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model of pulmonary blood circulation
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This study uses Bayesian inference to quantify the uncertainty of model
parameters and haemodynamic predictions in a one-dimensional pulmon-
ary circulation model based on an integration of mouse haemodynamic
and micro-computed tomography imaging data. We emphasize an often
neglected, though important source of uncertainty: in the mathematical
model form due to the discrepancy between the model and the reality,
and in the measurements due to the wrong noise model ( jointly called
‘model mismatch’). We demonstrate that minimizing the mean squared
error between the measured and the predicted data (the conventional
method) in the presence of model mismatch leads to biased and overly con-
fident parameter estimates and haemodynamic predictions. We show that
our proposed method allowing for model mismatch, which we represent
with Gaussian processes, corrects the bias. Additionally, we compare a
linear and a nonlinear wall model, as well as models with different vessel
stiffness relations. We use formal model selection analysis based on the
Watanabe Akaike information criterion to select the model that best predicts
the pulmonary haemodynamics. Results show that the nonlinear pressure–
area relationship with stiffness dependent on the unstressed radius predicts
best the data measured in a control mouse.
1. Introduction
Computational haemodynamics models are emerging as powerful tools for
analysing cardiovascular disease progression and the effects of treatments [1]
by providing essential haemodynamic metrics which could not be obtained
from in vivo experiments [2]. The ultimate goal is achieving personalized medi-
cine, to allow patient-specific care and treatment. Before using the models for
decision-making in the clinic, they must be calibrated and fitted to data, and
their credibility rigorously tested by modelling all sources of uncertainty
using statistical analysis.

The current study assesses the health of the pulmonary system by inte-
grating imaging data (obtained with micro-computed tomography (CT)),
blood pressure data (measured invasively via catheterization) and blood flow
data (measured with ultrasound), using a one-dimensional (1D) fluid-dynamics
model combined with statistical inference. Predictions of blood pressure, blood
flow and vessel area are computed in an arterial network model constructed
from micro-CT images from a control mouse, and the pressure predictions
are compared to dynamic data in the main pulmonary artery (MPA).
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We highlight the importance of determining the uncer-
tainty when calibrating the model to the data. Our analysis
includes the uncertainty in the model parameters (which
are naturally variable), in the model form/structure (the dis-
crepancy between the model and the reality), in the
measurements (the noise model), and in the simulator
output (e.g. the errors from numerically integrating the
model equations).

Several previous studies [3–7] have developed 1D fluid-
dynamics models predicting pulmonary blood flow and
pressure. However, only a few [3,4] have aimed at devising
subject-specific predictions by estimating model parameters.
These studies minimize the least-squares error between the
model output and the measurements. While these investi-
gations provided valuable insight into the physiology, they
ignored an essential source of uncertainty resulting from
the inadequacy of the model form. Our work shows that
the consequence of ignoring model discrepancy is biased
haemodynamic predictions and parameters, and thus
inability of reliably using these models in the clinic.

1.1. Model parameters and types
Similar to previous studies [3,4], the 1D models analysed here
have two types of parameters: specifying the vessel network
(radius, length and the connectivity of arteries) and the hae-
modynamics (pressure and flow). The current study focuses
on inferring and analysing parameters intrinsic to the haemo-
dynamic model, including the vessel stiffness and parameters
specifying the micro-circulation (boundary conditions via
three-element Windkessel models attached at the terminal
vessels), in a fixed network. We examine several alternative
models to select the model that best predicts the data,
which is performed using statistical model selection criteria
based on the Watanabe Akaike information criterion
(WAIC) [8]. We compare two constitutive equations: a
linear and a nonlinear wall model relating vessel pressure
and area. We investigate if the vessel stiffness is (a) constant
over the entire network (as suggested in [9]), (b) increases
with decreasing radius (as suggested in [10]), or (c) should
be estimated for each vessel separately. In addition, we esti-
mate micro-circulation parameters by introducing global
scaling factors for the boundary condition parameters at the
terminal arteries [4,11].

1.2. Bayesian inference
Due to the limited data and the model complexity, these
parameters may be highly correlated or unidentifiable, thus
it may be unfeasible to estimate all parameters uniquely.
To address these issues, we use a Bayesian approach, with
the aim to obtain the posterior distribution of the parameters
[11,12]. This is analytically intractable, so we use Markov
chain Monte Carlo (MCMC) to sample parameters approxi-
mately from the posterior distribution (with an asymptotic
convergence guarantee). The posterior parameter samples
are then used to estimate the uncertainty of model
predictions throughout the pulmonary arterial network.

1.3. Model mismatch
Several recent studies have incorporated Bayesian parameter
estimation [3,4,13–15] and uncertainty quantification (UQ)
[16,17], however, most of these studies ignore the model
mismatch. Our current study assumes that the model mis-
match stems from two sources: (1) inadequate mathematical
model (i.e. model discrepancy, since the mathematical
model is not a perfect representation of the real system) [18]
and (2) incorrect noise model (i.e. erroneously assuming inde-
pendence when the errors are, in fact, correlated). A few
studies have discussed the importance of allowing for
model discrepancy. In an electrophysiology model, Lei et al.
[19] incorporate the model discrepancy using GPs and auto-
regressive–moving-average (ARMA) models; the authors
show using synthetic studies that ignoring the model form
uncertainty leads to biased predictions and uncertainty
underestimation. Additionally, Whittaker et al. [20] and
Mirams et al. [21] discuss model discrepancy in a review of
cardiac model calibration. Furthermore, a few studies have
investigated the impact of making the wrong assumption
for the measurement errors. For example, Konukoglu et al.
[22] included an inhomogeneous variance, informed by the
authors’ experience with the data, in an electrophysiology
model, finding that the noise model greatly influences
the inference results. Despite these findings, most cardio-
vascular modelling studies do not account for model
mismatch [23,24].

To investigate the importance of accounting for model
mismatch, we employ a Bayesian approach quantifying the
uncertainty in the mathematical and the noise model form
based on data. The model mismatch is explicitly modelled
using Gaussian processes (GPs) [25] following an approach
by Kennedy et al. [18]. Our Bayesian inference framework
uses MCMC to jointly sample the mathematical model par-
ameters and the model mismatch (error model) parameters
from their posterior distribution. Thus, uncertainties associ-
ated with parameters, model form and measurements are
all accounted for in our analysis [26].

We use physiological and synthetic pressure data to
examine the consequence of inferring parameters when sus-
pected model mismatch is unaccounted for. Results show
that ignoring model mismatch biases parameter estimates
and underestimates uncertainty in parameter and output
space, whereas our proposed method corrects this bias. In
addition, we carry out a synthetic study displaying the
effect of using data from multiple vessels on the parameter
inference and UQ.

Finally, we perform model selection based on WAIC
to discriminate between the two constitutive models,
with a number of parameter constraints related to the
vessel stiffness.
2. Data
2.1. Physiological data
This study compares model predictions to measured
MPA blood pressure data from a control mouse lung
(figure 1). The experimental protocols used to extract the
haemodynamic and image data are summarized in our
recent study [4], and a more detailed experimental protocol
is found in [27,28]. We provide a brief overview of the data
used in this study.

A 3D segmentation of the vessel geometry is obtained
from micro-CT images of excised mice lungs as described
in detail by Vanderpool et al. [28]. The image data are seg-
mented, and using the Vascular Modeling ToolKit (VMTK,1
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Figure 1. 3D smoothed segmented network from a micro-CT image of a
healthy mouse lung (left) and the directional graph of the same network
with vessel numbers attached (right). At the network inlet, we specified a
flow waveform taken from measurements (see §2.1 for a description of
the experimental data), and at the outlet of each terminal vessel, we
attached a three-element Windkessel model with two resistors and a
capacitor.
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[29]) and custom algorithms discussed in [3] we obtain a 1D
directional graph of the large vessels, perfusing each of the
lung lobes. In this study, we assume that all vessels are
straight, i.e. that they do not taper along their length. While
many studies [10] examining flow in the systemic arteries
account for vessel taper, the vessel radii in the large pulmon-
ary arteries of mice show negligible inter-vessel tapering
likely because the pulmonary tree is formed by rapidly
branching vessels.

Dynamic pressure and flow waves were measured in the
MPA. Pressure was measured using a 1.0-F pressure-tip cath-
eter (Millar Instruments, Houston, TX) and recorded on a
haemodynamic workstation (Cardiovascular Engineering,
Norwood, MA) at 5 kHz. MPA flow velocity was simul-
taneously measured during catheterization on the same
workstation via ultrasound (Visualsonics, Toronto, Ontario,
CA) at a rate of 30MHz [27]. The haemodynamic data ana-
lysed in this study include wave forms averaged over 20
cardiac cycles, using available ECG as a fiducial point.

2.2. Synthetic data
We also use synthetic data obtained from a forward simu-
lation of the mathematical model. We generated synthetic,
error-free data in all 21 vessels using the linear wall model
and a radius-dependent exponential stiffness with parameter
values consistent with the physiological data. To these
data, we added non-stationary, additive Gaussian correlated
errors generated using the same error parameters for all the
vessels, assuming that the pressure transducer produces
measurement noise that is independent of the measurement
location (see §5.2 for numerical details). This error correlation
induces a model mismatch if the standard assumption of
independent and identically distributed (iid) measurement
errors is made, i.e. if the wrong noise model is used. To
make the synthetic data physiologically realistic, we ensured
a signal-to-noise ratio of approximately 100 (see fig. 5 in [30])
and that the pressure monotonicity constraint is satisfied, i.e.
that the pressure decreases as it approaches the periphery
[31]. The mathematical model provides predictions satisfying
the pressure monotonicity constraint. However, when adding
noise, this is no longer guaranteed to hold. Therefore, to
satisfy the monotonicity condition, the noise was constrained
by using a rejection mechanism, i.e. any noise instantiation
leading to a constraint violation was discarded. This mimicks
the experimental procedure by which data that appear
physiologically unrealistic are disposed of.
3. Model
3.1. Fluid-dynamics model of the pulmonary circulation
This study uses our previously developed 1D fluid-dynamics
model [4], predicting pressure, flow and cross-sectional
area explicitly in the large pulmonary arteries (shown in
figure 1). For each vessel, the 1D model is derived under
the assumptions that blood is incompressible and that the
flow is Newtonian, laminar and axisymmetric, and has no
swirl. Under these assumptions, the Navier–Stokes equations
describing conservation of mass and momentum are
expressed by
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þ @
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where x (cm) and t (s) denote the spatial and temporal coor-
dinates, and p ¼ ~p=conv (mmHg) denotes pressure
(~p (g � cm�1 s�2) is in cgs units and conv = 1333.22 (mmHg
(g ⋅ cm−1 s−2)−1) is a conversion factor). ρ = 1.055g ml−1 is
the blood density and μ = 0.049 g cm−1 s−1 is the blood vis-
cosity, assumed constant. Vessel radius and cross-sectional
area are r(x, t) (cm) and A(x, t) = πr(x, t)2 (cm2), respectively.
The volumetric flow rate q ¼ A�ux (ml s−1) is derived
assuming a Stokes boundary layer velocity profile

ux(r, x, t) ¼
�ux, 0 � r � d,

�ux
(R� r)

d
, d � r � R(x, t),

8<
: (3:2)

where �ux is the average velocity, d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mT=2pr

p
(cm) is the

boundary layer thickness and T (s) is the length of the cardiac
cycle.

To close the system of equations, we add a constitutive
pressure–area relation. We investigate two wall models: a
linear elastic model [32]

p ¼ 4
3
x

ffiffiffiffiffiffi
A
A0

s
� 1

 !
, (3:3)

where χ = Eh/r0 is the wall stiffness, E g cm−1 s−2 is Young’s
modulus in the circumferential direction, h (cm) is the wall
thickness, and r0 (cm) is the unstressed vessel radius
(A0 ¼ pr20); and an empirical nonlinear wall model [4] given by

p ¼ x tan
p

g

A
A0

� 1
� �� �

, (3:4)

where γ > 0 (dimensionless) is a scaling parameter specifying
the maximal lumen area A∞ for p→∞, and χ > 0 (g cm−1 s−2)
is a material parameter (defined similarly to Eh/r0)
characterizing the half-max compliance pressure.
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To investigate the claim of medial thickening and stiffen-
ing as arteries get smaller [33], we express the dependence of
χ on r0 via the equation

x(r0, f1, f2, f3) ¼ f1 exp (f2r0)þ f3, (3:5)

f1 (g cm−1 s−2), f2 (cm−1) and f3 (g cm−1 s−2) are constant
parameters [10].

At the inlet to the network (shown in figure 1), we specify
the flow (taken from measurements). Similar to previous
studies [3,5,10], we assume flow conservation and pressure
continuity

pp(L, t) ¼ pd1 (0, t) ¼ pd2 (0, t)

and qp(L, t) ¼
X2
i¼1

qdi (0, t),

9>>=
>>; (3:6)

where p denotes the parent vessel, d1 and d2 are the daughter
vessels, and L (cm) is the vessel length.

The micro-circulation is represented by a three-element
Windkessel model (an RCR circuit) relating pressure and
flow as

dp(L, t)
dt

� R1
dq(L, t)

dt
¼

q(L, t)
R1 þ R2

R2C

� �
� p(L, t)

R2C
,

9>>>=
>>>;

(3:7)

where R1, R2 (gml−1 cm−1 s−1) are resistances, and
C (ml�1 cm�1 s�2 g�1) is the capacitance.

3.2. Model parameters
The haemodynamic model has three types of parameters spe-
cifying blood characteristics, vessel tissue properties and
micro-vasculature dynamics. Blood viscosity and density
values are taken from the literature [34] and assumed con-
stant. The stiffness in large vessels can be measured ex vivo
via stress–strain testing. Finally, micro-vasculature par-
ameters are prescribed in each terminal vessel’s boundary
condition.

In this study, we infer both wall model and boundary
condition parameters. The linear wall model (3.3) has three
parameters f1, f2, f3 characterizing the large vessel stiffness,
while the nonlinear wall model (3.4) has four parameters γ,
f1, f2, f3.

Three boundary condition parameters (R1, R2, C) are
specified for each terminal vessel. The network in figure 1
has 11 terminal vessels giving a total of 33 parameters.
Since we only have data in the MPA, these parameters are
not practically identifiable. To reduce parameter dimension-
ality, we introduce factors (ψ1, ψ2, c) [4] scaling the nominal
(initial) Windkessel parameters by

Rj
1 ¼ c1R

j
01, Rj

2 ¼ c2R
j
02 and Cj ¼ cCj

0, (3:8)

where Rj
01, R

j
02, C

j
0 are the nominal values for the jth terminal

vessel, computed using the junction conditions and Poi-
seuille’s flow, as described in detail in our previous studies
[3,4]. Rj

1, R
j
2, C

j are the adjusted (estimated) values for the
jth terminal vessel. ψ1, ψ2, c are the scaling factors, common
to all terminal vessels. The scaling factors are estimated
from the available data.

Forward simulations were run for both the linear and
nonlinear model to ensure physiologically plausible par-
ameter bounds. Stiffness bounds ensure pressure sensitivity
to changes in χ, while scaling factor bounds were constructed
to ensure physiological pressures (12≤max ( p)≤ 35 mmHg).
These parameters are constrained in a univariate sense, but
the parameters’ behaviour in the joint space is unknown
prior to carrying out the statistical analysis. Table 2 shows
the univariate parameter ranges.

3.3. Overview of models: physiological hypotheses and
model mismatch scenarios

Table 1 outlines the models considered in our work, which
help explore several physiological hypotheses and model
mismatch scenarios.

By analysing these models, for the physiological data
described in §2.1, we test

— if the vessel wall model is:
(i) linear (equation (3.3)), and
(ii) nonlinear (equation (3.4))

— if the vessel stiffness:
(i) is constant, thus shared between the vessels (f1 in

equation (3.5) is 0 and all vessels share one common
f3 value),

(ii) is vessel-specific, thus independent of the vessel (f1 in
equation (3.5) is 0 and every vessel has its own f3
value), and

(iii) is radius-dependent (expressed via equation (3.5))

— if the model mismatch, described in detail in §4.2, should
be accounted for (no/yes).

4. Statistical methods
4.1. Data likelihood
We assume normally distributed errors (an assumption
which we have checked by comparing the distribution of
the residuals to a normal distribution, see electronic sup-
plementary material, S4), and explore both iid errors and
correlated errors. Under these assumptions, we express the
likelihood function as:

— Iid errors: y(t) � MVN (m(u, t), s2I) (multivariate normal
distribution), i.e.

p(yju, s2) ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p
� �n

exp �
Pn

i¼1 (y(ti)�m(u, ti))
2

2s2

 !
,

(4:1)

where

Xn
i¼1

(y(ti)�m(u, ti))
2 ¼ (y(t)�m(u, t))T(y(t)�m(u, t))

(4:2)

is the Euclidean distance, and y(t) = (y(t1),…y(tn)) is
the n-vector of temporal measurements, m(u, t) is the
n-vector of temporal pressure predictions from the
mathematical model evaluated with parameters θ, and
σ2 is the measurement noise variance.

— Correlated errors: y(t) � MVN (m(u, t), C), i.e.

p(yju, C) ¼ det (2pC)�
1
2

exp � 1
2
(y(t)�m(u, t))TC�1(y(t)�m(u, t))

� �
,

(4:3)



Table 1. Models investigated: two constitutive models relating pressure–area (linear (equation (3.3)) and nonlinear (equation (3.4))) with several stiffness
relations: constant (f1 in equation (3.5) is 0 and all vessels share one common f3 value), vessel-specific ( f1 in equation (3.5) is 0 and every vessel has its own
f3 value), or radius-dependent (expressed via equation (3.5)); and model and measurement error assumptions via including or ignoring model mismatch,
described in detail in §4.2. For the nonlinear wall model, we do not consider the no model mismatch scenario based on conclusions drawn from the linear
model, clearly supporting modelling the model mismatch. In addition, the vessel-specific stiffness scenario is not pursued due to the interaction between the
parameters χ and γ in equation (3.4), requiring vessel-specific (χ, γ). This would lead to a very large number of parameters being estimated, requiring
extremely high computational efforts (simulations would most likely take months to complete).

vessel wall model vessel stiffness type allow for model mismatch model abbreviation

linear constant no A

constant yes B/C

radius-dependent no D

radius-dependent yes E

vessel-specific no F

vessel-specific yes G

nonlinear constant yes H

radius-dependent yes I
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where

(y(t)�m(u, t))TC�1(y(t)�m(u, t)) (4:4)

is the Mahalanobis distance, and C is the covariance
matrix of the errors.
4.2. Model mismatch
The model mismatch function can be visualized by plotting
the residuals, i.e. the difference between the partial differen-
tial equation (PDE) predictions and the measurements in
time, see figure 8 (bottom right corner). A clear pattern is
observed, indicating a correlation between the residuals.
Such a plot should be used to decide on the appropriate
error assumption.

When the model mismatch is neglected, the statistical
model equation is equivalent to equation (4.1) and can be
expressed as

y(t) ¼ m(u, t)þ u(t) and u(t) � MVN (0, s2I), (4:5)

where σ2 is the error parameter (known as measurement
noise variance).

When incorporating the model mismatch with GPs [18]
(details in electronic supplementary material, S2), the statisti-
cal model equation is equivalent to equation (4.3) and is
given by,

y(t) ¼ m(u, t)þ G(t) ¼ m(u, t)þ f(t)þ u(t)

and f(t) � GP(0, Kjh), u(t) � MVN (0, s2
nI),

)
(4:6)

where G(t) is the model mismatch function, f(t) is a latent
function, GP(0, Kjh) is a GP with zero mean and covariance
matrix K, which is a function of the error parameters η
(known as covariance function hyperparameters), and s2

n is
the residual noise variance. In equation (4.3), C ¼ Kþ s2

nI.
A neural network covariance function with hyper-

parameters w and b [25] is used to fit the GP to the
residuals exhibiting non-stationarity (figure 8). Equation
(4.5) is a limiting case of equation (4.6) by removing the
GP contribution term, f(t), and setting s2

n ¼ s2 (details in
electronic supplementary material, S3).
The model mismatch G(t) stems from two sources: (i) the
model discrepancy between the real system and the math-
ematical model and (ii) the incorrect noise model (i.e.
making the iid assumption for correlated measurement
errors), thus

G(t) ¼ z(t)þ e(t), (4:7)

where z(t) is the model discrepancy function, and e(t) is
the noise model function. Note that in the present article,
we distinguish between model discrepancy and model mismatch
in the way described above, so these words are not
used synonymously.

Since this is a retrospective data analysis study, it was
intrinsically impossible to separate the contributions from
the measurement error (noise model) and model error
(model discrepancy), which are therefore modelled with
one single GP, see §8 for a more thorough discussion on this.

Possible causes for the measurement error correlation are:
the temporal nature of the data (measurements at the current
time point depend on measurements at previous time points),
and smoothing and averaging of the data. Possible causes for
the model discrepancy are: numerical errors (e.g. numerical
integration of the PDEs), model assumptions (e.g. purely elas-
tic vessel walls, or the 1D model simplification), uncertainty
of the network geometry (kept fixed), and inconsistency
between network geometry and haemodynamic data,
which come from different mice.

4.3. Prior distributions
4.3.1. Biophysical parameters
Constant or radius-dependent stiffness models. For all models with
constant or radius-dependent stiffness (table 1), we used a
rescaled beta distribution for the biophysical parameters to
ensure positive support within physiologically realistic
ranges ([li, ui]) [4,9], θi∼ rescaled beta(1, 1), li≤ θi≤ ui, where
i ¼ 1, . . . k, with k being the parameter dimensionality.

Vessel-specific stiffness in a Bayesian hierarchical model. Different
pulmonary arteries may have different vessel wall stiffness
values, but since all vessels have similar tissue composition,
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Figure 2. Bayesian hierarchical model used for the vessel-specific stiffness analysis. The data, denoted by y(t), are assumed to follow a multivariate normal dis-
tribution with mean m(θ, t) and covariance matrix C. If iid errors are assumed (i.e. the model mismatch is ignored), C is a diagonal matrix, C = σ2I (where σ2:
noise variance and I: identity matrix), and if correlated errors are assumed (i.e. the model mismatch is incorporated), C is a full matrix. The biophysical parameters,
θ = (χ1,…χk, ψ1, ψ2, c) (described in §3.2), and the hyperparameters, mx, s2

x, are a priori drawn from the distributions indicated in the graphical model. The
circle represents variable quantities, which are inferred using MCMC, and the rectangle stands for fixed quantities. Inference in this model is analytically intractable,
and we resort to a Gibbs sampling scheme, discussed in electronic supplementary material, equations (24)–(26). Note that a modification of this model, where an
additional edge is introduced from s2

x to mx allows these two parameters to be integrated out in closed form, potentially leading to a more efficient sampling
scheme; however, these equations are less intuitive, so the details have been relegated to electronic supplementary material, S5.
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the parameters are related. A Bayesian hierarchical model
[35] is needed to incorporate our prior notion that the
vessel stiffnesses are similar, and this model provides a mech-
anism of information sharing among the vessel stiffness
parameters. The dependence of the stiffness parameters
can be captured by using a common ‘population’ prior
distribution, from which vessel-specific stiffness parameters
are sampled. Next, to allow the stiffness parameters to
influence each other, we introduce a layer of priors for the
hyperparameters of the population distribution. This con-
struct enables the hyperparameters to be variable, ensuring
a dependency between the stiffness parameters, and the
hyperparameters’ uncertainty is naturally modelled. The
result is a Bayesian hierarchical model (shown in figure 2),
which tends to avoid overfitting the existing data by allowing
information sharing between the stiffness parameters.
This model subsumes two simpler models as limiting
cases: the model where all vessels have the same stiffness
(when the prior distribution of the vessel-specific stiffness
parameter collapses to a delta spike), and the model of
independent vessel-specific stiffness parameters without
information sharing (when the prior distribution of the
stiffness parameters is the uniform distribution). Electronic
supplementary material, S5 offers more details of the
Bayesian hierarchical model.

Under this model (figure 2), the three Windkessel par-
ameters ψ1, ψ2, c are assumed common to all the vessels,
and to ensure positive support (within physiological
ranges) for them, we used a rescaled beta distribution.
4.3.2. Error parameters
For the analysis neglecting the model mismatch (i.e. assum-
ing iid errors, see equations (4.1) and (4.5)), we place a
conjugate weakly informative inverse-gamma prior on the
error parameter, η = {σ2}: s2 � IG(a, b), with a = 0.001 and
b = 0.001, leading to an IG posterior distribution.

For the model mismatch analysis (i.e. assuming correlated
errors, see equations (4.3) and (4.6)), the hyperparameters of
the GP neural network covariance function η = {w, b}, are
given a log uniform distribution with the range chosen
based on maximizing the profile log likelihood (see electronic
supplementary material, S8.4 for details).
4.4. Posterior inference with Bayesian methods
The posterior distribution is computed as

p(u, hjy)/ p(yju, h)p(u, h), (4:8)

where θ are the biophysical parameters and η are the error
parameters. In this study, we pursue Bayesian inference
based on sampling the biophysical and error parameters
from their posterior distribution (equation (4.8)), see
electronic supplementary material, S6 for details.
4.5. Bayesian model selection: WAIC
WAIC [8] is used for model selection as its computation is
straightforward from the MCMC posterior samples (see elec-
tronic supplementary material, S1.1 for the mathematical
details). Out of a number of candidate models, the model
which registers the lowest WAIC score is best supported by
the data.
5. Simulations
5.1. Code
Our statistical methods were implemented in Matlab
(Mathworks, Natick, MA) and simulations were run on a
RedHat Enterprise Linux 6 machine with Intel(R) Xeon(R)
CPU E5-2680 v. 2 2.80GHz and 32GB RAM. The simulated
pressure waveforms were obtained by numerically solving the
PDEs in equations (3.1)–(3.7) using a two-step Lax–Wendroff
scheme [36] implemented in Cþþ by Olufsen et al. [4,10], which
is second-order accurate in space and time. A spatial and tem-
poral discretization of Δx = 0.025 (mm) and Δt = 1.34 × 10−5 (s)
were used after testing different discretizations. This satisfied
the Courant–Fredrich–Levy (CFL) condition and ensured
minimal numerical error. We implemented the GP models
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using the GPstuff toolbox [37] and the MCMC convergence
dignostics using the MCMC toolbox [38].

5.2. Set-up
We split the simulations into two categories. The simulations
in the first category use the measured MPA pressure data for
all the models summarized in §3.3 and tables 1 and 2. Simu-
lations in the second category use synthetic data (20 data
instantiations) generated in 1, 3 or 21 vessels from the
linear wall model with radius-dependent stiffness and corre-
lated errors (model E in table 2) created using a GP with a
neural network kernel.

5.3. Computational efficiency
For some of the simulations in the first category, models A, B
and H, summarized in tables 1 and 2, we focus on compu-
tational efficiency, thus we implement MCMC with a GP
surrogate (emulator) for the posterior distribution [12]. This
approach is motivated by the high computational complexity
of repeated numerical integrations of the PDEs in the Baye-
sian analysis. The method, described in detail in electronic
supplementary material, S7, significantly speeds up compu-
tationally expensive simulations, which is essential if the
analysis performed here is to be translated to human medi-
cine and practical clinical decision support. Constructing
emulators for models with large numbers of parameters
poses computational challenges due to the large dimension
of the input space that has to be covered, which is beyond
the remit of the present paper.
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6. Results
6.1. Importance of correcting for model mismatch
We compare inference results based on MCMC between the
conventional method ignoring model mismatch and our pro-
posed approach, which explicitly incorporates the model
mismatch, defined in equation (4.7), with GPs. The results
are shown for synthetic and physiological data. Convergence
of MCMC methods was tested using the Geweke test [39]
(the p-values from the Z test were greater than 0.05)
and the Brooks multivariate potential scale reduction factor
(MPSRF) [40] (ensuring that MPSRF≤ 1.1).

6.1.1. Synthetic data
We generated synthetic data using model E (table 2) with
additive, correlated Gaussian errors in the MPA (20 different
data instantiations), which mimics the physiological data (as
described in §2.2). We then ran two MCMC simulations: one
which incorporates the model mismatch, and another simu-
lation which does not. Parameter estimates obtained from
these two simulations are compared to the ground truth par-
ameter values in table 3 using the relative sum of squared
errors (SSE),

Xk
i¼1

ui � ûi
ui

 !2

, (6:1)

which is the relative deviation in Euclidean space of the esti-
mated values from the true parameter values. We also show
the median marginal and joint posterior density value of the
true parameter vector, θ = ( f1, f2, f3, ψ1, ψ2, c), under the
assumed model, as found from 20 synthetic datasets. To



Table 3. Results obtained when allowing for or ignoring model mismatch,
defined in equation (4.7), on synthetic data generated from model E in
table 2 with correlated errors. First row: standard approach ignoring model
mismatch; second row: the proposed new method, where a GP mismatch
model has been introduced. The relative sum of squared errors (SSE), as
well as the median posterior distribution of the true parameter vector,
θ = ( f1, f2, f3, ψ1, ψ2, c), under the assumed model are presented
(median calculated from 20 datasets). Marginal and joint posteriors were
obtained from the MCMC samples with kernel density estimation (first
entry in last column) and Chib’s method [41] (second entry in last
column). Parameters were scaled to the same order of magnitude.

allow for
model
mismatch SSE median p(θi|y)

median
p(θ|y)

no 0.02 (9.8 × 10−08, 0.004,

0, 0, 0, 0)

0, 0

yes 0.03 (9.7 × 10−08, 0.004,

0.0001, 4.36,

5.25, 1.30)

1037, 648
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obtain the marginal posterior density of the true parameter
vector, we used the kernel smoothing function estimate for
univariate data with the optimal bandwidth for normal den-
sities [42]. To check for consistency of the results, the joint
posterior density was obtained in two ways: using the multi-
variate kernel density estimation with the bandwidth
estimated with Silverman’s rule [43], and using Chib’s
method (see §2.1 in [41]). The parameters were scaled to
the same order of magnitude, as both methods were affected
by having parameters with different orders of magnitude.
Figure 3 displaying the marginal posterior density values of
the parameters for three of the 20 datasets shows that with
the standard method neglecting model mismatch, the
ground truth parameter value lies in the tail of the posterior
distribution for most cases investigated, and the posterior
uncertainty is underestimated. By contrast, with our pro-
posed method allowing for model mismatch, the posterior
distribution contains the true parameter and the posterior
uncertainty is wider. For the complete set of results, we
refer to table 3, which shows that neglecting model mismatch
leads to a lower (better) relative SSE for the parameter esti-
mates. However, as seen from figure 3, a small SSE does
not rule out the possibility of seriously underestimating the
uncertainty. A better measure, to capture both estimation
accuracy and UQ, is the marginal posterior density of the
true parameters. Here, we see that the median marginal
posterior density value of the true parameter with the
standard method is substantially lower (worse) for the
identifiable parameters f3, ψ1, ψ2 and c.
6.1.2. Physiological data
For the physiological data, table 4 shows comparative
results from the MCMC analysis for the nine models
explored. We present the median posterior density value
(50th posterior quantile) for each of the models’ parameters,
and the associated 95% posterior credible interval obtained
from the 2.5% and 97.5% quantiles of the MCMC posterior
samples. WAIC scores, calculated from 1000 random
MCMC samples, are compared to the Euclidean distance
(equation (4.2)) obtained with the median posterior par-
ameter value. A lower WAIC score indicates a better model.

Models incorporating the model mismatch, defined in
equation (4.7), record a lower (better) WAIC and a higher
(worse) Euclidean distance in output space compared to
models which ignore it, implying that the former are better
supported by the data, and that minimizing the Euclidean
distance, which is equivalent to minimizing the mean
squared error (MSE), is a sub-optimal inference procedure.
The reason is that the MSE does not take the error correlation
into account and does not penalize models for poor UQ. This
is illustrated in figure 4 showing that the posterior uncer-
tainty in parameter space is much wider when allowing for
model mismatch, which aligns with findings from the syn-
thetic study. Moreover, parameters f3 and ψ1 have different
posteriors depending on whether the model mismatch is
incorporated (figure 4). Additionally, figure 5 displays the
posterior uncertainty in output space for pressures in several
vessels using the linear model with constant stiffness ignor-
ing or correcting for the model mismatch (models A and B
in table 2). Similar to the posterior uncertainty in parameter
space, the posterior uncertainty in output space is much
wider when correcting for the model mismatch, which is
also shown in electronic supplementary material, table S1;
there we provide the time-averaged 95% explanatory and
predictive credible interval width for the pressure data from
every model.
6.2. Parameter posteriors
Figure 4 shows the posterior correlations and the marginal
posterior densities for the linear models A, and B and non-
linear model I. The marginal posterior distributions have
one clear mode and correlations between the parameters
are negligible for the linear models. When the nonlinear
model is used, we plot χ( f1, f2, f3) in equation (3.5) rather
than the individual f1, f2, f3 parameters, since the term f2r0
is close to 0 (compare prior range for f2 in table 2 to posterior
uncertainty interval in table 4), leading to unidentifiability of
f1 and f3.
6.3. Vessel wall model
Table 4 indicates that the nonlinear wall model outperforms
the linear wall model, since the former registers a lower
(better) WAIC score than the latter (linear model G: −4522,
nonlinear model I: −4530). More specifically, results suggest
that the nonlinear model with radius-dependent stiffness
(model I) is preferred, as it registers the lowest (best) WAIC
score computed based on the MPA-measured pressure data.

Based on the WAIC scores in table 4, we conclude that out
of all the models investigated, the best linear wall model is that
with vessel-specific stiffness (model G), and the best nonlinear
model is that with an exponential radius-dependent stiffness
(model I), incorporating the model mismatch in both
models. The nonlinear model with vessel-specific stiffness is
not considered due to the interaction between the parameters
χ and γ in equation (3.4), requiring vessel-specific (χ, γ). This
would lead to a large number of parameters being estimated,
requiring demanding computational efforts (simulations
would most likely take months to complete.2)
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6.4. Vessel wall stiffness
Table 4 shows a lower WAIC score for the linear wall model
with vessel-specific stiffness (model G) relative to the other
linear models, which assume constant or radius-dependent
stiffness (B, E). The exponential radius-dependent stiffness
model (E) has the same WAIC score as the constant stiffness
model (B), suggesting that the additional model complexity is
not beneficial, as the f1 and f2 parameters are non-influential
(their marginal posterior distributions are uniform on the
prior range), see the left panel of figure 6. In addition, the
21 stiffness model reveals that the median posterior stiffness
values are nearly all similar (right panel of figure 6). How-
ever, the stiffness becomes increasingly variable for small-
radius vessels, which is also evident from the 95% credible
interval width presented in electronic supplementary
material, S9. This suggests that the Bayesian hierarchical
model should allow for vessel-specific variance, thus the
common variance s2

x in figure 2 should be replaced by a
variance-covariance matrix. This method extension will lead
to a substantial increase in the computational complexity
due to higher parameter space dimension, and thus, it is sub-
ject to future work. Almost all the stiffness values are of the
order 104, which is the regime where the MPA systolic, dias-
tolic and pulse pressures are sensitive to changes in stiffness
(figure 7). The plot is produced with a set of scaling par-
ameters consistent with the physiological data (ψ1 = 0.30,
ψ2 = 0.97, c = 1.23).

In addition, table 4 shows that the stiffness in the non-
linear model has only a weak dependence on the radius
(model I), as expressed in equation (3.5), since the term f2r0
is close to 0 (compare prior range for f2 in table 2 to posterior
uncertainty interval in table 4).

6.5. Model fits
Figures 8 and 9 show the model fits for all the models ana-
lysed. The median pressure predictions obtained using the
MCMC-simulated posterior parameter values (figure 8) are
qualitatively similar for all nine models investigated. Pressure
predictions in the MPA are compared between all models, all
producing a waveform similar to the measured data. The best
linear model (model G) fits the measured data better in the
diastolic phase, but gives a peak shift in the systolic phase
(figure 8). On the other hand, the best nonlinear model
(model I) provides a better fit in the systolic phase, but has
a slight discrepancy in diastole. Generally, the pressure
increases more steeply in the systolic phase for the nonlinear
model compared to the linear model.

Figure 8 also shows that the pressure predicted with the
nonlinear model is slightly higher than that predicted with
the linear model for all 21 vessels. In addition, the predictions
obtained with the linear model with 21 individual stiffnesses
while ignoring model mismatch (model F) provides fits simi-
lar to the other models in the proximal arteries, but predicts
downstream pressure waves with different shape and
increased oscillatory behaviour. This suggests that assuming
a vessel-specific stiffness and ignoring the model mismatch
provides poor extrapolation performance. When analysing
the median flow predictions obtained from the parameter
posteriors (figure 9), we note that all are again very similar
in shape, except for the outlier model F. We observe an
unequal flow distribution between the right and left side of
the tree for all the models except model F.

Figure 9 shows predicted pressure–area relations using
the posterior median parameter values. The best nonlinear
model (model I) consistently predicts larger areas than the
best linear model (model G) for the proximal vessels (see pre-
dictions in MPA and vessels 2 and 3), and the opposite trend
is observed for most terminal vessels (see predictions in elec-
tronic supplementary material, S9). Furthermore, we observe
that the nonlinear model with constant stiffness (model H)
gives systematically larger area values than the nonlinear
model with radius-dependent stiffness (model I) except in
vessels 1 and 3, which aligns with the former model having
a smaller stiffness than the latter (table 4). The linear model
with 21 individual stiffnesses without model mismatch
(model F) gives drastically different results than the other
models for some of the vessels (e.g. vessels 4, 8, 12 in
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electronic supplementary material, S9), which further indi-
cates that this model can lead to drastic changes in
downstream predictions.

6.6. Future experimental design
We test by a synthetic study if parameters f1 and f2 in model
E, i.e. the linear model with exponential radius-dependent
stiffness (equation (3.5)) become influential as complemen-
tary data from downstream vessels are added. We
generated synthetic data from this model and, as described
in §2.2, we added additive correlated Gaussian errors to
them. We created 20 synthetic datasets and applied MCMC
to infer the data-generating parameter values. In figure 10,
we show the agglomerated MCMC posterior distributions
from all 20 data instantiations, and superimpose the true par-
ameter values (the peak of the agglomerated distributions
should coincide with the true parameter values). We stress
that this is purely for visualization purposes, since agglomer-
ated results over different datasets is a non-conventional
Bayesian approach. For a fully Bayesian approach, we calcu-
late the marginal posterior distribution, as well as the joint
posterior distribution of the true parameter for each of the
datasets, and find the median over the datasets, shown in
table 5. For the joint posterior distribution, we used the multi-
variate kernel density estimation. Figure 10 shows that the
peak of the agglomerated distributions aligns with the
ground truth parameter values for the influential parameters,
validating our inference procedure. Even with data from
more than one vessel (3 or 21 vessels), f1 and f2 parameters
remain non-influential (close to uniform marginal posterior
density). The uncertainty for all the other parameters
(f3, ψ1, ψ2 and c) is reduced and the distributions become
increasingly focused around the true parameter values with
increasing complementary data. Additionally, in table 5, we
quantify how the marginal and joint posterior densities
values of the true parameters increase with the amount of
vessel data.
6.7. Accuracy of emulator
Table 4 and figure 11 show that the parameter inference
results obtained with the emulation approach (model B) are
comparable with those obtained with the conventional
method (model C), i.e. the marginal posterior densities
overlap. This suggests that no bias is introduced by the emu-
lator. This finding is further confirmed by similar results in
output space between the two approaches, summarized in
electronic supplementary material, table S1 and figure S11,
i.e. the median pressure signals and 95% posterior predictive
intervals are very similar.
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7. Discussion
In this study, we have explored several mathematical models
of the pulmonary circulation (a linear and a nonlinear wall
model with different vessel wall stiffness assumptions) and
two error models capturing or ignoring the model mismatch,
as defined in equation (4.7). We have used Bayesian inference
to find the model that can best predict the measured MPA
blood pressure, while providing UQ associated with that
pressure prediction. We have also tested the validity of our
parameter inference procedure by a synthetic study.

7.1. Importance of correcting for model mismatch
Neglecting the model mismatch by obtaining point estimates
based on MSE minimization biases parameter estimates
and underestimates uncertainty in parameter and output
space. This finding is based on synthetic data with
known parameters, and tallies with results from the physio-
logical data. The model mismatch is a consequence of
wrong measurement error assumptions (i.e. iid for correlated
measurement errors) and ignoring model discrepancy
between the real system and the mathematical model. In
this study, we proposed a method based on GPs to allow
for the model mismatch, which circumvents the limitations
outlined above. Figure 3 clearly illustrates that the posterior
uncertainty in parameter space is under-dispersed when the
model mismatch is neglected, and the true (data-generating)
parameter values lie in the tail of the posterior distribution
for most datasets; however, this is not the case for our pro-
posed method of model mismatch. This is in line with
results from the measured data, as evident in figure 4a, that
also shows very narrow uncertainty bounds in parameter
space and in output space (figure 5). Moreover, the model
selection criteria (WAIC in table 4), clearly and consistently
favours the models with model mismatch, further strengthen-
ing our statement.

We emphasize that most studies in the literature rely on
minimising the Euclidean distance (i.e. MSE) in equation
(4.2), which implicitly ignores the model mismatch. This
approach is equivalent to maximizing the likelihood in
equation (4.1) under the assumption of additive Gaussian
iid errors. However, in the presence of model mismatch, the
estimates that minimize the MSE are different from the esti-
mates which maximize the likelihood in equation (4.3). Our
work demonstrates that ignoring model mismatch leads to
biased point estimates, and thus incorrect predictions and
uncertainty underestimation. Wider uncertainty bounds in
output space, as seen in figure 5, reflect more adequately vari-
ations in pulmonary pressure due to the natural inter-subject
factors (e.g. effects of the respiratory cycle). These are well
known [6] and should be contained within the uncertainty
bounds of the model.
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To our knowledge, our study is one of the first to focus on
parameter estimation in cardiovascular modelling while
incorporating model mismatch. A notable exception is Lei
et al. [19], who explore model discrepancy in cardiac electro-
physiology, and the authors also show through synthetic
studies that ignoring the model-form uncertainty produces
biased predictions and uncertainty underestimation, which
agrees with our findings.
7.2. Vessel wall model
The WAIC scores in table 4 suggest that the nonlinear wall
model (model I) is better supported by the MPA-pressure
data than the linear wall model (model G), since the former
model registers a lower WAIC score. Our analysis indicates
that, out of all the models investigated, the model that is
most likely under the data is the nonlinear model with a
slight dependence on the vessel radius, i.e. model I, recording
the lowest WAIC score. This finding agrees with other
studies—e.g. the study by Valdez et al. [44] on pressure
area dynamics in systemic arteries of control sheep and the
study by Pilhwa et al. [7] analysing distensibility of pulmon-
ary arteries in control mice. The study in [45] provided
experimental stress–strain relations in control and hypoxic
pulmonary arteries, illustrating a predominant viscoelastic
effect and further suggesting that a nonlinear elastic wall is
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more appropriate for modelling pulmonary haemodynamics.
A visual comparison of the measured data with the pre-
dictions obtained using the linear or nonlinear model
(figure 5) cannot be used as an objective metric to choose
between models since the model which gives the closest
prediction in Euclidean space to the measured data is not
necessarily the most consistent with the data (e.g. for mis-
specified mechanistic models). This emphasizes the need to
carry out a formal model selection analysis.
7.3. Vessel wall stiffness
Out of all linear models, model G, i.e. the model with vessel-
specific stiffness (with model mismatch) describes best the
pressure data (table 4). As expected physiologically, an
increased wall stiffness leads to increased systolic and pulse
pressures (figure 7), with more dynamic changes in these
values occurring at a lower stiffness range. Table 4 shows
that the estimated stiffness in the linear models are within
this range, suggesting accurate depiction of healthy haemo-
dynamics, regardless of stiffness model. Additionally, given
the data, an exponential radius dependence of the stiffness
(model E) leads to non-influential parameters with nearly
flat posteriors (figures 6 and 10).

Regarding the nonlinear models, our model selection
results support a slight radius dependent stiffness—model
I. Previous investigations [46] have shown that both wall
thickness (h) and tissue properties (E) are drastically different
in pulmonary arteries in pulmonary hypertension. This
encourages future investigations into whether our model
selection results are consistent in specimens with pulmonary
hypertension.
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Table 5. Inference results obtained using synthetic data, to which we
added additive, correlated Gaussian error, from one vessel (MPA), three
vessels (MPA and its two daughter vessels) and all 21 vessels. The model
mismatch was included in the analysis, and the data were generated using
the linear wall model with exponential stiffness, χ( f1, f2, f3), given in
equation (3.5). The median marginal and joint posterior density, of the
true parameter vector, θ = ( f1, f2, f3, ψ1, ψ2, c) are presented for each of
the three scenarios (median calculated from 20 datasets). Joint and
marginal posteriors were computed using the MCMC samples with kernel
density estimation. Parameters were scaled to the same order of
magnitude.

data median p(θi|y) median p(θ|y)

one

vessel

(9.8 × 10−08, 0.004, 0.0001,

4.30, 5.22, 1.30)

2.8 × 10+03

three

vessels

(9.9 × 10−08, 0.004, 0.0003,

6.78, 9.61, 2.61)

3.4 × 10+04

21 vessels (9.9 × 10−08, 0.004, 0.001, 38.4,

27.0, 6.39)

3.9 × 10+06

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200886

15
7.4. Model fits
The pressure predictions shown in figure 8 deviate from
model to model in arteries distal to the left and right pulmon-
ary artery (vessels 2 and 3, respectively). While predictions
look qualitatively similar, it is clear that the model used can
lead to significant changes in downstream predictions. An
understanding of how model type affects predictions down
the pulmonary arteries is critical for future use of
mathematical models in disease prognostication. For
instance, pulmonary diseases like pulmonary hypertension
remodel smaller arteriolar segments initially, making vessel
stiffness a critical parameter in the development of disease
[47–49]. The flow and pressure–area graphs show a more
dramatic change between model types, which is expected
as distal flow and dynamic area data are not available.
This variability is important when considering lesions, i.e.
pulmonary emboli, that can lead to obstructions in the
pulmonary arteries, limiting perfusion to the alveoli for
blood re-oxygenation. The pressure–area relations in
figure 9 show that the inferred parameters for the nonlinear
wall-model provide a nearly linear pressure–area curve, con-
trary to the findings in [45]. We suspect that inference using
both pressure and dynamic area data will better illustrate dis-
similarities between the two wall models, and hypothesize
that additional pressure–flow data in distal arteries would
allow for inference of additional Windkessel scaling factors
in the network.
7.5. Parameter unidentifiability
Our analysis of the linear model with exponential radius-
dependent stiffness shows that using complementary data
from downstream vessels does not resolve the unidentifiabil-
ity of f1 and f2 in equation (3.5) (figure 10). Thus, additional
pressure data do not carry information about the non-influen-
tial parameters. If the model has structural unidentifiabilities,
subsequent predictions are unreliable, and can lead to spur-
ious diagnoses or sub-optimal treatments [50,51]. For this
reason, it is imperative that in our exponential radius-depen-
dent models, the entire expression χ( f1, f2, f3) in equation (3.5)
is interpreted, and not the individual parameters, f1, f2, f3.



3.5 4.0 4.5 5.0
f3 ×104

×10–4

×10–5 ×10–3

×10–4

0.5

1.0

1.5

2.0

0.2 0.4 0.6
y1 y2

2

4

6

0.6 0.8 1.0

1
2
3
4
5

1.0 1.5 2.0 2.5
c

0.5

1.0

1.5

4 6 8
w

2

4

6

100 200 300
b

5

10

15

emulator
simulator

pr
es

su
re

 (
m

m
H

g)

10

18

20

22

time (s)
0 0.02 0.04 0.06 0.08 0.10

data
simulator
emulator
95% PI simulator
95% PI emulator

Figure 11. Uncertainty quantification in input (left panel) and output space (right panel) obtained with the emulation MCMC method (model B in table 2) and the
standard MCMC method (model C).

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200886

16
7.6. Future experimental design
Our analysis reveals that when complementary data are used,
the parameters f3, ψ1, ψ2 and c are more accurately estimated
(but not f1 and f2; see §7.5 for a justification), and our study
allows the reduction in the estimation uncertainty to be quan-
tified (table 5). This may be used in future experimental
design, when deciding whether to record measurements in
vessels beyond MPA. Furthermore, results in figure 10
show that the true parameter values are accurately inferred,
validating our inference procedure.

7.7. Real-time treatment planning
A long-term goal of our project is real-time, personalized
treatment planning. Therefore, once the model selection pro-
cedure finds the ‘best’ model, predictions from that model
should be computationally efficient. We show that this can
be accomplished using efficient surrogate models in place
of the computationally expensive PDE model (see table 2;
electronic supplementary material, S9). In principle, the emu-
lation approach could be performed for the vessel-specific
nonlinear model, which was not explored in this study due
to very computationally costly simulations. However, emula-
tion would most likely require high efforts due to a large
number of model parameters (i.e. 42 vessel-stiffness parame-
ters, three Windkessel factors and two error parameters).
These parameters might be unidentifiable, leading to a
high-dimensional parameter domain needing coverage by
the emulator, requiring a long time for training, as well as
the implementation of more sophisticated GPs (e.g. sparse
GPs [52]). This is certainly a highly topical problem with for-
midable methodological challenges for cutting edge machine
learning research. However, pursuing this is far beyond the
remit of the present work.
8. Limitations and future directions
The physiological conclusions from the model selection
analysis according to which the nonlinear model is preferred
over the linear model is based on the study of just one mouse.
Moreover, it would be interesting to compare the perform-
ance of the asymptotically based WAIC approach for model
selection to an approach which does not rely on asymptotics,
e.g. marginal likelihood [53], whose calculation, however,
comes at a significantly higher computational cost.

Given that this is a retrospective data analysis study, with
limited data (a single MPA pressure signal), unspecified
machine precision for data measurement, unknown data
smoothing and averaging technique applied to the raw
data, and lack of prior knowledge of the model discrepancy
function, it is intrinsically impossible to distinguish and
separately incorporate the model discrepancy and the
measurement errors (noise) model. In principle, a strongly
informative prior on the model discrepancy function could
help separate the contributions from the model and measure-
ment errors [54]. Multi-scale vessel wall models that include
fluid–structure interactions at individual cell level, or 3D
computational fluid-dynamics models, may be too complex
for inference, but could refine prior knowledge. Running for-
ward simulations with both high and medium fidelity
models for a space filling design in parameter space and
then fitting a GP to the differences in output space could
give a more realistic prior for future inference applications.
However, these higher fidelity fluid-dynamics models come
with their own modelling assumptions and non-measurable
parameters, hence a prior built on these models may be
inherently biased.

This study analyses both boundary condition and vessel
stiffness parameters. We only examined one boundary con-
dition model and estimated scaling factors that adjust
nominal Windkessel parameters in each terminal vessel.
This boundary condition ignores the fractal structure of the
downstream vascular, which is accounted for by the struc-
tured tree model [5,10,48]. However, these methods can be
used with any boundary condition, and will be pursed in
the future.

The uncertainty in the vessel network, which is kept
fixed, will also be modelled in the future [3,11]. Minor
losses at junctions, unaccounted for here, are also subject to
uncertainty and can further introduce a model mismatch.
This is systematically addressed by the proposed inference
scheme, which provides a mechanism to prevent such
model mismatch from causing any bias in the parameter esti-
mation and haemodynamic predictions.



roya

17
Additionally, the MPA inflow boundary condition could
be replaced by a coupling of the MPA with a right ventricle
model [55].
 lsocietypublishing.org/journal/rsif
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9. Conclusion
Our study uses Bayesian analysis techniques to approxi-
mately infer the posterior distribution with the aim to
quantify the uncertainty of model parameters and haemo-
dynamic predictions in a 1D fluid-dynamics model of the
pulmonary circulation.

Our main contribution is to draw attention to an often
neglected source of uncertainty: in the mathematical model
form, caused by the discrepancy between the real system
and the model, and in the measurements due to the wrong
noise model ( jointly called ‘model mismatch’).

Additionally, we explored several mathematical models (a
linear and a nonlinear wall model with different vessel wall
stiffness assumptions: constant, vessel-specific or radius-
dependent stiffness), and error models (via the inclusion of
a model mismatch). We implemented Bayesian model selec-
tion based on WAIC to find the model that can most
accurately predict the MPA pressure and provide adequate
uncertainty quantification in the pressure predictions.

Our study clearly demonstrates that the widely used
least-squares fit method ignores model mismatch, biasing
parameter estimates and model predictions, and underesti-
mating uncertainty in parameter and output space. We
circumvent these issues by incorporating the model mis-
match using GPs.
Additionally, we found that the MPA-measured pressure
data best supports the nonlinear wall model with a weak
exponential radius-dependent stiffness.

Lastly, our synthetic study validates our inference pro-
cedure, identifies those parameters that benefit from
complementary data distal to the MPA, and quantifies the
reduction in their intrinsic estimation uncertainty, which
may help better design future experiments.
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Endnotes
1http://vmtk.org.
2For a comparison, the elapsed time required to complete simulations
with the linear model G was roughly six weeks.
References
1. Su Z, Hunter K, Shandas R. 2011 Impact of
pulmonary vascular stiffness and vasodilator
treatment in pediatric pulmonary hypertension: 21
patient-specific fluid–structure interaction studies.
Comput. Methods Programs Biomed. 108, 617–628.
(doi:10.1016/j.cmpb.2011.09.002)

2. Kheyfets V et al. 2015 Patient-specific
computational modeling of blood flow in the
pulmonary arterial circulation. Comput. Methods
Programs Biomed. 120, 88–101. (doi:10.1016/j.
cmpb.2015.04.005)

3. Colebank M, Paun L, Qureshi M, Chesler N,
Husmeier D, Olufsen M, Ellwein L. 2019 Influence of
image segmentation on one-dimensional fluid
dynamics predictions in the mouse pulmonary
arteries. J. R. Soc. Interface 16, 20190284. (doi:10.
1098/rsif.2019.0284)

4. Qureshi M, Colebank M, Paun L, Chesler N, Haider M,
Hill N, Husmeier D, Olufsen M. 2018 A computational
study of pulmonary hemodynamics in
healthy and hypoxic mice. Biomech. Model.
Mechanobiol. 18, 219–243. (doi:10.1007/s10237-
018-1078-8)

5. Umar Qureshi M, Vaughan G, Sainsbury C, Johnson
M, Peskin C, Olufsen M, Hill N. 2014 Numerical
simulation of blood flow and pressure drop in the
pulmonary arterial and venous circulation. Biomech.
Model. Mechanobiol. 13, 1137–1154. (doi:10.1007/
s10237-014-0563-y)

6. Clipp R, Steele B. 2012 An evaluation of dynamic
outlet boundary conditions in a 1D fluid dynamics
model. Math. Biosci. Eng. 9, 61–74. (doi:10.3934/
mbe.2012.9.61)

7. Lee P, Carlson BE, Chesler N, Olufsen MS, Qureshi
MU, Smith NP, Sochi T, Beard DA. 2017
Heterogeneous mechanics of the mouse
pulmonary arterial network. Biomech. Model.
Mechanobiol. 15, 1245–1261. (doi:10.1007/s10237-
015-0757-y)

8. Watanabe S. 2010 Asymptotic equivalence of Bayes
cross validation and widely applicable information
criterion in singular learning theory. J. Mach. Learn.
Res. 11, 3571–3594.

9. Krenz G, Dawson A. 2003 Flow and pressure
distributions in vascular networks consisting of
distensible vessels. Am. J. Physiol.-Heart Circ.
Physiol. 284, H2192–H2203. (doi:10.1152/ajpheart.
00762.2002)

10. Olufsen M, Peskin CS, Kim W, Pedersen EM, Nadim
A, Larsen J. 2000 Numerical simulation and
experimental validation of blood flow in arteries
with structured-tree outflow conditions. Ann.
Biomed. Eng. 28, 1281–1299. (doi:10.1114/1.
1326031)
11. Colebank MJ, Umar Qureshi M, Olufsen MS. 2019
Sensitivity analysis and uncertainty quantification of
1-D models of pulmonary hemodynamics in mice
under control and hypertensive conditions.
Int. J. Numer. Methods Biomed. Eng. e3242.

12. Mihaela Paun L, Colebank M, Umar Qureshi M,
Olufsen M, Hill N, Husmeier D. 2019 MCMC with
delayed acceptance using a surrogate model with
an application to cardiovascular fluid dynamics. In
Proc. of the Int. Conf. on Statistics: Theory and
Applications (ICSTA’19).

13. Paun LM, Qureshi MU, Colebank M, Hill NA, Olufsen
MS, Haider MA, Husmeier D. 2018 MCMC methods
for inference in a mathematical model of
pulmonary circulation. Stat. Neerlandica 72,
306–338. (doi:10.1111/stan.12132)

14. Schiavazzi D, Baretta A, Pennati G, Hsia T, Marsden
A. 2017 Patient-specific parameter estimation in
single-ventricle lumped circulation models under
uncertainty. Int. J. Numer. Method Biomed. Eng. 33,
e02799. (doi:10.1002/cnm.2799)

15. Schiavazzi D, Arbia G, Baker C, Hlavacek A, Hsia T,
Marsden A, Vignon-Clementel I. 2016 Uncertainty
quantification in virtual surgery hemodynamics
predictions for single ventricle palliation.
Int. J. Numer. Methods Biomed. Eng. 32, e02737.
(doi:10.1002/cnm.2737)

http://vmtk.org
http://dx.doi.org/10.1016/j.cmpb.2011.09.002
http://dx.doi.org/10.1016/j.cmpb.2015.04.005
http://dx.doi.org/10.1016/j.cmpb.2015.04.005
http://dx.doi.org/10.1098/rsif.2019.0284
http://dx.doi.org/10.1098/rsif.2019.0284
http://dx.doi.org/10.1007/s10237-018-1078-8
http://dx.doi.org/10.1007/s10237-018-1078-8
http://dx.doi.org/10.1007/s10237-014-0563-y
http://dx.doi.org/10.1007/s10237-014-0563-y
http://dx.doi.org/10.3934/mbe.2012.9.61
http://dx.doi.org/10.3934/mbe.2012.9.61
http://dx.doi.org/10.1007/s10237-015-0757-y
http://dx.doi.org/10.1007/s10237-015-0757-y
http://dx.doi.org/10.1152/ajpheart.00762.2002
http://dx.doi.org/10.1152/ajpheart.00762.2002
http://dx.doi.org/10.1114/1.1326031
http://dx.doi.org/10.1114/1.1326031
http://dx.doi.org/10.1111/stan.12132
http://dx.doi.org/10.1002/cnm.2799
http://dx.doi.org/10.1002/cnm.2737


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200886

18
16. Melis A, Clayton R, Marzo A. 2017 Bayesian
sensitivity analysis of a 1D vascular model with
Gaussian process emulators. Int. J. Numer. Methods
Biomed. Eng. 33, e2882. (doi:10.1002/cnm.2882)

17. Eck VG, Donders WP, Sturdy J, Feinberg J, Delhaas T,
Hellevik LR, Huberts W. 2016 A guide to uncertainty
quantification and sensitivity analysis for
cardiovascular applications. Int. J. Numer. Methods
Biomed. Eng. 32, e02755. (doi:10.1002/cnm.2755)

18. Kennedy MC, O’Hagan A. 2001 Bayesian calibration of
computer models. J. R. Stat. Soc. B (Stat. Methodol.) 63,
425–464. (doi:10.1111/1467-9868.00294)

19. Lei CL et al. 2020 Considering discrepancy when
calibrating a mechanistic electrophysiology model.
Phil. Trans. R. Soc. A 378, 20190349. (doi:10.1098/
rstb.2019.0349)

20. Whittaker DG, Clerx M, Lei CL, Christini DJ, Mirams
GR. 2020 Calibration of ionic and cellular cardiac
electrophysiology models. WIREs Syst. Biol. Med. 12,
e1482. (doi:10.1002/wsbm.1482)

21. Mirams GR, Pathmanathan P, Gray RA, Challenor P,
Clayton RH. 2016 Uncertainty and variability in
computational and mathematical models of cardiac
physiology. J. Physiol. 594, 6833–6847. (doi:10.
1113/JP271671)

22. Konukoglu E et al. 2011 Efficient probabilistic model
personalization integrating uncertainty on data and
parameters: application to eikonal-diffusion models in
cardiac electrophysiology. Prog. Biophys. Mol. Biol. 107,
134–46. (doi:10.1016/j.pbiomolbio.2011.07.002)

23. Johnstone RH, Chang ET, Bardenet R, de Boer TP,
Gavaghan DJ, Pathmanathan P, Clayton RH, Mirams
GR. 2016 Uncertainty and variability in models of
the cardiac action potential: can we build
trustworthy models? J. Mol. Cell. Cardiol. 96,
49–62. special Issue: Computational Modelling of
the Heart. (doi:10.1016/j.yjmcc.2015.11.018)

24. Coveney S, Clayton RH. 2018 Fitting two human
atrial cell models to experimental data using
Bayesian history matching. Prog. Biophys. Mol. Biol.
139, 43–58. (doi:10.1016/j.pbiomolbio.2018.08.001)

25. Rasmussen C, Williams C. 2005 Gaussian processes
for machine learning (adaptive computation and
machine learning). Cambridge, MA: The MIT Press.

26. Xu T, Valocchi AJ, Ye M, Liang F. 2017 Quantifying
model structural error: efficient Bayesian calibration of
a regional groundwater flow model using surrogates
and a data-driven error model.Water Resour. Res. 53,
4084–4105. (doi:10.1002/2016WR019831)

27. Tabima D, Roldan-Alzate A, Wang Z, Hacker T,
Molther R, Chesler N. 2012 Persistent vascular
collagen accumulation alters hemodynamic recovery
from chronic hypoxia. J. Biomech. 45, 799–804.
(doi:10.1016/j.jbiomech.2011.11.020)

28. Vanderpool R, Kim A, Molthen R, Chesler N. 2011
Effects of acute Rho kinase inhibition on chronic
hypoxia-induced changes in proximal and distal
pulmonary arterial structure and function. J. Appl.
Physiol. 110, 188–198. (doi:10.1152/japplphysiol.
00533.2010)

29. Antiga L, Piccinelli M, Botti L, Ene-Iordache B,
Remuzzi A, Steinman DA. 2008 An image-based
modeling framework for patient-specific
computational hemodynamics. Med. Biol. Eng.
Comput. 46, 1097–1112. (doi:10.1007/s11517-008-
0420-1)

30. Triantafyllou C, Polimeni J, Wald L. 2011
Physiological noise and signal-to-noise ratio in fMRI
with multi-channel array coils. NeuroImage 55,
597–606. (doi:10.1016/j.neuroimage.2010.11.084)

31. Fung Y-C. 2013 Biomechanics: circulation. Boca
Raton, Fl: Springer Science & Business Media.

32. Safaei S et al. 2016 Roadmap for cardiovascular
circulation model. J. Physiol. 594, 6909–6928.
(doi:10.1113/JP272660)

33. Townsley MI. 2012 Structure and composition of
pulmonary arteries, capillaries, and veins. Compr.
Physiol. 2, 675–709.

34. Windberger U, Bartholovitsch A, Plasenzetti R, Korak
KJ, Heinze G. 2003 Whole blood viscosity, plasma
viscosity and erythrocyte aggregation in nine
mammalian species: reference values and
comparison of data. Exp. Physiol. 88, 431–440.
(doi:10.1113/eph8802496)

35. Gelman A, Carlin J, Stern H, Dunson D, Vehtari A,
Rubin D 2013 Bayesian data analysis, 3rd edn.
Chapman & Hall/CRC Texts in Statistical Science.
Taylor & Francis.

36. Lax P, Wendroff B. 1960 Systems of conservation
laws. Commun. Pure Appl. Math. 13, 217–237.
(doi:10.1002/cpa.3160130205)

37. Vanhatalo J, Riihimäki J, Hartikainen J, Jylänki P,
Tolvanen V, Vehtari A. Bayesian modeling with
Gaussian processes using the GPstuff Toolbox.
(http://arxiv.org/abs/1206.5754).

38. Laine M. 2007 MCMC Toolbox for Matlab. http://
helios.fmi.fi/lainema/dram/.

39. Geweke J. 1992 Evaluating the accuracy of
sampling-based approaches to the calculation of
posterior moments. In Bayesian statistics (eds JM
Bernardo, JO Berger, AP Dawid, AFM Smith), vol. 4,
pp. 169-193. Oxford, UK: Clarendon Press.

40. Brooks S, Gelman A. 1998 General methods for
monitoring convergence of iterative simulations.
J. Comput. Graph. Stat. 7, 434–455.

41. Chib S, Jeliazkov I. 2001 Marginal likelihood from
the Metropolis–Hastings output. J. Am. Stat. Assoc.
96, 270–281. (doi:10.1198/016214501750332848)

42. Bowman AW, Azzalini A. 1997 Applied smoothing
techniques for data analysis. New York, NY: Oxford
University Press Inc.

43. Silverman B. 1986 Density estimation for statistics
and data analysis. London, UK: Chapman & Hall/
CRC, Chapman and Hall.
44. Valdez-Jasso D. 2010 Modeling and identification of
vascular biomechanical properties in large arteries.
Ph.D. thesis, North Carolina State University,
Raleigh, NC.

45. Wang Z, Lakes RS, Golob M, Eickhoff JC, Chesler NC.
2013 Changes in large pulmonary arterial
viscoelasticity in chronic pulmonary hypertension.
PLoS ONE 8, e78569. (doi:10.1371/journal.pone.
0078569)

46. Tuder R. 2017 Pulmonary vascular remodeling in
pulmonary hypertension. Cell Tissue Res. 367,
643–649. (doi:10.1007/s00441-016-2539-y)

47. Kheyfets VO, O’Dell W, Smith T, Reilly JJ, Finol EA.
2013 Considerations for numerical modeling of the
pulmonary circulation—a review with a focus on
pulmonary hypertension. J. Biomech. Eng. 135,
061011. (doi:10.1115/1.4024141)

48. Yang W, Dong M, Rabinovitch M, Chan FP,
Marsden AL, Feinstein JA. 2019 Evolution of
hemodynamic forces in the pulmonary tree with
progressively worsening pulmonary arterial
hypertension in pediatric patients. Biomech. Model.
Mechanobiol. 18, 779–796. (doi:10.1007/s10237-
018-01114-0)

49. Lungu A, Wild J, Capener D, Kiely D, Swift A,
Hose D. 2014 MRI model-based non-invasive
differential diagnosis in pulmonary hypertension.
J. Biomech. 47, 2941–2947. (doi:10.1016/j.jbiomech.
2014.07.024)

50. Saccomani M, Thomaseth K. 2018 The union
between structural and practical identifiability
makes strength in reducing oncological model
complexity: a case study. Complexity 2018,
2380650. (doi:10.1155/2018/2380650)

51. Ryser MD, Gulati R, Eisenberg MC, Shen Y, Hwang
ES, Etzioni RB. 2019 Identification of the fraction of
indolent tumors and associated overdiagnosis in
breast cancer screening trials. Am. J. Epidemiol. 188,
197–205. (doi:10.1093/aje/kwy214)

52. Snelson E, Ghahramani Z. 2006 Sparse Gaussian
processes using pseudo-inputs. In Advances in
neural information processing systems 18 (eds
Y Weiss, B Schölkopf, JC Platt), pp. 1257–1264.
Cambridge, MA: MIT Press.

53. Friel N, Pettitt AN. 2008 Marginal likelihood
estimation via power posteriors. J. R. Stat. Soc. B
(Stat. Methodol.) 70, 589–607. (doi:10.1111/j.1467-
9868.2007.00650.x)

54. Brynjarsdóttir J, O’Hagan A. 2014 Learning about
physical parameters: the importance of model
discrepancy. Inverse Prob. 30, 114007. (doi:10.1088/
0266-5611/30/11/114007)

55. Mynard JP, Davidson MR, Penny DJ, Smolich JJ.
2012 A simple, versatile valve model for use in
lumped parameter and one-dimensional
cardiovascular models. Int. J. Numer. Methods
Biomed. Eng. 28, 626–641. (doi:10.1002/cnm.1466)

http://dx.doi.org/10.1002/cnm.2882
http://dx.doi.org/10.1002/cnm.2755
http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1098/rstb.2019.0349
http://dx.doi.org/10.1098/rstb.2019.0349
http://dx.doi.org/10.1002/wsbm.1482
http://dx.doi.org/10.1113/JP271671
http://dx.doi.org/10.1113/JP271671
http://dx.doi.org/10.1016/j.pbiomolbio.2011.07.002
http://dx.doi.org/10.1016/j.yjmcc.2015.11.018
http://dx.doi.org/10.1016/j.pbiomolbio.2018.08.001
http://dx.doi.org/10.1002/2016WR019831
http://dx.doi.org/10.1016/j.jbiomech.2011.11.020
http://dx.doi.org/10.1152/japplphysiol.00533.2010
http://dx.doi.org/10.1152/japplphysiol.00533.2010
http://dx.doi.org/10.1007/s11517-008-0420-1
http://dx.doi.org/10.1007/s11517-008-0420-1
http://dx.doi.org/10.1016/j.neuroimage.2010.11.084
http://dx.doi.org/10.1113/JP272660
http://dx.doi.org/10.1113/eph8802496
http://dx.doi.org/10.1002/cpa.3160130205
http://arxiv.org/abs/1206.5754
http://arxiv.org/abs/1206.5754
http://helios.fmi.fi/lainema/dram/
http://helios.fmi.fi/lainema/dram/
http://helios.fmi.fi/lainema/dram/
http://dx.doi.org/10.1198/016214501750332848
http://dx.doi.org/10.1371/journal.pone.0078569
http://dx.doi.org/10.1371/journal.pone.0078569
http://dx.doi.org/10.1007/s00441-016-2539-y
http://dx.doi.org/10.1115/1.4024141
http://dx.doi.org/10.1007/s10237-018-01114-0
http://dx.doi.org/10.1007/s10237-018-01114-0
http://dx.doi.org/10.1016/j.jbiomech.2014.07.024
http://dx.doi.org/10.1016/j.jbiomech.2014.07.024
http://dx.doi.org/10.1155/2018/2380650
http://dx.doi.org/10.1093/aje/kwy214
http://dx.doi.org/10.1111/j.1467-9868.2007.00650.x
http://dx.doi.org/10.1111/j.1467-9868.2007.00650.x
http://dx.doi.org/10.1088/0266-5611/30/11/114007
http://dx.doi.org/10.1088/0266-5611/30/11/114007
http://dx.doi.org/10.1002/cnm.1466

	Assessing model mismatch and model selection in a Bayesian uncertainty quantification analysis of a fluid-dynamics model of pulmonary blood circulation
	Introduction
	Model parameters and types
	Bayesian inference
	Model mismatch

	Data
	Physiological data
	Synthetic data

	Model
	Fluid-dynamics model of the pulmonary circulation
	Model parameters
	Overview of models: physiological hypotheses and model mismatch scenarios

	Statistical methods
	Data likelihood
	Model mismatch
	Prior distributions
	Biophysical parameters
	Error parameters

	Posterior inference with Bayesian methods
	Bayesian model selection: WAIC

	Simulations
	Code
	Set-up
	Computational efficiency

	Results
	Importance of correcting for model mismatch
	Synthetic data
	Physiological data

	Parameter posteriors
	Vessel wall model
	Vessel wall stiffness
	Model fits
	Future experimental design
	Accuracy of emulator

	Discussion
	Importance of correcting for model mismatch
	Vessel wall model
	Vessel wall stiffness
	Model fits
	Parameter unidentifiability
	Future experimental design
	Real-time treatment planning

	Limitations and future directions
	Conclusion
	Data accessibility
	Competing interests
	Funding
	Acknowledgements
	References




