
UCSF
UC San Francisco Previously Published Works

Title
Cytoscape Automation: empowering workflow-based network analysis

Permalink
https://escholarship.org/uc/item/1vm3b99m

Journal
Genome Biology, 20(1)

ISSN
1474-760X

Authors
Otasek, David
Morris, John H
Bouças, Jorge
et al.

Publication Date
2019-12-01

DOI
10.1186/s13059-019-1758-4

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1vm3b99m
https://escholarship.org/uc/item/1vm3b99m#author
https://escholarship.org
http://www.cdlib.org/

SOFTWARE Open Access

Cytoscape Automation: empowering
workflow-based network analysis
David Otasek1, John H. Morris2, Jorge Bouças3, Alexander R. Pico4 and Barry Demchak1*

Abstract

Cytoscape is one of the most successful network biology analysis and visualization tools, but because of its interactive
nature, its role in creating reproducible, scalable, and novel workflows has been limited. We describe Cytoscape Automation
(CA), which marries Cytoscape to highly productive workflow systems, for example, Python/R in Jupyter/RStudio. We expose
over 270 Cytoscape core functions and 34 Cytoscape apps as REST-callable functions with standardized JSON interfaces
backed by Swagger documentation. Independent projects to create and publish Python/R native CA interface libraries have
reached an advanced stage, and a number of automation workflows are already published.

Keywords:Workflow, Reproducibility, Cytoscape, Interoperability, REST, Microservice, Service-oriented architecture

Introduction
As a platform for network biologic analysis, Cytoscape [1]
has proven to be enormously popular, with over 17,600
downloads worldwide each month, 5000 startups each
day, and over 1000 direct citations per year. Investigators
can interactively explore complex *omics datasets via
analysis and visualization functions provided by Cytoscape
and a large and vibrant community of app contributors.
However, interactive use has proven inadequate for
precisely reproducing or sharing complex analyses or for
scaling to high volume or production analysis. Moreover,
while Cytoscape apps provide highly performant and
relevant network biology functionality, the specialized pro-
gramming talent and relatively long development times
they require can make them uneconomical for delivering
complex and evolving workflows. Finally, as an interactive
tool, Cytoscape is not positioned to add value to emerging
workflows that integrate one or more external data acqui-
sition and analysis tools (e.g., Galaxy [2], Taverna [3], and
libraries provided in repositories such as PyPI [4] and
Bioconductor [5]).
As shown in Fig. 1, Cytoscape Automation [6] is a new

Cytoscape feature that addresses these issues by extend-
ing the existing CyREST [7, 8] app, which empowers
bioinformaticians to create reproducible workflows

expressed in robust and well-known programming lan-
guages (e.g., Python, R, Javascript) using familiar program-
ming environments (e.g., Jupyter and RStudio). Under
Cytoscape Automation, workflows can use CyREST to
issue commands to Cytoscape and automation-enabled
apps via the REST protocol, which encodes data as JSON
documents. Both REST and JSON are already in wide use
in client/server computing, are accessible from most
programming languages, are immediately understood by
most bioinformaticians, and are easy to learn given the
massive body of relevant training materials, examples, and
extant community.
This paper focuses on using Cytoscape Automation

from Python and R because they are widely used and
understood by bioinformaticists and because they already
have well-documented repositories of bioinformatic func-
tions that enable researchers to create reliable, flexible,
and performant bioinformatic workflows quickly and eas-
ily. Our py2cytoscape [9] (for Python) and RCy3 [10] (for
R) libraries provide easy access to Cytoscape and app
functionality and are available in these repositories, too.
Library download statistics reported by GitHub, PyPI, and
Bioconductor indicate that researcher interest in Cytos-
cape Automation is strong—500 downloads/month for
py2Cytoscape and 800 downloads/month for RCy3.
Critically, Cytoscape Automation creates new standards

that encourage Cytoscape core and app authors to expose
Cytoscape functvionality via REST-based API calls backed
by state-of-the-art documentation based on the widely used

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: bdemchak@ucsd.edu
1Department of Medicine, University of California, La Jolla, San Diego, CA
92093, USA
Full list of author information is available at the end of the article

Otasek et al. Genome Biology (2019) 20:185
https://doi.org/10.1186/s13059-019-1758-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1758-4&domain=pdf
http://orcid.org/0000-0001-7065-7786
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:bdemchak@ucsd.edu

Swagger [11] documentation framework. Swagger is
purpose-built to improve workflow author productivity in a
REST context by presenting complete CyREST endpoint
documentation, organizing endpoints by category, and
assisting in workflow prototyping via an easy click-to-run
web-based interface.
As a result, novel network biologic workflows can now be

quickly and cheaply delivered as integrations of Cytoscape
functions, complex custom analyses, and best-of-breed ex-
ternal tools and language-specific libraries.
In this paper, we explain the key features of Cytoscape

Automation, including how they work, how Cytoscape
app developers can make automation-enabled apps, and
how workflow authors can leverage Cytoscape Automa-
tion to create and evolve their workflows. As a reference
material, we provide the substantial Cytoscape Automatic
Wiki [12], which contains articles on context, implemen-
tation details, FAQs, best practices, and sample scripts
and apps to help workflow authors become quickly pro-
ductive and help Cytoscape app authors produce new
automation-capable apps or upgrade existing ones.
As an illustration aid, we use the running example of

Cytoscape Diffusion [13], which uses network propagation
to find new nodes (e.g., genes) that are most relevant to a
set of well-understood nodes. Diffusion is particularly apt
because it shows how to define real-world CyREST end-
points that are well documented, consume network and
customization parameters, and produce actionable results.
In this paper, the “Design” section describes the compo-

nents of Cytoscape Automation and explains their use. The
“Implementation” section outlines the details of CyREST
construction, and the “Results” section presents concrete ex-
amples of Cytoscape Automation benefits. The “Discussion”
section compares Cytoscape Automation to other biological
workflow environments. Finally, the “Future development”

section calls for additional contributions that can expand
Cytoscape Automation to improve workflow economics
even further.
Note that this paper describes CyREST v3.8, which is in-

cluded with Cytoscape v3.7.0 as a core app, meaning that it
is automatically synchronized with Cytoscape by the
Cytoscape developer team. Cytoscape Automation requires
CyREST v3.8, and we highly recommend that users running
Cytoscape versions earlier than v3.7.0 upgrade to v3.7.0. As
CyREST evolves, it will be disseminated in new Cytoscape
releases and via the Cytoscape App store. CyREST follows
semantic versioning guidelines [14], thereby guaranteeing
that updates will not break the workflows or automation-
enabled apps as it evolves. We highly recommend that
independent app developers conform their apps’ evolution
to semantic versioning principles, too.

Design
The leap from the original CyREST implementation to
address the broader scope of the Cytoscape Automation
initiative required new features and upgraded approaches
in a number of technical areas:

❶ New CyREST access to Cytoscape apps
❷ New CyREST access to Cytoscape Command script

operations
❸ Improved documentation infrastructure and content

standards
❹ New interactive CyREST call prototyping
❺ Consistent mechanisms for calling CyREST and

receiving return values
❻ Improved coverage of core Cytoscape functionality

Figure 2 shows the relationship between the Cytoscape
Desktop and Cytoscape Automation workflows. The

Fig. 1 Overview of the Cytoscape Automation ecosystem. Reproducible workflows (as Python/R/Javascript or Cytoscape Command scripts) and datasets
control Cytoscape through Cytoscape Automation. Results can be created either directly from Cytoscape or from Python/R/Javascript themselves

Otasek et al. Genome Biology (2019) 20:185 Page 2 of 15

Cytoscape Desktop includes both the Cytoscape core (in-
cluding CyCommands and CyREST) and apps sourced
from the Cytoscape App store. Automation workflows
execute outside of Cytoscape but use CyREST to leverage
Cytoscape features. Figure 2 is annotated to show the
components important in each facet of the Cytoscape
Automation design, which are described in this section.
Note that for a workflow to access Cytoscape function-

ality, Cytoscape must be running and accessible via HTTP
calls from the workflow execution environment.
Note that calling a CyREST endpoint requires the use

of REST interface functions found in most modern lan-
guages. While all CyREST endpoints are accessible in this
manner, we have created harmonization libraries for R
and Python (described in the “Implementation” section) to
enable quick and easy access to common Cytoscape Auto-
mation features. However, direct CyREST calls are re-
quired for all other endpoints, including those supplied by
Cytoscape apps—see the “Python and R Harmonization
Libraries” section for details.

New CyREST access to Cytoscape apps ❶
A large part of Cytoscape’s utility to researchers is provided
by apps—their inclusion in Cytoscape Automation, facili-
tated by CyREST, greatly expands the functionality that can
be leveraged via scripting workflows. Apps that support
automation (called Automation Apps) can expose function-
ality either via a Function or Command interface [15].

A Function interface enables a script to pass complex
parameters and receive return results of arbitrary length
and complexity. While Functions can be called from
scripting languages such as Python, R, and Javascript,
they cannot be called from the Cytoscape Command
Tool [16].
To create a Function in an existing app, the app author

must add a new function that defines a CyREST endpoint
using JAX-RS [17] annotations and which executes app-
related code—most likely code that implements existing
app functionality. The JAX-RS annotations define the end-
point name, the HTTP protocol [18], and the parameters
to be passed. For example:

This defines the diffuse_with_options endpoint that
accepts three parameters (networkSUID, networkView-
SUID, and diffusionParameters) and returns a CIRe-
sponse structure. The @PUT annotation defines the
HTTP method (as PUT), and the @Path annotation de-
fines the endpoint path (/diffusion/v1/{networkSUID}/

Fig. 2 Relationship between the Cytoscape Desktop (including CyREST, Cytoscape apps and Cytoscape core) and Cytoscape Automation
workflows. Dotted lines indicate command/data flows that pre-date Cytoscape Automation. Solid lines indicate flows created for Cytoscape
Automation. New components are in green

Otasek et al. Genome Biology (2019) 20:185 Page 3 of 15

views/{networkViewSUID}/diffuse_with_options), which
the client appends to CyREST’s base URL (http://local-
host:1234) when calling diffuse_with_options. The
@Produces and @Consumes annotations define the PUT
payload and response as JSON [19].
An actual CyREST URL that calls diffuse_with_options

might appear as http://localhost:1234/diffusion/v1/53/
views/744/diffuse_with_options and would include JSON
corresponding to the DiffusionParameters class as the
HTTP PUT payload. For diffuse_with_options, a sample
DiffusionParameters payload is:

As shown in Fig. 2, at runtime, CyREST’s JAX-RS con-
nector parses the URL to extract the networkSUID and
networkViewSUID values and parses the PUT payload
to create a DiffusionParameters instance. JAX-RS calls
the diffuse_with_options function with these values, which
performs a diffusion operation and returns a CIResponse
instance. Finally, JAX-RS encodes the CIResponse into
JSON and returns it to the caller.
The process for exposing app features as Commands

is different, as explained below.

New CyREST access to Cytoscape Command script
operations ❷
A Command interface enables a script to execute Cytos-
cape Commands analogous to commands executed
within a Unix or Windows terminal, and they offer simi-
lar argument structure and execution. Command execu-
tions can pass simple parameters and can return results
of predefined length.
Users can execute Commands as single lines (via

Cytoscape’s Command Tool [16]) or as scripts (either
via Cytoscape Tools → Execute Command File
menu or on the Cytoscape command line via the -S
parameter). Scripting languages such as Python, R,
and Javascript can execute them via CyREST using an
HTTP POST operation and passing Command pa-
rameters as a JSON object. The endpoint path begins
with /v1/commands and is followed by the Command
namespace and the command name. A fully formed
URL and POST payload for the diffuse_advanced
Command is:
http://localhost:1234/v1/commands/diffusion/diffuse_

advanced

As shown in Fig. 2, the Commands system leverages
the Cytoscape Tunable/Task system [20] (i.e., CyCom-
mands Manager and Cytoscape Core) originally defined
to collect execution parameters via a dialog box and
then execute a Java function. The function consumes the
parameters, performs the Command operation, and pos-
sibly returns a result as a fetchable task state.
To create a Command in an existing app, the app

author must first register the Command’s namespace
and name in a TaskFactory via the app’s CyActivator.
The name must be the name of a public function
within the app, and the app author must add @Tun-
able annotations to the function to define Command
parameters.
If an app already exposes a function as a Tunable/Task,

enabling the function to be called as a Command can be
as simple as registering the TaskFactory with a suitable
namespace and name. If an app does not use Tunable/
Tasks, it may be easier to expose app features as Functions
(as described above).
Note that in CyREST previous to Cytoscape v3.6,

Commands were available via an HTTP GET operation,
where parameters passed on the URL (e.g., ?time = 0.1)
and the result form and content was not JSON, and
they varied with the Command. The GET form has
been deprecated in favor of POST to allow more parame-
ters and to enable JSON-structured parameters and return
results.

Improved documentation infrastructure and content
standards ❸
In the process of implementing Python and R support li-
braries and providing support for researchers producing
scripting workflows, we found that the coverage and qual-
ity of CyREST’s Miredot-based [21] API documentation
was a major impediment to productivity. We replaced
Miredot with the popular Swagger [11] framework, which
organizes CyREST endpoints by category, provides for
more complete documentation, and presents an easy
click-to-run web interface. This allowed us to more rigor-
ously define and enforce the documentation standards
that define an endpoint contract, including the context,
purpose, caveats, parameters, and return results for each
endpoint. Swagger also facilitates the documentation of
structures (called models) pertinent to parameters and re-
turn results.
To access Swagger for Functions, use Cytoscape’s

Help → Automation → CyREST API menu. For Com-
mands, use Help → Automation → CyREST Com-
mand API.
For each Function and Command implemented in

Cytoscape Core, we audited the documentation to verify
that it contained meaningful and actionable content for
each Swagger section according to best practices.

Otasek et al. Genome Biology (2019) 20:185 Page 4 of 15

Similarly, Automation App authors wrote their Swagger
page documentation to the same standards.
For Functions, the CyREST Swagger Connector (see

Fig. 2) synthesizes an endpoint’s Swagger documentation
from text embedded in annotations attached to endpoint
code. For Functions, a basic contract is defined by the
@ApiOperation and @ApiParam annotations, which de-
scribe the endpoint generally and its parameters specifically.
For the diffuse_with_options Function, these annotations
might appear as follows:

In the @ApiOperation annotation, the value attribute
contains a short description; the notes attribute contains
the context, purpose, and caveats, and the response
attribute identifies the model (i.e., class) for the return
result. The @ApiParam annotation applies to each param-
eter, whether it is part of the URL (e.g., networkSUID and
networkViewSUID) or the PUT payload (e.g., diffusionPara-
meters). The value attribute describes the parameter, while
the required attribute indicates whether the parameter must
be present. Additional annotations describe possible results
and models.
Figure 3 shows a sample Swagger page corresponding

to the diffusion_with_options Function above.
For Commands, the CyREST Swagger and Commands

Connectors (see Fig. 2) synthesize a similar page from
OSGi properties and annotated fields within a TaskFac-
tory. Command-level descriptions, for example, are syn-
thesized from attributes supplied in the TaskFactory
properties when the task is created in CyActivator:

Parameter-level descriptions are synthesized using @Tun-
able annotations applied to variables within each TaskFactory:

New interactive CyREST call prototyping ❹

A significant cost in most workflow authoring processes is
experimentation with library functions to determine what
types of calls achieve workflow goals. The Swagger docu-
mentation system addresses this in an innovative way by
enabling a user to formulate and submit a CyREST end-
point call directly from the endpoint’s Swagger page.
Using the example in Fig. 3, once the user fills the end-

point’s parameter values, provided by the included Ex-
ample Value, clicking on the Try it out! button results in a
well-formed diffuse_with_options call to Cytoscape, which
performs a diffusion and returns a result (as shown in
Fig. 4). If the diffusion fails, an error result is returned. By
experimentation, and without any programming skills, a
user can quickly understand and productively use a CyR-
EST endpoint, which informs the correct composition of a
REST call using the workflow language’s REST interface.
Note that parameters for some endpoints are references

to Cytoscape objects represented by SUIDs (e.g., POST
/diffusion/v1/{networkSUID}/views/{networkViewSUID}/
diffuse_with_options). A user can discover Cytoscape
SUIDs by using Swagger to execute query endpoints
(e.g., GET /v1/networks/currentNetwork).

Consistent mechanisms for calling CyREST and receiving
return values ❺
To improve workflow author productivity, we created
conventions for the data returned by CyREST endpoints
and we revitalized the Python and R harmonization li-
braries (called py2cytoscape and RCy3).
But for minor exceptions, all CyREST endpoints now

return their results in a standard JSON data structure
called CIResponse [22], which has two main elements:
data and errors. If the endpoint is successful, the end-
point returns its result in data and leaves errors empty—
the exact result is endpoint-dependent and is described
in the endpoint’s Swagger page. For example:

Otasek et al. Genome Biology (2019) 20:185 Page 5 of 15

If the endpoint fails, it leaves data empty and returns
errors, where errors[0] describes the endpoint error, and
subsequent errors entries describe failures in any nested
services that caused the endpoint failure, similar to a
Java stack trace. For example:

The status contains an HTTP status describing the
error. Type contains a URN unique to the endpoint and
error (shortened here for readability, but actually containing
“urn:cytoscape:ci:diffusion-app:v1:diffuse_with_options:2”),
and the message describes the error in prose. If the
caller needs to take action for one type of error as
compared to another, it should compare the type value,
not the message content. The link value is returned but is
not used.
The separation of data and errors enables callers to

centralize their CyREST calling code, thereby easing
coding and maintenance burden on workflow and
harmonization library authors. A centralized CyREST

Fig. 3 Sample Swagger page for diffuse_with_options, including markups for key areas. The Try it out! button calls Cytoscape to execute this CyREST function

Otasek et al. Genome Biology (2019) 20:185 Page 6 of 15

caller should return the data value and throw an excep-
tion if an error is received.

Improved coverage of core Cytoscape functionality ❻

Under Cytoscape Automation, the exposure of Cytos-
cape’s API via CyREST expanded from 113 available op-
erations to 157. These new operations, as well as the
data they consume and produce, are consistent with pre-
vious implementations. This API consistency follows the
same Semantic Versioning [23] best practices laid out
for Cytoscape core development.

Implementation
The technical foundation of Cytoscape Automation is
CyREST, which was first implemented by [7]. While
Cytoscape Automation includes CyREST, it also
includes harmonization libraries that enable Python
and R workflows to easily make CyREST calls. In this
section, we describe the implementation of all of these
components. While Swagger is integral to Cytoscape
Automation, too, it is a separate (free) product maintained
separately.

Defining endpoints
Originally, CyREST used an embedded Grizzly HTTP
server [24] to publish Java resources annotated using the
Jersey JAX-RS library [25] as REST endpoints. CyREST
continues to support app Functions defined by JAX-RS-

based endpoint annotations, though the Grizzly server
and Jersey library were replaced by the OSGi JAX-RS
Connector library (see Fig. 2) combined with the Jetty
server contributed by Cytoscape’s Karaf [26] compo-
nent. This connector library listens for services regis-
tered within the OSGi environment (e.g., Cytoscape
Automation-enabled apps), recognizes any that have
been provided with JAX-RS annotations, and then
processes them the same way as CyREST’s internal
JAX-RS resources.
By definition, Cytoscape apps have the capability to

register services within Cytoscape’s OSGi environment.
As described in the “Design” section above, adding REST
endpoints is a matter of creating JAX-RS-annotated clas-
ses and methods and registering them as services. When
the app registers services with OSGi, the OSGi JAX-RS
Connector library recognizes the annotated endpoints
and adds them to its Cytoscape Automation repository
as Functions.
Cytoscape apps are also capable of registering

Cytoscape Commands. A Cytoscape Command is an
implementation of the Cytoscape TaskFactory inter-
face which is registered as a service with OSGi. Any
command added to Cytoscape’s CyCommand Man-
ager is available to the Commands Connector, which
consumes HTTP parameters, and passes them to the
CyCommand Manager to perform the Command
operation.

Fig. 4 Sample Swagger results from using the Try it out! button to execute a CyREST call. The page shows the CyREST call that incorporates user-
specified parameter values and the JSON-formatted call results

Otasek et al. Genome Biology (2019) 20:185 Page 7 of 15

Interfacing to Swagger
As described above, an app author should provide Swag-
ger annotations to define the Swagger documentation
for app Functions (as described in the “Design” section
above). The Swagger Connector (see Fig. 2) harvests
these annotations when the user requests via Cytoscape’s
Help → Automation → CyREST API menu and then
composes a Swagger-defined JSON object that repre-
sents both the endpoint category list and the end-
point documentation pages themselves. To display the
app’s functions in a Swagger page, Cytoscape launches
a browser to load the Swagger UI (hosted by Cytos-
cape itself as http://localhost:1234/v1/swaggerUI/swag-
ger-ui/index.html), providing the JSON object as a
parameter (as the http://localhost:1234/v1/swagger.
json URL).
A parallel mechanism offers Swagger documentation

for Commands, accessible via Cytoscape’s Help →
Automation → CyREST Command API menu. App
authors should provide OSGi properties and
TaskFactory-annotated fields to define the Swagger
documentation for app Commands. The CyCommands
Manager provides this documentation to the Com-
mands Connector, which translates that documenta-
tion to Swagger-defined JSON. To display the app’s
Commands in a Swagger page, Cytoscape launches a
browser to load the Swagger UI mentioned, this time
providing the command JSON as a parameter (as the
http://localhost:1234/v1/commands/swagger.json URL).
Note that Swagger document shows pages for all end-

points that were defined when the JSON object was re-
trieved by the Swagger UI. If the user installs or
uninstalls additional apps, the user can refresh the
browser window to re-fetch and view the corresponding
updated Swagger JSON object.
Note, too, that the Swagger JSON object is available to

any application that would like to enumerate the end-
points exposed by CyREST.

Upward compatibility with previous CyREST
While Cytoscape Automation incorporates CyREST end-
point conventions described above, endpoints supplied
by previous CyREST versions did not. Particularly,
they did not return results in the CIResponse structure
(described in the “Design” section).
The older CyREST Function endpoints returned a

variety of JSON. To provide better and more uniform
service, CyREST now offers the option of wrapping
these endpoints’ return values in a CIResponse struc-
ture if the caller sets the CIWrapping: true HTTP
header in the REST call. For example, the old-style
response for GET http://localhost:1234/v1/networks.
names is shown in green, and the CIResponse wrap-
per is shown in red:

Also, all Command endpoints previously used the
HTTP GET method, which relies on endpoint parameters
being supplied as part of the REST URL. (Current conven-
tions call for using the POST/PUT methods, which allow
parameters to be expressed as JSON and passed as the
HTTP payload.) The GET-based Command endpoints
returned unformatted plaintext and could not effectively
convey the details of any errors encountered.
CyREST continues to support the original GET

Command endpoints, and any data they return,
though the GET endpoints are deprecated. For every
Command, a POST method using JSON parameters
and JSON return (wrapped in a CIResponse object)
has been added. The default Command Swagger refer-
ences these POST methods exclusively to encourage
their use while CyREST still supports the deprecated
GET implementation.

Calling endpoints
Cytoscape Automation simplifies Python- and R-based
access to CyREST endpoints via harmonization librar-
ies separately created, documented, and maintained by
the Cytoscape community. The harmonization librar-
ies provide language-specific and language-appropriate
access to Cytoscape by wrapping one or more CyR-
EST endpoints. As we add more CyREST endpoints,
we believe the Cytoscape community will add func-
tionality to take advantage of them. (Until new func-
tionality is added to the libraries, direct CyREST calls
via language-specific REST libraries remain necessary,
as described below.)
The Python library (called py2cytoscape [27]) is avail-

able via PyPI. The lead developer is Jorge Boucas.
The R library (called RCy3 [28]) is available via

BioConductor. The lead developer is Alexander Pico.
CyREST endpoints not covered by harmonization li-

braries can be called directly using REST protocols
documented via Swagger. Endpoints contributed by
installable apps (e.g., aMatReader) can either be called
directly or, if implementing Commands (e.g., Diffusion),
by generalized functions included in the harmonization
libraries.
For example, a call to an aMatReader app function in

Python would be made directly using CyREST, while a
call to a Diffusion app function could be made either
directly or via py2cytoscape:

Otasek et al. Genome Biology (2019) 20:185 Page 8 of 15

A call to the same aMatReader app function in R would
be made directly using CyREST, while a call to a Diffusion
app function could be made either directly or via RCy3:

For apps that implement Commands, we provide a
standard way to call their functions without necessitating
the app-specific harmonization libraries, thus

diminishing the need for direct CyREST calls. We also
encourage app authors or community members to create
and disseminate customized or extended app-specific li-
braries as well.

Workflow examples
The Cytoscape community has created and published a
number of sample workflows [29] based on both the
Python and R harmonization libraries.
The following are the Python examples [30]:
Advanced cancer networks and data—retrieve dis-

ease networks from a public database and apply gene
expression and tumor mutation datasets for network
analysis and visualization. Network files and images
are generated in multiple formats for sharing and
publishing.
Network Assisted Genomic Analysis (NAGA)—re-

prioritizes significant single nucleotide polymorphisms
(SNPs) to genes using network diffusion methods includ-
ing random walk and heat diffusion.
Advanced View API—demonstrates how users can

manipulate Cytoscape network views directly from
Python code.
The following are the R/notebook examples [31]:
Cytoscape Automation with RCy3—three use cases are

demonstrated including querying existing interaction
databases with a set of genes to create a network, creat-
ing a correlation network using aMatReader, and a basic
enrichment analysis.
Cancer networks and data—retrieve disease net-

works from a public database and apply gene expres-
sion and tumor mutation datasets for network
analysis and visualization. Network files and images
are generated in multiple formats for sharing and
publishing.
AP-MS network analysis—describes how to use data

from an affinity purification-mass spectrometry experi-
ment to generate relevant interaction networks, enrich-
ing the networks with information from public
resources, analyzing the networks, and creating effective
visualizations.
The following are the examples from the 2017 CyREST

Challenge [32]:
Konig_SBML_Time_Course_Python—Python-based dy-

namic visualization of SBML kinetic models in
Cytoscape.
Grimes_CFN_CCCN_R—R-based visualization of a

cluster-filtered network (CFN) and a co-cluster correl-
ation network (CCCN).
Isserlin_PPI_network_pipeline_R—R-based visualization

of all interactions in a ligand-receptor network.
In the future, we hope to provide a standard way for

workflow authors to create and disseminate workflows
they create.

Otasek et al. Genome Biology (2019) 20:185 Page 9 of 15

Results
Cytoscape Automation was first released as part of
Cytoscape v3.6 on November 15, 2017, and has been
downloaded and installed over 300,000 times since then.
In that period, Cytoscape was started over 550,000 times.
Additionally, demand for our Cytoscape Automation
workshops has been brisk. To date, though, we have no
statistics on workflows created, workflows executed, or
CyREST endpoints called. We hope to collect these in
the future. However, since updating RCy3 to work with
CyREST and releasing as version 2.0 in April 2018, it
has risen to rank near the top 200 packages in Biocon-
ductor, averaging ~ 800 downloads per month (up from
~ 200). py2cytoscape sees about 500 downloads/month
from GitHub and the PyPI Python package index.

External workflows enabled
The Cytoscape community has used Cytoscape Automa-
tion to create Python and R workflows that successfully
load network data, profile it, perform complex layouts
and styles, then return renderings.
Figure 5a shows one result of the Python “advanced

cancer networks and data” workflow referenced above. It
loads ovarian cancer and breast cancer disease networks
by calling Cytoscape’s String app [33], determines a rele-
vant gene neighborhood by calling Cytoscape’s Diffusion
app [34], and ends up with a styled and laid out subnet-
work of critical breast cancer genes.
Figure 5b shows the result of the R “Isserlin_PPI_net-

work_pipeline_R” workflow referenced above. It is a
ligand-receptor network showing a number of interac-
tions. The workflow reads ligands and receptors from
Biomart by calling R libraries. Interactions are fetched
from iRefIndex, Biogrid, and Pathway Commons and
removes duplicate interactions. After expression analysis,

it constructs a representative JSON-encoded network,
sends it to Cytoscape, performs a different force-directed
layout on each cell type, and creates styles to differentiate
cell types, protein types, and significance.
The two workflows demonstrate that Cytoscape and its

apps can be integrated with Python and R best-of-breed li-
braries to create novel and repeatable results. Because
these workflows are defined by code, they can be audited
and evolved in an orderly and predictable manner. As-
suming consistent input data, correct and consistent re-
sults are attained on every run (though, not necessarily
identical results if non-deterministic algorithms such as
some layouts are in the workflow). Without Cytoscape
Automation, attaining these qualities would have required
a new Cytoscape app that would have required specialized
Java coding skills and several weeks to develop.
Both workflows show how multiple Cytoscape steps can

be staged in sequence to reproduce multiple repeatable re-
sults. Figure 5a is actually one of ten different images pro-
duced by the “advanced cancer networks and data”
workflow, which performs over 40 different Cytoscape op-
erations and a number of intermediate calculations. The
workflow executes in under 2 min on a common worksta-
tion. If performed by hand (as would be necessary without
Cytoscape Automation), the time required would have been
over 20 min, and given the complexity of assessing attribute
values and styling networks by hand, it is unlikely that even
a skilled Cytoscape operator could have produced all im-
ages consistently. This demonstrates how Cytoscape Auto-
mation enables workflows that are practically impossible
under human operation and does so in a timely manner.
Note that additional R-oriented vignettes are available

at the RCy3 Bioconductor site.
Note that these workflows use languages common in

data sciences, but a different class of workflows can be

Fig. 5 Results of Cytoscape Automation workflow execution in Python and R. a Uses multiple Cytoscape apps to load and analyze two data sets, then
combines them to show critical genes. b Uses multiple R libraries and analyses to create a network that is then laid out and styled in Cytoscape

Otasek et al. Genome Biology (2019) 20:185 Page 10 of 15

written in Javascript and deployed inside of web apps
running inside standard browsers. For example, the
NDEx website [35] uses direct Javascript-based calls to
CyREST endpoints in order to enable a user to down-
load a network from the NDEx database into a running
Cytoscape instance—the transfer is initiated when the
user clicks on a network page’s Cytoscape icon. From
there, a user can use Cytoscape to explore, analyze, and
visualize shared networks, thus sparing the NDEx authors
from having to duplicate Cytoscape features in the NDEx
website. In this mode, Cytoscape Automation achieves ap-
plication integration not previously economical.

Cytoscape Automation apps
In December 2017, we launched a campaign calling on
all Cytoscape app writers to upgrade their existing apps
to enable Automation calls, referring them to an exten-
sive Wiki and FAQ document written to inform and en-
able their work. To date, Automation features have been
added to 4 core apps (delivered with Cytoscape, listed in
underlined italics) and 34 App Store apps:

aMatReader cyChart eXamine RINalyzer

AutoAnnotate CyNDEx-2 GeneMANIA RINspector

BridgeDb Cyni Toolbox ID Mapper setsApp

cddApp Cyrface KEGGScape stringApp

chemViz2 CyTargetLinker MCODE structureViz2

ClueGO CytoCopteR Omics Visualizer Synapse Client

clusterMaker2 Diffusion PathLinker WikiPathways

copycatLayout DisGeNET-app PSFC WordCloud

CyAnimator enhancedGraphics ReactomeFIPlugIn yFiles

cyBrowser EnrichmentMap

While each app documents its endpoints via Swagger
pages, significant discussion and examples are presented
in separate publications in F1000 Research’s Cytoscape
Automation app collection [36].
Note that core apps follow semantic versioning

guidelines, thereby guaranteeing that updates will not
break workflows supported in previous versions. To the
extent that other apps follow these guidelines, they
commit to the same guarantee.

Discussion
Existing biological workflow systems (e.g., Galaxy, Taverna,
GenePattern [37], bioKepler [38], and implementations of
Common Workflow Language [39]) are capable of
executing workflows on networks, but they do not leverage
functionality available in Cytoscape and its apps. Their forte
is the execution of a wide range of biological analysis tools
and in a portable and scalable way across a variety of
software and hardware environments. In contrast,

Cytoscape Automation leverages a wide range of network-
specialized Cytoscape and app features using a single
Cytoscape instance running on a workstation, though a
wide range of biological analysis tools can also be executed.

Cytoscape Automation and workflow systems
In most workflow systems (including general programming
languages such as Python, R, and Javascript and biological
workflow engines such as Galaxy, Taverna, and CWL
engines), workflows are constructed by calling a utility or
library function, using its result in some calculation or
transformation (called interstitial code), passing the result
to a different utility or library function, and so on. Often,
the workflow itself maintains state as variables, and the
utilities and library functions are stateless—their output
depends solely on their inputs. Workflows based on
Cytoscape Automation are different because Cytoscape
maintains network state and Cytoscape Automation
functions create, query, or change networks—workflows
calling Cytoscape Automation functions have state shared
between the workflow and Cytoscape.
Cytoscape Automation functions support sequential

calls in a single thread of execution, emulating operations
performed by a human—the function does not return a
result to its caller until the function is finished. Additionally,
functions implemented entirely within the Cytoscape core
are guaranteed to execute without soliciting input from a
user, thereby enabling unsupervised execution. Functions
implemented in Cytoscape apps should provide this
guarantee, but that choice is left to the app author. (Note
that the workflow itself remains free to solicit user or other
external input as appropriate.)
While workflow systems are free to execute Cytoscape

Automation workflows comprised of multiple parallel
threads, Cytoscape Automation itself makes no guarantees
regarding the order of function execution or termination
and does not guarantee that function executions will not
conflict with each other. For example, executing a network
layout at the same time as updating network attributes may
produce an unpredictable layout. Similarly, simultaneous
calls to update network attributes may have unpredictable
(and harmful!) effects on the network attributes.
As a rule of thumb, workflows should themselves serialize

all operations performed on a single network. Simultaneous
execution involving different networks will produce
consistent and correct results without being serialized.
Functions implemented in Cytoscape apps should support
these rules, too, but doing so requires the author to have
written them to be re-entrant (e.g., independent of global
variables).
While Cytoscape Automation does not directly

support checkpointing or re-execution features found in
some workflow engines, it can assist a workflow author
in simulating these features. The state of all networks

Otasek et al. Genome Biology (2019) 20:185 Page 11 of 15

can be saved and restored to/from a local file (using the
POST and GET operations on the /v1/session endpoint)
or to/from an NDEx repository (using the POST and
GET /cyndex2/v1/networks endpoints). Note that restor-
ing a network changes all Cytoscape IDs associated with
collections, networks, views, nodes, edges, and every
other property, thereby invalidating any IDs maintained
as state by a workflow—a workflow author should take
care to refresh this state via appropriate Cytoscape
Automation queries after a restore operation.
Cytoscape Automation does not provide history,

provenance, and other metafunctions associated with
workflow execution. It relies on the workflow system to
provide these features.
The following example shows how a general purpose

language (e.g., Python) can be used to create a workflow
that shares state with Cytoscape and use interstitial code
to perform novel functions and create new Cytoscape
state. Cytoscape is called to create a network of ovarian
cancer genes from the STRING database, then interstitial
code fetches STRING’s gene annotations from Cytoscape
and creates a list of genes in the top 25th quantile of top
scoring diseases. Finally, Cytoscape is called again to
create a network using that gene list:

Systems that define a workflow as a pipeline of
functional blocks linked together by data flows (e.g.,
GenePattern [37], as shown in Fig. 6) are challenged to
maintain state or provide interstitial code such as the
top quartile calculation. To the extent such systems
enable the authorship of new functional blocks,
Cytoscape Automation workflows can be implemented
using a general purpose language and then incorporated
(and reused) as a functional block.
Note that GenePattern Notebook [40] is a new

Jupyter-based workflow system that can use general
programming languages to orchestrate existing ana-
lyses and use their results to create complex control
flows and data-dependent processing. GenePattern
Notebooks can use Cytoscape Automation (including
the py2cytoscape harmonization library) to create
Cytoscape workflows and integrate them with other
analytics.

Workflow publishing
Biological workflow systems vary in how they envision
their communities sharing workflows. GenePattern
Notebook provides a web-based repository that allows
users to check in a workflow and then share it with
others or the public. Such notebooks can be imported
directly within the GenePattern Notebook development
system. Taverna enables sharing through the myExperi-
ment [41] social network. Other systems advise that
workflows be stored and shared in a version control sys-
tem (VCS) such as GitHub.
Common practice in the Cytoscape Automation

community is to store workflows and artifacts in GitHub
and reference them from academic papers or include
them as supplementary material as appropriate. This is
particularly feasible because such workflows are
contained in easily readable text files for which GitHub
viewers (e.g., nbviewer) are available, GitHub enables
sharing and versioning of workflows, GitHub has
become a common tool in many biologists’ toolbelt, and

Fig. 6 A three-step GenePattern workflow shown by the GenePattern Pipeline Editor. The Illumina Expression File Creator step creates a GCT file
from a zip of Illumina IDAT files. The Preprocess Dataset step normalizes the GCT data, and the Hierarchical Clustering step performs clustering on
genes. The second step was created by GenePattern staff to avoid adding parameters to the first or third steps

Otasek et al. Genome Biology (2019) 20:185 Page 12 of 15

GitHub can be readily searched. The 2017 CyREST
Challenge produced several such examples.
A working example is a 2019 Bader Lab pathway

enrichment analysis paper [42] where R-based Cytoscape
Automation is delivered as supplementary material
(protocol 3), and the full workflow is delivered in the
GitHub repository named in its “Data availability” sec-
tion. Note, too, that the paper’s “Procedure” section re-
cites a long list of manual steps, much of which can be
replaced in a less ambiguous, more reproducible way by
automated workflows.

User experience
Cytoscape Automation functionality is delivered in all
Cytoscape downloads (over 17,600 per month), and in
the interests of privacy, usage of individual features is
not counted. Furthermore, given the typically long lag
between research and paper publishing, we are only
now starting to see published papers that leverage
automation. Instead, we infer user interest and feedback
through automation library downloads, tutorial attendance,
and online posts.
Since the original Cytoscape Automation tutorial at

the ISMB/Prague 2017, six more major multi-hour
public tutorials have been delivered by the National
Resource for Network Biology (nrnb.org). All tutorials
were well and enthusiastically attended, with an average
attendance of 40, and most of the class completed class
exercises without difficulty.
Since January 2018, the Cytoscape help desk has

tallied 68 threads relating to Cytoscape Automation, out
of 710 total threads (approximately 9.5% of total
worldwide support). In the same period, 76 issues were
posted on the project’s GitHub, and 49 were closed
(64%).
Note that the definition of the RCy3 harmonization

library for automation (~ 800 downloads per month) was
designed by a working group of 13 users and 5
Cytoscape core developers. The Cytoscape Automation
design was responsive to the RCy3 design, and two users
(e.g., Isserlin [42]) have since published research papers
in which Cytoscape Automation was part of their
methodology. They chose to implement Cytoscape
Automation workflows because they already knew the
workflow languages (Python and R) and were already
using them and associated libraries to implement parts
of their experiment protocol. Their workflows also
reproduced their Cytoscape-focused steps and auto-
mated numerous tedious and error-prone steps via both
Cytoscape Automation calls and interstitial code.
Finally, as further evidence of its usefulness in

reproducibility, Cytoscape Automation is currently used
to test automation-enabled apps (Diffusion [43] and
CyNDEx-2 [44]) as well as Cytoscape itself.

Future development
Cytoscape Automation features will continue towards
providing frictionless interaction between all
components of Cytoscape’s ecosystem of authors,
services, and applications, particularly in the following
areas:

Additional apps - Upgrade additional core and store apps to support
Automation calls

App Store
support

- Improve identification of Automation-supporting
apps

- Provide documentation of API calls in the app’s store
page

- Provide access to app-specific R and Python
harmonization libraries

Workflow
publishing

- Create a repository of workflows for use and
evolution

App testing
harness

- Create a workflow-based framework for testing Auto-
mation endpoints

While Cytoscape core developers will improve the
infrastructure components, most value will be contributed
by the Cytoscape community as it enables Automation in
more apps and creates workflows that leverage Automation.
Note that the execution of Cytoscape functionality (as

both core features and apps) without requiring user
intervention is a milestone in the path to our long-term
goal of creating the so-called headless Cytoscape, which
can execute as a stand-alone service independent of a
keyboard, mouse, or display.

Summary
In this paper, we showed how Cytoscape Automation
extends Cytoscape to enable reproducible, shareable,
and extensible network biology workflows that can be
economically built using common programming languages
(e.g., Python, R, and Javascript) in common environments
(e.g., Jupyter and RStudio).
The key to Cytoscape Automation is its improvements

to facilities already offered in CyREST. We created
standards that (1) enable Commands and Cytoscape
apps to be called through CyREST and (2) encourage
high-quality documentation of CyREST endpoints using
state-of-the-art documentation systems (such as Swag-
ger) and interactive call prototyping. As a result, there
are now 34 Cytoscape apps that can be called via CyR-
EST, and over 150 Cytoscape Functions and 120 Com-
mands have been documented.
Using the specific examples in this paper and on the

Cytoscape Wiki, an app author can add Cytoscape
Automation to an existing app, and a bioinformatician
can create novel network biologic workflows as
orchestrations of Cytoscape functions, complex custom
analyses, and best-of-breed external tools and language-
specific libraries.

Otasek et al. Genome Biology (2019) 20:185 Page 13 of 15

http://nrnb.org

We expect that Cytoscape Automation will enable the
exchange and rapid evolution of workflows that
integrate Cytoscape-based network analysis and
visualization. The services, software, and documentation
resources that comprise the Cytoscape Automation eco-
system will play an integral role in making these work-
flows scalable, replicable, and of high value.

Additional file

Additional file 1: Review history. (DOCX 13 kb)

Acknowledgements
Sample workflows were contributed by Ruth Isserlin, Mark Grimes, and
Matthias König, winners of the 2017 CyREST Competition. RCy3 was created
by Alexander Pico, Tanja Muetze, Georgi Kolishovski, and Paul Shannon.
Py2cytoscape was created by Keiichiro Ono and Jorge Bouças. The entire
Cytoscape core development team improved the Cytoscape Commands
documentation, and the greater Cytoscape app developer community
created the collection of Automation-enabled apps. The authors particularly
appreciate the reviewers’ thorough and insightful comments and sugges-
tions, all of which substantially improved this article.

Review history
The review history is available as Additional file 1.

Authors’ contributions
DO implemented the Cytoscape Automation (including CyREST and Wiki
material). SM implemented the Commands portions of Cytoscape. AP and JB
implemented the R and Python harmonization libraries. DO, AP, and BD
authored this paper. BD led and supervised the Cytoscape Automation
project. All authors have seen and agreed to the final content of the
manuscript.

Funding
This work was supported with funding from the National Resource for
Network Biology (NRNB) award number P41 GM103504 and National Human
Genome Research Institute (NHGRI) award number R01 HG009979, both
assigned to Trey Ideker.
We confirm that the funders had no role in the study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
CyREST software is available as part of Cytoscape: https://cytoscape.org/
download.html [45]
Latest source code of cyREST: https://github.com/cytoscape/cyREST [46]
Fixed source code reference for CyREST (v3.8): https://doi.org/10.5281/
zenodo.2798856 [47]
The Cytoscape Automation examples: http://automation.cytoscape.org [12]
The Cytoscape Automation FAQ and Wiki: http://automation.cytoscape.org [12]
The Cytoscape Automation RCy3 harmonization library source: https://github.
com/cytoscape/RCy3 [48]
The Cytoscape Automation RCy3 official release: https://www.bioconductor.
org/packages/release/bioc/html/RCy3.html [10]
The Cytoscape Automation py2cytoscape harmonization library source:
https://github.com/cytoscape/py2cytoscape [9]
The Cytoscape Automation Python official release: https://pypi.org/project/
py2cytoscape [27]
License for cyREST, py2cytoscape, and all example workflows: MIT: http://
opensource.org/licenses/MIT [49]

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Medicine, University of California, La Jolla, San Diego, CA
92093, USA. 2University of California, San Francisco, San Francisco, CA 94143,
USA. 3Bioinformatics Core Facility, Max Planck Institute for Biology of Ageing,
Cologne, Germany. 4Gladstone Institutes, San Francisco, CA 94158, USA.

Received: 21 February 2019 Accepted: 9 July 2019

References
1. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.

Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res. 2003;13:2498–504.

2. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, et al.
The Galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2016 update. Nucleic Acids Res. 2016;44:W3–W10.

3. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al.
The Taverna workflow suite: designing and executing workflows of Web
Services on the desktop, web or in the cloud. Nucleic Acids Res. 2013;41:
W557–61.

4. PyPI – the Python Package Index. In: PyPI. Available: https://pypi.org/. [cited
10 May 2018]

5. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.
Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol. 2004;5:R80.

6. Cytoscape Automation Overview. Available: https://github.com/cytoscape/
cytoscape-automation. [cited 18 Apr 2018]

7. Ono K, Muetze T, Kolishovski G, Shannon P, Demchak B. CyREST:
turbocharging Cytoscape access for external tools via a RESTful API.
F1000Res. 2015;4:478.

8. Richardson L, Amundsen M, Ruby S. RESTful Web APIs: services for a
changing world. “O’Reilly Media, Inc.”; 2013.

9. Bouças J. py2cytoscape. In: Github. Available: https://github.com/cytoscape/
py2cytoscape. [cited 10 May 2018]

10. Pico A, Muetze T, Shannon P, Isserlin R, Pai S, Gustavson J, et al.
RCy3. In: Bioconductor. Available: https://bioconductor.org/packages/
release/bioc/html/RCy3.html. [cited 10 May 2018].

11. World’s Most Popular API Framework | Swagger. In: World’s Most
Popular API Framework | Swagger. Available: https://swagger.io/.
[cited 10 May 2018]

12. Pico A, Hanspers K, Isserlin R, Otasek D, Demchak B. Cytoscape
Automation. In: GitHub. Available: http://automation.cytoscape.org.
[cited 16 May 2019]

13. Carlin DE, Demchak B, Pratt D, Sage E, Ideker T. Network propagation
in the cytoscape cyberinfrastructure. PLoS Comput Biol. 2017;13:
e1005598.

14. Preston-Werner T. Semantic Versioning 2.0.0. In: Semantic Versioning.
Available: https://semver.org/. [cited 18 Apr 2018]

15. Cytoscape Automation FAQ - What is the difference between
Commands and Functions? In: Google Docs. Available: https://docs.
google.com/document/d/1QTrT-9ylhI4OX5DkauMo2ujLIqeg3
WDUDwl77KLtfVY/edit#bookmark=id.2sda98tk63j8. [cited 18 Apr 2018]

16. Command Tool — Cytoscape user manual 3.6.0 documentation.
Available: http://manual.cytoscape.org/en/3.6.0/Command_Tool.html.
[cited 18 Apr 2018]

17. JSR 370: JavaTM API for RESTful Web Services (JAX-RS 2.1) Specification.
Available: https://www.jcp.org/en/jsr/detail?id=370. [cited 18 Jul 2019]

18. Gourley D, Totty B, Sayer M, Aggarwal A, Reddy S. HTTP: the
definitive guide. Sebastopol: “O’Reilly Media, Inc.”; 2002.

19. Bassett L. Introduction to JavaScript object notation: a to-the-point guide to
JSON. Sebastopol: “O’Reilly Media, Inc.”; 2015.

20. Morris J. Cytoscape 3.3 Developers Tutorial. In: Cytoscape 3.3
developers tutorial; 2015. Available: http://www.cgl.ucsf.edu/home/
scooter/Cytoscape3DevTut/slides.pdf. [cited 10 May 2018].

21. Miredot | REST API Documentation Generator for Java. In: Miredot |
REST API Documentation Generator for Java. Available: http://www.
miredot.com/. [cited 10 May 2018]

Otasek et al. Genome Biology (2019) 20:185 Page 14 of 15

https://doi.org/10.1186/s13059-019-1758-4
https://cytoscape.org/download.html
https://cytoscape.org/download.html
https://github.com/cytoscape/cyREST
https://doi.org/10.5281/zenodo.2798856
https://doi.org/10.5281/zenodo.2798856
http://automation.cytoscape.org
http://automation.cytoscape.org
https://github.com/cytoscape/RCy3
https://github.com/cytoscape/RCy3
https://www.bioconductor.org/packages/release/bioc/html/RCy3.html
https://www.bioconductor.org/packages/release/bioc/html/RCy3.html
https://github.com/cytoscape/py2cytoscape
https://pypi.org/project/py2cytoscape
https://pypi.org/project/py2cytoscape
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
https://pypi.org/
https://github.com/cytoscape/cytoscape-automation
https://github.com/cytoscape/cytoscape-automation
https://github.com/cytoscape/py2cytoscape
https://github.com/cytoscape/py2cytoscape
https://bioconductor.org/packages/release/bioc/html/RCy3.html
https://bioconductor.org/packages/release/bioc/html/RCy3.html
https://swagger.io/
http://automation.cytoscape.org
https://semver.org/
https://docs.google.com/document/d/1QTrT-9ylhI4OX5DkauMo2ujLIqeg3WDUDwl77KLtfVY/edit#bookmark=id.2sda98tk63j8
https://docs.google.com/document/d/1QTrT-9ylhI4OX5DkauMo2ujLIqeg3WDUDwl77KLtfVY/edit#bookmark=id.2sda98tk63j8
https://docs.google.com/document/d/1QTrT-9ylhI4OX5DkauMo2ujLIqeg3WDUDwl77KLtfVY/edit#bookmark=id.2sda98tk63j8
http://manual.cytoscape.org/en/3.6.0/Command_Tool.html
https://www.jcp.org/en/jsr/detail?id=370
http://www.cgl.ucsf.edu/home/scooter/Cytoscape3DevTut/slides.pdf
http://www.cgl.ucsf.edu/home/scooter/Cytoscape3DevTut/slides.pdf
http://www.miredot.com/
http://www.miredot.com/

22. CIResponse. Available: https://github.com/cytoscape/cytoscape-
automation/wiki/App-Developers:-Cytoscape-Function-Best-
Practices#ciresponse. [cited 10 May 2018]

23. Preston-Werner T. Semantic Versioning 2.0.0. Available: https://semver.org/.
[cited 10 May 2018]

24. Project Grizzly. 13 Apr 2018. Available: https://javaee.github.io/grizzly/. [cited
10 May 2018]

25. Jersey - RESTful Web Services in Java. 10 Apr 2018. Available: https://jersey.
github.io/. [cited 10 May 2018]

26. Apache Karaf. Available: http://karaf.apache.org/. [cited 10 May 2018]
27. Bouças J. py2cytoscape. In: PyPI. Available: https://pypi.org/project/py2

cytoscape/. [cited 16 May 2019]
28. RCy3. In: Bioconductor. Available: https://www.bioconductor.org/

packages/release/bioc/html/RCy3.html. [cited 16 May 2019]
29. Cytoscape Automation for Script Writers. Github; Available: https://

github.com/cytoscape/cytoscape-automation/tree/master/for-scripters.
[cited 16 May 2019]

30. Python Notebooks. Github; Available: https://github.com/cytoscape/
cytoscape-automation/wiki#python-notebooks. [cited 16 May 2019]

31. Workshops and Use Cases. Github; Available: https://github.com/
cytoscape/cytoscape-automation/wiki#workshops-and-use-cases. [cited
16 May 2019]

32. 2017 CyREST Challenge. Available: https://github.com/cytoscape/cytoscape-
automation/tree/master/for-scripters/challenge-2017. [cited 6 May 2019]

33. Morris J, Jensen L, Doncheva N. stringApp. Available: http://apps.cytoscape.
org/apps/stringapp. [cited 10 May 2018]

34. Ono K, Sage E, Carlin D. Diffusion. Available: http://apps.cytoscape.org/apps/
diffusion. [cited 10 May 2018]

35. NDEx WebApp v2.4.0. Available: http://ndexbio.org. [cited 16 May 2019]
36. F1000Research. The Cytoscape Automation App article collection. Available: https://

f1000research.com/gateways/cytoscapeapps/automation. [cited 7 May 2019]
37. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0.

Nat Genet. 2006;38:500–1.
38. Altintas I, Wang J, Crawl D, Li W. Challenges and approaches for distributed

workflow-driven analysis of large-scale biological data: vision paper. Proceedings
of the 2012 Joint EDBT/ICDT Workshops. New York: ACM; 2012. p. 73–8.

39. Amstutz P, Crusoe MR, Tijanić N, Chapman B, Chilton J, Heuer M, et al. Common
workflow language. 2016;v1:0. https://doi.org/10.6084/m9.figshare.3115156.v2.

40. Gene Pattern Notebook – GenePattern Notebook. Available: http://
genepattern-notebook.org/. [cited 9 May 2019]

41. Roure DD, Goble C, Stevens R. Designing the myExperiment virtual
research environment for the social sharing of workflows. Third IEEE
International Conference on e-Science and Grid Computing (e-Science
2007); 2007. p. 603–10.

42. Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, et
al. Pathway enrichment analysis and visualization of omics data using g:
Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc. 2019:482–517.
https://doi.org/10.1038/s41596-018-0103-9.

43. diffusion. Github; Available: https://github.com/cytoscape/diffusion. [cited 16
May 2019]

44. cy-ndex-2. Github; Available: https://github.com/cytoscape/cy-ndex-2. [cited
16 May 2019]

45. Ono K. Download Cytoscape. In: Cytoscape.org. Available: https://cytoscape.
org/download.html. [cited 3 Jul 2019]

46. Otasek D, Ono K. cyREST. In: Github. Available: https://github.com/
cytoscape/cyREST. [cited 3 Jul 2019]

47. Otasek D, Ono K. CyREST: REST API App for Cytoscape. In: Zenodo. 2018.
doi:https://doi.org/10.5281/zenodo.2798856.

48. Pico A. RCy3. In: Github. Available: https://github.com/cytoscape/RCy3.
[cited 3 Jul 2019]

49. opensource.org. The MIT License | Open Source Initiative. Available: https://
opensource.org/licenses/MIT. [cited 3 Jul 2019]

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Otasek et al. Genome Biology (2019) 20:185 Page 15 of 15

https://github.com/cytoscape/cytoscape-automation/wiki/App-Developers:-Cytoscape-Function-Best-Practices#ciresponse
https://github.com/cytoscape/cytoscape-automation/wiki/App-Developers:-Cytoscape-Function-Best-Practices#ciresponse
https://github.com/cytoscape/cytoscape-automation/wiki/App-Developers:-Cytoscape-Function-Best-Practices#ciresponse
https://semver.org/
https://javaee.github.io/grizzly/
https://jersey.github.io/
https://jersey.github.io/
http://karaf.apache.org/
https://pypi.org/project/py2cytoscape/
https://pypi.org/project/py2cytoscape/
https://www.bioconductor.org/packages/release/bioc/html/RCy3.html
https://www.bioconductor.org/packages/release/bioc/html/RCy3.html
https://github.com/cytoscape/cytoscape-automation/tree/master/for-scripters
https://github.com/cytoscape/cytoscape-automation/tree/master/for-scripters
https://github.com/cytoscape/cytoscape-automation/wiki#python-notebooks
https://github.com/cytoscape/cytoscape-automation/wiki#python-notebooks
https://github.com/cytoscape/cytoscape-automation/wiki#workshops-and-use-cases
https://github.com/cytoscape/cytoscape-automation/wiki#workshops-and-use-cases
https://github.com/cytoscape/cytoscape-automation/tree/master/for-scripters/challenge-2017
https://github.com/cytoscape/cytoscape-automation/tree/master/for-scripters/challenge-2017
http://apps.cytoscape.org/apps/stringapp
http://apps.cytoscape.org/apps/stringapp
http://apps.cytoscape.org/apps/diffusion
http://apps.cytoscape.org/apps/diffusion
http://ndexbio.org
https://f1000research.com/gateways/cytoscapeapps/automation
https://f1000research.com/gateways/cytoscapeapps/automation
https://doi.org/10.6084/m9.figshare.3115156.v2
http://genepattern-notebook.org/
http://genepattern-notebook.org/
https://doi.org/10.1038/s41596-018-0103-9
https://github.com/cytoscape/diffusion
https://github.com/cytoscape/cy-ndex-2
https://cytoscape.org/download.html
https://cytoscape.org/download.html
https://github.com/cytoscape/cyREST
https://github.com/cytoscape/cyREST
https://doi.org/10.5281/zenodo.2798856
https://github.com/cytoscape/RCy3
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT

	Abstract
	Introduction
	Design
	New CyREST access to Cytoscape apps ❶
	New CyREST access to Cytoscape Command script operations ❷
	Improved documentation infrastructure and content standards ❸
	New interactive CyREST call prototyping ❹
	Consistent mechanisms for calling CyREST and receiving return values ❺
	Improved coverage of core Cytoscape functionality ❻

	Implementation
	Defining endpoints
	Interfacing to Swagger
	Upward compatibility with previous CyREST
	Calling endpoints
	Workflow examples

	Results
	External workflows enabled
	Cytoscape Automation apps

	Discussion
	Cytoscape Automation and workflow systems
	Workflow publishing
	User experience

	Future development
	Summary
	Additional file
	Acknowledgements
	Review history
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

