
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Constrained Network Optimization: Algorithms, and Applications in Frequency Regulation

Permalink
https://escholarship.org/uc/item/1vk8x8pd

Author
Srivastava, Priyank

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1vk8x8pd
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Constrained Network Optimization: Algorithms, and Applications in Frequency Regulation

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Engineering Sciences (Mechanical Engineering)

by

Priyank Srivastava

Committee in charge:

Professor Jorge Cortés, Chair
Professor Maurício de Oliveira
Professor Jan Kleissl
Professor Melvin Leok
Professor Behrouz Touri

2021

Copyright
Priyank Srivastava, 2021

All rights reserved.

The dissertation of Priyank Srivastava is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2021

iii

DEDICATION

To my family and prabhu Shri Ram.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Vita . xv

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1
1.1 Literature Review . 3

1.1.1 Algorithms for Network Problems 3
1.1.2 Frequency Regulation from DERs 7

1.2 Statement of Contributions . 10
1.2.1 Algorithms for Network Problems 10
1.2.2 Frequency Regulation from DERs 13

1.3 Organization . 14

Chapter 2 Preliminaries . 16
2.1 Notation . 16
2.2 Graph Theory . 18
2.3 Convex Analysis . 19
2.4 Dynamic Average Consensus . 20
2.5 Probability Theory . 21
2.6 Constrained Optimization . 21

2.6.1 Continuously differentiable exact penalty functions 23
2.6.2 Globally Projected Dynamical Systems 26

2.7 Event-Triggered Control . 27

Part I Application-Agnostic Distributed Algorithms for Network Prob-
lems 30

Chapter 3 Distributed Algorithms for Linear Equations 31
3.1 Problem Formulation . 32
3.2 Distributed Algorithm Over Undirected Networks 33
3.3 Distributed Algorithms Over Directed Networks 38

v

3.3.1 Centralized Algorithm Over Weight-Balanced Networks 39
3.3.2 Distributed Algorithm Over Weight-Balanced Networks 42
3.3.3 Distributed Algorithms Over Unbalanced Networks 47

3.4 Simulations . 51

Chapter 4 Network Optimization via Smooth Penalty Functions 54
4.1 Problem Statement . 55
4.2 Distributed Computation of the Gradient of Penalty Function 59

4.2.1 Distributed computation of multiplier functions 60
4.2.2 Distributed computation of the gradient 62

4.3 Distributed Optimization via Interconnected Dynamics 65
4.4 Simulations . 71

Chapter 5 Nesterov Acceleration for Equality-Constrained Convex Optimization 75
5.1 Problem Statement . 76
5.2 Convexity of the Penalty Function . 78

5.2.1 Sufficient Conditions for Convexity over the Domain 79
5.2.2 Convexity over Feasible Set Coupled with Invariance 84

5.3 Simulations . 86

Chapter 6 Decentralized Event-TriggeredOptimization via Agent-Supervisor Coordina-
tion . 89
6.1 Problem Formulation . 90
6.2 Event-Triggered Coordination for Unconstrained Problems 92
6.3 Event-Triggered Coordination for Constrained Problems 96
6.4 Simulations . 100

Part II Applications of Constrained Optimization in Frequency Regula-
tion from DERs 104

Chapter 7 Participation of DERs in Frequency Regulation Markets 105
7.1 Frequency Regulation with Microgrids 106

7.1.1 Review of Current Practice . 107
7.1.2 Problem Statement . 110

7.2 Microgrid Abstractions . 111
7.2.1 Capacity Bounds . 113
7.2.2 Ramp Rate Function . 119
7.2.3 Cost Function . 127
7.2.4 Bids for Participation in Market Clearance 131

7.3 RTO-DERP Coordination Problem . 132
7.4 Simulations . 140

vi

Chapter 8 Frequency Regulation via Simultaneously Stabilizing Data-Driven Controller 145
8.1 Problem Formulation . 145
8.2 Data-Driven Controller Design . 148

8.2.1 Training Data from Optimal Input Trajectories 148
8.2.2 Common Controller for Stabilization of All Modes 149
8.2.3 Common Controller for Stabilization of Switched System 152
8.2.4 Common Controller for Stabilization of Switched System via

Distributed Control . 155
8.3 Simulations . 157

Chapter 9 Conclusions . 161
9.1 Summary . 161
9.2 Future Directions . 163

9.2.1 Extensions . 163
9.2.2 And Beyond... 164

Bibliography . 166

vii

LIST OF FIGURES

Figure 3.1: Communication topologies among the agents. The edge weights are adjusted
to make the graphs either weight-balanced or unbalanced, as needed. 52

Figure 3.2: Evolution of the error between the actual solution and the average state using
the proposed algorithms (3.13), (3.16) and (3.17) over the graphs shown in
Fig. 3.1. Straight lines correspond to exponential convergence. 52

Figure 4.1: Evolution of the objective function value under the proposed distributed dy-
namics with � = 10−1 and 1, resp., the centralized gradient descent, the central-
ized and the distributed Nesterov’s accelerated gradient method of the penalty
function, and the saddle-point dynamics of the Lagrangian. 72

Figure 4.2: Evolution of the constraints. 73
Figure 4.3: Evolution of the objective function value under the proposed distributed dy-

namics in the presence of disturbances. The amount of disturbance in per-
centage denotes the ratio of the norm of the disturbance to the norm of the
unperturbed dynamics. 74

Figure 5.1: Performance comparison of the proposed algorithm with the second-order
augmented Lagrangian method, the saddle-point dynamics applied to the La-
grangian and the augmented Lagrangian, respectively, and the gradient descent
of the penalty function. 87

Figure 6.1: Communication infrastructure considered. Black dots represent the agents and
the edges represent the communication links. 90

Figure 6.2: The IEEE 37-bus test feeder, where node 0 represents the supervisor, red nodes
represent the micro-generators and black nodes represent the loads; edges rep-
resent the electrical connection between the nodes. 101

Figure 6.3: Evolution of the objective function for the unconstrained and the constrained
cases using the proposed event-triggered mechanisms. 101

Figure 6.4: State evolution using the proposed event-triggered coordination algorithms. ×
markers denote the triggering instances for the corresponding agent. 102

Figure 7.1: Power system framework considered. The Regional Transmission Organiza-
tion (RTO) monitors the bulk grid and coordinates with the aggregators, which
communicate with each other, and control the resources inside their respective
microgrids. 106

Figure 7.2: Illustration of the computation of capacity and mileage. 107
Figure 7.3: Regulation capacities for different instantiations of the reduced-order UCSD

microgrid. 118
Figure 7.4: Ramp rate functions for different instantiations of the reduced-order UCSD

microgrid with constant loads. The shaded regions represent the range of reg-
ulation power that the corresponding microgrid can provide. 126

Figure 7.5: Abstracted cost functions for different instantiations of the reduced-order
UCSD microgrid with constant loads. The shaded regions represent the range
of regulation power that the corresponding microgrid can provide. 131

viii

Figure 7.6: Reduced-order model of the UCSD microgrid where blue node is connected
to the tie line, green nodes represent the generators, dark yellow the electric
vehicle stations and red the building loads. 140

Figure 7.7: Performance of the proposed RTO-DERP distributed coordination algorithm.
(a) shows the state evolution where black dashed lines represent 1% band of
the required regulation power. (b) compares the proposed approach with the
algorithm followed currently. 142

Figure 8.1: 12-bus 3-region network used in simulations. 157
Figure 8.2: Frequency deviation at node 1 for different switching sequences using the op-

timal and distributed controllers. Dashed vertical lines represent the switching
instances and different line styles correspond to different switching sequences. 159

ix

LIST OF TABLES

Table 7.1: Bidding quantities for up regulation market . 131

Table 8.1: Performance metrics for the designed controllers under different inertia modes . 159

x

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Prof. Jorge Cortés, for his constant

support during the past five years. To be honest, Jorge, I do not think writing a few sentences here

does proper justice to how awesome of an advisor you are! Your dedication towards your students

is commendable. Your passion towards research and mentoring helped me grow in more ways than

I imagined at the beginning of this journey. I would always cherish the time we spent together in our

meetings. Thanks for your patience while educating me and turning my crappy drafts to eloquent

papers. Apart from the research, I am also thankful for your support on other miscellaneous stuff.

In short, thank you so much for everything. I sincerely hope that we keep working together in the

future.

Thanks to my dissertation committee professors: Prof. Maurício de Oliveira, Prof. Jan

Kleissl, Prof. Melvin Leok, and Prof. Behrouz Touri for taking time out of their schedule and

providing me with suggestions. Special thanks to Jan for making the collaboration on the ARPA-e

and DERConnect projects so pleasant.

My sincere thanks to all the professors at UCSD whose teachings helped in shaping the

dissertation implicitly. Thanks to my professors at Indian Institute of Technology Delhi for their

encouragement and support during my Ph.D. applications.

Over the years, I have been fortunate enough to work with some amazing people. I thank

Prof. Sonia Martínez for all the fruitful discussions we had. Thanks to Prof. Patricia Hidalgo-

Gonzalez for all the technical and non-technical discussions. Special thanks to Dr. Guido Cavraro

for being so proactive and always bringing new viewpoints to the discussion, and Dr. Chin-Yao

Chang for helping me in the early stages of my Ph.D. Thanks to Manasa and Dr. Hamed Valizadeh

xi

Haghi for their help on the ARPA-e and DERConnect projects.

I would also like to thank current and former members of our research group: Aamodh,

Parth, Prasad, Miguel, Dan, Dimitris, Zhichao, Eduardo, Tor, Erfan, Yifu, Ahmed, Shenyu, Aaron,

Scott, Masih, andVishaal, for the all the technical discussions and fun conversations. Special thanks

to my former colleague Prof. Ashish Cherukuri, who has guided me on more than one occasion,

and my friend Pio Ong, who is up for discussions at any time of the day. Pio, we will definitely

write a paper together!

Thanks to my friends Ankit Dubey and Debojyoti Biswas for their help during my initial

days in the US. Special thanks to my best friend Krishan Kant Bhalla for always being there for me,

and my friend Chetan Balaji Nauduri who has helped me selflessly in many instances.

Finally, I would like to thank my parents for their wholehearted support and patience.

Thanks to my brother Piyoosh for providing me the family support over the last couple of years, and

my partner Madhurima for her unconditional love and always prioritizing my achievements over

hers.

The research of the thesis was supported generously by the ARPA-e NODES program, Co-

operative Agreement DE-AR0000695, NSF Awards ECCS-1917177 and ECCS-1947050, and Na-

tional Renewable Energy Laboratory (NREL) under Contract DE-AC36-08GO28308.

Chapter 3, in part, is a reprint of the material [SC22] as it appears in ‘Solving linear equa-

tions with separable problem data over directed networks’ by P. Srivastava and J. Cortés, in the IEEE

Control Systems Letters, 2022, as well as [SC21b] where it appears as ‘Network optimization via

smooth exact penalty functions enabled by distributed gradient computation’ by P. Srivastava and

J. Cortés in the IEEE Transactions on Control of Network Systems, 2021. The dissertation author

was the primary investigator and author of these papers.

xii

Chapter 4, in part, is a reprint of the material [SC21b] as it appears in ‘Network optimization

via smooth exact penalty functions enabled by distributed gradient computation’ by P. Srivastava

and J. Cortés, in the IEEE Transactions on Control of Network Systems, 2021, as well as [SC18]

where it appears as ‘Distributed algorithm via continuously differentiable exact penalty method for

network optimization’ by P. Srivastava and J. Cortés in the proceedings of the 2018 IEEE Confer-

ence on Decision and Control. The dissertation author was the primary investigator and author of

these papers.

Chapter 5, in full, is a reprint of the material [SC21a] as it appears in ‘Nesterov acceleration

for equality-constrained convex optimization via continuously differentiable penalty functions’ by

P. Srivastava and J. Cortés, in the IEEE Control Systems Letters, 2021. The dissertation author was

the primary investigator and author of this paper.

Chapter 6, in full, has been submitted for publication of the material [SCC21a] as it may

appear as ‘Agent-supervisor coordination for decentralized event-triggered coordination’ by P. Sri-

vastava, Guido Cavraro, and J. Cortés, in the IEEE Control Systems Letters, 2021. The dissertation

author was the primary investigator and author of this paper.

Chapter 7, in part, is a reprint of the material [SCC21b] conditionally accepted for publi-

cation as ‘Enabling DER participation in frequency regulation markets’ by P. Srivastava, Chin-Yao

Chang, and J. Cortés, in the IEEE Transactions on Control Systems Technology, 2021, as well

as [SCC18] where it appears as ‘Participation of microgrids in frequency regulation markets’ by

P. Srivastava, Chin-Yao Chang, and J. Cortés in the American Control Conference, 2018. The

dissertation author was the primary investigator and author of these papers.

Chapter 8, in full, is currently being prepared for submission for publication of the material

as ‘Frequency regulation via simultaneously stabilizing data-driven controller’ by P. Srivastava, P.

xiii

Hidalgo-Gonzalez, and J. Cortés. The dissertation author was the primary investigator and author

of this paper.

xiv

VITA

2012 Bachelor of Technology in Electrical Engineering, National Institute of
Technology, Kurukshetra

2016 Master of Technology in Electrical Engineering (Control & Automation),
Indian Institute of Technology Delhi

2017 Master of Science in Engineering Science (Mechanical Engineering), Uni-
versity of California San Diego

2021 Doctor of Philosophy in Engineering Science (Mechanical Engineering),
University of California San Diego

PUBLICATIONS

Journal publications:

[1] P. Srivastava, G. Cavraro, and J. Cortés. Agent-supervisor coordination for decentralized
event-triggered optimization. IEEE Control Systems Letters, 2021. Submitted

[2] P. Srivastava, C.-Y. Chang, and J. Cortés. Enabling DER participation in frequency regulation
markets. IEEE Transactions on Control Systems Technology, 2021. Conditionally accepted

[3] P. Srivastava and J. Cortés. Solving linear equations with separable problem data over directed
networks. IEEE Control Systems Letters, 6:596–601, 2022

[4] T. Anderson, M. Muralidharan, P. Srivastava, H. Valizadeh Haghi, J. Cortés, J. Kleissl, S.
Martínez, and B. Washom. Frequency regulation with heterogeneous energy resources: A
realization using distributed control. IEEE Transactions on Smart Grid, 12(5):4126–4136,
2021

[5] P. Srivastava and J. Cortés. Network optimization via smooth exact penalty functions enabled
by distributed gradient computation. IEEE Transactions on Control of Network Systems, 2021.
To appear

[6] P. Srivastava and J. Cortés. Nesterov acceleration for equality-constrained convex opti-
mization via continuously differentiable penalty functions. IEEE Control Systems Letters,
5(2):415–420, 2021

Conference proceedings:

[7] P. Srivastava, G. Cavraro, and J. Cortés. Agent-supervisor coordination for decentralized
event-triggered optimization. In American Control Conference, Atlanta, Georgia, June 2021.
Submitted

[8] P. Srivastava and J. Cortés. Solving linear equations with separable problem data over directed
networks. In IEEE Conf. on Decision and Control, Austin, TX, December 2021. To appear

xv

[9] P. Srivastava and J. Cortés. Nesterov acceleration for equality-constrained convex optimiza-
tion via continuously differentiable penalty functions. In IEEE Conf. on Decision and Con-
trol, Jeju Island, South Korea, December 2020

[10] P. Srivastava and J. Cortés. Distributed algorithm via continuously differentiable exact penalty
method for network optimization. In IEEE Conf. on Decision and Control, pages 975–980,
Miami Beach, FL, December 2018

[11] P. Srivastava, C.-Y. Chang, and J. Cortés. Participation of microgrids in frequency regulation
markets. In American Control Conference, pages 3834–3839, Milwaukee, WI, May 2018

[12] P. Srivastava, S. Singh, and S. Janardhanan. Linear functional observers for unforced multi-
output nonlinear systems. In IFAC International Conference on Advances in Control and
Optimization of Dynamical Systems, volume 51, pages 708–712, Hyderabad, India, February
2018

[13] S. Singh, P. Srivastava, and S. Janardhanan. Adaptive higher order sliding mode control for
nonlinear uncertain systems. In IFAC International Conference on Advances in Control and
Optimization of Dynamical Systems, volume 51, pages 341–346, Hyderabad, India, February
2018

xvi

ABSTRACT OF THE DISSERTATION

Constrained Network Optimization: Algorithms, and Applications in Frequency Regulation

by

Priyank Srivastava

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2021

Professor Jorge Cortés, Chair

Network optimization problems arise naturally as a way of encoding the coordination task

entrusted to multi-agent systems deployed in many areas of engineering, including power, com-

munication, transportation, and swarm robotics. The large-scale nature of these systems coupled

with the intrinsic modularity in their structure due to the technological advances in communication,

embedded computing, and parallel processing requires a shift from the traditional paradigm of cen-

tralized decision-making to a distributed one. This transition, which is essential to harness the true

capabilities of modern cyberphysical systems, raises a number of noteworthy challenges as well as

opportunities, and has sparked the development of solutions that scale with the number of agents,

xvii

provide plug-and-play capabilities, and are resilient against single points of failure. Motivated by

these considerations, this thesis is a contribution to the growing body of work that deals with the

synthesis and analysis of provably correct algorithmic solutions to structured network problems.

Specifically, the thesis is divided into two parts. The first part focuses on synthesizing algo-

rithmic solutions for application-agnostic large-scale network problems. We consider constrained

optimization problems where the global objective function is the aggregate of local objectives of the

participating agents; the collective goal of the agents and the underlying interaction pattern among

them define the constraints. Using continuously differentiable exact penalty functions and globally

projected dynamical systems, we then propose privacy-preserving, scalable, accelerated and any-

time algorithms to solve these optimization problems. The second part is application-oriented and

deals with constrained optimization problems in the context of power systems. In particular, we

focus on the utilization of distributed energy resources for frequency regulation in the modern grid.

We design distributed time-invariant controllers stabilizing the time-varying power dynamics for

primary frequency control, and develop meaningful abstractions for groups of distributed energy

resources to participate in the secondary frequency control market.

xviii

Chapter 1

Introduction

A careful glance around makes one realize that we are surrounded by plentiful complex

systems consisting of various interconnected subsystems or modules (referred to as agents in the

following). For example, think about thousands of planets and billions of stars in the galaxy, billion

of neurons in the brain, and billions of interacting individuals in the society. Owing to the recent

technological advancements in digital systems, communication, and sensing, this modular struc-

ture which is inherent in natural, biological, and social systems, is now also at the heart of many

engineered systems. Notable examples include power systems, transportation, communication, and

swarm robotics. Each of these complex systems has an underlying intricate pattern encoding the

interactions between its components, referred to as network in the following. Any global task en-

trusted to these systems requires proper coordination between different agents of the network. This

naturally gives rise to constrained optimization problems where the objective function is the aggre-

gate of the local objectives of all the agents, and the constraints capture their collective goal, the

network model and the physical limitations of the agents. Due to the complex nature of these cyber-

physical systems, often times, these optimization problems are not standalone and their solutions

1

serve as input to other layers in the control design.

Harnessing the true capabilities of network systems require us to shift from the traditional

paradigm of centralized decision-making to a decentralized/distributed one. As Richard Feynman

said about 40 years ago, if a problem is big enough and a lot of calculation needs to be done, parallel

computation can speed things up enormously and this goes beyond scientific problems. One of the

first implementations of this scheme was done in a machine known as the Cosmic Cube at Caltech,

where there were a large number of computers working on different parts of a given problem and

transferring information to each other as needed. Recent developments in embedded computing

and communication have further sparked the development of distributed algorithmic solutions. In

addition to the original motivation of increasing speeds with parallel processing, distributed solu-

tions also have several features particularly advantageous to network systems. In particular, since

the exchange of data is much sparser and segmented, privacy of the participation agents is naturally

preserved, and devices dropping in and out of the system can be naturally compensated thereby

providing plug-and-play capabilities. Moreover, due to the absence of a central processor, dis-

tributed algorithms are inherently robust to failures and malicious attacks. However, coming up

with distributed solutions to a global problem often requires more than just modifying a centralized

solution. Depending on the coupling between the agents and the problem at hand, in certain cases,

it might even be necessary to start all over again. This is the reason that adoption of distributed

algorithm often faces resistance from the system operators and industrial partners, necessitating the

development of provably correct algorithmic solutions providing desired performance guarantees.

This thesis is specifically divided into two parts. The first part (Chapters 3-6) focuses on

synthesizing algorithmic solutions for large-scale network problems. We consider constrained

optimization problems without focusing precisely on any single application. In a sense, this

2

part is application-agnostic. The algorithm design approach employed in the thesis follows the

works [Bro91,HM94], and uses a dynamical systems approach to characterize the convergence and

robustness properties. The second part (Chapters 7-8) deals with constrained optimization prob-

lems appearing in power systems. In particular, we focus on the frequency regulation in the modern

grid with increasing penetration of distributed energy resources (DERs).

1.1 Literature Review

1.1.1 Algorithms for Network Problems

The breadth of applications of network optimization [BT97a,RN05,WL09] has motivated

a growing body of work that builds on consensus-based approaches to produce rich algorithmic

designs with asymptotic convergence guarantees, see [Ned15, YYW+19] for comprehensive sur-

veys. In this class of problems, each agent in the network maintains, communicates, and up-

dates an estimate of the complete solution vector, whose dimension is independent of the net-

work size. In contrast to this setting, in many applications the structure of the optimization prob-

lem lends itself to having instead each agent optimize over and communicate its own local vari-

able. Considered collectively, these variables give rise to the solution vector. Distributed algo-

rithms to address this setting fall under Lagrangian-based approaches that rely on primal-dual

updates, e.g., [FP10, RC15,MZL17, BPC+11, XHC+17, AYS20] or unconstrained reformulations

that employ non-smooth penalty functions [XB06, JJ09, CC15]. Our approach here is based on

the exact reformulation of the original problem using continuously differentiable penalty func-

tions [GP79, DG89, Luc92, Di 94]. The work [DG89] establishes, under appropriate regularity

3

conditions on the feasibility set, the complete equivalence between the solutions of the original con-

strained and the reformulated unconstrained optimization problems. The work [Luc92] proposes a

continuously differentiable exact penalty function that relaxes some of the assumptions of [DG89].

Notably, the works on continuously differentiable exact penalty functions use centralized optimiza-

tion algorithms because the computations involved in the definition of the unconstrained penalty

function are of a centralized nature.

As we argue in Chapter 4, linear equations with separable data arise naturally when consid-

ering the distributed solution of exact penalty optimization problems, but the importance of solving

linear algebraic equations is paramount anyway. Justifying their ubiquity, there is a vast and expand-

ing literature to solve them in a distributed fashion, cf. [BT97a,MLM15,AMMH16] and references

therein. Different algorithmic solutions exist depending on the assumptions about the information

available to the individual agents. Most of the works consider the information structure where

each agent knows some rows of the coefficient matrix and the constant vector. In those cases, the

collective problem has a solution if and only if the individual equations are solvable. However in

many applications, the structure of the problem is such that each agent has a full coefficient matrix

and constant vector of its own. This setting appears frequently in distributed sensor fusion, where

sensors are spatially distributed and they seek to build a global state estimate (e.g., about the loca-

tion of a source or the position of a target) from local measurements, cf. [SOSM05a,XBL05]. The

work [SOSM05a] relies on the positive definiteness of the individual matrices to compute the up-

dates and prove stability. [XBL05] uses element-wise average consensus for the coefficient matrix

as well as the constant vector, which does not scale with either the problem dimension or the net-

work size, and is not desirable from a privacy standpoint. [LT18] also exploits the positive definite

property of the individual matrices and requires the agents to know the state as well as the matri-

4

ces of the neighbors. [WM18a] proposes a distributed algorithm without any positive definiteness

condition, but agents are allowed to converge to different solutions. Another important point to

note is that all the aforementioned works rely on the communication graph being undirected. For

directed networks, we use dynamic average consensus [SOSM05b, KSC+19] to estimate certain

non-distributed terms in a gradient-based algorithm for the reformulated optimization problem.

We also draw inspiration from [TG15, TG20] on distributed optimization to extend our treatment

to deal with unbalanced networks.

Another well known issue in the context of constrained optimization is that of convergence

speed. For unconstrained optimization, the accelerated gradient descent method proposed by Nes-

terov [Nes83] uses only first-order information combined with momentum terms [SBC16,SDSJ19]

to achieve an optimal convergence rate, thereby avoiding the complexity associated with the second-

order Newton method [BV04]. For simple set constraints where the projection of any point can be

computed in closed form a generalization of Nesterov’s method, for constrained convex optimiza-

tion described in [Nes04]. However for general constraints, incorporating the momentum term

saddle-point or primal-dual dynamics, see e.g., [Kos56, AHU58, CGC17, CMLC18] is not clear.

When the saddle function is strongly convex-strongly concave, the primal-dual dynamics converges

exponentially fast, see e.g., [CL12]. Recent work [CN19,QL19,DJ19,DH19] has explored the par-

tial relaxation of the strong convexity requirement while retaining the exponential convergence rate.

Another method with improved rate of convergence for constrained problems is accelerated mirror

descent [KBB15] which, however necessitates the choice of an appropriate mirror map depending

on the geometry of the problem and requires that each update solves a constrained optimization

problem (which might be challenging itself). Some works [GR12, AO17, DKJ17] have sought to

generalize Newton’s method for equality constrained problems, designing second-order updates

5

that require the inversion of the Hessian matrix of the augmented Lagrangian. We employ the

continuously differentiable penalty functions to reformulate the constrained convex optimization

problem and identify sufficient conditions under which the unconstrained problem is also convex.

In addition to the peer-to-peer information exchange structure for networked systems con-

sidered above, an alternative architecture has agents send and receive information from a central

entity or network supervisor. Such architecture is well suited for scenarios where the objective

function of the optimization problem is the combination of a component separable amongst the

agents and another one coupling all the agents’ decision variables. Notable examples of appli-

cations exhibiting this structure include virtual power plants [SMT11, CBCZ20], where a central

entity works as an aggregator enabling the participation of a cluster of distributed energy sources

in the energy market; HVAC systems in intelligent buildings [KB13,WM18b], where a central pro-

cessor manages the main air supply and helps coordinate a group of thermal zones equipped with

thermostats and controllers regulating heated or cooled air input; multi-agent systems with access

to the cloud [HNE17], which provides superior processing and storing capabilities; and sensor-

actuator networks with a central computation node [MT11, ZSJ09] responsible for computing the

control signal with measurements from distributed sensors. In these scenarios, there is a need to

structure the interaction between individual agents and the network supervisor to design solutions

that scale up. Event-triggered control, see e.g. [Tab07, HJT12, HFO+17] and references therein,

offers a framework to prescribe, in a principled way, when to use the available resources efficiently

while still guaranteeing a desired quality of service in performing the intended task. A number of

works [KCM15a,NGC19] have explored the use of event-triggered approaches for achieving net-

work coordination tasks. Of particular relevance to our work are [MT11,BNP16,ALDJ15], which

consider similar network architectures, and [OC21], which mixes continuous updates, computed

6

with the locally available information, with aperiodic updates, computed with the externally pro-

vided information. An issue in the context of event-triggered control with distributed triggering

is the emergence of Zeno behavior. This is addressed in [MT11, BNP16] by using time regu-

larization, i.e., preventing by design any update before certain dwell time has elapsed. In gen-

eral, time regularization requires an offline computation with global information. A final body of

work we build on for this part is that of continuous projected dynamical systems for optimization,

cf. [FBM+94,XW00,Gao03].

1.1.2 Frequency Regulation from DERs

In power systems, any mismatch between electricity generation and consumption results in

the deviation of frequency from its nominal value [Kun94]. As the frequency starts deviating, some

generators respond automatically with control input proportional to the frequency deviation. This

is known as primary control. After primary control starts actuating, secondary control mechanisms

restore the frequency to its nominal value [EMK11]. With the increasing penetration of the DERs,

the inertia of the grid is decreasing and time-varying [UBA14]. This can provoke an increase in the

variation of frequency under abrupt changes in generation and demand. In order to model power

dynamics taking into account the variability of inertia, it is necessary to utilize a new modeling

framework for frequency dynamics that captures the time-varying nature of the dynamical system.

The work in [HGCD+18] proposes to model power dynamics as a switched affine hybrid system.

The work [HGHACT19a] proposes a learning-based frequency controller utilizing the local DERs

for these time-varying dynamics under the assumption of all the nodes having the same inertia,

and [HGHACT19b] extends this work by enhancing sparsity in the learned controller design. Al-

7

though the individual modes are stabilized in these works by using virtual inertia, stability of the

switched system is not guaranteed.

In addition to primary control, DERs can also be effective for secondary control and provide

power to the external grid. However, DERs are limited in size and might not meet the minimum

size criteria specified by system operators to participate in the frequency regulation market. The re-

cent Order No. 2222 [Fed20] by the U.S. Federal Energy Regulatory Commission (FERC) enables

aggregators of DERs to participate in the energymarkets and requires all Regional TransmissionOr-

ganizations (RTOs) to revise their tariffs to establish DERs as a category of market participant. Or-

der No. 755 [Fed11] requires RTOs to compensate energy resources based on the actual frequency

regulation provided. The payment to resources comprises of two parts, the capacity and perfor-

mance payments. The capacity payment compensates resources for their provision of regulation

capacity. The performance payment reflects the accuracy of the tracking of the allocated regulation

signal. The work [KM14] describes how different RTOs across the United States have implemented

FERC Order 755 for participation of resources in frequency regulation market. In the literature on

power networks and smart grid, some works have considered the possibility of obtaining frequency

regulation services from collections of homogeneous loads such as electric vehicles (EVs) and ther-

mostatically controlled loads (TCLs), cf. [MKC13,CPP,SHPV14]. The work [HDGP16] presents

a method to model flexible loads as a virtual battery for providing frequency regulation. [RSR13]

proposes the use of aggregators to integrate heterogeneous loads such as heat pumps, supermar-

ket refrigerators and batteries present in industrial buildings to provide frequency regulation. The

works [BPP16,BKP+18] describe the challenges that need to be overcome for providing frequency

regulation by DERs for some European countries. The work [DGS+18] provides a framework to

emulate virtual power plants (VPPs) via aggregations of DERs and provide regulation services tak-

8

ing into account the power flow constraints. [BAP+13] provides a dispatch strategy for an aggregate

of ON/OFF devices to provide frequency regulation. In [HDGP17,CMC17,XUDGS17], work has

been done in the context of microgrids to design mechanisms for optimally allocating a given sig-

nal among the DERs within the microgrid. [GAB18] proposes a distributed algorithm to minimize

the aggregated cost while satisfying the local constraints and collective demand constraint at the

aggregator. However, the aforementioned works assume that the allocated signal from the RTO is

available to the aggregator. [MKBD16] applies machine learning to forecast the power capacity of

VPPs. The work [WAT+16] provides a framework for optimal bidding and dispatch of multiple

VPPs. [ZMS17] proposes the use of renewable energy aggregators to utilize small-scale distributed

generators for frequency regulation services via forecasting the available power from individual

resources. The work [CMK18] also uses forecasting to estimate the aggregate production from a

wind and solar power-based VPP, and then uses the estimation to determine the optimal volume of

reserves that can be provided to the system operator. A distributed algorithm for coordinating mul-

tiple aggregators to provide frequency regulation, without any consideration of cost, is proposed

in [HCG+17]. Here, we focus on (i) participation of microgrids in frequency regulation markets

operated by the RTO through the identification of appropriate bids and (ii) the coordination among

RTO and aggregators to efficiently dis-aggregate the regulation signal amongst the aggregators.

The actual tracking performance within the microgrid would depend on the physical condition of

the resources. We have provided some results for this in [AMS+21] on experiments carried out

on the University of California, San Diego (UCSD) microgrid. Our ensuing discussion pertains

specifically to microgrid participation in frequency regulation markets. We assume that, if the

microgrids also exchange energy with the bulk grid at slower time scales, e.g., for the day-ahead

market, cf. [ZD16,ZD17], those commitments are known to the aggregators and taken into account

9

in their baseline generation profiles at the time of participation in the frequency regulation market.

1.2 Statement of Contributions

The main focus of the thesis is to develop algorithmic solutions for large-scale constrained

optimization problems. Our contributions are structured in two blocks. We start with application-

agnostic network problems, and propose privacy-preserving, scalable, accelerated and anytime al-

gorithms to solve them via continuously differentiable exact penalty functions and globally pro-

jected dynamical systems. Next, we focus on the problem of frequency regulation with the increas-

ing penetration of DERs, and developmeaningful abstractions of certain bidding quantities required

by groups of DERs (referred to as microgrids) to participate in the secondary frequency control

market and propose distributed algorithms to optimally disaggregate the frequency regulation sig-

nal amongst the microgrids. We also design decentralized time-invariant controllers stabilizing the

switching power dynamics for primary frequency control. We describe our contributions for both

the parts below.

1.2.1 Algorithms for Network Problems

We start in Chapter 3, with linear algebraic equations where the coefficient matrices and

constant vector for the overall problem are given, respectively, by the summation of the individual

agents’ coefficient matrices and constant vectors. Our starting point is providing two exact refor-

mulations of this problem based on whether the communication graph is undirected or directed. For

the undirected case, propose an initialization-free distributed algorithm that converges to a solution

of the linear equation. We establish the exponential convergence and characterize the input-to-state

10

stability properties of this algorithm. For the directed case, we first propose a centralized algorithm

which works for weight-balanced networks and serves as a reference for the design of distributed al-

gorithms. Using dynamic average consensus, we then propose a distributed algorithm that does not

require the agent matrices to be positive definite, works for time-varying weight-balanced networks

and is guaranteed to converge to a solution of the original problem exponentially fast. Building on

the insights gained in establishing these results, we propose a distributed algorithm that is not lim-

ited to weight-balanced networks and is also guaranteed to converge to a solution of the linear

equation exponentially fast.

Chapter 4 builds on the results of Chapter 3 and continuously differentiable exact penalty

functions. We consider nonlinear programming problem with a separable objective function and

locally coupled constraints and reformulate it as unconstrained optimization of a continuously dif-

ferentiable exact penalty function. Motivated by enabling the computation of the gradient of this

function by the network agents, we show that the calculation of certain non-distributed terms in

the gradient can be formulated as solving appropriately defined systems of linear algebraic equa-

tions defined by separable data. Our next contribution is the design of the distributed algorithm that

solves the original constrained optimization problem. This algorithm is based on following gradient

descent of the penalty function while estimating the actual value of the gradient with the distributed

strategy that solves systems of linear algebraic equations. We establish the convergence of the re-

sulting interconnection and illustrate its performance in simulation, comparing it with alternative

approaches. We end by noting that, since the proposed approach relies on the distributed compu-

tation of the gradient, the methodology can also be used for accelerated distributed optimization

using Nesterov’s method, something which we also illustrate in simulation.

Motivated by the promising simulation results of Nesterov’s acceleration on the penalty

11

function, in Chapter 5, we seek to obtain theoretical guarantees for the same. We consider equality

constrained convex optimization problems. We show via a counterexample that the unconstrained

penalty function might not be convex for any value of the penalty parameter even if the original

problem is convex. This motivates our study of sufficient conditions on the objective and constraint

functions of the original problem for the unconstrained penalty function to be convex. Our results

are based on analyzing the positive semi-definiteness of the Hessian of the penalty function. We

provide explicit bounds below which, for any value of the penalty parameter, the penalty function

is either convex or strongly convex on the domain, resp. Since the optimizers of the unconstrained

convex penalty function are the same as the optimizers of the original problem, we deduce that

the proposed Nesterov implementation solves the original constrained problem with an accelerated

convergence rate starting from an arbitrary initial condition. Finally, we establish that Nesterov’s

algorithm applied to the penalty function renders the feasible set forward invariant. This, coupled

with the fact that the penalty terms vanish on the feasible set, ensures that the accelerated conver-

gence rate is also achieved from any feasible initialization.

In Chapter 6, we consider network optimization problems where the objective function is

the sum of a component given by the summation of local costs and a coupling component whose

evaluation requires knowledge of all the agents’ decision variables. Individual agents rely on the

network supervisor to obtain information about the coupling component and to solve the optimiza-

tion problem. Our contributions are structured in two blocks, corresponding to unconstrained and

constrained problems. For unconstrained systems, we build on the gradient descent dynamics; for

constrained systems with separable constraints, we build on globally projected dynamical systems.

For both cases, we design novel event-triggered agent-supervisor coordination algorithms where

agents continuously employ their local information and resort to opportunistic interactions with

12

the supervisor for information about the coupling cost. The criterion for triggering employed by

each agent depends only on locally available information, which makes the proposed approach

privacy preserving. We show the monotonic decrease of the objective function and establish the

existence of a minimum inter-event time, thus ruling out Zeno behavior (without the need for any

time regularization) and ensuring asymptotic convergence to the optimizer. In the constrained case,

we also show that the feasible set is positively invariant, thus guaranteeing anytime feasibility.

1.2.2 Frequency Regulation from DERs

In Chapter 7, we propose a hierarchical framework for the participation of aggregations of

DERs in the frequency regulation market. We start by briefly reviewing the current practice of

frequency regulation from individual resources, consisting of three stages: (i) market clearance,

(ii) disaggregation of the regulation signal and (iii) real-time tracking of the regulation signal. Our

first contribution is the identification of the limitations of current practice and the challenges that

need to be overcome for integration of microgrids. Our second contribution is the identification of

abstractions for the capacity, cost of generation, and ramp rates of a microgrid as a combination of

the individual energy resources that compose it, along with a formal description of its convexity and

monotonicity properties. Using chance constraints, we extend these abstractions to the case when

the loads inside the microgrid do not remain constant for the regulation period. Equipped with these

abstractions, a microgrid can submit bids to participate in the market clearance stage. Our third

contribution is the reformulation of the RTO-DERP coordination problem to optimally disaggregate

regulation signal amongst the microgrids and accompanying design of an algorithmic solution. Our

proposed reformulation ensures feasibility. The proposed algorithm is distributed over directed

13

graphs with only one aggregator needing to know the required regulation, and is guaranteed to

asymptotic converge to the desired optimizers. We conclude with simulation results based on the

proposed abstractions of capacities, cost, and ramp rate and the RTO-DERP coordination algorithm

on a reduced-order model of the University of California, San Diego (UCSD) microgrid.

Chapter 8 deals with the problem of primary control. Our starting point is the reformulation

of the optimal learning-based controller problem such that its solution guarantees the stability of

the switched affine system, thereby avoiding the non-optimality from adding virtual inertia a pos-

teriori. We then establish the existence of an invariant controller stabilizing the switched system.

Building on this, we then prove the existence of a decentralized common controller that stabilizes

the switched system and each node just needs to know the value of its phase and frequency to im-

plement it. Our results are not limited to networks where all the nodes have the same inertia and

work for heterogeneous networks.

1.3 Organization

This thesis is organized as follows. Chapter 2 introduces the notations and basic concepts

on graph theory, convex analysis, probability theory, dynamic average consensus, constrained op-

timization, and event-triggered control. Chapter 3 proposes distributed algorithms to solve linear

equations with separable data. Based on continuously differentiable exact penalty functions intro-

duced in Chapter 2, we propose a novel distributed algorithm for constrained nonlinear optimization

in Chapter 4, and a framework to employ Nesterov’s accelerated method for equality-constrained

convex programs in Chapter 5. In Chapter 6, we propose decentralized resource-aware coordination

schemes for network optimization problems which combine locally evaluable costs with network-

14

wide coupling components. In Chapter 7, we propose a framework enabling DERs to participate

in the frequency regulation market. Chapter 8 focuses on the problem of primary control as the

inertia of the network changes. Finally, Chapter 9 summarizes the thesis and points towards future

research directions.

15

Chapter 2

Preliminaries

Here, we introduce our notational conventions and review basic concepts on graph the-

ory, convex analysis, probability theory, dynamic average consensus, constrained optimization,

and event-triggered control. Beyond the knowledge of these concepts, the reader can defer parsing

through the specific technical details below.

2.1 Notation

Let ℂ, ℝ, ℝ≥0, ℝ>0, ℤ, and ℕ denote the set of complex numbers, real numbers, non-

negative real numbers, positive real numbers, positive integers, and natural numbers, respectively.

We use |x| to denote the absolute value of a scalar x, ℝn and ℝm×n denote respectively, the space

of n dimensional vectors and m by n matrices with real entries. 1, 0, and I denote the vector or

matrix of all ones, all zeros, and the identity matrix of appropriate dimension, respectively. Unless

otherwise stated, we denote vectors and matrices by lowercase and uppercase letters, respectively.

Given a vector x ∈ ℝn, xi refers to its ith component. For a matrix A ∈ ℝm×n, Aij denotes its

16

entry in the ith row and jth column, Ai its ith row, A⊤ its transpose, A−1 its inverse (if it exists)

and null(A) its null space. A ⊗ B denotes the Kronecker product between two matrices A and

B. Unless otherwise stated, x ∈ ℝmn denotes the concatenated vector obtained after stacking the

vectors {xi}ni=1 ∈ ℝm. For a symmetric matrix A, A ≻ 0 and A ⪰ 0 imply that a matrix A is

positive definite and semidefinite, respectively, and �max(A) and �min(A) denote its maximum and

minimum eigenvalue, respectively. Regardless of the multiplicity of eigenvalue 0, �2(A) denotes

the minimum non-zero eigenvalue of a positive semidefinite matrix A. For two vectors x, y ∈ ℝn,

[x; y] denotes the concatenated vector containing the entries of x and y, in that order, and x > y

means that the inequality holds elementwise. eni denotes the n−dimensional unit vector in direction

i. Finally, V ⟂ denotes the orthogonal complement of the vector space V . diag(v) ∈ ℝn×n denotes

the diagonal matrix with the elements of v ∈ ℝn in its diagonal. Similarly, for a group of square

matrices {Ai}i∈{1,…,n} ∈ ℝm×m, diag(Ai) ∈ ℝmn×mn denotes the block-diagonal matrix with each of

the matrices Ai arranged along the principal diagonal. We use dim(W) to denote the dimension of

vector spaceW . [x]+ denotes max{x, 0} and [x]+a is defined as

[x]+a =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[x]+ if a > 0,

0 if a ≤ 0.

If x is a vector, these functions are applied elementwise.

We let  o and  denote the interior and closure of  , resp. || denotes the cardinality of a

set  . For 2 sets  and  ,  ∪  denotes their union and  ⊆  denotes that  is a subset of  .

For a real-valued function f ∶ ℝn → ℝ, we let ∇f denote its gradient. When we take the

partial derivative with respect to a specific argument x, we employ the notation∇xf . A continuous

17

function � ∶ ℝ≥0 → ℝ≥0 is of class ∞ if it is strictly increasing, �(0) = 0, and �(x) → ∞ as

x→∞. Given a vector field ∶ ℝn → ℝn and a continuously differentiable function V ∶ ℝn → ℝ,

 V denotes the Lie derivative of V along the flow induced by .

2.2 Graph Theory

We present the basic notions of graph theory following [BCM09,GR01]. Let  = ( ,  ,A)

be a weighted directed graph (or digraph), with  as the set of vertices (or nodes) and  ⊆  × as

the set of edges: (vi, vj) ∈  iff there is an edge from node vi to node vj . A graph is undirected if

(vi, vj) ∈  iff (vj , vi) ∈  . With || = n and || = m, the adjacency matrix A ∈ ℝn×n of  is such

thatAij > 0 if (vi, vj) ∈  andAij = 0, otherwise. A directed path is an ordered sequence of vertices

such that any pair of consecutive vertices is an edge. A loop is a path in which the first and last

vertices are same and none of the other vertices is repeated. A graph is strongly connected if there

is a path between any two distinct vertices. A tree is a graph whose underlying undirected graph

does not have any loops and is connected. A digraph is strongly connected if there is a directed

path between any two distinct vertices. The out- and in-degree of a node are, resp., the number of

outgoing edges from and incoming edges to it. The weighted out-degree and weighted in-degree of

a node vi are dout(vi) =
∑n

j=1 Aij and d
in(vi) =

∑n
j=1 Aji, resp. The out-degree matrix D

out ∈ ℝn×n

and in-degree matrix Din ∈ ℝn×n are diagonal matrices defined as Dout
ii = d

out(vi) and Din
ii = d

in(vi),

resp. A graph is weight-balanced if Dout = Din. The Laplacian L ∈ ℝn×n is L = Din −A. All

eigenvalues of L have nonnegative real parts, 0 is simple with left eigenvector 1 iff  is strongly

connected, and L 1 = 0 iff  is weight-balanced iff L+L⊤ is positive semidefinite. If  is strongly

connected, it follows from [LZ15, Lemma 3] that there exists a positive right eigenvector v̄ ∈ ℝn

18

associated to 0. The incidence matrix M ∈ ℝn×m is defined such that Mij = 1 if the edge ej leaves

vertex vi, −1 if it enters vertex vi, and 0 otherwise. Note that every column of M has only two

non-zero entries and 1⊤M = 0. The fundamental loop matrix N ∈ ℝm×(m−n+1) of a graph has Nij

as 1 (-1, respectively) if the edge eihas the same (opposite, respectively) orientation as loop lj , and

Nij = 0 if edge ei is not part of loop lj . We use Pref ∈ ℝ(n−1)×m to denote the path matrix of a tree

with reference vertex ref : the ijth entry of the path matrix is +1/-1 if edge ej is in the directed path

from vi to ref and has the same/opposite orientation as this path, and is 0 otherwise.

2.3 Convex Analysis

Let  ⊆ ℝn be a convex set. A function f ∶ ℝn → ℝ is convex on 

f (�x + (1 − �)y) ≤ �f (x) + (1 − �)f (y),

for all x, y ∈  and � ∈ [0, 1]. Convex functions have the property of having the same local and

global minimizers. A continuously differentiable f ∶ ℝn → ℝ is convex on  iff

f (y) ≥ f (x) + (y − x)⊤∇f (x),

for all x, y ∈ . A twice differentiable function is convex iff its Hessian is positive semi-definite.

A twice differentiable function f ∶ ℝn → ℝ is strongly convex on  with parameter c ∈ ℝ>0 iff

∇2f (x) ≥ cI for all x ∈ . For a convex set Ω, ΠΩ(y) denotes the projection of a point y ∈ ℝn

19

on Ω, i.e.,

ΠΩ(y) = argminx∈Ω‖x − y‖.

2.4 Dynamic Average Consensus

Consider a group of n ∈ ℤ>1 agents communicating over a strongly connected weight-

balanced digraph  with Laplacian L. Each agent i ∈ {1,… , n} has a state xi ∈ ℝ and an input

zi ∈ ℝ. The dynamic average consensus algorithm aims at making all the agents track the average

1
n

∑n
i=1 zi asymptotically. Here we first present the algorithm following [SOSM05b], where it was

introduced for undirected graphs. Consider

ẋ = −L x + ż. (2.1)

If
∑n

i=1 xi(0) =
∑n

i=1 zi(0) and the input z is bounded, then xi(t) → 1
n

∑n
i=1 zi(t) as t → ∞ for

i ∈ {1,… , n}. Algorithm (2.1) requires the knowledge of the initial conditions. To overcome this,

we next present the algorithm following [KCM15b] and given by

ẋ = ż − �(x − z) − � L x − v, (2.2a)

v̇ = �� L x, (2.2b)

where �, � > 0 are the design parameters. If the algorithm is initialized with
∑n

i=1 v(0) = 0, then the

steady-state error between the state xi of each agent i ∈ {1,… , n} and the average signal 1
n

∑n
i=1 zi

is bounded, and goes to zero if ż → 0.

20

2.5 Probability Theory

Given an event E, we let Ec denote its complement and Pr(E) its probability. E(w) denotes

the expected value of a random variable w. Given a normally distributed random variable � ∼

 (�, �) with mean � and variance �, the probability Pr(� ≤ x) of � being less than or equal to x

is denoted by Φ(x).

Φ(x) =

x

∫
−∞

1
√

2�
e−

(�−�)2
2� d�.

For x ≥ 0, the error function erf , defined as erf(x) = 2
√

�

x

∫
0
e−�2du, denotes the probability of a

normal random variable with mean 0 and variance 1/2 being in the interval [−x, x]. For a normal

random variable with mean 0 and variance 1/2, the functions Φ and erf are related by

Φ(x) = 1
2

(

1 + erf
(x
√

2

)

)

. (2.3)

2.6 Constrained Optimization

Here, we introduce basic concepts of constrained optimization following [Ber99]. Consider

the following nonlinear optimization problem

min
x∈

f (x)

s.t. g(x) ≤ 0, ℎ(x) = 0,
(2.4)

21

where f ∶ ℝn → ℝ, g ∶ ℝn → ℝm, ℎ ∶ ℝn → ℝp are twice continuously differentiable functions

with p ≤ n and ⊂ ℝn is a compact set which is regular (i.e., = o). The feasible set of (2.4) is

 = {x | x ∈ , g(x) ≤ 0, ℎ(x) = 0}.

Based on the index sets for the inequality constraints

I0(x) = {j | gj(x) = 0},

I+(x) = {j | gj(x) ≥ 0},

we define the following regularity conditions:

(a) The linear independence constraint qualification (LICQ) holds at x ∈ ℝn if {∇gj(x)}j∈I0(x)∪

{∇ℎk}k∈{1,…,p} are linearly independent;

(b) The extended Mangasarian-Fromovitz constraint qualification (EMFCQ) holds at x ∈ ℝn if

{∇ℎk}k∈{1,…,p} are linearly independent and there exists z ∈ ℝn with

∇gj(x)⊤z < 0, ∀j ∈ I+(x), (2.5a)

∇ℎk(x)⊤z = 0, ∀k ∈ {1,… , p}. (2.5b)

The Lagrangian function L ∶ ℝn ×ℝm ×ℝp → ℝ associated with (2.4) is given by

L(x, �, �) = f (x) + �⊤g(x) + �⊤ℎ(x),

22

where � ∈ ℝm and � ∈ ℝp are the Lagrange multipliers (also called dual variables) associated

with the inequality and equality constraints, resp. A Karush-Kuhn-Tucker (KKT) point for (2.4) is

a triplet (x̄, �̄, �̄) such that

∇xL(x̄, �̄, �̄) = 0,

�̄⊤g(x̄) = 0, �̄ ≥ 0, g(x̄) ≤ 0,

ℎ(x̄) = 0.

Under any of the regularity conditions above, the KKT conditions are necessary for a point to be

locally optimal.

2.6.1 Continuously differentiable exact penalty functions

With exact penalty functions, the basic idea is to replace the constrained optimization prob-

lem (2.4) by an equivalent unconstrained problem. Here, we introduce continuously differentiable

exact penalty functions following [GP79, DG89]. The key observation is that one can interpret a

KKT tuple as establishing a relationship between a primal solution x̄ and the dual variables (�̄, �̄).

In turn, the following result introduces multiplier functions that extend this relationship to any

x ∈ ℝn.

Proposition 2.6.1. (Multiplier functions and their derivatives [DG89]). Assume that LICQ is

23

satisfied at all x ∈ . Let G(x) = diag(g(x)) and, for
 ≠ 0, defineN ∶ ℝn → ℝ(m+p)×(m+p) by

N(x) =

⎡

⎢

⎢

⎢

⎣

∇g(x)⊤∇g(x) +
2G2(x) ∇g(x)⊤∇ℎ(x)

∇ℎ(x)⊤∇g(x) ∇ℎ(x)⊤∇ℎ(x)

⎤

⎥

⎥

⎥

⎦

. (2.6)

ThenN(x) is a positive definite matrix for any x ∈ D. Given the functions x↦ (�(x), �(x)) defined

by

⎡

⎢

⎢

⎢

⎣

�(x)

�(x)

⎤

⎥

⎥

⎥

⎦

= −N−1(x)

⎡

⎢

⎢

⎢

⎣

∇g(x)⊤

∇ℎ(x)⊤

⎤

⎥

⎥

⎥

⎦

∇f (x), (2.7)

one has that

(a) if (x̄, �̄, �̄) is a KKT triple for problem (2.4), then �(x̄) = �̄ and �(x̄) = �̄;

(b) both functions are continuously differentiable and their Jacobian matrices are given by

⎡

⎢

⎢

⎢

⎣

∇�(x)⊤

∇�(x)⊤

⎤

⎥

⎥

⎥

⎦

= −N−1(x)

⎡

⎢

⎢

⎢

⎣

R(x)

S(x)

⎤

⎥

⎥

⎥

⎦

, (2.8)

where

R(x) =∇g(x)⊤∇2xL(x, �(x), �(x)) +
m
∑

j=1
emj ∇xL(x, �(x), �(x))⊤∇2gj(x) (2.9a)

+ 2
2Λ(x)G(x)∇g(x)⊤

S(x) =∇ℎ(x)⊤∇2xL(x, �(x), �(x)) +
p
∑

k=1
epk∇xL(x, �(x), �(x))⊤∇2ℎk(x) (2.9b)

24

where we use the shorthand notation

∇xL(x, �(x), �(x)) = [∇xL(x, �, �)]�=�(x)
�=�(x)

,

∇2xL(x, �(x), �(x)) = [∇
2
xL(x, �, �)]�=�(x)

�=�(x)
,

Λ(x) = diag(�(x)), and emj and epk denote, resp., the jth and kth column of the m × m and

p × p identity matrix.

The multiplier functions in Proposition 2.6.1 can be used to replace the multiplier vectors

in the augmented Lagrangian of [Roc74] to define the continuously differentiable exact penalty

function. Given � > 0 and j ∈ {1,… , m}, define

y�j(x) =
(

− min
[

0, gj(x) +
�
2
�j(x)

])1∕2
,

and let Y �(x) = diag(y�(x)). Consider the continuously differentiable function f � ∶ ℝn → ℝ,

f �(x) = f (x) + �(x)⊤(g(x) + Y �(x)y�(x)) + �(x)⊤ℎ(x)

+ 1
�
‖g(x) + Y �(x)y�(x)‖2 + 1

�
‖ℎ(x)‖2. (2.10)

The following result characterizes the extent to which f � is an exact penalty function.

Proposition 2.6.2. (Continuously differentiable exact penalty function [DG89]). Assume LICQ

is satisfied at all x ∈  and consider the unconstrained problem

min
x∈o

f �(x). (2.11)

25

Then, the following holds:

(a) there exists �̄ such that the set of global minimizers of (2.4) and (2.11) are equal for all

� ∈ (0, �̄];

(b) if (x̄, �̄, �̄) is a KKT point for problem (2.4), then ∇f �(x̄) = 0 for all � > 0;

(c) under the additional assumption that EMFCQ holds on , there exists �̄ such that for all

� ∈ (0, �̄], ∇f �(x̄) = 0 implies that (x̄, �(x̄), �(x̄)) is a KKT point for problem (2.4).

2.6.2 Globally Projected Dynamical Systems

Here we review the basic concepts on the stability of continuous projected dynamical sys-

tems and their application in constrained optimization following [XW00, Gao03]. Problem (2.4)

can also be solved using

ẋ = Π (x − �∇ℎ(x)) − x, (2.12)

where � > 0 is a design parameter. Unlike the commonly employed projected gradient dynamics,

cf. [HM94], which is discontinuous at the boundary of Ω, the dynamics (2.12) is continuous due

to the gradual application of the projection operator throughout the constraint set. The following

result characterizes its convergence properties.

Theorem 2.6.3. (Forward invariance of the feasible set and convergence to an optimizer [XW00,

Gao03]). Assume that ∇ℎ is locally Lipschitz continuous on an open set containing Ω. Then

(i) the solution of (2.12) approaches the set Ω exponentially fast. Moreover, if x(0) ∈ Ω, then

x(t) ∈ Ω for all t > 0;

26

(ii) for all � > 0, the dynamics (2.12) is stable, and for any initial condition x(0) ∈ Ω, the

trajectory of (2.12) converges to a solution of (2.4).

2.7 Event-Triggered Control

Here we present the basics of event-triggered control following [Tab07,HJT12]. Consider

ẋ = f (x, u), (2.13)

where x ∈ ℝn and u ∈ ℝp denote the system state and input, respectively. Assume there exists a

control

u = k(x), (2.14)

such that the closed-loop dynamics,

ẋ = f (x, k(x + e)), (2.15)

abbreviated cl, is input-to-state stable (ISS) with respect to the error e ∈ ℝn. Formally, assume

there exists a Lyapunov function V such that its Lie derivative along (2.15) satisfies

 cl
V ≤ −�(‖x‖) +
(‖e‖),

27

where � and
 are class ∞ functions. The implementation of the closed-loop system (2.13)-

(2.14) requires continuous updates of the actuator, which is not realizable in practice. Instead,

event-triggered control seeks to prescribe opportunistic updates of the actuator that ensure the con-

vergence properties of the closed-loop system are retained. This leads to a sample-and-hold imple-

mentation of the controller of the form

u(t) = k(x(tk)) t ∈ [tk, tk+1), (2.16)

where {tk}∞k=0 are the triggering times when the control input is updated. In order to ensure the

stability of the nonlinear system under (2.16) and to prescribe the triggering times, we look at the

evolution of the Lyapunov function V . Define the error variable as e = x − xk, where we use the

shorthand notation xk = x(tk). With � ∈ (0, 1), if the error satisfies
(‖e‖) ≤ ��(‖x‖), then the

Lie derivative of the Lyapunov function during the time [tk, tk+1) is upper bounded as

 cl
V ≤ (1 − �)�(‖x‖).

Note that at t = tk, the error satisfies e = 0. Hence, setting t0 = 0, we ensure  cl
V < 0 defining

the triggering times as

tk+1 = min{t > tk |
(‖e‖) ≤ ��(‖x‖)}. (2.17)

Although (2.17) guarantees the stability of the closed-loop system, it could result in an infinite num-

ber of triggering times in a finite time interval (a.k.a. Zeno behavior). Hence, for implementation

in practice and to conclude asymptotic stability, it is necessary to have a uniform lower bound � > 0

28

of the inter-event times, i.e., tk+1 − tk ≥ � for all k. We refer to � as the minimum inter-event time

(MIET). The existence of a MIET is guaranteed with the control law (2.16) and the triggering con-

dition (2.17) if the dynamics (2.13) is linear, and also for certain nonlinear systems under suitable

assumptions, cf. [Tab07].

29

Part I

Application-Agnostic Distributed

Algorithms for Network Problems

30

Chapter 3

Distributed Algorithms for Linear

Equations

This chapter deals with linear algebraic equations where the global coefficient matrix and

constant vector are given respectively, by the summation of the (not necessarily invertible) co-

efficient matrices and constant vectors of the individual agents. We start with developing exact

unconstrained optimization reformulations for the original problem. Based on whether the com-

munication graph is undirected or directed, our approach is structured into two blocks. We first

present an exponentially fast input-to-state stable 2-hop distributed algorithm for the undirected

case. For the directed case, we first provide a gradient-based, centralized algorithm which serves

as a reference for the ensuing design of distributed algorithms. We then propose two sets of expo-

nentially stable continuous-time distributed algorithms based on estimating non-distributed terms

in the centralized algorithm using dynamic average consensus. The first algorithm works for time-

varying weight-balanced directed networks, and the second algorithm works for general directed

networks for which the communication graphs might not be balanced.

31

3.1 Problem Formulation

Consider a group of n agents interacting over a graph that seek to solve in a distributed way

the linear algebraic equation

(

n
∑

i=1
Ai

)

⏟⏞⏞⏟⏞⏞⏟
A

x =

(

n
∑

i=1
bi

)

⏟⏞⏞⏟⏞⏞⏟
b

, (3.1)

where x ∈ ℝm is the unknown solution vector, and Ai ∈ ℝm×m and bi ∈ ℝm are the coefficient

matrix and constant vector corresponding to agent i ∈ {1,… , n}. We assume that (3.1) has at least

one solution. The formulation (3.1) includes, as a particular case, scenarios where each agent i

knows only some rows of the coefficient matrix A and constant vector b. Our approach consists of

first formulating (3.1) as a system involving n unknown solution vectors, one per agent, and then

reformulating it as a convex optimization problem.

We start by endowing each agent with its own version xi ∈ ℝm of x. Then (3.1) can be

equivalently written as

n
∑

i=1
Aixi =

n
∑

i=1
bi (3.2a)

xi = xj ∀i, j. (3.2b)

Equation (3.2b) ensures that xi = x for all the agents. Clearly the set of equations (3.2) and the

original problem (3.1) are equivalent.

Next, we provide equivalent convex optimization reformulations for (3.2) and synthesize

distributed algorithms, depending on whether the communication graph is undirected or directed.

32

3.2 Distributed Algorithm Over Undirected Networks

Here, we design and prove the convergence and robustness properties of a distributed al-

gorithm to solve (3.1) over undirected graphs. We begin by noting that although (3.2b) is dis-

tributed, (3.2a) is not. To address this, we introduce a new variable yi ∈ ℝm per agent i ∈ {1,… , n}.

Let y = [y1;… ; yn] ∈ ℝmn and consider the following set of equations

⎛

⎜

⎜

⎜

⎝

A −L

L 0

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏟⏞⏞⏟
P

⎛

⎜

⎜

⎜

⎝

x

y

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

b

0

⎞

⎟

⎟

⎟

⎠

⏟⏟⏟
q

, (3.3)

where A ∈ ℝmn×mn denotes the block-diagonal matrix obtained after putting the matrices {Ai}ni=1

along the principal diagonal, b = [b1;… ; bn] ∈ ℝmn, and L = L⊗I . Note that the set of equa-

tions (3.3) is distributed. The following result characterizes the equivalence between (3.3) and (3.1).

Proposition 3.2.1. (Equivalence between (3.3) and (3.1)). The solutions of (3.3) are of the form

(1⊗ x; ȳ + 1⊗ y), where x ∈ ℝm solves (3.1), A(1⊗ x) − b = Lȳ, and y ∈ ℝm.

Proof. Note that (3.3) can be rewritten as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A1

⋱

An

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b1

⋮

bn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ Ly (3.4a)

Lx = 0. (3.4b)

Equation (3.4b) implies that x = 1 ⊗ x, with x ∈ ℝm. Then, from (3.4a), we have for each

33

i ∈ {1,… , n},

Aix = bi + (Li⊗I)y,

where Li denotes the ith row of the Laplacian L. Summing over all agents, we obtain

(

n
∑

i=1
Ai

)

x =
n
∑

i=1
bi +

n
∑

i=1
(Li⊗I)y.

Since 1⊤ L = 0, the last summand vanishes, which yields (3.1). The expression for y again follows

directly from the fact that 1⊤ L = 0.

Our next goal is to synthesize a distributed algorithm to solve (3.3). Our algorithm design

is based on formulating this equation as an unconstrained optimization problem. Let z = (x; y) and

consider the quadratic function V1 ∶ ℝ2mn → ℝ

V1(z) =
1
2
(Pz − q)⊤(Pz − q). (3.5)

Note that V1 vanishes over the solution set of Pz = q and takes positive values otherwise. The

problem of solving (3.3) can be reformulated as

min
z
V1(z).

The gradient descent dynamics of V1 is given by

ż = −P⊤(Pz − q).

34

When convenient, we refer to this dynamics as �grad. In expanded form, it takes the form

ẋ = −A⊤[Ax − Ly − b] − L2x (3.6a)

ẏ = L[Ax − Ly − b]. (3.6b)

From (3.6), each agent i ∈ {1,… , n} has the dynamics

ẋi = −A⊤
i

(

Aixi − bi −
∑

j∈i

(yi − yj)
)

−
∑

j∈i

(xLi − x
L
j)

ẏi =
∑

j∈i

(

Aixi − bi − (Ajxj − bj)
)

−
∑

j∈i

(yLi − y
L
j),

where xLk =
∑

j∈k

(xk − xj) and yLk =
∑

j∈k

(yk − yj). This algorithm is 2-hop distributed, meaning

that to execute it, each agent i ∈ {1,… , n} needs to know its state (xi; yi) and the state of its 2-hop

neighbors. The next result characterizes its convergence properties.

Proposition 3.2.2. (Exponential convergence of (3.6) to solution of linear system). The dynam-

ics (3.6) converges to a solution of (3.3) exponentially with a rate proportional to �2(P⊤P).

Proof. Let w ∈ null(P) and note

w⊤ż = −w⊤P⊤(Pz − q) = 0.

This means that the dynamics of z is orthogonal to null(P). Let us decompose z(t) as z(t) = z
‖

(t) +

z⟂(t). Here, z
‖

(t) is the component of z(t) in null(P) and z⟂(t) is the component orthogonal to

it. From the above discussion, we have that z
‖

(t) = z
‖

(0) under the dynamics (3.6). Since this

component does not change, consider the particular solution z∗ of (3.3) that satisfies z∗
‖

= z
‖

(0).

35

Note that z∗ defined in this way is unique. Now, consider the Lyapunov function V2 ∶ ℝ2mn → ℝ

V2(z) =
1
2
(z − z∗)⊤(z − z∗). (3.7)

The derivative of V2 along the dynamics (3.6) is given by

�grad
V2(z) = (z − z∗)⊤ż

= −(z − z∗)⊤P⊤(Pz − q)

= −(z − z∗)⊤P⊤P(z − z∗) ≤ −2�2(P⊤P)V2(z).

The last inequality follows from the fact that the evolution of z is orthogonal to the nullspace of P.

This proves that, starting from z(0), the dynamics converges to the solution z∗ of (3.3) exponentially

fast with a rate determined by the minimum non-zero eigenvalue of P⊤P.

Remark 3.2.3. (Comparison with the literature). The algorithmic design procedure we employ

here is similar to the one used in [WM18a], which leads to an algorithm that also does not re-

quire the positive definiteness of the individual matrices. Interestingly, the convergence analysis

in [WM18a] uses the linearity of the dynamics and La Salle’s invariance principle to conclude

exponential stability, although it does not guarantee that the agents converge to the same solu-

tion. By contrast, the Lyapunov-based technical analysis presented here, based on exploiting the

orthogonality of the dynamics to the nullspace of the reformulated system matrix, allows us to lower

bound the exponential convergence rate and formally characterize the robustness properties of the

algorithm against disturbances. Both properties are key for the application later in Chapter 4 to

distributed gradient computation via characterizing the stability of the interconnected system. ∙

36

Next, we examine the robustness to disturbances of the dynamics (3.6). This is motivated by

the observation that, in practical scenarios, one may face errors in the execution due to imperfect

knowledge of the problem data, imperfect information about the state of other agents, or other

external disturbances. Formally, we consider

ż = �grad(z) + d(t) = −P⊤(Pz − q) + d(t), (3.8)

where d(t) denotes the disturbance.

Proposition 3.2.4. (Robustness of (3.8) against disturbances). The dynamics (3.8) is input-to-

state stable (ISS) with respect to the set of equilibria of (3.6).

Proof. The disturbance d(t) in (3.8) can be decomposed as d(t) = d
‖

(t)+d⟂(t). Due to the presence

of d
‖

(t) ∈ null(P), the component of z(t) in null(P) does not remain constant any more. In fact,

along (3.8), we have w⊤ż = w⊤d
‖

for all w ∈ null(P), and therefore we deduce that ż
‖

(t) = d
‖

(t).

Consider then the equilibrium trajectory t ↦ z∗(t), where z∗(t) is uniquely determined by the

equations Pz∗(t) = q and z∗
‖

(t) = z
‖

(t). Let V2 be the same function as in (3.7), but now with the

time-varying z∗(t). The Lie derivative of V2 is now given by

�grad+d V2 = (z − z
∗)⊤(ż − ż∗)

= (z − z∗)⊤(−P⊤(Pz − q) + d − d
‖

)

= (z − z∗)⊤(−P⊤(Pz − q) + d⟂)

≤ −�2(P⊤P)‖z − z∗‖2 + ‖z − z∗‖‖d⟂‖

≤ −�2(P⊤P)‖z − z∗‖2 + ‖z − z∗‖‖d‖.

37

Choose � ∈ (0, 1). Then the above inequality can be decomposed as

�grad+d V2 ≤ −�2(P
⊤P)(1 − �)‖z − z∗‖2 − �2(P⊤P)�‖z − z∗‖2 + ‖z − z∗‖‖d‖.

Hence, L�grad+dV2 ≤ −�2(P⊤P)(1 − �)‖z − z∗‖2 if ‖z − z∗‖ ≥ ‖d‖
�2(P′P)�

. From [Kha02, Theorem

4.19], this means that the system is input-to-state stable with respect to the set of equilibria with

gain
(r) = r
�2(P⊤P)�

.

Proposition 3.2.4 implies that the trajectories of (3.8) asymptotically converge to a neigh-

borhood of the set of equilibria of (3.6) (with the size of the neighborhood scaling up with the size

of the disturbance). All equilibria correspond to solutions of (3.1).

3.3 Distributed Algorithms Over Directed Networks

We present distributed algorithms to solve (3.1) over directed networks. We start with

weight-balanced networks and then extend our treatment to unbalanced networks. As in Section 3.2,

our approach here is based on reformulation (3.2) as a convex optimization problem. Consider the

quadratic function f ∶ ℝmn → ℝ

f (x) =
(

n
∑

i=1
(Aixi − bi)

)⊤(n
∑

i=1
(Aixi − bi)

)

,

which is convex and attains its minimum over the solution set of (3.2a). For convenience, we use

f (x) = (Ax−b)⊤ 11⊤(Ax−b), where 1 = 1⊗I . If  is strongly connected, the solutions of (3.2)

38

are the same as the optimizers of

min
x

f (x)

s.t. L⊤x = 0.
(3.9)

3.3.1 Centralized Algorithm Over Weight-Balanced Networks

First, we introduce a centralized algorithm using the fact that the objective function vanishes

at the optimizers of (3.9). Let

min
x

1
2
�x⊤(L + L⊤)x + �f (x), (3.10)

where �, � > 0. Clearly, (3.9) and (3.10) have the same set of solutions if  is strongly connected

and weight-balanced. Since problem (3.10) is unconstrained, one can use gradient descent to find

its optimizers. However, the gradient −�(L + L⊤)x − �A⊤ 11⊤(Ax − b) of the objective function

in (3.10) involves terms with L⊤, whose computation would require information from in-neighbors.

Instead, we consider the following gradient-based dynamics

ẋ = −�Lx − �A⊤ 11⊤(Ax − b). (3.11)

Whenever convenient, we refer to (3.11) as grad. Note that the first term in the dynamics (3.11) is

distributed, meaning that each agent can implement it with information from its out-neighbors. The

second term, however, requires collective information from all the agents because of the summation

across the network. Nevertheless, this algorithm serves as the basis for our distributed algorithm

design in the next section.

The next result formally characterizes the equivalence between the equilibria of (3.11) and

39

the solutions of (3.1).

Lemma 3.3.1. (Equivalence between (3.11) and (3.1)). Let  be a strongly connected and weight-

balanced digraph. Then for all �, � ∈ ℝ>0, x∗ is an equilibrium of (3.11) if and only if x∗ = 1⊗x∗,

where x∗ ∈ ℝm solves (3.1).

Proof. The implication from right to left is immediate. To prove the implication in the other di-

rection, let x̄ ∈ ℝm be a solution of (3.1) and consider x̄ = 1 ⊗ x̄. Since x∗ and x̄ are equilibria

of (3.11),

�L(x∗ − x̄) + �A⊤ 11⊤A(x∗ − x̄) = 0. (3.12)

Let Q11 =
1
2
�(L + L⊤) + �A⊤ 11⊤A. Then (3.12) implies

(x∗ − x̄)⊤Q11(x∗ − x̄) = 0.

Since  is weight-balanced, (L + L⊤) ⪰ 0. This along with the fact that A⊤ 11⊤A ⪰ 0 implies

L⊤(x∗ − x̄) = 0 and 1⊤A(x∗ − x̄) = 0. Therefore, x∗ = 1⊗ x∗, for some x∗ ∈ ℝm which satisfies

Ax∗ = Ax̄ = b, as claimed.

The next result characterizes the convergence of (3.11).

Proposition 3.3.2. (Exponential stability of (3.11)). Let  be a strongly connected and weight-

balanced digraph. Then for all �, � ∈ ℝ>0, any trajectory of (3.11) converges exponentially to a

point of the form x∗ = 1⊗ x∗, where x∗ ∈ ℝm solves (3.1).

Proof. Consider a vector w ∈ ℝmn in the null space of Q11. Using the same line of arguments as

40

in the proof of Lemma 3.3.1, this implies that L⊤w = 0 and 1⊤Aw = 0. Therefore, along (3.11),

ẋ⊤w = −(�x⊤L⊤ + �(Ax − b)⊤ 11⊤A)w = 0.

This means that the dynamics (3.11) are orthogonal to the null space of Q11 and hence the com-

ponent of x in the null space of Q11, say x‖, remains constant. Given the initial condition x(0),

consider the particular equilibrium x∗ of (3.11) satisfying x∗
‖

= x(0)
‖

. Since different equilibria

differ only in their null space component, x∗ defined this way is unique. Consider the Lyapunov

function candidate V ∶ ℝmn → ℝ

V (x) = 1
2
(x − x∗)⊤(x − x∗).

The Lie derivative of V along the dynamics (3.11) is given by

 grad
V = − (x − x∗)⊤(�Lx + �A⊤ 11⊤(Ax − b))

= − (x − x∗)⊤Q11(x − x∗) ≤ −2�2(Q11)V .

The last inequality follows from applying the Courant-Fischer theorem [HJ85, Theorem 4.2.11]

together with the fact that (x−x∗)⊤w = 0 as x
‖

is constant. Using the monotonicity theorem [HJ85,

Corollary 4.3.3], we further have

 grad
V ≤ −2min

{1
2
��2(L+L⊤), ��2(A⊤ 11⊤A)

}

V .

Hence, the dynamics (3.11) is exponentially stable with a rate depending on �, �,L and {Ai}ni=1.

41

3.3.2 Distributed Algorithm Over Weight-Balanced Networks

We present a distributed algorithm to find a solution of (3.1), which is based on the cen-

tralized algorithm (3.11) and involves employing dynamic average consensus (cf. Section 2.4) to

estimate the aggregate 1⊤(Ax − b). Formally,

ẋ = − �Lx − n�A⊤y, (3.13a)

ẏ = − �ALx − n�AA⊤y −
Ly, (3.13b)

with design parameter
 > 0. Here, each agent i ∈ {1,… , n} updates yi ∈ ℝm which estimates

the average mismatch 1
n
1⊤(Ax − b). The dynamics (3.13) is distributed as each agent just needs

to know its state and that of its out-neighbors. Whenever convenient, we refer to it as gdac. The

following result characterizes the equilibria of (3.13) and shows that the total deviation from the

average mismatch is conserved.

Lemma 3.3.3. (Equilibria of (3.13) and invariance of total deviation). Let  be a strongly con-

nected and weight-balanced digraph. Then, if (x∗, 0) is an equilibrium of (3.13) then x∗ = 1⊗x∗,

where x∗ ∈ ℝm. Moreover, for all �, �,
 ∈ ℝ>0, 1⊤(y −Ax) remains constant along the evolution

of (3.13).

Proof. Let (x∗, 0) be an equilibrium of (3.13). From (3.13a), it follows that Lx = 0, and hence

x∗ = 1 ⊗ x∗ for some x∗ ∈ ℝm, establishing the first statement. Now, consider the derivative

1⊤(ẏ − Aẋ) = −
 1⊤ Ly = 0. Hence, 1⊤(y − Ax) is conserved along the evolution of (3.13).

Remark 3.3.4. (Distributed initialization of the gdac algorithm). From Lemma 3.3.3, we observe

that in order for a trajectory of (3.13) to converge to an equilibrium of the form (x∗, y∗) = (1⊗x∗, 0),

42

where x∗ ∈ ℝm solves (3.1), its initial condition must satisfy

1⊤ y(0) = 1⊤(Ax(0) − b).

This could be implemented in a distributed way if each agent i ∈ {1,… , n} chooses its initial states

satisfying yi(0) = Aixi(0) − bi. One trivial selection, for example, is x(0) = 0 and y(0) = −b. ∙

The next result characterizes the convergence of (3.13).

Theorem 3.3.5. (Exponential stability of (3.13) over balanced networks). Let  be a strongly

connected and weight-balanced digraph and assume null(A) ⊆ null(Ai), for all i ∈ {1,… , n}. Let

�, � ∈ ℝ>0 and define

̄ = max

{

2
�2(L+L⊤)

�max

(

Q⊤
12Q12

�2(Q11)
− n�AA⊤

)

, 0

}

,

where Q11 =
1
2
�(L+L⊤) + �A⊤ 11⊤A and Q12 =

1
2
(n�A⊤ + �L⊤A⊤ + �A⊤ 11⊤AA⊤). Then, for

all
 ∈ (
̄ ,∞), any trajectory of (3.13) with initial condition satisfying 1⊤ y(0) = 1⊤(Ax(0) − b)

converges exponentially to (x∗, 0), where x∗ = 1⊗ x∗ and x∗ ∈ ℝm solves (3.1).

Proof. Define the error variable

e = y − 1
n
11⊤(Ax − b), (3.14)

measuring the difference between the agents’ estimates and the actual value of average mismatch.

43

Note that

ė = −��ALx − n��AA⊤y −
Ly,

where � = I − 1
n
11⊤. Rewriting (3.13) in terms of x and e,

ẋ = −�Lx − �A⊤ 11⊤(Ax − b) − n�A⊤e, (3.15a)

ė = −��ALx − ��AA⊤ 11⊤(Ax − b) − n��AA⊤e −
Le. (3.15b)

From the proof of Proposition 3.3.2, we know that if w ∈ ℝmn is in the null space of Q11, then

L⊤w = 0 and 1⊤Aw = 0. Therefore, w = 1 ⊗ w, where w ∈ ℝm belongs to w ∈ null(A). By

hypothesis, Aiw = 0 for all i ∈ {1,… , n}. Therefore, from (3.15a), ẋ⊤w = 0, and the x component

of the equilibrium (x∗, y∗) of (3.13) satisfies x∗
‖

= x(0)
‖

and is unique. With the initialization of

the statement, it follows from Lemma 3.3.3 that y∗ = 1⊗ 1
n
1⊤(Ax∗ − b). Substituting this value

of y∗ in (3.13a) and following the proof of Lemma 3.3.1, one can establish that the corresponding

equilibrium is of the form (1⊗ x∗, 0), where x∗ ∈ ℝm is a solution of (3.1).

Consider the Lyapunov function candidate V2 ∶ ℝ2mn → ℝ

V2(x, e) =
1
2
(x − x∗)⊤(x − x∗) + 1

2
e⊤e.

44

The Lie derivative of V2 along (3.15) is given by

 gdac
V2 = − (x − x∗)⊤(�Lx + �A⊤ 11⊤(Ax − b)) − n�(x − x∗)⊤A⊤e − e⊤�A(�Lx + n�A⊤e)

− e⊤(��AA⊤ 11⊤(Ax − b) +
Le)

= −

⎡

⎢

⎢

⎢

⎣

x − x∗

e

⎤

⎥

⎥

⎥

⎦

⊤
⎡

⎢

⎢

⎢

⎣

Q11 Q12

Q⊤
12 Q22

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

x − x∗

e

⎤

⎥

⎥

⎥

⎦

,

whereQ22 =
1
2

(L+L⊤)+n�AA⊤ and we have used the fact that due to the mentioned initialization,

1⊤ e = 0 from Lemma 3.3.3. Since x
‖

is constant, (x − x∗)⊤w = 0 and from the Courant-Fischer

theorem [HJ85, Theorem 4.2.11],

−(x − x∗)⊤Q11(x − x∗) ≤ −�2(Q11)(x − x∗)⊤(x − x∗).

Also, since 1⊤ e = 0 and  is weight-balanced, it again follows from the Courant-Fischer theorem

that

−e⊤Q22e ≤ −
1
2

�2(L+L⊤)e⊤e − n�e⊤AA⊤e.

Therefore, we can upper bound the Lie derivative as

 gdac
V2 ≤ −

⎡

⎢

⎢

⎢

⎣

x − x∗

e

⎤

⎥

⎥

⎥

⎦

⊤
⎡

⎢

⎢

⎢

⎣

�2(Q11)I Q12

Q⊤
12 Q̄22

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Q̄

⎡

⎢

⎢

⎢

⎣

x − x∗

e

⎤

⎥

⎥

⎥

⎦

,

45

where Q̄22 =
1
2

�2(L+L⊤)I + n�AA⊤. Next, we examine the positive definiteness of Q̄. Using the

Schur complement [BV09], Q̄ ≻ 0 iff

1
2

�2(L+L⊤)I + n�AA⊤ − 1

�2(Q11)
Q⊤
12Q12 ≻ 0.

Hence, Q̄ ≻ 0 if
 >
̄ , and  gdac
V2 ≤ −2�min(Q̄)V2.

The null space condition in Theorem 3.3.5 makes sure that x∗
‖

remains invariant along the

evolution of (3.13) and all the agents approach the solution of (3.1) closest to x(0). This condition

is automatically satisfied if the matrix A is full rank, or in other words, equation (3.1) has a unique

solution. We believe (and simulations also suggest) that if this condition is not satisfied, the x

component of the dynamics still converges to a solution of (3.1).

Remark 3.3.6. (Lower bound on
). The lower bound
̄ in Theorem 3.3.5 is conservative in gen-

eral. In fact, the algorithm may converge even if this condition is not satisfied, something that we

have observed in simulation. Note also that although � and � are free parameters, they should still

be carefully chosen as
̄ depends on them. ∙

The result above can be extended to time-varying networks. In case (t) is time-varying,

the algorithm in (3.13) reads as

ẋ = −�L(t)x − n�A⊤y, (3.16a)

ẏ = −�AL(t)x − n�AA⊤y −
L(t)y. (3.16b)

The next result formally characterizes the convergence of (3.16). Its proof is similar to that of

Theorem 3.3.5 and hence omitted.

46

Theorem 3.3.7. (Exponential stability of (3.16) over time-varying balanced networks). Let

{(t)}∞t=0 be a sequence of strongly connected and weight-balanced digraphs with uniformly

bounded edge weights (i.e., there exists a ∈ (0,∞) such that Aij(t) < a for all (i, j) and t ≥ 0), and

assume null(A) ⊆ null(Ai), for all i ∈ {1,… , n}. Let �, � ∈ ℝ>0 and define
̄(t) as

max
{

2
�2(L(t) + L(t)⊤)

�max

(Q12(t)⊤Q12(t)
�2(Q11(t))

− n�AA⊤
)

, 0
}

,

whereQ11(t) =
1
2
�(L(t)+L(t)⊤)+�A⊤ 11⊤A andQ12(t) =

1
2
(n�A⊤+�L(t)⊤A⊤+�A⊤ 11⊤AA⊤).

Then for all
 ∈ (
̂ ,∞), where
̂ = sup
t≥0

̄(t), any trajectory of (3.16) with initial conditions

1⊤ y(0) = 1⊤(Ax(0) − b) converges exponentially to (x∗, 0), where x∗ = 1 ⊗ x∗ and x∗ ∈ ℝm

solves (3.1).

3.3.3 Distributed Algorithms Over Unbalanced Networks

In this section, we extend our approach to solve problem (3.1) over graphs that are not

necessarily balanced. In those scenarios, since L 1 ≠ 0, the one-to-one correspondence between

the desired equilibria of (3.11) or (3.13) and the solutions of (3.1) does not hold anymore. To

overcome this, we propose

ẋ = −�LV̄x − n�A⊤y, (3.17a)

ẏ = −�ALV̄x − n�AA⊤y −
LV̄y, (3.17b)

where V̄ = diag(v̄), v̄ = 1 ⊗ v̄, and v̄ is a positive right eigenvector with eigenvalue 0 of L.

Exponential stability of (3.17) can be established by interpreting L ⋅diag(v̄) as the Laplacian of a

47

weight-balanced graph and then following the same steps as in the proof of Theorem 3.3.5, but we

omit it here for reasons of space. Although (3.17) is distributed, it assumes that agents have a priori

knowledge of the corresponding entries of v̄ which might be limiting in practice. To deal with this

limitation, we propose an algorithm that does not require such knowledge by augmenting (3.17)

with an additional dynamics converging to v̄,

ẋ = −�LVx − n�A⊤y, (3.18a)

ẏ = −�ALVx − n�AA⊤y −
LVy, (3.18b)

v̇ = −Lv, (3.18c)

where V = diag(v). Whenever convenient, we refer to dynamics (3.18) as dist. Note that, unlike

all the dynamics discussed so far, dist is nonlinear.

Remark 3.3.8. (Distributed nature of (3.18)). The dynamics (3.18) is out-distributed, but requires

each agent i ∈ {1,… , n} to have knowledge of its in-degree because L = Din −A and the graph is

not weight-balanced. If we use instead the out-Laplacian L = Dout −A, then one could still define

an equivalent algorithm for (3.17) with LV̄ replaced by V̄L, but (3.18c) would look like v̇ = −L⊤v,

which would require state information from in-neighbors too. ∙

The next result characterizes the convergence of (3.18).

Theorem 3.3.9. (Exponential stability of (3.18) over unbalanced networks). Let  be a strongly

connected digraph and assume null(A) ⊆ null(Ai), for all i ∈ {1,… , n}. Let �, � ∈ ℝ>0 and define

̄ = max

{

2
�2(L V̄ + V̄ L⊤)

�max

(

Q⊤
12Q12

�2(Q11)
− n�AA⊤

)

, 0

}

,

48

where Q11 =
1
2
(�LV̄ + V̄L⊤) + �A⊤ 11⊤A, Q12 =

1
2
(n�A⊤ + �V̄L⊤A⊤ + �A⊤ 11⊤AA⊤), v̄ is

the positive eigenvector with eigenvalue 0 of L satisfying 1⊤v̄ = 1, and V̄ = diag(v̄). Then, for all

 ∈ (
̄ ,∞), any trajectory of (3.18) with initial condition satisfying 1⊤ y(0) = 1⊤(Ax(0) − b) and

v(0) = 1
n
1, converges exponentially to (x∗, 0, v̄), where x∗ = 1⊗ x∗ and x∗ ∈ ℝm solves (3.1), and

v̄ = 1⊗ v̄.

Proof. From [TG20, Proposition 2.2], we have that v(t) > 0 for all t ≥ 0. Also, since 1⊤ L =

0, 1⊤v is conserved along the evolution of (3.18c). Hence v(t) → v̄ exponentially fast with a

rate determined by the non-zero eigenvalue of L with the smallest real part. Let us interpret the

dynamics (3.18a)-(3.18b) as the dynamics (3.17) with some disturbance d(t) defined by

d =
⎡

⎢

⎢

⎢

⎣

dx

dy

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

−�L(V − V̄)x

−�AL(V − V̄)x −
L(V − V̄)y

⎤

⎥

⎥

⎥

⎦

,

which goes to 0 as t→∞. Consider a vectorw ∈ null(Q11). Then as in the proof of Theorem 3.3.5,

w = 1⊗w, wherew ∈ null(A) and by hypothesis, Aiw = 0 for all i ∈ {1,… , n}. Since 1⊤ L = 0,

therefore, w⊤dx = 0 and we still have w⊤ẋ = 0, and the x component of the equilibrium (x∗, y∗, v̄)

of (3.18) satisfies x∗
‖

= x(0)
‖

and is unique. With the initialization of the statement and following

the same steps as in the proof of Lemma 3.3.3, one can establish that y∗ = 1 ⊗ 1
n
1⊤(Ax∗ − b).

Substituting this value of y∗ in (3.18a) and following the proof of Lemma 3.3.1, one can establish

that the corresponding equilibrium is of the form (1⊗x∗, 0, v̄), where x∗ ∈ ℝm is a solution of (3.1).

Consider now the Lyapunov function candidate V3 ∶ ℝ3mn → ℝ

V3(x, e, v) = V2(x, e) +
�
2
(v − v̄)⊤P(v − v̄),

49

where � > 0, P = V̄−1, e is defined as in (3.14), and V2 is the same function as in the proof of

Theorem 3.3.5. The Lie derivative of V3 along (3.18) is given by

 dist
V3 = −

⎡

⎢

⎢

⎢

⎣

x − x∗

e

⎤

⎥

⎥

⎥

⎦

⊤
⎡

⎢

⎢

⎢

⎣

Q11 Q12

Q⊤
12 Q22

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

x − x∗

e

⎤

⎥

⎥

⎥

⎦

+ (x − x∗)⊤dx

+ e⊤de − �(v − v̄)⊤(L⊤P + PL)(v − v̄),

where de = −��AL(V − V̄)x −
L(V − V̄)e, and Q22 =
1
2

(LV̄ + V̄L⊤) + n�AA⊤. Interestingly,

L V̄ can be interpreted as the Laplacian of a weight-balanced graph and as a result, LV̄+ V̄L⊤ ⪰ 0

implying that L⊤P + PL ⪰ 0. Once again, following Lemma 3.3.3, one can establish that with the

initialization of the statement, 1⊤ e = 0 and therefore using the Courant-Fischer theorem [HJ85,

Theorem 4.2.11] together with the fact that (x − x∗)⊤w = 0 due to invariance of x
‖

, we can upper

bound the Lie derivative as

 dist
V3 ≤ −

⎡

⎢

⎢

⎢

⎣

x − x∗

e

⎤

⎥

⎥

⎥

⎦

⊤
⎡

⎢

⎢

⎢

⎣

�2(Q11)I Q12

Q⊤
12 Q̄22

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Q̄

⎡

⎢

⎢

⎢

⎣

x − x∗

e

⎤

⎥

⎥

⎥

⎦

+ �‖x − x∗‖‖L‖‖v − v̄‖(‖x − x∗‖ + ‖x∗‖)

+ �‖e‖‖�AL‖‖v − v̄‖(‖x − x∗‖ + ‖x∗‖) +
‖e‖‖L‖‖v − v̄‖‖e‖

− ��2(L⊤P + PL)‖v − v̄‖2,

where Q̄22 =
1
2

�2(L V̄ + V̄ L⊤)I + n�AA⊤. Define z = [‖x − x∗‖; ‖e‖; ‖v − v̄‖]. If
 >
̄ , then

50

Q̄ ≻ 0 and from the Courant-Fischer theorem, we have

 dist
V3 ≤ −z⊤

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�min(Q̄) 0 Q̂13(z)

0 �min(Q̄) Q̂23(z)

Q̂13(z) Q̂23(z) ��2(L⊤P + PL)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Q̂(z)

z,

where Q̂23(z) = −1
2
�‖�AL‖(z + ‖x∗‖) − 1

2

‖L‖z and Q̂13(z) = −1

2
�‖L‖(z + ‖x∗‖).

Using the Schur complement, one can verify that for a given value of z, Q̂(z) ≻ 0 iff

� > �̄(z) = 1
�min(Q̄)�2(L⊤P + PL)

(Q̂13(z)2 + Q̂23(z)2). Hence, if � > �̄(z(0)), then

 dist
V3 ≤ −�min(Q̂(z(0)))z⊤z. This along with the fact that 1

2
min{1, ��min(P)}‖z‖2 ≤ V3 ≤

1
2
max{1, ��max(P)}‖z‖2, implies that V3 satisfies the hypotheses of [Kha02, Theorem 4.10] for

exponential stability.

The exponential convergence of algorithms (3.11) and (3.13) for weight-balanced graphs,

and (3.17) for unbalanced graphs follows from their linear nature. For algorithm (3.18), exponential

convergence could be attributed to the fact that the dynamics (3.18c) converge exponentially and

hence, after some time, (3.18a)-(3.18b) and (3.17) are essentially the same.

3.4 Simulations

We consider 10 agents communicating over the digraphs shown in Fig. 3.1, seeking to solve

problem (3.1) with {Ai}10i=1 ∈ ℝ5×5 and {bi}10i=1 ∈ ℝ5. Since the proposed dynamics are in con-

tinuous time, we use a first-order Euler discretization with stepsize 2.5 × 10−3 for the MATLAB

implementation. The values of �, � and
 are 2, 10−1 and 20, respectively. The edge weights for

51

1

2

34

5

6

7

8 9

10

(a) 1

1

2

34

5

6

7

8 9

10

(b) 2

Figure 3.1: Communication topologies among the agents. The edge weights are adjusted to make
the graphs either weight-balanced or unbalanced, as needed.

50 100 150 200 250 300 350 400 450 500
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Figure 3.2: Evolution of the error between the actual solution and the average state using the
proposed algorithms (3.13), (3.16) and (3.17) over the graphs shown in Fig. 3.1. Straight lines
correspond to exponential convergence.

various cases are adjusted to make the graphs weight-balanced and unbalanced, as needed. For the

time-varying case, at every iteration, the communication graph is switched randomly between 1

and 2. In Fig. 3.2, we plot the evolution of the error between the actual solution of (3.1) and the

average state x̄ = 1
n
1⊤ x using (3.13), (3.16) and (3.18). The initial conditions for all the algorithms

are chosen according to Remark 3.3.4 as x(0) = 0 and y(0) = −b. Even though 2 (with 4.6 as

52

the minimum of the real parts of non-zero eigenvalues of L and �2(L+L⊤) = 7.6, for the weight-

balanced case) is more connected than 1 (with 1.9 as the minimum of the real parts of non-zero

eigenvalues of L and �2(L+L⊤) = 3.8, for the weight-balanced case), convergence is slower. The

error in the time-varying case is lower and upper bounded by the error for 1 and 2, resp.

Acknowledgements

This chapter, in part, is a reprint of the material [SC22] as it appears in ‘Solving linear

equations with separable problem data over directed networks’ by P. Srivastava and J. Cortés, in the

IEEE Control Systems Letters, 2022, as well as [SC21b] where it appears as ‘Network optimization

via smooth exact penalty functions enabled by distributed gradient computation’ by P. Srivastava

and J. Cortés in the IEEE Transactions on Control of Network Systems, 2021. The dissertation

author was the primary investigator and author of these papers. This work was partially supported

by the ARPA-e NODES program, Cooperative Agreement DE-AR0000695 and NSFAward ECCS-

1917177.

53

Chapter 4

Network Optimization via Smooth Penalty

Functions

This chapter proposes a distributed algorithm for a network of agents to solve an optimiza-

tion problem with separable objective function and locally coupled constraints. Our strategy is

based on reformulating the original constrained problem as the unconstrained optimization of a

smooth (continuously differentiable) exact penalty function. Computing the gradient of this penalty

function in a distributed way is challenging even under the separability assumptions on the origi-

nal optimization problem. Our technical approach shows that the distributed computation problem

for the gradient can be formulated as a system of linear algebraic equations defined by separable

problem data which can be solved using the algorithms in Chapter 3. We employ this strategy to

compute the gradient of the penalty function at the current network state. Our distributed algorith-

mic solver for the original constrained optimization problem interconnects this estimation with the

prescription of having the agents follow the resulting direction.

54

4.1 Problem Statement

We consider separable network optimization problems where the overall objective function

is the aggregate of individual objective functions, one per agent, and the constraints are locally

expressible. Formally, consider a group of n ∈ ℕ agents whose interaction is modeled by an

undirected connected graph  = ( , ). Each agent i ∈  is responsible for a decision variable

xi ∈ ℝ. Agent i is equipped with a twice continuously differentiable function fi ∶ ℝ → ℝ. The

optimization problem takes the form

min
x∈

f (x) =
n
∑

i=1
fi(xi)

s.t. g(x) ≤ 0, ℎ(x) = 0,

(4.1)

with twice continuously differentiable vector-valued functions g ∶ ℝn → ℝm, ℎ ∶ ℝn → ℝp, and

p ≤ n. Each component {gj ∶ ℝn → ℝ}mj=1 and {ℎk ∶ ℝn → ℝ}pk=1 of the constraint functions

is locally expressible. Such kind of coupled constraints arise in numerous applications, such as

power [DZG13], communication [KMT98], and transportation [BSC15] networks, to name only a

few. By locally expressible, we mean that, for each constraint, e.g., gj , there exists an agent, which

we term corresponding agent, such that the function gj depends on the state of the corresponding

agent and its 1-hop neighbors’ state. We assume that all the agents involved in a constraint know

the functional form of the constraint and its derivatives. According to this definition, different

constraints might have different corresponding agents. Under this structure, agents require up to 2-

hop communication to evaluate any constraint in which they are involved (1-hop communication in

the case of the corresponding agent, 2-hop communication in the case of the other agents involved

in the constraint).

55

Our aim is to develop a smooth distributed algorithm to find an optimizer of the constrained

problem (4.1). Our solution strategy employs a continuously differentiable exact penalty function,

cf. Section 2.4, to reformulate the problem as an unconstrained optimization one. We then face

the task of implementing its gradient dynamics in a distributed way. To do so, we show that the

problem of distributed calculation of Lagrange multiplier functions and other necessary terms in

the gradient of the penalty function can be formulated as a linear algebraic equation with separable

data (cf. Section 4.2) that can be solved in a distributed manner (cf. Chapter 3). Based on this,

we propose a distributed algorithmic solution based on smooth gradient descent to solve (4.1). But

before we go there, let us characterize the extent to which the gradient descent dynamics of the

penalty function satisfies the constraints while finding the optimizers of the original constrained

optimization problem.

Proposition 4.1.1. (Constraint satisfaction under gradient dynamics of penalty function). Given

the optimization problem (2.4), assume LICQ is satisfied at all x ∈ . Consider the gradient

dynamics ẋ = −∇f �(x) of the penalty function f � in (2.10). Then, if at any time t0, x(t0) ∈  , we

have

(i) (Equality constraints): x(t) ∈  , for all t ≥ t0 and all � > 0 if the problem (2.4) has just

equality constraints;

(ii) (Scalar inequality constraint): there exists �̄ > 0 such that x(t) ∈  , for all t ≥ t0 and all

� ∈ (0, �̄] if the problem (2.4) has only one inequality constraint;

(iii) (General constraints): in general, there is no guarantee that the evolution of the gradient

dynamics stays feasible when the problem (2.4) has more than one constraint if one of them

is an inequality.

56

Proof. To prove the result, we examine the Lie derivative of the constraint functions along the

dynamics. We consider the different cases below:

(Equality constraints): Given the constraint function ℎ, consider the Lie derivative over the

set  ,

L−∇f �ℎ(x) = −∇ℎ(x)⊤
(

∇f (x) + ∇ℎ(x)�(x) + ∇�(x)ℎ(x) + 2
�
∇ℎ(x)ℎ(x)

)

= −∇ℎ(x)⊤(∇f (x) + ∇ℎ(x)�(x))

where we have used the fact that ℎ(x) = 0 for x ∈  . Substituting the value of �(x) from (2.7),

L−∇f �ℎ(x) = −∇ℎ(x)⊤(∇f (x) − ∇ℎ(x)N(x)−1∇ℎ(x)⊤∇f (x)) = 0.

This means that the constraint function remains constant along the gradient dynamics over  .

Hence, x(t) ∈  for all t ≥ t0 regardless of the value of �.

(Scalar inequality constraint): With only one inequality constraint defined by a scalar-

valued function g, we have x ∈  iff g(x) ≤ 0. To determine the invariance of the feasibility

set, we only need to look at points where g(x) = 0. In this case, the Lie derivative is

L−∇f �g(x) = −∇g(x)⊤
(

∇�(x) + 2
�
∇g(x)

)

y�2(x),

where we have already used the fact that g(x) = 0 and the definition of �(x) from (2.7). Due to

LICQ assumption, ∇g(x)⊤∇g(x) > 0, and y�2(x) ≥ 0. Since ∇� is continuous, it is bounded over

the compact set . Hence, there exists �̄ such that for all � ∈ (0, �̄], L−∇f �g(x) ≤ 0 for all x such

57

that g(x) = 0. This means that x(t) ∈  for all t ≥ t0.

(General constraints): Here we provide a counterexample for the case with multiple in-

equality constraints (a similar one can be constructed for the case of both equality and inequality

constraints). Consider now a vector-valued function g. The expression of the Lie derivative evalu-

ated at x such that g(x) = 0 is

L−∇f �g = −∇g(x)⊤
(

∇�(x) + 2
�
∇g(x)

)

Y �(x)y�(x).

The LICQ assumption implies that ∇g(x)⊤∇g(x) is positive definite. However, in general, this is

not sufficient to ensure that the trajectory of the gradient dynamics starting from x will remain in

 . To see this, consider the following example.

min
x

(x1 − 1)2 + (x2 + 1)2

s.t. x1 − 6x2 ≤ 0

− x1 + x2 ≤ 0

Take x = (0; 0), where g(x) = 0. After some calculations, it can be verified that �(x) = (0; −2) and

Y �(x)y�(x) = (0; �). As a result, ∇g(x)⊤∇g(x)Y �(x)y�(x) = (−7�; 2�) and L−∇f �g = (14; 2� − 4).

The first component of L−∇f �g is independent of �. This means that no matter what value of � we

choose, L−∇f �g ≰ 0 when g(x) = 0. Hence, the feasible set is not invariant.

Remark 4.1.2. (Alternative approaches). To solve problem (4.1) in a distributed way, we can

instead construct the Lagrangian and then use primal-dual (also known as saddle-point) dynam-

ics [AHU58,FP10,CGC17]. This dynamics uses gradient descent in the primal variable and gra-

58

dient ascent in the dual variable. For the problem structure described above, these dynamics is

distributed (requiring up to 2-hop communication). However, the dynamics is in general slow, ex-

hibits oscillations in the distance from the feasible set, and there is no guarantee of satisfying the

constraints during the evolution, even if the initial state is feasible. Also, it is not clear how to ap-

ply accelerated methods, cf. [Nes83] to the primal-dual approach. Another approach to solve (4.1)

in an (up to 2-hop) distributed way consists of reformulating the problem as an unconstrained

optimization [XB06, JJ09, CC15] by adding to the original objective function non-differentiable

penalty terms replacing the constraints [Ber82] and employing subgradient-based methods. How-

ever, these methods are difficult to implement, often lead to chattering, and the study of their conver-

gence properties requires tools from nonsmooth analysis. Yet another approach is the alternating

direction method of multipliers [BPC+11], which requires using some additional reformulation

techniques [MXAP13] to make it distributed and convergence to an optimizer is only guaranteed

when the optimization problem is convex. Although it enjoys fast convergence, each agent needs to

solve a local optimization problem at every iteration to update its state, which might be computa-

tionally inefficient depending on the form of the constraint and the objective functions. ∙

4.2 Distributed Computation of the Gradient of Penalty Func-

tion

We pursue next our strategy to solve the constrained optimization problem (4.1) in a dis-

tributed fashion by using the gradient dynamics of the continuously differentiable exact penalty

function (2.10). In this section, we first identify the challenges associated with the distributed com-

59

putation of ∇f � and then employ the algorithmic tools and results of Section 3.2 to address them.

The gradient of f �(x) with respect to xi is given by

∇xif
�(x) =∇xifi(xi) +

m
∑

j=1
�j(x)∇xigj(x) +

p
∑

k=1
�k(x)∇xiℎk(x) +

p
∑

k=1
ℎk(x)∇xi�k(x) (4.2)

+
m
∑

j=1

(

gj(x) + y�2j (x)
)

∇xi�j(x) +
2
�

m
∑

j=1

(

gj(x) + y�2j (x)
)

∇xigj(x)

+ 2
�

p
∑

k=1
ℎk(x)∇xiℎk(x).

In this expression, and with the assumptions made in Section 4.1, if agent i knew (�(x), �(x)), then

it could compute all the terms locally except for

�i(x) ≡
m
∑

j=1

(

gj(x) + y�2j (x)
)

∇xi�j(x) +
p
∑

k=1
ℎk(x)∇xi�k(x).

The rest of this section is devoted to show how to deal with these two issues. First, we show how

we can formulate and solve the problem of calculating (�(x), �(x)) in a distributed way. After that,

we show how agent i can calculate �i(x) with only local information and communication.

4.2.1 Distributed computation of multiplier functions

Given x ∈ ℝn, (�(x), �(x)) are defined by the linear algebraic equation (2.7). Note that this

equation can also be written as

N(x)

⎡

⎢

⎢

⎢

⎣

�(x)

�(x)

⎤

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎣

∇g(x)⊤

∇ℎ(x)⊤

⎤

⎥

⎥

⎥

⎦

∇f (x). (4.3)

60

The next result proves that we can actually decompose the matrix N(x) and the righthand side

of (4.3) as the summation of locally computable matrices. This makes the equation have the same

structure as (3.1), and hence we can use the distributed algorithms in Chapter 3 to solve it.

Proposition 4.2.1. (Equivalence between (4.3) and (3.1)). For each x ∈ ℝn, calculating

(�(x), �(x)) can be cast as solving a linear algebraic equation with separable problem data.

Proof. For convenience, for each i ∈ {1,… , n}, we define gi(x) = (gi1(x),… , gim(x)) ∈ ℝm,

where

gij(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

gj(x)
nj

if i is involved in constraint gj ,

0 otherwise,

(4.4)

and nj is the total number of agents involved in constraint j ∈ {1,… , m}. From this definition,

we have that
∑n

i=1(diag(
gi(x)))
2 =
2G2(x). Using this fact, we define Ni(x), for each agent

i ∈ {1,… , n} as

Ni(x) =

⎡

⎢

⎢

⎢

⎣

∇xig(x)
⊤

∇xiℎ(x)
⊤

⎤

⎥

⎥

⎥

⎦

[

∇xig(x)∇xiℎ(x)

]

+

⎡

⎢

⎢

⎢

⎣

(diag(
gi(x)))2 0

0 0

⎤

⎥

⎥

⎥

⎦

From the definition (2.6) ofN(x), note that

N(x) =
n
∑

i=1
Ni(x). (4.5)

61

The righthand side of (4.3) could be decomposed as

⎡

⎢

⎢

⎢

⎣

∇g(x)⊤

∇ℎ(x)⊤

⎤

⎥

⎥

⎥

⎦

∇f (x) =
n
∑

i=1

⎡

⎢

⎢

⎢

⎣

∇xig(x)
⊤∇xifi(xi)

∇xiℎ(x)
⊤∇xifi(xi)

⎤

⎥

⎥

⎥

⎦

. (4.6)

Hence, (4.3) is equivalent to (3.1), completing the proof.

From the definition of the matrices {Ni}ni=1 in the proof of Proposition 4.2.1, one can deduce

that, individually, these matrices might not be positive definite in general. This highlights the

importance of the algorithms in Chapter 3 to solve equations with separable problem data when

the coefficient matrices are not necessarily positive definite. Combining Proposition 4.2.1 with the

discussion of Chapter 3, we deduce that each agent can compute (�(x), �(x)) in a distributed way.

4.2.2 Distributed computation of the gradient

Here, we describe how agent i ∈ {1,… , n} can calculate �i(x) locally, completing the

distributed computation of ∇xif
�(x).

Proposition 4.2.2. (Local computation of �i(x)). For each x ∈ ℝn, agent i ∈ {1,… , n} can

calculate �i(x) locally via communication with its 2-hop neighbors.

Proof. In compact form, �i(x) can be written as

�i(x) =

⎡

⎢

⎢

⎢

⎣

g(x) + Y �(x)y�(x)

ℎ(x)

⎤

⎥

⎥

⎥

⎦

⊤
⎡

⎢

⎢

⎢

⎣

∇xi�(x)

∇xi�(x)

⎤

⎥

⎥

⎥

⎦

.

This means that �i(x) is given by the ith column of [g(x) + y�(x);ℎ(x)]⊤[∇�(x)⊤; ∇�(x)⊤].

From (2.8), this is equivalent to saying that �i(x) is given by −%(x)⊤(ri(x); si(x)), where %(x) =

62

N−1(x)[g(x)+Y �(x)y�(x);ℎ(x)]whose transpose is [g(x)+Y �(x)y�(x);ℎ(x)]⊤N−1(x) (sinceN(x)

is symmetric) and (ri(x); si(x)) denotes the ith column of [R(x);S(x)]. Based on this, we divide

the distributed computation of �i(x) in two parts:

(a) First we show how all agents can compute %(x) using a 2-hop distributed algorithm;

(b) Next we show that each agent i ∈ {1,… , n} can calculate ri(x) and si(x) locally via commu-

nication with its 2-hop neighbors.

For (a), consider the following equation in %

N(x)%(x) =

⎡

⎢

⎢

⎢

⎣

g(x) + Y �(x)y�(x)

ℎ(x)

⎤

⎥

⎥

⎥

⎦

. (4.7)

We can decompose the righthand side of (4.7) as

⎡

⎢

⎢

⎢

⎣

g(x) + Y �(x)y�(x)

ℎ(x)

⎤

⎥

⎥

⎥

⎦

=
n
∑

i=1

⎡

⎢

⎢

⎢

⎣

gi(x) + y2i (x)

hi(x)

⎤

⎥

⎥

⎥

⎦

, (4.8)

where gi(x) is defined in (4.4), and y2i (x) and hi(x) are defined similarly. From (4.5) and (4.8),

equation (4.7) has the structure described in (3.1) and hence can be solved in a distributed manner

by the algorithm of Section 3.2.

Next we look at the decomposition of [R(x);S(x)] for (b). We describe here only the de-

composition for R(x) (the decomposition for S(x) is similar). From (2.9a), R(x) in expanded form

63

could be written as

R(x) =∇g(x)⊤
(

∇2f (x) +
m
∑

j=1
�j(x)∇2gj(x) +

p
∑

k=1
�k∇2ℎk(x)

)

+
m
∑

j=1
emj (∇f (x)

⊤ + �⊤∇g(x)⊤ + �⊤∇ℎ(x)⊤)∇2gj(x)

+ 2
2Λ(x)G(x)∇g(x)⊤,

which clearly corresponds to a sum of matrices. Here, we look at the first column of these ma-

trices one by one and show that r1(x) can be calculated by agent 1 with information from its 2-

hop neighbors (following the same reasoning justifies that each ri(x) can be calculated by agent

i ∈ {1,… , n}). The first column of the first matrix is given by ∇g(x)⊤∇2x1xf (x). To calculate it, in

addition to∇2x1f1(x), agent 1 only needs to know the partial derivative of the constraints in which it

is involved (which are available to it by assumption, cf. Section 4.1). The first column correspond-

ing to the next two matrices is given by ∇g(x)⊤
(m
∑

j=1
(∇2x1xgj(x))�j(x) +

p
∑

k=1
(∇2x1xℎp(x))�k(x)

)

. For

these, agent 1 only needs information about the partial first and second derivatives of the constraints

in which it is involved, in addition to the values of the multiplier functions. The first column corre-

sponding to the next three matrices is
m
∑

j=1
emj (∇f (x)

⊤ + �⊤∇g(x)⊤ + �⊤∇ℎ(x)⊤)∇2xx1gj(x). The cal-

culation of the first term is straightforward. Rewriting the second term as
m
∑

j=1
emj �

⊤∇g(x)⊤∇2xx1gj(x)

and knowing the structure of ∇g(x)⊤∇2xx1gj(x) from the discussion above, we can say that can be

calculated by agent 1 (a similar observation applies to the third term). Regarding the last matrix,

the first column is 2
2[�1g1∇x1g1;… ; �mgm∇x1gm]. Clearly, agent 1 only needs to know the values

and partial derivatives of the constraints in which it is involved for calculating this, concluding the

proof.

64

Based on Propositions 4.2.1 and 4.2.2, for a given x ∈ ℝn, we can compute asymptotically

the values of �(x), �(x) and %(x), and in turn, the gradient of the penalty function in a distributed

way. For its use later, we denote by Pest(x) the corresponding matrix defined as in (3.3), which

now depends on x due to the x-dependence of Ni and bi (and hence A and b) in equations (4.3)

and (4.7).

Remark 4.2.3. (Robustness in the calculation of gradient). From Proposition 3.2.4, the dis-

tributed calculation of the gradient of the exact penalty function is robust to bounded disturbances

due to errors in the problem data (e.g., errors in the value of the constraint functions or the gradi-

ents of the objective and constraint functions), packet drops, or communication noise. Furthermore,

since the matrixN(x) =
∑n

i Ni(x) is positive definite (and hence invertible) from Proposition 2.6.1,

it follows that all equilibria have the same unique primary variable, whereas the auxiliary ones may

take multiple values according to Proposition 3.2.1. This means that, for a given x ∈ ℝn, the pri-

mary variables converge uniquely to �(x), �(x) and %(x) under each of the algorithms. ∙

4.3 Distributed Optimization via Interconnected Dynamics

In this section, we finally put all the elements developed so far together to propose a dis-

tributed algorithm to solve (4.1). The basic idea is to implement the gradient dynamics of the exact

penalty function. However, the algorithmic solutions resulting from Section 4.2 only asymptoti-

cally compute the gradient of the exact penalty function at a given state. This state, in turn, changes

by the action of the gradient descent dynamics. The proposed distributed algorithm is then the

result of the interconnection of these two complementary dynamics.

Formally, the gradient descent dynamics of f � which serves as reference for our algorithm

65

design takes the form

ẋ = −∇f �(x). (4.9)

For convenience, define � ∶ ℝn → ℝ2(m+p) by �(x) = (�(x), �(x), %(x)) and rewrite (4.9) as ẋ =

 grad(x, �(x)) for an appropriate function grad defined by examining the expression in (4.2) for i ∈

{1,… , n} (note that, given the assumptions on the problem functions, for each x ∈ ℝn, the function

 grad is locally Lipschitz in its argument � , and from Proposition 2.6.1 and equation (4.7), x ↦

�(x) is continuously differentiable). The variable � corresponds to those terms appearing in the

gradient that are not immediately computable with local information. However, with the distributed

algorithms described in Section 4.2, the network agents can asymptotically compute �(x) in a

distributed fashion. Let Υ ∈ ℝ4(m+p) denote the augmented variable containing the estimates of

�(x) and the associated auxiliary variables, available to the network agents via

Υ̇ = est(x,Υ), (4.10a)

where est(x,Υ) denotes the algorithms of the form (3.6) described in Section 4.2. Let �̂ = �Υ

denote the projection of Υ onto the � space, i.e., corresponding to the set of primary variables.

From Proposition 3.2.2, we note that, for fixed x ∈ ℝn, �̂ → �(x) exponentially fast. Hence, with

the information available to the agents, instead of (4.9), the network implements

ẋ = grad(x,�Υ). (4.10b)

Our proposed algorithm is the interconnected dynamical system (4.10). When convenient, we re-

66

fer to it as interc. Note that this algorithm is 2-hop distributed. Moreover, for each equilibrium

(xeq,Υeq), of (4.10), its x-component xeq is an equilibrium of (4.9) (which is also a KKT point

of problem (4.1) if EMFCQ is satisfied, cf. Proposition 2.6.2). We characterize the convergence

properties of the algorithm (4.10) next.

Theorem 4.3.1. (Asymptotic convergence of distributed algorithm to solution of optimization

problem). Assume LICQ is satisfied at each x ∈ . For each x, let L� (x) be the Lipschitz constant

of � ↦ grad(x, �). Then the equilibria of the interconnected dynamics (4.10) are asymptotically

stable if there exists � > 0 such that

max
x∈

��(x)
�2(Pest(x)⊤Pest(x))

< 1, (4.11)

where ��(x) =
1
4�
(�L� (x) + ‖∇x�(x)‖)2 + L� (x)‖∇x�(x)‖.

Proof. We start by noting that (4.11) is well defined since, from the definitions of R(x) and S(x)

in (2.9) and the expression of the gradient in (4.2), we deduce that L� (x) is continuous in x, and,

moreover, since  is compact, L� and ‖∇x�‖ are bounded over . Consider now the Lyapunov

function candidate for the interconnected system as

Vc(x,Υ) = �f �(x) + V2(x,Υ), (4.12)

where V2 is defined as in (3.7), but due to the dependence of z∗ on x from equations (4.3) and (4.7),

67

is now a function of x too. The derivative of Vc along the dynamics (4.10) is

 interc
Vc(x,Υ) = (�∇f �(x) + ∇xV2)⊤ grad(x,�Υ) + ∇ΥV ⊤

2 est(x,Υ)

≤ −(�∇f �(x) + ∇x�(�̂ − �(x)))⊤(∇f �(x)

− grad(x, �̂) + grad(x, �(x))) − �2(x)‖�̂ − �(x)‖2,

where we have added and subtracted ∇f �(x) = grad(x, �(x)) to grad(x,�Υ) and used the short-

hand notation �2(x) ≡ �2(P⊤est(x)Pest(x)). Hence, we have

 interc
V cc(x,Υ) ≤ −

⎡

⎢

⎢

⎢

⎣

‖∇f �(x)‖

‖�̂ − �(x)‖

⎤

⎥

⎥

⎥

⎦

⊤

A(x)

⎡

⎢

⎢

⎢

⎣

‖∇f �(x)‖

‖�̂ − �(x)‖

⎤

⎥

⎥

⎥

⎦

,

with

A(x) =

⎡

⎢

⎢

⎢

⎣

� − 1
2
(�L� (x) + ‖∇x�‖)

− 1
2
(�L� (x) + ‖∇x�‖) �2(x) − L� (x)‖∇x�‖)

⎤

⎥

⎥

⎥

⎦

.

Next, we examine the positive-definiteness nature of the 2 × 2-matrix A(x). Since � > 0, note that

A(x) ≻ 0 if the determinant is positive. For x ∈ , the latter holds if and only if � is such that

��(x)∕�2(x) < 1.

Hence, under (4.11), this inequality holds over , and consequently  interc
Vc(x,Υ) < 0 over  ×

ℝ4(m+p).

The condition (4.11) in Theorem 4.3.1 can be interpreted as requiring the estimation dynam-

68

ics (4.10a) to be fast enough to ensure the error in the gradient computation remains manageable,

resulting in the convergence of the interconnected system. In general, however, (4.11) might not be

satisfied. To address this, and inspired by this interpretation, we propose to execute the estimation

dynamics on a tunable timescale, substituting (4.10a) by

�Υ̇ = est(x,Υ). (4.13)

Here, � > 0 is a design parameter capturing the timescale at which the estimation dynamics is

now executed. Resorting to singular perturbation theory, cf. [Kha02,Vel97], one could show that

x(t)→ xgrad(t) as � → 0, where xgrad denotes the trajectory of the gradient descent dynamics (4.9).

However, for the proposed approach to be practical, it is desirable to have a strictly positive value of

the timescale below which convergence is guaranteed. The following result shows that such critical

value exists.

Proposition 4.3.2. (Asymptotic convergence of distributed algorithm via accelerated estimation

dynamics). Assume LICQ is satisfied at each x ∈  and let

�∗ =
�min(P⊤estPest)

2L̄�‖∇x�̄‖
> 0,

where �min(P⊤estPest) denotes the minimum of �2(P⊤est(x)Pest(x)), and L̄� and ‖∇x�̄‖ denote the maxi-

mum of L� and ‖∇x�‖ resp., over. Then, for any � ∈ [0, �∗), the equilibria of the interconnected

dynamics (4.10b) and (4.13) are asymptotically stable.

69

Proof. Let � > 0 and consider the Lyapunov function candidate (4.12). Define

A�(x) =

⎡

⎢

⎢

⎢

⎣

� − 1
2
(�L� (x) + ‖∇x�‖)

−1
2
(�L� (x) + ‖∇x�‖) �−1�2(x) − L� (x)‖∇x�‖)

⎤

⎥

⎥

⎥

⎦

.

Following the same line of argument as in the proof of Theorem 4.3.1, we arrive at

L interc
V cc(x,Υ) ≤ −

⎡

⎢

⎢

⎢

⎣

‖∇f �(x)‖

‖�̂ − �(x)‖

⎤

⎥

⎥

⎥

⎦

⊤

A�(x)

⎡

⎢

⎢

⎢

⎣

‖∇f �(x)‖

‖�̂ − �(x)‖

⎤

⎥

⎥

⎥

⎦

and the condition � < �2(x)∕��(x) to ensure L interc
V cc(x,Υ) < 0. Using the bounds for L� and

‖∇x�‖, we upper bound �� over D as

��(x) ≤ �̄� =
1
4�
(�L̄� + ‖∇x�̄‖)2 + L̄�‖∇x�̄‖.

Consequently, it is enough to have � < �2(x)∕�̄� for all x ∈ D. To establish the maximum admissi-

ble value of �, we can select the value of � minimizing �̄�. Since �̄� is strictly convex in � ∈ [0,∞),

this is given by the solution of

d
d�

(1
�
(�L̄� + ‖∇x�̄‖)2

)

= 0.

After some algebraic manipulations, one can verify that �∗ = ‖∇x�̄‖∕L̄� . Substituting this value

in the expression of �̄� and taking the minimum over all x ∈ D yields the definition of �∗.

Note that the conditions identified in Theorem 4.3.1 and Proposition 4.3.2 to ensure con-

vergence are based on upper bounding the terms appearing in the Lie derivative of the Lyapunov

70

function candidate using 2-norms and, as such, are conservative in general. In fact, the algorithm

may converge even if these conditions are not satisfied, something that we have observed in simu-

lation.

Remark 4.3.3. (Constraint satisfaction with the distributed dynamics). The centralized gradient

descent on which we build our approach enjoys the constraint satisfaction properties stated in

Proposition 4.1.1. This means, using a singular perturbation argument [Kha02, Vel97], that the

distributed gradient descent approach proposed here has the same guarantees as � → 0. Although

for a fixed � > 0, we do not have a formal guarantee that the state remains feasible, we have

observed this to be the case in simulations, even under general constraints. We believe this is due

to the error-correcting terms in the original penalty function, which penalize deviations from the

feasible set. This anytime nature is especially important in applications where the optimization

problem is not stand alone and its solution serves as an input to other layer in the control design

(for example as a power/thermal set point, cf. [RJ14, RK12]), where the algorithm should yield a

feasible solution if terminated in finite time. ∙

4.4 Simulations

Here, we illustrate the effectiveness of the proposed distributed dynamics (4.10). Our opti-

mization problem is inspired by [KMT98]: we consider 50 agents connected in a circle forming a

ring topology and seeking to solve

max
x∈

50
∑

i=1
fi(xi)

s.t. Ax ≤ C.

71

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1200

1400

1600

1800

2000

2200

2400

2600

2800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

1300

1350

1400

1450

Figure 4.1: Evolution of the objective function value under the proposed distributed dynamics
with � = 10−1 and 1, resp., the centralized gradient descent, the centralized and the distributed
Nesterov’s accelerated gradient method of the penalty function, and the saddle-point dynamics of
the Lagrangian.

Here, fi(xi) = i log xi for i ∈ {1,… , 50}. The sparse matrix A ∈ ℝ23×50 is such that each of the

23 constraints it defines involves a different corresponding agent and its 1-hop neighbors. We take

 = {x ∈ ℝn
| 10−1 ≤ ‖x‖∞ ≤ 10}. Throughout the simulations, we consider the exact penalty

function (2.10) with � = 10−2 and
 = 1. Since the dynamics are in continuous time, we use a first-

order Euler discretization for the MATLAB implementation with stepsize 10−3. We compare the

performance of the proposed distributed algorithm with values � = 1 and � = 10−1, resp., against

the centralized gradient descent (4.9), the saddle-point dynamics [CGC17] of the Lagrangian, and

the centralized and the distributed Nesterov’s accelerated gradient method [Nes83] of the penalty

function. To implement the latter, we use � = 1 and replace (4.10b) with Nesterov’s acceleration

step. We use the same initial condition for all the algorithms. Figure 4.1 shows the evolution of the

objective function under each algorithm. One can observe that the proposed distributed algorithm

performs much better than the saddle-point dynamics. As expected, centralized Nesterov’s accel-

erated gradient method performs the best, followed by the distributed Nesterov method obtained

72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-6

-5

-4

-3

-2

-1

0

1

2

3

4

(a) Proposed dynamics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4

-2

0

2

4

6

8

10

12

14

(b) Saddle-point dynamics

Figure 4.2: Evolution of the constraints.

by applying the acceleration to our proposed distributed algorithm. The output of the distributed

algorithm for both values of � is also close to that of the centralized gradient descent. Figure 4.2

show the evolution of the value of Ax − C for the proposed distributed algorithm with � = 1 and

the saddle-point dynamics. Even though Proposition 4.1.1 states that, for the centralized gradient

descent counterpart, there is no guarantee of staying inside the feasible set for general constraints,

Figure 4.2 shows that the distributed algorithm satisfies the constraints much better during the evo-

lution than the saddle-point dynamics.

In the next simulation we illustrate the robustness of the proposed dynamics. For this,

we add a disturbance to the dynamics (4.10) using random vectors at each iteration as follows.

For (4.10a), we add d = �‖u(x,Υ)‖ × (unit-norm random vector), where we use the MATLAB

function rand to generate random numbers between 0 and 1. Similarly, for (4.10b), we add d =

�‖w(x,�Υ)‖×(unit-norm random vector). For the scaling constant �, which also equals the ratio

of the norm of the total disturbance to the norm of the unperturbed dynamics, we use gradually

increasing values between 0.1 to 0.5. For each value of �, we plot the evolution of the objective

73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1150

1200

1250

1300

1350

1400

1450

Figure 4.3: Evolution of the objective function value under the proposed distributed dynamics in
the presence of disturbances. The amount of disturbance in percentage denotes the ratio of the norm
of the disturbance to the norm of the unperturbed dynamics.

function with � = 1 in Figure 4.3. The plot shows the graceful degradation of the performance as

the ratio of the norm of disturbance to the norm of unperturbed dynamics increases, demonstrating

the effectiveness of the proposed dynamics against disturbances.

Acknowledgements

This chapter, in part, is a reprint of the material [SC21b] as it appears in ‘Network opti-

mization via smooth exact penalty functions enabled by distributed gradient computation’ by P.

Srivastava and J. Cortés, in the IEEE Transactions on Control of Network Systems, 2021, as well

as [SC18] where it appears as ‘Distributed algorithm via continuously differentiable exact penalty

method for network optimization’ by P. Srivastava and J. Cortés in the proceedings of the 2018

IEEE Conference on Decision and Control. The dissertation author was the primary investigator

and author of these papers. This work was supported by the ARPA-e NODES program, Cooperative

Agreement DE-AR0000695 and NSF Award ECCS-1917177.

74

Chapter 5

Nesterov Acceleration for

Equality-Constrained Convex Optimization

This chapter proposes a framework to use Nesterov’s accelerated method for constrained

convex optimization problems. Our approach consists of first reformulating the original problem as

an unconstrained optimization problem using a continuously differentiable exact penalty function.

This reformulation is based on replacing the Lagrange multipliers in the augmented Lagrangian of

the original problem by Lagrange multiplier functions. The expressions of these Lagrange mul-

tiplier functions, which depend upon the gradients of the objective function and the constraints,

can make the unconstrained penalty function non-convex in general even if the original problem

is convex. We establish sufficient conditions on the objective function and the constraints of the

original problem under which the unconstrained penalty function is convex. This enables us to

use Nesterov’s accelerated gradient method for unconstrained convex optimization and achieve a

guaranteed rate of convergence which is better than the state-of-the-art first-order algorithms for

constrained convex optimization.

75

5.1 Problem Statement

Consider the following convex optimization problem

min
x∈

f (x)

s.t. Ax − b = 0,
(5.1)

where f ∶ ℝn → ℝ is a twice continuously differentiable convex function and  is a convex set.

Here A ∈ ℝp×n and b ∈ ℝp with p < n. Without loss of generality, we assume A has full row rank

(implying that LICQ holds at all x ∈ ℝn).

Our aim is to design a Nesterov-like fast method to solve (5.1). We do this by reformulating

the problem as an unconstrained optimization using continuously differentiable penalty function

methods, cf. Section 2.6.1. Then, we employ the Nesterov’s accelerated gradient method to design

xk+1 = yk − �∇f �(yk), (5.2a)

ak+1 =
1 +

√

4a2k + 1

2
, (5.2b)

yk+1 = xk+1 +
ak − 1
ak+1

(xk+1 − xk), (5.2c)

where � ∈ ℝ>0 is the stepsize. If f � is convex with Lipschitz gradient L and the algorithm is

initialized at an arbitrary initial condition x0 with y0 = x0 and a0 = 1, then according to [Nes83,

Theorem 1],

f �(xk) − f �(x∗) ≤
C

(k + 1)2
, (5.3a)

76

where x∗ ∈ ℝn is a global minimizer of f � and C ∈ ℝ≥0 is a constant dependant upon the initial

condition and L. If f � is strongly convex with parameter s, and (5.2b) and (5.2c) are replaced by

yk+1 = xk+1 +

√

L −
√

s
√

L +
√

s
(xk+1 − xk), (5.2d)

then one has from [Nes18, Theorem 2.2.1]

f �(xk) − f �(x∗) ≤ Cs exp
(

−k
√

s
L

)

, (5.3b)

whereCs ∈ ℝ≥0 is a constant dependant upon the initial condition, s, andL. The key technical point

for this approach to be successful is to ensure that the penalty function f � is (strongly) convex. Sec-

tion 5.2 below shows that this is indeed the case for suitable values of the penalty parameter under

appropriate assumptions on the objective and constraint functions of the original problem (5.1).

Remark 5.1.1. (Distributed algorithm implementation). We note here that the algorithm (5.2) is

amenable to distributed implementation if the objective function is separable and the constraints

are locally coupled. In fact, Chapter 4 shows how, in this case, the computation of the gradient of

the penalty function in (5.2a) can be implemented in a distributed way. Based on this observation,

one could use the framework proposed here for fast optimization of convex problems in a distributed

way. To obtain fast convergence, one could also use second-order augmented Lagrangian methods,

e.g., [AO17, DKJ17], but their distributed implementation faces the challenge of computing the

inverse of the Hessian of the augmented Lagrangian to update the primal and dual variables. Even

if the Hessian is sparse for separable objective functions and local constraints, its inverse in general

is not. ∙

77

5.2 Convexity of the Penalty Function

We start by showing that the continuously differentiable exact penalty function f � defined

in (2.10) might not be convex even if the original problem (5.1) is convex. For the convex prob-

lem (5.1), the penalty function takes the form

f �(x) = f (x) − ([AA⊤]−1A∇f (x))⊤(Ax − b) + 1
�
‖Ax − b‖2. (5.4)

A look at this expression makes it seem like a sufficiently small choice of � might make f � convex

for all x ∈ . The following shows that this is always not the case.

Example 5.2.1. (Non-convex penalty function). Consider

min
x∈

x41 + x
4
2

s.t. x1 + x2 = 0.

The optimizer is (0, 0). The penalty function takes the form

f �(x) = x41 + x
4
2 + �(x)

⊤(x1 + x2) +
1
�
(x1 + x2)2,

where �(x) = −(2x31 + 2x
3
2). The Hessian of this function is

∇2f �(x)=

⎡

⎢

⎢

⎢

⎣

−12x21 − 12x1x2 +
2
�

−6x21 − 6x
2
2 +

2
�

−6x21 − 6x
2
2 +

2
�

−12x22 − 12x1x2 +
2
�

⎤

⎥

⎥

⎥

⎦

.

If x1 = 0, then the determinant of ∇2f �(x) evaluates to −36x42, which is independent of �. Hence,

78

f � cannot be made convex over any set containing the vertical axis. ∙

Example 5.2.1 shows that the penalty function cannot always be convexified by adjusting

the value of �. Intuitively, the reason for this fact is that the term susceptible to be scaled in the

expression (5.4) which depends on the parameter � is not strongly convex. This implies that there are

certain subspaces where non-convexity arising from the term that involve the Lagrange multiplier

function cannot be countered. In turn, these subspaces are defined by the kernel of the Hessian of

the last term in the expression (5.4) of the penalty function.

These observations motivate our study of conditions on the objective function and the con-

straints that guarantee that the penalty function is convex. In our discussion, we start by providing

sufficient conditions for the convexity of the penalty function over .

5.2.1 Sufficient Conditions for Convexity over the Domain

Here we provide conditions for the convexity of the penalty function f � by establishing

the positive semi definiteness of its Hessian. Throughout the section, we assume f is three times

differentiable. Note that the gradient and the Hessian of f � are given, resp., by

∇f �(x) = ∇f (x) − ∇2f (x)A⊤[AA⊤]−1(Ax − b) − A⊤[AA⊤]−1A∇f (x) + 2
�
A⊤(Ax − b). (5.5a)

∇2f �(x) = ∇2f (x) −W (x) − ∇2f (x)A⊤[AA⊤]−1A − A⊤[AA⊤]−1A∇2f (x) + 2
�
A⊤A, (5.5b)

where we use the short-hand notation

W (x) =
n
∑

i=1
∇xi∇

2f (x)A⊤[AA⊤]−1(Ax − b)en⊤i . (5.6)

79

The following result provides sufficient conditions under which the penalty function (5.4) is convex

on .

Theorem 5.2.2. (Convexity of the penalty function). For the optimization problem (5.1), assume

∇2f (x) −W (x) ≻ 0 for all x ∈  and let

�̄ = min
x∈

2�min(AA⊤)�min(∇2f (x) −W (x))
�2max(∇2f (x)) + R(x)�min(∇2f (x) −W (x))

,

where R(x) = 2�max(∇2f (x)) − �min(∇2f (x) −W (x)). Then f � is convex on  for all � ∈ (0, �̄]

and consequently the convergence guarantee (5.3a) holds.

Proof. For an arbitrary x ∈ , we are interested in determining the conditions under which

∇2f �(x) ⪰ 0, or in other words, v⊤∇2f �(x)v ≥ 0 for all v ∈ ℝn. From (5.5b),

v⊤∇2f �(x)v =2
�
v⊤A⊤Av + v⊤(∇2f (x) −W (x))v (5.7)

− 2v⊤(∇2f (x)A⊤[AA⊤]−1A)v.

Let us decompose v as v = v
‖

+ v⟂, where v‖ is the component of v in the nullspace of A and v⟂

is the component orthogonal to it. Then (5.7) becomes

v⊤∇2f �(x)v = 2
�
v⟂⊤A

⊤Av⟂ + v⊤(∇2f (x) −W (x))v

− 2v⊤
‖

∇2f (x)A⊤[AA⊤]−1Av⟂

− 2v⊤⟂∇
2f (x)A⊤[AA⊤]−1Av⟂.

80

Since A⊤(AA⊤)−1Av⟂ = v⟂, cf. [CM09, Theorem 1.1.1], the above expression reduces to

v⊤∇2f �(x)v =2
�
v⊤⟂A

⊤Av⟂ + v⊤(∇2f (x) −W (x))v − 2v⊤
‖

∇2f (x)v⟂ − 2v⊤⟂∇
2f (x)v⟂

≥
(2
�
�2(A⊤A) − 2�max(∇2f (x))

)

‖v⟂‖
2 + �min(∇2f (x) −W (x))(‖v⟂‖2 + ‖v

‖

‖

2)

− 2�max(∇2f (x))‖v⟂‖‖v‖‖

=

⎡

⎢

⎢

⎢

⎣

‖v⟂‖

‖v
‖

‖

⎤

⎥

⎥

⎥

⎦

⊤
⎡

⎢

⎢

⎢

⎣

S(x) −�max(∇2f (x))

−�max(∇2f (x)) �min(∇2f (x) −W (x))

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
P (x)

⎡

⎢

⎢

⎢

⎣

‖v⟂‖

‖v
‖

‖

⎤

⎥

⎥

⎥

⎦

,

where S(x) = 2
�
�min(AA⊤) − R(x). Therefore, we deduce that ∇2f �(x) ⪰ 0 if � is such that

P (x) ⪰ 0. Being a 2 × 2-matrix, the latter holds if S(x) and determinant of P (x) are non-negative.

The determinant is non-negative if and only if

� ≤
2�min(AA⊤)�min(∇2f (x) −W (x))

�2max(∇2f (x)) + R(x)�min(∇2f (x) −W (x))
.

The above value of � also ensures that S(x) > 0. Taking the minimum over all x ∈  completes

the proof.

Remark 5.2.3. (Differentiability of the objective function). Note that the implementation of (5.2)

requires the objective function f to be twice continuously differentiable, while the definition ofW

in (5.6) involves the third-order partial derivatives of f . We believe that an extension of Theo-

rem 5.2.2 could be pursued in case the objective function is only twice differentiable using tools

from nonsmooth analysis, e.g., [Cla83], but we do not pursue it here. ∙

The next result provides sufficient conditions under which the penalty function is strongly

81

convex on .

Corollary 5.2.4. (Strong convexity of the penalty function). For the optimization problem (5.1),

assume ∇2f (x) −W (x) ⪰ cI for all x ∈  and let

�̄s = minx∈

2�min(AA⊤)(c − s)
�2max(∇2f (x))+2(c − s)�max(∇2f (x))−(c − s)2

.

Then f � is strongly convex on  with parameter s ∈ (0, c) for all � ∈ (0, �̄s] and the convergence

guarantee (5.3b) holds.

Proof. Let us decompose∇2f (x)−W (x) as∇2f (x)−W (x) = B(x)+sI . Since∇2f (x)−W (x) ⪰

cI , it follows that B(x) ⪰ (c − s)I . Establishing that the penalty function is strongly convex with

parameter s is equivalent to establishing that, for all x ∈ , v⊤(∇2f �(x) − sI)v ≥ 0 for all v ∈ ℝn.

Following the same steps as in the proof of Theorem 5.2.2, one can verify that this is true if, for all

x ∈ , � is less than or equal to

2�min(AA⊤)�min(B(x))
�2max(∇2f (x))+2�min(B(x))�max(∇2f (x))−�

2
min(B(x))

.

Replacing �min(B(x)) by c−s, it follows that the penalty function is strongly convex with parameter

s if � ≤ �̄s.

It is easy to verify that Example 5.2.1 does not satisfy the sufficient condition identified in

Theorem 5.2.2. This condition can be interpreted as requiring the original objective function to

be sufficiently convex to handle the non-convexity arising from the penalty for being infeasible.

Finding the value of �̄ still remains a difficult problem as computing �min(∇2f (x) −W (x)) for all

82

x ∈  is not straightforward. The next result simplifies the conditions of Theorem 5.2.2 for linear

and quadratic programming problems.

Corollary 5.2.5. (Sufficient conditions for problems with linear and quadratic objective func-

tions).

(i) If the objective function in problem (5.1) is linear, then the penalty function is convex on ℝn

for all values of �;

(ii) If the objective function in problem (5.1) is quadratic with Hessian Q ≻ 0, then the penalty

function is convex on ℝn for all � ∈ (0, �̄], where

�̄ =
2�min(AA⊤)�min(Q)

�2max(Q) + 2�min(Q)�max(Q) − �
2
min(Q)

.

In either case, the convergence guarantee (5.3a) holds.

Proof. We present our arguments for each case separately. For case (i), we have ∇2f (x) = 0.

Hence,

∇2f �(x) = 2
�
A⊤A,

which means that ∇2f �(x) ≥ 0 for all x ∈ ℝn. For case (ii),

f (x) = 1
2
x⊤Qx + ℎ⊤x,

83

where Q ∈ ℝn×n and ℎ ∈ ℝn. The expression for the Hessian of f � becomes

∇2f �(x) = Q + 2
�
A⊤A −QA⊤[AA⊤]−1A − A⊤[AA⊤]−1AQ.

ClearlyW (x) = 0 for all x ∈ ℝn, and the result follows from Theorem 5.2.2.

Following Corollary 5.2.4, one can also state similar conditions for the penalty function to

be strongly convex in the case of quadratic programs, but we omit them here for space reasons. From

Corollary 5.2.5, ensuring that the penalty function convex is easier when the objective function is

quadratic. This follows from the fact thatW (x), which depends on the third order derivatives of the

objection function, vanishes. Hence, in the quadratic case, the condition in Theorem 5.2.2 requiring

theHessian of the objective function to be greater thanW (x) for all x ∈  is automatically satisfied.

In what follows we provide a very simple approach for general objective functions.

5.2.2 Convexity over Feasible Set Coupled with Invariance

Here we present a simplified version of the proposed approach, which is based on the fact

that inside the feasible set the values of the penalty and the objective functions is the same. To

build on this observation, we start by characterizing the extent to which the constraints are satisfied

under the Nesterov’s algorithm.

Lemma 5.2.6. (Forward invariance of the feasible set under Nesterov’s algorithm applied to the

penalty function). Consider the Nesterov’s accelerated gradient algorithm (5.2) applied to the

penalty function (5.4) for an arbitrary � ≥ 0. If the algorithm is initialized at y0 = x0, with x0

belonging to the feasible set  , then {xk}∞k=0, {yk}
∞
k=0 ∈  .

84

Proof. We need to prove that Axk = b and Ayk = b for all k ≥ 0 if Ax0 = Ay0 = b. We use the

technique of mathematical induction to prove this. Since this clearly holds for k = 0, we next prove

that if Axk = Ayk = b, then Axk+1 = Ayk+1 = b. From (5.2a) and (5.5a), we have

Axk+1 =Ayk − �A∇f �(yk)

=Ayk − �A(∇f (yk) − ∇2f (yk)A⊤[AA⊤]−1(Ayk − b)

− A⊤[AA⊤]−1A∇f (yk) +
2
�
A⊤(Ayk − b)).

Substituting Ayk = b, the above expression evaluates to b independent of � ≥ 0. Then from (5.2c),

one has Ayk+1 = b. Since the argument above is independent of the values of ak for all k ∈ ℕ, it

holds for the strongly convex case (5.2d) as well, thus completing the proof by induction.

As a consequence of this result, if the trajectory starts in the feasible set  , then it remains

in it forever. This observation allows us to ensure the convergence rate guarantee for any convex

objective function.

Corollary 5.2.7. (Accelerated convergence with feasible initialization). For the optimization

problem (5.1) and arbitrary � ≥ 0, the algorithm (5.2) initialized in  enjoys the guarantee (5.3)

on convergence to the optimal value.

Proof. Note that f �(x) = f (x) whenever Ax = b, and hence by definition, is automatically

(strongly) convex on  regardless of the value of �. The convergence guarantee follows from this

fact together with Lemma 5.2.6.

Remark 5.2.8. (Robustness of the proposed approach). Given any x0 ∈ ℝn, one can find a fea-

sible initial point x0 − A⊤[AA⊤]−1(Ax0 − b) by projecting x0 onto the feasible set  , and then

85

implement Nesterov’s accelerated method with the projected gradient as (I −A⊤[AA⊤]−1A)∇f (x).

In fact, this projected gradient method coincides with the approach proposed here when evaluated

over  . The advantage of our approach resides in the incorporation of error-correcting terms in-

corporating the value of Ax − b, cf. (5.5a), that penalize any deviation from the feasible set and

hence provide additional robustness in the face of disturbances. By contrast, the projected gradient

approach requires either an error-free execution or else, if error is present, the trajectory may leave

and remain outside the feasible set unless repeated projections of the updated state are taken. The

inherent robustness property of the approach proposed here is especially important in the context

of distributed implementations, cf. Remark 5.1.1, where agents need to collectively estimate (and

hence only implement approximations of) A⊤[AA⊤]−1A∇f (x) and taking the projection in a cen-

tralized fashion is not possible. The approach proposed here can also be extended to problems with

convex inequality constraints, cf. [DG89], whereas computing the projection in closed form is not

possible for general convex constraints. ∙

5.3 Simulations

In this section, we show the effectiveness of the proposed approach through numerical sim-

ulations. We consider

min
x∈ℝn

n
∑

i=1

1
2
�ix

2
i +
i exp(xi)

s.t.
n
∑

i=1
xi = 100,

86

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6 Second-order aug. Lagrangian method

Saddle-point dynamics of Lagrangian

Saddle-point dynamics of aug. Lagrangian

Gradient descent of penalty function

Nesterov method on penalty function

(a) Error evolution for n = 50

10
1

10
2

10
3

10
4

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Second-order aug. Lagrangian method

Saddle-point dynamics of Lagrangian

Saddle-point dynamics of aug. Lagrangian

Gradient descent of penalty function

Nesterov method on penalty function

(b) CPU time per iteration

Figure 5.1: Performance comparison of the proposed algorithm with the second-order augmented
Lagrangian method, the saddle-point dynamics applied to the Lagrangian and the augmented La-
grangian, respectively, and the gradient descent of the penalty function.

where �i,
i ∈ ℝ>0. We evaluate different scenarios with values of n as 10, 50, 100, 500, 1000, 5000

and 10000. We take  = {x ∈ ℝn
| ‖x‖∞ ≤ 5,

n
∑

i=1
xi − 100 ≤ 50}. By Corollary 5.2.4, for n = 50,

the penalty function is strongly convex on  with parameter s = 0.01 for all � ∈ (0, �̄s], where

�̄s = 0.3603. In our simulations, we use � = 10−1 and � = 10−3, resp. Figure 5.1 compares the per-

formance of the proposed method with the second-order augmented Lagrangian method [AO17],

the saddle-point dynamics [CMLC18, QL19] applied to the Lagrangian and the augmented La-

grangian, resp., and the gradient descent applied to the penalty function. Figure 5.1(a) shows the

evolution of the error between the objective function and its optimal value for n = 50. For the same

level of accuracy, the number of iterations taken by the second-order augmented Lagrangianmethod

is smaller by an order of magnitude compared to the proposed method. However, one should note

that the second-order augmented Lagrangian method involves the inversion of Hessian, which be-

comes increasingly expensive as the number of variables increases (see also Remark 5.1.1). To

illustrate this, Figure 5.1(b) shows the computation time per iteration of the algorithms in Matlab

87

version 2018a running on a Macbook Pro with 2GHz i5 processor and 8 GB ram. The time taken

by the first-order algorithms is about the same, and is smaller by several orders of magnitude (de-

pending on the number of variables) than the second-order augmented Lagrangian method. When

both aspects (number of iterations and computation time per iteration) are considered together, the

proposed approach outperforms the other methods, especially if the problem dimension is large.

Acknowledgements

This chapter, in full, is a reprint of the material [SC21a] as it appears in ‘Nesterov accel-

eration for equality-constrained convex optimization via continuously differentiable penalty func-

tions’ by P. Srivastava and J. Cortés, in the IEEE Control Systems Letters, 2021. The dissertation

author was the primary investigator and author of this paper. This work was partially supported by

the ARPA-e NODES program, Cooperative Agreement DE-AR0000695 and NSF Award ECCS-

1917177.

88

Chapter 6

Decentralized Event-Triggered

Optimization via Agent-Supervisor

Coordination

This chapter proposes decentralized resource-aware coordination schemes for solving net-

work optimization problems defined by objective functions which combine locally evaluable costs

with network-wide coupling components. These methods are well suited for a group of supervised

agents trying to solve an optimization problem under mild coordination requirements. Each agent

has information on its local cost and coordinates with the network supervisor for information about

the coupling term of the cost. The proposed approach is feedback-based and asynchronous by de-

sign, guarantees anytime feasibility, and ensures the asymptotic convergence of the network state

to the desired optimizer.

89

6.1 Problem Formulation

Network
Supervisor

Figure 6.1: Communication infrastructure considered. Black dots represent the agents and the
edges represent the communication links.

We consider network optimization problemswhere the objective function is the aggregate of

individual objective functions, one per agent, and an additional function which couples all agents’

states, which is non-separable in general. Formally, consider a network of n ∈ ℤ agents and a

supervisor, cf. Figure 6.1, collectively seeking to solve

min
x∈

n
∑

i=1
fi(xi)

⏟⏞⏟⏞⏟
f (x)

+g(x), (6.1)

where, for i ∈ {1,… , n}, fi ∶ ℝ → ℝ is the local cost function of agent i, g ∶ ℝn → ℝ is a

function coupling all agents’ states,  =
n
∏

i=1
i is the constraint set, and i is agent i’s constraint

set. Agent i ∈ {1,… , n} has knowledge of its local state xi ∈ ℝ, constraint set i and cost fi,

and relies on the network supervisor to obtain information pertaining the coupling cost g. For

simplicity of exposition, we assume that (6.1) has a unique solution x∗, albeit the results of the

paper can be extended with minor modifications to the case of multiple optimizers. We make the

following assumptions on the cost functions and the constraints.

Assumption 6.1.1. (Convexity and Lipschitz gradients). The functions {fi}ni=1 and g are convex;

the functions {fi}ni=1 are twice continuously differentiable, and g is continuously differentiable with

90

locally Lipschitz gradient; and the sets {i}ni=1 are compact and convex.

Our goal is to design a decentralized algorithm that allows the agents to collectively

solve (6.1). We want the algorithm to be anytime, meaning that if the network state starts feasible, it

remains so during the algorithm’s execution. This anytime nature is desirable in applications where

the optimization problem is not stand-alone and its solution serves as an input to another layer in the

control design. In such cases, the algorithm should yield a feasible solution even if terminated in

finite time. Note that, without the presence of the coupling function g, (6.1) could be solved easily

by having each agent i solve a local optimization problem with the function fi over the constraint

set i. Instead, the presence of g couples the agents’ decisions. Since information about g is not

available at all times, we seek to endow the individual agents with a criterion that allows them to

determine when to query the supervisor in an opportunistic fashion – this is what corresponds to

the event-triggered component of the algorithmic solution. Based on the application at hand and

the supervisor’s capabilities, the coordination between the supervisor and the agents could either

be sensing-based or computation-based, as defined next:

(i) Sensing-based: each agent i ∈ {1,… , n} can evaluate ∇xig with its local information and

the one broadcast from the supervisor when an agent asks for an update. This is because

the supervisor has access from its own measurements to enough knowledge about g. In this

scheme, the states of all agents remain private (the virtual power plant case in [CBCZ20] is

an example falling in this case);

(ii) Computation-based: the supervisor knows the functional form of the cost. Whenever an

agent asks for an update, the supervisor gathers the state of all the agents, evaluates ∇g, and

broadcasts it to the agents (scheduling links and channels for transmission of information in

91

wireless networks is an example scenario for this case, see e.g., [ZSJ09]).

The forthcoming design and the ensuing analysis can be applied to both scenarios.

6.2 Event-TriggeredCoordination for Unconstrained Problems

Here, an event-triggered decentralized algorithm to solve (6.1) when  = ℝn is provided.

Consider the standard gradient-descent dynamics

ẋ = −�(∇f (x) + ∇g(x)), (6.2)

where � > 0 is a design parameter. For agent i ∈ {1,… , n}, this takes the form

ẋi = −�(∇xifi(xi) + ∇xig(x)). (6.3)

From an implementation viewpoint, the first term in (6.3) can be evaluated locally by each agent.

However, the second term in (6.3) requires knowledge of the partial gradient of the coupling cost

with respect to the agent’s state, which entails continuous communication with the supervisor. We

avoid this by designing an event-triggered scheme that has the supervisor broadcast the information

needed to compute ∇g(x) in an opportunistic fashion. Introducing the shorthand notation xk =

x(tk), consider the dynamics

ẋ = −�(∇f (x) + ∇g(xk)) tk ≤ t < tk+1. (6.4)

92

To implement (6.4), the network supervisor needs to broadcast the information required to compute

∇g(x) only at some specified times {tk}∞k=0. Here, ∇g(x
k) is the equivalent of the input in the stan-

dard event-triggered control, cf. Section 2.7. Whenever convenient, we refer to the dynamics (6.4)

as ev. The next result identifies a decentralized condition on the triggering times {tk}∞k=0 that en-

sures that the dynamics (6.4) is stable. By decentralized, we mean that each agent i ∈ {1,… , n}

can identify the triggering criterion locally without knowing the states of the other agents or the

coupling function.

Proposition 6.2.1. (Decentralized trigger). Let xk be the state when the trigger was last imple-

mented, with xk ≠ x∗, � ∈ (0, 1), and

k = {x ∈ ℝn
| f (x) + g(x) ≤ f (xk) + g(xk)}.

Then for all � > 0, the dynamics (6.4) is stable and the value of the objective function f + g is

non-increasing if the triggering times are updated according to

tk+1 = min
i∈{1,…,n}

min{t > tk | Lg|xi − xki | = �|∇xifi(xi) + ∇xig(x
k)| ≠ 0}, (6.5)

where Lg is the Lipschitz constant of ∇g over 0.

Proof. Consider the Lyapunov function V ∶ ℝn → ℝ

V (x) =f (x) + g(x) − f (x∗) − g(x∗), (6.6)

93

whose Lie derivative is

 ev
V (x) = −�(z + e)⊤z ≤ −�‖z‖2

(

1 −
‖e‖
‖z‖

)

,

where z = [z1 … zn]⊤, zi = ∇xifi(xi) + ∇xig(x
k), and e = ∇g(x) − ∇g(xk). At t = tk, we have

e = 0; then the error starts increasing as xk becomes obsolete. However,  ev
V ≤ 0 if we ensure

that ‖e‖ ≤ �‖z‖. The direct evaluation of the latter condition requires complete information about

the network state. However, note that ‖e‖ ≤ Lkg‖x− x
k
‖, where Lkg is the Lipschitz constant of ∇g

over k. Hence, we can guarantee the stability of (6.4) if

Lkg‖x − x
k
‖ ≤ �‖z‖.

The triggering rule (6.5) ensures that the latter inequality is satisfied noting that the setk is forward

invariant, k+1 ⊆ k, and hence Lg ≥ Lkg for all k.

From Proposition 6.2.1, it is clear that if the agents have knowledge of (an upper bound of)

Lg, they can check (6.5) locally and request the supervisor for an update accordingly. Although (6.5)

guarantees that the dynamics (6.4) is stable, we still need to establish the convergence to x∗ and

whether the proposed event-triggered scheme is Zeno-free. We prove both facts in the next result.

Proposition 6.2.2. (Non-Zeno behavior and convergence to the optimizer). With the notation of

Proposition 6.2.1, if the triggering times are updated as (6.5), then for all � > 0, the MIET is lower

bounded by � = 1
�H
log(��H∕Lg + 1) > 0, where H = max

i∈{1,…,n}
max
x∈0

∇2xifi(xi). Moreover, any

trajectory of (6.4) converges asymptotically to x∗.

Proof. If xk = x∗, then the result is immediate. Assume then that xk ≠ x∗. Let  = {i | zi(tk) ≠ 0}.

94

Since for all i ∈ {1,… , n}, żi = −�∇2xifi(xi)zi, we deduce that zi = 0 for all t ∈ [tk, tk+1) if i ∉ .

For i ∈ , we examine the evolution of |xi − xki |∕|zi|,

d
dt

|xi − xki |
|zi|

=
(xi − xki)zi

√

(xi − xki)2
√

z2i
−
ziżi

√

(xi − xki)2

|zi|3

≤ 1 +
|żi|
|zi|

|xi − xki |
|zi|

≤ 1 + �H
|xi − xki |

|zi|
. (6.7)

Now consider the differential equation ẏ = 1+�Hy, tk ≤ t < tk+1, with initial condition y(tk) = 0,

whose closed-form solution is given by

y = 1
�H

(

e�H(t−tk) − 1
)

, tk ≤ t < tk+1.

By the Comparison Principle, cf. [Kha02, Lemma 3.4], we have

|xi − xki |
|zi|

≤ 1
�H

(

e�H(t−tk) − 1
)

, tk ≤ t < tk+1.

Equating the right-hand side of the above inequality with �∕Lg implies that the inter-event time is

lower bounded by � provided zi ≠ 0 for all t ∈ [tk, tk+1) and each i ∈ . We reason by contradiction

to prove this. Since the ratio |xi − xki |∕|zi| is bounded, zi = 0 only if xi − x
k
i = 0. Let t̄ = min{t >

tk | xi − xki = 0}. Since xi − xki = 0 and zi ≠ 0 at t = tk, this means that the sign of zi has to

change before t̄, and from the continuity of the dynamics, there exists t̂ < t̄ such zi(t̂) = 0, which

contradicts zi ≠ 0 for all t ∈ [tk, t̄). To prove the attractivity part, note that from Proposition 6.2.1,

 ev
V ≤ 0, and hence,  ev

V (x) < 0 for all x ≠ x∗ as zi ≠ 0 for all i ∈  and all t ∈ [tk, tk+1).

Remark 6.2.3. (Differentiability of the local objective functions). Note that ruling out Zeno be-

95

havior in Proposition 6.2.2 relies on the functions {f}ni=1 being twice continuously differentiable,

while the dynamics (6.4) and the triggering condition (6.5) involve just first-order derivatives. We

believe, although we do not pursue it here, that Proposition 6.2.2 can be extended for the case

when the separable component of the objective function is just continuously differentiable, using

tools from nonsmooth analysis, e.g., [Cla83,Cor08]. ∙

Remark 6.2.4. (Self-triggered implementation). In the absence of errors in the solution of the

differential equations by the individual agents, the criterion (6.5) can also be implemented in a

self-triggered fashion. In fact, we can write it as

tik+1 = min{t > tk | Lg|xi − x
k
i | = �|∇xifi(xi) + ∇xig(x

k)| ≠ 0},

tk+1 = min
i∈{1,…,n}

tik+1.

This means that, with the information provided at time tk, each agent i ∈ {1,… , n} can compute

tik+1 by solving its differential equation, and convey it to the supervisor, which can then schedule

the next triggering event at tk+1. ∙

6.3 Event-Triggered Coordination for Constrained Problems

To deal with constrained problems, we build on the continuous projected dynamics, cf. Sec-

tion 2.6.2, which takes the form

ẋ = Π (x − �(∇f (x) + ∇g(x))) − x, (6.8)

96

where � > 0. Its event-triggered counterpart is

ẋ = Π (x − �(∇f (x) + ∇g(xk))) − x, (6.9)

for t ∈ [tk, tk+1). Whenever convenient, we refer to the dynamics (6.9) as evco. The following

result identifies a decentralized condition on the triggering times {tk}∞k=0 that ensures the stability

of (6.9).

Proposition 6.3.1. (Decentralized trigger for constrained problems). Let xk be the state when the

trigger was last implemented, with xk ≠ x∗, and � ∈ (0, 1). If x(0) ∈  , then for all � > 0,

x(t) ∈  for all t > 0, the dynamics (6.9) is stable and the value of the objective function f + g is

non-increasing if the triggering times are updated as

tk+1 = min
i∈{1,…,n}

min{t > tk | �L̄g|xi − xki | = �|Πi(xi − �(∇xifi(xi) + ∇xig(x
k))) − xi| ≠ 0},

(6.10)

where L̄g is the Lipschitz constant of ∇g over  .

Proof. We start by noting that from Theorem 2.6.3, for t ∈ [tk, tk+1), positive invariance of the

feasible set  under (6.9) can be established by taking ℎ(x) ≡ f (x)+∇g(xk)⊤x. To prove stability,

consider again the Lyapunov function candidate V defined in (6.6), whose Lie derivative is now

given by

 evco
V (x) =(∇f (x) + ∇g(xk) + e)⊤ z̄,

97

where z̄ = [z̄1 … z̄n]⊤, z̄i = Πi(xi − �(∇xifi(xi) + ∇xig(x
k))) − xi, and e = ∇g(x) − ∇g(xk). It is

well known, cf. [Gao03], that for a convex set Ω

(u − ΠΩ(u))⊤(ΠΩ(u) − v) ≥ 0,

for all v ∈ Ω and all u ∈ ℝn. With Ω =  , v = x, and u = x − �(∇f (x) + ∇g(xk)), this implies

that

(�∇f (x) + �∇g(xk) + z̄)⊤ z̄ ≤ 0.

Using this, we upper bound the Lie derivative as

 evco
V (x) ≤ −1

�
z̄⊤ z̄ +e⊤ z̄ ≤ −‖ z̄ ‖2

(

1
�
−

‖e‖
‖ z̄ ‖

)

.

This expression is analogous to that of  ev
V in the proof of Proposition 6.2.1, and a similar argu-

ment concludes the proof.

As in the unconstrained case, without excluding Zeno behavior, Proposition 6.3.1 is not

enough to conclude the asymptotic convergence to x∗.

Proposition 6.3.2. (Non-Zeno behavior and convergence to the optimizer in the constrained

case). With the notation of Proposition 6.3.1, if the triggering times are updated as (6.10), then

for all � < �̄ = 1∕H̄ , the MIET is lower bounded by �̄ = log(�∕�L̄g + 1) > 0, where

H̄ = max
i∈{1,…,n}

max
xi∈i

∇2xifi(xi). Moreover, any trajectory of (6.9) with x(0) ∈  converges asymptot-

ically to x∗.

98

Proof. Since {i}ni=1 are convex, without loss of generality let i = {xi ∈ ℝ | xi ≤ xi ≤ xi} for

all i. For each agent i ∈ {1,… , n}, define ui ∶ i → ℝ as ui(xi) = xi − �(∇xifi(xi) + ∇xig(x
k)).

The derivative of ui w.r.t xi is given by

dui
dxi

= 1 − �∇2xifi(xi).

For a given i ∈ {1,… , n}, the sign of dui∕dxi at any xi ∈ i depends on the value of � and

∇2xifi(xi). If � < �̄, then dui∕dxi > 0 for all xi ∈ i. This means that if there is a point x̂i ∈ i

such that Πi(ui(x̂i)) = xi, then Πi(ui(xi)) = xi for all xi > x̂i. Similarly, if there is a point x̃i ∈ i

such that Πi(ui(x̃i)) = xi, then Πi(ui(xi)) = xi for all xi < x̃i. Therefore, ̇̄zi can be represented as

a set-valued map, cf. [Cor08],

|
̇̄zi| =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

|�∇2xifi(xi) z̄i | x̃i < xi < x̂i,

[|�∇2xifi(xi) z̄i |, | z̄i |] xi = x̃i, x̂i,

| z̄i | xi ≤ xi < x̃i, x̂i < xi ≤ xi.

Since � < �̄, we have an expression similar to (6.7) for d
dt
|xi − xki |∕| z̄i | for all i with z̄i(tk) ≠

0, with �H replaced by 1. The remainder of the argument follows analogously to the proof of

Proposition 6.2.2.

The upper bound on � in Proposition 6.3.2 is conservative in general. In fact, the dynam-

ics (6.9) with the triggering rule (6.10) may be Zeno-free even if this condition is not satisfied,

something that we have observed in simulation.

99

6.4 Simulations

Here we illustrate our coordination approach in a power distribution scenario, where n gen-

erators managed by a distribution system operator that acts as the network supervisor seek to mini-

mize the total power generation cost. The active power output of generator i = {1,… , n} is xi and

the power that flows from the external grid to the distribution grid through the substation, labeled

as node 0, is denoted as x0. Assuming the power line losses are negligible, x0 can be approximated

by, see e.g., [CBCZ20],

x0(x) ≃ −
n
∑

i=1
xi + c, (6.11)

where c depends on the grid load. We choose polynomial costs for power injection at each node

i = {0, 1,… n}. Each function fi is known only by generator i ∈ {1,… , n}, and the network

supervisor has access only to f0. By substituting (6.11) into f0(x0), the problem of minimizing the

total power cost is equivalent to solving (6.1) with g(x) = f0(−
∑n

i=1 xi + c). From the chain rule,

∇xig(x) = −∇x0f0(x0),

for all i ∈ {1,… , n}. Since the supervisor can measure x0, whenever there is an update request, it

can evaluate ∇g directly and broadcast it to the generators. This corresponds to the sensing-based

scenario (cf. Section 6.1).

We test the algorithms resulting from the triggering criteria (6.5) and (6.10) on a single-

phase equivalent of the IEEE 37-bus test feeder, reported in Figure 6.2. The network has five

generators. The load buses are a mixture of constant-current, constant-impedance, and constant-

power loads [Ker01]. The initial active and reactive power demands are 2 MW and 1 MVAR,

100

1

2

3

4

5

0

Figure 6.2: The IEEE 37-bus test feeder, where node 0 represents the supervisor, red nodes repre-
sent the micro-generators and black nodes represent the loads; edges represent the electrical con-
nection between the nodes.

respectively. At t = 40 seconds, the active power demand increases by 1 MW. The algorithms are

simulated using the nonlinear exact AC power flow solver MATPOWER [ZMSG11]. Since the

proposed dynamics evolve in continuous time between the triggering instances, we use a first-order

Euler discretization for the MATLAB implementation with stepsize 10−2. The values of � and �

are taken as 0.2 and 0.9, respectively.

0 10 20 30 40 50 60

Time (in seconds)

0.2

0.4

0.6

0.8

1

1.2

1.4

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Continuous updates - unconstrained

Event-triggered updates - unconstrained

Continuous updates - constrained

Event-triggered updates - constrained

Figure 6.3: Evolution of the objective function for the unconstrained and the constrained cases
using the proposed event-triggered mechanisms.

We provide two sets of simulations based on whether the generation capacities of the micro-

101

0 5 10 15 20 25 30 35 40 45 50

Time (in seconds)

-0.2

0

0.2

0.4

0.6

0.8

1

P
o

w
e

r
in

je
c
ti
o

n
 (

in
 M

W
)

(a) Unconstrained

0 5 10 15 20 25 30 35 40 45 50

Time (in seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
o

w
e

r
in

je
c
ti
o

n
 (

in
 M

W
)

(b) Constrained

Figure 6.4: State evolution using the proposed event-triggered coordination algorithms. ×markers
denote the triggering instances for the corresponding agent.

generators are unconstrained or constrained. For the constrained case, for each i ∈ {1,… , 5},

i = {xi | 0 ≤ xi ≤ xi}, where {xi}5i=1 are taken as 0.7 MW, 1 MW, 0.8 MW, 0.5 MW and

0.3 MW, respectively. Figure 6.3 reports the objective function evolution for the proposed event-

triggered dynamics (6.4) and (6.9) to their standard counterparts (6.2) and (6.8), respectively. The

load increase at t = 40 seconds changes the optimal configuration and causes the jump in the objec-

tive function. Figure 6.4(a) and Figure 6.4(b) show the evolution of the injected active powers of all

the agents using the proposed event-triggered dynamics (solid lines) and the continuous dynamics

for the unconstrained and constrained case, respectively. Note that depending on the operating re-

gion, different agents request for the information update non-uniformly. Lastly, for a fixed load, we

simulate 10 different initial conditions for 60 seconds and observe an average MIET of 3.3 × 10−1

seconds for the unconstrained and 2.0×10−1 seconds for the constrained case, with respective stan-

dard deviations of 6.7 × 10−3 seconds and 23.1 × 10−3 seconds, and 177 (unconstrained) and 190

(constrained) average updates per resource-aware execution.

102

Acknowledgements

This chapter, in full, has been submitted for publication of the material [SCC21a] as it may

appear as ‘Agent-supervisor coordination for decentralized event-triggered coordination’ by P. Sri-

vastava, Guido Cavraro, and J. Cortés, in the IEEE Control Systems Letters, 2021. The dissertation

author was the primary investigator and author of this paper. This work was supported by the

National Renewable Energy Laboratory (NREL) under Contract DE-AC36-08GO28308.

103

Part II

Applications of Constrained Optimization

in Frequency Regulation from DERs

104

Chapter 7

Participation of DERs in Frequency

Regulation Markets

In this chapter, we propose a framework for collections of distributed energy resources

(DERs), combined to form microgrids and controlled by aggregators, to participate in frequency

regulation markets. Our approach covers both the identification of bids for the market clearing stage

and the mechanisms for the real-time allocation of the regulation signal. The proposed framework,

cf. Figure 7.1, is hierarchical, consisting of a top layer and a bottom layer. The top layer consists

of the aggregators communicating in a distributed fashion to optimally disaggregate the regula-

tion signal requested by the system operator. The bottom layer consists of the DERs inside each

microgrid whose power levels are adjusted so that the tie line power matches the output of the cor-

responding aggregator in the top layer. The coordination at the top layer requires the knowledge

of cost functions, ramp rates and capacity bounds of the aggregators. We develop meaningful ab-

stractions for these quantities respecting the power flow constraints and taking into account the load

uncertainties, and propose a provably correct distributed algorithm for optimal disaggregation of

105

Figure 7.1: Power system framework considered. The Regional Transmission Organization (RTO)
monitors the bulk grid and coordinates with the aggregators, which communicate with each other,
and control the resources inside their respective microgrids.

regulation signal amongst the microgrids.

7.1 Frequency Regulation with Microgrids

We are interested in coordinating power aggregators to collectively provide frequency regu-

lation. An aggregator is a virtual entity that aggregates the actions of a group of distributed energy

resources to act as a single whole. In this paper, we identify an aggregator with a microgrid, but in

general it may correspond to other entities (such as, for instance, a collection of microgrids). We

consider microgrids with fast responding DERs (e.g., photovoltaics (PVs), electric vehicles, bat-

teries and small generators) as they operate on time scales that match those needed for frequency

regulation.

106

Time

Re
gu

la
tio

n
Po

w
er

AGC set points

Capacity

Mileage

Figure 7.2: Illustration of the computation of capacity and mileage.

7.1.1 Review of Current Practice

The frequency regulation market is operated by an RTO to regulate the system frequency

at its nominal value. To achieve this, the RTO coordinates the response of participating energy

resources in a centralized fashion to assign the regulation signal and restore the power balance of

the grid. Different RTOs follow slightly different procedures for the frequency regulation markets.

The procedure followed by CAISO has the following stages, see e.g., [KM14,Cal12]:

[CP1]: Market clearance. All participating resources submit their capacity bids, capacity

price bids, and mileage price bids to the RTO. Capacity bids are the maximum amount of regulation

(up or down) that the resource can provide. Capacity price bids are the unit price of providing these

regulations. Mileage is the sum of the absolute change in AGC set points, which corresponds to

the summation of the vertical lines in Figure 7.2. The mileage price bid is the cost for unit change

in regulation. Typically, expected mileages are calculated from historical data and resources do not

submit mileage bids. Using the bids submitted by the resources, the RTO solves an optimization

problem to minimize the expected cost and uses its solution to clear the market with uniform prices

for capacity and mileage across the resources. The RTO then sends each resource its capacity and

107

mileage allocation. This off-line process happens only once per regulation event.

[CP2]: Allocation of regulation signal to each resource. The RTO sends the regulation

set points to each of the procured energy resources every 2-4 seconds for the entire regulation period,

which is usually 10-15 minutes. The regulation set points are computed from the AGC signal in

real time in proportion to the procured mileage of each resource. In case the assigned capacity of

a resource is violated, the overshoot power is redistributed to the other resources in proportion to

their assigned mileages.

[CP3]: Real-time tracking of regulation signal. Once the regulation set points have been

assigned, the resources need to track them in real time.

Payment to the resources comprises of two components, capacity payment and mileage

payment. The capacity payment is done based on the assigned capacity in [CP1] while the mileage

payment is done based on the actual mileage provided which reflects the performance of the re-

sources while tracking the assigned signal in [CP3].

Limitations of Current Practice

The centralized way of assigning the set points to the resources in [CP2] relies on the fixed

number of resources with fixed generation capacities procured in [CP1], which are available for

the entire regulation period. This is problematic in the context of aggregators, as they are subject

to variabilities and uncertainties associated with the DERs inside them. Even if the DERs inside

the microgrid participating stay during the regulation period, the users inside the microgrid can

change their power consumption, which in turn leads to changes in the effective regulation capacity.

Furthermore, in current practice, there is no direct consideration of the operational costs of the

resources, which may result in suboptimal power allocation. Instead, we argue that the assignment

108

of the regulation signal should be done, at each time step, in a way that optimizes the aggregate cost

functions of the resources and takes into account their (possibly dynamic) operational limits. We

refer to this approach as the RTO-DERP coordination problem. This idea has also been pointed out

in the past by CAISO for traditional energy resources, cf. [BHH12]. The lack of robustness and the

information sharing requirements of centralized schemes motivate the investigation of distributed

schemes to solve the RTO-DERP coordination problem.

Challenges for Frequency Regulation from Microgrids

Here we describe the challenges specific to microgrid participation in frequency regulation

markets. First, note that solving the RTO-DERP coordination problem with microgrids requires the

identification, or rather the abstraction, of aggregate cost functions and regulation capacity bounds

based on the cost functions and flexibilities of their DERs. Second, the determination of capacity

bids requires taking into account the uncertainties associated with the microgrids. There is a need

to calculate bids for each regulation interval, as they might need to considerably change from one

interval to the next. Even within a regulation interval itself, the power level of the uncontrollable

nodes might vary significantly. Third, the mileage bids should be determined by taking into account

the dependency of ramp rates on the composition and participation of the individual DERs. The

current method of calculating expected mileages in [CP1] makes sense for conventional resources

as their ramp rates are fixed and historical data provides reliable accuracy. In the case of microgrids,

individual resources keep changing and as a result, ramp rates do not remain constant over time.

Also, the performance of participating resources for one regulation period to another might be

substantially different.

109

7.1.2 Problem Statement

Consider N microgrids, each controlled by an aggregator. To enable microgrid participa-

tion in the frequency regulation market, we focus on [CP1] and [CP2]. Based on the proposed

framework in Figure 7.1 and the discussion in Section 7.1.1, our goal is to equip the aggregators

with abstracted bids to enable their participation in the market and design a distributed optimization

algorithm to solve the RTO-DERP coordination problem. We formalize the following problems.

[P1]: Meaningful abstractions for the microgrid. To enable the submission of bids in

[CP1], each aggregator needs to quantify the maximum up/down regulation capacity that the micro-

grid can provide, the unit cost of providing such regulation, and the ramp rate at which themicrogrid

can change its power level. Our first goal is therefore to provide meaningful abstractions for these

elements, capturing the aggregate behavior of the composing DERs, and specifically cost functions

and ramp rate functions of the microgrids for [P2] below, a problem we tackle in Section 7.2.

[P2]: RTO-DERP distributed coordination. The RTO-DERP coordination problem for

computing the set points for each resource advocated for [CP2] consists of an economic dispatch

problem with ramp rate constraints at every instant of the regulation interval. Formally, for xr

regulation at a given time instant, we have

min
x

f (x) =
N
∑

i=1
fi(xi)

s.t.
N
∑

i=1
xi = xr

xi ≤ xi ≤ xi ∀ i

|xi − x−i | ≤ Ri(x−i) ∀ i,

(7.1)

110

where x ∈ ℝN is the vector of regulation power from the microgrids, fi(xi) is the cost of xi regula-

tion for microgrid i, xi and xi are the lower and upper bounds of regulation for microgrid iwhich are

bounded by the solutions of [P1] and determined by [CP1] for a specific regulation period, x−i is the

regulation that the microgrid i was providing at the previous instant, and Ri(xi) is the ramp rate of

the microgrid when it is providing regulation xi. Because of the ramp constraints present in (7.1),

this problem might not be always feasible (since mileage requirements set by the RTO while clear-

ing the market in [CP1] capture the average mileage required, and not the extreme cases). In such

cases, we want to minimize the error between the procured regulation and the required one. We

tackle these in Section 7.3.

7.2 Microgrid Abstractions

Consider a microgrid with n ∈ ℤ>1 buses, described by m = ( ,  ,A). Without loss of

generality, we assume that the first bus is connected to the bulk grid through a tie line. We partition

the remaining set of buses as g ∪ l, where g is the set of the generators and controllable loads,

referred to as controllable nodes in the following, and l denotes the set of the fixed loads and

devices outside the aggregator’s authority, referred collectively as the uncontrollable nodes. Let

n = ||, ng = |g|, nl = |l| and m = ||. Following [FZD18], we assume that the lines

connecting various buses inside the microgrid are lossless and inductive. In case the electrical

lines inside the microgrid are lossy with sufficiently uniform resistance to reactance ratios, they

could still be represented via a lossless model obtainable through a linear transformation [DSPB16].

Since the voltage dynamics governed by the voltage droop controllers operate at much faster scale

than the secondary frequency regulation [LD14], we assume the voltage magnitude of every bus

111

to be approximately 1 p.u. Further, we assume that the network and inverter filter dynamics are

fast enough so that we can model them as power injections with no dynamics [AAC+17, ZH12].

We adopt the convention that the value of the power injection is negative if the device consumes

power and vice versa. The power level of each controllable node p ∈ g is denoted by gp, with g0p

denoting the baseline generation/consumption. The power level of each uncontrollable node q ∈ l

is denoted by lq. We denote the incoming power through the tie line by P and its baseline value by

P 0. When the microgrid provides frequency regulation, the value of the tie line power P is

P = P 0 + x,

where x is the allocated AGC signal. Note that since we model P as the incoming power from bulk

grid, x would be negative when the microgrid is providing up regulation. Following [ZDG20],

we assume that m is a graph with non-overlapping loops, meaning that there is no common edge

between any loops. This assumption helps linearize the power flow equations inside the microgrid,

which are given by

[P ; g; −l] = M! (7.2a)

|!| ≤ !, (7.2b)

where g ∈ ℝng and l ∈ ℝnl are the vectors of controllable and uncontrollable nodes, resp., M ∈

ℝn×m is the incidence matrix of the graph, ! ∈ ℝm is the vector of line flows and ! ∈ ℝm is the

vector of maximum permissible flows. Since the columns of the fundamental loop matrix form a

112

basis for the null space of the incidence matrix, cf. [SR61, Theorem 4-6], we write (7.2) as

|M+[1⊤l − 1⊤g; g; −l] + N
| ≤ !, (7.3)

whereM+ denotes the Moore-Penrose pseudoinverse ofM, N ∈ ℝm×(m−n+1) is the fundamental loop

matrix of m, and
 ∈ ℝm−n+1.

7.2.1 Capacity Bounds

The microgrid needs to solve an optimization problem to find the maximum up (or down)

regulation that it can provide. For up regulation, the power consumption of themicrogrid is less than

the baseline power. Since the latter is constant for the regulation period, computing the capacity

is equivalent to minimizing P while satisfying the power flow constraints. If the power level of

uncontrollable nodes is constant for the entire regulation period, then the problem reads as

min
g,!

P

s.t. [P ; g; −l] = M!

g ≤ g ≤ g, |!| ≤ !,

(7.4)

where g and g are the vectors of minimum and maximum possible power levels of controllable

nodes, respectively. If P denotes the solution of (7.4), then the maximum up regulation is x =

P −P 0. The maximum down regulation x can be obtained solving a similar maximization problem.

The formulation (7.4) assumes the power level of the uncontrollable nodes remains con-

stant, and therefore does not take into account the varying nature of the loads. In practice, this

113

makes sense for a specific regulation instant, and would rarely be the case for the whole regulation

period. Instead, a more robust way of calculating the capacity bounds that the aggregator can use

in bidding for the whole regulation period is to account for worst-case scenarios, i.e., taking the ex-

pected maximum value for the uncontrollable nodes while computing the maximum up regulation.

Although robust to variations in the uncontrollable nodes’ powers, this way of computing capacity

bounds might be too conservative and, in fact, might prohibit the microgrid from participating in

the regulation market at all. As an alternative, we propose a reformulation of problem (7.4) based

on chance constraints. Using (7.3), we rewrite the optimization problem (7.4) as

min
g,
,t

t

s.t. t ≥ 1⊤l − 1⊤g

|M+[1⊤l − 1⊤g; g; −l] + N
| ≤ !

g ≤ g ≤ g.

(7.5)

Assume that a probability distribution describing the power levels of uncontrollable nodes at any

instant of the regulation period is available. To account for load variability, we instead consider the

following chance-constrained optimization

min
g,
,t

t

s.t. Pr(t ≥ 1⊤l − 1⊤g) ≥ 1 − �′

Pr(|M+[1⊤l − 1⊤g; g; −l] + N
|j ≤ !j) ≥ 1 − � ∀j

g ≤ g ≤ g.

(7.6)

where �′, � ∈ [0, 1]. In this formulation, each flow constraint can be violated, with a probability no

114

more than �.

Since the regulation period lasts for only a short period of time (10-15 minutes), the varia-

tion in the loads would not be significant and it is reasonable to assume it could be approximately

characterized by a normal distribution. The next result, whose proof is in the Appendix, shows that

the chance-constrained optimization (7.6) can be solved via a deterministic linear program if the

loads are normally distributed.

Lemma 7.2.1. (Capacity bounds for variable loads via deterministic optimization). Assume the

loads are distributed normally with mean l̂ and variance Vl. Then, the solution of the deterministic

linear program

min
g,
,t

t

s.t. 1⊤l̂ − 1⊤g − t ≤
√

2 erf−1(2�′ − 1)(1⊤Vl1)1∕2

|(M1 1⊤ −M3)l̂ + (M2 −M1 1⊤)g + N
| ≤ !l

g ≤ g ≤ g,

(7.7)

where M+ = [M1 M2 M3] with M1 ∈ ℝm, M2 ∈ ℝm×ng and M3 ∈ ℝm×nl , !l = ! + K and

Kj =
√

2 erf−1(� − 1)
(

(M1j 1⊤ −M3j)Vl(M1j 1⊤ −M3j)⊤
)1∕2 is a solution of problem (7.6).

Proof. With the notation of the statement, (7.3) can be written as

|M1(1⊤l − 1⊤g) +M2 g −M3 l + N
| ≤ !.

Without loss of generality, let us for now consider only the following constraint in (7.6)

Pr(|�j| − !j ≤ 0) ≥ 1 − �. (7.8)

115

where �j = (M1j 1⊤ − M3j)l + (M2j −M1j 1⊤)g + Nj
 . Let �+j = {�j ∈ ℝ | �j − !j ≤ 0} and

�−j = {�j ∈ ℝ | − �j − !j ≤ 0}. Then (7.8) is equivalent to

Pr(�+j ∩ �
−
j) ≥ 1 − �, (7.9)

We can further rewrite (7.9) as

Pr(�+j ∩ �
−
j)
c ≤ � ⇒ Pr(�+cj ∪ �−cj) ≤ �. (7.10)

We next break (7.10) down into single chance constraints. Using the fact that �+cj and �−cj are

mutually exclusive, Pr(�+cj ∪ �−cj) = Pr(�
+c
j) + Pr(�

−c
j). Therefore, (7.10) is equivalent to

Pr(�+cj) ≤ �∕2, and Pr(�−cj) ≤�∕2. (7.11)

If l ∼ (l̂, Vl), then �j ∼ (�̂j , �2j) where

�̂j = (M1j 1⊤ −M3j)l̂ + (M2j −M1j 1⊤)g + Nj
,

�2j = (M1j 1⊤ −M3j)Vl(M1j 1⊤ −M3j)⊤.

Defining w = (�j − �̂j)∕�j , we have w ∼ (0, 1).

Pr(�+j) = Pr
(

w ≤
!j − �̂j
�j

)

= Φ
(

!j −
�̂j
�j

)

. (7.12)

116

Using equations (7.12) and (2.3), we have from (7.11) for Pr(�+j)

1
2
+ 1
2
erf

(!j − �̂j
√

2�j

)

≥ 1 − �∕2,

⇒ erf
(!j − �̂j
√

2�j

)

≥ 1 − �,

⇒ �̂j ≤
√

2�j erf
−1(� − 1) + !j .

A similar inequality could be obtained from (7.11) for Pr(�−j). As a result, (7.11) could be rewritten

as

|�̂j| ≤
√

2�j erf
−1(� − 1) + !j ,

where we have used the fact that erf−1 is an odd function. The righthand side of the above constraint

is a constant dependent on � and the left hand side depends on the decision variables g and
 .

The same technique could be applied to the remaining set of constraints, including the first

one. If we apply this to all the chance constraints in (7.6), then problem (7.6) could be solved by

solving the deterministic linear program (7.7).

Remark 7.2.2. (Beyond normally distributed loads). The assumption of loads being normally dis-

tributed helps us to convert the original chance-constrained problem (7.6) to an equivalent deter-

ministic problem (7.7). It is reasonable to argue that this assumption might be violated in practice.

In those cases, one needs to extend the result in Lemma 7.2.1 to identify a computationally efficient

way of solving (7.6). An alternative is to use the results in [NS06] to find an approximate solution

117

of (7.6) via solving

min
g,
,t

t

s.t. inf
s>0
[sE(�0(s−1(−1⊤g + 1⊤l − t))) − s�′] ≤ 0

inf
s>0
[sE(�j(s−1(|M+[1⊤l − 1⊤g; g; l] + N
|j − !j))) − s�] ≤ 0 ∀j

g ≤ g ≤ g,

where {�j′}mj′=0 ∶ ℝ → ℝ≥0 are non-decreasing and convex functions satisfying �(u) > �(0) = 1

for all u > 0. Note that this approximation is conservative and yields a sub-optimal solution

of (7.6). The degree of conservativeness depends on the choice of functions {�j′}mj′=0. ∙

1 2 3 4

-6000

-4000

-2000

0

2000

4000

6000

8000

R
e

g
u

la
ti
o

n
 P

o
w

e
r

(k
W

)

Constant load

Variable load ('=10 -1 , =4.2 10-5)

Variable load ('=2 10-1 , =8.4 10-5)

Microgrid

group 1 Microgrid

group 4

Microgrid

group 3

Microgrid

group 2

Figure 7.3: Regulation capacities for different instantiations of the reduced-order UCSDmicrogrid.

We use Lemma 7.2.1 to compute in Figure 7.3 the maximum up and down regulation for

several microgrids modeled after the reduced-order UCSDmicrogrid described later in Section 7.4.

The microgrids are divided into 4 groups, each with a different value of baseline generation and

mean load for the UCSD model. Within each group, we consider 3 different scenarios, one with

constant load and the other two with correlated varying loads (generated using normal distributions

118

characterized by random variance matrices with entries in the range [0,1000]) and different confi-

dent values (�′, � = 10−1, 4.2×10−5 and 2×10−1, 8.4×10−5, respectively). One can see in Figure 7.3

that the capacity bounds increase with �′, �, which is in agreement with the fact that larger values

of these correspond to lower probability of satisfying the constraints.

Note that the probabilistic capacity bounds identified above and obtained after solving (7.7)

are good only for the bidding in [CP1]. The actual regulation bounds at a given regulation instant

still depend on the load at that instant.

7.2.2 Ramp Rate Function

In the following we discuss how to compute the ramp up rate for the microgrid (the dis-

cussion for ramp down rate is analogous). If there were no constraints on the power flows, then

the ramp rate of the microgrid would be the summation of ramp rates of all the controllable nodes.

However, the presence of flow constraints may prevent every controllable node from ramping at

its full capacity and as such, the ramp rate is a function that depends on the operating point of the

controllable nodes. Let g = {g ∈ ℝng
| ∃ ! ∈ ℝm satisfying (7.2)} denote the set of feasible

operating points for controllable nodes. If the power levels of the uncontrollable nodes are constant,

then the ramp up rate, ∶ g → ℝ≥0, is formally given by

max
Δg,Δ!

1⊤Δg

s.t. [P − 1⊤Δg; g + Δg; −l] = M(! + Δ!)

Δg ≤ r

|! + Δ!| ≤ !,

(7.13)

119

where r ∈ ℝng is the vector whose component rp is the nominal ramping capacity of the controllable

node p, and ! + Δ! is the vector of line flows corresponding to the operating point g + Δg.

If the power levels of the uncontrollable nodes are variable, we use chance-constraints as in

the case of capacity bounds and the ramp up rate is given by

max
Δg,

1⊤Δg

s.t. Pr(|M+[1⊤l − 1⊤(g + Δg); g + Δg; −l] + N
|j ≤ !j) ≥ 1 − � ∀j

Δg ≤ r.

(7.14)

The following result, whose proof is similar to that of Lemma 7.2.1 and omitted to avoid repetition,

converts the chance-constrained optimization (7.14) into a deterministic linear program if the loads

are normally distributed.

Lemma 7.2.3. (Ramp rate for variable loads via deterministic optimization). Assume the loads

are distributed normally with mean l̂ and variance Vl. Then, the solution of the deterministic linear

program

max
Δg,

1⊤Δg

s.t. |(M1 1⊤ −M3)l̂ + (M2 −M1 1⊤)(g + Δg) + N
| ≤ !l

Δg ≤ r,

(7.15)

where M1, M2, M3 and !
l are as defined in Lemma 7.2.1, is a solution for problem (7.14).

The next results describes of the feasible region in terms of the power levels of the control-

lable nodes for a tree network.

Lemma 7.2.4. (Simplified power flow constraints for tree network). Let m be a tree and Pref ∈

120

ℝ(n−1)×(n−1) denote its path matrix with first vertex as reference ref . Then the constraints

[P − 1⊤Δg; g + Δg; −l] =M(! + Δ!), (7.16a)

|! + Δ!| ≤ !, (7.16b)

in (7.13) could be equivalently written as

P⊤1 Δg ≤ ! + P⊤2 l − P⊤1 g, (7.17)

where [P⊤1 P⊤2] = | P⊤ref |, with P1 ∈ ℝng×(n−1) and P2 ∈ ℝnl×(n−1), and | P⊤ref | denotes the non-

negative matrix whose elements are given by the absolute values of the corresponding elements of

P⊤ref .

Proof. LetMref ∈ ℝ(n−1)×(n−1) denote the matrix obtained after removing the row corresponding to

vertex ref from M. According to [Res63], we have

M−1
ref = P⊤ref . (7.18)

With first vertex as ref , equation (7.2a) could be rewritten as

⎡

⎢

⎢

⎢

⎣

g + Δg

−l

⎤

⎥

⎥

⎥

⎦

= Mref (! + Δ!), (7.19)

where we have used the fact that rank(M) = rank(Mref) = n − 1, cf. [SR61, Corollary 4-4]. Us-

121

ing (7.19) and (7.18), constraint (7.16) is equivalent to

−! ≤ P⊤ref

⎡

⎢

⎢

⎢

⎣

g + Δg

−l

⎤

⎥

⎥

⎥

⎦

≤ !.

Due to the structure of Pref , cf. Section 2.2, all the non-zero entries for any row of P⊤ref are either 1

or -1. Since we are characterizing the ramp up rate and are only concerned with what happens to

the feasible region with the increase in some component(s) of g, the active constraint for the lines

for which the non-zero entries are 1 would be

P⊤ref

⎡

⎢

⎢

⎢

⎣

g + Δg

−l

⎤

⎥

⎥

⎥

⎦

≤ !, (7.20a)

and for the lines for which the non-zero entries are -1 would be

− P⊤ref

⎡

⎢

⎢

⎢

⎣

g + Δg

−l

⎤

⎥

⎥

⎥

⎦

≤ !. (7.20b)

(7.20) is equivalent to (7.17), completing the proof.

The next result states the properties of the ramp rate function (7.13) for a tree network. For

the ramp rate function with normally distributed loads defined in (7.14), one can obtain a similar

result following Lemma 7.2.3 (with ! replaced by !l).

Proposition 7.2.5. (Ramp rate of tree network). Let m be a tree andH denote the hyperrectangle

describing the region of operation of the controllable nodes, where opposite faces correspond to

the minimum and maximum possible power level of a controllable node. Then the ramp rate  is

122

piecewise affine onH , i.e., for some s > 0,H admits a decomposition

H = V1 ∪ V2 ∪… ∪ Vs,

where {V�}s�=1 are polyhedra, and is affine on each V�.

Proof. Let us start by denoting the region where

P⊤1 r ≤ ! + P⊤2 l − P⊤1 g,

by V1. Boundaries of V1 are (n − 1) hyperplanes given by

P⊤1 r = ! + P⊤2 l − P⊤1 g.

Some of these hyperplanes could even be outsideH . But in general, all these (n − 1) hyperplanes

could be the faces of V1. It is clear that in V1, none of the flow constraints is active and(g) = 1⊤r.

Outside V1, we have

!j + P⊤2j l − P⊤1j g < P⊤1j r (7.21)

for at least one j ∈ {1,… , n − 1}. First we consider the region where (7.21) holds for only one

such j, denoted as j′. Then either

!j′ + P⊤2j′ l − P⊤1j′ g > 0, or !
′
j + P⊤2j′ l − P⊤1j′ g = 0.

123

In the former case, we are in the polyhedron whose two faces are given by

!j′ + P⊤2j′ l − P⊤1j′ g = P⊤1j′ r, and !j′ + P⊤2j′ l − P⊤1j′ g = 0.

Let us call one of these polyhedron V2. In V2, (g) = 1⊤Δg, where Δg satisfies

!j′ + P⊤2j′ l − P⊤1j′ g = P⊤1j′ Δg.

For 1⊤Δg to be maximum, the controllable nodes for which the corresponding entries are zero in

P1j′ , we will have Δgp = rp. As some component(s) of g for which the corresponding entry in

P1j′ = 1 increases, some components of Δg with corresponding entry 1, decrease to balance it.

Hence,(g) = 1⊤r − P⊤1j′ g. Now considering the latter case when

!′j + P⊤2j′ l − P⊤1j′ g = 0.

On this hyperplane, (g) becomes constant again as the controllable nodes for which the corre-

sponding entries are zero in P1j′ have Δgp = rp and other entries of Δg have to be zero. Hence,

(g) = (1 − P1j′)⊤r. Note that different polyhedrons similar to V2 might exist with different j′.

Now we consider the regions where (7.21) holds for multiple j ∈ {1,… , n − 1}. Let us

denote by V3 the polyhedron, whose few faces are given by

!j + P⊤2j l − P⊤1j g = P⊤1j r,

for all j satisfying (7.21). Inside V3,(g) = 1⊤Δg, whereΔg is given by the simultaneous solution

124

of

P⊤1j Δg ≤ !j + P⊤2j − P⊤1j g,

for all the corresponding j and 1⊤Δg is maximum. At least, one of these inequalities would hold

with equality. Similar to V2, we notice that if we increase some component(s) of g in V3 with

corresponding entry in any of Pij as 1,(g) decreases linearly. While increasing some component

of g, a point would be reached where

!j + P⊤2j l − P⊤1j g = 0, (7.22)

for some j and that would be another face of V3. On this hyperplane, Δgp = 0 for the controllable

nodes for which the corresponding entry of P1j = 1 in (7.22). Note that (g) is still linear as V3

but with a different slope.

In general, depending on the parameters of the microgrid at hand, there would be several

polyhedrons where (7.21) holds for different j. But the characterization of ramping capacity would

be similar to V3 in all these. Since the ramp rate is either affine or constant in all the polyhedra, it

is affine.

Remark 7.2.6. (Ramp rate for networks with non-overlapping loops). If the network is not a tree,

then the flows corresponding to a power injection vector are not unique. Nevertheless, the ramp rate

for networks with non-overlapping loops is a non-increasing function of g, as the feasible region of

(7.13) can only shrink with increase in some component(s) of g. ∙

Given a regulation power x, we note that there may be more than one feasible operating

125

point for the microgrid that produces it. As a result, the ramp rate as a function of regulation power

is not uniquely defined. We address this by defining R ∶ [x, x]→ ℝ≥0, as

R(x) = max
g∗

(g∗),

where g∗ denotes a minimizer of the cost of producing the regulation x while respecting the power

flow and capacity constraints. We take the maximum, since the optimizer g∗ might not be unique.

If the cost functions for all the controllable nodes are convex, each g∗ is a decreasing function with

respect to x, which means that at least one component of g∗ would decrease as x increases (using

the convention that up regulation is negative). Using this fact, we conclude that R as a function

of x is non-decreasing, with maximum possible value as 1⊤r. Figure 7.4 provides the ramp rate

functions of the four groups of microgrids displayed in Figure 7.3 in the constant load case.

Figure 7.4: Ramp rate functions for different instantiations of the reduced-order UCSD microgrid
with constant loads. The shaded regions represent the range of regulation power that the corre-
sponding microgrid can provide.

In Remark 7.2.7, we discuss the conditions under which the minimum ramp rate of the

126

microgrid is always non-zero.

Remark 7.2.7. (Non-zero minimum ramp rate). It is natural to argue that the microgrid could

have a zero minimum ramp rate. Here, we discuss conditions under which the minimum ramp rate

of the microgrid is non-zero. Let  ′ = {ej ∈  | !j < !j} be the set of all the lines which have

not reached their flow limits when providing the maximum up regulation. Next, consider the graph

′m = ( , 
′) and let  ′

g = {vi ∈ g | ∃ a path from i to 1 in ′m}, i.e., the set of controllable nodes

which are connected to the tie line. If  ′
g ≠ �, then the minimum ramp rate is always non-zero.

The intuitive explanation is that, when the microgrid is providing the maximum up regulation, the

condition specifies that there should be a path from some controllable node to the node connected

to the tie line with every line in that path operating away from its flow limits. ∙

7.2.3 Cost Function

Each aggregator needs to calculate the cost of providing a given amount of regulation by

capturing the effect of operating the controllable nodes away from their baseline operating points.

For an operating point g, the total cost for the aggregator is given by

ℎ(g) =
∑

p∈g

ℎp(gp), (7.23)

where ℎp ∶ ℝ → ℝ≥0 is the cost of operating node p away from its baseline level g0p . One represen-

tative example of such a function is ℎp(gp) = (gp − g0p)
2. The total regulation that the aggregator

provides is the combination of individual regulations of controllable nodes. Therefore, for a speci-

fied regulation level x, one would ideally choose the value of g that minimizes the total cost given

by (7.23) respecting the power flow constraints in (7.2) and the minimum and maximum capacity

127

constraints on each controllable node. Formally, f ∶ [x, x] ∶ ℝ → ℝ≥0, is given by

f (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min
g,!

ℎ(g)

s.t. g ≤ g ≤ g

[P 0 + x; g; −l] = M!

|!| ≤ !.

(7.24)

However, a cost function defined like this does not take into account the previous operating point

of the microgrid and assumes that it can transition between the optimal points corresponding to

different regulation powers arbitrarily fast. In practice, however, since the regulation set points

change every 2-4 seconds, ramp rates might limit the change from optimal point at one time instant

to the next. This suggests that the cost of providing certain amount of regulation at one instant also

depends on the value of the regulation power at the previous instant. Hence, we define the cost

f ∶ [x, x] × [x, x]→ ℝ≥0, of providing regulation power x, if providing regulation power x− at the

previous instant, as

min
g,Δg,!,Δ!

ℎ(g + Δg)

s.t. g ≤ g + Δg ≤ g

Δg ≤ r

[P 0 + x; g + Δg; −l] = M(! + Δ!)

|! + Δ!| ≤ !

g ≤ g ≤ g, |!| ≤ !

[P 0 + x−; g; −l] = M!.

(7.25)

128

Here, (g+Δg, !+Δ!) and (g, !) are the vectors of the power levels of controllable nodes and line

flows when the microgrid provides regulation power x and x−, respectively. The constraints also

enforce the capacity limits for the individual controllable nodes and the flow limit constraints for

both values of regulation power, and the ramp constraints in transitioning from x− to x. The reason

to include the power flow constraints at x− in (7.25) is to enable the aggregator to pre-compute the

cost function independently of the regulation power it might be asked to provide. Otherwise, if

the cost is computed at every regulation instant, g and ! providing x− would be known, and the

optimization variables would only be Δg, and Δ!. As such, f (x, x−) is a lower bound on the actual

cost since (g, !) are also decision variables and are selected optimally to move to the next operating

point.

The following result identifies a condition that simplifies the computation of the cost func-

tion f (x, x−) defined in (7.25).

Lemma 7.2.8. (Simplified formulation and convexity of cost function). Given regulation powers

x− and x, if |x − x−| ≤ R(x−), then f (x, x−) = f (x). If ℎ is (strictly) convex, then f is (strictly)

convex.

Proof. If the difference between two regulation powers, i.e., |x − x−| is greater than the ramp rate

at x−, then the microgrid might not be able to provide the regulation power at all. On the other

hand, if the difference is less than the ramp rate, then it is clear that the microgrid would be able

to provide the required regulation power optimally. So, in the latter case, the cost of providing

regulation power x or the solution of (7.25) is equivalent to the optimization in (7.24).

Next, we provide a proof for the convexity of f if ℎ is convex. Let C(x) = C0 ∩ C1(x),

129

where C0 denotes the capacity constraints for g and

C1(x) = {g | [P 0 + x; g; −l] = M! and |!| ≤ !}.

Then, we have f (x) = min
g∈C(x)

ℎ(g). Let x1, x2 ∈ [x, x], where x and x are respectively, the maximum

up and down regulation identified in Section 7.2.1. Then f (x1) = min
g∈C(x1)

ℎ(g), which means that for

all � > 0, there exists g1 ∈ C(x1) such that f (x1) + � ≥ ℎ(g1). Similarly, there exists g2 ∈ C(x2)

such that f (x2) + � ≥ ℎ(g2). Since g1 ∈ C(x1) and g2 ∈ C(x2), therefore �g1 + (1 − �)g2 ∈

C(�x1 + (1 − �)x2), where � ∈ [0, 1]. Hence,

f (�x1 + (1 − �)x2) = min
g∈C(�x1+(1−�)x2)

ℎ(g)

≤ ℎ(�g1 + (1 − �)g2) ≤ �ℎ(g1) + (1 − �)ℎ(g2)

≤ �f (x1) + (1 − �)f (x2) + �,

where the second inequality would be strict in case of strict convexity. Since � is arbitrary, f is

(strictly) convex.

Figure 7.5 provides the cost functions (7.24) of the four groups of microgrids displayed in

Figure 7.3 in the constant load case.

Note that the cost function (7.24) assumes the load to be constant, but since the aggregator

is not required to submit its cost functions in [CP1], there is no need to pre-compute this using

probabilistic techniques. Instead, the cost function at a given regulation instant could be computed

online using the load at that instant. The time taken to compute the cost function at a given instant

would depend upon the type of solver used, but is usually small (e.g., less than a second with built

130

Figure 7.5: Abstracted cost functions for different instantiations of the reduced-order UCSD mi-
crogrid with constant loads. The shaded regions represent the range of regulation power that the
corresponding microgrid can provide.

in MATLAB solver fmincon). In addition, since the regulation period lasts for 10-15 minutes,

the variation in load would be limited, thereby requiring the recomputation of the cost function

sparingly.

7.2.4 Bids for Participation in Market Clearance

Based on the abstractions in Sections 7.2.1-7.2.3, here we specify the bid information used

by each aggregator to participate in [CP1]. Without loss of generality, we specify the bid quantities

for up regulation market. Let gup ∈ ℝng denote the component in g of the solution of (7.4).

Table 7.1: Bidding quantities for up regulation market
Bid Quantity Value
Capacity |x = P ∗ − P 0

|

Mileage k(gup)
Capacity price ℎ(gup)∕|x|

Table 7.1 specifies the proposed values for the bidding quantities. Here k > 0 is a constant

depending on the duration of the regulation period and update frequency of the AGC setpoints. The

131

suggested bids are conservative, meaning that the aggregator would be able to provide whatever it

promises, and there is no strategy to maximize profit. It might seem from Table 7.1 that there

is no need to compute beforehand the whole ramp rate function  in Section 7.2.2. However, a

risk taking aggregator might use a higher value of mileage bid based on the shape of . It is also

interesting to note that, from the convexity of cost function in Lemma 7.2.8 and the capacity price

bid in Table 7.1, the aggregator would never be at loss regardless of the regulation power being

provided.

7.3 RTO-DERP Coordination Problem

Here we describe our algorithmic solution for the RTO-DERP coordination problem [P2]

to disaggregate the regulation signal. Equipped with the microgrids’ capacities and cost and ramp

rate functions identified in Section 7.2, the aggregators, communicating over a graph , seek to

solve, at each instant of the regulation period, the optimization problem (7.1). However, as we have

noted before, this problem might not always be feasible due to the presence of ramp constraints.

This means that in principle, at each regulation instant, one would need to solve (7.1) if it is feasi-

ble or minimize the difference between the required regulation and the procured regulation if it is

infeasible. Such dichotomy also raises the issue of the necessary information available to the ag-

gregators to determine which one of the two cases to address at each regulation instant and as such,

distributed algorithms designed for solving economic dispatch problem that assume feasibility, see

e.g., [CY18,CC16b,KH12] and references therein, are not directly applicable.

Instead, we propose to reformulate the optimization problem in a way that lends itself to the

identification of solutions that minimize the error between the procured regulation and the required

132

regulation whenever (7.1) is not feasible. Without loss of generality, throughout this section we

assume the required regulation power to be positive. We start by defining the problem

min
x

f �(x) = f (x) + �[Δx]+

s.t. xi ≤ xi ≤ xi ∀ i

|xi − x−i | ≤ Ri(x−i) ∀ i,

(7.26)

where � > 0 is a penalty parameter and Δx = xr− 1⊤x. The following result, whose proof is given

in the Appendix, characterizes the equivalence between problems (7.26) and (7.1).

Lemma 7.3.1. (Equivalence between (7.1) and (7.26)). Optimization (7.26) is always feasible and

there exists �̂ < ∞ such that for all � ∈ [�̂,∞), (7.1) and (7.26) have the same solution set if (7.1)

is feasible.

Proof. We begin by noting that xi = x−i for each i satisfies both set of constraints in (7.26), since x
−

is the set of regulations provided by the aggregators at the previous instant. Hence, (7.26) is always

feasible. To prove the equivalence between the two problems, as our first step, we rewrite (7.1) as

min
x

f (x)

s.t. xr ≤ 1⊤x,

xi ≤ xi ≤ xi ∀ i,

|xi − x−i | ≤ Ri(x−i) ∀ i .

(7.27)

Note that the equality constraint in (7.1) is replaced by the inequality constraint in (7.27). If fea-

sible, both problems have the same set of solutions. Problem (7.27) can still be infeasible. Let 

133

denote its feasible set. Since is compact, the solution set of (7.27) is also compact. Also, since the

constraints in (7.27) are affine, the refined Slater condition is satisfied. According to [Ber75, Propo-

sition 1], if (7.27) is convex, has a non-empty and compact solution set and satisfies the refined

Slater condition, then (7.27) and (7.26) have exactly the same solution set if � > ‖�‖∞, for some

Lagrange multiplier � of (7.27), as claimed.

Remark 7.3.2. (Establishing the threshold value �̂ without the knowledge of dual optimizers).

The threshold value �̂ in Lemma 7.3.1 depends on the optimal values of the dual variables, which

is not known beforehand. Interestingly, the explicit knowledge of the Lagrange multipliers to obtain

a lower bound on the value of � can be avoided. In fact, according to [CC15, Proposition 5.2], we

have

�̂ ≥ 2max
x∈

‖∇f (x)‖∞. ∙

Given Lemma 7.3.1, we focus on solving problem (7.26) in a distributed way. To handle

the local constraints, we again reformulate (7.26) using exact penalty function as

min
x

f p(x) =f (x) + �2
N
∑

i=1

(

[bi]+ + [bi]+
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f�2 (x)

+�[Δx]+, (7.28)

where bi =xi − min{xi, x−i + Ri(x
−
i)},

and bi =max{xi, x−i − Ri(x
−
i)} − xi,

are the box constraints taking care of the capacity and ramp rate for aggregator i ∈ {1,… , N} and

�2 > 0 is again a penalty parameter. Once again, similar to Lemma 7.3.1, there exist finite values

134

of �2 for which the reformulation (7.28) is exact.

Since problem (7.28) is unconstrained, consider the dynamics

ẋ ∈ −)f p(x), (7.29)

where)f p ∶ ℝN ⇉ ℝN denotes the generalized gradient of f p. For each agent i ∈ {1,… , N}, we

have

[)f p(x)]i =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∇fi(xi) − [�]+Δx − [�2]
+
bi
+ [�2]+bi , Δx, bi, bi ≠ 0,

∇fi(xi) − [0, �] − [�2]+bi
+ [�2]+bi , Δx = 0, bi, bi ≠ 0,

∇fi(xi) − [�]+Δx − [0, �2] + [�2]
+
bi
, Δx, bi ≠ 0, bi = 0,

∇fi(xi) − [�]+Δx − [�2]
+
bi
+ [0, �2], Δx, bi ≠ 0, bi = 0,

∇fi(xi) − [0, �] − [0, �2] + [�2]+bi , Δx, bi = 0, bi ≠ 0,

∇fi(xi) − [0, �] − [�2]+bi
+ [0, �2], Δx, bi = 0, bi ≠ 0.

The equilibria of the dynamics (7.29) satisfy 0 ∈)f p(x). Asymptotic convergence of (7.29) to the

optimizers of (7.28) could be easily established using tools from non-smooth analysis, cf. [Cor08,

Proposition 14]. However, the implementation of (7.29) requires every aggregator to have knowl-

edge of the total regulation at all times. To handle this, we use dynamic average consensus, cf.

Chapter 2, to estimate the average of the difference between the required regulation and procured

regulation from all the microgrids. Since 1
N
Δx and Δx have the same signs, we modify (7.29) and

introduce a new algorithm by enabling each aggregator to estimate the average mismatch using

135

dynamic average consensus as follows

ẋ ∈ −)f �2(x) + [�]+z , (7.30a)

ż ∈ −�z − � L z − v + �(xre − x) +)f �2(x) − [�]+z , (7.30b)

v̇ = �� L z, (7.30c)

where z, v ∈ ℝN , zi is the ith aggregator’s estimate of 1
N
Δx, [�]+z ∈ ℝN with its ith element as

[�]+zi , L ∈ ℝN×N is the Laplacian matrix of , and e is the unit vector with only one entry as one and

all others as zero. Note immediately that the algorithm (7.30) is distributed over the communication

graph, meaning that each aggregator i ∈ {1,… , N} needs to know just its state and the state of

its neighbors to implement it, and only one aggregator needs to know the required regulation. We

refer to (7.30) as “gradient descent + dynamic average consensus” algorithm, abbreviated as gdac.

The equilibria for x are the points satisfying 0 ∈ −)f �2(x) + [0, �1]. The next result, whose proof

is given in the Appendix, characterizes the convergence properties of the gdac algorithm.

Theorem 7.3.3. (Asymptotic convergence of the distributed dynamics to the optimizers). Let

 be strongly connected and weight-balanced, and the initial conditions satisfy 1⊤v(0) = 0 and

1⊤z(0) − Δx(0) = 0, then there exists �̄ < ∞ such that the dynamics gdac find the optimizers

of (7.28) for all � ∈ [�̄,∞).

136

Proof. For simplicity of exposition, we ignore the box constraints and write (7.30) as

ẋ = −∇f (x) + [�]+z , (7.31a)

ż = −�z − � L z − v + �(xre − x) + ∇f (x) − [�]+z , (7.31b)

v̇ = �� L z, (7.31c)

First, consider the function V2 ∶ ℝ2N → ℝ≥0, V2(x, z) = 1⊤z − Δx. The Lie derivative  gdac
V2 ∶

ℝ2N ⇉ ℝ is then given by

 gdac
V2 = 1⊤ż + 1⊤ẋ = −�1⊤(z − (xre − x)) = −�V2,

where we have used the fact that 1⊤v = 0 due to the initial condition 1⊤v(0) = 0 and dynamics

(7.31c). The above equation implies that the summation of all the entries of z converges to the

mismatch between the required regulation and procured regulation exponentially with rate �. Hence

1⊤z − Δx ≡ 0 with the stated initialization.

Next consider the change of coordinates (x, z, v)↦ (x, z, �), with � = �(z− (xre− x)) + v.

The dynamics for z and � are then given by

ż = −� L z − � + ∇f (x) − [�]+z ,

�̇ = −��.

137

Consider the Lyapunov function candidate V ∶ ℝ3N → ℝ≥0,

V (x, z, �) = f �(x) + �
N
∑

i=1
[zi]+ +

1
2
‖�‖2,

whose generalized gradient)V ∶ ℝ3N ⇉ ℝ3N is given by

)V (x, z, �) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

{∇f (x) − [�1]+Δx, [�]
+
z , �}, Δx ≠ 0, z ≠ 0,

{∇f (x) − [0, �1], [�]+z , �}, Δx = 0, z ≠ 0,

{∇f (x) − [�1]+Δx, [0, �1], �}, Δx ≠ 0, z = 0,

{∇f (x) − [0, �1], [0, �1], �}, Δx = 0, z = 0.

Following [Cor08], set-valued Lie derivative  gdac
V ∶ ℝ3N ⇉ ℝ can then be computed as

 gdac
V (x, z, �) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(∇f − [�1]+Δx)
⊤(−∇f + [�]+z) + ([�]

+
z)
⊤(−� L z − � + ∇f − [�]+z)

−�‖�‖2, Δx ≠ 0, z ≠ 0,

�, otherwise.

We now analyze various cases of Δx ≠ 0, z ≠ 0 in the following

Case 1: Δx < 0 and z < 0.

 gdac
V = −‖∇f‖2 − �‖�‖2.

138

Case 2: Δx > 0 and z > 0.

 gdac
V = −‖∇f‖2 + 3�∇f⊤1 − 2N�2 − ��⊤1 − �‖�‖2.

Case 3: Δx > 0 and z ≯ 0.

 gdac
V = −‖∇f‖2 − 2Np�

2 + ∇f⊤(�1 + 2[�]+z) − �([�]
+
z)
⊤ L z − �⊤[�]+z − �‖�‖

2,

whereNp is the number of positive elements of z.

Case 4: Δx < 0 and z ≮ 0.

 gdac
V = −‖∇f‖2 + 2∇f⊤[�]+z − �([�]

+
z)
⊤ L z − �⊤[�]+z −Np�

2 − �‖�‖2.

We do not need to consider the case when Δx > 0 and z < 0 since 1⊤z − Δx ≡ 0 due to the

discussion above. Out of the 4 cases,  gdac
V < 0 for Case 1. For the remaining cases, since f is

globally proper and ‖∇f‖ is bounded over any compact set,  gdac
V < 0 if the value of � is taken

large enough for the worst-case scenario (Np = 1). Since max� = −∞, max gdac
V < 0 except

at the equilibrium. This along with the fact that V is locally Lipschitz and regular implies that V

satisfies the hypothesis of [Cor08, Theorem 1]. Hence, the dynamics gdac converge to the optimal

solution asymptotically.

Remark 7.3.4. (Initialization of the distributed algorithm). For the dynamics gdac to converge

to the optimizers, Theorem 7.3.3 specifies requirements on the initial conditions. The requirement

1⊤v(0) = 0 could be implemented trivially by selecting v(0) = 0. For the implementation of

139

1⊤z(0) − Δx(0) = 0, the aggregators can simply choose z(0) = 0 and xi(0) = 0 for all i, except for

the aggregator having knowledge of the required regulation for which xi(0) = xr. ∙

7.4 Simulations

13 8 9 10

33

35

14 36

21

24

25

20

23

22

28

12
11

37

42

39 38

30

27

32

1946 47

45

48

16
34

4026

41

29

5

2

6

3

7

4

44

43
3118

1
15

17

Figure 7.6: Reduced-order model of the UCSD microgrid where blue node is connected to the
tie line, green nodes represent the generators, dark yellow the electric vehicle stations and red the
building loads.

We provide here our simulation results based on the abstractions of capacities, cost, and

ramp rate developed in Section 7.2 and the RTO-DERP coordination algorithm (7.30) in Sec-

tion 7.3. For the purpose of simulations, we consider a reduced-order model of the University

140

of California, San Diego (UCSD) microgrid developed using the distributor feeder reduction al-

gorithm in [PDRK18] and provided by the research group of Prof. Jan Kleissl. Compared to the

full-order model of the UCSDmicrogrid [WDW+13] which is a radial, balanced network with 1289

buses (3869 nodes), the reduced-order model is a balanced tree network with 48 buses. The buses

in the reduced-order model are obtained by retaining the key buses in the full order model which are

the buses where the building loads aggregate or which have generators. Since the UCSD reduced-

order model is balanced, we consider only one phase in our simulations. The model consists of

10 generators (2 gas turbines, 1 steam turbine, and 7 solar PV systems) and 37 loads (34 building

loads and 3 electric vehicle stations). We show the location of the buses on the geographical map of

the campus in Figure 7.6. For our simulation, we take the UCSD microgrid as a template, and we

instantiate it using different baseline scenarios to construct 12 different microgrids, divided into 4

groups. Each group has its own baseline values of generation andmean load. The 3 different scenar-

ios within a group consist of (a) constant load, (b) variable load with failure probabilities �′ = 10−1,

� = 4.2 × 10−5 and (c) variable load with failure probabilities �′ = 2 × 10−1, � = 8.4 × 10−5. The

abstracted regulation capacities and ramp rate functions of different microgrid groups are shown

in Figures 7.3 and 7.4, resp. For cost functions, we consider quadratics for all the resources. The

abstracted cost functions for different groups are shown in Figure 7.5.

We demonstrate the performance of the distributed algorithm (7.30) in two sets of simula-

tions. To implement the continuous-time algorithm, we use a first-order Euler discretization with

step size of 0.001 to show its practical feasibility. The values of �, �2, � and � are taken to be

1000, 1100, 400 and 400, respectively. In the first simulation, cf. Figure 7.7(a), we consider one

regulation instant and first show the evolution of the proposed algorithm (7.30) for required down

regulation of 50000 kW, and compare it, for the same communication topology (undirected ring

141

with few additional edges), against the (2-hop distributed) saddle-point dynamics [CGC17] of the

augmented Lagrangian for the equivalent reformulated problem as per [CC16a] and against the cen-

tralized generalized gradient descent dynamics (7.29). As can be seen from the plots, the algorithm

time required by the proposed distributed algorithm to reach the 1% band of the required regulation

power is much less compared to the saddle-point dynamics, and is only slightly greater than the

time taken by the centralized algorithm. The time required does increase when the communication

topology is changed to a directed ring –which is the worst possible topology for strongly connected

graphs, but still remains less than a second, implying that the number of iterations is less than 1000.

(a)

0 10 20 30 40 50 60 70 80 90 100

Regulation Instant

0

0.2

0.4

0.6

0.8

1

1.2

1.4
U

p
 R

e
g
u
la

ti
o
n
 P

o
w

e
r

(k
W

)
10

4

Microgrid group 1

Microgrid group 2

Microgrid group 3

Microgrid group 4

PJM RegD signal

Total (proposed algorithm)

Total (current practice)

(b)

Figure 7.7: Performance of the proposed RTO-DERP distributed coordination algorithm. (a)
shows the state evolution where black dashed lines represent 1% band of the required regulation
power. (b) compares the proposed approach with the algorithm followed currently.

For the second simulation, we consider the dynamic regulation test signal (RegD), available

on the Pennsylvania-New Jersey-Maryland Interconnection (PJM) website [PJM]. Since the RegD

signal on the PJMwebsite is normalized and could be scaled as long as the problem remains feasible,

we scale it by a factor of 50000 and then use our abstractions and clear the market according to

[CP1]. Once the market is cleared, we use our algorithm to track the scaled RegD signal and

142

compare it using the current algorithm of disaggregating the regulation signal described in [CP2].

For the sake of clarity, we show only the first 100 instants of the regulation period, and instead

of contributions from each of the 12 microgrids, show the total contributions from the 4 groups.

As we can see from Figure 7.7(b), when it is not possible to provide the required amount due to

limits on ramp rates, both the proposed algorithm and the current algorithm try to provide as much

regulation power as possible, and the tracking performance for both the algorithms is similar. But, if

we compare the cost, the proposed algorithmwith a cost of $8818 outperforms the current algorithm

with a cost of $9728. This difference in cost comes from very different power contributions from

the microgrids for the two algorithms. The proposed algorithm allocates the regulation signal to

the microgrids based on their abstracted cost functions (cf. Figure 7.5), whereas current practice

does not take them into account. It can be noticed in Figure 7.7(b) that, under current practice, if

not capped by the cleared capacities, the power allocations for different microgrid groups have the

same ratios for every regulation instant. For example, the shape of the regulation power curves for

microgrid groups 1, 3 and 4 are similar and only differ in terms of scaling (by factors depending on

the ratio of their procured mileages).

Acknowledgements

This chapter, in part, is a reprint of the material [SCC21b] conditionally accepted for publi-

cation as ‘Enabling DER participation in frequency regulation markets’ by P. Srivastava, Chin-Yao

Chang, and J. Cortés, in the IEEE Transactions on Control Systems Technology, 2021, as well

as [SCC18] where it appears as ‘Participation of microgrids in frequency regulation markets’ by P.

Srivastava, Chin-Yao Chang, and J. Cortés in the American Control Conference, 2018. The disser-

143

tation author was the primary investigator and author of these papers. This work was supported by

the ARPA-e NODES program, Cooperative Agreement DE-AR0000695.

144

Chapter 8

Frequency Regulation via Simultaneously

Stabilizing Data-Driven Controller

This chapter presents a framework to design a time invariant controller for the power net-

work with switching inertia. We establish the fact that regardless of the possible operating modes,

the simultaneous stabilization problem for the switched system is always feasible. Furthermore,

we prove that there always exists a decentralized controller stabilizing the switched system whose

implementation requires each node to know just its state.

8.1 Problem Formulation

Consider a power network with n ∈ ℕ nodes, described by an undirected graph . Fol-

lowing [PBD17], we consider a DC approximation of the power system containing only the active

145

buses and described by the dynamic, for each i ∈ {1,… , n},

mi�̈i + di�̇i = ui −
∑

i

bij(�i − �j), (8.1)

where ui is the power input at node i and bij ∈ ℝ≥0 is the susceptance between lines i and j. If node

i is a synchronous generator, then �i ∈ ℝ denotes the rotor angle, mi ∈ ℝ>0 the rotational inertia of

the generator i and di ∈ ℝ>0 the primary speed droop control at node i. In case node i corresponds

to a renewable or battery interfaced via a power electronics converter, then �i is the voltage phase

angle, mi is the power measurement time constant or the virtual inertia through a controlled device,

and di is the droop control coefficient. The state-space representation of the swing equation (8.1)

is given by

⎡

⎢

⎢

⎢

⎣

�̇

!̇

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 I

−M−1 L −M−1D

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

�

!

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

0

M−1

⎤

⎥

⎥

⎥

⎦

u, (8.2)

where the state x = (�;!) ∈ ℝ2n corresponds to the stacked vector of angles and frequencies at each

node,M = diag(mi) ∈ ℝn×n is the diagonal matrix with inertia coefficients, D = diag(di) ∈ ℝn×n

is the diagonal matrix with droop control coefficients, L is the Laplacian of  with edge weights of

the adjacency matrix defined as Aij = bij for all i, j ∈ {1,… , n}.

The formulation above assumes that the inertia of the system remains constant and makes

sense in the traditional paradigm of power system. However, due to the increasing penetration of

renewables, the inertia of the network changes over time. Hence, it is reasonable to incorporate

the time dependence in the inertia at each node. To do so, we follow the modeling framework

introduced in [HGCD+18], and represent the swing equation via a switched-affine system instead

146

of the invariant system (8.2). Let m ∈ ℕ be the number of modes in which the switched system

might operate. The power dynamics are then given by

⎡

⎢

⎢

⎢

⎣

�̇

!̇

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 I

−M−1
q(t) L −M−1

q(t)D

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Aq(t)

⎡

⎢

⎢

⎢

⎣

�

!

⎤

⎥

⎥

⎥

⎦

⏟⏟⏟
x

+

⎡

⎢

⎢

⎢

⎣

0

M−1
q(t)

⎤

⎥

⎥

⎥

⎦

⏟⏟⏟
Bq(t)

u. (8.3)

Here, at time t, the system is in mode q(t) ∈ {1,… , m} andMq(t) denotes the inertia of the net-

work in mode q(t). The inertia on the network at time t depends on the online generators and the

connected power electronics converters at that time.

Our goal is to design an optimal controller that brings back the system to its steady-state

configuration following any perturbation. Since the pairs {Aq, Bq}mq=1 are stabilizable, it is clear that

this could be achieved with different controllers for each mode. However, since we might not have

the knowledge at all times of the operating mode, our aim is to design a time-invariant controller

of the form

u = Kx (8.4)

stabilizing (8.3) and is optimizing the state deviation and control input required.

For an invariant linear system, this is easily achievable using the solution to the linear

quadratic control (LQR) problem. But for the switched system, solving the LQR problem is not

obvious. So instead, we employ a data-driven design strategy based on sampling some cases among

the switching sequences. We solve a finite-horizon LQR problem for each of the switching sequence

sampled and use the resulting trajectories to design an optimal controller mimicking the observed

147

behavior.

8.2 Data-Driven Controller Design

In this section, we carry out our approach to design a common stabilizing time-invariant

controller using training data generated for system (8.3) for a variety of scenarios. We start by

describing in Section 8.2.1 how the data is generated via a finite-horizon LQR formulation. Then

we provide in Section 8.2.2 a least-square formulation to learn the controller while guaranteeing

the stability of each mode q ∈ {1,… , m}. Since the stability of all the modes is not sufficient to

guarantee the stability of the switched system, we generalize in Section 8.2.3 our treatment to the

stabilization of the switched system via a common Lyapunov function.

8.2.1 Training Data from Optimal Input Trajectories

In order to generate the training data which would later be used to learn the controller gain

K , we solve  scenarios of the finite-horizon LQR problem

min
x,u

T

∫
0

(

x(t)⊤Qx(t) + u(t)⊤Ru(t)
)

dt

s.t. ẋ(t) = Aq(t)x(t) + Bq(t)u(t),

(8.5)

where Q ⪰ 0 ∈ ℝ2n×2n, R ≻ 0 ∈ ℝn×n, T > 0 is the time-horizon, and x and u are the variables

describing the optimal state and input trajectories, respectively. For generating different scenarios,

different initial conditions x(0) and switching sequences are used. The training dataset for scenario

k ∈ {1,… ,} is denoted by (xk,uk).

148

8.2.2 Common Controller for Stabilization of All Modes

Here, we are interested in designing a time-invariant controller which guarantees stability

for each mode q ∈ {1,… , m}. Let  denote the set of Hurwitz matrices. Then the controller

design problem described above could be cast as an optimization of the form

min
K


∑

k=1

T

∫
0

‖uk(t) −Kxk(t)‖22 dt

s.t. Aq + BqK ∈  for q ∈ {1,… , m}.

(8.6)

In general, the simultaneous stabilization problem (8.6) is NP-hard for general system and input

matrices, cf. [BT97b]. However, the matrices {Aq}mq=1 and {Bq}
m
q=1 in our setup are not totally

arbitrary, and indeed have a well defined structure. Specifically, the only quantity that specifies

the operating mode q ∈ {1,… , m} is the inertia matrix Mq. Building on this insight, we prove

next that the simultaneous stabilization problem is always feasible. Our proof is constructive and

is based on identifying a controller that stabilizes all the modes.

Proposition 8.2.1. (Feasibility of the simultaneous stabilization problem). Problem (8.6) is al-

ways feasible.

Proof. LetK = [K1 K2], whereK1, K2 ∈ ℝn×n. Then from equation (8.3), the closed loop system

matrix for mode q ∈ {1,… , m} is given by

Aq + BqK =

⎡

⎢

⎢

⎢

⎣

0 I

−M−1
q L −M−1

q D

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

0

M−1
q

⎤

⎥

⎥

⎥

⎦

[

K1 K2

]

.

149

After some algebraic manipulations, we have

Aq + BqK =

⎡

⎢

⎢

⎢

⎣

0 I

−M−1
q (L−K1) −M−1

q (D −K2)

⎤

⎥

⎥

⎥

⎦

. (8.7)

Let us assume for now that in a given mode q, the inertia of all the nodes is same and is given by

mq ∈ ℝ>0. Then we have Mq = mqI . Choosing K1 = L−I and K2 = D − I , the closed loop

system matrix (8.7) becomes

Aq + BqK =

⎡

⎢

⎢

⎢

⎣

0 I

−1∕mqI −1∕mqI

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 1

−1∕mq −1∕mq

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Sq

⊗I.

The eigenvalues of the 2 × 2 matrix Sq are negative for all mq > 0. Hence, Aq + BqK ∈  for all

q with the selected controller.

Next we relax the assumption of each node i ∈ {1,… , n} having the same inertia. Once

again, chooseK1 = L−I andK2 = D−I . The closed loop system matrix (8.7) now takes the form

Aq + BqK =

⎡

⎢

⎢

⎢

⎣

0 I

−M−1
q −M−1

q

⎤

⎥

⎥

⎥

⎦

For each mode q ∈ {1,… , m}, define

Pq =

⎡

⎢

⎢

⎢

⎣

I 0

0 Mq

⎤

⎥

⎥

⎥

⎦

,

150

and consider the Lyapunov function candidate Vq ∶ ℝ2n → ℝ

Vq = x⊤Pqx.

The Lie derivative of Vq is given by

f V = x⊤
(

(Aq + BqK)⊤Pq + Pq(Aq + BqK)
)

x = x⊤
⎡

⎢

⎢

⎢

⎣

0 0

0 −2I

⎤

⎥

⎥

⎥

⎦

x ≤ 0.

This means that each mode q ∈ {1,… , m} is stable and the result follows from the linear nature of

the dynamics in all the modes.

Note that although establishing the feasibility of the simultaneous stabilization prob-

lem (8.6) in case of all the nodes having the same inertia is a special case of all the nodes having a

different inertia, it is still interesting to consider it separately as the eigenvalues of the closed loop

system could be explicitly characterized in the former case.

Remark 8.2.2. (Distributed controller stabilizing all the modes). The proof of Proposition 8.2.1

is constructive and relies on identifying a (not necessarily optimal) controller stabilizing all the

modes. It is interesting to note that the identified controller is distributed over , meaning that to

implement it, each node i ∈ {1,… , n} needs to know just its angle and frequency, and the angle of

the nodes to which it is electrically connected. ∙

151

8.2.3 Common Controller for Stabilization of Switched System

The simultaneous stabilization problem in Section 8.2.2 although guarantees the stability

of each mode individually, does not guarantee the stability of the switched system (8.3) in gen-

eral, cf. [Bra98]. To overcome this, in this section, we are interested in designing a time-invariant

controller that stabilizes all the modes with a common Lyapunov function. The controller design

problem could then be formulated as

min
K,P


∑

k=1

T

∫
0

‖uk(t) −Kxk(t)‖22 dt

s.t. (Aq + BqK)⊤P + P (Aq + BqK) ≺ 0 ∀q

P ≻ 0.

(8.8)

In formulation (8.8), we have assumed the Lyapunov function to be quadratic and given by x⊤Px.

The first constraint in (8.8) ensures that the Lie derivative of the Lyapunov function along the

evolution of (8.3) remains negative for eachmode q ∈ {1,… , m}, thereby guaranteeing the stability

of the switched system. As before, it is desirable to establish the feasibility of the problem (8.8).

We do so in the following result.

Proposition 8.2.3. (Feasibility of the switched system simultaneous stabilization). Problem (8.8)

is always feasible.

Proof. It is well known, cf. [DP00] that with X = P −1 and K = Y X−1, the constraints in prob-

152

lem (8.8) could be equivalently written as

AqX +XA⊤
q + BqY + Y

⊤B⊤
q ≺ 0 ∀q (8.9a)

X ≻ 0. (8.9b)

Let X =

⎡

⎢

⎢

⎢

⎣

X1 X2

X⊤
2 X3

⎤

⎥

⎥

⎥

⎦

and Y =
[

Y1 Y2

]

, where X1, X2, X3, Y1, Y2 ∈ ℝn×n. Then using the structure

of {Aq}mq=1 and {Bq}
m
q=1, constraint (8.9a) could be rewritten as

⎡

⎢

⎢

⎢

⎣

0 I

−M−1
q L −M−1

q D

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

X1 X2

X⊤
2 X3

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

0

M−1
q

⎤

⎥

⎥

⎥

⎦

[

Y1 Y2

]

+

⎡

⎢

⎢

⎢

⎣

X1 X2

X⊤
2 X3

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

0 −LM−1
q

I −DM−1
q

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

Y ⊤
1

Y ⊤
2

⎤

⎥

⎥

⎥

⎦

[

0 M−1
q

]

≺ 0 ∀q.

After some algebraic manipulations, the above inequality could further be rewritten as

⎡

⎢

⎢

⎢

⎣

X⊤
2 X3

Zq −Wq +M−1
q Y2

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

X2 Z⊤
q

X⊤
3 −W ⊤

q + Y
⊤
2 M

−1
q

⎤

⎥

⎥

⎥

⎦

≺ 0∀q,

where Zq = −M−1
q LX1 −M−1

q DX
⊤
2 +M

−1
q Y1 (8.10a)

andWq =M−1
q LX2 +M−1

q DX3. (8.10b)

153

Hence, (8.9a) is satisfied if the matrix

⎡

⎢

⎢

⎢

⎣

−X2 −X⊤
2 −X3 −Z⊤

q

−X⊤
3 −Zq Wq +W ⊤

q −M
−1
q Y2 − Y

⊤
2 M

−1
q

⎤

⎥

⎥

⎥

⎦

,

is positive definite for all q. Using the Schur complement, cf. [BV04], the positive definiteness

condition above and hence, (8.9a) is equivalent to

−X2 −X⊤
2 ≻0 (8.11a)

Wq +W ⊤
q −M

−1
q Y2 − Y

⊤
2 M

−1
q ≻0 ∀q, (8.11b)

Wq +W ⊤
q −M

−1
q Y2 − Y

⊤
2 M

−1
q + (X⊤

3 +Zq)(X2 +X⊤
2)
−1(X3 +Z⊤

q) ≻0 ∀q. (8.11c)

Choose X ≻ 0 satisfying (8.11a). Then sinceWq and Zq are independent of Y2, therefore, for any

given X1, X2, X3, Y1, there exists V ≺ 0, independent of Y2, such that for all q ∈ {1,… , m}

Wq +W ⊤
q − V ≻0,

and (X⊤
3 +Zq)(X2 +X⊤

2)
−1(X3 +Z⊤

q) − V ≻0.

Then for a common controller to exist, it suffices that there exist Y2 such that

2V −M−1
q Y2 − Y

⊤
2 M

−1
q ≻ 0 ∀q.

LetM denote the matrix obtained after taking the entry wise maximum of the inertia matrix at all

154

nodes. Then the above inequality is satisfied if Y2 is chosen such that

Y2 ≺ VM. (8.13)

This completes the proof.

Note that Proposition 8.2.3 could be considered as a special case of Proposition 8.2.1. How-

ever, both the results differ in their proof methodologies. The proof of Proposition 8.2.1 is con-

structive and depends on the identification of a controller, which is distributed over . On the other

hand, although Proposition 8.2.3 guarantees the existence of an invariant controller stabilizing the

switched system, there is no guarantee for the resulting controller to be distributed. Nevertheless,

Proposition 8.2.3 serves as the basis for the design of a distributed controller in the next section.

8.2.4 Common Controller for Stabilization of Switched System via Dis-

tributed Control

Here, we present a method to design a sparse controller to stabilize (8.3). We use the stan-

dard technique of penalizing the summation of absolute values of all the elements ofK . The sparse

controller design problem then could be reformulated as an optimization of the form

min
K,P


∑

k=1

T

∫
0

‖uk(t) −Kxk(t)‖22 dt + �
n
∑

i=1

n
∑

j=1
|Kij|

s.t. (Aq + BqK)⊤P + P (Aq + BqK) ≺ 0 ∀q

P ≻ 0,

(8.14)

155

where � > 0 is the design parameter and specifies the importance of sparsity compared to the

optimality [DJL14]. Since (8.8) is feasible, problem (8.14) is feasible too. However, in general

there is no guarantee for the resulting controller to be distributed over . In the following result,

we prove that a controller, distributed over any desired communication graph does exist. In fact,

there exists a completely decentralized local controller that does not need communication even with

the neighboring nodes. The proof methodology leverages from the freedom in choosing various

parameters in the proof of Proposition 8.2.3.

Corollary 8.2.4. (Local controller stabilizing the switched system). There exists a controller of

the form u = D1� + D2!, where D1, D2 ∈ ℝn×n are diagonal matrices, satisfying the constraints

in problem (8.8).

Proof. Following the proof of Proposition 8.2.3, we are interested in identifying X and Y satisfy-

ing (8.9). Let us choose X1 = I, X2 = −I , and Y1 = 0. Then using the Schur complement, (8.9b)

is satisfied iff

X3 − I ≻ 0. (8.15)

Once again, following the same steps as in the proof of Proposition 8.2.3, Y2 can be chosen such

that (8.13) holds, where V is selected such that (8.12) holds. The controller K is then given by

K =
[

0 Y2

]

⎡

⎢

⎢

⎢

⎣

I −I

−I X3

⎤

⎥

⎥

⎥

⎦

−1

.

156

Using the formula for the inverse of a partitioned matrix [HJ85, Section 0.7.3], we have

K =
[

0 Y2

]

⎡

⎢

⎢

⎢

⎣

(I −X−1
3)

−1 (X3 − I)−1

(X3 − I)−1 (X3 − I)−1

⎤

⎥

⎥

⎥

⎦

=
[

Y2(X3 − I)−1 Y2(X3 − I)−1
]

.

If Y2 and X3 are chosen as the diagonal matrices satisfying (8.13) and (8.15) respectively, then the

resulting controller is guaranteed to stabilize the switched system and is local.

8.3 Simulations

In this section, we demonstrate the effectiveness of the proposed approach via numerical

experiments. We use the standard 12-bus 3-region network, shown in Figure 8.1, that has also

been used in [HGCD+18, Kun94, PBD17]. We take m = 10 and assume that at a given time t,

10

25 km10 km110 km10 km25 km

12

11 9

25 km

1

2

3
4 8

7

5

6

719 MW
133 MVar

350 MW
69 MVar

1000 MW
100 MVar

567 MW
100 MVar

1050 MW
284 MVar

611 MW
164 MVar

700 MW
293 MVar

700 MW
208 MVar

1570 MW400 MW

200 M
V
ar

350 M
V
ar

110 km
11

0
km 490 MW

Figure 8.1: 12-bus 3-region network used in simulations.

the rotational inertia for each node i ∈ {1,… , n} is same. Hence, each mode q ∈ {1,… , m}

of the hybrid system is given by one value of inertia. To generate the training data-set, we use

157

Q =

⎡

⎢

⎢

⎢

⎣

I 0

0 105I

⎤

⎥

⎥

⎥

⎦

and R = 10I . To implement (8.5), we use its discrete-time counterpart

min
x,u

T
∑

t=0
x⊤t Qxt + u

⊤
t Rut

s.t. xt+1 = Ad
q(t)xt + B

d
q(t)ut,

(8.16)

where Ad
q(t)ℝ

2n×2n and Bd
q(t) ∈ ℝ2n×n are respectively, the state and input matrices of the discretized

system using a zero-order hold. We use a step-size of 0.01 seconds and simulate 50 scenarios

of (8.16), each for 50 time steps, using cvx [GB14]. The initial conditions for all the scenarios are

different and drawn from a normal distribution with 0 mean and 0.1 variance.

We design three sets of controllers. To design the first (optimal) controller, we solve (8.8)

using the BMI algorithm in [TGMD12]. Since the algorithm requires a feasible initialization, we

solve the feasibility problem associated with the LMI constraints (8.9) using cvx. To design the

second controller, which is sparse and distributed over , we take the first controller as the initial

point and solve (8.14) with � = 100, again using the algorithm in [TGMD12]. The third controller

that we provide is local, and based on Corollary 8.2.4. Unfortunately, in our simulations, we ob-

served that simply increasing the penalty parameter � in (8.14) is not enough to ensure that the

resulting controller is local, and as such, the design of a local controller which is also optimal for

the training data is left for future.

Since the local controller that we design is not optimal for the training data, we compare the

dynamical response of just the first two controllers in our simulations. We assume that the system

starts in mode 5, and can switch to any other mode every 0.01 seconds. The initial frequency devi-

158

ation at each node is 0.15 Hz. In Figure 8.2, we plot the frequency deviation at node 1 for different

switching sequences. It is interesting to note that even though the optimal controller has an higher

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time (seconds)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

F
re

q
u

e
n

c
y
 d

e
v
ia

ti
o

n
 (

H
z
)

Optimal controller

Distributed controller

Figure 8.2: Frequency deviation at node 1 for different switching sequences using the optimal and
distributed controllers. Dashed vertical lines represent the switching instances and different line
styles correspond to different switching sequences.

overshoot for all the switching sequences, convergence is also faster. To further compare the con-

trollers, in Table 8.1, we provide the total absolute value of the control input and the total absolute

value of frequency deviation for 3 fixed inertia modes (q = 1, 5, 10). As expected, the optimal

Table 8.1: Performance metrics for the designed controllers under different inertia modes

Mode Controller
1

∫
0

n
∑

i=1
|ui(t)|dt

1

∫
0

n
∑

i=1
|!i(t)|dt

1 Optimal 13.46 0.005
Distributed 14.58 0.008

5 Optimal 165.83 0.033
Distributed 268.96 0.128

10 Optimal 736.16 0.140
Distributed 773.10 0.418

controller outperforms the distributed one at the expense of increased communication burden.

159

Acknowledgements

This chapter, in full, is currently being prepared for submission for publication of the mate-

rial as ‘Frequency regulation via simultaneously stabilizing data-driven controller’ by P. Srivastava,

P. Hidalgo-Gonzalez, and J. Cortés. The dissertation author was the primary investigator and author

of this paper.

160

Chapter 9

Conclusions

In this thesis, we synthesized algorithmic solutions for large-scale constrained optimization

problems and analyzed them from a controls point of view. Exploiting the structure of these net-

work problems, we privacy-preserving, scalable, accelerated and anytime algorithms to solve them,

and show how constrained optimization problems surface naturally when dealing with frequency

regulation in the modern grid. In the following, we summarize the contributions of the thesis and

point towards future research directions.

9.1 Summary

We started in Chapter 3 by presenting continuous-time algorithms to solve linear algebraic

equations whose problem data is represented as the summation of the data of individual agents.

The proposed algorithms do not require the individual agent matrices to be positive definite and are

guaranteed to converge to a solution of the linear equation exponentially fast.

In Chapter 4, we have considered the problem of distributed optimization of a separable

161

function under locally coupled constraints by a group of agents. Our approach relies on the refor-

mulation of the optimization problem via a continuously differentiable exact penalty function. To

enable the distributed computation of the gradient of this function, we utilized the algorithms in

Chapter 3, to solve linear algebraic equations defined by separable data. Building on this, we have

introduced dynamics to asymptotically compute the gradient of the penalty function in a distributed

fashion. Our algorithmic solution for optimization consists of implementing gradient descent and

Nesterov’s accelerated method with the running estimates provided by this dynamics.

Next, we formalized the accelerated convergence using the Nesterov’s method for equality-

constrained convex optimization in Chapter 5. We have provided sufficient conditions under which

we can reformulate the original problem as the unconstrained optimization of a continuously dif-

ferentiable (strongly) convex penalty function. Via simulations, we have shown that in terms of

computation time required to reach the desired accuracy, the proposed method performs the best

compared to other state-of-the-art methods.

Chapter 6 took a step towards the actual implementation of continuous-time algorithms

in practice and designed decentralized event-triggered coordination mechanisms to solve network

optimization problems whose objective function is a combination of a separable component among

the agents and a non-separable coupling term. The proposed coordination mechanisms prescribe

opportunistic requests for information from the agents to the network supervisor, are anytime, and

guarantee asymptotic convergence to the desired optimizer.

Turning our attention to a specific problem, we considered the problem of providing fre-

quency regulation services by aggregations of DERs in Chapter 7. We have described the limi-

tations of current practice and identified the challenges to overcome them with DER aggregators

modeled as microgrids. We have developed meaningful abstractions for the capacity, cost of gen-

162

eration, and ramp rates by taking into account the power flow equations inside the microgrid. We

have employed these abstractions to design a provably correct distributed algorithm that solves the

RTO-DERP coordination problem to optimally disaggregate the regulation signal when the prob-

lem is feasible and minimize the difference between the required regulation and procured regulation

when it is infeasible.

Finally, we applied constrained optimization to design stable time-invariant controller for

the time-varying power dynamics in Chapter 8. We showed that owing to the structure inherent in

the power network dynamics, simultaneous stabilization of the switching power dynamics is always

feasible, more so with a completely decentralized controller.

9.2 Future Directions

Based on the results of the thesis, here we outline some immediate short term extensions

and also point towards some long term research plans.

9.2.1 Extensions

For linear equations with separable data, it would be interesting to extend our work to finding

least-squares solutions when exact ones do not exist, and the communication graph is unbalanced

and time-varying. Future workwill also involve formally extending our approach of accelerating the

gradient dynamics to problems with general convex constraints. We would also like to rigorously

characterize the rate of convergence in its distributed implementation, and extend our treatment to

problems involving global non-sparse coupling constraints.

Regarding the work on frequency regulation in the thesis, the power flow equations used for

163

the controller design and developing the abstractions are simplified and arguably simple. Future

plan is to develop more realistic abstractions using exact power flow equations. In addition, it

would also be interesting to consider dynamic models for the DERs and characterize the temporal

dependence of the abstractions.

9.2.2 And Beyond...

The focus of this thesis has mainly been on designing continuous time optimization algo-

rithms. Although one can argue that this way of synthesizing algorithms is more intuitive, from an

implementation perspective, it suffers from the need of continuous communication and actuation,

which is not realizable in practice. Of course, we can always use Runge-Kutta discretizations with

small stepsizes, but this gives rise to periodic implementations at high frequencies which is clearly

not efficient. This necessitates the design of asynchronous and opportunistic resource-aware coor-

dination mechanisms which limit communication and actuation to only those instances when the

system needs attention. Identifying proper trigger points for this event-based coordination requires

analysis from a hybrid systems perspective. This becomes particularly interesting for network sys-

tems as different subsystems might have very different properties. And as such, translating the

performance guarantees for the interconnected network system to locally identifiable criteria for

individual subsystems (and vice versa) requires coming up with novel and adaptive equivalence

mappings ensuring uniform utilization of all the resources.

Another important point to note is that the contributions of the thesis are based on the as-

sumption that we have perfect knowledge about the problem at hand. Since the network models

and the functions involved might be unknown, in practice, this is not always the case. This is es-

164

pecially true with the rapid advancements in different technologies driving the rise in number of

independent modules joining into existing large-scale systems. The plan, therefore, is to develop

feedback-based model-free solutions that do not require a priori knowledge of the system. Since

extending this data-driven framework to general problems might be too ambitious, it is reasonable

to start with solutions aimed at specific applications. To some degree, the model-free approaches

also handle scenarios where the problem data is not static and varies over time. Considering the im-

portance of model-free approaches together with the discussion in the former paragraph on building

practically realizable systems, a natural line of future work is to devise data-driven event-triggered

algorithms encompassing the merits of both.

165

Bibliography

[AAC+17] O. Ajala, M. Almeida, I. Celanovic, P. W. Sauer, and A. D. Domínguez-García. A
hierarchy of models for microgrids with grid-feeding inverters. In IREP Bulk
Power System Dynamics and Control Symposium, Espinho, Portugal, August
2017.

[AHU58] K. Arrow, L Hurwitz, and H. Uzawa. Studies in Linear and Non-Linear Program-
ming. Stanford University Press, Stanford, CA, 1958.

[ALDJ15] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson. Control of multi-
agent systems with event-triggered cloud access. In European Control Confer-
ence, pages 954–961, Linz, Austria, 2015.

[AMMH16] B. D. O. Anderson, S. Mou, A. S. Morse, and U. Helmke. Decentralized gradi-
ent algorithm for solution of a linear equation. Numerical Algebra, Control and
Optimization, 6(3):319–328, 2016.

[AMS+21] T. Anderson, M. Muralidharan, P. Srivastava, H. Valizadeh Haghi, J. Cortés,
J. Kleissl, S. Martínez, and B.Washom. Frequency regulation with heterogeneous
energy resources: A realization using distributed control. IEEE Transactions on
Smart Grid, 12(5):4126–4136, 2021.

[AO17] P. Armand and R. Omheni. A globally and quadratically convergent primal-dual
augmented Lagrangian algorithm for equality constrained optimization.Optimiza-
tion Methods and Software, 32(1):1–21, 2017.

[AYS20] S. A. Alghunaim, K. Yuan, and A. H. Sayed. A proximal diffusion strategy for
multi-agent optimization with sparse affine constraints. IEEE Transactions on
Automatic Control, 2020. To appear.

[BAP+13] B. Biegel, P. Andersen, T. S. Pedersen, K. M. Nielsen, J. Stoustrup, and L. H.
Hansen. Smart grid dispatch strategy for on/off demand-side devices. In European
Control Conference, pages 2541–2548, Zürich, Switzerland, 2013.

[BCM09] F. Bullo, J. Cortés, and S. Martinez. Distributed Control of Robotic Networks.
Applied Mathematics Series. Princeton University Press, 2009.

166

[Ber75] D. P. Bertsekas. Necessary and sufficient conditions for a penalty method to be
exact. Mathematical Programming, 9(1):87–99, 1975.

[Ber82] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods.
Athena Scientific, Belmont, MA, 1982.

[Ber99] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 2nd
edition, 1999.

[BHH12] J. Bushnell, S. M. Harvey, and B. F. Hobbs. Opinion on pay-for-performance
regulation. Technical report, Market Surveillance Committee, California ISO,
March 9 2012.

[BKP+18] O. Borne, K. Korte, Y. Perez, M. Petit, and A. Purkus. Barriers to entry in
frequency-regulation services markets: Review of the status quo and options for
improvements. Renewable and Sustainable Energy Reviews, 81:605–614, 2018.

[BNP16] S. L. Bowman, C. Nowzari, and G. J. Pappas. Coordination of multi-agent systems
via asynchronous cloud communication. In IEEE Conf. on Decision and Control,
pages 2215–2220, Las Vegas, NV, 2016.

[BPC+11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foun-
dations and Trends in Machine Learning, 3(1):1–122, 2011.

[BPP16] O. Borne, M. Petit, and Y. Perez. Provision of frequency-regulation reserves by
distributed energy resources: Best practices and barriers to entry. In International
Conference on the European Energy Market (EEM), pages 1–7, June 2016.

[Bra98] M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Transactions on Automatic Control, 43(4):475–482,
1998.

[Bro91] R. W. Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve
linear programming problems. Linear Algebra and its Applications, 146:79–91,
1991.

[BSC15] Q. Ba, K. Savla, and G. Como. Distributed optimal equilibrium selection for traffic
flow over networks. In IEEE Conf. on Decision and Control, pages 6942–6947,
Osaka, Japan, 2015.

[BT97a] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Nu-
merical Methods. Athena Scientific, 1997.

[BT97b] V. Blondel and J. N. Tsitsiklis. NP-hardness of some linear control design prob-
lems. SIAM Journal on Control and Optimization, 35(6):2118–2127, 1997.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

167

[BV09] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2009.

[Cal12] California ISO. Pay for performance regulation: Draft final proposal,
February 2012. Available at https://www.caiso.com/Documents/
Addendum-DraftFinalProposal-Pay_PerformanceRegulation.pdf.

[CBCZ20] G. Cavraro, A. Bernstein, R. Carli, and S. Zampieri. Distributed minimization of
the power generation cost in prosumer-based distribution networks. In American
Control Conference, pages 2370–2375, Denver, CO, 2020.

[CC15] A. Cherukuri and J. Cortés. Distributed generator coordination for initialization
and anytime optimization in economic dispatch. IEEE Transactions on Control of
Network Systems, 2(3):226–237, 2015.

[CC16a] A. Cherukuri and J. Cortés. Distributed algorithms for convex network optimiza-
tion under non-sparse equality constraints. In Allerton Conf. on Communications,
Control and Computing, pages 452–459, Monticello, IL, September 2016.

[CC16b] A. Cherukuri and J. Cortés. Initialization-free distributed coordination for eco-
nomic dispatch under varying loads and generator commitment. Automatica,
74:183–193, 2016.

[CGC17] A. Cherukuri, B. Gharesifard, and J. Cortés. Saddle-point dynamics: conditions
for asymptotic stability of saddle points. SIAM Journal on Control and Optimiza-
tion, 55(1):486–511, 2017.

[CL12] J. Chen and V. K. N. Lau. Convergence analysis of saddle point problems in time
varying wireless systems - control theoretical approach. IEEE Transactions on
Signal Processing, 60(1):443–452, 2012.

[Cla83] F. H. Clarke. Optimization and Nonsmooth Analysis. Canadian Mathematical
Society Series of Monographs and Advanced Texts. Wiley, 1983.

[CM09] S. L. Campbell and C. D. Meyer. Generalized Inverses of Linear Transformations.
Classics in AppliedMathematics. Society for Industrial andAppliedMathematics,
2009.

[CMC17] C.-Y. Chang, S. Martinez, and J. Cortés. Grid-connected microgrid participation
in frequency-regulation markets via hierarchical coordination. In IEEE Conf. on
Decision and Control, pages 3501–3506, Melbourne, Australia, December 2017.

[CMK18] S. Camal, A.Michiorri, and G. Kariniotakis. Optimal offer of automatic frequency
restoration reserve from a combined PV/wind virtual power plant. IEEE Transac-
tions on Power Systems, 33(6):6155–6170, 2018.

[CMLC18] A. Cherukuri, E. Mallada, S. H. Low, and J. Cortés. The role of convexity in
saddle-point dynamics: Lyapunov function and robustness. IEEE Transactions
on Automatic Control, 63(8):2449–2464, 2018.

168

https://www.caiso.com/Documents/Addendum-DraftFinalProposal-Pay_PerformanceRegulation.pdf
https://www.caiso.com/Documents/Addendum-DraftFinalProposal-Pay_PerformanceRegulation.pdf

[CN19] J. Cortés and S. K. Niederländer. Distributed coordination for nonsmooth con-
vex optimization via saddle-point dynamics. Journal of Nonlinear Science,
29(4):1247–1272, 2019.

[Cor08] J. Cortés. Discontinuous dynamical systems – a tutorial on solutions, nonsmooth
analysis, and stability. IEEE Control Systems, 28(3):36–73, 2008.

[CPP] P. Codani, M. Petit, and Y. Perez. Missing money for EVs: Economics impacts of
TSO market designs. Available at https://ssrn.com/abstract=2525290.

[CY18] G. Chen and Q. Yang. An ADMM-based distributed algorithm for economic
dispatch in islanded microgrids. IEEE Transactions on Industrial Informatics,
14(9):3892–3903, 2018.

[DG89] G. Di Pillo and L. Grippo. Exact penalty functions in constrained optimization.
SIAM Journal on Control and Optimization, 27(6):1333–1360, 1989.

[DGS+18] E. Dall’Anese, S. Guggilam, A. Simonetto, Y. C. Chen, and S. V. Dhople. Op-
timal regulation of virtual power plants. IEEE Transactions on Power Systems,
33(2):1868–1881, 2018.

[DH19] S. S. Du and W. Hu. Linear convergence of the primal-dual gradient method for
convex-concave saddle point problems without strong convexity. In The 22nd In-
ternational Conference on Artificial Intelligence and Statistics, volume 89 of Pro-
ceedings of Machine Learning Research, pages 196–205, Naha, Okinawa, Japan,
2019.

[Di 94] G. Di Pillo. Exact penalty methods. In E. Spedicato, editor, Algorithms for Con-
tinuous Optimization: The State of the Art, pages 209–253. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1994.

[DJ19] D. Ding and M. R. Jovanović. Global exponential stability of primal-dual gradi-
ent flow dynamics based on the proximal augmented Lagrangian. In American
Control Conference, pages 3414–3419, Philadelphia, PA, July 2019.

[DJL14] N. K. Dhingra, M.R. Jovanović, and Z.-Q. Luo. An ADMM algorithm for optimal
sensor and actuator selection. In IEEE Conf. on Decision and Control, pages
4039–4044, 2014.

[DKJ17] N. K. Dhingra, S. Z. Khong, and M. R. Jovanović. A second order primal-dual
method for nonsmooth convex composite optimization. IEEE Transactions on
Automatic Control, 2017. Submitted. https://arxiv.org/abs/1709.01610.

[DP00] G. E. Dullerud and F. Paganini. A Course in Robust Control Theory. Number 36
in Texts in Applied Mathematics. Springer, 2000.

[DSPB16] F. Dörfler, J.W. Simpson-Porco, and F. Bullo. Breaking the hierarchy: Distributed
control & economic optimality in microgrids. IEEE Transactions on Control of
Network Systems, 3(3):241–253, 2016.

169

https://ssrn.com/abstract=2525290

[DZG13] E. Dall’Anese, H. Zhu, and G. B. Giannakis. Distributed optimal power flow for
smart microgrids. IEEE Transactions on Smart Grid, 4(3):1464–1475, 2013.

[EMK11] E. Ela, M. Milligan, and B. Kirby. Operating reserves and variable generation.
Technical report, National Renewable Energy Laboratory, Aug 2011.

[FBM+94] T. L. Friesz, D. H. Bernstein, N. J. Mehta, R. L. Tobin, and S. Ganjlizadeh. Day-
to-day dynamic network disequilibria and idealized traveler information systems.
Operations Research, 42(6):1120–1136, 1994.

[Fed11] Order No. 755: Frequency regulation compensation in the organized whole-
sale power markets, 2011. Available at http://www.ferc.gov/whats-new/
comm-meet/2011/102011/E-28.pdf.

[Fed20] Order No. 2222: Participation of distributed energy resource aggregations in
markets operated by regional transmission organizations and independent sys-
tem operators, September 2020. Available at https://www.ferc.gov/sites/
default/files/2020-09/E-1_0.pdf.

[FP10] D. Feijer and F. Paganini. Stability of primal-dual gradient dynamics and appli-
cations to network optimization. Automatica, 46:1974–1981, 2010.

[FZD18] D. Fooladivanda, M. Zholbaryssov, and A. D. Domínguez-García. Control of
networked distributed energy resources in grid-connected AC microgrids. IEEE
Transactions on Control of Network Systems, 5(4):1875–1886, 2018.

[GAB18] R. Ghaemi, M. Abbaszadeh, and P. Bonanni. Scalable optimal flexibility control
of distributed loads in the power grid. In American Control Conference, pages
6646–6651, Milwaukee, WI, June 2018.

[Gao03] Xing-BaoGao. Exponential stability of globally projected dynamic systems. IEEE
Transactions on Neural Networks, 14(2):426–431, 2003.

[GB14] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex program-
ming, version 2.1, March 2014. Available at http://cvxr.com/cvx.

[GP79] T. Glad and E. Polak. A multiplier method with automatic limitation of penalty
growth. Mathematical Programming, 17(1):140–155, 1979.

[GR01] C. D. Godsil and G. F. Royle. Algebraic Graph Theory, volume 207 of Graduate
Texts in Mathematics. Springer, 2001.

[GR12] P. E. Gill and D. P. Robinson. A primal-dual augmented Lagrangian. Computa-
tional Optimization and Applications, 51(1):1–25, 2012.

[HCG+17] J. Hu, J. Cao, J. M. Guerrero, T. Yong, and J. Yu. Improving frequency stability
based on distributed control of multiple load aggregators. IEEE Transactions on
Smart Grid, 8(4):1553–1567, 2017.

170

http://www.ferc.gov/whats-new/comm-meet/2011/102011/E-28.pdf
http://www.ferc.gov/whats-new/comm-meet/2011/102011/E-28.pdf
https://www.ferc.gov/sites/default/files/2020-09/E-1_0.pdf
https://www.ferc.gov/sites/default/files/2020-09/E-1_0.pdf
http://cvxr.com/cvx

[HDGP16] J. T. Hughes, A. D. Domínguez-García, andK. Poolla. Identification of virtual bat-
tery models for flexible loads. IEEE Transactions on Power Systems, 31(6):4660–
4669, Nov 2016.

[HDGP17] J. T. Hughes, A. D. Domínguez-García, and K. Poolla. Coordinating heteroge-
neous distributed energy resources for provision of frequency regulation services.
In Hawaii International Conference on System Sciences, pages 2983–2992, Big
Island, HI, January 2017.

[HFO+17] L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J. P. Richard, and S. I.
Niculescu. Recent developments on the stability of systems with aperiodic sam-
pling: An overview. Automatica, 76:309–335, 2017.

[HGCD+18] P. Hidalgo-Gonzalez, D. S Callaway, R. Dobbe, R. Henriquez-Auba, and C. J.
Tomlin. Frequency regulation in hybrid power dynamics with variable and low
inertia due to renewable energy. In IEEE Conf. on Decision and Control, pages
1592–1597, Miami Beach, FL, 2018.

[HGHACT19a] P. Hidalgo-Gonzalez, R. Henriquez-Auba, D. S. Callaway, and C. J. Tomlin. Fre-
quency regulation using data-driven controllers in power grids with variable iner-
tia due to renewable energy. In IEEE PES General Meeting, pages 1–5, Atlanta,
GA, August 2019.

[HGHACT19b] P. Hidalgo-Gonzalez, R. Henriquez-Auba, D. S. Callaway, and C. J. Tomlin. Fre-
quency regulation using sparse learned controllers in power grids with variable
inertia due to renewable energy. In IEEE Conf. on Decision and Control, pages
3253–3259, Nice, France, Dec 2019.

[HJ85] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
1985.

[HJT12] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada. An introduction to event-
triggered and self-triggered control. In IEEEConf. onDecision and Control, pages
3270–3285, Maui, HI, 2012.

[HM94] U. Helmke and J. B. Moore. Optimization and Dynamical Systems. Springer,
1994.

[HNE17] M. T. Hale, A. Nedić, and M. Egerstedt. Asynchronous multiagent primal-dual
optimization. IEEE Transactions on Automatic Control, 62(9):4421–4435, 2017.

[JJ09] B. Johansson and M. Johansson. Distributed non-smooth resource allocation over
a network. In IEEE Conf. on Decision and Control, pages 1678–1683, Shanghai,
China, December 2009.

[KB13] S. Koehler and F. Borrelli. Building temperature distributed control via explicit
MPC and “Trim and Respond” methods. In European Control Conference, pages
4334–4339, Zurich, Switzerland, 2013.

171

[KBB15] W. Krichene, A. Bayen, and P.L. Bartlett. Accelerated mirror descent in contin-
uous and discrete time. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing Systems 28,
pages 2845–2853. Curran Associates, Inc., 2015.

[KCM15a] S. S. Kia, J. Cortés, and S. Martinez. Distributed convex optimization via
continuous-time coordination algorithms with discrete-time communication. Au-
tomatica, 55:254–264, 2015.

[KCM15b] S. S. Kia, J. Cortés, and S. Martinez. Dynamic average consensus under limited
control authority and privacy requirements. International Journal on Robust and
Nonlinear Control, 25(13):1941–1966, 2015.

[Ker01] W. H. Kersting. Radial distribution test feeders. In IEEE Power Engineering
Society Winter Meeting, volume 2, pages 908–912, Columbus, OH, January 2001.

[KH12] S. Kar and G. Hug. Distributed robust economic dispatch in power systems: A
consensus + innovations approach. In IEEE Power and Energy Society General
Meeting, San Diego, CA, July 2012. Electronic proceedings.

[Kha02] H. K. Khalil. Nonlinear Systems. Prentice Hall, 3 edition, 2002.

[KM14] M. Kintner-Meyer. Regulatory policy and markets for energy storage in North
America. Proceedings of the IEEE, 102(7):1065–1072, 2014.

[KMT98] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control in communication
networks: Shadow prices, proportional fairness and stability. Journal of the Op-
erational Research Society, 49(3):237–252, 1998.

[Kos56] T. Kose. Solutions of saddle value problems by differential equations. Economet-
rica, 24(1):59–70, 1956.

[KSC+19] S. S. Kia, B. Van Scoy, J. Cortés, R. A. Freeman, K. M. Lynch, and S. Martinez.
Tutorial on dynamic average consensus: The problem, its applications, and the
algorithms. IEEE Control Systems, 39(3):40–72, 2019.

[Kun94] P. Kundur. Power System Stability and Control. McGraw-Hill, 1994.

[LD14] L. Luo and S. V. Dhople. Spatiotemporal model reduction of inverter-based is-
landed microgrids. IEEE Transactions on Energy Conversion, 29(4):823–832,
2014.

[LT18] J. Lu and C. Y. Tang. A distributed algorithm for solving positive definite lin-
ear equations over networks with membership dynamics. IEEE Transactions on
Control of Network Systems, 5(1):215–227, 2018.

[Luc92] S. Lucidi. New results on a continuously differentiable exact penalty function.
SIAM Journal on Optimization, 2(4):558–574, 1992.

172

[LZ15] Z. Li and D. Zhisheng. Cooperative Control of Multi-Agent Systems: A Consensus
Region Approach. CRC Press, 2015.

[MKBD16] P. MacDougall, A. M. Kosek, H. Bindner, and G. Deconinck. Applying ma-
chine learning techniques for forecasting flexibility of virtual power plants. In
IEEE Electrical Power and Energy Conference (EPEC), pages 1–6, Ottawa, ON,
Canada, Oct 2016.

[MKC13] J. L Mathieu, S. Koch, and D. S Callaway. State estimation and control of elec-
tric loads to manage real-time energy imbalance. IEEE Transactions on Power
Systems, 28(1):430–440, 2013.

[MLM15] S. Mou, J. Liu, and A. S. Morse. A distributed algorithm for solving a linear
algebraic equation. IEEE Transactions on Automatic Control, 60(11):2863–2878,
2015.

[MT11] M. Mazo Jr. and P. Tabuada. Decentralized event-triggered control over wireless
sensor/actuator networks. IEEE Transactions on Automatic Control, 56(10):2456–
2461, 2011.

[MXAP13] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Püschel. D-ADMM: A
communication-efficient distributed algorithm for separable optimization. IEEE
Transactions on Signal Processing, 61(10):2718–2723, 2013.

[MZL17] E. Mallada, C. Zhao, and S. H. Low. Optimal load-side control for frequency
regulation in smart grids. IEEE Transactions on Automatic Control, 62(12):6294–
6309, 2017.

[Ned15] A. Nedić. Distributed optimization. In J. Baillieul and T. Samad, editors, Ency-
clopedia of Systems and Control. Springer, New York, 2015.

[Nes83] Y. E. Nesterov. A method of solving a convex programming problem with con-
vergence rate O(1∕k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[Nes04] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course,
volume 87 of Applied Optimization. Springer, 2004.

[Nes18] Y. Nesterov. Lectures on Convex Optimization, volume 137 of Springer Optimiza-
tion and Its Applications. Springer International Publishing, 2nd edition, 2018.

[NGC19] C. Nowzari, E. Garcia, and J. Cortés. Event-triggered control and communication
of networked systems for multi-agent consensus. Automatica, 105:1–27, 2019.

[NS06] A. Nemirovski and A. Shapiro. Convex approximations of chance constrained
programs. SIAM Journal on Optimization, 17(4):969–996, 2006.

[OC21] P. Ong and J. Cortés. Opportunistic robot control for interactive multiobjective op-
timization under human performance limitations. Automatica, 123:109263, 2021.

173

[PBD17] B. K. Poolla, S. Bolognani, and F. Dorfler. Optimal placement of virtual inertia in
power grids. IEEE Transactions on Automatic Control, 62(12):6209–6220, 2017.

[PDRK18] Z. K. Pecenak, V. R. Disfani, M. J. Reno, and J. Kleissl. Multiphase distribution
feeder reduction. IEEE Transactions on Power Systems, 33(2):1320–1328, March
2018.

[PJM] PJM. Dynamic regulation test signal (RegD) signal. http://www.pjm.com/~/
media/markets-ops/ancillary/regd-test-wave.ashx.

[QL19] G. Qu and N. Li. On the exponential stability of primal-dual gradient dynamics.
IEEE Control Systems Letters, 3(1):43–48, 2019.

[RC15] D. Richert and J. Cortés. Robust distributed linear programming. IEEE Transac-
tions on Automatic Control, 60(10):2567–2582, 2015.

[Res63] J. Resh. The inverse of a nonsingular submatrix of an incidence matrix. IEEE
Transactions on Circuit Theory, 10(1):131–132, 1963.

[RJ14] J. Rivera and H. Jacobsen. A distributed anytime algorithm for network utility
maximization with application to real-time EV charging control. In IEEE Conf.
on Decision and Control, pages 947–952, Los Angeles, CA, December 2014.

[RK12] A. U. Raghunathan and S. Krishnamurthy. A distributed anytime algorithm for
maximizing occupant comfort. In American Control Conference, pages 1059–
1066, Montreal, Canada, June 2012.

[RN05] M. G. Rabbat and R. D. Nowak. Quantized incremental algorithms for distributed
optimization. IEEE Journal on Selected Areas in Communications, 23(4):798–
808, 2005.

[Roc74] R. T. Rockafellar. Augmented Lagrange multiplier functions and duality in non-
convex programming. SIAM Journal on Control, 12(2):268–285, 1974.

[RSR13] S. Rahnama, J. Stoustrup, and H. Rasmussen. Integration of heterogeneous indus-
trial consumers to provide regulating power to the smart grid. In IEEE Conf. on
Decision and Control, pages 6268–6273, Florence, Italy, 2013.

[SBC16] W. Su, S. Boyd, and E. J. Candès. A differential equation for modeling Nesterov’s
accelerated gradient method: theory and insights. Journal of Machine Learning
Research, 17:1–43, 2016.

[SC18] P. Srivastava and J. Cortés. Distributed algorithm via continuously differentiable
exact penalty method for network optimization. In IEEE Conf. on Decision and
Control, pages 975–980, Miami Beach, FL, December 2018.

[SC21a] P. Srivastava and J. Cortés. Nesterov acceleration for equality-constrained con-
vex optimization via continuously differentiable penalty functions. IEEE Control
Systems Letters, 5(2):415–420, 2021.

174

http://www.pjm.com/~/media/markets-ops/ancillary/regd-test-wave.ashx
http://www.pjm.com/~/media/markets-ops/ancillary/regd-test-wave.ashx

[SC21b] P. Srivastava and J. Cortés. Network optimization via smooth exact penalty func-
tions enabled by distributed gradient computation. IEEE Transactions on Control
of Network Systems, 8(3):1430–1441, 2021.

[SC22] P. Srivastava and J. Cortés. Solving linear equations with separable problem data
over directed networks. IEEE Control Systems Letters, 6:596–601, 2022.

[SCC18] P. Srivastava, C.-Y. Chang, and J. Cortés. Participation of microgrids in frequency
regulation markets. In American Control Conference, pages 3834–3839, Milwau-
kee, WI, May 2018.

[SCC21a] P. Srivastava, G. Cavraro, and J. Cortés. Agent-supervisor coordination for de-
centralized event-triggered optimization. IEEE Control Systems Letters, 2021.
Submitted.

[SCC21b] P. Srivastava, C.-Y. Chang, and J. Cortés. EnablingDER participation in frequency
regulation markets. IEEE Transactions on Control Systems Technology, 2021.
Conditionally accepted.

[SDSJ19] B. Shi, S. S. Du, W. Su, and M. I. Jordan. Acceleration via symplectic dis-
cretization of high-resolution differential equations. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Conference on
Neural Information Processing Systems, pages 5744–5752. Curran Associates,
Inc., 2019.

[SHPV14] B. M Sanandaji, H. Hao, K. Poolla, and T. L Vincent. Improved battery models
of an aggregation of thermostatically controlled loads for frequency regulation. In
American Control Conference, pages 38–45, Portland, OR, 2014.

[SMT11] H. Saboori, M. Mohammadi, and R. Taghe. Virtual power plant (VPP), definition,
concept, components and types. In Asia-Pacific Power and Energy Engineering
Conference, pages 1–4, Wuhan, China, 2011.

[SOSM05a] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Distributed sensor fusion using
dynamic consensus. In IFAC World Congress, Prague, CZ, July 2005. Electronic
proceedings.

[SOSM05b] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Dynamic consensus on mobile
networks. In IFAC World Congress, Prague, Czech Republic, July 2005.

[SR61] S. Seshu and M. B. Reed. Linear Graphs and Electrical Networks. Addison-
Wesley Publishing Company, 1961.

[Tab07] P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks.
IEEE Transactions on Automatic Control, 52(9):1680–1685, 2007.

[TG15] B. Touri and B. Gharesifard. Continuous-time distributed convex optimization on
time-varying directed networks. In IEEE Conf. on Decision and Control, pages
724–729, Osaka, Japan, 2015.

175

[TG20] B. Touri and B. Gharesifard. A modified saddle-point dynamics for distributed
convex optimization on general directed graphs. IEEE Transactions on Automatic
Control, 65(7):3098–3103, 2020.

[TGMD12] Q. Tran Dinh, S. Gumussoy, W. Michiels, and M. Diehl. Combining con-
vex–concave decompositions and linearization approaches for solving BMIs, with
application to static output feedback. IEEE Transactions on Automatic Control,
57(6):1377–1390, 2012.

[UBA14] A. Ulbig, T. S. Borsche, and G. Andersson. Impact of low rotational inertia on
power system stability and operation. IFAC Proceedings Volumes, 47(3):7290–
7297, 2014.

[Vel97] V. Veliov. A generalization of the Tikhonov theorem for singularly perturbed
differential inclusions. Journal of Dynamical & Control Systems, 3(3):291–319,
1997.

[WAT+16] Y.Wang, X. Ai, Z. Tan, L. Yan, and S. Liu. Interactive dispatchmodes and bidding
strategy of multiple virtual power plants based on demand response and game
theory. IEEE Transactions on Smart Grid, 7(1):510–519, Jan 2016.

[WDW+13] B. Washom, J. Dilliot, D. Weil, J. Kleissl, N. Balac, W. Torre, and C. Richter.
Ivory tower of power: Microgrid implementation at the University of California,
San Diego. IEEE Power and Energy Magazine, 11(4):28–32, 2013.

[WL09] P. Wan and M. D. Lemmon. Event-triggered distributed optimization in sensor
networks. In Symposium on Information Processing of Sensor Networks, pages
49–60, San Francisco, CA, 2009.

[WM18a] X. Wang and S. Mou. A distributed algorithm for achieving the conservation
principle. In American Control Conference, pages 5863–5867, Milwaukee, WI,
June 2018.

[WM18b] J. T. Wen and S. Mishra. Intelligent Building Control Systems. Advances in In-
dustrial Control. Springer, 2018.

[XB06] L. Xiao and S. Boyd. Optimal scaling of a gradient method for distributed re-
source allocation. Journal of Optimization Theory & Applications, 129(3):469–
488, 2006.

[XBL05] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion
based on average consensus. In Symposium on Information Processing of Sensor
Networks, pages 63–70, Los Angeles, CA, April 2005.

[XHC+17] Y. Xu, T. Han, K. Cai, Z. Lin, G. Yan, and M. Fu. A distributed algorithm for
resource allocation over dynamic digraphs. IEEE Transactions on Signal Pro-
cessing, 65(10):2600–2612, 2017.

176

[XUDGS17] H. Xu, S. C. Utomi, A. D. Domínguez-García, and P. W. Sauer. Coordination
of distributed energy resources in lossy networks for providing frequency regu-
lation. In IREP Bulk Power System Dynamics and Control Symposium, Espinho,
Portugal, August 2017.

[XW00] Y. S. Xia and J. Wang. On the stability of globally projected dynamical systems.
Journal of Optimization Theory and Applications, 106(1):129–150, 2000.

[YYW+19] Tao Yang, Xinlei Yi, JunfengWu, Ye Yuan, DiWu, ZiyangMeng, Yiguang Hong,
HongWang, Zongli Lin, and Karl H. Johansson. A survey of distributed optimiza-
tion. Annual Reviews in Control, 47:278–305, 2019.

[ZD16] M. Zachar and P. Daoutidis. Nonlinear economic model predictive control for
microgrid dispatch. IFAC-PapersOnLine, 49(18):778–783, 2016.

[ZD17] M. Zachar and P. Daoutidis. Microgrid/macrogrid energy exchange: A novel
market structure and stochastic scheduling. IEEE Transactions on Smart Grid,
8(1):178–189, 2017.

[ZDG20] M. Zholbaryssov andA. D. Domínguez-García. Convex relaxations of the network
flow problem under cycle constraints. IEEE Transactions on Control of Network
Systems, 7(1):64–73, 2020.

[ZH12] Q.-C. Zhong and T. Hornik. Control of power inverters in renewable energy and
smart grid integration, volume 97. John Wiley & Sons, 2012.

[ZMS17] S. Zhang, Y. Mishra, andM. Shahidehpour. Utilizing distributed energy resources
to support frequency regulation services. Applied Energy, 206:1484–1494, 2017.

[ZMSG11] R. D. Zimmerman, C. E. Murillo-Sánchez, and D. Gan. MATPOWER: Steady-
state operations, planning, and analysis tools for power systems research and ed-
ucation. IEEE Transactions on Power Systems, 26(1):12–19, 2011.

[ZSJ09] H. Zhang, P. Soldati, and M. Johansson. Optimal link scheduling and channel
assignment for convergecast in linear WirelessHART networks. In International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Net-
works, pages 1–8, Seoul, South Korea, 2009.

177

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Literature Review
	Algorithms for Network Problems
	Frequency Regulation from DERs

	Statement of Contributions
	Algorithms for Network Problems
	Frequency Regulation from DERs

	Organization

	Preliminaries
	Notation
	Graph Theory
	Convex Analysis
	Dynamic Average Consensus
	Probability Theory
	Constrained Optimization
	Continuously differentiable exact penalty functions
	Globally Projected Dynamical Systems

	Event-Triggered Control

	Part I Application-Agnostic Distributed Algorithms for Network Problems
	Distributed Algorithms for Linear Equations
	Problem Formulation
	Distributed Algorithm Over Undirected Networks
	Distributed Algorithms Over Directed Networks
	Centralized Algorithm Over Weight-Balanced Networks
	Distributed Algorithm Over Weight-Balanced Networks
	Distributed Algorithms Over Unbalanced Networks

	Simulations

	Network Optimization via Smooth Penalty Functions
	Problem Statement
	Distributed Computation of the Gradient of Penalty Function
	Distributed computation of multiplier functions
	Distributed computation of the gradient

	Distributed Optimization via Interconnected Dynamics
	Simulations

	Nesterov Acceleration for Equality-Constrained Convex Optimization
	Problem Statement
	Convexity of the Penalty Function
	Sufficient Conditions for Convexity over the Domain
	Convexity over Feasible Set Coupled with Invariance

	Simulations

	Decentralized Event-Triggered Optimization via Agent-Supervisor Coordination
	Problem Formulation
	Event-Triggered Coordination for Unconstrained Problems
	Event-Triggered Coordination for Constrained Problems
	Simulations

	Part II Applications of Constrained Optimization in Frequency Regulation from DERs
	Participation of DERs in Frequency Regulation Markets
	Frequency Regulation with Microgrids
	Review of Current Practice
	Problem Statement

	Microgrid Abstractions
	Capacity Bounds
	Ramp Rate Function
	Cost Function
	Bids for Participation in Market Clearance

	RTO-DERP Coordination Problem
	Simulations

	Frequency Regulation via Simultaneously Stabilizing Data-Driven Controller
	Problem Formulation
	Data-Driven Controller Design
	Training Data from Optimal Input Trajectories
	Common Controller for Stabilization of All Modes
	Common Controller for Stabilization of Switched System
	Common Controller for Stabilization of Switched System via Distributed Control

	Simulations

	Conclusions
	Summary
	Future Directions
	Extensions
	And Beyond...

	Bibliography

