 2
AAAAATGAJAT)
FITGs 891 3346 6236 10323 11238
hit in scjae 1 i 1 i 1 4
kit in ram 1 1 1 i} 1 4
COnsY in 50 a 1] i i i 0
Cons im ram 0 0.3 0 0 0 0.3
consv in both 1] 1] Q 1] 1 1
AAGCA[AG]A
FITGs 391 10507 20885 20590
hit in scjae 1 i 1 1 4
kit in ram 1 1 1 1 4
COnsY in 50 a 1] i i 0
cons in rami ] 0 il i} L]
consv in both 1 1 Q 1 3
[ACGIAAGT[ACGIG
FITGs 6963 12293
hiz in sojze 1 2
kit in ram 1 1 2
COnsY in 50 a 1] 0
Cons im ram 0 0 0
consv in both i 1 2
ACT[CT]G[AGC]AG
FITGs 4477 16727 10847 18680 16356
hit in scjae 1 i 1 1 1 3
hit in ram i 1 i 1 i 5
COnsY in 50 a 1] i i i 0
Cons im ram 0 0 1 0 0 1
consv in both 1] 1] 1] 1] 1 1
ACAGAGAG
FITGs 3034 B238 17344
hit in scjae 1 0 1 2
kit in ram 1 1 1 3
COnSy in 5o] a 1] 0 0
Cons im ram 0 i 0 1
consv in both 1 1] 1] 1
AGCATC
PITGs 2227 2028 6965 5404 16727
hit in scjae 1 i 1 1 1 3
kit in ram 1 1 1 i} 1 4
COnsY in 50 a 1] i i 0.3 0.3
cons in ram ] o 1 i} i} 1
consv in both 1 1] 1] 1] 1] 1
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Table C Contd.

AGTTG[AC]A
FITGs 2227 51459 13149 1266 12352 Totals
hit in sojze 1 1 1 1 0 4
kit in ram 1 1 1 1 ] 4
Consy in 5] 0 1 1 0 i 2
Coms im ram 0 0 0 0 0 0
consv in both i 1] 1] i 1] 1
[AT]GGAGGAG
PITGs 12507 21207 4477 10307 12293
hit in sojae 1 i 1 1 1 3
kit in ram 1 1 1 1 1 5
COnsY in 50j 0 1] i i i 0
Coms im ram i i 0 0 0 2
consv in both ] 1] 1] ] 1] 1]
ATT[CT]TTA
PITGs B9l 12307 13149 21207
hit in sojae 1 i 1 1 4
hit in ram i 1 i 1 4
COnsY in 50j 1 1] i i 1
cons im rami 0 o 1 i} 1
consv in both 0 1 Q 1 2
CAACA[GA)CA
FITGs 5145 B404 11238 11239 21452
hit in sojae 1 i 1 1 1 3
hit in ram i 1 i 1 1] 4
COnsY in 50j 1 1 0.3 1 1 4.3
cons im ram 0 o 1 i} i 1
consv in both 0 1] 1] 1] 1] 1]
CATC[AC]A[CT]G
FITGs 2227 68335 7444 9979 20710
hit in sojae 1 1 i} 1 1 4
kit in ram 1 1 ] 1 1 4
COnsY in 50j 0 1] i i i 0
Coms im ram 0 0 0 0 0 0
consv in both 1 1] 1] 1] 1] 1
CECTACT
FITGs 10847 12507 20590 21207
hit in scjze 1 1 1 1 4
kit in ram 1 1 1 1 4
COnsSy in 5] 0 1 1 0 2
Coms im ram i 0 0 0 1
consv in both 0 1] Q 1] 1]
TTTAAAAA
FITGs 5111 5714 12293 11238 20885
hit in sojae 1 i 1 1 1 3
kit in ram 1 1 1 1 1 5
Consy in s 0 1] a a a 0
Coms im ram 0 0 0 0 0 0
consv in both 1] 1] i i 1] 1
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Table C Contd.

CETOCTOS
PITGs 16231 17391 3323 1BeB80 Totals
hit in sojae 1 1 1 i 4
kit in ram 1 i 1 i 4
Consy in 50j 0 0 i Q a
COnsy in ram 0 a 0 0 a
consv in bath 1 1 0 1 3
CTOCTIC
PITGs 9296 18880 2899 13601 18987
hit in sojae 1 1 1 i i 5
kit in ram 1 i 1 i 1 5
Consy in 5o a a a a 1 1
COnS in ram 0 i 0 0 i 1
conisv in both 1 1] ] o ] 1
CTTCAAC
PITGs 391 SET0 Qgya 18174 20390
hit in sojae 1 1 1 i i S
kit in ram 1 i 1 i 1 5
Consy in 50j 0 1 i Q a 1
COons im ram 0 a 1 0 i 1
consv in bath 1 0 0 0 1 2
CTITCEAG
PITGs 3714  B404 18388 21207 21452
hit in sojae 1 1 1 i 1 5
hit in ram 1 0 1 i i 4
COnsy in 50 0.5 a a 0.5 a 1
Cons in ram 0 0 0 0 i 0
conisy in both 1] 1] ] ] ] 0
CTTITTG
PITGs 2030 3467 2390 5111 13601
hit in sojae 1 1 1 i i S
kit in ram 1 i 1 i 1 5
Consy in 5cj 0 0.5 0.5 Q Q 1
COns in ram 0 0 0 0 0.5 0.5
consv in bath 0 0 0 1 1 2
GIACJAGCC[AG]
PITGs 2008 3149 11238 183536 11400
hit in sojae 1 1 1 i 1 5
hit in ram 1 i 1 i i 5
COnsy in 50 1 0.5 a a a 1.5
Cons in ram 0.5 0 0 0 i 0.5
conisy in both 1] 1] ] ] ] 0
GAGCT[CGIC
PITGs 3590 S205 12507 21207 13419
hit in sojae 1 1 1 i i S
kit in ram 1 i 1 i 1 5
Consy in 5cj 0 0 i Q Q a
COns in ram 0 0 0.5 0.5 i 1
consv in bath 1 0 0 0 0 1
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Table C Contd.

CATEITG
PITGs 5714 11304 12507 18386 18393 Totals
hit in sojae i 1 1 1 1 5
hit in ram i i 1 1 i 4
consy in scj 1 0 1] Q 1 2
COMS im ram 0 a0 i a 0 a0
consv in both ] 1] ] 0 ] 1]
GCACICGAC
FITGs 2110 3390 3205 19433 20390
hit in sojae 1 1 1 0 1 4
hit in ram 1 1 1 0 1 4
consy in 50 Q 0 1] a 0.3 0.3
cons in ram Q 0 a a 0 0
consv in beth 0 0 1] 0 0 0
SZOGLTC
PITGs 2008 &049 73553 9899 12307
hit in sojae i D 1 1 1 4
hit in ram i ] 1 1 1 4
consy in scj 0.5 0 1] 0.5 0.5 1.5
COMS im ram 0 a0 i a 0.5 0.5
consv in both ] 1] 1 0 ] i
GCTCIAC]AA
FITGs 5145 3714 13282 18386 3295
hit in sojae 1 1 1 1 1 5
hit in ram i i 1 1 1 5
consy in soj Q 0 i Q i 0
COns im ram 0 a i a 1 i
consv in bath 0.5 0 1] 0 0 0.5
TACATGETA
PITGs 891 3345 3111 7444 aroy 10371 13491
hit in sojae i 1 1 0 0 0 1 4
hit in ram i i 1 i i ] 1 4
consy in 5o a a a a a 0 ] a
CONS im ram 0 a0 i a 0 i 0 0
consv in both ] 1] ] 1] 1] ] 1] 1]
TCGTCIGT]TC
PITGs 391 3034 4281 20390
hiz in sojae i 1 1 1 4
hit in ram i i 1 1 4
consy in soj 1 0 i 1 2
COns im ram 0 a i a a
consv in bath 0 0 1] 0 0
TASATAA
PITGs 2029 6835 16967 18428 20710
hit in sojae i 1 1 1 1 5
hit in ram i i 1 1 1 5
consy in 5o a a a a a a
CONS im ram 0 a0 i a 0 0
consv in both ] 1] 1 1] 1] i
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Table C Contd.

PITGs

hiz in sojae
hit in ram
Consy in 50
Consy in ram
consv in both

17391

o e I e S S

TACCGEGETA
17673

20 0 =

12036

oo Q

19483

[ Iy I o
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Table [ Shows the genewise conservation for swimming zoospore motifs

[ACIC[CGTITCTTC
PFITGs a71 3267 13041 13283 165978 Totals
hit in sojae 0 1 1 1 0 3
hit in ram ] 1 i i i 4
Consy in soj a 0.3 i 0.5 i 1
Consy in ram 0 0.3 0 0 1 1.5
consv in both Ji] 0 1] 1] 1] 1]
A[CGIGAAGA[ACG)G
FITGs 9124 11231 14267 135838 17040 18473
hit in sojae 1 1 i} 1 1 i 3
hit in ram i 1 i i i 1 &
consy in soj a ] a a a 1] 0
Cons im ram 0.5 o i i i o 0.3
consv in both 1] 1 1] 1] 1] 0.3 1.3
ACAAATCEA
PFITGs 1326 4486 S954
hit in sojae i 1 1 3
hit in ram 1 1 i 3
Consy in soj 0 ] i 0
Cons im ram 0 ] 0 0
consv in both 1] 1 1 2
ACAGTCTG
FITGs 11231 11594 13283 16578 17040
hit in sojae 1 1 1 0 1 4
hit in ram 1 1 1 1 1 5
consy in soj a ] a a a o
cons im ram 0 o i 1 1 2
consv in both a 1] 1] 1] 1] 1]
COICTTG]CAGT
PITGs 4486 H3I69 10035 12832 13282
hit in sojae i 1 1 1 1 5
hit in ram 1 1 i i i 5
Consy in soj 1 ] i 1 i 2
Cons im ram 0 ] 0 0 0 0
consv in both 0 0 1 1] 1 2
CICACTZA
FITGs 7BE6 B306
hit in sojae 1 1 2
hit in ram 1 1 2
Consy in soj a 1] [
cons im ram 0 o ]
consv in both 1 1 2
TACATGTA
PITGs 1360 6370 14172 17040 18599
hit in sojae i 1 1 1 1 5
kit in ram 1 1 1 1 1 5
Consy in soj 0 ] i i i 0
Cons im ram 0 ] 0 0.3 0.3 1
consv in both 0 0 1] 1] 1] 1]
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Table E: Shows the genewise conservation for germinating oyst motifs:

[ACGITAC[ACT]GTA
PFITGs 339 60%5 TIBT 11891 1319 Totals
hit in scjae i 1 1 1 1 5
hit in ram 1 1 1] i 1 4
Consy in soj a ] 0.5 a 0 0.5
COomsy in ram 0 0 il il i} 0
consv in _both 1] 1] 1] 1] 1] (1]
AAAGTTTIT
PITGs 2332 5881 1101 7143 4325
hit in sojae 1 1 1 1 1 5
hit in ram 1 1 1 1 1 5
Consy in s5oj a 1] i i 0 0
cons in ram i i i i i} 2
consv in both 1] 1] Q 1] i (1]
CEOOGAAT
PFITGs 638 13374 13636 14720 17063
hit in scjae i 1 1 1 i} 4
hit in ram 1 1 i i 1 5
Consy in soj a 0.3 a a 0 0.5
Cons in ram 0 o 1 0.3 i} 1.3
consv _in both 1] 1] 1] 1] i (1]
CTCACTTC
PFITGs 1101 Sa03 9172 10037 14350
hit in sojae 1 1 1 1 i 4
hit in ram 1 1 1 1 a 4
Consy in s5oj a 1 i i 0 1
cons in ram 0 o i i i} 0
consv in both ] 0 [i] [i] a (1]
TACATGTA
PFITGs 6099 6476 9173 13636 15847 17252
hit in scjae 0 1 1 1 1 1 5
hit in ram ] 1 i i 1 1 5
Consy in soj a ] 0.5 0.5 0 0.3 1.5
Cons in ram 0 o i 0.3 i} 0.3 1
consv in both a 1] 1] 1] i 1] (1]
GCAGCIAT][GAJA
PFITGs 2972 6095 2879 11891 11544 14238
hit in sojae 1 1 a 1 1 1 3
hit in ram 1 1 1] 1 1 1 5
Consy in s5oj a 1] i 1 0.5 1] 1.5
cons in ram 0.5 0.3 i 0.3 1 1 3.3
consv in both ] 1] [i] [i] ] 1] (1]
TIAGICCGG[TCIA
PFITGs 603 6476 TIBE 1319% 13680
hit in scjae i 1 1 1 1 5
hit in ram 1 1 i i 1 5
Consy in soj a ] 0.5 a 0 0.5
Cons in ram 0 o i i i} 0
consv in both a 1] 1] 1] i (1]
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Table E Contd.

TTTAAAAMA
FITGs 7432 BEYS 14002 14360 &d67 Totals
hiz in sojze 0 0 1 i 1 3
kit in ram ] ] 1 1 1 3
Consy in soj a a 0 a 0 [
Cons im ram 0 0 0 0 0 0
consv in both 1] 1] i a il 1]
TATTAATA[GA]
FITGs 2972 5153 B377 9824 14002 15235
hit in scjae 1 1 1 1 1 1 &
kit in ram 1 1 1 1 1 1 [
consy in soj a a 0 a a ] o
Cons im ram 0 0 0 0 0 ] 0
consv in both 1] i ] 1] i 1] 1
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Table F: Shows the list of transformants used for the functional analyses
of the three motifs viz. GCTGCTG, TATTAATA and TACATGTA

Sporangia specific motif: GCTGCTG (SP1)

Construct name

Transformant #

SP1 119 | 120 | 121 | 310 | 320
Germinating cyst motif: TATTAATA (GC2)
Construct name Transformant #
GC2 2 | 10 | 13 [ 17 | 22

All stages motif: TACATGTA (GC1)

Construct name

Transformant #

GC1 4 16

| 25 |
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Chapter lll
Core promoter elements in Irish potato famine pathogen
Phytophthora infestans: their consensus, effect in gene expression and

distribution within the Heterokontophyta

ABSTRACT:

The core promoter, which is the ultimate target for most factors controlling
transcriptional activity, usually draws less attention than proximal elements in
analyses of promoters. A computational analysis of the core promoter regions of
Phytophthora infestans, the most devastating potato pathogen, is presented in
this chapter. P. infestans belongs to the Oomycete class of the phylum
Heterokontophyta. Sets of core promoter regions, 50 bases on either side of the
putative transcription start sites based on EST data were assembled. These sets
were searched in silico for overrepresented motifs and positional bias of the
motifs. A genome-wide analysis was also done by searching 200 bases
upstream of the translation start sites of all P. infestans genes including those
lacking EST data. This resulted in a better Phytophthora-specific consensus for
elements like Initiator (Inr) and Flanking Promoter Region (FPR) that were
previously identified in studies involving a limited number of oomycete genes. A
novel seven base element, Downstream Promoter Element for Pythiales
(DPEpyth) was detected. Genes with none of the three core promoter elements
or with just Inr had equal probability of being constitutively or differentially

expressed. Whereas, those with either FPR or DPEpyth in addition to Inr, were in
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most cases differentially expressed between developmental stages. The
distribution of Inr, FPR and DPEpyth within eight other Heterokonts (five
oomycetes including two Phytophthora species, two diatoms and a brown alga),
were checked. While FPR was found in most oomycetes, DPEpyth was detected
primarily in the Pythiales (Pythium and Phytophthora). Core promoter elements
identified in other organisms, like TATA-box, MTE, DPE, etc., were not detected

at any significant level in P. infestans.

INTRODUCTION:
Precise control of gene expression at the transcriptional level is required for

proper growth and development of any organism. In eukaryotes, the binding sites
for the transcription machinery usually are genomic DNA sequence elements that
act as signals for regulation and are named enhancers, proximal promoters, or
core promoter elements depending on their location (Ohler and Wassarman,
2010). Core promoter elements, unlike enhancers and proximal elements which
are found at varying positions with respect to the transcription start site (TSS), are
present within ~50 bases on either side of the TSSs in most genes transcribed by
RNA polymerase Il. The core promoter can be defined biochemically as the
minimal stretch of DNA that is sufficient to accurately direct basal levels of
transcription initiation by Pol Il in vitro on naked DNA templates containing a
single well-defined transcription start site (TSS; Muller 2007, Butler and Kadonaga
2002, Struhl 1987, Weis and Reinberg 1992, Smale 1997, 2001, Smale et al.

1998, Burke et al. 1998, McLeod et al. 2004, Burke and Kadonaga, 1997). Most
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known core promoter elements are found in focused or single-peak core
promoters, where initiation occurs within a short region (Juven-Gershon et al.,
2008). On the other hand, dispersed core promoters like XCPEI can direct
initiation only with the help of other sequence-specific activators (Juven-Gershon
et al., 2008). The latter play a key role in orchestrating accurate transcription
initiation (McLeod et al., 2004, Burke and Kadonaga, 1997), by directing the
assembly of general transcription factors, Mediator (McLeod et al., 2004), and
several other factors that make up the basal transcription machinery (Hochheimer
and Tjian, 2003, Woychik and Hampsey 2002, and Hampsey, 1998). There is
considerable structural and functional diversity in the core promoters that have
been studied (Smale and Kadonaga, 2003) and this makes the detection of core
promoter elements extremely difficult (Levine and Tjian, 2003). Still, there are
some well-characterized core promoter elements, with TATA-box and initiator (Inr)
being the two most widely studied. No known sequence motif is universal (Juven-
Gershon et al., 2008) or taxon-specific. Therefore, an insight into core promoter
elements in taxa that are not well-studied can lead us to a better understanding of
the evolution of the basal transcription machinery.

Very little is known about the core promoter elements responsible for
transcription of genes in the kingdom Heterokontophyta, which includes brown
algae, chrysophytes, diatoms and some protozoa in addition to oomycetes.
Oomycetes include both plant and animal pathogens in addition to saprophytes.

Phytophthora infestans, an oomycete, is one of the most devastating
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phytopathogens, responsible for the late blight disease in potato. The P.
infestans genome was sequenced recently (Haas et al., 2009), which resulted in
a plethora of data related to this organism. In this study the data that is already
available was used to conduct a genome-wide study of the core promoter
elements in P. infestans, to obtain a better understanding of the transcription
mechanism in this economically important pathogen.

| looked for overrepresented motifs in the region where one would detect
the core promoter elements, i.e. ~50 bases on either side of the putative TSS,
and then checked if those elements show some positional bias within the said
region. Once the core promoter elements were detected, the expression
patterns of genes with different combinations of the three core promoter
elements, were checked, to get an idea of the effects that these have on gene
expression. Differences in expression of genes with different combinations of
core promoter elements has been reported previously (Burke et al., 1998). | have
also looked into the genomes of five other oomycetes (Phytophthora sojae,
Phytophthora ramorum, Pythium ultimatum, Hyaloperonospora arabidopsidis and
Saprolegnia parasitica), two diatoms (Thalassiosira psuedomona and
Phaeodactylum tricornutum) and one brown alga (Ectocarpus siliculosus) to find

out the extent of conservation of the three elements.
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MATERIALS AND METHODS
Sequences:

P. infestans and S. parasitica sequences were obtained from the Broad
Institute  (http://www.broadinstitute.org/annotation/genome). P. sojae, P.
ramorum, T. pseudonana and P. tricornutum sequences were from the Joint
Genome Institute (http://genome.jgi-psf.org). H. arabidopsidis sequences were
from the Virginia Bioinformatics Institute (http://vmd.vbi.vt.edu), E. siliculosus
sequences were from the University of Gent genome portal
(https://bioinformatics.psb.ugent.be/gdb/ectocarpus) and P. ultimatum sequences
were obtained from the Michigan State  University database
(http://pythium.plantbiology.msu.edu/).

Softwares:

MEME (Baily and Elkan, 1994) was used for the detection of
overrepresented motifs. ClustalW (Thompson et al., 1994) was used for multiple
sequence alignments to check for evolutionary conservation. PERL scripts that
were developed in-house were used for sequence extraction and positional bias
analyses.

Assembly of gene sets and sequence extraction:

Translation start positions of all the genes and ESTs in the database were
extracted and mapped with PERL scripts. The EST start sites were considered to
be putative Transcription Start Sites (TSSs). Based on the EST evidences three

different gene sets were assembled: a) High Confidence Set: genes for which
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there were two or more EST evidences for the putative TSSs; b) Expanded Set:
genes for which there was one EST evidence for the putative TSSs; c) Total Set:
all genes in the database, which is actually a superset of the first two sets that
also includes the genes for which there were no EST evidences.

For the High Confidence and the Expanded sets, sequences 50 bases on
either side of the putative TSSs were extracted from the P. infestans database
with a PERL script that was developed in-house. In case of the Total Set, 200
bases upstream of the translation start codon (ATG) were extracted for all genes.

Apart from the three afore-mentioned sets of sequences from P. infestans,
seven other sequence sets, which included 200 bases upstream of ATGs for all
P. sojae, P. ramorum. P. ultimatum, H. arabidopsis, S. parasitica, T.
pseudonana, P. tricornutum and E. siliculosus genes respectively, were
assembled. Some of these were extracted with the same script used for the P.
infestans Total Set. For others the coordinates for the translation start sites were
extracted based on their respective .gff fles and then the sequences were
extracted from the databases with the help of other PERL scripts developed in-
house.

Detection of overrepresented motifs:

Stand-alone MEME version 4.3.0, with a minimum width (minw) of 5 and a
maximum width (maxw) of 8 was used to look for overrepresented motifs. The
default gap opening cost (wg) and gap extension cost (ws) for multiple

alignments of 11 and 1 respectively were used. The distribution of motifs (mod)
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used was “anr’ with a default E-value cut-off (evt) of 1e-05 and 5 as the
maximum number of EM iterations (maxiter) to run. The minimum sites for each
motif (minsites) used were 5 with the rest of the parameters being default.

The expected value for each motif was calculated by dividing the total
number of bases being looked at, with the probability of finding the motif
randomly. This expected value was then used to calculate the observed to
expected ratio.

Detection of positional bias:

Positional bias of all overrepresented motifs for the High Confidence and
Expanded sequence sets were checked by detecting their frequencies within
each of the ten 10 bp windows that the 100 bp sequences were divided into. The
positions where the motifs end were used for calculating their frequencies in
each window. The average and the expected frequencies were taken into
consideration while checking for the positional bias of these motifs.

For the P. infestans Total Set and that of all the eight other heterokonts,
the 200 bases upstream of the ATGs were divided into four fifty base windows for
the purpose of checking the positional bias for each of the motifs
overrepresented in the P. infestans High Confidence and Expanded sets.
Analyzing the effects of Inr, FPR and DPEpyth on gene expression :

Effects of core promoter elements on the expression of genes were
checked with the help two different analyses. First, maximum expression of the

genes in five key asexual stages of the P. infestans life cycle, viz. hyphae,
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sporangia, cleavage, swimming zoospores and germinating cysts, was looked at.
For the second analysis, the maximum fold-change in expression between any
two stages was calculated with the help of per-gene normalized expression data.
Previously published microarray data (Judelson et al., 2008) was used for both
analyses.

Checking for distribution of P. infestans core promoter elements in other
heterokonts:

To analyze the distribution of the P. infestans core promoter elements in
the eight other genomes, | checked a) if the P. infestans core elements were
overrepresented, and b) if these showed similar positional bias in the other
genomes. A PERL script developed in-house was used to determine the
frequency of these motifs in each of the eight other genomes. The equality of
proportions was checked for the observed and expected frequencies for each
motif and a p-value cut-off of 0.05 (95%) was used to determine the significance.
Looking for core promoter elements found in other eukaryotes:

The Total Set was used to look for the presence and distribution of the
most common core promoter elements that have been detected in other
organisms previously. A PERL script was used to detect the frequency and then
the overrepresentation was calculated by assessing the expected frequency of

the motifs in the total number of bases searched.
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RESULTS:
Assembly of gene sets and sequence extraction:

The primary goal of this study is the detection of core promoter elements
in P. infestans. Core promoter elements are found ~50 bases on either side of
the TSS. Therefore, having an idea of where the TSSs for the genes are is
essential. Since TSSs are not annotated in the P. infestans database, | looked for
EST evidence to predict TSSs for the genes. | searched for ESTs that had their
5" termini within 29 to 150 bases upstream of the ATG (the region of interest). It
has been shown in yeast and rice that the minimum distance between the
translation start site (ATG) and the TSS required for the RNA pol Il to function is
approximately 30 bases (Zhang and Dietrich, 2005, Zhu et al., 1995). It is worth
mentioning that ESTs often do not reach the actual 5’ end of the gene. Therefore,
the EST start positions may be close to, but not precisely define, the real TSSs.
This is one rationale for using a 100 bp window for motif searching in this study.
After matching the starting positions of all genes (predicted genes in the Broad
Institute database when the analysis was conducted) with that of all ESTs, it was
found that there were only 3129 ESTs, ~4% of the total (74,135), that had their &’
terminus within the region of interest.

Based on the EST data two different gene sets were assembled as
mentioned in the methods section. The High Confidence Set had 121 genes for
which there were strong EST evidences for the TSS. In this set two or more

ESTs started within two bases of each other within the 100-bp window; the most-
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upstream EST was used to define the TSS. The second set, called the
Expanded Set, is a collection of 571 genes that had a single EST evidence for
the TSSs, i.e. no two EST starts were at the same point or within two bases of
each other, within the 100-bp window. As with the first set, the position that was
most upstream of the ATG was considered to be the TSS. A third group, the
Total Set, was assembled that consisted of all (18178) genes in the database.

For the High Confidence and Expanded Sets, 100 bases (50 bases on
either side of the putative TSS) were extracted for motif searches. The 200
bases upstream of the ATG were searched from the Total Set.

Overrepresented motifs within the core promoter region and their
positional bias:

There are multiple tools available for detecting overrepresented motifs.
Here only MEME was used, as a relatively small region was searched, and the
expectation maximization technique that MEME uses was likely to create less
redundancy than Gibbs sampling or enumerative search methods, with fewer
false positives, compared to other methods.

Most of the overrepresented motifs in the High-confidence and Expanded
sets were very similar to the initiator (Inr) and flanking promoter region (FPR)
motifs that were first detected in P. infestans genes ipiB and ipiO by Pieterse and
his colleagues (Pieterse et al.1994). This was improved upon by McLeod et al. in
2004, who used 15 oomycete genes to define the oomycete Inr consensus as

YCATTYY (MclLeod et al., 2004). Our results from MEME suggested that there
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could be a C instead of a T at the fourth position. Therefore, the frequency and
distribution of variations of the Inr were checked, by changing the C and the two
T residues around the third position purine (A) (Fig 1, Table 1) to degenerate
pyrimidines (C to T/Y, T to C/Y). The effect of degeneracy at the third position
was not checked as McLeod et al. (2004) have shown that this was the
transcription start site for most oomycete genes with Inr; the phenomenon of
transcription starting at the A within the Inr, has been observed in other
organisms (Smale and Kadonaga, 2003, Parry et al., 2010). Fig 1 shows that
most Inr-like motifs were within ten and twenty bases upstream of the predicted
TSSs in the High-confidence and Expanded sets, respectively. The fact that the
peaks for the Inr were somewhat broad may reflect that most of the ESTs are not
full-length.

By changing the Inr consensus from YCATTYY to YCAYTYY, the number
of occurrences in the High-confidence sequence set increased from 35 to 53 in
the 20-nt region just upstream of the putative TSS. Therefore, more Inr
sequences were captured near EST verified TSSs. It should be mentioned that
the expected to observed ratio as a result of this change was comparable to that
of the of the McLeod definition. A similar increase resulted within the Expanded
Set (Fig 1). But, changing the C and T at positions 2 and 5 to any pyrimidine (Y)
did not increase the number of occurrences to such an extent (Table 1) in any of

the two sets, when compared to the hits outside the 20 base window.
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Table 1:

Different Inr definitions and their frequencies within the core promoter
region:

The table shows the frequency of the different Inr definitions within each 10 nt
window of the genes that belongs to the High-confidence set in P. infestans.
Starting with the Inr as defined in Drosophila, degeneracy was introduced into
each of the pyrimidine sites. 3" column from the left shows the definition by
Peiterse et al. (TCAYTTY; 1994), the 4™ shows the definition from McLeod et al.
(YCAYTYY; 2004) and the 5" column from the left shows our definition
(YCAYTYY; bold). TSS is considered as +1. The 6" and the 7" column shows
adding more degeneracy does not increase the frequencies much within the

twenty base window (-20 to +1).

Bas$‘°é ;rom TCATTYY | TCAYTTY | YCATTYY | YCAYTYY | YYAYTYY | YYAYYYY
-50-41 0 0 0 0 2 4
-40-31 0 0 0 0 3 3
-30-21 2 0 4 6 6 9
-20-11 7 6 9 13 14 15
-10-1 19 17 26 40 43 44

1-10 2 3 4 5 5 7
11-20 0 0 0 1 1 2
21-30 0 0 0 3 3 8
31-40 0 0 0 1 5 9
41-50 il 0 1 2 3 7
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Fig 1 legend:

Distribution of three possible Inr definitions in P. infestans gene core
promoter regions:

Shown is the distribution of our suggested definition (YCAYTYY) of Inr in P.
infestans. It is compared with the two other definitions, that of Pieterse et al.
(1994; TCATTYY) and McLeod et al. (2004; YCATTYY), within the High
Confidence (bars) and the Expanded (lines) sets. The logo (upper right hand

corner) is derived from the High Confidence Set results.
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The same is true for the Total Set even though the increase in frequency
is within a region broader than 20 bases in case of the total set. This is, expected
as for this set | was looking at the regions upstream of the ATGs for all the genes
in the database instead of the regions around the putative TSSs. | also checked
for the frequency of each of the bases in all the degenerate positions, for the Inrs
within the High Confidence Set, to come up with a better definition for oomycete
specific Inr (Fig 1) which happens to fit into the consensus for the more
generalized eukaryotic Inri.e. YYAL{NWYY.

The FPR (Flanking Promoter Region) is a core promoter element that was
detected, in 16 oomycete promoters by McLeod et al. (2004), and the suggested
consensus is CAWTTTNYY. Our results from the High Confidence Set indicate
that the pyrimidine at the eighth position is ~90% of the time a cytosine. A
cytosine at that position also decreases the false positives outside the 20 base
window (-10 to +10) for which the FPR shows a bias. Also, the seventh position
N is a guanine approximately 60% of the time and a cytosine was detected ~20%
of the time in place of the second position Adenine (Fig 2, Table 2). As in case of
Inr, to find out if more FPRs could be captured near the EST verified TSSs |
checked for a truncated version by taking off two terminal bases. The increase in
occurrences was significantly more than expected by random chance for the
truncated motif MWTTTNC (obtained by removing the first and the last bases
from the McLeod definition, introducing a degeneracy at the first position and

taking degeneracy off the last position) (Fig 2), suggesting that the two bases on
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either side of this motif may not critical. A similar increase in occurrences was
observed in case of the Expanded Set (Fig 2) and the Total Set (results not
shown) of genes. FPR was found to be highly overrepresented (at least five and
a half times higher than any other 20 base window) in the region -10 to +10,
which is just downstream of each of the two windows where the Inr is
overrepresented. This is consistent with the results reported previously by

McLeod et al. (2004)
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Table 2:

Different FPR definitions and their frequencies within the core promoter
region:

The table shows the frequency of the different FPR definitions within each 10 nt
window of the genes that belong to the High-confidence set in P. infestans. The
second column from left shows FPR (CAWTTTNYY), as defined by McLeod et al.
in 2004. The third column shows that the 2™ position to the right of the three
thiamines, is almost always a cytosine. The fourth column shows that the base to
the right of the three thiamines is a guanine ~60% of the times. The fifth column
shows that the second position of the McLeod defined FPR can also be a M. The
next two columns to the right supports the presence of a guanine and a cytosine
next to the three thiamines ~60% and ~90% of the times. The last but one
column from the left shows the truncated version and our definition MWTTTNC
(bold) of the FPR. The last column shows that a guanine is present next to the

three thiamines ~60% of the times.
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Fig 2 legend:
Distribution of four possible FPR definitions in the P. infestans gene core
promoter regions:

Shown is the distribution for the definition for FPR put forward by McLeod et al.
(2004) in P. infestans (CAWTTTNYY) and its comparison with (CMWTTTNCY)
within the High Confidence (bars) and the Expanded (lines) sets. Distribution of
(CMWTTTGCY) shows that the seventh position N is a Guanine in about 60%
cases. Also shown is the distribution of the truncated version and our definition of
FPR (MWTTTNC). The logo (upper right hand corner) is derived from the results

of the High Confidence Set.
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The region of overrepresentation for FPR, like Inr, broadens as one goes from
high confidence to low confidence to the total gene sets due to the decrease in
confidence about the TSS from one set to another with the increase in the
number of genes. Like with Inr, a better oomycete specific consensus
(MWTTTNC) for FPR was also developed by looking at the frequency of the
bases at each degenerate position within the High confidence set.

The search for overrepresented motifs also identified a new seven base
putative core promoter element, SAASMMS, that was named DPEpyth. This is
present in one-third of the genes in the region from 11 to 40 bases downstream
of the putative TSSs in both High Confidence and Expanded sets (Fig 3), and is
overrepresented within the first 50 bases in case of the total set (Fig 6C). In the
promoters where this element is detected Inr is present almost half (~43%) of the
time; in few cases (~8%) where no Inr could be found, but FPR was present.
FPR and Inr both are present in ~13.5% of the cases and in ~35% DPEpyth is
present by itself (Fig 5A). In genes where this element is present either with Inr or
FPR or both, it is present downstream of both Inr (26 nt on an average) and FPR
(17 bases on an average) and therefore downstream of the TSSs of those genes
(Fig 4A). The position and conservation of these three elements on a gene
Adenosylhomocysteinase (PITG_10198) and its orthologs in P. sojae and P.
ramorum shows that the DPEpyth is not only conserved but, P.sojae has two

copies of this element right next to each other, the alignment also supports our
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definitions of Inr and shows that the FPR in P. infestans would not be detected
with the McLeod definition (Fig 4B).

Meme detected another motif, GARGMR, that was overrepresented in
both the High-confidence and the expanded sets. This was not regarded as a
core promoter element after closer examination indicated that it was usually
found to be very close to the ATG, both upstream and downstream of it. This

might be a motif that plays a role in translation rather than transcription.
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Fig 3 legend:

Distribution of DPEpyth in the P. infestans gene core promoter regions:
Shown is the distribution of the novel P. infestans core promoter element
DPEpyth within the High Confidence (bars) and the Expanded (lines) sets. The

logo is derived from the High Confidence Set results.
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Fig 4 legend:

FPR is present downstream of Inr and DPEpyth is present downstream of
both Inr and FPR.

A) Shown is the positional bias of the three P. infestans core promoter elements
within the core promoter regions of the High Confidence Set. B) Shown is the
conservation of the three core promoter elements in the P. infestans gene
encoding Adenosylhomocysteinase (PITG_10198) and in its orthologs in P. sojae
and P. ramorum. It also shows the relative distance between each of these

elements and that from the translation start site (ATG).
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Correlation between core promoter elements and gene expression:

To check the effects of the three core promoter elements (CPE), two
analyses were performed using High Confidence Set genes. These genes were
divided into seven different sets based on the presence of different core promoter
elements, for the analyses. There were 46 genes out of 121, for which there was
no core promoter element detected in the regions where each of the three
elements are overrepresented; these made the ‘No CPE’ (Fig. 5b) set. The Inr,
FPR and the DPEpyth sets had 19, 8 and 13 genes respectively (Fig. 5a). The
set with Inr and FPR had 11 genes, that with Inr and DPEpyth had 16 and the
one with FPR and DPEpyth had only three genes (Fig. 5a). Five genes had all
three elements (Fig. 5a).

Expression profiles of the genes in the seven sets described above were
extracted from previously reported microarray data (Judelson et al. 2008). The
maximum expression of the genes in any of the five asexual developmental
stages (hyphae, sporangia, cleaving sporangia, swimming zoospore and
germinating cysts) was checked to see if the presence of any element affected
expression levels. Expression data was not available for two genes each in the
‘Inr’ and ‘Inr+DPEpyth’ sets. For all other sets, data were unavailable for one
gene each, except for that of ‘FPR + DPEpyth’, where data for all genes were
available. There were no data for eight genes that belong to the ‘No CPE’ set.

It was observed that the median of the maximum expression for genes

with just Inr (615.4) was more than 2-fold lower than that of the ‘No CPE’ set
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(1355.8). But, the median for the gene sets with FPR, either on its own (2775.5)
or with Inr (2381.2) or DPEpyth (2921.5), was much higher than that of the ‘No
CPE’ set (Fig 5b). The median for the ‘DPEpyth’ (1229.6), ,and ‘No CPE’ sets
were similar. That of ‘ALL 3 CPE set’(1609.3) and ‘Inr + DPEpyth’ (967.5) were
slightly higher and lower than the ‘No CPE set’ respectively. This showed that
FPR probably has the greatest effect on the expression of the genes. It should be
mentioned that even though there were only 3 genes in the ‘FPR + DPEpyth’ set,
the expression pattern of genes with these two elements, were checked within
the expanded set and the results were comparable. It should also be mentioned
that the range for the maximum expressions was pretty broad, and the patterns
that were observed might change with the increase in the number of genes, even
though the patterns held true for the groups (with fewer genes) within the
Expanded Set, that were checked.

Whether the presence of a certain element was associated with
constitutive or developmentally-regulated expression was also examined. To
analyze this, a per-gene normalized data was used to look at the maximum fold-
change for each gene within the five different developmental stages in all the
sets. The median for each set was checked after that. About two-thirds of the
genes with only Inr or FPR showed a maximum fold-change of more than 10 fold
(Fig 5b); whereas only one third of those with DPEpyth showed such a
difference. But, it was highly interesting to find that many more genes showed a

maximum fold change of greater than 10 when there was FPR with Inr (~90%),
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or a DPEpyth with Inr (~80%) (Fig 5b). This suggested that the presence of any
one of the two elements, downstream of the Inr, makes the genes much more
likely to show more extreme changes than with Inr alone or with none of the three
elements. The numbers of genes in the ‘All 3 CPE’ and the ‘FPR + DPEpyth’ sets

were too low to draw any firm conclusions.
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Fig 5 legend:

Core promoter elements within the High Confidence Set and their effect in
gene expression patterns:

A) The Venn diagram shows the number of genes within the High Confidence
Set with different combinations of the three core promoter elements. B) The
upper panel shows the maximum expression of each gene (circle) within the High
Confidence Set divided into different groups depending on the core promoter
elements present in those genes. The horizontal bars represent the median for
each group. The lower panel shows the maximum fold change in expression for a
gene (diamond) within the five different stages of the asexual cycle. The bars

represent the median for each group.
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Distribution of Inr, FPR and DPEpyth in heterokonts:

| decided to look for the three P. infestans elements in other heterokonts
and compare their frequency and distribution with that of P. infestans. The
average distance between the ATG and the TSS (the 5’ UTR) in P. infestans is
considered to be 41 bases (Win et al., 2006). Therefore, | decided to look for
these elements within 200 bases upstream of ATG, which should include the
core promoter region i.e. 50 bases on either side of the TSSs. Hence, 200 bases
upstream of ATG of all predicted genes for each of the eight heterokont species
were extracted and searched for Inr, PFR, and DPEpyth. The GC contents of 1-
kb upstream sequences of each of the said genomes were calculated and taken
into account while calculating the expected frequency of the motifs.

It was observed that the overrepresentation of Inr in all Phytophthora
species viz. P. infestans, P. sojae and P . ramorum (Fig 6a) and all other
heterokonts except for the diatom P. tricornutum and the brown alga E.
siliculosus, using a p-value cut-off of 95%. The absence of Inr from the latter
species may be due to the inaccuracy of their gene models, or the stringency of
the p-value cut-off for significance in an equality of proportions test. In fact, the
observed frequencies for Inr in P. tricornutum within the first 100 bases are much
higher than the background (p = 0.075 for 51-100 bases and 0.12 for 1-50
bases). Also the fact that, the observed values for Inr in T. pseudonana, the other

diatom checked is not significantly higher (p = 0.05 for 51-100 bases and 0.06 for
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1-50 bases) than that of P. tricornutum makes us believe that Inr is actually

overrepresented within 51-100 bases in P. tricornutum too (Table 3).
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Table 3:

Distribution of P. infestans core promoter elements in other Heterokont
species:

Occurrence of the three P. infestans core promoter elements within the first 100
bases upstream of ATG in other species of the phylum Heterokontophyta is
shown above. The observed values per hundred genes is shown. The p-value is
derived from the z-score obtained by checking the equality of proportions
between the observed and the expected values. The p-values shown in bold

were found to be significant at 95% confidence interval.
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Fig 6 legend:

Distribution of P. infestans core promoter elements in the two other
Phytophthora species:

A) Shown is the distribution of Inr within the first 200 bases of all genes (Total
Set) and the bias for the first 100 bases in all three Phytophthora species : P.
infestans, P. sojae and P. ramorum. B) Shows the distribution of FPR within the
first 200 bases of all genes (Total Set) and the bias for the first 100 bases in all
three Phytophthora species. C) Shows the distribution of DPEpyth within the first
200 bases of all genes (Total Set) and the bias for the first 50 bases in all three

Phytophthora species.
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Overrepresentation of FPR was detected not only in all three
Phytophthora species (Fig 6b), but also within Py. ultimum and S. parasitica.
However, no overrepresentation for this motif could be detected in H.
arabidopsidis. DPEpyth is found to be overrepresented within the first 50 base
pairs only in the species that belong to the order Pythiales i.e. the Phytophthora
species (Fig 6¢) and Py. ultimatum. The only other heterokont where an
overrepresentation for DPEpyth could be detected was one of the two diatoms,
T. pseudonana.

Other known core promoter elements in P. infestans: The searches
for over-represented motifs described above did not reveal any sequences
resembling core promoter elements described in other eukaryotes besides the
Inr. These include the widely distributed TATA-box and others such as the
BREu, BREd, DRE, and Y-patch that have been reported in a more narrow range
of species (Smale and Kadonaga, 2003 ; Civan and Svec, 2009).

To test more directly whether such elements might exist as functional
motifs in P. infestans, | tested whether they are over-represented. No TATA-like
sequence appeared over-represented in the High Confidence, Expanded and
Total sets (Table 4). When the sequence was detected (possibly by random
chance), no positional bias was observed within the 200 base pairs upstream of
all P. infestans genes (Total set). No peaks were observed in the region where

the TATA-box is usually detected, i.e. approximately 26 to 30 bases upstream of
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the TSS in all organisms studied, other than S. cerevisiae, (Ohler and
Wassarman, 2010; Jin et al., 2006; Ohler, 2006), when | searched the High
Confidence and the Expanded sets. In S. cerevisiae it appears in a wider region
40 to 120 bases upstream of the TSS, and this region, for most genes was
included within the total set where no peaks were detected. Different variations of
TATA-box detected in previous studies were looked for in all three different sets
of genes for P.infestans but no overrepresentation in any particular region could
be detected. Other elements that are found upstream of the TSS in some
organisms (BREu, BREd and DRE), were also not detected more often than they
are expected by random chance (Table 4). A similar result was obtained for
elements normally found downstream of TSS like MTE and DPE (Table 4).
Variations and degenerate definitions of these core promoter elements, along
with that of plant core promoter elements such as Y-patch and Arabidopsis motif
5 and motif 7, were checked but overrepresentation for none of these could be
detected. For example, the plant core promoter element Y-patch was checked
using a considerably degenerate definition (CYTCYYYCCYC) (Civan and Svec,
2009), but not a single occurrence could be detected in the High Confidence set.
In the Total Set only 1% of the genes had this element (Table 4) which is much
less than one would expect by random chance. Similarly, the most degenerate
versions of two Arabidopsis core promoter elements, motif 5 and motif 7 (Molina
and Grotewold, 2005) were found to be present in only 0.06% and 0.1% of the

genes respectively when the Total Set was searched.
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Table 4:
Distribution of Inr, FPR, DPEpyth and other well-known eukaryotic core
promoter elements in P. infestans:

The table above shows the percentage of P. infestans genes that carry the well-
known core promoter elements. It also shows if these elements have a bias
towards any particular position, within the first 200 bases upstream of the

translation start sites, of the genes where these are present.
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DISCUSSION:

Early core promoter studies established the idea of the TATA-box being
universal, but the views regarding core-promoter organization in eukaryotes have
changed in recent times. The TATA-box is no longer considered to be a general
polymerase |l core-promoter feature (Gross and Oelgeschlager, 2006). Other
core promoter elements like Inr, DPE, MTE, etc. have also been identified over
the years, but have also proved to not be universal. Nevertheless, some of these
motifs may function through similar mechanisms. TATA, TATA-Inr, Inr and Inr-
DPE in all likelihood initially evolved as functionally equivalent recognition sites
for TFIID subunits and their evolutionary precursors (Smale and Kadonaga,
2003). It has been suggested that these may continue to function as
interchangeable TFIID recognition sites in some promoters (Smale and
Kadonaga, 2003). Most of the P. infestans promoters seem to be in the Inr class
as very few TATA or DPE motifs could be detected.

To the best of our knowledge this is the first comprehensive in silico
genome-wide analysis of core promoter elements in any oomycete or heterokont.
The two main challenges regarding computational promoter analyses are: TSS
prediction which is required for accurate localization of the core promoter, and
the discovery of motif within that search space. To address the first issue, | have
considered EST data related to each gene to locate the TSS. The somewhat
broad (over a 20 base window) distribution for the different core promoter

elements, instead of specific positions with respect to the TSS, is probably due to
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the lack of knowledge for the exact TSSs for the genes. To counter the second
challenge | have followed some of the guidelines suggested by a prior study
(Juven-Gershon et al., 2006). This includes checking whether the putative core
promoter elements are in several different gene promoters, and if the motifs are
at a specific position (positional bias) with reference to the putative TSS. For
elements like Inr, which is a known binding site for subunits of TFIID (Smale and
Kadonaga, 2003), and FPR which is specific to oomycete promoters, these were
detected in increased number of genes by checking for certain variations which
were obtained from MEME results. As suggested previously by Mcleod et al.
(2004) it was found that the FPR is situated exactly eight bases downstream of
the Inr, but only in about one-third of the genes that the Inr. Conservation of
distances between core promoter elements has been observed in the case of Inr
and DPE in Drosophila (Burke and Kadonaga, 1997). Inr is found in two times
more genes than FPR in P. infestans, which implies that FPR is not necessary
for Inr function although there could be a combinatorial effect. This is evident
from the analysis of expression data where most the genes with Inr and FPR
have higher maximum expression than the ones with only Inr. This is similar to
the effect that TATA-box has in Drosophila genes with Inr, where the expression
is higher than that of the TATA-less genes (Burke et al., 1998). There are some
P. infestans genes where FPR is found without an upstream Inr, which suggests
that FPR might be able to initiate transcription independently by binding to an

element within the RNA polymerase |l complex. FPR has a base composition
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very similar to that of Inr which might help it bind. The expression data are
consistent with this hypothesis, since FPR was correlated with higher levels of
expression. The definitions for Inr and FPR include a lot of degeneracy, which
might suggest that the elements within the basal transcription machinery that
bind to these elements are flexible in their choice of binding sites. This
hypothesis is supported by the findings of McLeod et al. (2004), which shows that
a guanine at the fourth position of Inr (YCAYTYY) instead of a cytosine or
thiamine works fine. Similarly, a guanine at the eighth position of the McLeod-
defined FPR (CAWTTTNYY) is able to initiate transcription, even though a
cytosine was detected at that position, almost always.

Overrepresentation of none of the other well-known eukaryotic core
promoter elements could be detected. Lack of the TATA-box in P. infestans is not
particularly surprising, due to the abundance of Inr, which is more commonly
found in TATA-less genes. Inr, like the TATA-box, is the recognition site for the
multi-subunit TFIID complex (Smale and Kadonaga, 2003), which contains the
TATA-binding protein (TBP) and several TBP-associated factors (TAFs; Burke et
al., 1998; Smale et al., 1998). Therefore, it is probably somewhat redundant for
an organism to have both, even though classes of genes with both an Inr and
TATA-box have been identified in Drosophila and some mammals. There is
considerable evidence that the two subunits of TFIID complex viz. TAF2 and
TAF1 interact with the Inr (Verrijzer et al., 1994, 1995; Kaufmann et al., 1998;

Chalkley and Verrijzer, 1999) in a sequence-specific manner (Kaufmann and

240



Smale, 1994; Martinez et al., 1994; Purnell et al., 1994, Burke and Kadonaga,
1996; Oelgeschlager et al., 1996). It has also been observed that purified RNA
polymerase |l recognizes Inr and mediates transcription in the absence of TAFs
(Carcamo et al., 1991; Weis and Reinberg, 1997), suggesting that Inr is required
for different steps in the process of transcription when it interacts with TFIID and
RNA polymerase Il (Butler and Kadonaga, 2002).

DPE (Butler and Kadonaga, 2002; Juven-Gershon et al., 2006) and MTE
(Juven-Gershon et al., 2006) are mostly seen in non-oomycete TATA-less
promoters. Both DPE and MTE are believed to act co-operatively with Inr (Juven-
Gershon et al.,, 2006) as without the Inr neither exhibit core promoter activity.
Therefore, it might be expected that these elements would be overrepresented in
P. infestans core promoters, which is not the case. This is probably due to the
fact that most of these consensus sequences are derived from studies in
vertebrates and insects. A previous study (Judelson et al., 1992), which tested
promoter sequences from a range of species for their activities in oomycetes, has
shown that non-oomycete promoter elements do not work in oomycetes. It has
been suggested that in oomycetes the DNA binding specificity of key elements of
the transcription machinery are either different from their orthologs in higher fungi
and eukaryotes or these proteins may be not be present (Judelson et al., 1992).

A new putative core promoter element, DPEpyth, which is a seven base
element found downstream of the TSS, was detected. Although mostly detected

in promoters where there was either Inr or FPR or both, there were quite a few
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exceptions suggesting that DPEpyth might be able to function independently of
the other motifs. The results from the expression analyses suggest that DPEpyth
on its own may not have a lot of impact on the level of expression of a gene.
DPEpyth is found to be overrepresented within the first 50 bases upstream of the
ATG among all the Phytophthora species and in Py. ultimatum, which is very
close to Phytophthora in terms of phylogenetic distance suggesting that this may
be specific to the order Pythiales. However, its overrepresentation in one of the
two diatoms suggests that its distribution might be broader. The reason behind
the absence of DPEpyth in the other diatom is probably due to the phylogenetic
distance between the two diatoms (McDonald et. al., 2010) studied. Therefore,
further study for this element might be interesting and might provide some clue
sabout the evolution of the transcription machinery in the different organisms.
DPEpyth is always found downstream of the Inr and FPR and is fairly close to the
translation start, therefore the possibility that it might have some role in
translation can not be excluded. But, the fact that it is found at a region where
another well-characterized core promoter element, DPE, is found in Drosophila,
tells us that it most likely is involved in transcription. Also, like DPE, DPEpyth in
most cases is found either with Inr or with FPR (that has very high sequence
similarity with Inr) which strengthens this belief.

To conclude, this study shows us that some core promoter elements like
FPR might be specific to a very small class like oomycetes. Also, there might be

a species-specific or group-specific consensus for other well characterized

242



elements like Inr and that is probably the reason why the consensus for Inr in
Drosophila differs from that of Inr in mammals. It also shows that an entirely
different sequence (like DPEpyth) can be detected at a region where another
known core promoter element (DPE) is found in other organisms. Therefore,
searching for a consensus identified in another organism may not be the optimal
approach for detecting core promoter elements in a phylogenetically distant
organism. A better approach is looking for different variations and also searching

for new elements.
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CONCLUSION

Identification of regulatory elements, especially that of transcription factor
binding sites (TFBSs), has been one of the most intriguing problems related to
gene regulation that bioinformaticians have tried to solve (Li and Tompa, 2006).
Multiple algorithms have been developed over the years for detection of
overrepresented sequences within promoter datasets, but each of these have
their own share of pros and cons (Tompa et al., 2005). One major problem is that
these short degenerate sequences do not carry much information on their own.
To tackle the issues related to the problem of TFBS identification, and to
increase the reliability of the predictions, scientists have tried different
approaches over the years. Some of these approaches such as looking at the
positional bias of a short string of DNA sequence known as ‘motif’ (Bellora et al,
2007; Tharakaraman et al., 2008), considering phylogenetic information (Cliften
et al. 2003; Hong et al., 2003; McCue et al., 2002, Dermitzakis et al., 2002; Guo
and Moose, 2003; Bowser and Tobe, 2007), or looking at the chromatin structure
(Whitington et al., 2009), are very interesting. High-throughput molecular
techniques like Chromatin immunoprecipitation (ChIP; Kaufman et al., 2010),
hybridization to microarrays (ChlP-chip; Chen et al., 2010) and direct sequencing
(ChlP-sequencing, Raha et al, 2010) that look at protein DNA interactions, have
also been used for identification of TFBSs. The cost involved with the high-

throughput molecular techniques is high, therefore, in recent years the focus has
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been on combining bioinformatics and molecular techniques for prediction and
validation of TFBSs (Vallania et al. 2008).

In this study | have presented a method (Chapter |) that combines data
from regulatory genomics, positional regulomics and comparative genomics, for
the robust prediction of candidate TFBSs. The validation of functionality of the
predicted candidates is then done with data from relatively fast functional
genomics and protein-DNA binding affinity experiments. It was shown that the
method is fast and robust in terms of predictions. In terms of validation, it is
inexpensive and not very labor intensive, when compared to other molecular
techniques. With the cost of sequencing going down and the number of
sequenced genomes going up by the day, this method can be applied in case of
any organism to great effect. This method was used to identify the proximal and
core promoter elements present in Phytophthora infestans.

Even if its historical importance is set aside, its economical importance
makes Phytophthora infestans an organism worth studying. It remains a critical
threat to world food security and causes a loss of ~ 6.7 billion dollars (Haas et al.,
2009) by infecting potato, the world’s largest non-cereal foodcrop.
P. infestans genome was sequenced in 2009 (Haas et al., 2009), this opened the
doors for genomics and bioinformatics studies related to this organism, which
has the largest and most complex genome among the chromalveolates
sequenced to date (Haas et al. 2009). P. infestans genome (~240 Mb) is much

larger when compared to that of the other related Phytophthora species (95 Mb
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in P. sojae and 65 Mb in P. ramorum), but there is not much difference in the
number of protein coding genes (17797 in P. infestans , 16988 in P. sojae and
14451 P. ramorum; Haas et al. 2009), makes P. infestans an interesting
organism to study from a bioinformatician’s point of view as well.

Phytophthora exhibits fungus-like growth that involves the formation of
spores on the termini of specialized hyphae called sporangiophore (Judelson
and Blanco, 2005). In fact, most oomycetes look superficially like fungi due to the
filamentous thread-like mycelia. This coupled with absorption being the common
nutritional mode, were the main reasons why they were once classified with true
fungi like yeast and Neurospora. However, there are several differences between
true fungi and oomycetes. One of the main differences is diploidy in oomycetes,
unlike in true fungi, which impairs the use of mutagenesis while studying
development. Unlike in other diploid organisms, while doing reverse genetics,
one has to rely on gene silencing rather than knock-outs since homologous
recombination of transgenes is extremely rare in P. infestans. This is one of the
main reasons behind limited research with this group.

This research, to the best of our knowledge, is the first systematic study of
promoter structure in any oomycete. | have studied the core elements within the
promoters of P.infestans genes and the proximal elements within the promoters
of genes upregulated in the five key asexual stages. A previous study (Judelson
et al. 1992), which tested promoter sequences from a range of species for their

activities in oomycetes, has shown that non-oomycete promoter elements do not
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work in oomycetes. The fact that non-oomycete promoter elements do not work
in oomycetes makes the study even more relevant.

Our study of the core promoter regions (Chapter Ill) revealed the presence
of a seven base putative core promoter element (DPEpyth), in Phythophthora
and Pythium, which has not been reported thus far. The elements that have been
detected within oomycete core promoters to date are Inr (YCATTYY; McLeod et.
al, 2004) and FPR (CAWTTTNYY; McLeod et. al, 2004). These elements are
very similar to each other if sequence similarity and their position within the core
promoter are considered, suggesting that they might be binding either to the
same or very similar factors within the transcription machinery. The DPEpyth
motif (SAASMMS), on the other hand, is not only different from Inr and FPR at
the sequence level, it also is ~25 bp closer to the translation start site when
compared to the Inr, suggesting that this might be involed in binding a different
protein. The presence of Inr and/or FPR in most of the genes where DPEpyth is
found strengthens this belief. The expression data shows that the genes, carrying
DPEpyth without Inr or FPR, on an average have higer maximum expression
than those carrying Inr but lacking FPR and DPEpyth. This suggests that the
DPEpyth might be an important core promoter element for the non-Inr and non-
TATA genes. It has also been able to confirm the absence of TATA-box within
most oomycete genes, and to put forward better definitions for the two other core

promoter elements present in oomycetes, Inr and FPR.
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As for the proximal promoter region, after a systematic study of the five
key asexual stages in P. infestans (Chapter Il), robust predictions for more than
41 stage-specific motifs were made, these are not only overrepresented but, are
also positionally biased. Though, it is mention worthy that neither
overrepresentation nor positional bias guarantees that a motif is a real TFBS.
The fact that these elements show evolutionary conservation with either one or
both of the two other Phytophthora species checked suggest that these elements
have a very high probability of being real TFBSs. After doing functional analyses
for five of these putative TFBSs viz. ‘TACATGTA’, ‘TATTAATA’, ‘CGTCCTCG’,
‘GCTGCTG’ and ‘CTTCAAC’, the biological activity of the last four elements
were confirmed. ‘TATTAATA’ was found to be active in germinating cyst.
‘GCTGCTG’ and ‘CTTCAAC’ were active in mature and early sporangia
respectively, whereas ‘CGTCCTC’ was active during cleavage. Both sporangia
and cleavage are essential for the release of zoospores, the principal innoculum
of the disease caused by P. infestans, and cysts are essential for the formation of
infection structures. All of these elements have a bias for a region that is less
than 600 bases from the translation start site, which is in accordance with the
previous studies (Ah-Fong et al., 2007; Tani and Judelson, 2007) that have
identified functional motifs. Unlike in human, there has been no evidence of distal
regulators in P. infestans, in whatever little data that is available related to
oomycete promoters. Also, the average intergenic region in P. infestans is 603

bp (Haas et al., 2009). Therefore, it is highly likely that these promoter elements
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would work in close co-ordination with the core promoter elements, from a short
distance to control gene expression.

It was found that ‘TACATGTA’, a motif overrepresented in all stages, but
capable of driving very little or no reporter expression, in any, was present in
tandem with the ‘TATTAATA’ and the ‘TACAGTA’ motifs in the promoters of the
genes that encodes for the bZIP-like TFs and are induced in germinating cysts.
The fact that the bZIP-like genes are up-regulated in the germinating cyst stage
and the ‘TATTAATA’, TACAGTA' motifs are overrepresented within the same set
suggests that ‘TACATGTA’ might be a binding site for a general transcription
factor that needs help from other elements in different stages for regulating gene
expression. The reverse analysis also showed that the motifs found in the
promoters of the bZIP transcription factor genes were in congruence with their
expression pattern. Genes that were upregulated in sporangia, cleaving
sporangia and germinating cysts in all cases carried motifs that were found to be
overrepresented in these stages.

| believe that this research should lead to the identification of transcription
factors for some of the overrepresented, positionally biased and evolutionarily
conserved putative TFBSs that have been predicted, with the help of biochemical
approaches. The study of pathways that activate these TFs, with genetic,
biochemical and cell-biological methods, should eventually lead to a detailed
understanding of the mechanisms that trigger the formation of spores, the

principal inoculum for the disease, and give some insight on the other
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developmental stages. An understanding of the pathways involved in the asexual
development P. infestans should throw some light on the signaling pathways
that regulate development in oomycetes as a whole. In terms of broader impact,
this should lead to new and improved strategies for blocking the disease.
Transgenic plants that degrade molecules found to trigger development,
or chemicals that block the receptors of those molecules can be used to arrest
the disease cycle. It would be a major achievement if the spore cycle can be
blocked. Not only P. infestans but most oomycetes and fungus-like species,
without spores, can neither move to a new habitat or host, nor form infection
structures. This is the reason why interfering with the spore cycle has been a
proven strategy for controlling disease in other systems (Kim et al., 2000;
Matheron et al., 2000; Reuveni, 2003; Errampalli, 2004; Munkvoid and Marois,
1993; Wheeler et. al., 2003). Another strategy can be blocking the transcription
factors responsible for driving the RXLR effector genes. The RXLR effectors are
secreted and translocated into the plant cell, to suppress both PAMP-triggered
and Effector-triggered immunity, by oomycete plant pathogens like P. infestans
(Birch et al. 2008). | did not look at the RXLR effector genes specifically, but
there were many RXLR effector genes within the promoters of the genes
upregulated in germinating cyst. The ‘TATTAATA’ motif, functionality of which
has been validated in this study, was found to be overrepresented within the
promoters of those genes. With the advances in chemical genomics and the

increasing availability of chemical libraries to screen, the information on TFs to
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be blocked to stop the spore cycle or the expression of the RXLR effector genes
might be of immense importance. The day may not be far when late blight is

finally eradicated.
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