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Synchronization in distributed applications with shared, highly mutable replicated state often

requires complex engineering to maintain low latency for the propagation of updates. At

their core, distributed applications with replicated state need to implement some form of

version control to be able to deal with concurrent updates and still maintain some notion of

consistency. This need leads to complex and ad-hoc code that is hard to maintain and easy

to break. To simplify the creation of such applications, I propose the Global Object Tracker

(GoT) model, an object-oriented programming model based on causal consistency, whose

design and interfaces mirror those found in decentralized version control systems: a version

graph, working data, diffs, commit, checkout, fetch, push, and merge. I have implemented

GoT in a framework called Spacetime, written in Python.

GoT is designed to ensure causal consistency with low latency updates in all sorts of distributed

application topologies. These include peer-to-peer and applications subject to, or requiring,

temporary isolation of nodes. The key to being able to do this is a novel approach to storing

and merging concurrent updates within the version graph. GoT stores the version history as

a graph of updates instead of calculating the whole state at each version. This allows GoT

to send delta updates between nodes without having to calculate the deltas. The ability to

send delta updates along with the lack of heavy serialization and deserialization allows for
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the updates to be quickly available. The final state at each node is only constructed when

needed.

In addition to the lower latency of updates, GoT addresses three concerns. First, object-based

version control systems are typically not suitable for peer to peer networks. The merge

strategies used are incompatible with the communication patterns seen in peer to peer. GoT

addresses this concern with a novel approach to merging concurrent updates, called the

small-step merge. Second, GoT makes the state changes in the system more visible, allowing

for powerful tools such as interactive debuggers to be built and integrated, helping developers

find and fix errors. Finally, GoT provides these benefits to not just push-style communication

but also pull-style, allowing for isolation and partition recovery.

In its traditional form, GoT is impractical for real systems, because of the unbounded growth

of the version graph. I present my solution to this problem that adds constraints to GoT

applications but makes the model feasible in practice. I show that Spacetime is not just

feasible, but viable for real applications, and present performance results showing low update

latency.
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Chapter 1

Introduction

Distributed computing is the backbone of a wide variety of large-scale applications seen

today: online games, e-commerce sites, video conferences, self driving cars, search engines,

banking, and many, many more. All of these distributed computing scenarios revolve around

a shared computation state that is worked upon by distributed components that communicate

over the network. Over the years, through the learnings in both academia and the industry,

several common architectural styles have emerged for distributed applications: client-server,

peer-to-peer, map-reduce, etc. Different architectural styles are suited for different categories

of distributed applications. State synchronization, however, is a common problem that all

distributed systems need to address in some form or another and different architectural styles

impose different constraints on how to solve it.

In this work, I am particularly interested in the problems associated with state synchronization

for a specific category of distributed applications that are characterized by first, the existence

of many components collaborating, or competing, over a shared, long-lived, and highly

mutable state, second, use a specific form of communication guarantee popularly called

causal consistency [3], and finally, have a need to account for, or benefit from network
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Figure 1.1: Examples of virtual environments for AI-bot competitions. Left: game inspired by
the classic Attari’s Space Race game. Right: traffic simulation with different fleet operators.

isolation. Examples of such systems include online multiplayer gaming, distributed multi-

agent simulations, geo-replicated databases and more. Examples of such applications are

shown in Figure 1.1.

1.1 Application Domains

1.1.1 Online Multiplayer Video Games

Ever since Spacewar! was programmed and released in 1962, video games have been gaining in

popularity. For most of their existence though, videos games have primarily been applications

designed to be operated from a single machine or device. In 1974, Mazewar became the first

networked game, where players at different computers, connected over a serial cable, could

interact with the same virtual space. Throughout the 1970s and 80s, a number of networked

games were released, but it was not until the ubiquity of the Internet in the early 2000s, that

online multiplayer games became popular. Today, almost every video game released has some

form of multiplayer built into it. eSport competitions using online multiplayer games such as

League of Legends, Fortnite, and Overwatch are a rapidly growing industry generating more
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than $1 Billion in revenues in 2019.1

Online multiplayer games, both big and small, are, by definition, distributed systems that

have shared, long-lived, highly mutable state. For each player in the game to take the best

decision that they can, they need to know the latest state of the world constantly, so the

shared state needs to be available locally. When the state of the world changes, those changes

need to quickly propagate to all players, as new decisions by these players might be affected by

the updates. Additionally, inconsistent changes made by different agents need to be resolved

and the appropriate semantics for resolving inconsistencies is highly dependent on the logic of

the game. The consistency model, which defines the rules for the communication of updates

in a distributed system, is therefore, an important software engineering consideration in

multiplayer games.

1.1.2 Multi-agent Simulation

Modeling and simulations are vital tools in strategic and tactical decision making, especially

when the decisions have to be made over systems that are dynamic and complex. They help

improve the understanding of these systems and in many cases make non-trivial predictions

of possibilities within the system.

Agent based simulations are a type of simulation strategy where modeling researchers describe

the low level rules that define the behaviors of simulated actors, called agents, and then

observe the structures and states reached by the interaction of these agents with other agents

and their environment. Distributed multi-agent simulations deploy these low level agents in

different machines that interact over the network.

Like online multiplayer games, the agents in any multi-agent simulations also have a long
1https://newzoo.com/insights/trend-reports/

newzoo-global-esports-market-report-2019-light-version/

3

https://newzoo.com/insights/trend-reports/
newzoo-global-esports-market-report-2019-light-version/


lived, shared space that mutate often. Since the goal of the simulation is to make accurate

predictions over the shared state, the agents need the latest state and updates from each

agent must propagate to all other agents as quickly as possible. Concurrent updates have to

be reconciled in a manner that is specific to each simulation. Finally, the consistency model

is an important consideration as wrongly ordered updates can negatively affect the validity

of the simulations.

1.1.3 Geo-replicated Databases

Geo-replication is a strategy often used by online service providing companies to support

improved access to their content for users around the globe. The underlying reason is that,

since the latency of network communication increases with the physical distance between the

user and the servers, quality of service provided can be improved by moving the physical

servers closer to the users, reducing this latency. The content on these servers is kept

up-to-date using data synchronization between database nodes, and can be processed to be

network efficient.

The acceptable delays of replication between these databases depends highly on the use of

these databases themselves. For example, geo-replicating the number of likes on a youtube

video does not require sub-second transfers, however, banking transactions or physical resource

allocation systems, such as booking flight tickets or hotel rooms, might require faster transfers

in order to avoid the rollbacks.

Depending on the application, geo-replicated databases can have large amounts of data, which

is the shared state, and might have to handle a large number of read or write transactions per

second. Reconciliation of conflicting updates is also often required. Significant research in

both academia and industry has been made to build consistency models that aim to optimize

the network efficiency of geo-replication.
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1.2 Challenges in State Replication

All these categories of distributed applications have had many decades of industry attention,

especially in the gaming industry and in military R&D. The main problem that needs to

be solved in these applications is correct data synchronization with as good performance

as possible. While the problem is easy to formulate, its solution in practice poses many

challenges.

First, there is the problem of network latency: a typical ’ping’ between the US West

Coast and Amsterdam is 130ms, of which 67% is spent in fiber optic cable at almost the

speed of light2. Any attempts to implement strong data consistency will result in severely

slowing down the local execution of each component. For that reason, strong consistency is

usually not followed; instead, these applications use weaker consistency approaches such as

sequential consistency [59], eventual consistency [107], causal consistency [3], and others, all

of which makes dealing with the shared state more difficult, but provide higher availability.

Second, network delays increase noticeably with the amount of data that is sent across.

While compression helps, ultimately the data that needs to be sent depends heavily on the

application itself. This knowledge has the perverse effect of increasing the complexity of the

applications, as performance-oriented engineers look for application-specific opportunities

to reduce the amount of data that is transferred across the network. For example, a server

may need to maintain complex information about the state of each client, so to tailor state

updates for each of them. Third, there are no general rules for when and how to synchronize

the data; the right approach depends on the application. The naive approach of synchronizing

every single state change may result in unacceptable application performance. Typically,

well-engineered games and simulations buffer changes that are sent only and exactly when

needed – again, typically, at the expense of increased complexity in the code.
2https://wondernetwork.com/pings
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These problems are well encapsulated in the most famous theorems in distributed computing:

the CAP theorem [45], and its more generalized variation, the PACELC theorem [1]. In

informal terms, these theorems state that software engineers building distributed systems

must choose between latency – the time taken to receive a response for a request over the

network – and consistency – the ability to read the latest write that has been made to the

shared state.

Another common problem in distributed systems with a highly mutable shared space is the

problem of network independence and isolation. In some distributed systems such as mobile

games, collaborative documents, and geo-replicated datastores, it is not always possible for

the components to stay connected. In the design of such distributed systems, isolation of

components is an important aspect to consider. Take for example a collaborative document,

shared between multiple users. When one user edit, the changes made must be propagated to

all other users. A user that is offline or chooses to be offline should still be capable of making

edits that can synchronize when reconnected. Moreover, resources should not be wasted

by online components in trying to connect to the offline ones. A model where the offline

components choose when to synchronize their state is better suited for these applications

but designing such a system typically implies that the servers (or peers in a non server-client

architecture) must hold the state of every node that connects to it. The engineering of these

systems can be complex and error-prone.

While these are system design aspects that make state replication hard, the software engi-

neering problems should not be forgotten. Distributed systems are notoriously difficult to

get right. The non-determinism of update orderings due to network conditions, including

partitions makes reasoning over the changes to shared state hard, and bugs hard to track.

Efficient observation of the shared state and the operations over it is necessary.
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1.3 Decentralized Version Control for Replication

My approach to tackling these problems is based on a simple idea: that synchronizing

mutable state among distributed components can be modeled as a problem of version control.

This idea is not new. Version Control has been proposed as a model to synchronize state

replication of application objects in distributed systems before. Examples include Concurrent

Revisions [19, 20], TARDiS [30], and Irmin [53]. The core idea in all these approaches is that

the history of the updates to the state of the replicated objects is stored as a Directed Acyclic

Graph (DAG) known as version graph (also known as a revision graph, revision history, or

version history). Replicas synchronize state by sharing updates to the DAG, often as diffs,

reducing the network overhead significantly. Version control gives each node in the system

both a means to reason about updates over time which allows them to detect and resolve

write-write conflicts, and a means to reduce the cost of communication by sharing delta

encoded information.

All the models mentioned, however, use a centralized approach for version control. History

of operations is maintained in a central server, and components in the distributed system

synchronize changes over this version history. In contrast, in my approach I model the

synchronization of mutable state between distributed components as a decentralized version

control system with a copy of the version history locally available to every component in

the distributed system, an idea made popular by tools such as Git. For example, if two

components, C1 and C2, have identical copies of the same object O1, and then both change

the state of that object locally, both changes are locally valid and recorded in the local version

history I call dataframes ("repositories" in Git). Components can push/pull the changes

to other dataframes in the network, at which point changes will be merged and conflicts

resolved.

Modeling shared-space distributed computing as a distributed version control problem also
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has the added advantage of providing a clear state of the replicated objects at each distributed

node along with a clear understanding of the changes that occur to the version graph in the

form of an update history. This allows developers reason over past state changes, something

that is difficult in many distributed programming models.

I take this simple idea, and formalize a programming model called Global Object Tracker

(GoT) that captures a simplified version of Git for in-memory applications objects replicated

among multiple components.3 In essence, GoT is the formalization of an object-oriented

programming model based on causal consistency with application-level conflict resolution

strategies whose elements and interfaces are taken from decentralized version control systems.

GoT is at the core of a framework I have developed called Spacetime that supports distributed

components doing sub-second commit, push, and pull operations. Spacetime is currently

implemented in Python, as that is the main language of the Artificial Intelligence community,

but GoT is inherently language independent.

While the idea is simple and appealing, there are a few challenges associated with modeling

replicated objects as a version control problem. A large category of those challenges is related

to the feasibility of the model in practice. The important feasibility problems are: (a) how

to deal with merge conflicts without live human intervention (b) how to deal with the fast

explosion of revisions that are stored in the version graph and (c) how to maintain the

correctness of decentralized version graphs in complex network topologies such as peer to

peer networks.

With these challenges in mind, I formulate my thesis statement in the following way:

GoT, a programming model for replicated objects, is capable of supporting

causal consistency with isolation including in peer to peer networks, while also

supporting observability and low update latency. No existing approach is capable
3According to https://github.com/git/git/blob/master/README.md, one of the several meanings of

Git is Global Information Tracker. I re-appropriated that meaning for objects.
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of supporting all of this.

It is not my intention to replicate and formalize the complexity of Git. For example, I

do not explore Git branches or capabilities of going "back in time" by checking out older

versions while the application is running. The focus of this work is the precise formalization,

implementation, and assessment of the basic operations of decentralized version control on

a uni-directional branch for purposes of giving a strong organizing principle to replicated

distributed objects. To that end, my work makes the following contributions:

• I present a new programming model for replicated objects based on a popular decentral-

ized version control system, Git. While Git is widely-known for versioning files, its use

in real-time replicated objects manipulated by programs poses a number of challenges,

which are discussed and addressed in GoT.

• I identify and solve the challenges of GoT in order to make it feasible in practice.

• I present a formal specification of this Git-like programming model, GoT. To the best

of my knowledge, this is the first time such a model has been formalized.

• I use my formal model to prove that my unique approach to solve the challenges of

GoT, works in theory.

• I demonstrate using micro-benchmarks that GoT is feasible in practice and that

Spacetime performs remarkably well and can be tuned for consistency at the lowest

possible latency.

Finally I provide a replication package for Spacetime that is publicly available at https:

//github.com/Mondego/spacetime.
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1.4 Organization of this Dissertation

The thesis is organized into eleven chapters. Chapter 2 provides a strong motivation for

using version graphs for distributed systems. Chapter 3 provides a broad background in

the alternate approaches taken by both the industry and academia to optimize consistency

and latency in distributed systems. Chapter 4 introduces the Global Object Tracker (GoT)

programming model, details the developer-facing features that it provides, and a formal model.

Chapter 5 talks about the implementation of GoT – Spacetime – and the optimizations

made in it. Chapters 6, 7, and 8 elaborate on three challenges to the implementation of

GoT. In Chapter 9 I discuss observability of state in GoT and Spacetime with the help on an

interactive debugger built on GoT called GoTcha. Finally, I discuss several experiments and

micro-benchmarks performed on Spacetime in Chapter 10 and conclude in Chapter 11.
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Chapter 2

Background and Motivation

Before we dive into the GoT programming model, it is essential to understand the role it

needs to play in the engineering of the systems discussed in the previous chapter. The most

critical design considerations are the speed of propagation and the correct application of the

updates. We argue that the engineering efforts to deal with these considerations are typically

rudimentary forms of version control and that distributed applications that have causally

consistent replicated objects have, at their core, a problem of version control.

2.1 Causal Consistency

Causal consistency is a consistency model first formulated in 1995 [3], where updates are

ordered in a partial order that reflects the causal relationship between updates. Any update

made at a node is causally related to the updates read by the node at the time of the update.

A remote node can only receive this update when it has read all the causally linked updates

that happened before it. Updates that are not causally linked are considered concurrent

updates and can be received by nodes in any order. In systems like multiplayer games and
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distributed simulations, this causal relation is essential as it preserves the importance of the

actions performed by the players or the agents.

Causal consistency is typically ensured by padding updates with metadata that are vector

clocks [70], version vectors [82], etc. help construct dependency graphs. The dependency

graphs in causally consistent distributed systems are identical to the version graphs built and

maintained by the version graphs in a version control system. The version graphs capture

the causal dependency of updates made to the file-system or the shared object space. The

root of the version graph is the initial state of the system, and each update builds on the

version that it reads to create a new version that is causally related. Concurrent updates

create concurrent versions in the graph that act as forks in the version graph, similar to any

dependency graph.

2.2 Consistency versus Latency

The famous CAP theorem [45] by Eric Brewer states that when building distributed stores,

engineers can only choose to optimize for two out of three properties: Consistency, Availability,

and Partition Tolerance. In this context, consistency is the ability to read the latest write.

Availability guarantees that all requests to non-failing nodes return a response and Partition

tolerance is the ability for the system to continue operation over unpredictable network failures

and delays. In any large scale system, however, Partition tolerance is a must. Therefore, the

choice is between Consistency and Availability.

It is important to note that the CAP theorem, though often cited, is a rule that defines

the choices of the system only under the condition of partition. Without partitions, both

Consistency and Availability, as defined, can be provided. Therefore, a more relevant theorem

is the PACELC theorem [1], which is an enhancement to the CAP theorem. It states that a
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distributed system, when not partitioned, must choose between latency and consistency, with

latency defined as the time taken for a component to receive a response to a request from

the distributed store. In the case of replicated shared-space systems like multiplayer games,

simulations, and geo-distributed databases, there is typically no single data store. Instead,

they have replicas at each component in the system, for which both consistency and latency

are essential. For example, in an online multiplayer game, the updates made by one player

have to be visible (consistency) as soon as possible (latency) by another player.

2.3 Update Latency

Optimizing for lower latency at the cost of consistency implies that components may receive

stale data during requests, which is detrimental to the performance of shared space applications

that need consistency at the lowest latency possible, a notion we refer to as update latency

in the rest of the paper. Update latency is the time taken for an update to the state in one

component in a distributed system to be observed in another component.

Update latency is different from the notion of both consistency and traditional latency.

Consistency only includes the notion of the latest write and does not include the concept

of time. Traditional latency only includes the notion of the time for response and provides

no information about the content of the response. Update latency aims to encapsulate both

concepts, and shared space applications require systems optimized for update latency. Update

latency can be broken down into many independent steps, each having a different impact on

update latency, and require different solutions.

The first step is to prepare an update, which may include serializing state or encoding

operations into formats that can be transported over the network. The smaller the update,

the less time is typically spent in this stage. Optimizations such as difference calculators

13



typically used in geo-replicated databases can increase this cost. The second step is the

transportation of an update. While the network latency is unavoidable, the size of the

update is again significant. Finally, the update received has to be deserialized or decoded

and reconciled with the local state at the receiver. It can be seen that update latency can be

reduced if the cost of communication and reconciliation is made low.

As a driving example to explain how to reduce update latency, let us consider a multiplayer

game where players, Alice and Bob, experience the same virtual space. Online multiplayer

games have strong requirements on the availability of the shared objects, as the responsiveness

of the environment is of utmost importance. As such, object replication is a necessity. So is

latency minimization.

2.3.1 Reducing Cost of Reconciliation

When Bob takes an action, the local state of the game is updated. When Bob and Alice’s

game states synchronize, the updates that Bob made are sent to Alice. When Alice receives

these changes, they must be applied to the local state. The process of applying a remote

update to a local state such that it is then available for the local code to use is what we call

reconciliation. Reconciliation of states is not the same as conflict resolution, although conflict

resolution is an integral part of it. When multiple updates are concurrently made and sent to

a node, the differing states must be resolved and is called conflict resolution. In addition to

conflict resolution, reconciliation includes the cost of deserializing updates and the cost of

applying an update, conflicting or not, into the local state.

Reconciliation is typically made fast by eliminating, limiting, or ignoring the conflicts that

can occur. For example, the last write wins reconciliation strategy, by design, ignores all

conflicts. Instead, every write takes precedence over the update that preceded it. Conflict-free

replicated data types [100] (CRDTs) and Global Sequence Protocol [46] are other examples
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of a reconciliation strategy that are fast as they avoid conflicts altogether. Unfortunately, it

is not always possible to eliminate or ignore conflicts. The conflict resolution strategy used

varies from domain to domain and is tied to the system’s business logic. Some domains, for

example, banking, might require expensive conflict resolution strategies. While this is not

to say that conflict resolution should be forgotten, a better approach would be to leave the

conflict resolution as a choice to the developers who can optimize their approach based on

domain knowledge.

Another way to reduce the cost of reconciliation is to avoid heavy processing of the updates

that are introduced. Massive operations or large state deltas are typically expensive to

reconcile and can slow down the availability of updates at the receiving nodes. Sending or

receiving redundant states can, therefore, increase the cost of reconciliation.

2.3.2 Rules for Reducing communication

Reducing the cost of communication is a crucial design goal for reducing update latency

in distributed systems. Often, the nodes that need to synchronize the state are located

geographically far apart, and latency between these nodes is unavoidable. As explained

earlier, the network latency between Frankfurt, Germany, and Los Angeles, USA, is about

145ms. If Alice and Bob, are located in Frankfurt and Los Angeles, respectively, updates

made by Bob will only be visible to Alice, at best, 145ms later. This latency makes

communicating redundant information costly, as unnecessary data may further delay the

reception of relevant information. Reducing communication also allows for faster processing

of updates as serialization and deserialization costs are typically lower when updates are

smaller.

While techniques such as compression certainly help reduce the data transmitted, to effectively

reduce the cost of communication, nodes must make only the required synchronizations and
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with minimal redundancy. To understand how to achieve this, we identify three rules that

any node in the system must follow.

• R1: A Node must take/receive only objects it needs. (Interest Management)

• R2: A Node must take/receive only changes it does not already have. (Delta Updates)

• R3: A Node must take/receive only when it requires updates. (Isolation)

We explain each of these ideal requirements in more detail.

R1: Interest Management

The nodes in the system should receive updates to only the slice of the state that is

relevant. This requirement requires techniques that partition updates by interest space. This

requirement is known in games engineering as interest management. If Alice and Bob are

in different zones of the game world, or they are visually blocked by a virtual wall, the

updates that Bob makes do not need to be sent to Alice, as they do not affect her view of the

world. Multiplayer games, especially massively multiplayer games, use many techniques for

interest management. Outside multiplayer games, techniques such as subscription channels

(publish/subscribe), views (relational databases), and event-driven programming, are often

used to slice the replicated state for each node in the system.

R2: Delta Updates

This requirement deals with avoiding sending state that did not change and requires techniques

that partition updates by time. For example, when Bob moves in the game world, it is

unnecessary to send to Alice the entire state related to Bob; only his new position needs to

be sent. This update can be communicated either as delta-state, like in δ-CRDTS [4], or as a
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domain-specific command that encodes some semantic meaning (e.g., MOVETO(200, 300)).

When Alice’s node receives the update, it can apply the update to its local replica allowing

Alice to see the action that Bob took.

R3: Isolation

This requirement also calls for nodes to have autonomy in deciding when to incorporate

changes made by other nodes. For example, let us assume that Alice’s game refreshes at

30 frames per second. (the value is typically tied to the hardware capabilities of Alice’s

machine.) This means that the game renders a new frame on the screen every 34ms. Let

us now assume Bob is moving in a straight line and generates four MOVETO commands in

34ms. When Bob sends the updates to Alice, only the last update is incorporated, and the

rest are discarded. This means that three of the updates were redundant information. Even

if the command was one that requires the previous state, for example, MOVEBY(100, 0),

the four MOVEBY commands could have been combined into one MOVEBY(400, 0) update.

The need for autonomy can also come from the unavoidable event of network partitions. If

the connections between the players break, it should be possible, in some cases, for players

to continue to play in disconnected mode and synchronize later. When they do synchronize

after the partition, the node should receive all the individual updates that it missed, but

instead receive a single, much larger update.

2.3.3 Meeting the Requirements

The difficulty of meeting these three requirements differs with the style of communication

used. In general, there are two styles of communication: push (Alice receives updates made

by Bob when Bob sends them to Alice), and a pull (Alice receives updates made by Bob

when Alice gets them from Bob); different requirements are easier to implement in each style.
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In both push and pull, the requirement (R1), interest management, is relatively straightforward.

The only challenge is in defining the interest, especially when it changes dynamically. The

node generating the update needs to know if the remote nodes receiving the update require

the information. Predefined or programmable interests (subscribe channels, for example) are

a way to achieve this.

Requirement (R2), delta updates, is much easier to implement in push style than in pull

style. In push style, the creator of the update initiates the communication with the other

nodes. Because the node that pushes is the node where changes occurred, it is relatively easy

to know what changed since the last update was sent. Even in the case of partition, a simple

acknowledgment based delivery protocol can ensure delta based communication. In pull style,

however, delta updates are a lot harder. Since the receiver of updates initiate requests, the

sender must keep track of all updates sent to the receiver, for every receiver, since the last

request.

Requirement (R3), autonomy and recovery from network partitions, is hard to achieve in

push style, but trivial in pull style. In many cases, nodes pushing updates do not know if

and when the receiving nodes want updates. For example, if Alice enters a "freeze" mode,

Bob will not know that it should stop pushing updates until Alice’s node informs Bob’s node.

In pull style, however, Alice’s node will simply make the request to Bob’s node when needed,

allowing requirement (3) to be trivially satisfied.

Moreover, in the face of network partitions, it becomes the responsibility of the pusher node

to store the potentially increasing set of updates while trying to re-establish the connection.

Additionally, if a consumer restarts and requires the entire state to be synchronized, the

producer has no way of knowing that the consumer requires the entire state. The updates

that were in the queue have just been invalidated. In pull communication, the consumers are

responsible for requesting updates. If there is a network partition, the producers can continue

while the consumers have to stop. No effort is lost by the producers in trying to re-establish
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connections. Consumers can express the type of synchronization required and can request

the complete state after restarts. This partition tolerance is especially useful for peer to peer

applications that can continue operations while some nodes are down or unreachable.

Since sending state changes in the form of delta updates is an important and necessary

optimization for replicated state applications, most replicated state applications use push-style

communications for the state that requires immediate attention, and leave pull style only for

large, more permanent data such as immutable assets. However, as argued above, push-style

makes it hard to achieve node autonomy.

2.4 Rudimentary Forms of Version Control

In this section, we argue that the engineering efforts to deal with the considerations mentioned

are typically rudimentary forms of version control and that distributed applications that have

causally consistent replicated objects have, at their core, a problem of version control. To

understand this, we use a simple virtual environment example: Attari’s-inspired multi-bot

Spacerace. We re-use this same example again when demonstrating the features of the Global

Object Tracker programming model.

The Spacerace game is about a player-controlled spaceship navigating the dangers of an

asteroid field. The player typically starts at the bottom of the screen and works their way

up past asteroids that are moving at varying speeds along the path. The player is given a

win if they manage to reach the top of the screen without crashing. In a multiplayer version,

multiple players share the same level and control different spaceships. They may compete to

reach the top of the screen first.
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Figure 2.1: Attari’s Space Race game.
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Figure 2.2: A simple architecture for Spacerace.

2.4.1 Spacerace: Basic Design

The most straightforward design that can be used to implement Spacerace is a traditional

server-client topology, with the server being a data store acting as the shared-memory for the

environment. The components coordinating over this shared-memory are the player clients

to take input and play the game, visualizers to have visual feedback of the game state, and a

physics server component, responsible for enforcing the rules of the game, that can house the

in-memory data store. The interaction between the components is shown in Figure 2.2

Let us first take a look at the client-side. In Figure 2.3 we see four small functions, a

player_client function (line 1) which acts as the main function, send_updates (line 11) that

sends updates made by the player to the server every second, receive_updates (line 20)

that synchronizes the state of the local game with the server, and draw_state (line 21) that

shows the state of the game to the player. The local state of the game is maintained in the

game_state parameter (line 1) that is then passed around to all other functions.

The player_client first connects to the physics servers (line 2) and then launches the other

three functions as concurrent threads (lines 3 – 6). It then runs on a loop, taking input from
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1 def p l aye r_c l i en t ( se rver , game_state , p layer_id ) :
2 s e r v e r . connect ( )
3 Thread ( t a r g e t=send_updates ,
4 args=( se rver , game_state , p layer_id ) ) . s t a r t ( )
5 Thread ( t a r g e t=rece ive_updates , args=( server , game_state ) ) . s t a r t ( )
6 Thread ( draw_state , args=(game_state , frame_time ) ) . s t a r t ( )
7 while True :
8 key = take_input ( )
9 update = game_state . record_key ( key )

10
11 def send_updates ( se rver , game_state , p layer_id ) :
12 sync_time = 1 # Send updates once every second .
13 while True :
14 s t a r t = time . per f_counter ( )
15 delta_update = game_state . get_and_clear_delta ( )
16 i f delta_update :
17 s e r v e r . send ( player_id , delta_update )
18 s leep_remaining ( s ta r t , sync_time ) )
19
20 def rece ive_updates ( se rver , game_state ) :
21 sync_time = 1 # Assuming sync wi th s e r v e r every second .
22 while True :
23 s t a r t = time . per f_counter ( )
24 resp = s e rv e r . send_pul l_request ( )
25 resp . wait_for_complete ( )
26 game_state . r ep l a c e ( re sp . a s t e r o i d s , re sp . sh ip s )
27 s leep_remaining ( s ta r t , sync_time )
28
29 def draw_state (window , frame_time ) :
30 window = GameWindow( frame_time )
31 frame_time = 1.0/20
32 while True :
33 s t a r t = time . per f_counter ( )
34 window . p r ed i c t ( frame_time )
35 window . draw ( )
36 s leep_remaining ( s ta r t , frame_time )

Figure 2.3: Simple design - Client side.
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the user and applying it to the game_state (lines 8, 9). The send_updates thread runs on a

loop and sends all unsynchronized delta changes that have been applied to the game_state by

the inputs from the player, to the physics server (lines 14 – 18). The receive_updates thread

sends a pull request to the server asynchronously (line 24) and replaces the asteroids and

ships in the game_state with the list of asteroids and ships that it receives in response (line

26). The draw_state thread visualizes the game state every 50ms trying to achieve a frame

rate of 20 frames per second. When there are no new updates in a draw, it extrapolates the

state to keep the animations looking smooth at the client-side (line 34).

On the server-side, as seen in Figure 2.4, the server (line 18) is the driving code. The state of

the entire game is stored in an object of type ServerGameState (definition in lines 1 – 16). It

consists of two sets of objects - ships and asteroids (lines 3, 4). In the server, the game_state

object holds an instance of ServerGameState (line 19). Three parallel threads are launched

(line 20 – 22) to handle three aspects of the server, after which the main thread only listens

for new clients that connect (line 25, 26). When a new client connects, it is immediately

added to the ServerGameState object using the add_client method (line 9).

The first thread is the physics of the game (line 27), which executes on a loop (typically

called the game loop). The physics function first waits for at least two ships to join (line

28–29). When at least two ships are in the state, it iterates over the game, invoking the tick

method in game_state until the game_state has signaled the end of the game (line 32–35).

In each tick, the game_state moves the asteroids and ships and checks if any player has won

the game or if every player has crashed. If either of those conditions is true, the game is over,

and the game_state signals this to the physics thread (lines 13 – 16). The serve_requests

(line 38) thread receives requests for the game state (line 40) and responds by sending the

current state of the asteroids and ships (line 41). The third thread, receive_updates (line 43),

is responsible for receiving the updates from the clients and applying them to the game_state

(line 45).
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1 class ServerGameState ( ) :
2 def __init__( s e l f ) :
3 s e l f . a s t e r o i d s = [ Astero id ( ) for i in range (NO_ASTEROIDS) ]
4 s e l f . s h ip s = dict ( )
5
6 def add_cl ient ( s e l f , c l i e n t , sh ip ) :
7 s e l f . s h ip s [ c l i e n t . c id ] = sh ip
8
9 def apply_cl ient_update ( s e l f , c l i e n t , update ) :

10 s e l f . apply_delta ( update )
11
12 def t i c k ( s e l f ) :
13 s e l f . move_asteroids ( )
14 has_winner = s e l f . move_ships ( )
15 game_over = ch e ck_co l l i s i o n s ( a s t e r o i d s , sh ip s )
16 return has_winner or game_over
17
18 def s e r v e r ( ) :
19 game_state = ServerGameState ( )
20 Thread ( t a r g e t=phys ics , a rgs=(game_state ) ) . s t a r t ( )
21 Thread ( t a r g e t=rece ive_updates , a rgs=(game_state ) ) . s t a r t ( )
22 Thread ( t a r g e t=serve_requests , a rgs=(game_state ) ) . s t a r t ( )
23 while True :
24 c l i e n t = rece ive_connect ion ( )
25 game_state . add_cl ient ( c l i e n t , Ship ( c l i e n t ) )
26
27 def phys i c s ( game_state ) :
28 while len ( game_state . sh ip s ) < 2 :
29 time . s l e e p (1 )
30 has_winner = False
31 done = False
32 while not done :
33 s t a r t = time . per f_counter ( )
34 done = game_state . t i c k ( )
35 s leep_remaining ( s ta r t , frame_time )
36 game_state . print_winner ( )
37
38 def s e rve_reques t s ( game_state ) :
39 while True :
40 c l i e n t = rece ive_sta te_reques t ( )
41 c l i e n t . send ( s e r i a l i z e ( game_state . sh ips , game_state . a s t e r o i d s ) )
42
43 def rece ive_updates ( game_state )
44 while True :
45 game_state . apply_delta ( r e c e i v e_de l t a ( ) )

Figure 2.4: Simple design - Server side.
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This simple approach is straightforward in its design. However, all players are synchronizing

the entire state at each frame. If there are a large number of asteroids or a large number of

ships, the amount of data being transferred will be prohibitively large.

To analyze this design further, let us look at the three requirements of reducing communication.

The first requirement, interest management (R1), is not really relevant as both ships and

asteroids are required by both the physics and player nodes.

Looking at the second requirement, delta updates (R2), we see that writes from the player to

the physics server are in the form of delta updates. Each player does not send the entire state

of objects over the network to the server. Instead, it sends only updates to the game_state

made by the keystroke pressed by the user. However, the updates made at the server are

communicated to the player node in the form of the entire state of the objects. The server

does not use delta updates. For example, let us say that a ship is absolutely stationary, and

the state of a ship has not changed for a few seconds. A player already knows the position of

that ship and therefore does not need to receive any update on the position of the ship from

the physics server. Since the player does not know if the ship has moved or not, the player

has to make the pull request for the state. Since the physics server does not keep a record of

what the game state at the player is, it has to send the entire state to the player. It cannot

send only delta updates (say the new positions of the asteroids) back to the player. This is

a familiar story in stateless server systems. Many database stores such as MySQL, Redis,

etc., allow clients to write to the database in the form of delta changes (Update commands

typically only require the primary key and any fields that updates), but the clients cannot

receive only those set of changes that have happened in the database since their last read or

write.

The third requirement, isolation (R3), is met from the client side as each client synchronizes

with the server at their own pace. The server is rather passive, waiting for requests from the

clients. This means that if a client disconnects, the server does not spend resources trying to
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Figure 2.5: Delta updates over push for Spacerace.

send the client’s data. However, as explained above, this also means that the server cannot

send clients delta updates.

This example is simple and easy to understand but is inefficient. As explained above, the

entire state of the system is transferred at each request as the servers do not maintain any

notion of what state the clients are in, and the clients do not self identify this information.

This can be solved by making the server stateful and moving to a push only model of

communication.

2.4.2 Spacerace: Delta updates from the server

To cater to strict delta updates, we modify the client not only to send updates but also to

receive updates that are pushed by the server. Figure 2.5 shows the interaction between

the components and Figure 2.6 shows the changes made to the code shown in Figure 2.3.

Unlike in the previous version, the thread receive_updates does not make pull requests to

the physics server. Instead, it actively listens for any incoming messages from the server
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1 def p l aye r_c l i en t ( se rver , game_state , p layer_id ) :
2 . . .
3
4 def send_updates ( se rver , game_state , p layer_id ) :
5 . . .
6
7 def rece ive_updates ( se rver , game_state ) :
8 while True :
9 de l t a = s e rv e r . r e c e i v e_de l t a ( )

10 game_state . apply_delta ( de l t a )
11
12 def draw_state ( game_state ) :
13 . . .

Figure 2.6: Delta updates, Push only design - Client side.

(line 9). The message it receives is parsed as a delta and applied to the game_state (line

10). The rest of the operations at the client are the same as before. At no point does the

client perform a pull for updates. The client wholly relies on the server sending messages to

synchronize the state.

The server-side, especially ServerGameState, become more complex in this method, as seen

in Figure 2.7. When a new client is added to the game_state, in addition to adding a new

ship, all other clients are immediately notified of the new ship (line 7,8). The clients receiving

this update via their receive_updates thread, discussed above, and will update the local

game_state replica accordingly. The draw_state thread would then visualize this ship in the

game window, informing the player that competitors have joined the game.

As the game progresses through game ticks, as seen in the physics thread, the state of the

game changes. All changes are recorded and distributed to all the clients (line 23, and

10–13). Every client’s receive_update thread receives these updates and merges them into

the game_state for draw_state function to render in the next frame.

This design goes all in for delta updates. The delta updates are tracked in both the server

and client as they happen. The client updates are sent to the server, which immediately
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1 class ServerGameState ( ) :
2 def __init__( s e l f , a s t e r o i d s , sh ip s ) :
3 s e l f . a s t e r o i d s = [ Astero id ( ) for i in range (NO_ASTEROIDS) ]
4 s e l f . sh ips , s e l f . c l i e n t s = dict ( ) , dict ( )
5
6 def add_cl ient ( s e l f , c l i e n t , sh ip ) :
7 s e l f . c l i e n t s [ c l i e n t . c id ] , s e l f . s h ip s [ c l i e n t . c id ] = c l i e n t , sh ip
8 s e l f . d i s t r i b u t e ( ship , except=c l i e n t )
9

10 def d i s t r i b u t e ( s e l f , data , except=None ) :
11 for cid , o the r_c l i en t in s e l f . c l i e n t s . i tems ( ) :
12 i f except and c id != except . c id :
13 o the r_c l i en t . send_delta_async ( s e r i a l i z e ( data ) )
14
15 def apply_cl ient_update ( s e l f , c l i e n t , update ) :
16 s e l f . apply_delta ( update )
17 s e l f . d i s t r i b u t e ( update , except=c l i e n t )
18
19 def t i c k ( s e l f ) :
20 de l t a1 = s e l f . move_asteroids ( )
21 de l ta2 , has_winner = s e l f . move_ships ( )
22 de l ta3 , game_over = ch e ck_co l l i s i o n s ( a s t e r o i d s , sh ip s )
23 s e l f . d i s t r i b u t e ( de l t a1 + de l ta2 + de l t a3 )
24 return has_winner or game_over
25
26 def s e r v e r ( ) :
27 . . .
28
29 def phys i c s ( game_state ) :
30 . . .
31
32 def rece ive_updates ( game_state )
33 while True :
34 c l i e n t , d e l t a = rec e i v e_de l t a ( )
35 game_state . apply_delta ( de l t a )
36 game_state . d i s t r i bu t e_de l t a ( de l ta , except=c l i e n t )

Figure 2.7: Delta updates, Push only design - Server side.
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distributes them to all other clients. The updates made by the physics thread are also

distributed to all clients.

There are two significant problems with this approach. First, since the server has to maintain

a state for each client, if a client disconnects or has network delays, the server keeps trying

to send the updates. This wastes computing resources, even if the actual data transfer is

asynchronous. Additionally, if due to the network partition between a player and the server,

some updates to the player are lost, when the player reconnects, the entire state must be

transferred once again. This state can be quite large, locking up resources and can slow

down the propagation of ongoing updates. The problem is exacerbated when there are a

large number of clients to whom the updates have to be distributed. The appeal of stateless

systems (like the previous version and RESTful [38] architectures in general) is that the

clients are in control of the synchronization. If the client drops out of the network, the server

does not need to do anything different. This highlights the benefits of supporting isolation.

The second problem is that out of order updates can be received by each client. Let us take,

for example, a Spacerace game with two players Alice and Bob. Seeing an asteroid in her path,

Alice changes her trajectory slightly. This update is sent over to the physics server. When

the physics server receives it, the update is distributed to Bob and applied to the game_state.

In the next game loop, and before Bob has received Alice’s new movement, the physics server

calculates a new update, including a new position for the asteroid. It then distributes this

new update. There are two concurrent and competing updates for Bob to receive. If Bob

receives the new asteroid position first and then Alice’s position, the game_state drawn in

Bob’s game will show Alice crashing into the asteroid, setting her velocity to zero and not

rendering any further movement. When Alice’s change in trajectory is received, it could be

rejected as Alice has been destroyed and cannot make any further action. If the updates are,

instead, received the other way around, Bob sees Alice escape the asteroid, and the state is

consistent with the state in the physics server and in Alice’s machine. Such inconsistencies
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can only be fixed if updates that are distributed are associative and commutative – a hard

constraint to meet in games.

In the previous basic version of Spacerace, the players pulled the entire state of the physics

server and replaced their state with the incoming state. This negated any requirement over

the order of the updates and provided a consistent state. However, in the push-based version

discussed, there is no guarantee on the order in which updates are received, and therefore,

inconsistent states can be reached. Ensuring that the updates are received in the right

order requires that the order of updates to the server game_state and the order in which

the updates are distributed are the same. This can be accomplished in a number of ways:

transactions, locks, a single active thread reading updates from a queue, etc. However, these

solutions add significantly to the engineering effort of the system. For example, the methods

add_client (line 6, Figure 2.7), apply_client_update (line 15, Figure 2.7) and tick (line 19,

Figure 2.7) in ServerGameState can be protected by a lock to ensure that updating the server

state and distributing the update is an atomic step. This can, however, as one can imagine,

significantly slow down the execution.

2.4.3 Delta updates with Isolation

To tackle the first problem, lack of isolation, minor modifications can be made to both the

server and client code to bring back the pull-style communication that was implemented

in the first basic version. The modified interaction is shown in Figure 2.8 and the code

modifications are shown in Figure 2.9 and 2.10. The receive_updates function in the client

has returned. The client makes a pull request to the physics server, but instead of receiving

the entire state on a response, it receives a delta response (line 13, Figure 2.9). On the

server-side, there is no network activity in the distribution of the updates (line 6, Figure 2.10).

Instead, the updates are placed in a client-specific queue. There has to be a separate queue
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1 def p l aye r_c l i en t ( se rver , game_state , p layer_id ) :
2 . . .
3
4 def send_updates ( se rver , game_state , p layer_id ) :
5 . . .
6
7 def rece ive_updates ( se rver , game_state ) :
8 sync_time = 1 # Pul l a t most once per second
9 while True :

10 s t a r t = time . per f_counter ( )
11 resp = s e rv e r . send_pul l_request ( )
12 resp . wait_for_complete ( )
13 game_state . apply_delta ( re sp . d e l t a )
14 s leep_remaining ( s ta r t , sync_time )
15
16 def draw_state ( game_state ) :
17 . . .

Figure 2.9: Delta updates, with Pull - Client side.
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1 class ServerGameState ( ) :
2 . . .
3 def d i s t r i b u t e ( s e l f , data , except=None ) :
4 for cid , o the r_c l i en t in s e l f . c l i e n t s . i tems ( ) :
5 i f except and c id != except . c id :
6 o the r_c l i en t . add_to_queue ( s e r i a l i z e ( data ) )
7
8 def get_de l tas ( s e l f , c l i e n t ) :
9 i f c l i e n t . c id in s e l f . c l i e n t s :

10 return s e l f . c l i e n t s [ c l i e n t . c id ] . f lush_queue ( )
11 . . .
12
13 def s e r v e r ( ) :
14 . . .
15
16 def phys i c s ( game_state ) :
17 . . .
18
19 def s e rve_reques t s ( game_state )
20 while True :
21 c l i e n t = rece ive_sta te_reques t ( )
22 c l i e n t . send ( merge_deltas ( game_state . get_de l tas ( c l i e n t ) ) )
23
24 def rece ive_updates ( game_state )
25 . . .

Figure 2.10: Delta updates, with Pull - Client side.
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Figure 2.11: Delta updates with isolation and low memory for Spacerace.

for each client as different clients synchronize at different rates and might have a different

set of updates to pick up. When a pull request reaches the server (line 21, Figure 2.10), the

deltas present in the client-specific queue are picked up and flushed (line 10). They are then

merged together into one update and sent back to the client (line 22).

As we can see, the clients have isolation, and the server is not performing unnecessary network

tasks. However, in the event of a network failure or delay for a client, the size of the client

queue at the server will increase indefinitely. While setups such as timeouts and complete

synchronization can be put in place, these are simply patches over a problematic design.

Furthermore, the second problem discussed in the previously – ordering of updates – still

exists in this version of the system.

2.4.4 Delta updates with Isolation and Low Memory

To solve the problem of having multiple copies of the same update, one at each client’s update

queue, at the server, we can merge each individual update queue into a single update queue.
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1 def p l aye r_c l i en t ( se rver , game_state , p layer_id ) :
2 . . .
3
4 def send_updates ( se rver , game_state , p layer_id ) :
5 . . .
6
7 def rece ive_updates ( se rver , game_state ) :
8 sync_time = 1 # Pul l a t most once per second
9 last_sync = None

10 while True :
11 s t a r t = time . per f_counter ( )
12 resp = s e rv e r . send_pul l_request ( last_sync )
13 resp . wait_for_complete ( )
14 game_state . apply_delta ( re sp . d e l t a )
15 last_sync = resp . last_sync
16 s leep_remaining ( s ta r t , sync_time )
17
18 def draw_state ( game_state ) :
19 . . .

Figure 2.12: Delta updates, Pull, low memory - Client side.

The component interactions of this version of the system can be seen in Figure 2.11 and

the code is seen in Figures 2.12 and 2.13. When the server makes an update or receives

an update from one of the players, it places the update in am update queue (line 9) that is

marked with a certain identifier, which could be as simple as an array index. The clients

that synchronize with the server receive an update position that marks the last know update

it received (line 15, Figure 2.12). In any pull request, the client first supplies this position

(line 12). The server can pick up the appropriate set of updates from the single update queue

(line 12 – 17 Figure 2.13) and send it to the client (line 30, Figure 2.13).

This is very similar to publish-subscribe. This approach keeps the servers relatively stateless

and independent of the clients. The clients have isolation to synchronize with the servers at

their own rate, and every communication is in the form of delta updates. The problem of

out of order updates is also solved as a definitive queue of updates is always available. It is

important to note, however, that in this process, updates made by a client can be put into
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1 class ServerGameState ( ) :
2 def __init__( s e l f , a s t e r o i d s , sh ip s ) :
3 s e l f . a s t e r o i d s = [ Astero id ( ) for i in range (NO_ASTEROIDS) ]
4 s e l f . sh ips , s e l f . c l i e n t s = dict ( ) , dict ( )
5
6 s e l f . update_queue = OrderedDict ( )
7
8 def d i s t r i b u t e ( s e l f , data ) :
9 s e l f . update_queue [ uuid ( ) ] = data

10
11 def get_de l tas ( s e l f , pos ) :
12 new_pos = pos
13 f ina l_data = l i s t ( )
14 for update_id , data in s e l f . update_queue [ pos : ] :
15 f ina l_data . append ( data )
16 new_pos = update_id
17 return f ina l_data , new_pos
18 . . .
19
20 def s e r v e r ( ) :
21 . . .
22
23 def phys i c s ( game_state ) :
24 . . .
25
26 def s e rve_reques t s ( game_state )
27 while True :
28 c l i e n t , pos = rece ive_sta te_reques t ( )
29 data , new_pos = game_state . get_de l tas ( c l i e n t , pos )
30 c l i e n t . send ( merge_deltas ( data ) , pos )
31
32 def rece ive_updates ( game_state )
33 . . .

Figure 2.13: Delta updates, Pull, low memory - Server side.
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the update queue and received once again when the client synchronizes. These updates can

be discarded when they are received again, but that would mean that the order of updates

applied at each node is, once again, different. The alternative is to use the order that is

synchronized from the server, and apply updates only at the end of the pull, thereby not

letting clients read their own writes. This technique is the basis of the Global Sequence

Protocol [46], which, in addition, allows local updates to be tentatively applied until they are

confirmed.

It is important to note that the size of the update queue can keep growing indefinitely as well.

In order to control that growth, updates that have already been received by every player

must be deleted. While this does control the growth of the updates under normal network

conditions, when there is a partition, and certain players have not received their updates, the

number of updates can once again be indefinite. There are garbage collection techniques that

can be employed to deal with this unbound growth and are discussed in detail later.

The approach described here, which is also at the heart of many low-latency games, is a form

of rudimentary version control. The identifiers for updates are equivalent to version tags. A

node pulling changes identifies the version of its replica and receives a diff (delta update) of

changes that, when applied, bring the replica to the latest version. In fact, the additional

benefit of using an actual version graph is that instead of an update queue, we have an

update graph that allows for branches. These branches are essentially alternate orderings of

the same update, preventing us from getting into a situation where clients cannot read their

own writes.

Recognizing these engineering patterns as primitive forms of version control is a good stepping

stone to more straightforward solutions. Modeling replicated state synchronization as a

version control problem from the start allows us to avoid all this ad-hoc complexity. In fact,

if we go back to the ideal requirements stated at the beginning of this section, we can see

that (1) interest management maps to tracking/untracking objects in version control systems;
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(2) delta state maps to diffs in version control systems; and (3) autonomy and recovery from

isolated operation maps to explicit inter-node synchronization actions such as push/fetch,

that merge independent evolutions from common ancestor versions in version control systems.

Further custom and optimized domain-specific conflict resolution can also be achieved using

the three-way merges that are popular in file-based version control systems.

2.5 Summary

To summarize, we defined causal consistency, update latency, and isolation as essential goals

for highly mutable shared space applications. We showed that the engineering efforts to

minimize update latency and allow for isolation are typically rudimentary forms of version

control. Modeling such systems using version control can simplify the programming model

allowing application developers to reason over the state at each node and program inter-node

communication precisely.

In this dissertation, we take the design principles in distributed version control and adapt

it into a programming model called the Global Object Tracker (GoT) that is suitable for

highly mutable shared space applications. It provides causal consistency with isolation and

low update latency.
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Chapter 3

Related Work

In this chapter, we will look at the programming models create and used in both the industry

and academia from the viewpoint of the support they can offer highly mutable shared-space

applications. In particular, we will look at their support for consistency, update latency

(including all the requirements established in the previous chapter), and isolation.

Most programming models can be classified as either a shared-state programming model or a

message-passing programming model.

3.1 Shared-State Programming Models

A shared-state programming model typically has all of the synchronized application state

hosted by a predefined set of components. This synchronized application state is the shared

state of the system. Distributed computing nodes read, execute, and update the shared

space using many coordinating mechanisms, including, and not limited to, transactions,

locks, and versioning. We must first clarify the difference between shared-state models and

shared-space applications before we see how shared-state programming models can help build
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highly mutable shared-space applications.

Shared-space applications are a type of application. The business logic of the application

demands a notion of a shared environment or data. For example, an online multiplayer game

has a virtual world that is shared and consistent between all players. The same is true for

multi-agent simulations. In geo-replicated databases, the content of the database itself is the

shared space. All geo-replicated database instances behave as if they were a single entity to

the clients that use the data within these databases.

The shared-state programming model is a type of programming model where the state of the

system is stored in a common location independent of whether the application has a shared

space or environment in its logic. An online multiplayer game or multi-agent simulation

built on a shared-state model would have a database or a node controlling the virtual world.

Components that work on manipulating or computing over the virtual world would need to

read and write from the shared state.

We look at two specific types of shared-state programming models: databases and software

transactional memory and see how they help create shared-space applications with highly

mutable data.

3.1.1 Databases

Databases and Data Stores are the most fundamental tools that exist in the utility belt of

distributed system designers. In fact, many times, the term distributed systems is used only

to mean distributed access to databases. Databases are an organized collection of information.

There are many types of databases and multiple concurrency models supported, but for this

dissertation, we will be looking at two aspects of databases. First, we will look at databases

as a means to provide read and write access to the highly mutable shared-space required
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by applications that we have identified as our concern (multiplayer games, multi-agent

simulations, and geo-replicated databases). Second, we will also look at a specific class of

databases – multi-version databases – that provides version control like guarantees to the

access to data.

Highly mutable shared-space over Databases

Databases support a wide variety of consistency models. On one end of the consistency

spectrum are ACID databases like MySQL [33], PostgreSQL [76], etc, that support strong

consistency synchronizations. These databases offer sequential consistency and guarantee

that every read includes the latest possible write with techniques like transactions. On the

other, weakly consistent and highly available end is eventually consistent databases such as

Redis [15], Riak [9], etc. These databases are typically deployed as geo-distributed clusters

of nodes. The clients that connect to these nodes can read and write from any one of the

database nodes in the cluster. This database distribution improves latency at scale as there

more nodes are available to respond to requests. However, the writes made at one database

node must be replicated to every other node, which does not happen instantaneously. This

lack of instantaneous write means that while the latency of response from the database

cluster is low, update latency might be high as the response received might not have any

new update. Since highly mutable shared-space applications require low update latency,

eventually consistent databases are not typically used to implement these applications.

Databases, especially relational databases, are excellent at interest management. With the

help of techniques such as views, managed views, and dynamic querying, the clients reading

from the database can pick and choose at low granularity, the data that they require. For

example, let us consider a rural simulation using a relational database as the host of the

shared space. A traffic simulator and a livestock simulator could be two separate simulations

executing over the same shared space. However, the traffic simulator is interested in the

40



Cars table, and the livestock simulator is only interested in the Livestock table. This per

table subscription is already quite good interest management. However, relational databases

can go even further. There can be many cars that are simply parked and not moving. The

traffic simulator does not need to know about updates to those cars until they move. For

example, if the ownership of a parked car changes, the traffic simulation does not need to

know it. By using view or dynamic filters in select commands, the traffic simulation can

obtain precisely the information that it needs, i.e., all cars that have a velocity greater than

zero. Join operations can make for even more granular interest management. For example,

the traffic simulation does not need to know about chickens in the simulation up until a

chicken decides to cross the road. While the traffic simulation can never tell why the chicken

decided to cross the road, it can take a dependency on a join between the Livestock table and

the Cars table to only obtain information on those chickens who are in danger. This level

of granularity, if used correctly, can often lead to minimal transfers of information between

nodes vastly improving update latency.

Databases do not typically support delta updates. Databases are typically built for persistent

data, and these systems are typically engineered to be stateless. As such, they cannot know

what information a client has, which means that they typically cannot offer delta updates.

While timestamps can be added to the records and queries can be constructed to include only

the records that fall after a particular timestamp, correct delta updates would also include

the ability to obtain only the set of column values within a record that has changed. Without

knowing the exact state of the clients, databases cannot offer delta updates. There has been

some work on database support for temporal tables [58], which expose additional fields that

can be used to query for delta updates.

Databases primarily support pull-based communication. They are agnostic to the state of

the clients that connect to them and do not actively push updates to these clients. The

clients can choose the rate at which they communicate with the databases (up to a service
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upper bound set by the database). However, since they are a shared-state system, nodes in

the system do not keep the state locally. As such, if there is a network partition from the

databases, the nodes will no longer have access to the shared state, potentially halting these

operations. The significant engineering effort of maintaining offline replicas is required to

make this form of isolation possible.

Another important consideration is the notion of time. Eventual consistency provides no

causal relation between updates, and therefore, additional safeguards have to be placed over

the state’s correctness. Causal consistency is the weakest consistency model that still supports

a notion of time. Many databases such as MongoDB [7], Cassandra [23], and Riak [9] offer

optional causal consistent modes of operations. These modes offer causal consistency using

techniques such as vector clocks [70] or hash histories [55], which allows for the detection of

concurrent updates. When concurrent updates are detected, these systems typically retain

both updates and leave the resolution to the application code via two-way merges. There are

databases such as AntidoteDB [99] that explicitly support causal consistency.

3.1.2 Multiversion Databases

Multiversion databases are those that use multi-version concurrency control (MVCC) as

a transaction mechanism. MVCC was first proposed in 1970 [87] is a concurrency scheme

and a transaction mechanism for databases that aims to maximize the parallelism without

sacrificing serializability. In MVCC, the database maintains multiple copies of each tuple in

the database to allow parallel operations on the tuples. Read-only transactions are allowed

to access older versions concurrently with read-write transactions that create newer versions.

The work done by Wu et al. [113] provides a good understanding of the types of MVCC

mechanisms seen in popular databases. In all of these versions, while the basic principle is

version control, the underlying mechanism does not take advantage of versioning to allow
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clients to read delta updates. This choice, however, is understandable. Databases are typically

designed to hold large quantities of data. The clients, however, require a small subset of this

data. Interest management and fast concurrent writes are more useful than delta encoding.

However, for shared-space applications with highly mutable data and updates that have to

propagate fast, these MVCC based systems that do not provide support for delta updates,

fall short.

3.1.3 Software Transactional Memory

Software Transactional Memory (STM) is a synchronization protocol for controlling access to

shared memory in distributed systems. It is an alternative to pessimistic approaches such as

locks and allows the programmer to specify groups of commands to be executed atomically in

the shared space. Concurrent processes or nodes that use software transactional memory are

optimistic and always assume that the threads are rarely in conflict. If a conflict, however,

does occur, the transaction is canceled.

These allow shared-space applications to be built with relative ease as concurrency is relatively

straightforward to implement. The synchronization mechanisms used in the distributed

versions often rely on commands being sent over the network, which is a form of delta

encoding. Only the state used in the application code at a node is fetched from the shared

memory, and the application code has control over when the state is read. However, the

main drawback is that concurrent access is relatively slow. In applications like multiplayer

games and simulations where the state of the shared space changes rapidly over time, hard

synchronization methods such as transactions are always bound to fail. Recovery from these

failures is challenging in these applications.

While many STM models have been proposed over the years, in 1983, David Reed [88] first

proposed a version control mechanism for controlling the parallel reads and writes to shared
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memory. Each write creates new versions that are then read and modified by other nodes in

the system. The shared memory is read stable until the end of the transaction, after which

a new version is created. Nodes can either choose to read the newer version or continue

reading the older version. Since then, several other versioning models such as Distributed

Multiversioning [69], Decent STM [14], etc.

For shared-space applications, the behavior of STMs is similar to in-memory databases

and offers the same advantages and disadvantages. One major drawback is that STMs

are generally not useful when the network latencies between components in the system are

unpredictable (as is the case for many online multiplayer games).

3.2 Message-Passing Programming Models

Message-passing programming models, as opposed to shared-state programming models, are

a broad group of programming models that distribute the state of the system between all the

nodes in the system. The nodes of the application are all independent processes that perform

their tasks over their local state. There is no single set of objects that are synchronized and

shared. Communication and coordination between these nodes happen via messages. These

messages are usually domain-specific commands or operations. Message-passing programming

models are prevalent today to scale operations in large distributed systems. Maintaining

and operating over a large share state is not efficient or beneficial for many distributed

applications. Let us take a map-reduce system, for example. The mappers execute tasks in

parallel over a small subset of the data. The output from each mapper is then reduced to get

a single output. If each mapper had a shared state, time could be wasted in coordinating

access to the state. Instead, a more efficient setup is to send a message to each mapper with

precisely the information it needs. There are many types of message-passing programming

models that have been created. We take a look at some of the ones that are relevant to GoT
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as a programming model.

3.2.1 Publish-Subscribe

Publish-Subscribe is arguably the most common form of message-passing programming models

used. It is a form of a message queue pattern. Messages are considered to be events that are

created by the publishers and received by the subscribers. Message events are categorized

into pre-determined channels that signify some form of collective interest. For example, all

logging messages can be grouped into the logging channel. The nodes in the system know

which type of messages they need and can subscribe to the right channels.

The primary advantage it offers is the high scalability of the system and the loose coupling of

the system’s components. More nodes of the same type can be thrown to tackle bottlenecks

in the system. For example, a distributed crawler can be implemented in Publish-Subscribe,

where URLs to be downloaded are published to the channel by nodes that download and

scrape URLs. Each node subscribes to the URLs channel, receives one URL, downloads it,

and scrapes new URLs from the downloaded resource. The scraped URLs are then published

into a validator channel, and the downloaded resource is published to a downloaded channel.

A URL checker can subscribe to the validator and removes all downloaded entries, publishing

the rest back into the URLs channel. An indexer can subscribe to the downloaded channel to

process all newly downloaded documents. Depending on the speed of the entire process, one

or more channels in the system can be a bottleneck, and more copies of the subscribers to the

channel can be added to improve efficiency. Such systems can typically be very fined tuned.

While this model is excellent at computing through distributed applications that have tasks

that can fit in a workflow, the primary drawback is that using such a model for distributed

systems that require shared replicated states, such as multiplayer games or distributed

simulations, is difficult. The primary difficulty is in ensuring that the replicated state at
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each node is correct. Since there is no common location where the state is stored, significant

engineering effort is sometimes required to ensure that the messages reach the same state

when applied in each node. Publish/Subscribe offers low update latency, and therefore seems

like the right choice for these systems. However, they require complicated and hard to

understand mechanisms to maintain correctness of the state at each node.

3.2.2 Actor Models

Actor models are another form of message-passing programming models, introduced in

1973 [47], that is very popular in both research and industry. In an actor model, the nodes

performing tasks are considered to be actors. The actors are responsible for executing a

well-defined set of tasks and receive and send messages only on those tasks. There is no

assumed sequence of operations, and the actors all execute independently and concurrently.

This programming model is excellent at interest management as nodes only receive the

information that they are interested in and nothing more. Since it is a message-passing

protocol, the messages sent by the actors are usually either partial updates or commands

that are interpreted by the actors receiving the update, thus support delta updates. Sup-

porting, isolation, however, is complicated as actor models typically only use push-based

communication.

3.2.3 Conflict-free Replicated Data Types

On the heels of OT, a new approach emerged that is both a generalization and a departure

from OT: Conflict-free Replicated Data Types (CRDT) [100]. The underlying observation

in CRDT, which was already visible in [81], and became even more evident in Treedoc [85],

is that there seem to exist data structures that lend themselves to the coordination of
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state evolution in a network of peers without central concurrency control, but that not all

data structures have that capability. For example, a simple sequence, with normal ins, del

operations, is not capable of that. However, a sequence without del and holding more complex

nodes representing a renderable string has that capability. Other examples include grow-only

sets, monotonic counters, and many others, including combinations of simpler CRDTs.

CRDTs come in two flavors: state-based and operation-based, the latter more closely resem-

bling OT. They have been proven to be equivalent [100], and so we will focus on state-based

CRDT. Formally, a state-based CRDT object is a tuple < S, s0, q, u,m >, where S is the

state of all of its replicas, s0 its initial state, q and u are methods for querying and updating

local replicas, and m is a method for merging local replicas with state from peer replicas.

It has been proven (again, in [100]) that a sufficient condition for state-based CRDT to

achieve eventual consistency in a network of peers is for the merge method to be commutative,

associative, and idempotent, and for the state to be monotonically non-decreasing across

updates. Again, this is quite a high bar, but many data types can meet it. Mainly, CRDTs

implement the illusion (via rendering) of mutable state with data types that never really

forget anything, therefore requiring, in principle, an ever-increasing amount of memory.

Optimizations can be done that reduce the amount of entropy in these objects via distributed

garbage collection, which requires global coordination (e.g., [114]).

CRDTs are a mathematically sound mechanism to distribute data in cases where eventual

consistency of data is needed, and they have been implemented with great success in industry-

grade middleware – e.g., Redis [15] and Riak [9]. These industrial adoptions use CRDTs not

for user-bound peer components, but as a mechanism to keep internal database replicas (the

peers) eventually consistent.

However, as the scale of the system grows, it takes longer to achieve synchronization because

CRDTs require the transmission of the full state of the object. Recently, [5] proposed

delta-state CRDT (δ-CRDT), which is capable of transmitting the state incrementally. It is
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interesting to note that delta state, a concept that has existed in VCS for over 40 years, was

only recently added to CRDTs.

CRDTs can be made causally consistent instead of eventually consistent by enforcing a causal

ordering at each node (usually using techniques such as vector clocks or dependency graphs).

Recently, Shapiro et al., defined "just-right" consistency [99] that uses the principles of CRDTs

along with causal ordering to ensure conflict-free causal consistency. They have implemented

their concepts in the Antidote database. In such causally consistent CRDTs, the garbage

collection of unneeded updates becomes a problem to solve. Causality stability [8] has been

proposed as a technique to clean up updates that have been received by every node. However,

there are still opportunities to combine intermediate operations that are unnecessary. In this

dissertation, we put forward an approach that can also be used to garbage collect CRDTs

built over causal graphs.

3.2.4 Global Sequence Protocol

Global Sequence Protocol [46, 21] (GSP) is a message-passing programming model for

distributed systems. The nodes in the system synchronize their state and coordinate their

actions using two sequences of updates. A global sequence, where the order of the updates

is globally accepted, and that can be applied to the local state of each application; and a

pending sequence, to which new updates are added, awaiting global ordering. It relies on a

total ordered broadcast of the updates to build the global sequence. The most straightforward

example of a system that ensures total ordered broadcast is a server-client model. As an

implementation with optimization, the authors described a system where updates are stored

as delta changes in each application until they are pushed through a channel to a server

where they reside in a buffer set up individually for each client. The server frequently iterates

through open buffers, collects updates, applies them to a persistent state, if present, and
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pushes these updates through the channels of other clients. When a client application pulls,

it merely applies the deltas in its incoming buffer to the local state and clears the buffer.

GSP is an eventual consistency model. Being a message-passing model, it allows for effective

interest management as nodes just need to receive the updates they are interested in (and

in global order). GSP also allows for easy delta updates. However, isolation is a significant

concern as both sequences of updates would grow in size if a client were not accepting updates

or was partitioned from the rest of the system.

The resolution of conflicts is mostly ignored in GSP. The update sequences made are globally

ordered and are applied in the same order at all locations. The result is that if two

contradictory updates are made, one of them is chosen by the global order and becomes the

canonical version; the other is ignored. The authors suggest that updates can be designed in

a way to mitigate the effects of this. For example, instead of sending the new absolute value

of a counter as an update, which can then be incorrectly overridden, the application can send

the update as the operation ‘add(1)’, which is commutative and gives the same result. While

this approach works in many simple cases, it can quickly be challenging to apply this to

general operations. They also use additional primitives to block execution on an application

until specific updates have been added to the global order. These primitives help ensure that

the changes sent have been applied before continuing on the execution. However, it does not

guarantee that the update accepted was also not overridden by an update that soon followed.

Without an explicit merge function like in version control based systems, or exposing the

conflicting versions for future resolution, like in databases such as Riak [9], programmers of

the system have lesser tools at their disposal to guard against automatic overwrites.
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3.3 Operational Transformation

In the late 1980s, just before the dawn of the Web, a new breed of distributed applications

started getting considerable attention from researchers and industry, namely "groupware."

Groupware are collaborative environments, where users at different locations can interact

with a shared virtual space. Included in these are collaborative editors and widgets (e.g.,

GROVE [34], Jupiter [79]), and more complex virtual worlds (e.g., DIVE [22]), which were

the basis for online gaming.

From early on, groupware systems identified a concrete technical challenge that would define

this line of work for several decades: how two or more users can edit the same text without

getting it scrambled due to conflicting edits. A simple example of such a conflict is as follows.

Consider the shared string "abcd", with two users having identical replicas of it. If both users

delete the character at position 1 (’a’) in their replicas, the synchronization of the shared

state, if done carelessly, may produce an unintended result: "cd". This problem was first

identified in [34], where a solution was also proposed: Operational Transformation (OT). The

basic idea of OT is to perform a special transformation on the operations sent by remote

peers before applying them to the data locally. In the concrete case of our simple conflict

over "abcd", the transformation could be for the other peer’s delete operation to change to a

no-op.

In general, OT defines a transformation matrix T of size mxm, where m is the number of

distinct operations on the data, and where each cell is a function that transforms operations

into other operations, but with some strict constraints. Specifically, given two operations

oi and oj, let o′j = T (oj, oi) and o′i = T (oi, oj). Then T is such that o′j ◦ oi = o′i ◦ oj, i.e. the

operations must commute. The original OT paper describes a distributed (peer-to-peer) OT

scheme that requires the maintenance of request logs in every peer of the network. A request

< j, s, o > in Li (the log for peer i) indicates that, while in state s, peer i executed the
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operation o requested by peer j. This historical information, along with the transformation

matrix T , supports, in principle, the de-conflicting merge of any operations on the shared

data, so that the data is eventually consistent in the entire network.

Unfortunately, the original OT algorithm was later shown to fail in some crucial cases [89]. In

fact, the details of OT have proven to be quite elusive, leading that research community into

the chase of a general proof of correctness for over a decade that resulted in several papers

making claims that were later shown not to hold, including those in [89] (see [86]).

Taking a step back, it seems that OT is trying to do a form of operation-based version control

where merge conflicts over edits on a string can be, not just automatically resolved locally,

but also assured to lead to eventual consistency in a network of peers. This is quite a high

bar. The only solution that seems to have hit that bar is the one proposed in [81], which

adds tombstones – i.e., markers for invisible characters that have been deleted but that need

to exist and be passed around along with the data for consistency purposes. This has some

significant consequences for OT: first, the data grows indefinitely, because no character is ever

deleted; then, the string that was directly manipulated by OT ceases to be a simple string

and becomes a much more complicated data structure, for which an additional rendering

function needs to be defined. [81] describes a solution to the indefinite growth problem that

adds even more complexity to the data structure.

3.4 File Based Version Control

Version control systems (VCS) aim to track the evolution of files in the file system, as humans

change them. They exist since, at least, the 1970s [90] (see [36] for a good overview of the

history of software configuration management tools). The concept of delta state (a.k.a. diffs)

has been central to these systems since early on [49, 48].
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Distributed VCS was an evolutionary step from non-distributed VCS. The first distributed

VCS publicly known as such was Code Co-op [74], a decentralized, peer-to-peer system that

supported the propagation of changes over many communication channels, including email.

Since then, many other systems became very popular, some of which centralized (e.g., CVS,

SVN), others decentralized (e.g., Git, Mercurial).

All of these systems have been designed to keep track of changes made by people to files. As

such, the rate of change is extremely slow. While the latency of updates is not irrelevant,

it is also not critical. For example, it is acceptable to wait 10 seconds when pulling from

GitHub. This kind of latency is not acceptable for quasi-real-time state synchronization.

Another non-problem in VCS is the size of history data: very few projects have a number of

commits in the millions, but even for those that do, that represents a database (on disk) of a

few Gigabytes, at most. In contrast, programs can generate millions of state changes in just

a few seconds, leading to an unbearable explosion of historical data.

During the early days of version control, dealing with concurrent updates was considered to

be painful [73, 94]. These old version control systems employed file locking mechanism to keep

concurrent updates out [24]. Merge strategies at that time were often thought to be tedious

and not worth the effort. With the advent of tools to help visualize changes being merged,

such as diff3 [56], merge strategies became mainstream. Today most version control systems

use some form of merge strategy. VCS assume that inconsistent edits are unavoidable, and

therefore merge conflicts will occur. Files are mutable without any constraints. For example,

when, locally, one person changes the first character of the first line of a file to the letter

’a’, and another person, concurrently, replaces that same character by the letter ’z’, when

the state is synchronized, only one of these changes must prevail. Different VCS differ on

the kind of delta encoding that they use, and, therefore, some may see inconsistencies in

edits where others do not. However, none of them can resolve all inconsistencies, like two

concurrent changes to the same character. VCS refrain from solving these inconsistencies
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automatically, and instead, prompt the user about them.

Baudiš [10] provides a good overview of the types of merge strategies present in version

control systems. By far, the most common strategy is the 3-way merge. This merge strategy

takes two diverging revisions of files and constructs a diff of each version against a single

least common ancestor (LCA) so that an external actor (a person or a program) can decide

what to do. 3-way merge is known to have an error condition called the "criss-cross" merge,

where a single LCA cannot be calculated, potentially leading to inconsistent version graphs.

Version control systems such as Git use a recursive merge strategy to try and eliminate the

problem. However, some variations cannot be resolved. 1

Other approaches include weave merge [10] and mark merge [10], which do well on the basic

cases of the criss-cross merge but cannot handle the more complicated case. More importantly,

these merge strategies are predicated on lines and their ordering on files, making it difficult

to be applied in the context of objects in state replication.

Finally, an interesting case is that of the DARCs version control system [91]. DARCs explores

the semantics of patch algebra and treats a version as the ordered combination of all diffs

before it. Diffs that are concurrent are permuted in any order when commutative and raised

to the user for conflict resolution when they are not. The result of the conflict resolution

is added to the end of the patch history. While DARCs is not immune to the criss-cross

problem since DARCs stores patches as first-class citizens, additional information, present in

the patches help avoid the simple criss-cross merge problems. The model in DARCs has been

formalized [65]. Our formal model presented in this paper builds on this work.
1This blogpost gives a good summary of the problems with Git https://bramcohen.livejournal.com/

74462.html
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3.5 Object Based Version Control

There have many variations of object version control proposed over the last decade. In this

section, we will explore them.

3.5.1 Concurrent Revisions

Concurrent Revisions was introduced in 2010 by Burckhart et al. as a programming model

for parallel processing. It was inspired by version control and built around the fork-join

design pattern, which was first introduced and explained in 1963 [27]. This programming

model is particularly useful when building applications that require several heterogeneous

tasks to read or modify shared data concurrently without the need for complex mechanisms

like locks or actors. The idea is similar to typical map-reduce, where many parallel tasks are

provided with their own snapshot of the state and are free to modify them as they see fit. At

the end of each task’s execution, snapshot changes are merged automatically, and conflicts

are resolved deterministically (similar to the reduce phase in map-reduce) with the use of

type-specific three-way merges. Unlike map-reduce, however, the tasks that are deployed

concurrently need not perform the same task.

The revision graph in concurrent revisions is centralized. The main thread, from which all

other concurrent tasks fork, controls the graph. When a concurrent task is forked, a new

referenced revision is created in the main thread and copied over to the task. The task then

makes updates to the task that are within their branch of the revision tree. The tasks can

fork again if needed, allowing for a hierarchical branching of the state. When a join occurs,

the main thread reconciles the two revisions using a three-way merge. The original revision

is known to the main thread as a reference to it is maintained by the concurrent task.

The differences between concurrent revisions and GoT are many. While concurrent revision is
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primarily a programming model for parallel computing, GoT focuses on distributed computing.

Further, since concurrent revisions is a fork-join model, the approach uses centralized version

control. GoT uses a distributed version control with a version graph at each independent node

that is performing tasks. Finally, the semantics of concurrent revisions expressly prohibit

certain forms of communication (task join patterns) so as not to encounter a situation where

the merge cannot be computed. In GoT, we explore the cause of these situations and propose

a technique to ensure that the merge is always computed.

3.5.2 Cloud Types

Cloud types [62] extends the programming model introduced in Concurrent Revisions and

introduces it to distributed computing. The model is geared towards applications that require

object replication in the face of isolation, such as mobile games. The servers host revision

graphs that replicate at the clients that fork from them. Each component can then work on

the local snapshot and join the changes made back into the revision graph that it forked.

The programming model supports two main primitives: push, pull, and a secondary primitive:

flush that gives stronger guarantees. The revision graph in Cloud Types is partly distributed.

There can be multiple servers where revision graphs can exist in the system. Each of these

servers can connect to multiple clients that do not have revision graphs themselves. Unlike

concurrent revisions, the three-way merge is no longer used to resolve write-write conflicts.

Instead, specific data types such as Cint (Cloud integers) have been created to handle merges

automatically. We believe this takes control away from the user and makes it less general

purpose. In Cloud types, these restrictions are in place because the entire replicated state

is forked at each revision. If the replicated state can have any data type, creating delta

updates is difficult. In GoT, states are never compared. Instead, all changes are marked

and recorded as they happen and shared as a patch. The version graph exists as a graph
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of patches as opposed to a graph of snapshots. Finally, like concurrent revisions, there are

strict communication patterns built into the communication protocol that disallows cross-join

patterns. We discuss these patterns in this dissertation and provide a solution called a

small-step merge that lifts these constraints in GoT.

3.5.3 CARMOT

CARMOT [54] is a version control based state replication framework, like GoT, built-in

OCaml. The API exposes a git-like interface for nodes in a distributed system to push and

pull changes between nodes. Write-write conflicts are resolved using custom three-way merge

functions. A global version graph exists which tracks the provenance of each version. The

applications themselves can pick and choose from different versions and make updates from

that. When an update is made, it is checked against any conflicting newer version and merged

against that.

While CARMOT is similar to GoT, at the API level, there are very different design choices

under the hood. CARMOT, unlike GoT, maintain full copies of the state that are indexed

by their SHA1 hash. GoT, on the other hand, stores the version graph as a graph of updates.

Each version in GoT is reconstructed from the set of versions preceding it from the ROOT

version. Furthermore, CARMOT seems to rely on centralized version control as every sync

checks for the presence of globally conflicting updates. The system uses delta communication

to communicate between the nodes, but the diffs are calculated, at each step, from the full

versions. Finally, CARMOT does not seem to have a garbage collection strategy. Since nodes

can traverse back in time to an older update, garbage collection is not possible. The examples

they use – blockchains – explicitly have to remember every transaction and require that the

versions and the updates be stored in more permanent storage. GoT, on the other hand,

is purely designed for applications with a shared state that is quickly mutating and has to
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quickly share many updates.

CARMOT, however, takes a unique approach to solving the patterns banned by concurrent

revisions and cloud types. They provide certain data types with restrictive alternate forms of

representation that are more suitable for reconciliation into remote states. These restrictive

forms can compose together correctly despite the inconsistencies introduced by the join

patterns. They propose Mergeable Replicated Data Types [52] that take this principle and

show how it can be applied in a more general context. This system is inherently compatible

with the GoT programming model as the merge functions in GoT are entirely left to the

design of the programmers letting them implement mergeable replicated data types style

merges for consistent merges.

3.5.4 TARDiS

TARDiS [30] is an asynchronously replicated, multi-master key-value store that tries to

address some of the problems of ensuring scalable causal consistency using concepts in

centralized version control. Many of the design choices in GoT are also found in TARDiS

and for similar reasons. Neither TARDiS nor GoT abstract the interaction with the data as

sequential operations. Both have explicit primitives to observe and resolve concurrency and

distribute changes.

There are, however, several significant differences. TARDiS is, first and foremost, a database.

A database like TARDiS expects multiple applications to connect to them. Each application

interacting with a TARDiS store is given its own branch of a shared DAG to execute in, and

merging conflicts becomes a shared task. In GoT, the repository of objects present in each

node is not a database and is not shared by multiple nodes. Each node is solely responsible

for resolving the conflicts in its repository, much like in Git. Another significant difference

between TARDiS and GoT is that in GoT, the version graph is stored as a graph of deltas
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while in TARDiS, they are stored as full copied revisions. With full revisions instead of deltas,

calculating deltas for patching is costly. Since the number of entries in a delta is less than or

equal to the number of entries in the full version, it is faster to apply a delta on a version

than to create a delta by diff-ing two versions.

3.6 Optimizations in Shared-Space Applications

The topic of update latency, though it has not been explicitly called that, has always been

among many problems in the networking of multiplayer games and multi-agent distributed

simulations [102, 51]. There exist several architectural solutions to different aspects to

optimizing update latency for online multiplayer gaming [57, 116, 42, 84, 61, 13, 31, 26] and

multi-agent simulations [72, 29, 93, 92]. Each of these solutions and more, optimize different

aspects of the problem and combining them together into a single solution is quite hard

without a proper programming structure. Our work with the GoT model attempts to provide

this by leaning on the familiar concept of version control systems. By presenting inter-node

communication control as a version control system, we can tactically employ several of the

industry and academic strategies that exist for reducing update latency.

3.7 Research Gap

In this section, I identify the research gap in the related literature by answering the following

research questions:

• Update latency: How do existing programming models help programmers optimize for

update latency in shared-space applications?

• Version Control Systems: Are existing version control models sufficient?
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Table 3.1: Design Goals for GoT

Interest Delta Isolation Non-restrictive P2P
Management Updates Updates

Message-passing
Actor Models X X X X X
GSP, Cloud Types (X) X X X X
Shared-state
Server mediated-replication (X) (X ) X X X
BASE Datastores X X X (X) (X)
ACID Datastores X X X X X
CRDTs
State-CRDTs X X X X X
Op-CRDTs X X X X X
δ-CRDTs X X (X ) X X
Version Control
Concurrent Revisions X (X ) X X X
TARDiS X (X ) X X X
CARMOT X (X ) X X (X )
Global Object Tracker X X X X X

3.7.1 Update latency

The shared-state programming models, discussed in this chapter, are designed to keep the

state of the distributed system at a common location. The features built into shared-state

programming models typically focus on the access control of data, the correct application

of concurrent updates, and the availability of the data store to requests. Since only a small

subset of applications require the fast propagation of updates, shared-state programming

models optimize for goals such as the scalability of the data store to a large number of clients

or low latency of response at the cost of update latency.

Message-passing programming models, discussed in this chapter, are designed for the quick

propagation of updates. However, since no shared state exists for the distributed system,

the programmer has to ensure the correctness of the state changes at each node in the

system. Additionally, the tepid support for pull based communication and isolation in these

models makes it such that the programmer has to engineer solutions to guard against network
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partitioning and recovery. In shared-space applications, this can lead to significantly more

complex systems as the programmer has to build mechanisms to keep the shared-space

consistent at every node and over byzantine network failures.

There is a need for a programming model to combine the fast update propagation of message-

passing with the ease of manipulating the state of the system that comes with shared-state

programming models.

3.7.2 Version Control Systems

Version control is a model, as we discussed in Chapter 2, that can combine fast update

propagation with easy state manipulation, by using state replication. The model explicitly

defines procedures for the correct replication of states.

While there is potential in version control models, existing version control models like TARDiS,

concurrent revisions, and version based shared memory transactions do not cater to update

latency. Their primary design objective is to provide snapshot isolation, where concurrent

updates are made to the same shared-space (using replicas) but do not affect each other until

they are resolved using powerful conflict resolution strategies. Their focus is on the isolation

of the updates. The quick propagation of the delta differences between the snapshots (which

is the update) is, however, ignored.

The delta difference between snapshots is utilized in file-based version control systems where

entire snapshots can be of significant size. The same approach should be applied to object-

based version control models to allow for the quick propagation of updates. Such a model,

however, does not exist.
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3.7.3 Design Goals

Table 3.1 summarizes the support provided by the models and technologies, discussed in this

chapter, for the requirements of shared-space applications. We can see that message-passing

models do not support isolation while shared-state models do not support delta updates.

CRDTs like message-passing do not support isolation. However, since the messages are

considered to be idempotent, a single queue of updates would be enough in δ-CRDTs to

provide isolation. However, as they support eventual consistency, they restrict the type

of updates that are possible. Complex state manipulations are normal in shared-space

applications and therefore, δ-CRDTs are not suitable for shared-space applications such as

multiplayer games.

Version control models, can theoretically support interest management, delta updates, iso-

lation, and non-restrictive updates. However, the design choices made in existing version

control models, make delta updates difficult. Nevertheless, the effort of engineering delta

updates over these solutions should not be high. Version control systems, however, fail when

put in peer to peer network topologies. Version control systems, including file-based systems

cannot handle specific concurrent scenarios that we elaborate upon later in the dissertation.

My goal with the Global Object Tracker (GoT), is to provide a programming model for

shared-space applications that meet all the goals shown in Table 3.1.
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Chapter 4

GoT Programming Model

A GoT application consists of many nodes, called GoT nodes, that perform tasks asyn-

chronously within the distributed application. The GoT nodes share among themselves a

collection of objects. Each of these nodes can be executed in different machines, communicat-

ing the changes to the replicated objects via the network. What is unique about GoT is that

the synchronization of object state among the distributed nodes is seen as a version control

problem, modeled after Git.

All GoT nodes that are part of the same Spacetime application have a repository of the shared

objects, called a dataframe. The dataframe is similar to a normal, non-bare Git repository,1

and, like a Git repository, it has two components: a snapshot and a version history, as shown

in Figure 4.1. The snapshot, analogous to the staging area in Git, defines the local state of

the node. All changes made by the application code on the local dataframe are first staged

in this snapshot. The version history, on the other hand, is the published state of the node.

Like in Git, changes can be moved from the staging area to the version history using the

commit primitive, and the snapshot can be made up to date with the latest version in the
1In Git, repositories may be bare or non-bare. Bare repositories contain just the history, but not a copy of

the files. We do not have bare dataframes, although those may be introduced in the future if they prove to
be useful.

62



Figure 4.1: Structure of a GoT node. Arrows denote the direction of data flow.

version history by using the checkout primitive. Inter-node communication happens using

push and fetch requests, used to communicate updates in version histories between nodes.

When the version history at a node receives changes (via commit, push or fetch), a conflict

with concurrent local changes is possible and must be resolved. In Git, conflicts are resolved

manually by the user, and only on a fetch. However, in GoT, conflicts are resolved automati-

cally, at the node receiving the changes, and irrespective of the primitive used. Automatic

conflict resolution is achieved via programmer-defined three-way merge functions that are

invoked when conflicts are detected.

The APIs supported by the dataframe is shown Table 4.1; this table can be used as a quick

reference for the API calls in the example explained next.
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Table 4.1: API table for a dataframe

Dataframe API Equivalent Git API Purpose
read_{one, all} N/A Read objects from local snapshot.
add_{one, many} git add [untracked] Add new objects to local snapshot.
delete_{one, all} git rm [files] Delete objects from local snapshot.

git add [modified] Objects are locally modified
which is tracked by the local snapshot.

commit git commit Write staged changes in local snapshot
to local version history.

checkout git checkout Update local snapshot to the
local version history HEAD.

push git push Write changes in local version history
to a remote version history.

fetch git fetch && git merge Get changes from remote version history
to local version history.

pull git pull fetch and then checkout.

4.1 GoT Example: Multi-bot Space Race

Before getting into the underlying design of GoT, we begin by using the example established in

Chapter 2: Attari’s-inspired multi-bot Spacerace, to explain the structure of GoT applications.

Figure 4.2 shows the same example, rewritten using version control.

4.1.1 Data Model

The development of GoT applications starts by identifying the types of objects that will be

tracked by the dataframe and shared under version control. In these applications, "objects"

are actual programming language-level objects. As such, they are defined via classes or types.

These classes/types need to define which parts of the objects should be tracked, and which

parts should not. We have chosen to do this statically and declaratively, as changing the data

model at runtime would complicate the data synchronization model unnecessarily. Figure

4.3 shows the two classes of objects shared in the Space Race game, along with their most

important methods.
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Figure 4.2: Spacerace using version control.
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@pcc_set
class Player ( object ) :

o id = primarykey ( int )
crashed = dimension (bool )
winner = dimension (bool )
p o s i t i o n = dimension ( tuple )
v e l o c i t y = dimension ( tuple )

def __init__( s e l f , ob ject_id ) :
s e l f . o id = object_id
. . . o ther i n i t i a l i z a t i o n s ,

i n c l ud ing non−shared f i e l d s . . .
# Example o f non−shared f i e l d
s e l f . world = World ( )

def act ( s e l f , a s t e r o i d s , p l ay e r s ) :
. . . do smart th ing s with the sh ip . . .

. . . Other f unc t i on s . . .

@pcc_set
class Astero id ( object ) :

o id = primarkey ( int )
p o s i t i o n = dimension ( tuple )
v e l o c i t y = dimension ( tuple )

def __init__( s e l f , object_id , pos , v e l ) :
s e l f . o id = object_id
s e l f . p o s i t i o n = pos
s e l f . v e l o c i t y = ve l

def move( s e l f ) :
. . . attempt brownian motion . . .

Figure 4.3: The data model for the multiplayer Space Race game.
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Figure 4.4: Structure of the Space Race distributed application. Each node resides on a
separate process/machine/geographic location.

The first thing to notice in Figure 4.3 are the extra declarations using our language:

@pcc_set (decorator of classes), and primarykey and dimension (special attributes).

The declaration @pcc_set indicates that objects of that class are to be tracked. The other

declarations define which fields are to be tracked. For example, the Player class defines

five dimensions that must be tracked, one of which, oid, is the primary key that uniquely

identifies the object in the entire universe of objects. All tracked objects can define a primary

key field, which must be unique. If a primary key is defined, then objects can be picked up

from the dataframe using the key. If it is not defined, the dataframe assigns a unique random

id to the object, and the objects can only be retrieved as a part of the collection of objects of

that type. The Space Race example also defines an Asteroid class that defines the properties

of the obstacles faced by the players.
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1 def phys i c s ( df ) :
2 df . add_many( Asteroid , [ Astero id ( ) for i in range (NO_ASTEROIDS ] ] )
3 df . commit ( )
4 while True :
5 s t a r t = time . per f_counter ( )
6 # Pick up new updates
7 df . checkout ( )
8 # s t a t e changes .
9 for a in df . read_al l ( Astero id ) :

10 a .move ( )
11 for p in df . read_al l ( Player ) :
12 p .move ( )
13 p . crashed = is_crashed (p)
14 p . winner = reached_f in i sh (p)
15 # Make changes p u b l i c .
16 dataframe . commit ( )
17 # Wait f o r remaining game loop time .
18 e lapsed = time . per f_counter ()− s t a r t
19 time . s l e e p (DELTA_TIME−e lapsed )
20
21 def main ( port ) :
22 node = GotNode ( phys ics , server_port=port ,
23 name=" space race . got " ,
24 Types=[Player , Astero id ] )
25 node . s t a r t ( )

Figure 4.5: The Physics simulator node.

4.1.2 GoT Nodes

There are three types of GoT nodes in Space Race: (1) the world/physics simulator, (2) a

simple player bot, and (3) a simple viewer that displays the state of the world. The physics

simulator is to be the authoritative component on the majority of the state of the simulated

objects, but not all. We explain this in the next section. The physics simulator also doubles

as the enforcer of the game rules. Figure 4.4 depicts the overall structure of a Space Race

deployment. Because there is only one shared world/game, there is only one physics simulator,

but there can be any number of player nodes and any number of viewer nodes. There can

also be other types of nodes, such as nodes with UI for human players, nodes for compiling

statistics, etc., but, for simplicity sake, we do not describe those in this paper.
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Figure 4.5 shows almost the entire code of the Physics node, with just a couple of methods

and constants missing. Starting at the bottom, in lines 22–25, we create the GoT node for

the physics simulation. GotNode, as the name indicates, is our main class for creating GoT

nodes. Its arguments are, from left to right: the entry function to run the node, the port

to listen on the network for push and pull requests, the name of the local dataframe, and

the types of objects that are to be tracked in the dataframe of this node. As explained in

the previous section, these need to be declared as @pcc_set with dimensions to be tracked.

The entry function is shown in lines 1–19. These entry functions always receive a dataframe

(labeled df) as an argument to perform the data versioning operations on it. In this case,

we initialize the environment by adding a prebuilt list of asteroids (ASTEROIDS) into the

dataframe (line 2). The dataframe from here on tracks any modifications to the objects in

the list. After all changes are added to the dataframe, we commit the changes, so that the

asteroids will be effectively under version control (line 3). After initialization, the game is

played (lines 4–19). The game operates in a loop that mainly simulates physics, but also

has some game functions. At every iteration, it performs a checkout of the objects (line 7),

implements the logic (lines 9–14), and commits the changes at the end (line 16). Lines 9–14

are the main physics functions: asteroids and player ships are moved by delta time, and

collisions are dealt with (lines 13–14). These operations change the shared state of these

objects, which change fields that are under version control. The physics loop runs in 20 fps,

so 50ms frames2 that, in our case, also determine the rate of checkout/commit operations in

the Physics node.

A simple type of player is shown in Figure 4.6, showing the most important snippets.

One important difference between the Player node and the Physics node presented before

is embodied in line 21 of Figure 4.6. Here, we are binding the player node to a remote

dataframe given by the command line argument physics_node (line 21). This argument is
2"Frame" and "fps" are part of the standard terminology of physics and game engines, as they all operate

with these precisely-timed loops explained here. Each precisely-timed iteration is a "frame," not to be confused
with our dataframes (although the two concepts are related).
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1 SYNC_TIME = 0.3 # secs
2 def p l aye r_c l i en t ( df , p layer_id ) :
3 df . pu l l ( )
4 my_player = Player ( player_id )
5 df . add_one ( Player , my_player )
6 df . commit ( )
7 df . push_await ( )
8 while not my_player . crashed and not my_player . winner :
9 s t a r t = time . per f_counter ( )

10 df . pu l l ( )
11 my_player . act ( df . r ead_al l ( As te ro id s ) , df . r ead_al l ( Player ) )
12 df . commit ( )
13 df . push ( )
14 e lapsed = time . per f_counter ()− s t a r t
15 s leep_t = SYNC_TIME − e lapsed
16 i f s l eep_t > 0 :
17 time . s l e e p ( s leep_t )
18
19 def main ( ) :
20 args = . . . # parse command l i n e args
21 player_node = GotNode ( p laye r_c l i en t , remote=[( args . physics_node ) ] ,
22 Types=[Player , Astero id ] )
23 p laye r . s t a r t ( args . p layer_id )

Figure 4.6: The Player nodes.
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expected to be a got URL, of the form got://somehost.edu[:port]/spacerace.got. This

method of binding is equivalent to defining the remote origin in Git. In this case, this is

supposed to be the URL of the Physics simulator dataframe (see Figure 4.4). Pull and push

operations will be directed to this remote dataframe. Our player_client function (starting

in line 2) first pulls all the objects from the remote dataframe (line 3), then creates a Player

object and adds it to the dataframe (lines 4–5), and then commits the changes locally and

pushes them to the remote dataframe awaiting confirmation that the submitted change has

been accepted (lines 6–7). This is so that the physics simulator/game receives the new player

object when it performs a checkout from its local dataframe (line 7 in Figure 4.5). From

then on, our bot is on a loop of pulling the objects (line 10), doing some local actions on

them (line 11), committing the changes locally (line 12), and pushing them to the remote

dataframe (line 13).

Our player node is on a timed loop of 300ms (lines 1 and 17), so it only checks the shared

state every 300ms. Other player nodes may want to do something different. In any case,

this is where network latency plays an important role that cannot be ignored. We are

doing push/pull operations to a remote dataframe. Depending on how much data is to be

synchronized, and the relative locations of the physics node and the player node, each of

these operations can take anywhere from 20ms to 200ms or more. As such, the player nodes

will always be "behind" the physics node in absolute time, no matter how fast they pull. This

delay is an essential aspect of these kinds of applications. It has a tremendous influence on

their design; the effect will be even more evident in the description of viewer nodes.

Viewer nodes are observers of the simulated world, and their local changes are not supposed

to be propagated to other nodes. In our implementation, viewers are graphical components

(we use pygame) that display the state of the simulation in a nice, smooth manner. In order

to animate the objects, our viewer simulates them at 60fps. This simulation has two benefits:

the animation is smooth, and state synchronization becomes simply a matter of compensating
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1 SYNC_TIME = 0.5 # secs
2 def sync ( df , world ) :
3 while True :
4 s t a r t = time . per f_counter ( )
5 df . pu l l ( )
6 world . sh ip s = df . read_al l ( Player )
7 e lapsed = time . per f_counter ()− s t a r t
8 time . s l e e p (SYNC_TIME−e lapsed )
9

10 def draw_state ( df ) :
11 df . pu l l ( ) ; world = World ( )
12 world . a s t e r o i d s = df . read_al l ( Astero id )
13 v i s = V i s u a l i z e r ( world )
14 thread ing . Thread ( t a r g e t=sync , args=[df , world ] ) . s t a r t ( )
15 v i s . run ( ) # Run pygame loop .
16
17 def main ( ) :
18 args = . . . parse arguments . . .
19 vis_node = GotNode ( draw_state , remote=[( args . physics_node ) ] ,
20 Types=[Asteroid , Player ] )
21 vis_node . s t a r t ( )

Figure 4.7: The Viewer nodes.

for drifting clocks and for acquiring the new objects that are added to the world by other

nodes, rather than being the primary means of knowing the state of the world. Rather

than trying to be always in lockstep with the physics simulator, something that would be

unreliable, the viewer assumes its role as an autonomous component that operates on its

copy of the shared state.3

The viewer is the most complex node in the Space Race example because it executes two

threads: the data synchronization thread and the pygame thread. Figure 4.7 shows one of the

two parts of the viewer nodes, namely the entry point and the data synchronization thread.

Similarly to the player node, the viewer node also binds to the remote dataframe given by the

physics_node URL in the command line (line 19). The entry function (lines 10–15) starts
3What we did with our viewer follows the standard practice in the gaming and simulation industries. The

difference between our model and the many approaches in use today is our use of version control as the
fundamental organizing principle of distributed shared objects.

72



by pulling the objects and storing the pulled asteroid objects in a local world context. More

importantly, it spawns the data synchronization thread (line 14), and then proceeds to run

the pygame visualization object (line 15). At that point, there are two threads: one that is

updating the screen at 60fps, changing the state of asteroids and ships along the way (not

shown in this listing), and one that pulls data from the remote dataframe (lines 2–8) and

updating the asteroids and ships held by the pygame thread. Note that the sync function

(lines 2–8) never commits or pushes; it just pulls.

The viewer changes the state of the shared objects for purposes of animation. However, those

changes are not propagated to the physics node because the data synchronization thread in

Figure 4.7 never commits or pushes. As mentioned before, this is by design: the viewer is

just an observer of the shared state, so when it receives the updated state from the physics

server, it merely discards its estimates.

4.2 Dataframe: Object Repository

The core of our model is centered around the dataframe. The dataframe is a specialized

shared object heap used by the application code in every node in GoT. Each node in GoT

gets its own dataframe to manage the state of its objects4. As an object heap, the dataframe

must satisfy two important constraints: read stability, and deterministic state update. To

satisfy these constraints and better isolate the application code from the effects of external

updates, the heap is divided into two components: a snapshot that provides read stability,

and a version graph that detects and manages concurrent updates. The snapshot holds the

local copy of the objects used by the application code in the node. The version graph keeps

track of the published history of shared objects. It can receive both updates committed

locally by the node, and updates made externally by external nodes. Updates to the version
4For simplicity’s sake since there is only one dataframe per node, we use these two words interchangeably

throughout the dissertation.
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graph do not affect the snapshot.

4.2.1 Snapshot

The role of the snapshot in the dataframe is to provide the local application code with a

copy of the shared objects whose updates are under the control of the local code. The state

of the snapshot is observable only to the local code. As is typical for an object heap in any

language, the application code can read objects, create new objects, delete existing objects,

and modify objects. All these reads and writes are executed upon the snapshot. All writes

that are made (updates, additions, deletions) are staged in the snapshot, ready to be bundled

as a diff and applied to the version control graph on a commit. The local application code

can also update the local snapshot, using the checkout primitive, where new updates in the

version graph (received from remote nodes) are picked up as a diff and applied to update the

local object state.

4.2.2 Object Version Graph

The version graph is a Directed Acyclic Graph (DAG). It maintains the history of changes

that have been applied to it. Each vertex of the graph represents a version of the state.

Each directed edge from a source version to a destination version represents the delta change

required to change the state at the source to that at the destination. The version graph at

each node is analogous to the cloned repositories in Git, each of which maintains its history

of changes in a directed acyclic graph. The vertices of the Git history are labeled snapshots

of the files, and edges of the git history are commonly associated with a diff of changes.

The full representation of each version is never stored in the version graph. The start version,

called ROOT, represents an empty state. A globally unique version identifier represents each
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version. Only the edges and the delta changes associated with these edges are stored. The

representation of the version history as a chain of diffs is not new to distributed version

control systems and is the defining feature of DARCS [91] distributed version control system.

The key advantages that this offers will be discussed in the next chapter.

The version graph terminates at the HEAD version (using the same nomenclature as Git),

which can be considered the latest state version of all the objects at that GoT node. The

version graph is the published state of the node in the distributed system and is visible to

all the nodes in the system. The latest version of the node, as observed by all the other

nodes, is the HEAD as the snapshot cannot be observed, and any updates staged in the

snapshot are not observed. The version graph caters to two types of requests: retrieve updates

(fetch, responding to push, and checkout), and receive updates (push, responding to pull, and

commit). These will be discussed in detail in the next few sections.

4.3 Snapshot and Version Graph Interaction

As explained above, in addition to the standard object heap operations, the snapshot also

defines two primitives that allow the Nodes to move data between the snapshot and the

version graph: Commit, and Checkout.

When a commit is invoked, a new, globally unique version identifier is created, representing

the current state of the snapshot. All the updates staged in the snapshot represent the

transformation, from the state at the previously synchronized parent version of the snapshot

to the newly created version. A new edge is created in the version graph from the previous

synchronized parent version to the newly created version. Once the version graph has

accepted the update, all changelogs in the snapshot are cleared, and the snapshot’s previously

synchronized parent version identifier is updated to the newly committed version.
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The snapshot can be updated with the latest updates in the version graph by executing the

checkout primitive. In a checkout, all delta changes, in the version graph, since the snapshot’s

previous synchronized version are merged in order (to retain their causal relation) and applied

to the state stored in the snapshot. This update brings the state of the snapshot to the

HEAD version in the version graph.

The interaction between the snapshot and the version graph (checkout and commit) is

controlled by the local application code and can be called when required by the node. Since

this is the only way for external updates to be introduced to the snapshot, the snapshot

promises read stability.

4.4 State Replication in GoT

With data in the dataframe present as a graph of delta changes, sending, receiving, and

requesting changes to other dataframes is simplified. Dataframes provide the application code

with two primitives that allow the node to retrieve and receive data from other dataframes

explicitly: pull, and push, respectively. A dataframe that wants to initiate requests to another

dataframe must first register the remote dataframe. Each remote dataframe is stored as an

address, which is also mapped to the last version known for that node, the default being the

ROOT version.

To aid with the explanation of state replication between version graphs, we introduce another

example of a GoT application – distributed counter. In a distributed counter, the replicated

state at each GoT node, is reduced to a single shared counter x. Each GoT node increments

the counter by an arbitrary value and shares the current state of the counter with an

authoritative GoT node. According to the semantics of the counter, concurrent increments

to x have to be aggregated.
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As explained in the previous section, each GoT node has a version graph, a DAG, that stores

the history of changes to the replicated counter x. The vertices in the version graph are

versions of the state of the counter.

The directed edges between the two versions define a happened-after relation between the

versions. Figure 4.8 shows the version graph of a node N1. We see that version B happened-

after version A. Each edge is also associated with an update either as a domain-specific

command, or a state delta. The edge A → B is associated with the update u1. When u1,

which is an increment to the counter by one, is applied to state A where x = 0, we get state

B where x = 1.

Although every node in the system starts at the same initial state – ROOT, in this example,

we show the initial state to be version A, where x = 0. The HEAD version is the version

with no children (i.e., a version for which there are no other versions that happened-after)

and in Figure 4.8, the HEAD version of N1 is B.

If N1 were to make an update to the local state from B using a commit, a new version

identifier representing the updated state would be created, and a happened-after relation

would be established from B to this new version. The update recorded would be associated

with this newly created edge, and the HEAD at N1 would be the newly created version. Each

new version identifier can be assumed to be globally unique.

It is guaranteed, like in Git, that if two versions that have an edge exists in the version graphs

Figure 4.8: Version Graph at Node N1.
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at multiple nodes, then the edge in every version graph will be associated with the same

update (or diff in Git). For example, if A and B as seen in Figure 4.8 exists in more than one

node, say N1, and N2, then the edge A→ B in both N1 and N2 will both be associated with

the update u1. State divergence can e kept in check via inter-node communication, which

can be either push or pull communication.

4.4.1 Communication between Version Graphs

Figure 4.9 illustrates how basic inter-node communication (both push and pull) works with

state replication modeled on version control systems.

In Figure 4.9a, we see the object version graphs at two nodes N1 and N2. Both N1 and

N2 start at the same version A where x = 0. N1 has an additional update u1 where x is

incremented by one giving a new state B that happened-after A and has x = 1. N1 pushes

all state changes to N2 since version A, and therefore, sends update u1 and version B to N2.

The version graph at N2 is updated to reflect the result of the push. HEAD at N2 is moved

from A to B.

In Figure 4.9b, there are again two nodes N1 and N2 which start at the same version A (x = 0)

as before. N1 has two updates u1 : x + 1 and u2 : x + 2 that happened in sequence giving

versions B (x = 1) and C (x = 3) respectively. C happened-after B that happened-after A.

N2 on the other hand, only knows the update u1 and therefore, it only has states B that

happened-after A. When N2 pulls changes from N1, update u2 is sent by N1 bringing HEAD

at N2 to state C.

78



(a) Basic Push from Node N1 to N2.

(b) Basic Pull from Node N2 to N1.

Figure 4.9: Inter-node Communication in GoT.
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(a) Conflict Detection.

(b) Conflict Resolution.

Figure 4.10: Conflict Detection and Resolution.
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4.4.2 Conflict Detection

One of the strong advantages of using a version graph to track object changes is that detecting

conflicts become trivial. A conflict is detected between nodes when revision trees are merged,

and divergence of state versions is detected. This means that different nodes have performed

different computations after having read the same state.

In the case of the Space Race application, what we have shown so far is free from conflicts.

However, conflicts would arise, for example, if the AI player would set the position of the

ship directly (the player, shown in Figure 4.3, sets only the ship’s velocity, and that is how

all players are supposed to control the ship). This condition might happen if the player was

trying to cheat, but it also might happen accidentally. In that case, there would be conflicts

between the player node and the physics node on the y (and even x) fields of the player’s

position.

In the case of the simple counter, in both the basic inter-node communication shown above,

there are no concurrent updates, and therefore, no conflicts. Figure 4.10a shows both conflict

detection. In Figure 4.10a, we have two nodes N1, and N2 that, again, start at the same

version A (x = 0). From that common version, however, each node has performed a different

concurrent update. N1 has made two updates u1 : x+ 1, and u3 : x+ 3 in sequence, moving

the state from version A to B (x = 1), and version B to version D (x = 4) respectively. N2,

on the other hand, has made one update u2 : x+ 2 moving the state from A to C (x = 2). If

N2 pushed the update u2 to N1, the object version graph at N1 would have four versions, A,

B, C and D. D happened-after B that happened-after A, and C happened-after A. There

is no causal ordering between (B and C) and (D and C). These versions are concurrent

versions.

This state is a conflict and is relatively straightforward to detect. Note that all concurrent

updates from the same version are considered to be in conflict for a version graph. The
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def c o n f l i c t_ r e s o l u t i o n ( c o n f l i c t_ i t e r ,
or ig ina l_snap , your_snap , their_snap ) :

for or ig , yours , t h e i r s in c o n f l i c t_ i t e r :
i f isinstance ( yours , Player ) :

i f any( v <= World .MAX_SPEED for v in t h e i r s . v e l o c i t y ) :
yours . v e l o c i t y = t h e i r s . v e l o c i t y

your_snap . reso lve_with ( yours )
else : # i f i t i s an a s t e r o i d

your_snap . reso lve_with ( your )
return your_snap

Figure 4.11: Programmatic conflict resolution for the Physics node.

semantics of the state update is not taken into consideration. In this example, even though

u1 + u3 and u2 are not semantically in conflict and can be applied correctly in sequence, in

any order, version control detects them as conflicting updates as both updates are applied to

the same initial state A, giving two possible futures for A. To be specific, conflicts due to

concurrent updates are detected when the object version graph has multiple HEAD versions

(versions with no children) after receiving an update.

4.4.3 Conflict Resolution: Big-Step 3-way Merge

In Git, conflicts are exposed to the users: users have to edit the files and decide whether to

keep their own version, or the remote version of the modifications. Clearly, for in-memory

real-time application objects, the human-in-the-loop approach would be unfeasible. Instead,

we need a mechanism for automatically resolving conflicts. Spacetime supports automatic

merge conflict resolution by allowing programmers to declare functions specifically for that

purpose. For example, additionally to the code seen in Figure 4.5, the physics node has the

following function declared:

This strategy means that upon a merge conflict on any object of class Player, the physics

node uses the velocity set by the conflicting node, if it is under the maximum allowed speed,
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def three_way_merge ( o r i g i n a l , yours , t h e i r s ) :
return yours + t h e i r s − o r i g i n a l

Figure 4.12: 3-way merge function for Counter.

but maintains its own version of everything else. In this case, this policy makes sense, because

the physics node is authoritative for purposes of deciding positions of the objects, but not

their velocity – as long as the velocity honors the rules set by the physics node. In the case of

asteroids, no node other than physics is supposed to change any of their parameters; as such,

the merge policy simply keeps the physics’ node version. For other situations, the merge

policies will be different.

The merge policy used also varies from application to application. Figure 4.12 shows an

example of a 3-way merge function that applies to the simple counter.

The effect of using this merge function to resolve conflicts is seen in Figure 4.10b. As we can

see, with the 3-way merge returning a new stateM1 (x = 6), the version graph is updated. M1

happened-after both D and C and edges are added to the version graph to reflect this relation.

Version M1 is the state of the system having applied both updates u1, u2 and u3 to the state

at the lowest common ancestor version A. Two orderings are present in the version graph

merged with big-step 3-way merge: u1 followed by u2 followed by u3 (A→ B → D → M1)

and u2 followed by the combined effect of u1 and u3 (A→ C →M1).

We call this 3-way merge procedure big-step 3-way merge, as versions across different genera-

tions from A, are merged. The term generation is used here to define the distance from the

LCA. In this case, A. C and B are in the same generation, while D is in the next generation.

In a big-step 3-way merge, the HEAD versions of each branch are simply merged, independent

of their generation.

An interesting observation is that since the snapshots have the entire state, semantic merges

are possible. Additionally, optimizations can be made in the merge function to avoid iterating
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over independent and unrelated concurrent updates. It cuts the time taken to accept

concurrent updates, thereby decreasing update latency. Semantic merges are made possible

by the presence of the original snapshot. Mechanisms like version vectors [83] employed

in industry-standard databases, like Riak [9] and Apache Cassandra [23], are capable of

detecting conflicts, but are not capable of determining the original version from which they

deviated.

The state of the snapshot returned by the merge function is treated as the correctly merged

state, and a new version is created for this merged state. Since this merged state “happened-

after” all the diverging states, edges are created connecting these diverging edges to the

merged version. Diffs are generated for each of these new edges as a difference between the

two states. The computation of these diffs is simply a union of updates in each divergent

path that were not in conflict and the updates that were executed in the custom merge. A

plethora of built-in merging strategies can also be used for trivial cases.

This method of resolving the version graph is similar to the approach of Operational transfor-

mation [86] (OT) with a transformation diff being generated at the detection of conflict to

“correct” the deviations. However, there are important differences between the approaches.

In traditional OT, two functions must be created that, when applied on the divergent states,

transforms them into the common resolved state. Different data types would need to be

handled differently, making the creation of these functions extremely difficult. In GoT, we

do not create different transformation functions. We create different diffs that are applied

to the divergent states using the exact same function and bring them to an identical state.

While transformation functions can be hard to generate, generating the diff required to bring

one state to another is straightforward. We create the diff by making a log of all object

dimensions that are in the newer state but not present, or different in the older state, and all

objects that were deleted. We call this Delta transformation

It has been proven [20] that a version graph constructed along these conflict resolution rules
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is a partially ordered set of updates that form a semi-join lattice.

4.4.4 Responsibilities of Merging

In Git, conflicts are not resolved on a push. Instead, when there are conflicts, the receiving

repository rejects the push request. The user pushing the changes has two options: push

the changes in as a new branch, which defers the resolution to a later time, or pull the new

changes in the remote repository, resolve the merge locally, and then push the merged state.

In the case of GoT, neither options are appealing. If we create new branches on conflicts and

not merge, the nodes keep drifting apart until the deferred merge is invoked. If the state has

branched multiple times, it becomes computationally expensive to merge states all at once.

If we choose the second option (i.e., reject the push), the sender may never be able to push

changes, as the remote node might progress through the states so quickly that the sender is

always rejected, starving the sender. For example, a node trying to set the ship’s velocity

might never be able to do it, because the physics simulator keeps committing new values to

the ship’s position every 50ms.

To counter these effects, we allow conflict resolution also on the receiving end of a push

request. That is the case shown in both Figure 4.11 and Figure 4.12. A good consequence of

this is that each node has complete control over its version graph and can merge the conflict

using the logic that they have. In the Spacerace example, the physics node can always decide

to accept its changes over the changes pushed by the players. The visualizer can always decide

to accept the changes pulled from the physics node over the changes that it has simulated.

In the counter example, the resolution is the same at every node, and they aggregate the

counts from concurrent updates. The rules of permissible merge functions change based on

the network topologies used and will be discussed in later chapters.
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4.5 Consistency Model

GoT provides causal consistency as the data consistency guarantee. The “happened-after”

relation between versions in the version graph captures the causal relationship between

operations in the system. Any updates made and exchanged include these causal relations

and are in the order they have to be observed. This ensures that any node that reads an

update also reads all the updates that causally preceded the update making the model

causally consistent.

In addition to the causal consistency guarantee, the fetch_await and push_await variants of

the fetch and push primitives allow for case by case modifications to the guarantee. When

a node invokes the regular fetch, a request is made to the remote node requesting changes

from a specific version. If there are no new changes, the fetch returns empty-handed, and

the local node process continues. With fetch_await, however, the fetch request blocks until

the remote node has progressed from the requested version. In many cases, this is preferable

to constantly polling fetch requests as it generates much less network traffic, decreasing

update latency. Along similar lines, the push_await primitive blocks the local execution of

application code after a push request until an acknowledgment is received for the successful

integration of the pushed diffs. The code executed after the push_await can assume that the

remote node has integrated the updates into its version graph. This is particularly useful

when the node making the push wants to receive updates from a potential conflict resolution

immediately following a push, as in some cases, conflict resolution can be costly.

4.6 Formal Specification

We present a formalization of the GoT version control programming model that underlies

Spacetime. The formal specification serves to unambiguously describe the concepts and
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Table 4.2: Metavariables

Primitive metavariable Meaning
x Value
d Attribute of an object.
t A concrete type. t : {d1, d2, . . . , dn}
o An object. o :< t, id(o), z >
id(o) The unique primary key of the object. id(o) : z[dp], dp ∈ t
z State of an object. z : {∀d ∈ t, d 7→ x}
v An unique identifier for a version.

operations, independently of any implementation. We were unable to locate any published

work with a formal specification of Git. As such, we believe GoT, which, in its current state,

is a simplified version of Git, is a valuable step towards that goal.

Figure 4.14 shows the formal specification of GoT. Table 4.2 summarizes the metavariables

used in the specification. The specification is divided into five parts: (1) the definition of

dataframe; (2) the interface that the snapshot exposes to the application code; (3) functions

of the version graph; (4) the interface that the version graph exposes to the snapshot; and

(5) the interface that the dataframe exposes to remote dataframes. Figure 4.1 (page 63) is a

good illustration for understanding the different parts of the formal specification, which are

explained next. (A word on notation: the arrows in Figure 4.14 denote a change of state in

either the snapshot or the version graph).

4.6.1 Dataframe

As discussed before, the core of our model is centered around the component called the

dataframe. Each node in GoT gets its own dataframe to manage the state of its objects5. As

an object heap, the dataframe must satisfy two important constraints: read stability, and

deterministic state update. In the heap of single-threaded programming languages, these
5For simplicity’s sake since there is only one dataframe per node, we use these two words interchangeably

throughout.
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D1. Dataframe:
(Dataframe) D : < T,G, S >

(Types) T : {t1, t2, . . . , tn}
(Version Graph) G : < vh, V, E, P >

(Vertices) V : {v1, v2, . . . , vn}
(Edges) E : {e1, e2, . . . , en}

(Single edge) e : δ1→2, δ2→3, . . . , δm−1→m

(Snapshot) S : < vs, s, δ >

(Objects in Snapshot) s : {o1, o2, . . . , on}
(Changes in Snapshot) δ : {id(o) 7→ {d 7→ x}[new|mod|del]}

(Remote Nodes) P : {p 7→ vp}

Figure 4.13: Formal specification of Dataframe.

constraints are easy to achieve, as the only way to change the state is from the sequential

execution of the application code. In parallel and distributed computing, this is harder

to achieve because changes can be made from outside the application. To better isolate

the effects of external changes, the heap is divided into two components: a snapshot that

provides read stability, and a version graph that detects and manages concurrent changes.

The snapshot is the local copy of the objects used by the application code in the node. The

version graph keeps track of the published history of shared objects. It can receive both

changes committed locally by the node, and changes made externally by external nodes.

Changes made to the version graph do not affect the snapshot without an explicit request

from the application code.

Formally, a dataframe D is defined as a tuple < T,G, S >: a list of types T declared in a

shared data model, a snapshot S, and a version graph G to track versions of the objects

(Figure 4.13).
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D2. Snapshot Interface:
(New object) S(vs, s, δ)

S.create(o)−−−−−−→ S(vs, s, δ ∪ {id(o) 7→ z}[new])

(Delete object) S(vs, s, δ)
S.delete(o)−−−−−−→ S(vs, s, δ ∪ {id(o) 7→ ∅}[del])

(Write attribute) S(vs, s, δ)
o.write(d,x)−−−−−−→ S(vs, s, δ ∪ {id(o) 7→ {d 7→ x}}[mod])

(Read attribute) o.read(d) :

δ(id(o), d) (id(o), d) ∈ δ
s(id(o), d) (id(o), d) ∈ s ∧ (id(o), d) /∈ δ

D3. Big Step Version Graph Functions:
(Retrieve changes since v)

G.get(v) : {er, ev+1, . . . , eh−1, eh}

(Receive changes: va → vb)

G(vh, V, E) G.put(va,vb,{ea,ea+1,...,eb})−−−−−−−−−−−−−−−−→


G(vb, V ∪ {va+1, . . . , vb},
E ∪ {ea, ea+1, . . . , eb})

va = vh

Resolve(G, va, vb, {ea, ea+1, . . . , eb}) va 6= vh

(Conflict Resolution)

G(vh, V, E) Resolve(G,va,vb,{ea,...,eb})−−−−−−−−−−−−−−−→
G(vm, V ∪{va+1, . . . , vb−1, vb, vm},

E ∪{ea, . . . , eb, (δa→h − δa→b) ∪ δres,

(δa→b − δa→h) ∪ δres})

D4. Interaction between Snapshot and Version Graph:
(Checkout) S(vs, s, δ), G(vh, V, E) D.checkout(G,S)−−−−−−−−−→ S(vh, s ∪G.get(vs), δ), G(vh, V, E)

(Commit) S(vs, s, δ), G(vh, V, E) D.commit(S,G)−−−−−−−−−→ S(vn, s ∪ δ, ∅), G.put(vs, vn, δ)
D5. Interaction with Remote Dataframes:

(Push)
D(T,Gl, Sl, P ),
D(T,Gp, Sp, ∅)

D.pushto(p∈P )−−−−−−−−→
D(T,Gl, Sl, vlh),

D(T,Gp.put(P [p], vlh, Gl.get(P [p])), Sp, ∅)

(Pull)
D(T,Gl, Sl, P ),
D(T,Gp, Sp, ∅)

D.pullf rom(p∈P )−−−−−−−−−−→
D(T,Gl.put(P [p], vph, Gp.get(P [p])), Sl, vph),

D(T,Gp, Sp, ∅)

Figure 4.14: Formal Specification of Global Object Tracker (GoT) operations.
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4.6.2 Data Model and Types

All nodes share the same data model that declares a set of types (denoted by T ). All objects

shared between the nodes must be instances of one of these types. A type, denoted as

t is declared with many dimensions d. An object o of type t is represented by the tuple

< t, id(o), z > (see Table 4.2). z represents the state table mapping each dimension d to

a value x. Each object has an identifier id(o) such that the pair < t, id(o) > is globally

unique. Example types, Player, Ship, and Asteroid, used in a Space Race game, are shown

and described in Figure 4.3.

4.6.3 Snapshot

The role of the snapshot in the dataframe is to provide the application code with a copy

of the shared objects whose updates are under the control of the code. As is typical for an

object heap in any language, the application code can read objects, create new objects, delete

existing objects, and modify attributes of objects (Figure 4.14 Part D2). All these reads and

writes are executed upon the snapshot. All writes made (updates, additions, deletions) are

staged in the snapshot (in δ), ready to be bundled as a diff and applied to the version control

graph on a commit. It can also request changes (only when requested by the application code

using the checkout primitive) from the version graph and apply the diff received to update

the local object state. These two primitives are explained in more detail below.

Formally, we define the snapshot as the tuple < δ, s, vs >. All writes made to the snapshot

are staged in δ. These deltas consist of newly added and modified objects as their state deltas

(the whole state is a state delta for new objects), and the identifier for all objects that were

deleted. s represents the local state of the objects. vs indicates that the snapshot was last

copied from the version graph at version vs.
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4.6.4 Object Version Graph

The version graph G is a Directed Acyclic Graph (DAG) denoted as the tuple < vh, V, E, P >.

Each vertex in (V ) represents a version of the state of all the objects. It is never instantiated

in the version graph and is only labeled by a version identifier v. Each edge in E is the part

of the graph that is instantiated and is represented as e : δa→b, e ∈ E. It represents the diff of

changes (δ) required to move the state of all the objects from the previous version (va) to the

next (vb). The graph terminates at the head version denoted by vh, which can be considered

the latest state version of all the objects. The version graph can receive object changes

through diffs either from the local snapshot or from remote dataframes. The version graph

can also receive requests for updates from the local snapshot or the remote dataframe. The

version graph responds to these requests with diffs representing these updates. Finally, the

version graph also maintains a map of the last know states (vp) of each external dataframe

(p) that it pushes changes to (P : p 7→ vp). This map allows the version graph to generate

the correct diff during a push.

The version graph exposes two functions: retrieve changes, and receive changes (Figure 4.14

Part D3), which are explained next.

Retrieving changes

Changes can be retrieved by specifying a version identifier vn ∈ V . This version identifier

denotes the last version of the state known by the requester. All the edges (diffs) starting

from vn up until the head version vh are retrieved and returned in order. Applying these

diffs, in order, on the state at version vn would bring the state to version vh.
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Receiving changes

When receiving changes, the version graph receives an ordered set of edges, {ea, ea+1 . . . , eb},

and version identifiers, va, vb. The edges represent all delta changes, that, when applied to a

state at version va, transform it to the state at version vb.

When applying these changes, the version graph grows. If it receives change from the head

version (e : δa→b, va = vh), the changes are not in conflict, and the edges can simply be

appended to the existing list of edges in the graph. What this means is that all the changes

received were created, having first read the latest change in the graph. V is also updated

with all the version identifiers that the graph can reconstruct from the delta changes it has.

The new head version changes to vb.

However, if the version graph receives a change e : δa→b with va 6= vh and va ∈ V , i.e. a delta

that moves the state from version (va) that is not at the head of the graph to a divergent

state (vb), then the changes received are in conflict with all the changes between va and vh

already present in the version graph, and must be resolved.

4.6.5 Operational Semantics of Big Step

As discussed, in GoT, the developer can write a custom merge function to resolve cases of

conflict. Conflicts are resolved asynchronously and not under the control of the application

code except to supply the merge function. The merge function takes in four parameters: an

iterator over objects that conflict, and three snapshot states representing the node state at

the point of the fork, and at the end of the diverging paths. This merge function provides

rich semantics for merge write-write conflicts and maintaining cross-object semantics after

resolution. Changes are all recorded in the corresponded dataframes. The delta changes in

the dataframe returned by the function are picked up as the resolved delta δres. Figure 4.11
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gives an example of such a merge function. Any number of default merge strategies can be

employed by the programmer to automatically merge all conflicts without having to define

their own custom function.

With a final resolved state (vm) known as the result of the three-way merge, the version

graph can be updated. GoT employs a variation of Operational transformation [86] (OT)

to bring the diverging states to the resolved state. In traditional OT, two functions must

be created that, when applied on the divergent states, transforms them into the common

resolved state. Different data types would need to be handled differently, making the creation

of these functions extremely difficult. In GoT, we do not create different transformation

functions. We create different delta changes that are applied to the divergent states using the

exact same function and bring them to an identical state. While transformation functions

can be hard to generate, generating the delta required to bring one state to another is

simpler. We create a delta containing all object dimensions that are in the later state but

not present, or different in the former. In the formal model, we represent the delta from

the head version (vh) to the merged version (vm) as δh→m = δa→b − δa→h ∪ δres. This delta

includes all changes present in the conflicting delta (δa→b) that are not present in (and thus

in conflict with) the master branch (δa→h). This difference is represented as δa→b − δa→h.

Additionally, we add the delta changes obtained from the three-way merge function (δres).

Similarly, the delta from the conflicting version vb to the merged version vm is represented as

δb→m = δa→h − δa→b ∪ δres. This procedure gives us three new edges that are added to the

graph: the conflicting change (δa→b) that was received, the change from the current head

of the graph to the conflict resolved version (< δh→m), and the change from the conflicting

version to the conflict resolved version (δb→m).

Any cross-object semantic preserving changes made in the custom merge function would be

part of the resolved delta (δres) and, therefore, would be preserved in the final changes.
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Figure 4.15: Map of Alternative Programming Models when compared to GoT.

4.7 GoT and Alternative Programming Models

With the GoT model explained, we now need to understand what type of programming

model, GoT is, when conceptually compared to other distributed computing models that

already exist. We chose to compare GoT to models based on two dimensions: the type of the

programming model – shared-state, and message-passing, and the consistency model they

support – sequential consistency, and eventual consistency. The Figure 4.15, shows a map of

many technologies within these two dimensions.

GoT, and subsequently, the implementation Spacetime, as discussed above, implements causal

consistency, which, by definition, is stronger than eventual consistency, but weaker than

sequential consistency. The consistency model is typically relevant only with shared-state

programming models with the strength of consistency defining the interaction between the

nodes in the system and the datastore holding the shared-state. Databases such as Redis,

Riak, Cassandra are all considered to be implementations of highly available, eventually
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consistent stores. On the other end, databases such as MySQL, Oracle DB, PostgreSQL, etc.

are considered to be sequentially consistent with the use of strong synchronization tactics

such as transactions.

In the other dimension, message-passing programming models, typically do not implement

sequential consistency as the computing would be slowed down significantly. If before making

an update at a node, the node has to obtain the latest update written anywhere in the

system, all concurrent updates have to wait until this one node writes. Since these nodes

are not writing to one location or shared-state, coordination mechanisms have to be placed

at each node to ensure this sequence. Such restrictions can realistically only be placed onto

a shared-state data store, but not the states at each node in a message-passing system.

Techniques that assign a global order to concurrent updates do exist (GSP [46]). However,

these systems either require a node that orders the updates (server) or quorum style ordering

of updates. The first implies that there is a shared-state (the state of the server). The second

is slow unless applied to eventual consistency.

GoT is a hybrid programming model that shares traits with message-passing and shared-state

programming models, but not wholly one or the other.

Like shared-state models, and unlike message-passing models, in GoT, there is a notion of a

common set of objects or variables synchronized between different nodes – the dataframe.

The state of the execution can be easily observed by looking at this shared location. This

observation is not possible in message-passing systems as there is no common set of objects

or variables. Each node can have a different set of variables and data. Each component keeps

only the slice of the state that it needs and in the form that it can use best.

On the other hand, unlike shared-state, but similar to message-passing, the entire state of a

GoT application is not with one GoT node. The state is, instead, distributed or replicated at

each node. These replicas can have partial updates that have not yet been synchronized with
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other nodes in the system. Even when a shared-state system is using a highly available system

such as a database cluster, to all the clients, which are the nodes computing the changes

to the state of the distributed application, the database cluster is seen as one component

that updates are sent to, and state is read from. It, therefore, behaves as a shared-state

model. The internal replication and distribution of the updates within the database cluster

is a separate, shared-space application that typically uses message-passing models to share

state updates.

Another similarity between GoT and message-passing models is that when nodes synchronize,

they share information between each other through push and pull communication, instead of

synchronizing directly over a common data store like in shared-state. Finally, in GoT, each

node owns the data in the local dataframe and is responsible for keeping them correct. This

trait is again shared with message-passing models, where each node, or actor is in charge of

their state and delta. They receive messages and enact these messages over their state to

keep them correct.
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Chapter 5

Spacetime: Implementation of GoT

As defined and explained in Chapter 2, shared-space applications need consistency at the

lowest latency possible, a notion we refer to as update latency. Update latency is the time

taken for an update to the state in one component in a distributed system to be read in

another component. Update latency is different from the notion of both consistency and

traditional latency.

In distributed systems, consistency is defined as the communication guarantee that a node

in a system will always read the latest write. In stronger consistency models like sequential

consistency, this guarantee is maintained rigorously at the cost of having to wait for a write

to complete. In weaker consistency models like eventual consistency, this guarantee is relaxed,

and nodes can read potentially stale data in exchange for a quick response from the remote

source. While consistency guarantees that the values read are at their latest state when read,

it does not include a notion for the time taken to read that state. It does not include the

concept of time.

On the other hand, traditional latency is the time taken for a remote node to respond to

a request. This concept only carries the notion of the time for response and provides no
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information or guarantees on the response’s content. A node can respond with obsolete data

multiple times, quickly and still have low latency.

While distributed systems typically either focus on latency or consistency, there are applica-

tions such as the shared-space applications we have been discussing, that require optimization

to both.

The concept of update latency is quite similar to the concept of probabilistically bounded

staleness [6] (PBS) proposed by Bailis et al. Given a response to a remote request, PBS

defines the probability of getting a stale response. In contrast to update latency, PBS first

assumes weak consistency and then provides a probability of getting the latest write on

each response. For strongly consistent systems, the probability would be high. It gives the

software developers a sense of how inconsistent the state at each node is. Update latency is

the other side of the coin. It first assumes consistency and then measures the time taken

to achieve this consistency. It gives the software developers a sense of the time taken for

an update to propagate. While they represent similar notions, we feel that for shared-space

applications, update latency provides a clearer picture. For example, in an online multiplayer

game, showing the players the median update latency for the updates they make is more

relevant than providing them with the probability of receiving new updates. The usefulness

of PBS is limited to eventually consistent systems.

5.1 Components of Update Latency

To understand how GoT enables low update latency we need to understand its components.

Figure 5.1 shows the space and time diagram of three nodes of a distributed system A, B

and C. Real time is represented on the horizontal axis and the state space of different nodes

is represented in the vertical axis. The three nodes are at initial states A1, B1, and C1
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Figure 5.1: Components of update latency.

respectively.

Node A makes a commit and moves the local state to state A2. This process takes some

time, and the update is only available locally. This update has to now propagate to the

other two nodes. Update latency is calculated from this point in time. Node A packages the

update and transfers it to node B over the network. This propagation is not instantaneous

and therefore, must travel through both space and time to reach node B. This time taken is

the write latency of node A to node B. Although node A cannot record this latency.

At this moment, the state at node B does not include the information that has just been

introduced from node A. The update has to be unpackaged and reconciled into the local state.

Reconciliation might include conflict resolution if the updates received are incompatible with

the local state. The reconciled state is state B2. The update latency between A and B for

the update made by A is the time between the creation of state A2 and the creation of state

B2, as shown by the green line.
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Let us now consider how fetch requests influence update latency. Node C makes a fetch

request to node B. The node receives the request, and a response comprising of state B2,

which includes A2, is packaged and sent back. When the node receives it, unpackages and

reconciles the update, the local state is updated to state C3. The update latency for update

A2 between node A and C is the time between the creation of A2 and C3.

5.2 Optimizing for Update Latency

Spacetime is an implementation of the GoT programming model, developed in python. It

was designed for shared-space distributed applications that require low update latency such

as multiplayer games, multi-agent simulations, etc. Using the GoT programming model,

Spacetime optimizes each stage or gives the programmer choices in the process of transmitting

an update, all in a bid to reduce update latency.

5.2.1 Preparation of the Updates

As an optimization, delta updates in GoT are bundled as and when tracked objects are made,

updated, or deleted. They are then bundled into a single update when the commit command

is invoked. The choice for the programmer is in the granularity of the bundle.

For example, suppose a thousand cars have to be added by an initialize node, to a simulation,

for a taxi simulation to use. The initialize node can prepare one update with thousand

objects making all thousand objects available at once, but at the same time taking longer

to package the update. Alternately, it can publish the objects one at a time, making the

updates numerous but smaller and letting the taxi simulation get some of the cars while the

others are being added. Each update, however, is staged while it is being created to avoid

the computation cost of creating a diff from full versions during packaging time.

100



5.2.2 Transportation of Updates

Since the updates are always transferred as deltas, and not as full objects, the updates only

carry the necessary information to the remote nodes. The amount of information is dependent

on the changes made to the version graph at the time of the transportation.

Additionally, to optimize the delivery of updates in pull communication, GoT gives the choice

to the developers to use two variants of the fetch – fetch and fetch_await. In fetch, the node

attempts to pull any update that exists from the remote node, even if there are no updates.

This method allows for low latency, but potentially stale responses. In fetch_await, the node

makes a pull request that the remote node serves only when there is an update to be sent

across. This method allows for stricter consistency at the expense of having to wait for an

update. The fetch_await blocks the application code in the node that invokes it. Using

fetch_await instead of fetch allows nodes to receive updates that they know will be available,

as soon as they are present in the remote version graph. Since pull communication in GoT

also uses delta updates, redundant information is not transferred.

For example, a programmer should code the player bot in Spacerace to proceed with the

game, only when the player state has been set to ready. If the programmer is only using

fetch and not fetch_await, multiple redundant fetch requests will be made, leading to higher

traffic load at the physics server. With fetch_await, only updates with new information are

obtained, and the player bot can only synchronize over new information until the game can

begin. Another example in the Spacerace, the visualizer nodes use pull instead of pull_await

as it is not critical for them to receive the latest update, and the visualizer can continue

estimating new positions even with a slightly stale update.

Finally, as another optimization from GoT, in Spacetime, the deltas transported are com-

pressed into a single delta and edge. This optimization makes sense in the big-step Spacetime-

world as the topology restrictions ensure that the node receiving the updates will never require
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Figure 5.2: Pushing updates C → D → E from N1 to N2.

the intermediate updates in the delta. This is simply because the onus of communication is

one way. Nodes do not push to each other or fetch from each other. One node receives a

push or fetch request, and the other node makes the request. This means that it is only one

node that dictates from which version to send updates and from which version to receive

the updates. Since nodes cannot also roll back in time and they are always expected to

synchronize to the HEAD version, they can never visit the intermediate states.

Let us consider the following example shown in Figure 5.2. There are two nodes N1 and

N2 that are synchronizing. N1 pushes updates to N2. N2 never pushes updates back to

or fetches updates from N1. The updates δ1 and δ2 are concurrent in N1, with a delta

transformation states B, C, and D present in the graph. In addition, there is an extra update

from D → E with delta δ3. The versions marked in green are the HEAD versions. When N1

pushes to N2, the node N2 identifies its last state synchronized with N1 as version C. N2

needs to receive updates to bring the state of N2 to state E. There are two updates along

that way, δ‘
1 and δ3. The edges A → B → D are not relevant to N2 to reach the HEAD
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Figure 5.3: Pushing updates E → G from N1 to N2.

version E. Therefore, this does not need to be synchronized. The edges C → D → E are

combined together into one update C → E with the combined delta δ‘
1+3. The state D is

completely an intermediate state and is not required by N2 if certain topological constraints

are met.

First, there must be no cycles in the topology. Nodes N1, N2, and N3 cannot be set up

in a way that N1 pushes/fetches from N2 which in turn pushes/fetches from N3 which

pushes/fetches from N1 again. Second, each node can have only one parent. These two rules

ensure that there is only one authoritative replica for each node and that there are no cycles

in the authority chain.

With these rules, we can answer two questions: (1) why the versions B, and D, although

not known to N2, will never be needed by N2 and (2) why N2 will never need the edges

A→ B → D.

The versions B, and D are present in N1, but not in N2. Since N1 is pushing to N2, N2
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cannot push back to N1 (banned by the rules over the topology). This essentially means the

N2 is the authoritative replica of N1. The versions B and D could only have been created

in two ways: N1 could have committed the update itself, or N1 received an update from a

child node for whom it is the authoritative replica. Since there cannot be any loops in the

authoritative chain, any child replica of N1 is not a direct child replica of N2. This means

that any update created by the children of N1 cannot reach N2 without passing through N1.

Since N1 is in control of updates being sent to N2, it knows the updates that are with N2

and those that are not. It knows the last synchronized version of N2. Therefore, N1 can

ignore versions B and D and directly send the updates from C → E. Any further concurrent

updates from B or D are merged into a version that happened-after E. That update will be

then be received by N2 as an update from E on subsequent synchronizations. This process is

shown in Figure 5.3. A concurrent update from D → F is seen in N1, the merge of which is

version G. When N1 synchronizes with N2, it sends the missing concurrent update δ‘
4 with

the edge E → G. Thus we can see that this answers the question (1).

To answer the question (2), N2 requires the edges A → B → D only if there are delta

updates in there that are missing from N2, or if there is a possibility that N2 might receive

an update from version B. The latter was shown not to be true above, so the only reason

to transfer A → B → D is if there are missing updates. The updates in A → B → D are

δ1 and δ2. We can see that N2 already has the update δ2, and has yet to receive δ1. The

edges C → D → E, however, contain the update δ1. So from the standpoint of correctness,

the push update it is receiving in Figure 5.2 will contain the required deltas, answering the

question (2).

This method of merging updates significantly reduces both the amount of data being trans-

ferred, as redundant intermediate states are discarded, and reduces the amount of processing

required to merge the update that is being received. The latter is because on every push and

pull, instead of synchronizing multiple edges, only one compressed edge is ever sent.
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5.2.3 Conflict resolution

Another phase in the path of update latency is conflict resolution. Every update has to be

resolved against concurrent updates, if any. Many architectures enforce that this resolution

takes place before the conflict can be observed in a bid to avoid conflicts in the first place. For

example, quorum based techniques, global sequence protocol [46], CRDTs [100] all define rules

for concurrent updates in such a way that conflicts are eliminated systemically (last-write-wins,

etc.) or their application is redundant (CRDTs).

GoT, instead uses the three-way merges of the concurrent changes to accept the changes

when the updates are observed. When a custom three-way merge is used, the complexity of

the operation is determined by the complexity of the custom function in finding the resolved

state. Optimizations to avoid iterating over objects present in independent updates can easily

be made.

When there are no concurrent changes, updates are fast, as it is a simple operation of

extending the graph. Since the version graph is maintained edge first, the graph can be

extended without actually observing the state changes in the delta update. No version state

has to be calculated.

In the case of conflict, the deltas must be read at the granularity chosen by the programmer.

A blanket rule such as “accept yours” or “accept theirs”, as seen in Git, is extremely efficient

as the deltas do not have to be processed. A custom merge rule, however, can be slow if the

algorithm to determine the merged result is slow.

CRDTs were explicitly designed to avoid this problem. By knowing that the updates compose

correctly, irrespective of the order, the contents of the updates do not need to be processed.

However, the same rules can be applied to Spacetime. The delta transformation can just use

the existing deltas if the deltas are known to be commutative and associative.
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For example, in Figure 5.4, if deltas in concurrent updates δ1 and δ2 are associative and

commutative, then applying them in any order reaches the same state. Therefore, to reach

state D from B, we just need to apply δ2, and to reach D from C, we need to apply δ1. These

deltas then do not have to be computed.

The presence of the three-way merge, and the choice to use them at any granularity, including

an approach similar to CRDTs, allows optimizations that keep conflict resolution fast.

Spacetime refrains from observing and processing the state in the updates unless necessary

for resolution, thus improving the speed of conflict resolution and ultimately update latency.
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Chapter 6

Challenge 1: Peer to Peer Networks

As discussed in the previous chapter, and for more reasons explained in this chapter, there is

a fundamental problem in existing version control systems that makes their use quite limited

in an important category of network topologies, namely in peer to peer applications. Version

control systems often rely on 3-way merges, as explained in the previous chapter, to resolve

write-write conflicts which require that two conflicting versions have a least common ancestor

(LCA) version to compare them to. In certain situations, (known as the "criss-cross merge" in

git1), a single LCA cannot be computed. In those situations, existing VCSs resort to one-off

solutions that are not elegant or that burden the user with large diffs that are irrelevant.

While these situations are rare corner cases in the use of version control of files, they will

be common if GoT is used in peer to peer applications. For that reason, this fundamental

problem should be addressed head-on, rather than being treated as a rare corner case.

In this chapter, we illustrate the criss-cross problem with version control state replication in a

peer to peer setting, with the example of the distributed counter described in the Chapter 4,

in the simplest peer to peer setup: two nodes, N1 and N2, that both push updates to each

other. We then explain the inadequacies in big-step merge to deal with the criss-cross merge,
1http://www.gelato.unsw.edu.au/archives/git/0504/2279.html
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and show how modifications to the merge function can help mitigate that problem in peer 2

peer. With a simple formal proof we prove that the new merge function, called small-step

three way merge can eliminate the criss-cross merge problem in peer to peer GoT applications.

6.1 Criss Cross Merge Scenario

Figure 6.1a shows the initial states of the version graphs at N1 and N2. The initial state in

both N1 and N2 is A (v = 0). N1 has further updated the state to B (v = 1) via update

u1, while N2 has made a concurrent update bringing the state to C (v = 2) via update u2.

All updates made by N1 locally are colored in blue while that of N2 are colored in green. A

which is the common root of the version graph is left uncolored. To illustrate the problem,

let the following events take place in order.

Event 1: The two nodes communicate updates with a push to each other. N1 sends A→ B

to N2, and N2 sends A→ C to N1.

Event 2: While the push is still in the network, N1 and N2 both make concurrent updates

u3, bring HEAD to B, and u4, bringing HEAD to D respectively. Figure 6.1b shows the

version graph at N1 and N2 after this update.

Event 3: The push that was previously sent in Event 1 arrives at each of the nodes. A

conflict is detected in both nodes and resolved with the creation of merge nodes using the

big-step 3-way merge. As we can see in Figure 6.1c, N1 resolves versions conflicting versions

D, C, and LCA A to get merge version M1.

The update associated with the edge D →M1 is equivalent to u2 and the update associated

with C →M1 is the combined effect of two updates u1, and u3 represented as u1 + u3. The

combined effect is a new delta (or command) that is equivalent to the two individual delta
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Figure 6.1: Broken Version Control in Peer to Peer Networks.
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updates. In the case of the counter, u1 +u3 = v+ 4. Similarly, N1 resolves versions conflicting

versions E, B, and LCA A to get merge version M2. The merge versions are colored grey

to better identify them. The value of the counter v at M1 and M2 is six (u1 + u2 + u3) and

seven (u1 + u2 + u4) respectively. Both values are correct.

Event 4: Let each of the nodes then make another set of concurrent updates u5 and u6,

bringing the HEAD of N1 and N2 to F and G respectively, as seen in Figure 6.1d.

Event 5: Node N2 then pushes updates to N1 which is received. What we see, in Figure 6.1e,

is the result of that push in node N1. N1 first detects a conflict as the version graph has two

HEAD versions, F , and G. In order to invoke the 3-way merge and resolve this conflict, a

LCA of F and G is needed. There are, however, two such ancestors: B and C (marked with

a red circle). This is where the big-step 3-way merge fails.

6.2 Failure of Big-Step Merge

The solution is not to pick any one of the ancestors. For example, if N1 chooses B, then the

update F →M3, which is equivalent to the updates B →M2 → G, is set to (u2 + u4) + u6 =

v + 12 and the update G→M3, which is equivalent to the updates B → D →M1 which is

u3 + u2 + u5 = v + 10. This would set the value of v at M3 to be 23. If we instead choose, C

as the least common ancestor for the merge, the update F →M3 is equivalent to the updates

C → E →M2 which is u4 + u1 + u6 = v + 11 and the update G→M3 is equivalent to the

updates C →M1 → F which is (u1 + u3) + u5 = v + 9. The value of v at M3 would then be

22. Both values are wrong as the real set of updates to M3 is u1 +u2 +u3 +u4 +u5 +u6 = 21.

This problem exists in file based version control systems like Git. Git employs a lazy, recursive

3-way merge strategy: when it encounters the criss-cross merge, it creates a pseudo version

P , as seen in Figure 6.1f which is the automatic merge of B and C, and acts as the least
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common ancestors for F and G. If B, and C have no single common LCA, the process is

repeated recursively. This recovery process, by which the causality of smaller state updates

is being calculated, can be extremely costly. In cases where criss-cross merges are frequent,

such as in peer to peer applications, this strategy becomes unfeasible.

6.3 The Root of the Problem

If we were to look at the path A → M3, via B, we can see that it includes the update u2

twice (the same path via C includes u1 twice). The updates F → M3, calculated with B

as the ancestor, is the combined effect of B → M2 and M2 → G. B → M2 itself is the

combined effect of A→ C (u2) and C → E (u4). But the update u2 is already included in

the path B → F at D →M1. In order to detect that u2 is being applied twice, it is necessary

to include that information in the edge B → M2. This means that every edge must carry

information of the constituent updates. This is unfeasible. Take for example, if the next

update N1 were to receive would be a concurrent update from F . The resolve of that conflict

would need to include all the updates that are included with F →M3, and so on. As updates

progress, each edge generated via conflict resolution would need to store more and more

information.

Since the crux of the problem is the loss of information when updates are combined together

during conflict resolution, our solution is to rework conflict resolution to ensure that each

edge only carries the information of one update. This solution is called small-step merge

and is discussed next.
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6.4 Small Step Merge: Consistent P2P Version Con-

trol

To demonstrate the small-step 3-way merge, we use the same example that was used in the

precious section. Events 1 and 2 remain the same and we pick up at the start of Event 3.

The version graph at N1 and N2 at the start of the Event 3, is depicted in Figure 6.1b, and

the two pushes from Event 2 are still in the network and have not reached the two nodes.

Figure 6.2a shows the state of the version graphs at N1 and N2 after the push is received by

each, but before the resolution occurs. Looking at node N1, big-step merge rules for conflict

resolution performs a 3-way merge between versions C, D, and least common ancestor A

to get a merged version. However, we have already seen that the update from C to this

merged version becomes the combined update u1 + u3, compressing information irretrievably

(Figure 6.1c). In our algorithm, however, we first perform a 3-way merge between C, B and

the least common ancestor A (Figure 6.2b), to obtain the intermediate merge node M1 that

happened-after B, and happened after C, but has no relation with D. The only information

that is known is that both M1 and D happened-after B and are concurrent updates to each

other. The next step within the same conflict resolution, is another 3-way merge between D,

M1, and least common ancestor B, to obtain M2, which becomes the HEAD version for N1

(Figure 6.2c). The same process is also applied to N2 as can be seen in Figure 6.2c. In this

process we can observe three things.

• First, every edge is only ever associated with one update. This solves one part of the

problem identified in the previous section. It becomes trivial to detect if the same

update is being included multiple times in each resolution.

• Second, any path from A toM2 in N1 will always include one u1, one u2, and one u3, but

in different orderings. For example, A→ B → D →M2 applies the updates in the order:
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Figure 6.2: Revised Version Control in Peer to Peer Networks.
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u1, u3, and u2. This path explores u2 occurring after u1 and u3. A→ B →M1 →M2

applies the updates in the order: u1, u2, and u3 and explores u2 occurring in between

u1 and u3. A→ C →M1 →M2 applies the updates in the order: u2, u1, and u3 and

explores u2 occurring before u1 and u3. Since u2 is an update that occurred concurrently

with u1 and u3, it can occur before or after u1 and u3. However, u3 will always occur

after u1. That partial order of updates is maintained. It also follows that the version

graph, as shown here, preserves the partial ordering of updates and when visualized as

shown, is the Hasse diagram [108] for the partial order of updates.

• A final observation is that both nodes N1 and N2 merge the nodes A, B, and C

(Figure 6.2b) into M1. This requires that the 3-way merge function at both N1 and

N2 be (1) identical, to consistently produce the same result, and (2) commutative, to

ensure that the order of concurrent updates from the same version do not matter. The

second condition is important because the order of the observation of versions B and C

is different in N1 and N2. N1 sees B first, followed by C. N2 sees them in the opposite

order. The notion of “yours” and “theirs”, using the terms from Git, is reversed for the

3-way merge functions at both nodes, but they must still produce the same merged

state. Therefore, merge functions need to be commutative.

During Event 4, in Figure 6.2d, N1 and N2 both make concurrent updates u5 and u6

respectively. In Event 5, N2 pushes updates to N1.

6.4.1 Success of Small-Step Merge

Figure 6.2e shows the state of the version graph at N1 after the push from N2 during Event

5, but before the merge algorithm resolves the detected conflict. In this version graph,

concurrent versions F , and G have a least common ancestor M1, however, our method of

conflict resolution, no longer performs a 3-way merge between these three versions. Instead,
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first M2, M3, and ancestor M1 are merged to produce M4. Then M4, F , and ancestor M2

are merged to produce M5; M4, G, and ancestor M3 are merged to produce M6. Finally, the

version graph converges to a single HEAD version with the 3-way merge between M5, M6,

and ancestor M4, giving us merged node M7 which becomes the HEAD version of N1

We can again see that every edge is only associated with one update (a property that would

have been broken if F , G, and M1 were merged via a 3-way merge); any path from A to M7

includes every update and only once, making the state at M7 be correct with the value of

the counter v = 21. The Hasse diagram of partially ordered updates includes the relations

between the additional updates that were pushed by N2 (u4 and u6). u5, for example, only

occurs after u1, u2, and u3 while being concurrent to u4, and u6. Similarly, u6 occurs after

u1, u2, and u4, while being concurrent to u3 and u5.

The crux of the algorithm is the merge strategy that is followed. Instead of merging conflicting

HEAD versions (versions that have no other versions that happened-after) with the least

common ancestor (if there is only one), a version is only ever merged with its immediate

siblings. To understand this constraint, let us once again look at Figure 6.2a. The newly

added conflicting update is A→ C. The immediate sibling of C is B. D is not an immediate

sibling of C. We merge B, C, and A to obtain M1. This newly created M1, which is in

conflict with D, is then merged with D as D is now the immediate sibling of M1. We will

prove, formally, in the next section that two versions that are immediate sibling will have one

and only one common parent. Intuitively, the only nodes that can have multiple parents are

the merge nodes (nodes in grey) since each real update happened-after the state of a single

version state. If two versions are immediate siblings of multiple parents, both versions must

have been created by the 3-way merge of these parents. If the merge functions are identical

and commutative in every node, the two versions can be considered to be the same, and

conflated as one version, resolving our situation. In Figure 6.2d, if the merge of B C and A

was not identical and commutative, different versions would have been created as a result
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Figure 6.3: Three concurrent updates with Revised Version Control.

of the merge. When N2 pushes to N1 in Figure 6.2e, in the version graph at N1, B and C

would have two different merge versions as children. These merge versions would be siblings

that share more than one parent, breaking our requirement of a single least common ancestor

for each 3-way merge. If the merge functions returned identical state, the two versions can

be conflated.

6.4.2 Small-Step Merge with Three Peers

We have seen how merge scenarios work in peer to peer systems with two peers. Figure 6.3a

gives an example of a three peer system. Let N1, N2, and N3 be three peers in the system,

each making the update u1, u2, and u3, respectively. These updates are then shared. We

stated that a version is only ever merged with its immediate siblings. To be more precise in

the constraint, a version is only ever merged with one immediate sibling from each parent.

At Node N1, versions B, C, and D are siblings of each other. There is no guarantee on which

node between C and D would arrive at node N1. Let us assume that it was C. C and B

are siblings, and are merged to M1. When D then arrives, D has two siblings with parent A.

Either of those two siblings can be used to generate the next merge. In Node N1, it was B

that was chosen. M1 and M2 are then merged to M4 using B as the least common ancestor.
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Different nodes can merge the same three updates in different ways. In the Figure, the three

nodes show all three combinations possible. Let us then assume that N2 pushes changes to

N1. N1 now learns of a new merge node M5 that happened after M1 using the same update

u3. Both M4 and M5 are versions created from version M1 using update u3 and therefore,

must be equivalent. The graph updated is shown in Figure 6.3b.

This merge node M4 from Figure 6.3b with three parents can be considered to be equivalent

to the result of a four-way merge between B, C, D and the least common ancestor A. Since

only 3-way merges are defined by the version control system, multiple 3-way merges are

required to obtain the effect of a four-way merge. Implementing four-way merges instead, or

N-way merges instead is not practical as the size of N is determined by the number of nodes

in the distributed system and would additionally involve waiting for all N updates to arrive

before resolving conflicts.

It is important to note that M1 = M4 will only be true if the 3-way merge function at each

node is also Associative. It is interesting that the version graph implementing the rules

that we have detailed can detect during runtime when the merge function is not identical,

commutative or associative – something that eventual consistent approaches like CRDTs

cannot detect. In CRDTs, only when the updates have stopped, and applied by every node,

can states be compared to detect inconsistencies. In our approach, when differing versions

are immediate siblings and have more than one common parent but encode different states,

then non commutative or non associative merge function can be flagged.

6.5 Conclusion: Constraints and Properties

We summarize the constraints to the version graph, that were discussed in our small-step

3-way merge approach, as follows:
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• C1: The version graph at every node in the system must originate from the same root

version.

• C2: The merge function at each node must be: identical, commutative, and associative.

• C3: If a version v has siblings from a parent p, there must exist a merge version between

v and another child of p.

With these three constraints, we state that the version graph has the following two important

properties:

• Convergence: After a write operation to a version graph at a node, satisfying the

given constraints, the version graph will have only one HEAD version. Convergence is

required, as each node in the version graph should have only one latest state. Multiple

HEAD versions implies there are multiple possible versions of the replicated state, and

that would be inconsistent.

• Correctness: After a write operation to a version graph at a node, satisfying the

given constraints, every path from any version to any other reachable version always

includes the same set of updates, and creates the same state. In a distributed system

that is weakly consistent (in the case of version control replication, causally consistent),

updates can reach modes in different orders. The goal is to ensure that the same state

is arrived at irrespective of the order in which concurrent updates are applied. In

the version graph, which has been shown to be a partial ordering of updates forming

a semi-join lattice, multiple paths from one version to another reachable version is

interpreted as the latter happening causally after the former, with concurrent updates

along the way. The different paths define the possible orderings of updates. Since the

goal is state consistency after all updates are applied, in any order, the different paths

must lead to the same state.
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6.6 Formal Proof of Small-Step 3-way Merge

In this section, we prove that by setting the constraints as defined in the previous section, we

achieve a graph that is convergent and correct. To do this, we use the formal model of the

version graph defined in Chapter 4 Section 4.6.

6.6.1 Additional Definitions

To recap, the version graph at each node is defined as a directed acyclic graph, G = (V,E).

V is the set of vertices in the graph. V is the set of vertices in the graph. Each vertex

v ∈ V is a single version of the shared state replicated at every node. It is defined as

v = {d→ x|∀d ∈ D} where D is the set of attributes that are stored in the shared replicated

state and d ∈ D is one such attribute. x is a value that is associated with each attribute

in a single version. Each edge e(vi, vj) ∈ E defines that vj happened-after vi. Another way

we represent that relation is j > i. This relation is transitive. Therefore, if k > j and

j > i, then k > i. However, this does not mean that there exists an edge e(vi, vk) ∈ E. It

means that there is at least one ordered set of edges ep(vi, vk) that define a path along the

directed edges from vi to vk. For example, if there are edges e(vi, vj), e(vj, vk) ∈ E then

ep(vi, vk) = (e(vi, vj), e(vj, vk)). There can be multiple such paths (depending on the branches

that exist) between vi and vk. This set of all edge paths between vi and vk is denoted as

EP (vi, vk). Each edge e(vi, vj) ∈ E is also associated with a state delta and is denoted as

|e(vi, vj)| = δi→j.

6.6.2 Helper Functions

We define three functions for each version: Pa(v), Ch(v), and Si(v) that define the set of

immediate parents, children and siblings of a version v in a graph. We define T (v, s, p) as
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Table 6.1: Additional Metavariables

Metavariable Meaning
D Set of attributes in the replicated state at every node.
∂G A partial directed acyclic version graph. ∂G : (∂V, ∂E)
v[d] Value x of the attribute d ∈ D at version v.
r The root version of every G.
H The set of HEAD versions in G.(H ⊆ V )
e(vi, vj) A single directed edge in G from vi to vj.
ep(vi, vj) An ordered set of directed edges in G forming a path from vi to vj.
EP (vi, vj) Set of all possible ep(vi, vj) in G from vi to vj.
δi→j A state delta record, associated with e(vi, vj)

the user defined 3-way merge function used in every node of the system that is associative

and commutative.

The function T takes in three inputs: a version v ∈ V its sibling s ∈ Si(v), and a least

common ancestor p ∈ Pa(v)∩Pa(s) and returns a new merged version vm. vm happened-after

both v and s. This function is used by the merge operation M(v, s) that resolves write-write

conflicts in the graph. This functionM merges the version vm generated by T into the version

graph by adding the both the new version and two edges e(v, vm), e(s, vm). This process is

shown in Equation 6.1

M(v, s) = ({vm}, {e(v, vm), e(s, vm)}) : vm = T (v, s, Pa(v)∩Pa(s)), v ∈ V, s ∈ Si(v) (6.1)

To define the transitions via state deltas, we define two binary operations +c and −c:

vi +c δi→j =


d 7→ δi→j[d] d ∈ dom(δi→j)

d 7→ vi[d] d /∈ dom(δi→j)
: ∀d ∈ dom(vi) ∪ dom(δi→j) (6.2)
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δi→j+cδj→k =


d 7→ δj→k[d] d ∈ dom(δj→k)

d 7→ δi→j[d] d /∈ dom(δj→k)
: ∀d ∈ dom(δi→j)∪dom(δj→k), k > j > i (6.3)

vj −c vi = δi→j = {d 7→ vj[d], vj[d] 6= vi[d]} (6.4)

Equation 6.2 defines state transitions through state deltas. A new state is constructed when

a delta is applied by using the binary operation +c over the previous state. Delta values

associated with edges can be combined into a single delta using the same function, as seen in

Equation 6.3. This binary operator is associative but not commutative. Finally, a state delta

can be obtained by diff-ing the state at two versions using the binary operation −c as shown

in Equation 6.4.

6.6.3 Constraints

The first constraint that we have is that each version graph in a system has the same initial

version r called the ROOT version. This is an invariant of the version graph in every node of

the distributed system and is formally defined as:

C1: {v|v ∈ V, P (v) = ∅} = {r}

The ROOT version of each version graph stores the same initial state ∀d ∈ D. There can

only be one ROOT version and each node in the system has the same ROOT version. All

updates that every node makes have happened-after this ROOT version.

121



The second constraint C2 is that the merge function T at each node must be: identical

(across nodes), commutative, and associative. This is necessary to ensure that the state of the

merge versions created from same parent versions at different nodes is the same irrespective

of the order in which concurrent updates were observed at each node.

In any graph G(V,E), we define the set of the pairs of versions that need to be merged

using the 3-way merge function as K. In big-step 3-way merge, the precondition for conflict

resolution is when G has more than one HEAD version after a write operation. i.e. |H| > 1.

In fact, in systems which resolve conflicts with 3-way merges, the value |H| = 2 as merge is

called on the first conflict detected. In such systems, K = {(vi, vj) ∈ H}. We have seen in

Section 6.1 that this can lead to situations where there are multiple LCAs.

In order to avoid this problem, we instead set the post condition to be constraint C3. Formally

we define the constraint as:

C3: ∃M(v, s) ∈ Ch(v) ∩ Ch(s)︸ ︷︷ ︸
There exists a merge for v, s

: ∀p ∈ Pa(v),∃s ∈ Ch(p), v 6= s︸ ︷︷ ︸
for at least one sibling s of v per parent p of v

It states that a version v must be merged with at least one sibling s from every parent p it

has. The version v will have at least as many merge versions as it has parents with siblings.

The set K is defined as the pairs of versions v and one such sibling s that do not satisfy the

constraint C3. A resolved version graph will have K = ∅.

6.6.4 Operations on Version Graph

In a break from the formal model described in Chapter 4, we define two simpler operations

over the version graph G: get, and put, as shown in equations 6.5. Operation O1, Gi.get(Gj),

retrieves a partial graph of all versions and edges that are present in Gi but not present in

Gj. This is the read operation on the version graph.
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D6. Small Step Version Graph Functions:

(O1. Retrieve changes) Gi.get(Gj) : ∂G(Vi − Vj, Ei − Ej)

(O2. Receive changes) G G.put(∂G)−−−−−−→ R(G ∪ ∂G ∪B(G, ∂G))
(6.5)

(Bridge Version) B(G, ∂G) : M(vi ∈ V, vj ∈ ∂V ) : vi ∈ Si(vj)

(Resolve) R(G) :

G K(V ) = ∅
R(G ∪ {M(v, s)|∀(v, s) ∈ K(v)}) K(V ) 6= ∅

(6.6)

D7. Simplified Version Graph Functions:

(O3. Push) Gi, Gj
Gi.push(Gj)−−−−−−−→ Gj.put(Gi.get(Gj))

(O4. Pull) Gi, Gj
Gi.pull(Gj)−−−−−−→ Gi.put(Gj.get(Gi))

(O5. Local Commit) G G.commit(vnew)−−−−−−−−−→ Gi.put(∂G({vnew}, {e(vhead, vnew)}))
(6.7)

G.put(∂G), the write operation of the version graph, is a function that incorporates new

versions and edges in ∂G into G. In this process, the new versions and edges are added into

the graph. An initial bridge version B(G, ∂G), if required, is then incorporated into the

graph. To create B, we choose a vi from the original set of versions V and a vj from the

incoming set of versions ∂V such that vi and vj are siblings of each other but do not have a

merge version. If such a vi and vj does not exist, then the merge of G and ∂G has no conflicts,

and the bridge version B is not required. B, when created, is incorporated into G before

resolving any other conflicts. The recursive function R : G→ G is then executed to resolve

the remaining conflicts. In R, the merge procedure M is called for all mergeable candidates

in K. For each candidate, the 3-way merge function T is invoked to get the merged version.

This merged version, and edges connecting this version to G are created and incorporated

into G. These merge versions can also be new candidates in K and so the function R is called

recursively, until no such candidates remain.
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The effect of both internode communication, and local updates on the version graph can be

expressed as a combination of get and put as shown in Equations 6.7.

6.6.5 Single Lowest Common Ancestor

Theorem 6.1. Every small-step 3-way merge will always have a single LCA.

Proof: Every small-step 3-way merge only merges a pair of sibling versions. Let vi and

vj be two siblings (vi ∈ Si(vj) ∧ vj ∈ Si(vi)) that have to be merged using the small-step

3-way merge. Since vi, and vj are siblings, the LCA is the set of their common parents. i.e

Pa(vi) ∩ Pa(vj). To have a single LCA, they must have only one common parent.

|Pa(vi) ∩ Pa(vj)| = 1 : vi ∈ Si(vj), vi 6= vj

Let us assume that |Pa(vi) ∩ Pa(vj)| > 1. i.e There are more than two common parents for

vi, and vj. By definition, a local commit (O5 Equation 6.7) creates a version vnew that has

only one parent. The only way for a version to have more than one parent is if it was a merge

node. Therefore, vi and vj must be merge nodes.

By definition, A merge node is not created in the same node more than once. Therefore,

either vi, or vj are versions created by the merge function T at different nodes in the system

independently, and concurrently.

We know by definition that the same small-step 3-way merge function T is used by all nodes

in the system, and T is commutative and associative. Therefore, two nodes merging the same

set of versions, must give the same merged node. Therefore vi = vj. This means that two

versions vi 6= vj cannot have more than one common parent.
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This common parent is the least common ancestor for vi and vj. Therefore, every small-step

3-way merge will always have a single least common ancestor (LCA).

6.6.6 Correctness

We define correctness in the version graph as the property that guarantees that the state at

a version vi can be transformed to the state at version vj by applying all deltas, in order,

along any path from vi to vj. Therefore, all paths must yield the exact same state. Formally

we define this property to be

vi +c

∑
ep(vi, vj) = vj : ∀ep(vi, vj) ∈ EP (vi, vj), j > i (6.8)

This property ensures that the same version v in the version graph at every node, has the

exact same state. To prove that the version graph remains correct after every operation, we

need to first prove that the state transitions are correct.

Theorem 6.2. If δ is the state delta created using the binary operator −c on two versions

(vi, vj) : j > i, then δ can be applied to version vi using the binary operator +c to recover vj.

δ = vj −c vi =⇒ vi +c δ = vj

Proof: Let us first consider δ = vj −c vi. This δ is a map of attributes d to their values in

version vj , which is vj [d], for all the attributes where vj [d] 6= vi[d]. We know from Equation 6.4

that δ = {d 7→ vj[d], vj[d] 6= vi[d]}
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We also know from Equation 6.2 that:

vi +c δ =


d 7→ δ[d] d ∈ dom(δ)

d 7→ vi[d] d /∈ dom(δ)
: ∀d ∈ dom(δ) ∪ dom(vi)

vi +c δ is the map of attributes d to its value in δ, if present, otherwise maps d to its value in

vi. The attributes d ∈ dom(δ) are all the attributes where vj[d] 6= vi[d]. For the attributes

d ∈ dom(δ), the value δ[d] = vj[d]. Therefore, the equation becomes:

vi +c δ =


d 7→ vj[d] vj[d] 6= vi[d]

d 7→ vi[d] vj[d] = vi[d]

= vj

Therefore, the δ created using −c on two versions (vi, vj) : j > i can be applied to version vi

using the operator +c to obtain vj.

Fundamentally, this means that when δ is constructed as vj − vi at one node, sent across the

network to another node, and applied to the state at version vi, we recover the same state vj

at the later node.

Theorem 6.3. Correctness of a version graph G is maintained after every small-step 3-way

merge.

Proof: We prove the correctness by induction. Let us consider a graph G at one node in

the system. Let us define G(n) as the version graph after the nth 3-way merge function is

executed and integrated into G.

G(0) represents the version graph before the first merge has occurred. Such a graph will not
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have any branches, by definition. The graph will entirely be composed of a single chain of

versions from the ROOT to the singular HEAD. There is, therefore, only one path from any

version to any other reachable version in the graph. Therefore, our graph is correct.

G(1) represents the version graph right after the first merge has occurred. 3-way merge

function is called only if there exists immediate siblings v, s that share a common parent

p but are not merged. The merge node vm that is created is added to the graph as a child

of both v and s. The state at the merge node vm is determined by the user defined 3-way

merge, and the deltas δv→vm and δs→vm are constructed from this predetermined version. We

have already seen from Theorem 6.2 that the binary operation +c can be used to apply the

delta correctly. Therefore, we can see that:

v +c δv→vm = s+c δs→vm = vm

p+c δp→v +c δv→vm = p+c δp→v +c δs→vm = vm

(6.9)

The graph, before adding the merge version vm, is correct as there are no other branches and

this is the first merge seen by the graph. Any path through the new merge version vm has to

pass through either v or s, both of which have been shown to be correctly reach the state vm.

Additionally, vm, which is a newly generated version, has no children. Therefore, the graph

after G(1) must be correct.

Now let us assume that the graph G(n), which is the graph G after the nth merge, is correct.

When the n+1 merge is made, again a new node, say v′m, is created. There are two possibilities

going forward, either the version v′m already exists and has been created as a result of a

merge with either v′ or s′ with a different sibling, or the version v′m does not exist and has to

be added.

If it is the former case, we know that the old paths to v′m are correct as G(n) was correct and

therefore, we need only concern ourselves with the new paths that were created. These new
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paths must pass through the versions v′ and s′ that were used to create it. Using the same

logic explained for G(1), we can say that all possible paths from any version to the newly

created version v′m through v′ and s′ are correct. Therefore, all possible paths, old and new

to v′m are correct.

If v′m already existed before, it may have children. Since the graph was correct before the

merge, all paths v′m as source are correct. In the same way, all paths that existed with v′m as

an intermediate remain correct, and all new paths with v′m as intermediate must pass through

v′ and s′ and therefore, must be correct.

We showed that G(0), and G(1) are correct graphs. We also showed that if G(n) is a correct

graph, G(n+ 1) is also a correct graph. Therefore, by induction we can say that the graph is

correct after every small-step 3-way merge.

6.6.7 Convergence

Version graphs at different nodes can temporarily diverge and have different states. However,

when such graphs are synchronized, either through push or pull communication, the version

graphs must converge. In big-step 3-way merge, convergence is a trivial property to satisfy.

When two version graphs are synchronized, the divergent HEAD versions are explicitly merged

using the 3-way merge giving one merge node that becomes the new singular HEAD node

in the version graph. We have already discussed in detail the flaws with this approach. In

our approach, however, we recursively merge only immediate sibling versions in order to

avoid losing important information by merging multiple updates. We will now prove that

our approach also guarantees the same convergence. At the end of every write operation

G.put(∂G), there is only one HEAD version. i.e. |H| = 1. In order to prove convergence we

need to establish additional properties of the version graph.

Theorem 6.4. The total number of merge versions added for n concurrent updates at a Node
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is n(n− 1)/2

When the first update G.put(∂G({v1}, {e(v, v1)}) is made, the version graph gains a version

v1 and an edge e(v, v1) but is not in conflict. Therefore no merges are performed. v1 is the

new HEAD. When v2 is added next, v2 and v1 are siblings of the common parent v and are

merged giving us our first merge version: M(v1, v2). M(v1, v2) has no siblings, and therefore,

the conflicts are resolved. For two concurrent versions, one merge version was added.

When v3 is added to G, it has two siblings v1, and v2 with parent v. It can choose any one

sibling, say v2 to create a merge version M(v2, v3). The version M(v2, v3) is a sibling of

M(v1, v2) via the parent v2 and is merged to obtain a new merge M(M(v1, v2),M(v2, v3)).

When the third concurrent version is added, three additional merge versions are created.

When we add the ith concurrent version, we need to perform i−1 merges. Therefore when we

add n concurrent versions, the total number of merge versions added is 1 + 2 + · · ·+ (n− 1) =∑n−1
k=1 k = n(n− 1)/2, thus proved.

After every write operation G.put on a version graph G at a node, the version graph should

converge to one version that happened-after every other version in the graph. This is the

HEAD version, and there must only be one HEAD. i.e. |H| = 1. This HEAD version is the

current state of the replicated object at the node upon which new local commits can be made.

Theorem 6.5. The version graph G after any G.put(∂G), has only one HEAD version

Assumptions: We assume that ∂G is created by either by G′.get(G) where G′ is a remote

version graph, satisfying all constraints (C1, C2, and C3) and having one HEAD version

v∂h, that is sending changes to be merged into version graph G, (Operation O1, Equation 6.5)

or a G.commit({vn, {e(vh, vn)}}) (Operation O5, Equation 6.7) where vn is a unique version

that is created and vh is the current HEAD of G. The final assumption is that, unlike file

based version control systems, there are no rollbacks to state during distributed computation

in this system.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Figure 6.4: Four scenarios that can arise during G.put(∂G).

Proof: We prove this by induction. Let us consider the state of the graph G before the first

put is invoked (represented for this proof as G(0) The graph has only one version, the root

version r, and no edges. G(0) = G({r}, ∅).

At G(1), ∂G = G′ − G. Since G has no edges, ∂G = G′ − ({r}, ∅}. When G.put(∂G) is

invoked, G = G′. Since HEAD at G is the same as HEAD at G′ which by assumption is just

one, v∂h. Therefore, after G(1), G has only HEAD version.

Let us now assume that after the nth G.put, G(n) has only one HEAD version vh. Let us

now observe the state of G after G(n+ 1).

We can see that from Operation O2, Equation 6.5 that there are four steps to the the put

operation.

• Step 1: The new edges and versions in ∂G are added to G. (G ∪ ∂G)

• Step 2: A bridge version B(vi, vj) is created if condition (vi ∈ G, vj ∈ ∂G, vi ∈ Si(vj))

is met.

• Step 3: The bridge version B is added to G ∪ ∂G.

• Step 4: Versions that break the constraint C3 (K 6= ∅) are recursively merged using
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the 3-way merge until K = ∅.

There are four possible scenarios for the operation put (Figure 6.4).

Scenario 1: At Step 1, ∂G ⊆ G. The versions and edges being put into G already exist

with G (Figure 6.4a)2. That means that v∂h ∈ G. By definition, vh happened-after every

version in G. Therefore, h > ∂h and G ∪ ∂G has only one HEAD version: vh.

Scenario 2: At Step 2, a bridge version does not exist B(G, ∂G) = ∅ (Figure 6.4b). This

means that there two sibling versions vi, and vj that meet the condition (vi ∈ G, vj ∈ ∂G, vi ∈

Si(vj)) do not exist in G∪∂G. This means that all j > i. It implies that ∂G has not diverged

from G, but is merely a chain extension to G. Therefore, ∂h >= h. Thus, v∂h becomes the

sole HEAD version of the graph G ∪ ∂G and no conflicts need to be resolved.

Scenario 3: At Step 2, there exists a bridge version vb ∈ B(G, ∂G), but at Step 4, there are

no versions that are candidates for a merge in the graph G ∪ ∂G ∪ B(G, ∂G). i.e. K = ∅.

(Figure 6.4c). In this scenario, the Step 2, bridge version vb was the only candidate for a

merge. After Step 3, the graph satisfied constraint C3. This can occur only when the bridge

version vb is M(vh, v∂h). ∂G and G diverged only at the last update. The bridge version vb is

the sole HEAD version and all conflicts have been resolved.

Scenario 4: The final scenario is when, at Step 2, there is at least one bridge version vb ∈

B(G, ∂G) and at step 4, there are more candidates for a merge in the graph G∪∂G∪B(G, ∂G)

i.e. K 6= ∅. (Figure 6.4d). Since each of the graphs G, and ∂G individually satisfy the

constraint C3 (from assumptions), every version in both graphs, taken independently, have

been merged with at least one sibling from each parent. Therefore, if K 6= ∅, then vb ∈ K.

This occurs when there have been more updates in both G and G′ since the point of divergence

(which is called vd from now on)
2Since ∂G is defined as G′ −G, for some version graph G′, the put scenario ∂G ⊆ G can only occur when

node with G′ is resending ∂G having not received any acknowledgement. It caters to network partition
tolerance.
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Let us say that the bridge version vb happened-after two versions v1 ∈ G and v2 ∈ ∂G.

Additionally, v1 ∈ Ch(vd), and v2 ∈ Ch(vd). Since this was the point of divergence, the merge

of v1 and v2 was never created until now.

To understand the creation of the rest of the merge nodes, let us observe the operations of

the recursive function R (Step 4, Operation O2, Equation 6.5) on the subgraph Gd ⊆ G,

rooted at vd, including all versions that are reachable from vd (see Figure 6.4d). Both vh and

v∂h are going to be reachable from vd. The merge operations as a result of R will only act on

these versions.

Let L(v) be a function that defines the number of edges along any directed path from vd

to version v and Z(l) be a function that counts the number of versions in the subgraph Gd

that have L(v) = l. All versions that have the same L(v) = l are said to be at level l. By

definition, L(0) = 1

If a node makes an update from version vi to vj, then L(vj) = L(vi) + 1. Since all merges in

our approach are applied to sibling nodes, using the common parent, each edge only ever

represents one update. Therefore, all versions having the same L(v) value are versions that

have the same number of concurrent updates applied to them and are concurrent versions.

They are said to be at the same level.

Since a node in the system cannot perform rollbacks (by assumption), a node could only ever

have made one update from one of the versions with the same L(v) value. Once it has made

an update, the state at that node is at a version v′ with L(v′) = L(v) + 1. Therefore, the

maximum number of updates that can be found from versions with the same L(v) in Gd is

the number of nodes in the system n (F1).

From Theorem 6.4, we know that n concurrent updates at version v, produces n− 1 versions

at the next level L(v) + 1.
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Combining Theorem 6.4 and (F1), we can see that the number of versions at a one level l

given by Z(l), is the number of updates made by nodes in the system (upper bounded by n),

and the number of merge nodes at that level (upper bounded by the number of nodes at the

previous level Z(l − 1)− 1. With this, function Z(l) can be partially defined as:

Z(l) ≤


1 l = 0

Z(l − 1)− 1 + n 0 ≤ l ≤ max(L(vh), L(v∂h))
(6.10)

Up until the recursive merge reaches the max depth of graph Gd, which is given by dep =

max(L(vh), L(v∂h)), the number of merge versions created can increase to the order of

O(n× dep). When it reaches max depth, there are no more updates from other nodes in the

system to consider. From there, the only versions at each level are the previously merged

versions.

Therefore, function L(z) can be defined as:

L(z) ≤



1 z = 0

L(z − 1)− 1 + n 0 ≤ z ≤ max(Z(vh), Z(v∂h))

L(z − 1)− 1 z > max(Z(vh), Z(v∂h))

(6.11)

The number of versions at each level decreases after max depth has been reached, up until it

becomes one. The last merge version created becomes the sole HEAD version.

Since in all four scenarios of put, the newly created graph G has one HEAD version, the

version graph G(n + 1) after the (n + 1)th call to G.put(∂G) operation converges to one

HEAD version.
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We showed that, the version graph had only one HEAD node at G(0), and G(1). Additionally,

when we assumed G had one HEAD version after G(n), we found that it had one HEAD

version after G(n+ 1). Therefore, by induction, we prove that after every G.put(∂G), the

version graph G always converges to one HEAD version.
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Chapter 7

Challenge 2: Unbound Growth of the

Version Graph

While the aspects of GoT we have touched upon till now involve state replication, we have

not yet addressed the elephant in the room. As changes are committed, the version graph

grows. For Git, which operates at human speeds, this is not a problem, as the graph grows

very slowly. For Spacetime applications, the version graph can grow rapidly, resulting in

processes running out of memory. For example, the physics node shown in Listing 4.5

is doing 20 commits per second! This is a significant drawback of version control based

state replication. Optimizations must be made to keep the version graph in check while

still retaining its existence and function. In this chapter, we discuss the garbage collection

strategies of Spacetime that allow the GoT programming model to be feasible. It is important

to note that the garbage collection strategy used depends on the type of merge function used

and the GoT application’s network architecture. As such, we explain the garbage collection

strategies employed in both big step and small step merge. These optimizations are necessary

for realistic implementations of GoT in current computers but are not part of the conceptual

model.
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7.1 Related Work

The topic of garbage collection in version control closely resembles the work done in CRDTs

on causal stability [8] and message obsoletion [95, 106].

Casual stability in CRDTs determines which messages have been received by every node in

the system and, therefore, can be safely deleted. Systems such as vector clocks [70], version

vectors [82], or even simple tombstones have been used to detect and delete messages that

are known to every node in the system.

While deleting messages received by every node in the system is a step in the right direction,

the concept can be taken even further. Deleting obsolete messages is not the same as deleting

messages that are received by every node. There can be intermediate messages that are

required by the same set of nodes. Such messages can be potentially composed to reduce

communication. This process is stated as the eventual goal of causal stability.

Many techniques exist for deleting unused variables in shared transactional memory systems

and is explained in detail by Wiseman [111]. However, these techniques do not translate well

to replicated states where there is no single shared state.

File-based version control systems such as Git allow users to squash the version history to

shorten the version graph. Such techniques are usually employed to keep the version graph

in large scale projects manageable and easy to clone. In object-based version control systems,

only TARDiS [30] has some form of garbage collection. The garbage collection employed in

TARDiS is heuristic with stale versions that are beyond a threshold age are garbage collected.

This garbage collection is simple to build and use. The staleness threshold can be tuned to

the requirement of the application. However, it suffers from three significant drawbacks.

First, it can only be used when the version graph tracks the full version. If old versions are

to be deleted and not merged, then the oldest version present after garbage collection must
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have the complete state of the system. Otherwise, new nodes synchronizing with the system

cannot obtain the whole state on full sync.

The second problem is that this approach is not partition tolerant. If a version is maintained

by a replica that is partitioned for a long time, it is in danger of being garbage collected

before the replica rejoins the network. Once the replica rejoins, any offline updates made

by the replica cannot be distributed as the version that it is causally related to is no longer

present.

Finally, TARDiS employs this garbage collection as a periodic process that cleans up all

unneeded versions. Such a process can be intrusive and can cause the system to slow down.

A garbage collection process that marks and deletes versions as they become obsolete is more

efficient as the cost of garbage collection is accrued only when a version has to be deleted.

Process time is not wasted scanning the versions in the version graph periodically, even if

there are no versions to delete.

7.2 Basics of Garbage Collection

The purpose of garbage collection is to remove the unneeded versions from the version graph.

In order to do that, we must first understand when a version is no longer required. Let us

take the example shown in Figure 7.1a. Here we have four versions A, B, C, and D such that

D happened-after C, which happened-after B, which again happened-after A. The versions

that happened before A and the ones that happened after D are not shown in this version

graph. The deltas shown at each edge is the update for that transition of versions. Finally,

we have two nodes that are synchronizing on this particular version graph: N1 and N2. The

last versions synchronized with N1 and N2 are versions B and D, respectively, as shown by

the dotted markers. This knowledge is essential. Without knowing which node is at which
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Figure 7.1: Basic Garbage Collection.

version, the version graph cannot prune unneeded versions.

The first and simplest rule that can be formed is that when a version is known to all the

intended recipients, the version can be deleted. For example, version A can be deleted as both

N1 and N2 know version A. This is shown in Figure 7.1b. For all nodes that are making a

fresh synchronization with the version graph, the delta changes to version A is the combined

delta δ0+1. This is a good starting rule and is the basis of the techniques such as tombstones.

However, in a system aiming to provide causal consistency, it can lead to potential problems.

For example, if N1 has crashed or has been network partitioned, the versions after version B

are no longer garbage collected.
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To address this, we can add a second rule that says that all versions in between versions

that are referenced by nodes can also be deleted. With this, we can say that version C can

be deleted, and the delta change from B to C is δ2+3, shown in Figure 7.1c. If N2 were

to synchronize, it would only receive the versions after D, and therefore, version C is not

required. If N1 were to synchronize, it would pull all changes from B to the latest state.

Version C is an intermediate state that it does not require. N1 can directly skip to version D

and beyond using δ2+3. With these two rules, we can see that the number of versions would

remain a function of the number of Nodes that are communicating.

As a note, this method only works if individual updates can be composed together into larger

updates. In several models of communication, updates are shared in the form of operations

and not deltas. Operations in subsequent updates may often be incompatible to such a

composition and, therefore, might require to stay separate. In GoT, however, updates are

shared as state deltas and are composable. Additionally, a composition such state deltas

might have the effect of decreasing the size of the update. For example, if an object was

created in update δ2 and subsequently deleted in δ3, then the composed update δ2+3 will have

no record of that object whatsoever, thereby decreasing the size of the update. At worst, the

combined delta is as large as the sum of the individual deltas.

While these rules work for a sequential set of updates, the concurrent nature of the updates

in a version graph demands more rules. If we look at Figure 7.2a, we can see a classic case of

concurrency. Updates δ1 and δ2 are concurrent updates from version A. Besides the preceding

δ0 update, nodes N1 and N2 know the updates δ1 and δ2 respectively. Even though no node

references A and D, they cannot be garbage collected. When one node synchronizes and the

reference is updated out of the branch (shown in Figure 7.2b, N2 moves to version E), then

the branch is deleted. Additional edges are not required between versions A and D as there

already exists a path from the two versions (A→ B → D). We see the outcome of this step

in Figure 7.2c. We can also see that version D can now be deleted as well, using the rules we
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Figure 7.2: Garbage Collection of Concurrent Update.

140



have described before, which brings the version graph to what is shown in Figure 7.2d.

The core purpose of the garbage collection of versions is to ensure that the number of versions

remaining is to the order of the number of nodes synchronizing with the version graph while

ensuring that each node synchronizing with the version graph does not miss any updates that

it needs. Techniques that use tombstones only delete the versions that have been received by

every node. In contrast, the garbage collection of versions in GoT also deletes unnecessary

intermediate versions.

7.3 Server Client Model: Practical Garbage Collection

in Big Step

In the previous section, we determined that if we had a reference marker in the version

graph mapping each remote node that interacts with the version graph to its latest version

synchronized, we could effectively prune the version graph out of unneeded and unnecessary

nodes. In this section, we will go over the garbage collection process from an operations

perspective.

Each GoT node contains a reference map that maps every remote node that it interacts with

to the last known version sent or received. These reference maps are updated both when the

node itself pushes or fetches updates, or when the node receives push and fetch requests. Let

us consider two nodes, N1 and N2 with head versions h1 and h2. When N1 receives updates,

it is either a response to a fetch request that N1 made to N2 or a push that it received from

N2. During this operation, the node N2 first reads its version graph up until h1. It then

updates its reference map to map N1 to h1. The older reference is maintained during the

transfer until the update is received and acknowledged by node N1. This delay in moving

the markers ensures that a partition in the network does not cause a preemptive deletion
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of required versions. The receiving node N1 applies the updates to its version graph, and

updates its reference map, pointing N2 to h2. This reference map update is made even if the

updates received were conflicting with h1 and a merge version was created. This is because

while node N1 has merged the conflicting updates, N2 has not, and has only sent updates

up to h2.

After the updates are written into the version graph at N1, and the reference map is updated,

N1 performs the garbage collection operation described in the previous section. Even though

the reference map at N2 was updated, N2 does not perform the garbage collection up until

the end of the next write. This constraint ensures that the version graph only changes when

updates are written to it. Even though there are potential versions that could be garbage

collected after a read, since a read cannot increase the number of versions in the graph, the

space requirement of the version graph remains unchanged. Aggressively applying garbage

collection even on a read, only serves to hurt performance, as a mutual exclusion lock has

to be now applied on a read as well, slowing down the number of concurrent operations the

version graph can handle.

In the systems that communicate using operations, consolidating updates as described requires

domain-specific knowledge and can sometimes be impossible. For example, the process of

consolidating two additions +2 and +3 to +5 is different from consolidating two multiply

operations x2 and x3 to x6. It requires knowledge of what the operations being consolidated

are.

In Spacetime and delta state-based systems, however, the delta state updates can be con-

solidated very easily. The delta update does not encode an operation but a partial state

of attributes. Let us take for example, a series of operations changing the state from

A : (x = 5, y = 5) to B : (x = 10, y = 10) to C : (x = 20, y = 10). The delta state from state

A → B would be (x = 10, y = 10) and the delta state from B → C would be (x = 20). If

B is to be deleted, then the delta from A→ C is (x = 20, y = 10). The intermediate step
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where x was 10 is obsolete information and can be removed.

While the basic garbage collection rules work for big-step merge in server-client topologies,

new rules are required to handle garbage collection in small-step merge and peer to peer

topologies

7.4 P2P Model: Garbage Collection in Small Step

To understand garbage collection in small-step, we need to look at two aspects of garbage

collection independently. First, the reduction of a small step version graph at a single node

assuming that the reference map is correct. Second, the construction and maintenance of the

reference map.

It is important to note that this approach to garbage collection is the initial step in designing

a complete garbage collector. Due to the inherent difficulties in implementing this model,

the approach remains mostly unverified. The work to refine the approach is still ongoing.

Explained in this section are the initial set of rules.

7.4.1 Reducing the Version Graph

The basic rule in a version graph maintained by the small-step merge is that every update is

only ever resolved against a sibling version. This ensures that the version graph is a full lattice

of partially ordered updates. Every path from the ROOT version, to the HEAD version has

the same set of updates. Unlike big-step, where several updates can be composed together in

different paths. For example, in Figure 6.1d in Chapter 6, we see that in version N1, the path

A→ B → D →M1 has the updates u1, u2, and u3, whereas the path A→ C →M1 has the

updates u2, and u1 + u3. The composed update u1 + u3 cannot be broken back down into its
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constituent updates. In the small step merge at Figure 6.2c, every path has the same set of

three updates u1, u2, and u3. The only difference in each path is the order of the updates.

When garbage collecting the version graph, this property that every path from ROOT to

HEAD must have the same set of updates must be maintained. To satisfy this constraint,

when updates are composed, all occurrences of those updates must be composed. Let us

understand this garbage collection by using an example. In Figure 7.3a we see a version

graph that has been merged with small step merge. We see eleven versions, from A to K.

References to versions D, F , and J are maintained in the the node’s reference map. There

are four updates in the lattice: δ1, δ2, δ3, δ4, and δ5.

The first step is to identify the causal relation between these updates. To do this, we traverse

the version graph in breadth-first order. The first time we encounter an update, we know

that it happened-after the set of updates that are incident on the parent. For example, in

the breadth-first order, we first encounter edges A → B and A → C. The updates δ1 and

δ2 are considered concurrent updates as there are no updates that are incident on version

A. δ4 is first encountered at the edge B → D which establishes that update δ4 happened

after δ1. Similarly, δ3 is first encountered at the edge C → F which establishes that update

δ3 happened after δ2; and δ4 is first encountered at the edge H → J which establishes that

update δ5 happened after both δ1 and δ3. The update δ5 is also indirectly causally linked to

δ2, but we are interested in only the immediate causal relation.

The second step is to identify, for each update in the graph, the set of nodes that require

the update. The the given example, update δ2 is required by only N1. The update δ3 is also

only required by N1. Update δ1 is not known by N2. Update δ4 is not known to both N2

and N3 while δ5 not known to N1 and N2.

Using the causal relation between updates from step one and the knowledge of missing

updates from step two, we can see that causally related updates δ2 and δ3 are known to both
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Figure 7.3: Garbage Collection in Small Step.
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N2 and N3 and not known to N1. Since these updates are causally related and are either

known to nodes, or both unknown to nodes, they can be combined into one update. Updates

δ1 and δ4, though causally related cannot be combined as N3 knows δ1 but not δ4. Similarly,

δ5 cannot be combined with both δ3 and δ1 as different nodes require different parts of these

updates. If we combine updates, we must combine all occurrences of these updates. Since

there are nodes that require a section of these updates, they cannot be combined.

Having recognized that updates δ2 and δ4 can be combined, we find all occurrences of the

two updates with each other. If the updates are found independently, but not together, they

cannot be collected, and the entire group is not collected. In this example, as shown in

Figure 7.3b, Edge groups (A→ C → F ), (B → E → H), and (D → G→ I) are all updates

δ2 followed by δ4. These edges will be merged, and the versions C, E, and G can be deleted.

The merged edges are treated as a new update δ2+3. We can see the result of such a garbage

collection in Figure 7.3c.

7.4.2 Reference Passing in Peer to Peer

As discussed in Chapter 6, small step merge is a technique that is used in peer to peer network

topologies. At the operations level, in server-client and tree-based topologies, where big-step

is used, each GoT node can have many clients connected to it but connect to only one server.

This means that a node can perform its push or fetch on to one server and receive many push

and fetch requests from multiple clients. Since the same node can not be both a server and a

client for a GoT node, only one version per node is maintained in the reference map.

In small-step, however, a node can initiate push and fetch requests with the same node

from which it is receiving push and fetch requests. Since these operations can execute

concurrently, the two nodes can read different HEAD versions and merge the concurrent

HEADs independently. To keep track of both these versions at each node, we need multiple
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versions maintained for the same node in the reference map. The intuition for which versions

need to be maintained by each node in the reference counter is that only versions from which

the node could make an update must be maintained. In this scenario, the update can be

made from the HEAD version sent, HEAD version received, or the semilattice-join of these

two versions

7.4.3 Implementation Challenges

While, in theory, this seems easy to implement, in practice, due to the non-determinism of

updates and the arbitrary partitioning of networks, maintaining the reference map at each

node can be complicated. We have achieved some success in the garbage collection of versions

in a system containing two nodes, that push and pull from each other. However, scaling to a

larger number of nodes introduces many complicated errors yet to be solved. Stabilization of

the process in Spacetime is an ongoing, laborious process. In the future, we aim to address

these issues and improve the theory behind garbage collection of versions in version graphs

that use small-step merge.

7.5 Summary

The viability of Spacetime in shared-state applications that last long and update frequently

depends on its ability to keep the version graph under control. The number of versions in the

version graph has to be bounded as an unbounded version graph is essentially a memory leak.

In this section, we showed the basic principles of garbage collection. While causal stability

and message tombstones are excellent techniques to use, they fail when there are network

partitions as they do not help remove intermediate updates. When a node is partitioned

from updates, all the updates that it is missing, but has been received by other nodes cannot
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and should not be deleted. They must instead be merged into a single update.

We showed that garbage collection in big-step merge of Spacetime, with the help of a basic

version reference map at each node, implements three rules:

• First, all versions that are known to every node are deleted. This condition is similar

to those in causal stability and tombstoning updates. The versions to be deleted can

be detected using a simple breadth-first scan from the ROOT node, up to the earliest

versions being held in the version reference map.

• Second, all versions that are intermediate steps in between versions that are referenced

by the nodes can also be deleted.

• Third, branches in the version graph, which are concurrent updates, cannot be deleted

until one branch has no version held by nodes.

With these three rules, the versions created in the version graph that use big-step merge can

be maintained to the order of the number of nodes in each reference map. We prove this,

using microbenchmarks that are explained and discussed along with other experiments in

Chapter 10.

These rules are, however, inadequate in peer to peer applications that need to use small-step

merge. In garbage collection of version graphs maintained by small-step merge, we first

identify the causally related groups of updates that are either known to every node, or not

known by precisely the same set of nodes. Every instance of these updates is then identified

and combined. These rules represent preliminary directions and intuitions involved in the

correct garbage collection of obsolete versions in small-step. In practice, the maintenance

of the reference map in asynchronous peer to peer is hard, and we have not fully identified

the safeguards and processes required when there are more than two nodes in the system.

In the future, we aim to identify the entire set of rules required to perform correct garbage
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collection in small-step merge. In Chapter10, we discuss garbage collection in version graphs

using small-step merge using microbenchmarks over two peer nodes.
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Chapter 8

Challenge 3: Interest Management

The contents of this chapter have published in the Journal of Object Technology [66].

In the context of Spacetime, as we have discussed up until now, all objects have to be shared

between nodes. This can be problematic when the shared-state is large and all nodes do not

need the entire state. Partitioning the data for the nodes reduces the network traffic, as only

data that a node needs will be synchronized. It also satisfies the interest management re-

quirement for reducing communication and reducing update latency. Additionally, it provides

the shared-state a level of security, as nodes that should not have access to certain data need

not receive it (commonly know as Principle of Least Privilege). The disadvantage, however,

is that the diffs are more expensive to compute and to merge. The computation directly

depends on the number of partitions but the partitions can be synchronized independently.

Interest management in version control would mean synchronizing on a smaller subset of the

shared repository. File-based version control systems provide varying degrees of support for

such a task.

Git, for example, tracks the whole repository in the version graph, and it is impossible to
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synchronize only over a subset of the repository. This is because updates to the repositories

are better tracked on the whole tracked filesystem rather than on a per file or folder basis.

Centralized repositories like Perforce [110], on the other hand, provide the option to synchro-

nize over a subset using hard branches, but that comes at the cost of being very complex and

hard to manage. Furthermore, the granularity that Perforce offers is at the file level.

In shared space distributed systems, true interest management would translate to the ability

to pick and choose down to the dimensions the data required to be synchronized. This

principle is heavily ingrained in the share-state programming models. For example, databases

typically offer mechanisms to query the data stored and retrieve a smaller subset of the

database. Relational algebra is typically used to define these slices dynamically at each

request. For example, it is possible for a node synchronizing over a table of Cars in a database

to only pick up those cars that have velocity greater than zero (or are moving). This is a

dynamic query. Assuming the cars are mutable, if the query is made multiple times, the set

of cars that is returned can be different each time. Such intricate query mechanism do not

typically work nicely with version control systems.

8.1 Basic Interest Management in GoT

In the case of GoT, as explained till now, nodes can synchronize over the types that they

need. Let us take for example, a distributed simulation of a city. The shared space of an

GoT application can be composed of two types: People and Cars. Let there be three types

of nodes in the simulation: pedestrian simulator, traffic simulator, and a taxi service. The

pedestrian simulator only needs objects of type people, the traffic simulator needs objects of

type Cars and the taxi service required both to match people who are waiting for a ride to a

free cab which is a car.
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As is, GoT supports synchronizing over individual types. So while the full shared-space

is hosted on the authoritative node (say the taxi service), the traffic simulator only pulls

changes to the cars. When the traffic simulator makes a pull request, the taxi service picks up

any delta updates that the traffic sim does not have, and then filters it to the types that are

required and sends it. If there are no updates to cars, but there are updates to pedestrians,

then an empty delta is still sent to update the latest version at the traffic sim. This kind of

division is easy to implement as a car can never change its membership. It can never become

part of the People set.

However, dynamic queries are still not possible. Not every car in the set of Cars is an actively

moving car. Many cars can be parked. The traffic sim does not need to know about these

cars until they move. Additionally, it does not need to know all the properties of these cars

that are not relevant. e.g. ownership, color, engine VIN number, etc. Therefore, in some

cases, type level synchronization can still introduce redundancy in communication.

To fix this problem, we introduce predicate collection classes, by taking inspiration from

relational algebra. Predicate collection classes are a typing system that works with dataframe

to allow nodes to specify synchronization over dynamic collections of objects.

8.2 Introduction to Predicate Collection Classes

In many branches of study, including mathematics, the word class is, formally or informally,

used to denote sets of things that can be unambiguously defined by a property that all of its

members share [63]. In this sense, classification is the process of placing data with common

properties into sets or collections. For historical reasons, in OOP languages, the word class

has a related, but slightly different, meaning: a class is a template for constructing objects

that have one property in common, namely, they are modeled after the same nominal pattern
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of state and behavior, the class itself [18]. In OOP, we can look at a class C as a function

that takes data and returns an object with a specific set of fields and methods, as defined by

some pattern; all objects instantiated using C are said to be of the same class.

We are interested in expression mechanisms that allow us to classify data depending on

runtime conditions, or predicates, associating it with behavior dynamically. We use the words

classify and classification to denote both the identification of data with certain properties

(i.e. the broader meaning) and the process of associating that data with certain pre-existing

patterns (i.e. the OOP meaning). The idea is that of predicate collection classes (PCCs,

from here on), those whose extents are automatically determined by a predicate, rather than

being explicitly manipulated, and whose behavior is given by [OOP] classes. Such expression

mechanisms are extremely convenient, especially in long-lived, complex applications where

the data changes dynamically and may need to be reclassified often, such as simulations [40]

and the processing of streaming data [78].

As a motivating example, consider two functionally independent, but data dependent, simu-

lations: a traffic simulation and a pedestrian simulation. The traffic simulation moves cars

along roads, performing collision avoidance between them, using a rich model of cars and

roads. The pedestrian simulation moves pedestrians in sidewalks who can, at points, cross

roads. The process of detecting possible collisions between cars and pedestrians establishes

a data dependency between the two otherwise independent simulations: information about

cars must flow, directly or indirectly, to the pedestrian simulation, or vice-versa.

There are several alternatives to model this situation. One option is for the car simulation

to import/access, at every simulation step, the entire collection of pedestrians from the

pedestrian simulation; another option is for data to flow the other way around. None is these

options is ideal, for two reasons: (1) the vast majority of cars and pedestrians are not at risk

of colliding, so it will be wasteful to replicate/access them all when only a subset of them is

of interest; and (2) the information that the car simulation needs of pedestrian objects, or
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that the pedestrian simulation needs of car objects, is only a small portion (i.e., a projection)

of the potentially rich data models used by the respective simulations – essentially only their

positions are needed. A better alternative is for one of the simulations to only import/access

portions of the other simulation’s objects that are within a certain range of its own objects.

But, in this case, an even better alternative is to not import or access the other simulation’s

objects at all, and, instead, rely on an external substrate of all data that can help model

and classify the internal data more expressively. For example, the pedestrian simulation

can model the concept of pedestrian in danger, which corresponds to the subset of its own

pedestrians that are at a certain distance of any car in the other simulation. In doing so,

no car flows explicitly into the pedestrian simulation; the collection of pedestrians in danger

is simply a subset of the existing pedestrians predicated on state that exists on another

collection elsewhere. Pedestrians in danger behave differently than all other pedestrians, for

example, they may move faster or stop. Once they move out of danger ranges, they become

regular pedestrians again.

1 pclass PedestrianInDanger(Pedestrian pedestrian, List<Car> cars) :
2 predicate : :
3 foreach c ∈ cars :
4 if pedestrian.near(c) :
5 return True
6 end
7 end
8 return False
9 end

10 method avoid() :
11 // Move the pedestrian out of the road!
12 end
13 end

Algorithm 1: Potential Pedestrian and Car collision avoidance code.

The pseudo-code in Algorithm 1 sketches the main idea of what we want to achieve: we want

to create and classify collections of objects automatically from other collections. In this case

we want the collection class PedestrianInDanger to contain Pedestrian objects predicated
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on a given list of Car objects, and we want this predicate collection class to have its own

specific methods – in this case, method avoid.

Proposals for how to achieve similar goals can be traced to the early days of OOP, and

include predicate classes [25], multiple most specific classes [11], dynamic reclassification of

objects [32], and dependent classes [41]. We take a fresh look at this idea, placing it in the

context of modern applications and frameworks. Two characteristics make our approach

different from what has been proposed before: (1) our focus on collections of objects (predicate

classes), rather than on construction of individual instances (attributive classes); and (2) our

approach to handling object state changes.

In languages with mutable state, PCCs pose many challenges, some of which are critical to

both the semantics and the implementation of the concept. An object that is classified as

an instance of some predicate class C at one point in time, may see its internal predicate

become invalid some time later. In the example above, a call to the method avoid (line 10)

may change the position of the pedestrian in danger, violating the property that made that

object exist in the first place. From that point on, it is unclear what should happen to that

object. Should it cease to exist? Should it continue to exist but in a zombie state? Should

it continue to exist within a certain scope, but with the understanding that the predicate

may be invalid? We chose this latter option, as it is the closest to the semantics of modern

collection classes.

8.3 Predicate Collection Classes: Overview

This section gives an overview of the main design elements of PCCs using as an example

the simplest of all operations, subsetting. Given that our first implementation of PCCs is in

Python, the examples are written in Python. The PCC capabilities are embedded without
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Decorator Target Origin
@subset(Class) class PCC
@projection(Class, F ield1, ..., F ieldm) class PCC
@join(Class1, ..., ClassN) class PCC
@union(Class1, ..., ClassN) class PCC
@intersection(Class1, ..., ClassN) class PCC
@parameter(Class,mode) class PCC
@dimension(Type) property PCC
@Property.setter property Python
@staticmethod method Python

Table 8.1: Summary of decorators used by PCCs.

changing the language, using our own decorators as well as some pre-existing ones. Table 8.1

summarizes these decorators, the elements they apply to, and whether they are our own or

Python’s.

In general, PCCs are collections of objects created from one or more collections of objects of

certain classes or types, for which certain predicates hold. A PCC defines both a class and a

collection of instances of that class. Listing 8.1 shows one example where the PCC ActiveCar

is defined as a subset of instances of the regular class Car.

This first example lends itself to a few observations, all of which are applicable to all PCCs,

not just subsets.

• The data of the elements in these collections is given by properties tagged as @dimen-

sion (see lines 2, 5, 8).1 The set operations are established by declarations immediately

above the class declarations, in this case @subset(Car) (line 13). Other operations

will be introduced in the next section.

• Besides the operation declaration (in this case, Subset), the other user specification

pertaining to PCC is the predicate, __predicate__, a static method, which, in this

case, establishes that a Car c is active if its Velocity field is neither the zero vector nor
1For simplicity sake, we omit the setter methods in these examples, but they need to exist if the values of

properties are to be changed.

156



1 class Car :
2 @dimension ( int )
3 def ID( s e l f ) : return s e l f ._ID
4
5 @dimension ( l i s t )
6 def Pos i t i on ( s e l f ) : return s e l f . _Posit ion
7
8 @dimension ( l i s t )
9 def Ve loc i ty ( s e l f ) : return s e l f . _Velocity

10
11 #. . . methods o f Car . . .
12
13 @subset (Car )
14 class ActiveCar :
15 @staticmethod
16 def __predicate__ ( car ) :
17 return not ( car . Ve loc i ty == [ 0 , 0 ] or car . Ve loc i ty == None )
18
19 def Move( s e l f ) :
20 s e l f . Po s i t i on [ 0 ] += s e l f . Ve loc i ty [ 0 ]
21 s e l f . Po s i t i on [ 1 ] += s e l f . Ve loc i ty [ 1 ]
22 i f s e l f . Po s i t i on == (100 , 100 ) : s e l f . Ve loc i ty = None
23
24 ca r s = [ ]
25 # . . . f i l l in the l i s t o f cars . . .
26 while (True ) :
27 foreach aCar in pcc . c r e a t e ( ActiveCar , ca r s ) as aCars :
28 aCar .Move ( )

Listing 8.1: Subsetting
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None (lines 16–17). The arguments for predicate depend on the operation declaration,

and this is enforced by the PCC language processor; in the case of subsets, there is only

one argument, one whose type is that of the subsetting declaration above (in this case,

Car). This allows the programmer to define the filter for determining which elements

of the original set are to be selected.

• PCCs construct instances of their type, not of the type of their supersets. In this case,

the ActiveCar PCC will create instances of ActiveCar, not of Car. In other words,

PCCs are not just about selecting objects from lists and returning the objects that

honor in invariant; for each object that honors the predicate, a new instance of the

PCC class will be created.

• PCCs can define their own fields, properties and methods. In the example above, the

PCC ActiveCar defines a method Move() (lines 19–22) that doesn’t necessarily exist in

class Car (if it exists, it is an unrelated method). In this sense, PCCs are regular OOP

classes, with their own behavior that is independent of the original objects’ classes.

• PCCs acquire dimensions (i.e. properties) defined in the original classes of their supersets.

In this case, ActiveCar acquires all the dimensions of class Car; that can be seen in the

body of method Move, which refers to the fields Velocity and Position defined in class

Car (lines 19–22). This mechanism is not inheritance, even though for subset operations,

in particular, the dimension acquisition semantics is very similar to inheritance. For

other operations, the differences will become much clearer in the following sections.

• Lines 24–27 show how PCCs are created and used: a function pcc.create takes a PCC

class name (in this case ActiveCar) and a collection of objects from which to create

reclassified instances, and returns those new instances.

The next two sections cover object reclassification and the different kinds of PCCs, respectively,

in more detail.
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Figure 8.1: Object model: an instance of a class is a combination of state and behavior
(methods). Different behavior may be dynamically associated with the same instance state.

8.4 Object Reclassification

In order to explain object reclassification, we will use the example of the previous section

involving collections of cars and subsets of active cars (see Listing 8.1). We now focus on

the bottom part of that snippet, the infinite loop (lines 26–28). Within that loop, in each

iteration, a collection of reclassified objects is created given a list of cars (line 27). The

collection aCars is a subset of the collection of cars that honor the predicate defined in

ActiveCar. For every active car in this collection, the method Move is invoked (line 28); that

method, which does not exist in class Car, changes the active car’s position (lines 19–22),

and may change its velocity to None (line 22). Those changes may or may nor be propagated

to the original car instances, depending on whether copy or reference semantics is used; both

semantics will be explained next. In either case, in the next iteration, the next reclassification

will get a new collection of active cars.
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Figure 8.2: PCC creation by reference (left) vs. by copy (right).

8.4.1 Object Model and Reclassification

Figure 8.1 illustrates the required object model upon which PCCs can be defined. The

creation of a class instance, for example aCar = Car(), results in two components being

created: a set of fields that hold the object’s state and a set of methods that access that

state. The object state exists independently of the methods, and is a first-class object in

itself – i.e. it can be referenced.

Several object-oriented languages provide this object model, or some version of it; Python

is one of them. Other languages such as Java and C# do not expose the object’s state as

first-class, but the set of fields and properties of the object can be accessed via reflection,

which make it possible for PCCs to be implemented in those languages too.

PCC objects go through a process of reclassification, which means that they are instances of

different classes than their originals. In the Cars example (8.1), in line 29, the car instances

that honor the predicate (line 17) will be available as instances of ActiveCar. The relation

between the reclassified instance and its original depends on whether a reference or copy

semantics is used, which is the topic of the next subsection.
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8.4.2 Reference vs. Copy Semantics

There are two mechanisms by which reclassification can be achieved: by referencing the state

of the original object directly, or by copying data between the original and the reclassified

instance. Figure 8.2 illustrates the two semantics. Both are possible, and we have experimented

with both, but ultimately, we decided to adopt a reference semantics for the core of PCCs

(Figure 8.2, left). Nevertheless, here, we discuss the two possibilities, their strengths and

weaknesses, and the context where copy semantics is required.

If the state is used by reference, the PCC object and the original have different types (and

therefore different interfaces) but point to the same object state. State changes can be done

via any of the interfaces. In Python, we achieve reference semantics between the state of

different instances of different classes simply by setting the __dict__ field of reclassified

instances to that of their original counterparts.

If the reclassification is done with a copy semantics, then the creation of a PCC involves

making deep copies of the objects’ state at that point in time. From then on, the state of

the PCC instance becomes independent of original. In order to prevent copying more than

necessary, only attributes marked as dimensions are copied. Additionally, dimensions that

are object references are followed and copied recursively. The copying process keeps track of

which objects have been ingested, so that no two copies of the same object are included.

Reference semantics provides true multi-classification of objects, which makes many problems

easier to model. It also has much better performance than copy semantics, since no memory

is copied when creating PCCs. As such, even though we experimented with both, the current

implementation of PCCs supports only reference semantics.

In multi-threaded applications, the reference semantics suffers from the general problems

associated with the lack of isolation. In programs where changes to the reclassified objects
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do not need to be reflected back to the originals, copy semantics might be preferred and that

is a drawback of our choice to support only reference semantics.

Copy semantics can be achieved with an additional layer on top of PCCs. For example, in

one of our main applications of PCCs involving distributed simulations, we designed and

implemented a layer on top of PCCs that serializes and deserializes PCCs, and that merges

changes made to PCC objects back with the state of their originals. We call this extra layer

a dataframe. Dataframes could also be implemented in a non-distributed setting, but, so

far, we have no strong justification for doing so, since all non-distributed implementations of

PCCs can be done much more easily with reference semantics. While interesting in its own

right, especially with respect to merging changes, the dataframe layer is not part of PCCs,

and hence it is not described here.

8.4.3 Constant Consistency vs. One-Time Consistency

As the example shows, PCC instances can, at points, be in violation of the predicate that

classified them and placed them in the resulting collection. In this example, when active cars

reach the final point, their Velocity is set to None (Listing 8.1, line 22). This, however, does

not remove them from the collection, or from the class – ActiveCar – even though from that

point on they are in violation of the predicate.

This is a feature, not a flaw, of the design of PCCs. PCCs are designed to be used in iterative

computations. As such, at each step, we want stability of the data in the collections. As such,

we support one-time consistency. The semantics of one-time consistency is as follows: at

the time of creation of a PCC, before any processing occurs, the state of the instances

that make it to the PCC is guaranteed to be consistent with the predicate of the PCC. Once

the objects start being processed, however, there are no guarantees of consistency with the

predicate that placed them there.
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While this choice of semantics may at first seem strange, we note that a similar choice has

also been done in mainstream collection libraries. Consider, for example, the iteration over

a hash map/dictionary; in most modern programming languages (Java, Python, C#, etc.)

the collection cannot be changed during iteration, even if some elements of the collection

logically stop belonging to it or new elements logically become members of it. The same

happens in sorted collections based on the objects’ hashcode, or comparator method: given

that the hashcodes and comparisons are based on the objects’ state, when that state changes

after the original insertion, the position of the object in the collection may be temporarily

inconsistent until explicit adjustments are made.

An alternative to this design choice would be to keep strict constant consistency of the objects

with the PCC predicates, and to move objects in and out of collections immediately as their

state changes. Constant consistency would make certain instances be reclassified in, and

even disappear from, the collection before the processing step would be over. While feasible,

this choice would be considerably more complex to implement, slow, and, most importantly,

potentially confusing. We decided to keep with the design choices of mainstream collection

libraries.

8.4.4 Inheritance

The relational operations underlying PCCs, of which subsetting is only one, have interesting

implications for the traditional concept of inheritance in OOP. Even before presenting the

other operations, it is important to clarify the relation between PCCs and inheritance;

subsetting serves as a good illustration of the subtleties of this relation. More subtleties will

emerge when we present other PCCs. The overall design principle is that PCCs can use

inheritance, but do not try to reappropriate it. When inheritance is desired, programmers

can complement the PCC declaration with the inheritance features provided by the host
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language.

In the example of Listing 8.1, the PCC ActiveCar is a subset of Car, but does not inherit from

the class Car. Because there is no inheritance relation, ActiveCar is not a subtype of Car, nor

does it inherit any method from Car. The only elements reused from Car by ActiveCar are

the fields explicitly marked as dimensions, in this case ID, Position, and Velocity. The lack of

implicit inheritance is intentional: it may very well be that programmers want completely

different behavior for ActiveCar objects than that present in Car. When behavioral subtyping

is desired, the programmer can add it in the usual manner. In the example, if subtyping had

been desired, we would have declared ActiveCar as:

@subset(Car)

class ActiveCar(Car):

...

In this case, ActiveCar would be a subclass of Car, and all methods and fields would be

inherited.

8.5 Relational Operations of PCCs

A PCC is both a class of objects and a specification for collection of objects of that class. As

such, it is defined by both a dimensions rule Γ (Gamma) and an extension rule Ψ (Psi). The

predicate collections result from relational operations on collections of existing objects. This

section revisits subsets and presents the other main relational operations: projection, cross

product (join), union, intersection, and parameterization of collections. A summary of these

rules is presented in Tables 8.2 and 8.3. This section contains the explanation of these rules.
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Γ (Fields Rule)
Subset
SubP (A) γ(SubP (A)) ⊇ γ(A)
Projection
Proj(A : f1, ..., fm) γ(Proj(A : f1, ..., fm)) ⊇ {f1, ..., fm}
Join
A1 ×P A2 γ(A1 ×P A2) ⊇ γ(A1) ∪ γ(A2)
Union
A1 ∪A2 γ(A1 ∪A2) ⊇ γ(A1) ∩ γ(A2)
Intersection
A1 ∩A2 γ(A1 ∩A2) ⊇ γ(A1) ∩ γ(A2)

Table 8.2: Dimensions rules (Γ) for PCCs, which dictate the fields of PCCs.

Ψ (Extension Rule)
Subset
SubP (A) ψ(SubP (A)) = {a ∈ ψ(A)|P (a)}
Projection
Proj(A : f1, ..., fn) ψ(Proj(A : f1, ..., fm)) = ψ(A)
Join
A1 ×P A2 ψ(A1 ×P A2) = {(a1, a2) ∈ ψ(A1)× ψ(A2)|P (a1, a2)}
Union
A1 ∪A2 ψ(A1 ∪A2) = {a ∈ ψ(A1) ∪ ψ(A2)}
Intersection
A1 ∩A2 ψ(A1 ∩A2) = {a ∈ ψ(A1) ∩ ψ(A2)}

Table 8.3: Extension rules (Ψ) for PCCs, which define which instances are in the PCC.
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1 class Person :
2 @dimension ( int )
3 def ID( s e l f ) : return s e l f ._ID
4 @dimension ( str )
5 def Name( s e l f ) : return s e l f ._Name
6 # plu s 20 o ther dimensions
7
8 @pro ject ion ( Person , Person . ID , Person .Name)
9 class PersonInfo :

10 def PrintSummary ( s e l f ) :
11 print ‘ ‘ ID=’ ’ + str ( s e l f . ID) + ‘ ‘ Name=’ ’ + s e l f .Name
12
13 @Name. s e t t e r
14 def Name( s e l f , va lue ) : s e l f ._Name = value
15 # More f i e l d s and methods f o r PersonInfo

Listing 8.2: Projection

8.5.1 Subset

Listing 8.1 presented an example of a subset PCC. More formally, given a collection A of

objects of class A, a subset PCC of A for a certain predicate P , written SubP (A), which is

also a class, is ruled by the following:

Γ Rule: SubP (A), as a class, includes all dimensions of class A, and can include additional

dimensions of its own.

Ψ Rule: SubP (A), as a set, consists of instances of class SubP (A) constructed from instances

in A that honor the given predicate P .

8.5.2 Projection

Given a collection A of objects of class A, a projection PCC of A over a subset of dimensions

of A, written Proj(A : f1...fm), is defined by the following:
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1 @join ( Person , Card , Transact ion )
2 class RedAlert :
3 def __init__( s e l f , p , c , t ) :
4 s e l f . p = p
5 s e l f . c = c
6 s e l f . t = t
7
8 @staticmethod
9 def __predicate__ (p , c , t ) :

10 p . id==c . owner and t . card==c . id and
11 t . amount > 2000 and t . ho l d s t a t e==False
12
13 # Dimensions o f Person , Card and Transact ion are a v a i l a b l e
14 # For example :
15 def Protect ( s e l f ) :
16 s e l f . c . ho l d s t a t e = True

Listing 8.3: Cross Product (Join)

Γ Rule: Proj(A : f1...fm) , as a class, includes the dimensions of class A onto which it is

being projected, f1...fm, and can include additional dimensions of its own.

Ψ Rule: Proj(A : f1...fm), as a set, consists of instances of class Proj(A : f1...fm)

constructed from all instances in A.

Listing 8.2 shows an example where a class Person, with multiple dimensions, is projected

as PCC PersonInfo, in which the objects have only two of the dimensions of Person (line

8). PersonInfo can be tasked with methods not available to the objects of the class Person.

For example, PersonInfo can have exclusive set access to Name (line 13). This means that

any function that uses Person will not be able to change the Name, until the projection

PersonInfo is used. By making this explicit we are enforcing a certain protocol for data access

that is much more expressive than simple accessibility qualifiers.

8.5.3 Cross Product (Join)

Given a collection A of objects of class A, and a collection B of objects of class B, the join

PCC of A and B under a certain given predicate P , written (A×P B), is ruled by as:
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1 class Fru i t :
2 @dimension ( f loat )
3 def s i z e ( s e l f ) : return s e l f . _s ize
4 . . .
5
6 class Lemon( Fru i t ) : . . .
7 class Orange ( Fru i t ) : . . .
8 class Banana ( Fru i t ) . . .
9

10 @union (Lemon , Orange )
11 class Citrus ( Fru i t ) :
12 def MakeJuice ( ) : return s i z e /50
13 # more f i e l d s and methods

Listing 8.4: Union

Γ Rule: A×P B, as a class, includes all dimensions of class A and all dimensions of class

B, either directly as the same dimensions or possibly indirectly via instances of A and B as

fields, and can include additional dimensions of its own.

Ψ Rule: A×P B, as a set, consists of instances of class A×B constructed from instance

pairs (a ∈ A, b ∈ B) that honor the given predicate P .

The cross product of two sets is defined as the set of all combinations of elements of the first

set and elements of the second, possibly with some additional constraints. In Listing 8.3,

the declaration @join(Person, Card, Transaction) establishes that RedAlert is a cross

product operation between instances of those three classes. The predicate P , in this case,

establishes some constraints regarding identifiers, amounts and status of the transactions.

8.5.4 Union

Given a collection A of objects of class A, and a collection B of objects of class B, the union

PCC of A and B, written (A ∪B), which is also a class, is ruled by the following:
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Γ Rule: A ∪ B, as a class, includes all dimensions resulting from the intersection of the

dimensions of class A and class B, and can include additional dimensions of its own.

Ψ Rule: A∪B, as a set, consists of instances of class A∪B constructed from all instances

a ∈ A and b ∈ B.

While it is possible to define the union of two sets with elements of the same type (e.g.

List<Car> c1 ∪ List<Car> c2), it is more interesting to add sets with elements of different

types, producing a union that can have meaningful semantic differences from the original

sets. Listing 8.4 shows one such example, where the PCC Citrus defines a set containing all

instances of Lemon and Orange, but not of Banana.

As the example illustrates, Unions are an expression a mechanism that can be seen as post-hoc

inheritance, i.e. commonalities that are established later rather being modeled in. In the

example of Listing 8.4, using traditional inheritance, a Citrus class would be defined as

inheriting from Fruit, and then classes Lemon and Orange would inherit from Citrus. With

the union PCC, such strict hierarchies are not necessary, as new unions can be added relating

existing classes to each other externally to their inheritance definitions.

Dimension compatibility in unions is determined by their names. The less fields the elements

have in common, the less fields will be available for the methods of the union PCC to use. In

the extreme, when the only thing in common between the elements is that they are objects,

no fields are available in the union PCC; but the union is still valid.2

Because PCCs relate to their domain sets structurally, the union of sets applies to any sets,

not just those whose elements have a common user-defined super type, as in the example.

The following code shows the union of two sets that have elements with no type in common,

other than Object, but that have one field in common, size:
2Many SQL engines support attribute renaming in order to enrich the expression of unions and intersections.

For the time being, our model and language does not support field renaming, although it can easily be added
in the future.
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class Car :
@dimension ( f loat )
def s i z e ( s e l f ) : return s e l f . _s ize

class Lemon :
@dimension ( f loat )
def s i z e ( s e l f ) : return s e l f . _s ize

@union (Lemon , Car )
class Pr ize :

def Box ( ) : return s i z e + 10

class Car : . . .

@subset (Car )
class ActiveCar (Car ) : . . .

@subset (Car )
class RedCar (Car ) : . . .

@union ( ActiveCar , RedCar )
class RedOrActive (Car ) : . . .

In cases where the two sets have some overlap, the union, by default, will include only one of

the duplicate objects (so, the DISTINCT semantics of union in SQL). For example:

In this example, there may be cars that are both active and red. By default, those objects

appear only once in the resulting collection RedOrActive.

8.5.5 Intersection

Given a collection A of objects of class A, and a collection B of objects of class B, the

intersection PCC of A and B, written (A∩B), which is also a class, is ruled by the following:
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1 class Car : . . .
2
3 @subset (Car )
4 class ActiveCar (Car ) : . . .
5
6 @subset (Car )
7 class RedCar (Car ) : . . .
8
9 @ in t e r s e c t i on ( ActiveCar , RedCar )

10 class RedActiveCar (Car ) : . . .
Listing 8.5: Intersection

Γ Rule: A ∩ B, as a class, includes all dimensions resulting from the intersection of the

dimensions of class A and class B, and can include additional dimensions of its own. (Similar

to union)

Ψ Rule: A∩B, as a set, consists of instances of class PCCI constructed from all instances

that belong to the intersection of A and B.

As stated above, the Γ rule is the same as for unions. This requires some explanation, as

it may be surprising. Unions and intersections must operate on structurally compatible

objects, hence the intersection of the fields in both cases, which gives the minimum common

structure. The differences are in the extension (Ψ) rule, i.e. the objects that end up in the

resulting set. Our design decision for unions and intersections follows that of SQL’s unions

and intersections.

Listing 8.5 shows an example where the set of active cars is intersected with the set of red

cars, resulting in a set of cars that are both active and red.

Although the concept of an object being an instance of ActiveCar and of RedCar simul-

taneously may seem strange, this is explained by the fact that PCCs create objects that

entangle with their originals: a specific car that is both active and red will have an incarnation

as ActiveCar and as RedCar; but, due to entanglement, object identification is never lost.

Therefore, two PCC instances derived from the same original object pass the equality test.

171



class Node ( object ) :
@dimension ( int )
def id ( s e l f ) : return s e l f . _id
. . .

class Edge ( object ) :
@dimension (Node )
def s t a r t ( s e l f ) : return s e l f . _start
@dimension (Node )
def end ( s e l f ) : return s e l f . _end
. . .

@parameter (Node , mode=S ing l e ton )
@subset (Edge )
class InEdge (Edge ) :

@staticmethod
def __predicate__ ( e , n ) : return e . end . id == n . id

Listing 8.6: Parameterized subset with single parameter

8.5.6 Parameterized Collections

Additionally to the basic algebraic operations on collections, we also support parameterization

of queries when constructing PCCs. Listing 8.6 shows one example in the domain of graphs

(nodes and edges). The PCC collection InEdge is defined as a parameterized subset. InEdge

is a subset of Edge. However, the subset cannot be instantiated without providing specific

run-time context: the Node to which the subset collection of Edges are incident upon. Node

is therefore the parameter. A Node has to be passed during the creation of the InEdge

collection for it to be successful.

Parameters can be also collections of objects. Listing 8.7 illustrates this with the concept of

a pedestrian in danger of being hit by a car. The parameter is a collection (list) of cars.
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@parameter (Car , mode=Co l l e c t i o n )
@subset ( Pedes t r ian )
class Pedestr ianInDanger ( Pedest r ian ) :

@staticmethod
def __predicate__ (p , ca r s ) :

for c in ca r s :
i f abs ( c . Po s i t i on .X − p .X) < 130 and c . Po s i t i on .Y == p .Y:

return True
return False

Listing 8.7: Parameterized subset with a list as parameter

8.5.7 Final Note on PCC Creation

This section showed the different relational operations that underlie the different kinds of

PCCs, but it didn’t yet cover how these PCCs are constructed from existing collections of

objects. As briefly mentioned in Section 8.3, PCCs are created with the pcc.create function

– see Listing 8.1, lines 23–27. This function takes a PCC name (the class to be constructed),

one or more lists of objects from which to select the members of the PCC, and possibly

additional parameters. For completeness’ sake, the following shows examples of how to obtain

the different PCCs explained in this section.
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Type Listing Creation example

Subset 1 cars = list of cars

acars = pcc.create(ActiveCar, cars)

Projection 2 persons = list of persons

pinfos = pcc.create(PersonInfo, persons)

Join 3 persons, cards, trans = lists of persons, cards, and transactions

ralert = pcc.create(RedAlert, persons, cards, trans)

Union 4 fruits = list of several types of fruits

citrus = pcc.create(Citrus, fruits)

Intersection 5 cars = list of cars

acars = pcc.create(ActiveCar, cars)

rcars = pcc.create(RedCar, cars)

racars = cc.create(RedActiveCar, acars, rcars)

Parameterization 6 edges = list of edges; node = Node()

inedges = pcc.create(InEdge, edges, params=(node,))

Parameterization 7 peds = list of pedestrians; cars = list of cars

pdanger = pcc.create(PedestrianInDanger,peds,params=(cars,))

8.6 Usage Examples

We have used PCC in both small algorithms and as a component of Spacetime. This section

illustrates the expressiveness of PCCs using four of those examples. All of these examples

are available from the PCC repository in Github (See https://github.com/Mondego/pcc).

Parts of the code are omitted, so that the code shown here can fit in one page. The indentation

shown here deviates from the stylistic indentation of Python code, for the same reason. Please

see the project repository for the complete code.
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8.6.1 K-Nearest Neighbor

Listings 8.8 and 8.9 give the PCC implementation of the K Nearest Neighbor algorithm as

applied to the clustering of flowers.3 The goal here is to identify the type of a flower using

four characteristics of flowers: the width and length of the sepal and petals. The example

code is shown in two parts, the data model (Listing 8.8) and the procedural part that uses it

(Listing 8.9).

The main class in this example is flower (Listing 8.8, lines 1–15). A parameterized subset

knn is defined (Listing 8.8, lines 17–36), whose purpose is to model the K nearest neighbors

of any given flower. As such, it requires two parameters: a flower, and the number of nearest

neighbors to be selected. A few facts are interesting about the knn PCC:

• The knn PCC does not inherit from flower, but it is a subset of flower collections.

As such, all dimensions of the flower class are available in knn instances. Methods,

however, are not inherited.

• The __query__ defined in the knn PCC is tasked with sorting the training set of flowers

using the Euclidean distance with the characteristics of the given flower as dimensions

(Listing 8.8, lines 21–25). It selects and returns the nearest K flowers. The default

__query__ cannot be used to create this subset, because the final subset is a limited

collection that depends on sorting order. Additional controls like __order_by__ and

__limit__ would be needed in order to provide this functionality, something we still

do not support. Advanced queries such as this one can be directly defined by the

programmer.

• The knn PCC defines an additional method vote (Listing 8.8, line 36), which returns

the label of the flower as neighbor of some other flower. In other words, voting is not a
3Adapted from http://machinelearningmastery.com/

tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/.
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1 class f l owe r ( object ) :
2 @dimension ( f loat )
3 def sepa l_length ( s e l f ) : return s e l f . _sepal_length
4 @dimension ( f loat )
5 def sepal_width ( s e l f ) : return s e l f . _sepal_width
6 @dimension ( f loat )
7 def peta l_length ( s e l f ) : return s e l f . _petal_length
8 @dimension ( f loat )
9 def petal_width ( s e l f ) : return s e l f . _petal_width

10 @dimension ( str )
11 def f l_type ( s e l f ) : return s e l f . _fl_type
12 @dimension ( str )
13 def predicted_type ( s e l f ) : return s e l f . _predicted_type
14 def __init__( s e l f , s l , sw , pl , pw, tp ) :
15 # i n i t i a l i z e f i e l d s
16
17 @parameter ( f lower , int )
18 @subset ( f l owe r )
19 class knn ( object ) :
20 @staticmethod
21 def euc l ideanDi s tance ( f l 1 , f l 2 ) :
22 return math . sq r t (pow( ( f l 1 . sepa l_length − f l 2 . sepa l_length ) , 2 )
23 + pow( ( f l 1 . sepal_width − f l 2 . sepal_width ) , 2 )
24 + pow( ( f l 1 . peta l_length − f l 2 . peta l_length ) , 2 )
25 + pow( ( f l 1 . petal_width − f l 2 . petal_width ) , 2 ) )
26 @staticmethod
27 def __query__( t ra in ing_f l ower s , t e s t , k ) :
28 f i na l_ i t ems = sorted ( [ t r_f for tr_f in t r a i n i ng_ f l owe r s ] ,
29 key=lambda x : knn . euc l ideanDi s tance ( t e s t , x ) )
30 return [ f i na l_ i t ems [ i ]
31 for i in range ( len ( f i na l_ i t ems ) )
32 i f knn . __predicate__ ( i , k ) ]
33 @staticmethod
34 def __predicate__ ( index , k ) : return index < k
35
36 def vote ( s e l f ) : return s e l f . f l_type

Listing 8.8: K Nearest Neighbor – data model
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1 def getResponse ( knns ) :
2 c l a s sVot e s = {}
3 for one_neighbour in knns :
4 re sponse = one_neighbour . vote ( )
5 c l a s sVot e s [ r e sponse ] = c l a s sVot e s . s e t d e f a u l t ( response , 0) + 1
6 sortedVotes = sorted (
7 c l a s sVot e s . i t e r i t em s ( ) , key=lambda x : x [ 1 ] , r e v e r s e=True )
8 return sortedVotes [ 0 ] [ 0 ]
9

10 def main ( ) :
11 t ra in ingSe t , t e s tSe t , p r e d i c t i o n s = [ ] , [ ] , [ ]
12 s p l i t , k = 0 .67 , 3
13 loadDataset ( " i r i s . data " , s p l i t , t r a in ingSe t , t e s t S e t )
14 for one_flower in t e s t S e t :
15 with pcc . c r e a t e (knn , t r a in ingSe t , params=(one_flower , k ) ) as knns :
16 one_flower . predicted_type = getResponse ( knns )
17 print ( ’ Accuracy : ’ + repr ( getAccuracy ( t e s t S e t ) ) + ’%’ )
18
19 main ( )

Listing 8.9: K Nearest Neighbor – algorithm

general behavior of flowers; it’s only a behavior of flowers that are K-distance similar

to some other flower.

Listing 8.9 shows the procedural part. After loading the data and dividing it into a training

and test set (Listing 8.9, line 13), we iterate over every flower that has to be labeled (Listing 8.9,

lines 14–16). For each of those flowers, we create the corresponding knn subset with the

flower to be labeled and the number of neighbors to look for as the parameters (Listing 8.9,

line 15). We then decide what type of flower this is by polling its nearest neighbors for votes

(Listing 8.9, line 16). In the getResponses function, each of the neighbors votes on a label

(line 4), and the majority wins (lines 6–8).
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8.6.2 Car and Pedestrian

We also used PCCs to develop proof-of-concept simulations. The simulation example we

worked on involved cars and pedestrians moving towards each other. When a pedestrian

is in danger of colliding with a car, it gets out of the way. In this simulation, PCCs were

used to drive the state changes for cars and pedestrians, rather than being used to calculate

intermediate steps like in the previous example. PCCs are both creators and consumers of

the state change.

Listing 8.10 shows the base classes that were used for this example. Car and Pedestrians

have their own classes (lines 1–17 and lines 19–45 respectively). Both classes are derived from

the Sprite class in pygame, a module that was used to render the car and pedestrians in the

simulation viewer. The attributes required for visualization are not registered as dimensions,

and so they will not be copied when PCCs are created from Car and Pedestrian.

Listing 8.11 details the mechanism needed to move a car. We track two states: InactiveCar

(defined in lines 1–9) and ActiveCar (defined in lines 11–21). An InactiveCar is one that has

its Velocity dimension set to zero. ActiveCar is naturally the opposite. Both are Subsets of

Car, but they do not inherit from Car. This means that they get the dimensions from Car

(as they are declared as Subsets) but they do not inherit the methods or the non dimension

attributes from Car. This is useful in this case as Car is also a sprite object and has properties

and methods that are not needed.

ActiveCar and InactiveCar also define their own methods relevant to the state of the car that

it models. An ActiveCar cannot be started, and an InactiveCar cannot be Moved. When

an InactiveCar is started, in the next iteration it gets classified as an ActiveCar and gains

the ability to move. This is done by two parallel threads, one that starts InActiveCars (lines

26–35) and one that moves ActiveCars (lines 37–44). All the pcc changes are done under

the scope of the dataframe object. The dataframe object performs two tasks. First, it uses
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1 class Car (pygame . s p r i t e . Sp r i t e ) :
2 # The c l a s s t h a t shows the image o f a car .
3 # Normal c l a s s t h a t ho l d s the s t a t e o f a car .
4 FINAL_POSITION = 500
5 SPEED = 10
6 @dimension ( str )
7 def ID( s e l f ) : return s e l f ._ID
8 @dimension ( tuple )
9 def po s i t i o n ( s e l f ) : return s e l f . _pos i t ion

10 @dimension ( tuple )
11 def v e l o c i t y ( s e l f ) : return s e l f . _ve loc i ty
12
13 def __init__( s e l f , p o s i t i o n ) :
14 # Constructor
15
16 def update ( s e l f ) :
17 # Changes the p o s i t i o n o f the car in the g raph i c s window .
18
19 class Pedest r ian (pygame . s p r i t e . Sp r i t e ) :
20 # base pede s t r i an c l a s s
21 INITIAL_POSITION = (400 , 0)
22 SPEED = 10
23 @dimension ( str )
24 def ID( s e l f ) : return s e l f ._ID
25 @dimension ( int )
26 def X( s e l f ) : return s e l f ._X
27 @dimension ( int )
28 def Y( s e l f ) : return s e l f ._Y
29
30 def __init__( s e l f ) :
31 # Constructor
32
33 def Move( s e l f ) :
34 s e l f .X −= Pedest r ian .SPEED
35 i f s e l f .X <= 0 :
36 s e l f . Stop ( )
37
38 def Stop ( s e l f ) :
39 s e l f .X, s e l f .Y = Pedest r ian . INITIAL_POSITION
40
41 def Se tPos i t i on ( s e l f , x ) :
42 s e l f .X = x
43
44 def update ( s e l f ) :
45 # updates the g raph i c s wi th changes to s t a t e .

Listing 8.10: Normal classes needed for the Car and Pedestrian Simulation
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1 @subset (Car )
2 class Inact iveCar ( object ) :
3 # Car t h a t i s not moving , Ve l o c i t y i s zero
4 @staticmethod
5 def __predicate__ ( c ) :
6 return c . v e l o c i t y == (0 , 0 , 0) or c . v e l o c i t y == None
7
8 def Star t ( s e l f ) :
9 s e l f . v e l o c i t y = (Car .SPEED, 0 , 0)

10
11 @subset (Car )
12 class ActiveCar ( object ) :
13 # car t h a t i s moving , v e l o c i t y i s not zero
14 @staticmethod
15 def __predicate__ ( c ) :
16 return not ( c . v e l o c i t y == (0 , 0 , 0) or c . v e l o c i t y == None )
17
18 def Move( s e l f ) :
19 x , y , z = s e l f . p o s i t i o n
20 xvel , yvel , z v e l = s e l f . v e l o c i t y
21 s e l f . p o s i t i o n = (x + xvel , y + yvel , z + zve l )
22
23 def Stop ( s e l f ) :
24 s e l f . po s i t i on , s e l f . v e l o c i t y = (0 , 0 , 0 ) , ( 0 , 0 , 0 )
25
26 def Sta r t Inac t i v eCar s ( cars , MainWindow ) :
27 # S t a r t s i n a c t i v e cars every 5 sec s
28 while True :
29 with dataframe ( ca r l o ck ) as df :
30 i a c s = df . add ( Inact iveCar , ca r s )
31 for car in i a c s :
32 car . S ta r t ( )
33 r e g i s t e r ( car . ID , cars , MainWindow)
34 break
35 s l e e p (5 )
36
37 def MoveActiveCars ( cars , MainWindow ) :
38 # Moves a c t i v e cars every 300 ms
39 while True :
40 with dataframe ( ca r l o ck ) as df :
41 acs = df . add ( ActiveCar , ca r s )
42 for car in acs :
43 car .Move ( )
44 s l e e p ( 0 . 3 )

Listing 8.11: PCC classes and its usage needed to move the Car
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1 @subset ( Pedest r ian )
2 class StoppedPedestr ian ( Pedest r ian ) :
3 # A person t h a t i s not moving
4 @staticmethod
5 def __predicate__ (p ) :
6 return p .X, p .Y == Pedest r ian . INITIAL_POSITION
7
8 @subset ( Pedest r ian )
9 class Walker ( Pedes t r ian ) :

10 # A person who i s wa lk ing .
11 @staticmethod
12 def __predicate__ (p ) :
13 return p .X, p .Y != Pedest r ian . INITIAL_POSITION
14
15 @parameter ( l i s t )
16 @subset ( Pedest r ian )
17 class Pedestr ianInDanger ( Pedest r ian ) :
18 # A person who i s in danger o f c o l l i d i n g wi th a car
19 @staticmethod
20 def __predicate__ (p , ca r s ) :
21 for c in ca r s :
22 cx , cy , cz = c . p o s i t i o n
23 i f cy == p .Y and abs ( cx − p .X) < 70 :
24 return True
25 return False
26
27 def Move( s e l f ) :
28 s e l f .Y += 50
29
30 def Sta r tPede s t r i an ( peds , MainWindow ) :
31 # Make a stopped pede s t r i an walk every 3 sec s .
32
33 def MovePedestrian ( peds , cars , MainWindow ) :
34 # Make a Walker move .
35 while True :
36 with dataframe ( pedlock ) as df :
37 p ids = df . add ( Pedestr ianInDanger , peds , params = ( cars , ) )
38 wks = df . add (Walker , peds )
39 for p in ( p ids + wks ) :
40 pid .Move ( )
41 _sleep ( 0 . 5 )

Listing 8.12: PCC classes and its usage needed to move Pedestrians
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a synchronization lock to make the computation within its scope thread safe. Second, it

allows us to create PCC objects using the copy semantics, and provides a mechanism to

copy changes performed on the copied object back to the original. This merge operation is

performed at the end of its scope.

Listing 8.12 shows us the PCC classes, and the mechanisms needed to move pedestrians, and

make them avoid danger when they are close to cars. StoppedPedestrian (lines 1–6), and

Walker (lines 8–13) are similar to ActiveCar, and InactiveCar classes. They are subsets of

Pedestrian that track the state of the pedestrian object. A StoppedPedestrian is one that

has not moved from the initial position. A Walker is a pedestrian that has moved from the

initial position. There are two threads that create and use these objects in the same way as

cars. To make the walkers avoid cars, the PedestrianInDanger class (lines 15–28) was created.

This is a parameterized subset of Pedestrians, that takes a list of Cars as a parameter. To

shorten the search space, it can also be made a subset of Walker, and parameterized on a list

of ActiveCar. The Move function in the PedestrianInDanger class overrides the Move in the

Pedestrian class. So when an object gets classified as a PedestrianInDanger, the Move that is

executed is different, and it will avoid the car (lines 37–40).

8.6.3 Distributed Simulations using Spacetime

The previous example is a proof-of-concept of the much more complex usage within Spacetime.

This is, by far, our most meaningful application of PCCs.

Background: Modeling and Simulation

Modeling and simulation is a mature field in both research and development. When studying

some real-world process or activity, one starts with developing a model for it, typically a
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Figure 8.3: Urban simulation.

mathematical model of some kind that abstracts away unnecessary complexity; then, when

the model does not have a closed form solution, computer simulation can be used to study

its characteristics (behavioral and performance). This approach to studying the real world is

used in almost all branches of Science and Engineering.

Microscopic model simulations can capture richer real world scenarios than macroscopic ones,

but they require much greater computational resources. The finer the level of granularity

and the larger the number of individual units modeled, the more resources they need. For

that reason, these simulations tend to be limited in size and/or purpose. There is no easy

way of designing and implementing multi-purpose simulations; each study requires not just

its own separate model, something that would be expected, but also a separate simulation.

Over the past few years, we have been involved in simulation projects that challenge this

state of affairs – see picture in Figure 8.3 showing one of the 3D simulated cities. These

projects have evolved towards multi-purpose microscopic simulations of urban areas. It has

become clear that there are lines of expertise for the different subsystems, and that, for that

reason alone, we need a decentralized simulation architecture allowing different groups to

provide relatively independent simulations of their models, but in a coordinated way, because

the models are mutually interdependent.

PCCs were designed to address this application domain, and its need to support separation

of concerns at the systems design level.
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8.7 Related Work

Since the early days of OOP, the simple use of classes and single inheritance has been

questioned. From multiple inheritance to traits to predicate classes (and dispatch), many

alternatives have been proposed over the years. Here we cover some of the work most related

to PCCs.

8.7.1 Predicate Classes

Some of the inspiration for PCCs, including the name, comes from predicate classes [25]. The

idea behind predicate classes is for objects to be dynamically classified, taking new/different

behavior as they change state. Objects that satisfy predicates specified in predicate classes

automatically become instances of those classes; when they stop satisfying those predicates,

they stop being instances of those classes. This is very similar to PCCs, but there are some

important differences.

The major difference is that PCCs, as the name indicates, pertain to collections of objects,

rather than to individual objects. This difference changes the focus and the capabilities of

the basic idea substantially. In the case of simple predicate classes, the programmer simply

states the predicate to be satisfied (e.g. a car whose velocity is zero), but there are no handles

for collections of objects that satisfy those predicates at any point in time. The PCCs’ focus

on collections not only exposes these handles but also enables the full expressive power of

relational operations on collections, such as subsetting, projection, cross product, etc. Simple

predicate classes express implicit subsets only: subsets, because predicates on field values

constrain the state of the parent objects; implicit, because there is no handle for that subset.

More importantly, one of the goals underlying simple predicate classes is to always ensure the

satisfiablity of the predicate. For example, given a normal class buffer and a predicate class
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empty buffer, if the last element is removed from a buffer object, that object immediately4

becomes an instance of the empty buffer predicate class; similarly, if an element is added to

an empty buffer object, that object immediately stops being an instance of the empty buffer

predicate class. Classification is always consistent with the state of the objects. That is not a

goal of PCCs. PCCs classify the objects at some point in time, at which point the predicate

is guaranteed to be satisfied; but once included in the collection, the state of the objects may

later change, possibly becoming inconsistent with the predicate that placed them in the data

frame. That is not just acceptable: it is a desired semantics. PCCs are meant to hold a fixed

collection of objects whose state can change. Take, for example, the case of a collection of

non-empty buffer objects; if during subsequent processing all elements are removed from a

given buffer object in that collection, we still want that buffer object to be in the collection,

even though it is empty; we don’t want it to suddenly disappear because it became empty.

So the semantics of predicates in PCCs is quite different from that of predicates in simple

predicate classes: always true (in the case of simple predicate classes) vs. true at the time of

data frame creation (in the case of PCCs).

The relaxation of satisfiability is also what makes it possible to implement relational operations

in practice, not just subsetting. Unlike subsetting, that looks only at internal state of the

objects, joins (cross product) and parameterization pertain to combinations of objects. Take

for example, a join between cars and their owners. If at some point in the framed computation

the car ownership changes from one person to another (or to no one), we would need to

search combinations of a car and persons again to check whether the resulting join object

satisfies the predicate. Strict satisfiability of predicates for objects involved in join operations,

as well as parameterizations, would be prohibitive to implement.
4“Immediately” here includes lazyness, i.e. not necessarily instantly but as soon as classification is needed.

185



8.7.2 Other Class-Instance Associations

Besides predicate classes, the OOP literature presents a considerable number of ideas aimed

at making the instance-class relationships more flexible. We describe some of them here, and

how they relate to PCCs.

Fickle [32] includes another idea for dynamic object reclassification that is not based on

predicates, but on explicit reclassification by the programmer. The Fickle language provides

a construct to reclassify instances of special "state" classes that can be used by programmers.

These special classes, however, cannot be used as types for fields of parameters, as that would

violate type safety. The main difference between PCCs and this older work is, again, the focus

on collections rather than on individual instances. Additionally the Fickle reclassification

construct is not declarative but imperative in nature. In contrast, PCCs are defined using

declarations (the predicates).

First introduced in Flavors by Moon [77], and then in CLOS, mixins (abstract subclasses) are

a powerful way of combining object behavior, as they can be applied to existing superclasses in

order to create a related family of modified classes. Bracha and Cook introduced mixin-based

inheritance [16], a form of class inheritance formulated as a composition of mixins. Mixin

layers [101] are a form of decomposition that targets the encapsulation of class collaborations:

each class encapsulates several roles, where each role embodies a separate aspect of the class’s

behavior. A cooperating suite of roles is called a collaboration. Mixins are only vaguely

related to PCCs in that they make reuse of behavior more flexible than inheritance, allowing

objects to be given several different roles. But the classification is still static, meaning that it

is established before any instances are created. In contrast, PCCs serve to reclassify objects

at runtime.

Self [104], and many languages inspired by it, including recent ones such as YinYang [71],

include the concept of dynamic inheritance, which “allows the inheritance graph to change
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during program execution.” While PCCs focus on the dynamics of program execution, our

goal is not to change the inheritance hierarchy at runtime, but to change the classification of

objects among existing (fixed) classes at runtime. In our model, the class hierarchy is static,

as it reflects the important activity of designing and modeling the application entities; but

the classification of data can change at runtime based on specific predicates on the state of

the objects.

Bertino and Guerrini proposed a technique that allows objects to belong simultaneously to

multiple [most specific] classes [11]. The motivation was data modeling situations in which

a single instance (e.g. a person) is naturally associated with multiple classes (e.g. student,

and female). Although similar to multiple inheritance, the technique proposed in that paper

aimed at avoiding the proliferation of subclasses that are simple combinations of other classes.

This work built on the idea of mixin-based inheritance [16], and it predates traits [96, 80].

Traits are another way of reusing behavior. PCC instances do not have traits, but rather

they are instances associated with a single class, that take the state from existing objects.

Finally, virtual classes [68, 35], dependent classes [41], and generics [75, 17] are mechanisms

to parameterize classes. That work is vaguely related to PCCs in that it is particularly useful

for collection classes such as lists, sets, etc. But the purpose of parameterized classes is quite

different from that of predicate [collection] classes: the former targets the generalization

of type definitions (types parameterized on other types), whereas the latter targets the

association between instances and their classes.

8.8 Conclusions

This paper has introduced the concept of Predicate Collection Classes, PCCs for short. PCCs

are a declarative mechanism of selecting objects from collections, reclassifying them along
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the way. PCCs are both classes and specifications of collections of objects of those classes.

Composition of collections can be expressed very easily using concepts from relational algebra

such as subsetting, projection, cross product, union and intersection. PCCs are useful for

filtering and manipulating collections, including when the elements of those collections may

behave differently depending on which collection they are placed.

PCCs are in Spacetimevia Python’s decorators. We have successfully used PCCs to model

several iterative algorithms that use collections heavily. This showed us that PCCs are

an expressive mechanism for declaring operations on collections while, at the same time,

establishing new behaviors for objects that fall into those collections. PCCs are a core

component Spacetime as they allow the declarative specification of optimized dataframes

that are streamed from a data server to distributed simulation components, allowing each

component to give their own behavior to the data – that behavior may change over time. In

other words, interest management.

PCCs are inspired by relational query languages, which have proven to follow a timeless

model for manipulating collections of data.
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Chapter 9

Observable Replication of Objects

The contents of this chapter have been published in Onward! 2019 [2].

Debugging faults and errors in distributed systems is hard. There are many reasons for the

inherent difficulty, and these have been extensively discussed in the literature [98, 12, 105].

In particular, the non determinism of concurrent computation and communication makes it

hard to reliably observe error conditions and failures that expose the bugs in the code. The

act of debugging, itself, may change the conditions in the system to hide real errors or expose

unrealistic ones.

To mitigate the effects of these difficulties, several approaches have been developed. These

approaches range from writing simple but usually inadequate test cases [103], to rigorous but

expensive model checking [115] and theorem proving [109]. More recently, techniques such as

record and replay [44], tracing [67], log analysis [39], and visualizations [12] have been used

to locate bugs by performing postmortem analysis on the execution of distributed systems

after errors are encountered.

None of these tools are interactive debuggers. Interactive debuggers in a single threaded
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application context are powerful tools that can be used to pause the application at a

predetermined predicate (often a line of code in the form of a breakpoint) and observe the

state of the variables and the system at that point. They can observe the errors as they

happen, and can be quite effective in determining the cause. Controls are often provided to

execute each line of code interactively and observe the change of state after each step. Many

modern breakpoint debuggers provide the ability to roll back the execution to a line that

was already executed. This, along with the ability to mutate the state of the system from

the debugger, can be used to execute the same set of lines over again and observe the state

changes without having to restart the application.

Traditional interactive debuggers, however, become inadequate when used in parallel or

distributed systems. Techniques used in single threaded applications do not translate well

to a parallel or distributed context because information creation and consumption is not

sequential. To create an interactive debugger for a distributed context, information flow must

be modeled differently.

9.1 Related Work: Debugging Distributed Systems

Interactive debugging of parallel and distributed systems has been discussed as early as

1981 [97], but the idea has never been fully realized, mainly because it is very hard to

do. However, there are many non interactive tools aid developers in debugging distributed

applications. A comprehensive survey of the types of methods available can be found in

Beschastnikh et al. [12]. In this survey, existing methods are grouped into seven categories:

testing, model checking, theorem proving, record and replay, tracing, log analysis, and

visualization. Each of these types of tools offers different insights for the developer to

find bugs in the application. Tools for record and replay [44, 64, 43], tracing [67, 37], log

analysis [39], and visualizers [12], try to parse the artifacts of execution such as logs, execution
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stack traces, and data traces to understand the change of state in a run of the distributed

system.

Many of these tools share features with interactive debuggers, as they share the common

goal of exposing errors in the system to the developers. For example, tools like ShiViz [12]

provide developers a way to observe the information exchanged in a distributed system by

parsing logs, inferring causal relations between messages in them, and then visualizing them.

Similarly, interactive debuggers for distributed systems would also need to provide a way to

visualize the information being exchanged. The D3S [64] tool allows programmers to define

predicates that, when matched during execution, parse the execution trace to determine

the source of the state changes. In interactive debugging these predicates are known as

breakpoints and are the fundamental concept in interactive debugging.

Recently, a graphical, interactive debugger for distributed systems called Oddity [112] was

presented. Using Oddity, programmers can observe communication in distributed systems.

They can perturb these communications, exploring conditions of failure, reordered messages,

duplicate messages etc. Oddity also supports the ability to explore several branching

executions without restarting the application. Oddity highlights communication. Events

are communicated, and consumed at the control of the programmer via a central Oddity

component. However, the tool does not seem to capture the change of state within the node,

it only captures the communication. Without exposing the change of state within the node

due to these communications, the picture is incomplete. With this tool, we can observe if the

wrong messages are being sent, but we cannot observe if a correct message is processed at a

node in the wrong way.
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9.2 Fundamental Requirements of Interactive Debug-

gers

Whether for a single threaded application or a distributed application, there are two funda-

mental requirements that interactive debuggers must provide. First, the debugger should be

able to observe, step by step, the change of state of the application. Second, the debugger

must give the user control over the flow of execution, so that alternative chains of events

across the distributed application components can be observed. In this section, we discuss

the design choices available to us when trying to achieve both goals.

9.2.1 Requirement 1: Observing State Changes

The most important goal of an interactive debugger is to observe, step by step, the change

of state of the computing system. Therefore, it is important to understand how change of

state can occur. A change of state can be abstracted to the consumption and creation of

information. For example, over the execution of a line of code in a single threaded application,

the current state of the variables in the application’s heap is consumed, and a new state

is created. In such an application, we only have one dimension over which information is

created and consumed: time – not necessarily world time, but time modeled as the sequence

of operations, or causal time. Figure 9.1 shows this progression. The only task that an

interactive debugger designed for single threaded applications has to do is to show the change

of state over the sequential execution of each line of code.

In the context of a parallel or distributed system, we have an additional dimension to think

about: the site of execution (thread in parallel systems, nodes in distributed systems).

Information is not only generated and consumed over lines of code at a site, it is also

transmitted from one site to another and then made available at that site. Figure 9.2 shows
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Figure 9.1: Information propagation in single-thread systems.

this information exchange. An interactive debugger for such a system must model three

effects: the change of state over execution at each site, the transfer of state between sites,

and the reconciliation of the states received from remote sites with the state at that site.

It is possible to consider reconciliation as part of the state changes through the execution

of code at a site. However, it is more useful, in the context of interactive debugging, to

keep them separate. Reconciliation does not always occur through dedicated lines of code.

Often asynchronous operations accept communications and update states. It could also just

be a side effect of receiving a transmission of state. For example, when multiple clients

concurrently update the same keys of the database using the last write wins reconciliation

strategy, the old state is simply replaced with the new state as a part of the transfer. The

overwriting of information is not implicitly recorded. Writes that are lost to this become

hard to track. Interactive debuggers have a hard time highlighting these lost writes and so

developers cannot use the debugger effectively when fixing related bugs. Since the point of

the debugger is to enable the developer to reason over state changes and detect errors, it is

better to expose reconciliation separately.

In summary, in a distributed or parallel system, an interactive debugger needs to expose

three types of state changes: changes due to local execution, transfer of state between sites,

and changes due to reconciliation of multiple states at a site. We discuss each of these next.
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Figure 9.2: Information propagation in distributed systems.

Exposing State Changes Due to Local Execution

Designing to expose state changes due to local execution is quite straightforward, and

traditional interactive debuggers do it already. There is, however, an issue of scale. Since

there are multiple sites to track, there are many code paths to follow. The developer can

easily get overwhelmed by this. The debugger needs to filter out the unimportant parts. One

way to do this would be to treat execution paths from one point of inter-site communication

to the next as one unit to step through. Doing this cuts down the number of local state

updates the distributed application debugger needs to follow.

Exposing Transfer of State Between Sites

There are only two ways in which state can be transferred, and every form of communication

falls into one of them: pushing and pulling changes. A web browser receiving website data is

pulling changes from a server. A node sending events to all other nodes that have subscribed

to the events is pushing data. Since these are the only two ways in which state can be
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transferred, the debugger must pay special attention to these two primitives in any distributed

model and expose the calls to these primitives explicitly to the developer.

Pull and push operations consist of one or more phases. At a minimum, the sequence for

a pull operation includes a request for information, and then information is received in

response to the request; similarly, the minimum for a push operation is one command wherein

the information is sent. More robust implementations, however, have multiple phases with

acknowledgements. Several distributed models optimize by making these calls asynchronous

and sometimes going to the extent of taking the control over communication away from the

programmer. For example, in the publish-subscribe model, the subscriber of data receives

data via a push operation when the data is published at a different site.

Exposing Changes Due to Reconciliation of Multiple States

When a node receives state changes from another site, it needs to reconcile the state. It is

important to understand reconciliation, and differentiate it from conflict resolution.

Reconciliation is a two step process. The first step is to receive the information of state change

from another site. The second step is conflict resolution where the information received is

meaningfully merged with the information already present in the site, to make the local state

coherent for the next local execution. Different distributed models deal with these two steps

in different ways, making them particularly tricky to observe.

In most distributed models, the two steps happen together. Remote changes are evaluated as

soon as they are received and decision is taken regarding their incorporation into the local

state, e.g. last-write-wins, CRDTs [100]. In these models, observing conflict resolution is the

same as observing reconciliation. In some distributed models, however, state changes received

are stored, and conflict resolution, if any, is deferred to a later time. For example, total

store ordering [50], global sequence protocols [21, 46], TARDiS [30], Irmin [52], concurrent
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revisions [20], and GoT, are a few models that first store the incoming changes, and provide

the programmer control over when these changes are resolved and introduced into the local

state. From the point of view of the user of an interactive debugger observing reconciliation

in these models, the user must both observe when information is received from a remote site,

and when the information is accepted and incorporated in the local state.

Looking at conflict resolution in particular, there are a myriad of ways in which concurrent

state updates are resolved, and it entirely depends on the underlying distributed model. Some

models such as the last-write-wins, total store ordering [50], global sequence protocols [21, 46],

etc. resolve conflicts implicitly. Since many of the models do not retain causal relations

between reads and writes of state, it is hard to tell if an overwrite was an intended update,

or the result of implicit conflict resolution. As such, it becomes quite difficult for an

interactive debugger to expose the point of conflict resolution in such models. Other models

such as TARDiS, Irmin, concurrent revisions, and GoT resolve conflicts explicitly using

programmer-written merge functions. Although in many models these merge functions are

called asynchronously, there exist specific execution paths which deal with conflict resolution,

and this can be exposed by the interactive debugger.

9.2.2 Requirement 2: Controlling the Flow of Execution

Interactive debuggers, as the name suggest, must allow the user to debug the distributed

application interactively. To be interactive, the debugger must take control of all forms of

state changes present in the distributed system and hand this control over to the user. In a

single threaded system, with only one form of state change and executed at a single location,

taking control of the execution and handing it over to the user is relatively straightforward.

However, in a distributed system, this is harder. There are more forms of state changes as

described above, and these state changes can execute over multiple sites. If the interactive
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debugger is controlled by the user on only one site, and the rest of the sites are free to execute,

then the user has control over only one form of state change: changes occurring due to local

execution.

In order for the user to have control and observe all forms of state change, the user needs to

be able to pause all sites when one site is paused. The problems associated with distributed

computing are inherited by the debugger trying to exercise global control over the system. An

easy solution, one that is present in traditional interactive debuggers when trying to debug

multi-threaded programs, is to pause all threads of execution when one thread is paused. For

example, the GDB debugger has an all-stop mode1 that behaves in that manner. While this

solution can work in simple multi-threaded applications operating out of the same machine,

this approach, used as is, becomes difficult when moving to the distributed context when

sites are located at different machines. Triggering a pause on one machine would have to

be made instantly visible to all nodes, which is hard, as there are inevitable network delays,

leading to unintended state changes after the user has tried to exert control.

The problem of exerting global control is even more pronounced when each site communicates

with multiple sites, such as in peer-to-peer applications. In a server-client model where

all clients only communicate with the server, pausing the server could allow us to pause

the clients. A solution then, perhaps, could be to transform the distributed system into a

server-client model with an interactive debugger as the central component. All forms of state

changes could be rerouted through this central component, giving this component the ability

to observe and control all these forms of state change.

Rerouting both networked and local state changes would significantly alter the network

conditions for the system. This is fine, as long as the user of the system is able to leverage the

interactivity gained to explore state changes in the application related to different orderings

of concurrent operations. The advantage offered depends on the system being developed. If
1https://sourceware.org/gdb/onlinedocs/gdb/Thread-Stops.html
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there are too many variations or ordering possible (e.g. a large system with many sites), the

developer might not be able to observe them all.

While exploring the design choices available to us when fulfilling these two requirements, it

becomes clear that the underlying distributed model on which the interactive debugger is to

be built on is absolutely dominant. The communication, and state reconciliation methods

used by the model play a heavy role in determining the capabilities that the interactive

debugger has. That said, in the next section, we explore what support from the distributed

model is necessary to make an interactive debugger viable.

9.3 Constraints on Distributed Systems

There are a large number of distributed computing models. Each model optimizes for different

goals and, therefore, makes different design choices for different aspects under its control.

Some of the choices can help an interactive debugger expose the state changes of the system

accurately to the developer, while others can hinder it. If interactive debugging is a goal, the

underlying distributed system model must be constrained in specific ways. In this section,

we discuss at least three constraints that a distributed model must abide in order to support

the requirements of interactive debuggers discussed in the previous section.

9.3.1 Read Stability

As discussed in the previous section, there are three ways in which information is created

and consumed in a distributed context: state change through local execution, transfer of

state between nodes, and state change through reconciliation of multiple states at a node.

The distributed model must expose these three ways as separate events on their own. An

important constraint that the model must have in order to be able to separate these three
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scenarios is read stability.

Read stability – a concept typically associated with isolation in database transactions [60] –

is a property of the model where changes to the local state can only occur when the local

execution context wants it to. There are two ways to affect change to the local state: writes

from local execution, and reconciliation of local state and a state that is received from

an external node. Read stability can be easily achieved if the model, after the transfer of

information between sites, does not reconcile the information immediately but instead stores

the information (cache, queue, etc.) and waits for the local execution to accept these changes.

For example, a multi-threaded system with multiple threads writing concurrently to shared

variables, without locks, breaks the read stability requirement.

Without read stability, the interactivity of the debugger is heavily curtailed. For example,

when the user of an interactive debugger debugging an application paused at a certain

execution point, steps through one line of execution, the expectation from the user is that the

state change being observed is a state change due to the execution of that one line. However,

in a system without read stability, this might not be true. The local state change could also

have changed via reconciliation with external changes, essentially giving rise to a situation

where there are multiple types of state change being executed in the same step. Interactive

debugging is a debugging method that aims to give the control of execution to the user with

the aim of letting the user observe all forms of state change explicitly. Therefore, having

multiple types of state change being executed in a single step is not acceptable. Read stability

solves this problem by ensuring that updates to the local state are explicitly defined and

occur only when the local execution context expects it.

There are many methods to achieve read stability. For example, in the global sequence

protocol (GSP) model [46, 21], the operations that are distributed to all remote sites are

placed in an pending queue, ready to be applied through an explicit primitive given to the

local application. In TARDiS [30], concurrent writes are placed under version control in
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separate branches to avoid interfering with each other until one context wants to introduce

these concurrent changes to its branch using the resolve primitive.

9.3.2 Separation of Published State and Local State

When a local site makes changes locally, some models immediately make these changes

available for other sites to observe. This means that the local state of a site at the end of

every line of code is potentially a site that is going to be observed by a remote node, which

also means that each of these states have to be tracked by the debugger. Observing state

change over local execution over every line of code in all sites of a distributed system is

definitely not scalable and the information can be overwhelming to the user observing it.

Some models (for e.g. publish-subscribe), do not make changes, made locally, immediately

available for other sites. These changes are made ready for consumption only when they

are specifically published. The local state of the site is kept separate from what the site

wants to share. An interactive debugger for the system just needs to take control over the

points where the site shares information, grouping all changes to local state in between as a

single operation. This makes the observable set of operations smaller where we trade in the

fine granularity of observing change of state over every line of code to look at the execution

in broader strokes which makes the implementation feasible. Therefore, the separation of

published state and local state is critical when attempting to create an interactive debugger

at scale.

9.3.3 Explicit Mechanisms for State Change

Just as the local execution context should have control over the introduction of changes to

its state, the local execution should also have control over when the local changes are being
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transmitted to other nodes. Having an explicit primitive to start the transfer of changes helps

the debugger expose the start point of transfer. Having explicit primitives deal with receiving

these changes, and then introduce these changes to the local state helps the debugger expose

reconciliation between the transferred state and the local state.

9.3.4 GoT: Enabling an Interactive Debugger

As explained in the previous section, the distributed model needs to have the following

properties to make an interactive debugger feasible: first, the nodes need to have read

stability; second, the published state at each node must be separate from the local state

used by the application code at that node; finally, the model must expose primitives for the

transfer and reconciliation of states between nodes. We explain how GoT incorporates these

properties in its design.

Read Stability: Each GoT node computes only on the objects in the snapshot. The

snapshot can only be updated with external changes when the checkout or pull primitives are

invoked. Since these are invoked by the application code at the node, and not automatically

behind the scenes, the snapshot does not change unless it is directed to by the application

code. Therefore, GoT supports read stability.

Separation of published state and local state: GoT also separates the published state

(the version history) from the local state (the snapshot). All changes received via a fetch or

push request will only include changes that have been committed by the sender node.

Explicit mechanisms for communication and reconciliation: The dataframe has an

explicit mechanism for inter-node communication (fetch, push ) and conflict resolution (merge

functions) that can be tracked and used by the debugger to observe both the transfer of state

and the reconciliation of state updates between nodes.
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Figure 9.3: Network topology of an example distributed word counting application built on
Spacetime.

9.4 GoT example: Distributed Word Counter

As mentioned before, the underlying distributed computing model has a dominant influence

on the feasibility of an interactive debugger. Our interactive debugger, GoTcha, is designed

for GoT. Specifically, GoTcha is built as a debugger for the implementation of GoT called

Spacetime. In this section, we describe a GoT example that is used in subsequent sections to

explain the features in GoT that are relevant to GoTcha and to show case the abilities of

GoTcha itself.

The example that we use is a distributed word frequency counter. The application takes a

file as input and shards it by line. These lines are distributed to several remotely located

workers which tokenize and count the frequency of the tokens in the lines. The partial counts

are then aggregated and presented by the application as the final word frequency tally.

The distributed word frequency counter application has two types of GoT nodes: WordCounter

and Grouper. The Grouper node controls the execution of this Spacetime application. It

is responsible for sharding the input files into lines and aggregating partial word frequency

counts to reach the final tally. The WordCounter node is responsible for tokenizing and

counting the word frequencies in each line.

WordCounter nodes are responsible for the communication in this Spacetime application.

Every WordCounter node must fetch changes from, and push changes to the Grouper node.

This relation between these nodes is shown in Figure 9.3 and defines the network topology of
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1 class Line ( object ) :
2 line_num = primarykey ( int )
3 l i n e = dimension ( str )
4 def __init__( s e l f , line_num , l i n e ) :
5 s e l f . line_num = line_num
6 s e l f . l i n e = l i n e
7 def proce s s ( s e l f ) :
8 # a simple t o k e n i z e r
9 return s e l f . l i n e . s t r i p ( ) . s p l i t ( )

10
11 class WordCount( object ) :
12 word = primarykey ( str )
13 count = dimension ( int )
14 def __init__( s e l f , word , count ) :
15 s e l f . word = word
16 s e l f . count = count
17
18 class Stop ( object ) :
19 index = primarykey ( int )
20 accepted = dimension (bool )
21 def __init__( s e l f , index ) :
22 s e l f . index = index
23 s e l f . accepted = False

Figure 9.4: The types used by the Word Counting application.

our example application.

The dataframes at each WordCounter and Grouper nodes share objects of type Line, Word-

Count, and Stop that are shown in Listing 9.4.

Objects of type Line are shards of the input file. The dimension line_num (defined in line 2)

is the primary key, of type integer, that represents the line number in the input file. The

dimension, line (line 3), stores the contents of the line as a string. Objects of type WordCount

store the word frequency for a unique token and have two dimensions: the primarkey, word

(line 12), is a string representing the token, and count (line 13), is an integer representing

the frequency of that token. WordCounter Nodes communicate completion using objects

of type Stop having two dimensions: the, primarykey, index (line 19), an unique identifier

representing a single WordCounter worker, and accepted (line 20), which is set to True by
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the WordCounter node signalling the completion of its task. Any state in attributes outside

these dimensions is purely a local state, and is not tracked and shared by the dataframe.

Listing 9.5 shows part of the application code for an instance of the Grouper node. The

grouper_node is instantiated (lines 18-20) with the application code, defined by the function

Grouper, along with the types to be stored in the dataframe, and the port on which to listen

to incoming connections. The grouper_node is launched using the blocking call, start (line

21), and takes in the parameters that must be passed to this instance of the Grouper node:

the input file and the number of WordCounter nodes that are going to be launched.

The Grouper function (line 1) that is executed receives the repository, dataframe, as the first

parameter, and all run-time supplied parameters as the additional parameters. The node

iterates over each line in the input file, creating new Line objects for each line. The Line

objects are added to the local dataframe (line 4), similar to how new files are added to a

changelist in git. After each Line object is added, these staged changes are committed to

the dataframe (line 5) and are available to any remote dataframe that pulls from it. After

all Line objects are added, Stop objects are added, one for each WordCounter worker in the

application, and committed to the dataframe (line 6-7). Grouper now has to wait for all

WordCounter workers to finish tokenizing the lines that it has published, and the state of

the Stop object acts as that signal (Lines 9-12). Once every worker has accepted the Stop

object associated with it, the Grouper reads all the WordCount objects in the repository and

displays the word frequency to the user.

Listing 9.6 shows part of the code for an instance of the WordCounter. Multiple instances of

the WordCounter node are instantiated with the remote address of the Grouper node, and

the same Types that Grouper uses (lines 32-35). Each instance is started asynchronously

with the parameters that it needs (line 36).

The application code for WordCounter (function WordCounter shown in lines 1-26) also takes
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1 def Grouper ( df , f i l ename , ncount ) :
2 i = 0
3 for l i n e in open( f i l ename ) :
4 df . add_one ( Line , Line ( i , l i n e ) )
5 df . commit ( ) ; i += 1 ;
6 df . add_many( Stop ,
7 [ Stop (n) for n in range ( ncount ) ] )
8 df . commit ( )
9 while not a l l (

10 s . accepted
11 for s in df . read_al l ( Stop ) ) :
12 df . checkout ( )
13 for w in df . read_al l (WordCount ) :
14 print (w. word , w. count )
15
16 i f __name__ == "__main__" :
17 f i l ename , ncount = sys . argv [ 1 : ]
18 grouper_node = Node (
19 Grouper , server_port=8000
20 Types=[Line ,WordCount , Stop ] )
21 grouper_node . s t a r t ( f i l ename , ncount )

Figure 9.5: The Grouper node.

the dataframe as the first parameter. An independent and new dataframe is created for each

instance of WordCounter, and they all have the same Grouper node as the remote node. The

WordCounter keeps pulling changes from the remote node (line 4) for as long as there is a

new line to read in the updated local dataframe and until a Stop object associated with the

instance is read in the local dataframe. In each pull cycle, the WordCounter reads a Line

object from the local dataframe, using index (line 5), and tokenizes it (line 7). For every

word in the token list, the node retrieves the WordCount object associated with the word

from the dataframe (line 9), creating and new object if it does not exist (line 11-14), and

increments the count dimension in the object by one (line 16). These updates (both new

objects, and updates to existing objects), staged in the local snapshot, are committed to the

local dataframe and pushed to the remote Grouper node (line 23). The WordCounter ends

operations if after pulling updates from Grouper, a Stop object is present in the dataframe,

and there are no new Line objects to read. The stop object is accepted by setting the accepted
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dimension to True and this update is committed and pushed to Grouper as the last operations

by the WordCounter node.

In the WordCounter example, the state of the WordCount objects created and updated by

different WordCounter nodes can be in conflict with each other when changes are pushed

to the Grouper node. For example, if two WordCounter nodes concurrently read the same

word in two different lines and the word has not been observed before, both the nodes would

create a new WordCount object for the word. When both changes are pushed to the Grouper

node, a conflict is detected and a merge function is called.

An example merge function is shown in Listing 9.7. This function is called asynchronously

when a conflict is detected, and is used to only to reconcile conflicting state updates. The merge

function receives four parameters: an iterator of all objects that have direct contradictory

changes that cannot be auto resolved (conf_iter), as well as three snapshots of the state, one

for the point where the computation forked (orig_df), and two for the version at end of the

conflicting paths (your_df, their_df).

In the merge function shown, objects (Line, WordCount, and Stop objects) that are new or

modified in the incoming change but do not have conflicting changes in the local history are

first accepted (line 3). For the objects that are in conflict (only WordCount objects can be in

conflict), we read the states at three versions of the objects: the state at the fork version,

and the two states at the conflicting versions – orig, yours, and theirs from the iterator (line

3), respectively. Then, the dimension count in objects that have been updated together are

added up and stored in the object tracked by the your_df snapshot. At the end, this modified

version of your_df is considered to be the reconciled state and returned to the version history.

There is a bug in this merge function as it does not add counts correctly. We will use this bug

to demonstrate the capabilities of the interactive debugger. For quick reference, the correct

merge function is shown in Listing 9.13 at the end of Section 9.5.
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1 def WordCounter ( df , index , ncount ) :
2 line_num=index ; stop=None ; l i n e=None
3 while not stop or l i n e :
4 df . pu l l ( )
5 l i n e = df . read_one ( Line , line_num )
6 i f l i n e :
7 for word in l i n e . p roc e s s ( ) :
8 # reads from the snapshot
9 word_obj = df . read_one (

10 WordCount , word )
11 i f not word_obj :
12 word_obj = WordCount(
13 word , 0 )
14 df . add_one (word_obj )
15 # changes on ly snapshot
16 word_obj . count += 1
17 line_num += ncount
18 stop = df . read_one ( Stop , index )
19 # commit changes
20 # to ver s i on h i s t o r y
21 # and push the s e changes
22 # to remote node .
23 df . commit ( ) ; df . push ( )
24 stop . accepted = True
25 df . commit ( )
26 df . push ( )
27 i f __name__ == "__main__" :
28 workers = [ ]
29 address = sys . argv [ 1 ]
30 num_workers = int ( sys . argv [ 2 ] )
31 for i in range ( num_workers ) :
32 wnode = Node (
33 WordCounter ,
34 Types=[Line ,WordCount , Stop ] ,
35 remote=(address , 8000))
36 wnode . start_async ( i , num_workers )
37 workers . append (wnode )
38 for w in workers :
39 w. j o i n ( )

Figure 9.6: The Word Counter node.

207



1 def merge ( conf_iter , orig_df ,
2 your_df , the i r_df ) :
3 your_df . update_not_conf l i c t ing (
4 the i r_df )
5 for or ig , yours , t h e i r s in con f_ i t e r :
6 a s s e r t isinstance (
7 yours , WordCounter )
8 yours . count += th e i r s . count
9 return your_df

10
11 . . .
12 # Updated Node i n i t i a l i z a t i o n
13 grouper_node = Node (
14 Grouper ,
15 Types=[Line ,WordCount , Stop ] ,
16 c o n f l i c t_ r e s o l v e r=merge ,
17 server_port =8000)
18 . . .

Figure 9.7: Merge function used at the Grouper node.

9.5 GoTcha

GoT nodes execute their tasks over shared objects that are stored in the version history in the

dataframe. These version histories are primarily used, in GoT, to facilitate the communication

between nodes using delta encoding and to detect and resolve conflicts. The version history

is an internal component of the dataframe and is, therefore, typically not exposed to the

programmer.

In version control systems, the version histories are more than just a datastores for files.

They document the evolution of the files stored in the repository over time. There are many

tools available, such as GitKraken 2 and SourceTree 3, that expose this evolution to users.

Observing the version history, through these tools, not only tells us the current state of the

repository, but also all the changes that were made to the repository in the past and in the

order that they were made. This same principle can be leveraged in GoT, to expose the
2https://www.gitkraken.com
3https://www.sourcetreeapp.com/
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Figure 9.8: Architecture of GoTcha.

version history of object changes to the user. A debugger for GoT can expose the version

history allowing users to observe the evolution of the state at a node, and detect errors that

have already occurred. In addition to viewing errors in the version history, live and interactive

debugging becomes possible, as the updates to the version history is driven explicitly by the

application code, and performed via a small API in the dataframe (see Table 4.1). By taking

control of these APIs and giving this control of the execution to the user, the user can stop

the application, observe the state of the version history at each node, resume and observe the

change of state over the execution of the dataframe operations. This, along with the ability

to observe variations in the order of execution, will assist the user in observing errors as they

occur.

We created an interactive debugger called GoTcha, to expose the changes made to the version

history at each node in a Spacetime application. In this section, we explain the features of

GoTcha. We will continue to use the distributed word frequency counter example, detailed in

the previous section, to showcase the features of the debugger.
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f oo
bar
bar
baz
bar
bar

Listing (9.1) Input file.

foo 1
bar 4
baz 1

Listing (9.2) Expected output.

foo 1
bar 6
baz 1

Listing (9.3) Observed output.

For the purpose of the example, a test input file was created consisting of six lines, each with

one word – see Listing 9.1. The word frequencies for the words foo, bar, and baz are one, four,

and one respectively. The application consists of two WordCounter nodes and one Grouper

node that are launched in different machines. During execution, as shown in Listing 9.5, the

Grouper node adds six Line objects and two Stop objects into its dataframe, and waits for the

Stop objects to be accepted by the WordCounter nodes (Listing 9.5). WordCounter1 reads,

tokenizes, and counts words on lines 1, 3, and 5. WordCounter2 does the same for lines 2, 4,

and 6. Finally, both WordCounter nodes accept their Stop objects, and execution completes.

The expected output is shown in Listing 9.2. However, a different output is observed, shown

in Listing 9.3. The observed output is wrong, and this is where GoTcha can help.

9.5.1 Operation

GoTcha follows the centralized service approach, discussed in Section 9.2, to have complete

control over the nodes and expose the version history to the user at each node. This central

service is an application by itself and is launched before any application nodes are launched.

We call this application the GoTcha Controller Node (GCN from now on). The GCN is a

web service to both the User Interface (UI), and the nodes in the application. When GoT

nodes are launched in debug mode, they register themselves with the GCN.

When in debug mode, the architecture of the application is modified, during runtime, from

the original GoT structure to what is shown in Figure 9.8. The primitives that read or write
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Figure 9.10: Debugger showing the network topology of the application.

from the version history at each GoT node (commit, checkout, fetch, push) are all rerouted

through the GCN. With each interaction, the version history at each node is also sent to the

GCN to be shown to the users. While a traditional interactive debugger for a single threaded

application would observe the change of state between each line of code, GoTcha observes

state changes over each action of read or write performed on the version history at each node.

At the start of the debugging session, after every node has been launched in debug mode,

the user is shown the network topology of the application, as shown in Figure 9.10. In

this figure, on the left, the user sees that two WordCounter nodes (WordCounter1 and

WordCounter2) and one Grouper node are being controlled by the GCN. The Grouper node

is the authoritative node in the application, with both the WordCounter nodes making fetch

and push requests to the Grouper node. On the right, there is an input field for the user to

add one or many breakpoint conditions to the debugger. The breakpoint condition shown

here, returns True if there exists any WordCount object with the count dimension set to six,

in the dataframe, at any GoT node.

9.5.2 Observing Node State

The current version history of any node can be observed by clicking on the node in the

topology graph in Figure 9.10. Figure 9.11 shows the node view of the Grouper node,

observing the result of the execution of the commit primitive at line 5 of Listing 9.5 (during
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Figure 9.11: Debugger view showing version history at the end of a commit.

the last iteration of that loop). The version history is shown on the top left. The history

shows three versions: ROOT, 632e, and 3a27. 3a27 happened-after 632e which in turn

happened-after ROOT (the start version of every version history). The HEAD version of the

graph, highlighted in green, is 3a27.

Selecting the version brings up a tooltip that shows in tabular form, the state of objects at

that version. The tooltip shows that the state at version 3a27 has six objects of type Line,

and shows the values of the two dimensions (line_num, line) for the Line objects. Though

the tables for Stop and WordCounter have been collapsed, as shown by the plus shaped user

interface element, there are no objects of those types present yet.

Selecting the edge brings up a tooltip that shows the delta change (diff) associated with that

edge. The diff associated with the edge 632e → 3a27 is also shown on the bottom left. In

this case, the diff consists of a single object of type Line with the dimensions line_num, and

line having the values 5, and ‘bar’ respectively. The entry is also marked in green, which

signifies that the entry is a newly added object (added in line 4, Listing 9.5). Uncolored

entries are considered to be modifications, and entries marked in red are considered to be

deleted objects. The state of every version, and the diff associated with every edge can be
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observed. The dotted line relation shows us that the state of the snapshot of the Grouper

node is known to be at version 3a27.

On the right of Figure 9.11, we see the state of the actions being executed on the dataframe

at the Grouper node. The user sees both a list of previous steps that have been executed on

the version history, and a list of steps that have to be executed (next steps). At the top of

the next steps list is the current active step being executed. Each step directly maps to one

of the dataframe primitives rerouted through GoTcha and is broken up into several phases.

We can see that the commit primitive has three phases. The first phase is receive data where

a commit request is made using the diff staged in the snapshot. Stepping through this phase

brings us to the extend graph phase, where the version history graph is extended from the

HEAD version (632e) to the newly created version (3a27) and the new version is marked as

the new HEAD. The last phase of commit, which is yet to be executed, is the garbage collect

phase where obsolete versions in the graph (in this case 632e) are cleaned up.

At the bottom, we see three buttons: Step Node, Step All Nodes, and Play. Clicking on Step

Node, would allow the garbage collect phase of commit at the Grouper node to be executed.

Clicking on the Step All Nodes, would allow all nodes to execute the next phase of the step

that they are paused at, if any. Play allows the user to fast forward the execution up until

the next breakpoint condition is hit.

Since the fetch, and push primitives of the dataframe span across multiple GoT Nodes, they

are broken up into two sets of operations each: fetch and respond to fetch, push, and respond

to push, to observe the state changes at both the node making the request and the node

receiving the request.
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Figure 9.12: Debugger view at Grouper showing response to a push request.

9.5.3 Debugging Word Frequency Counter

To debug the mismatch between the expected and observed output of the application, we

first put in the condition for the breakpoint as seen in Figure 9.10, and hit the play button.

All nodes are executed in debug mode and reroute their primitives through the GCN. At

each of these rerouted steps, the GCN observes the states of the dataframe in each Node and

executes the breakpoint conditions.

When the breakpoint is matched, the execution of all nodes is paused and GoTcha shows the

view of the Grouper node where the condition matches, shown in Figure 9.12. Here, we see

that the current step being executed is a push request from WordCounter2 from version 82c0

to version 306a. The execution is paused at the start of the garbage collect phase.

The version history contains seven versions. Starting from the top, we have ROOT again

as the start version. Version 154b happened-after ROOT. All versions that were present
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between 154b and ROOT, like the version 632e and 3a27, have all been garbage collected.

At 154b, we see a fork in the path. Both versions 82c0 and a553 happened-after 154b, and are

siblings. These are concurrent updates and were performed on different GoT nodes. Version

82c0 is bordered green while a553 is bordered in red. This means that update 154b → a553

was received by the version history at Grouper after the update 164b → 82c0. The GoT

node resolved such conflicts using the custom merge function written in Listing 9.7. The

output of the merge function was a new version x97d. Since x97d happened-after both the

concurrent versions, 82c0 and a553, the graph was updated with the happened-after relations

and x97d has two in-edges. Additionally, each of these edges are associated with a diff that

transforms the previous version to the version at x97d.

Over the course of execution, another concurrent update was performed with the update

82c0 → 306a being concurrent with previously resolved conflict. Another conflict resolution

is performed using the merge function. A new resolved version bfa4 is created having a

happened-after relation with both 306a, and x97d. The version history is updated to show

these relations and the version bfa4 is marked as the current HEAD version of the version

history at Grouper.

Looking at the dotted line relations, we see that the snapshot at Grouper is at the version

x97d. Additionally, the last know versions of WordCounter1 and WordCounter2 are a553,

and 306a, respectively.

The state at version bfa4 is shown in the tooltip F. The tooltip shows us three WordCount

objects and the WordCount object for the word ‘bar’ has a count of six, showing us why the

conditional breakpoint was hit. Looking at the version at the start of the merge, 82c0, in

the tooltip A, we see that the count of ‘bar’ is two. The diffs associated with 82c0 → 306a

(tooltip C) and 82c0 → x97d (tooltip B) both update the count of ‘bar’ to three. This means

that both WordCounter1 and WordCounter2 had the count of ‘bar’ as two, and observed
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1 def merge ( conf_iter , orig_df ,
2 your_df , the i r_df ) :
3 your_df . update_not_conf l i c t ing (
4 the i r_df )
5 for or ig , yours , t h e i r s in con f_ i t e r :
6 a s s e r t isinstance (
7 yours , WordCounter )
8 yours . count += th e i r s . count
9 i f o r i g : # False i f new o b j e c t s .

10 yours . count −= or i g . count
11 return your_df

Figure 9.13: Merge function used at the Grouper node.

a ‘bar’ token updating the count concurrently to three. At the end of the merge function,

this count is set to six, and can be see in the diffs for both 306a → bfa4 (tooltip D) and

x97d → bfa4 (tooltip E). This means that the error is in the merge function. We can see

that the merge function in Listing 9.7, on detecting a conflicting count, simply adds up the

counts. So receiving two counts of three, would result in a count of six. However, the actual

increment in each update is actually just one. The right way to merge counts would be to

find the total change in count and add it to the original count. We can fix the code as shown

in Listing 9.13 and the word counting application gives the right output.

This bug was found quite easily because GoTcha exposes the version history. By looking at

the evolution of the version history, even though the error had already occurred, we could see

in which type of state change the error occurred in. In this case, we could see that the version

state was correct before the merge function, but after the reconciliation of two correct states,

the state was wrong, telling us that the error was in the custom merge function. GoTcha

exposes bugs in a Spacetime application in the same way a tool viewing git history can help

find the commit that caused a bug in the code. Instead of the evolution of the files being

looked at, GoTcha looks at the evolution of the state at each node.
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Table 9.1: Mapping the primitives of GoT to the types of State changes

Type of state change GoT Primitives
Change in local state Commit, Checkout
Inter-node state transfer Push, Respond to Fetch
Reconciliation of states Fetch, Respond to Push,

Commit, Checkout

9.6 GoTcha: Meeting the Fundamental Requirements

In Section 9.2 we describe, in detail, the fundamental requirements that an interactive

debugger must fulfill. To summarize, the debugger must expose to the user all forms of state

changes in the application while minimizing the interference in the natural flow of execution.

In this section, we discuss how GoTcha meets these fundamental requirements.

9.6.1 Observing State Changes

There are three forms of state changes present in a distributed system that are relevant to

an interactive debugger: state changes at a node due to local execution, transfer of state

between nodes, and the reconciliation of the state received via transmission and the local

state at each node. Table 9.1 maps the GoT primitives to the type of state change that it

facilitates. In what follows, we explain how GoTcha exposes all these types of state changes

to the user.

Observing changes in local state: In GoT, the "local state" is the snapshot. The snapshot

is updated by write operations directly from the local application code. These kinds of state

updates can be observed by traditional debuggers. However, as mentioned in Section 9.2.1,

the amount of state changes in a distributed system can overwhelm the user, and a distributed

systems debugger should reduce the number of such updates shown. GoTcha does not track

the change of state over every line of code at each GoT node. Instead, it tracks the change in
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the snapshot over consecutive interactions (commit, and checkout) between the snapshot and

the version history. All changes in between these interactions is purely local and grouped

together as one update by both GoT and GoTcha.

Observing the transfer of state: The local state of a GoT node is transferred to remote

nodes in two ways: a push from the local node to the remote node, or the response by a

remote node to a fetch from the local node. The user can step through these primitives to

observe this communication. Specifically, the user can see when such requests are made, and

the delta changes that are transferred as a part of these requests.

Observing reconciliation of multiple states: When a node receives state changes trans-

ferred from a remote node, it needs to reconcile the states changes. As explained in Sec-

tion 9.2.1, reconciliation is a two step process: first, receiving changes from a remote node,

then introducing these changes to the state of the local node. GoTcha must expose both steps

to allow the user to observe reconciliation correctly. The first step is observed in GoTcha

when observing the state changes on receiving deltas either at the end of the fetch, or when

responding to a push request. The acceptance of these changes can be observed during the

fetch, response to a push, commit, or checkout. Conflicts are resolved using custom merge

functions that are observed by GoTcha. Changes can also be accepted, as is, without conflicts

through a checkout. All ways of receiving delta changes and observing the acceptance of these

changes can be observed by GoTcha allowing the user to observe reconciliation of multiple

states.

9.6.2 Controlling the Flow of Execution

GoTcha follows the centralized debugger design explained in Section 9.2.2. The central

component, GCN, takes control of all GoT primitives that read or modify the version history.

This means that even commit and checkout primitives, which are normally local operations,
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are also routed through the GCN. Control over the execution of the changes to the version

history is given to the user. The user can reorder and interleave requests that have to

be processed and can explore possible execution variations. This would allow the user to

observe if, for example, the conflict resolution functions are performing as intended. The user

interface for reordering or interleaving execution steps is shown in Figure 9.12, where there

are additional steps that are pending at the Grouper node. The developer can reorder and

interleave these pending operations using the promote and demote arrows shown on the right

side next to each step.

Roll backs are an additional and useful tool to explore different state changes without having

to restart the entire execution. Since we have the entire history of execution given to us by the

version history, we support roll backs to a previous version. When a roll back in performed,

the state in the version history is reverted to an older version. It is important to note that

the local state and the execution of the application code is not rolled back. This means that

state changes observed after roll backs are only meaningful when the application code at each

node is stateless and performs the same action iteratively. However, reconciliation can be

observed well using roll backs.

Rolling back the execution state at a node, along with the state of the dataframe, would

require that we either take control of the programming language runtime in each node, which

suffers the same problems of coordinating distributed control as discussed in Section 9.2.2, or

we integrate GoTcha with a traditional single-threaded debugger at each GoT node. While

the first is unfeasible, the second can be a future possibility and is discussed in the next

section.
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9.7 Beyond Interactivity

GoTcha is a good first step into the interactive debugging of distributed applications. By

relying on the idea of version control of objects, and exposing the version history at every node,

we meet the minimum requirements for observing all forms of state changes in distributed

applications. GoTcha fills a hole – interactivity – in the tools available for debugging

distributed applications. Interactivity has been an elusive piece in this ecosystem, and not

much is known about how it can be used in a distributed context. With GoTcha, we see both

potential and challenges in the future development of interactive debuggers for distributed

applications. Moreover, we envision the development of powerful tools by combining GoTcha

with existing concepts related to distributed debugging. In this section, we expand on the

potential and challenges of this vision.

9.7.1 Scalability of Interactivity

An inherent property of traditional interactive debuggers is their reliance on the user to

explore the possible paths of failures. This is no less true for GoTcha. However, in large

systems with large number of possibilities to observe, this interactivity can potentially be

overwhelming to the user. Interactive debuggers for single threaded systems ignore this

complexity by design, hoping that the advantages offered by the live exploration of the

execution of code compensates for the disadvantage of not being able to explore every path

and fixing all issues. This exploration space is much larger in distributed systems when

compared to single threaded systems because there are more types of state changes that have

to be considered. Therefore, in GoTcha, the advantages offered by live exploration of the

execution heavily depends on the scalability of both the debugging system, and the user

interface, when increasing the number of GoT nodes in the application being debugged.
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Scaling the Debugging System

In an application with a few number of nodes, the exploration of the execution can be

easily visualized and followed and the centralized approach of GoTcha does not hinder the

debugging process. However, in applications with a large number of nodes, which is common

in a distributed setting, the centralized approach can be a bottleneck. Since every primitive

of the dataframe involved in reading or writing to the version history has to be rerouted

through the GCN, execution of the application through the debugger is much slower. It would

also take longer to hit the conditional breakpoints potentially making the whole debugging

process tedious. An easy solution, and one that works with GoTcha as it is, would be to

reduce the number of GoT nodes in the application during debugging. The user could debug

issues in this much smaller application, fix the problems, and then scale the number of nodes

back up. However, this approach might not be always possible and, therefore, changes to the

debugging architecture might be needed to solve this problem.

To understand the difficulties involved, let us look at the flow of interactive debugging. There

are essentially two modes that GoTcha executes in. First, a “free-run” mode, where the

application executes as it would under normal conditions until it hits a breakpoint. Second,

we have the slow and more deliberate “step-by-step” mode which activates when the free-run

mode matches a breakpoint, or if the user is exploring execution paths. In the second mode,

the user has control over the execution and is observing a small and very specific part of the

entire application. The design of GoTcha is tailored towards the step-by-step mode. The

central GCN helps coordinate these steps, and visualizations are created with this mode in

mind. However, the same central GCN which enables total control during the step-by-step

mode, is a bottleneck in the free-run mode when the number of GoT nodes becomes too large.

A distributed approach to debugging would be as scalable as the distributed application

it is debugging, but only during the free-run mode. However, such an approach would

again have a hard time scaling with the number of nodes when the debugger has to control
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the application in the step-by-step mode. This incompatibility of designs and the multiple

modes that interactive debuggers work in, is the underlying reason why the advantages of

interactivity in debugging distributed systems diminish with scale.

A possible solution is to change the architecture of GoTcha in each of the modes, matching

the strength of each design with the mode that they work best with. In the free-run mode,

nodes could communicate directly with each other, and log their activity with the GCN. Each

node also receives the list of breakpoint conditions. When a break point is hit, the GCN

receives this information and then instructs every other node to switch to the step-by-step

mode, taking control of the application and handing it over to the user.

Scaling the User Interface

With a large number of nodes, we also encounter the problem of the user interface having

too much information. The network topology is certainly going to be difficult to read making

it difficult for the user to take a deep dive into the GoT nodes and explore specific execution

paths. Conditional breakpoints become the only way to explore the execution meaningfully

making the debugger strictly for finding bugs whose symptoms are already known. A possible

solution is to use grouping algorithms to show the topology of the application concisely.

Alternately, algorithms like PageRank can be used to show only nodes that are heavily

connected.

The view of the version history at each node can have a lot of information when there is

significant interaction with the node. For example, a view of the version history at a Grouper

node, working with a thousand WordCounter nodes, could potentially have a thousand

steps pending at Grouper and waiting to be stepped through. To enhance the navigation of

execution, the user interface could allow users to attach breakpoints to the end of the steps

that are pending, allowing the user to skip large batches of steps without necessarily having
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to artificially promote specific the step that they wish to see, to the top of the pending list.

Such a breakpoint would be a close match to the non-conditional breakpoints that exist in

traditional debuggers.

9.7.2 Integration with Alternate Debugging Concepts

GoTcha is built as a stand alone system, over the GoT model, that helps debug the application

by exposing the changes to the version history at each node. State changes within the

application are observed from a version control point of view and is observed in broad strokes

over several lines of code. The bugs to be found are, however, in these lines of code and

integration with traditional interactive debuggers can help find these bugs. As such, GoTcha

does not interfere with the use of traditional interactive debuggers at a single node. A single

threaded interactive debugger can break down the state changes due to local execution and

allow the user to debug the lines of code, while also being sure that the state cannot change

in unpredictable ways from one line to the next.

Integration with non interactive forms of distributed debugging are also possible. For

example, GoTcha, during the free-run mode, is similar to a tool for record and replay.

When a conditional breakpoint is hit, it would be possible for the user to cycle through the

previous steps and observe the previous states of the application along with the interactions

that occurred between the nodes. Cycling through the previous steps is important because

conditional breakpoints are usually used to find the execution point where the symptom of

the error manifests. This may not always be the point where the error is. The user can

find these errors by observing previous states of the application. If the user does not put

a conditional breakpoint and executes the entire application in free-run mode, the entire

execution is recorded and can be replayed. Existing tools and research on record and replay

can add value to the free-run mode of GoTcha and make it a more powerful tool. The
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integration of non interactive debugging tools would enhance the approach of finding errors

during free-run as most of these tools deal with postmortem analysis of execution, while the

interactivity of GoTcha would allow the user to observe errors during the exploration of live

execution of the application.
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Chapter 10

Experimental Analysis and Results

In this chapter, we will focus on observing the aspects of Spacetime that make it effective:

update latency, and garbage collection.

10.1 Update Latency

We conducted two sets of experiments to show how the optimizations GoT, and Spacetime

enable low update latency in shared-space applications. First, we ran microbenchmarks to

compare the update latency in specific scenarios in Spacetime with the update latency in the

same scenarios in alternate competing programming models. Second, we observe the effect

the various stages through which an update passes, have on update latency.

10.1.1 Setup

To understand if the GoT model, and Spacetime, are suitable for applications that require

low update latency, we ran micro-benchmarks that compared the update latency observed

225



in the implementation of GoT, Spacetime, against comparable alternate models. We chose

the alternatives based on two dimensions that we discussed in Chapter 4: the type of the

programming model – shared-state, and message-passing, and the consistency model they

support – sequential consistency, and eventual consistency.

To represent shared-state programming models in these experiments, we chose a Redis cluster

as our eventually consistent shared-state data store, and a MySQL server as our sequentially

consistent shared-state data store.

To represent message-passing programming models, we chose two types of models. First, we

chose a typical push only message-passing model (MP Push), similar in design to the push

only approach to Spacerace described in Chapter 2. The second is a model that supports both

push and pull communication by buffering updates at the server for each client (MP Buffered

Pull). This model is similar in design to the Push with Isolation approach to Spacerace,

again described in Chapter 2

Workload

Spacetime The Spacetime application consists of three types of nodes: reader nodes, writer

nodes, and a single server node. The server node is the remote node for all reader and

writer nodes. They synchronize over objects of the type BasicObject, having two dimensions:

primary key ‘oid’, and ‘create_ts’ which stores the timestamp of object creation. The

writer bot runs in a loop. In each iteration, the bot creates one timestamped object of type

BasicObject and immediately pushes the change to the server. When all the objects have

been created and pushed, the writer stops. The writer does not sleep between successive loops.

The reader bot also runs in a loop. In each iteration, the bot pulls (not pull_await) from the

server. A timestamp is recorded at the end of the pull and mapped to the list of objects of

BasicObject currently under the reader bot’s dataframe. The reader does not sleep between
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iterations. After the bots receive all objects, they determine the update latency of each object

using their creation timestamp and the timestamp when the object was first observed at

the reader. The server performs no computation of its own. However, the dataframe at the

node serves as the authoritative copy for the state of the benchmarks. Writer bots push new

objects to the server node, and the reader bots read changes in the server node.

We ran the experiments with two variations of Spacetime. First is Spacetime (fetch), where

the fetch requests made to the server node by the reader node do not wait until any new

update is available. Second is Spacetime (fetch_await), where the fetch requests made to

the server node by the reader node waits until there is an update that the reader node has

not received. The second has a stronger consistency guarantee, with the trade of potentially

having to wait for the new update.

MySQL: The MySQL setup consists of a single MySQL database, and two types of clients

that connect to the database: reader clients, and writer clients. Both the reader and writer

clients perform the same role as their Spacetime counterparts and synchronize writes and

reads over rows of a single table with two columns: a primary key ‘oid’, and the ‘create_ts’

timestamp. Update latency of the records created by the writer clients is observed at the

reader clients.

Redis: The Redis setup consists of a single Redis master database instance, several replica

instances of Redis, and two types of clients written in python: reader clients, and writer

clients. The writer clients write hash groups (‘BasicHash::{oid}’) with two keys in the group:

a primary key oid and create_ts timestamp, into the master database instance. There are as

many replica Redis databases in the cluster as there are reader clients. The reader clients

read from the replicas. The synchronization between the replicas and the master is left to

Redis. Update latency of the hash groups created by the writer clients is observed at the

reader clients.
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Push only Message Passing (MP Push): The MP Push setup consists of a single

server node, and two types of clients that connect to the server node: reader clients, and

writer clients. Both the reader and writer clients perform the same role as their Spacetime

counterparts but synchronize in different ways. The writer client nodes also create objects of

type BasicObject and push them to the server node. The server node receives these messages

containing objects and distributes them to every reader node. The reader node connects

to the server node and then actively listens for any incoming messages. When it receives a

message, it records the update latency of the objects received.

Push and Pull Message Passing (MP Buffered Pull): The MP Buffered Pull setup

is very similar to the MP Push setup, with two exceptions. First, the server node does not

distribute the messages received to all the reader nodes immediately. Instead, it puts the

messages into a client-specific update buffer. It also actively listens for any communication

from the readers. The reader nodes pull changes from the server, which takes all the updates

in that client’s buffer, merges the updates and returns the merged delta update. The objects

in the merged delta update are promptly observed, and their update latency is recorded.

Hardware and Network Conditions

We used two machines to conduct the experiments. One machine was an Amazon EC2

HVM instance located in Germany, running Ubuntu 20.04 with kernel 5.4.0-1009-aws with

1GB of RAM, and one core of an Intel Xeon CPU E5-2676 v3 @ 2.4GHz processor with no

hyperthreading. We used this machine to run the server (Spacetimeserver node, MySQL, and

Redis, MP Push server, MP Buffered Pull server). The second machine, used for launching

the reader and writer clients, was a workstation running CentOS 7.5.1804 with kernel 3.10.0-

862.11.6.el7.x86_64 with 252GB of RAM, and an Intel Xeon CPU E5-4650 v4 processor with

56 cores (112 with hyperthreading). This second machine was located in the West Coast of

the US, at the University of California, Irvine. All the client nodes were launched from the
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Figure 10.1: Median read latency vs write loads (All models).

same physical machine in order to make meaningful comparisons between read and write

timestamps. Ping time between the two locations is typically 153ms, on average.

We used MySQL Community Edition Ver 8.0.17 and Redis 5.0.4 as the servers for their

respective workloads. Python v3.8.2 was used in the EC2 instance to host the server node,

and all clients were run on Python v3.7.2. The MySQL and Redis queries were both launched

via CLI commands sent from their respective python libraries. The cache size of MySQL was

increased to keep the table cached in memory, removing any need for slow disk access.
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10.1.2 Experiment 1: Spacetime vs Baselines

Experiment 1A: Update Latency vs Write Load

Taking a cue from the load testing Yahoo Cloud Serving Benchmarks [28], we observe the

update latency of all six (two Spacetime, and four competing) setups at varying distributions

of readers and writers going from read-heavy to write-heavy scenarios. The independent

variable is the percentage of nodes that are writers, from 20% to 90% of the nodes, in

increments of 10%. The number of objects/records/hashgroups was kept constant at 100.

The total number of client nodes (readers + writers) was kept at 20. So in the read-heavy

scenario, 4 of the client nodes are writers creating objects that 16 client nodes are reading,

while in the write-heavy scenario, 18 of the client nodes are writers, and 2 are readers. The

dependent variable measured was the median update latency for all updates in each scenario.

Results: Figure 10.1 shows us the read latency for the reader clients/nodes in each setup.

We can see that Redis has the low read latency ( 10ms) as the Redis database that the reader

node is reading data from is present locally, and highly available. Variations of Spacetime,

MP Push and the MP Buffered Pull setup have around the same read latency ( 152ms),

which is exactly at the average ping observed between the server and the client machines.

This means that these scenarios do not need to wait at the server for their response. However,

since there is a local replica of the state at each node, much like Redis, the read latency from

the local replica at the dataframe, denoted by Spacetime (checkout) in the graph, is also very

low (0.5ms). The MySQL setup, however, has a large read latency. This is because, MySQL

cannot respond with delta updates, and must send the entire state across. Further more, the

transactional nature of MySQL can slow the reads while writes are concurrent. MP Push

setup did not have any read latency as the reader nodes in that setup receive updates directly

from the server and do not make pull requests of their own.
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Looking at update latency in Figure 10.2 (A). We see that Redis has extremely high update

latency. The read latency for Redis is low, and the reader client can perform many read

requests operations each second. However, a majority of these reads do not have any new

updates for the reader. This scenario is common for Eventual Consistency. There are two

reasons Redis nodes take significant time to receive updates. First, the Redis replica delays

the application of updates it has received from the master when read requests are in bound.

This choice caters to high availability but the cost of update latency. Second, the master

replica employs asynchronous push communication to keep the replicas in sync. Since the

machine hosting the master database has only a single core and thread, distributing these

pushes to multiple clients is still sequential. This pattern is also seen in the MP Push scenario.

Since the server node in the MP Push is also single-threaded, the server cannot keep up

with the distribution of new updates. A multi-threaded server can potentially solve this

bottleneck, but therein lies the problem with scaling this solution. A single server should not

be responsible for the distribution of updates to all its clients, a design point strictly adhered

to in RESTful architectures.

We can take out the high update latency scenarios: MP Push, and Redis, and take a closer

look at the update latency of the remaining scenarios. The median update latency for all

remaining setups are less than one second (Figure 10.2 (B)). MySQL has the highest update

latency at around 750ms. We see that read latency is around 450ms and update latency is

750ms. The update latency is at least as high as the read latency. The remaining contributors

to update latency are the packing and transmitting cost for the writers, which are concurrent

to the read latency, and the cost of transferring, unpackaging the update in the reader client

and introducing it to the local state. Since MySQL cannot communicate with delta updates, a

large amount of data is transferred increasing this cost. There is also some cost to introducing

the update to the MySQL tables and maintaining the state at the database.

The update latency for all the other setups are comparable at around 220ms. With read
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latency at 152ms and a ping of 152ms, conflict resolution, packaging and unpacking the

updates at both the server and the reader clients takes around 70ms. The substantial

reduction is attributed to the use of delta updates. While non-existent in MP Buffered Pull,

conflict resolution is invoked at each update received at the Spacetime server as they are

all considered concurrent updates (the writer nodes never pull the state from the server).

Therefore, the 70ms in update latency also includes conflict resolution and the creation of

the merge nodes.

The percentage of writer nodes does not affect the update latency in any setup other than

Redis, a product of the design for high availability.

Experiment 1B: Update Latency vs Node Count

In the second experiment, we observe the effect the number of nodes in the system have on

the update latency of all six setups. The independent variable here is the number of client

nodes in the system: 10, 20, 50, 100. Although by database standards the number of clients

is low, it is quite realistic for a multiplayer game or a multi-agent simulation to have at most

a 100 clients working together. The read/write ration of the clients nodes was set to 50%

and the object count was set to a 100 objects. The dependent variable measured was the

median update latency for all updates in each scenario.

Results: Figure 10.3 shows that there is a lot of variation in the update latency for both

Redis and MP Push with an increase in concurrent clients which means that both these

setups are throttled by having to respond to incoming connections. As discussed, the server

being single-threaded severely limits the capabilities of push only communication.

The rest of the scenarios are not affected by the number of clients, showing the scalability of

such systems.
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10.1.3 Experiment 2: Breakdown of update latency in Spacetime

Having seen the low update latency in Spacetime, when compared to other models, we take a

closer look at the contribution of each step in update latency. To this purpose, we executed

microbenchmarks to instrument the functions corresponding to these steps. We present our

experiments and results.

We instrumented commit, checkout, push, fetch, accept_push, and accept_fetch processes

in Spacetime. The setup used is similar to the Spacetime (fetch) scenario in the previous

examples, with a server node in Germany, and the reader, writer client nodes in California, US.

The number of client nodes was set to twenty with ten nodes as writers, and the remaining

as readers. A hundred objects of BasicObject were synchronized between the writers and

readers via the server node. We ran the same setup ten times and collected all the timings.
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Operation Median Time (ms) Standard Deviation 99.9%-ile Time (ms)
Commit 0.728 0.194 1.380
Garbage collection 0.168 0.064 0.645
Packaging update 0.176 0.083 0.959
Send update (n/w) 151.767 2.642 164.208

Table 10.1: Time taken by operations at the writer node

Operation Median Time (ms) Standard Deviation 99.9%-ile Time (ms)
Acquire write lock 0.010 0.278 3.626
Write update 0.013 0.024 0.408
Resolve conflicts 0.175 0.487 4.174
Garbage collection 0.213 0.301 3.580

Table 10.2: Time taken by operations at the server node, when receiving updates.

Operation Median Time (ms) Standard Deviation 99.9%-ile Time (ms)
Acquire read lock 0.009 0.011 0.166
Packaging update 0.393 0.287 4.622

Table 10.3: Time taken by operations at the server node, when responding to fetch.

Operation Median Time (ms) Standard Deviation 99.9%-ile Time (ms)
Fetch Request (n/w) 152.485 2.976 178.213
Acquire write lock 0.020 0.046 0.126
Write update 0.032 0.082 0.249
Resolve conflicts 0.146 0.116 2.465
Garbage collection 0.307 0.323 3.106
Checkout 0.506 0.280 3.272

Table 10.4: Time taken by operations at the reader node.
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Results

Tables 10.1 – 10.4 show the latency of the operations in the writer, server, and reader nodes

during push and fetch operations. It is important to note that these are not process times,

where thread sleeps are ignored, but actual time including any time that the threads involved

were preempted and/or rescheduled by the operating system. Finally, we cannot directly

compare the time taken for the operations at the server and the clients as they are executed

on different machines with different processing capabilities. The purpose is to illustrate the

critical paths of both push and fetch operations.

Starting with the write side, in Table 10.1, we see the time taken by four operations that are

executed by the writer nodes: Commit, garbage collection, packaging the update and sending

the update over the network. The most significant time is spent in sending the update over

the network. This network latency is unavoidable as the average ping between the server and

the node is 153ms. Garbage collection occurs at the end of every commit and invokes a very

low overhead (median 0.168ms).

Table 10.2 shows the time taken by the operations at the server when an update is received

from the writer. A lock is first acquired. There are ten writers that are contesting for this

lock, and therefore we can see that while the median time spent waiting at the lock is low

(0.01ms), the standard deviation is relatively high. However. 99.9 percent of the time, the

time spent at the lock was less than or equal to 3.625ms. After the lock is acquired, the

update is written. This update is quick as it merely extends the graph and does not require

further processing of the delta. Conflicts have to be resolved. In this setup, every update

pushed from the writers is a conflict as the writers never read from the server. However, 99.9

percent of the conflicts resolved were under 4ms of time with the median time taken being

less than a millisecond (0.175ms). Garbage collection at the server is the most intense of

the operations as it has to deal with the states pushed by and read by multiple nodes. 99.9
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percent of the garbage collection operations took less than 3.5ms with the median being less

than a millisecond again (0.213ms).

Table 10.3 shows the time taken by the operations at the server when a fetch request is

received from a reader node. A read lock is acquired, which takes very little time (median

0.009ms, 99.9 percentile of 0.166ms) as the locks are at the level of each version, and only

garbage collection can conflict with such a read. Packaging the update takes a median of

0.393ms, with 99.9 percent of the operations taking less than 4.622ms.

Finally, Table 10.4 shows the time taken by the operations at the reader node. The reader

node makes a fetch request which is transferred over the network to the the server where

the operations listed in Table 10.3 occur, and a response is sent back. This entire round trip

time, including the time spent at the server takes a median of 152.485ms with 99.9 percent

of the operations taking less than 178.213ms. As we can see from the time taken by the

operations at the server and the average ping being around 153ms, the majority of the time

is spent over the network. When the update is at hand, the reader acquires a write lock,

which does not contest with any operation, making it fast (median 0.02ms, 99.9 percentile

0.126). The update is then written to the version graph and conflicts are resolved. Since the

reader does not make any updates of its own, there are never any conflicts. Therefore, the

time instrumented for conflict resolution is the time taken for detecting conflicts. As we can

see, the detection of conflicts is fast (median 0.146ms, 99.9 percentile 2.465ms). Garbage

collection, and checkout also usually take less than a millisecond.

The take away from this, is that network time becomes the significant cost in Spacetime

when the latency between twenty nodes and the server is more than even a 10ms. The

operations run at a median time of less than a millisecond for all operations that are not

over the network. The true additional cost of update latency is in the asynchronous nature

of the push and fetch operations being made. This can be solved using a push model where

updates can be pushed as soon as they are received. However, experiments 1A and 1B show
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that the push approach does not scale with the number of nodes in the system.

10.2 Garbage Collection

In the previous section, we have shown that Spacetime performs remarkably well when trying

to transport updates over the network between nodes. However, that is not the only aspect

of feasibility. If the memory usage of the nodes, keep increasing over time, then, even if the

update latency achieved is low, the system is not feasible for shared-space applications.

A typical concern when using version graphs is the ever-increasing versions or revisions

maintained by the version graph. In file-based systems like Git, where updates happen in the

order of hours, days, or weeks, this increasing set is not that critical. However, when used

for highly mutable object replication, where updates happen in milliseconds, memory usage

can quickly be a problem if not addressed. In Chapter 7, we discussed the garbage collection

strategy of Spacetime. In this section, we show the effectiveness of garbage collection.

10.2.1 Setup

Workload

Like in the setup for Spacetime (fetch) in the previous section, the Spacetime application

for these benchmarks also consists of three types of nodes: reader nodes, writer nodes, and

a single server node. The server node is the remote node for all reader and writer nodes.

They synchronize over objects of the type BasicCounter having two dimensions: primary key

‘oid’, and ‘count’ which stores a monotonically increasing counter. The writer bot runs in

a loop. In each iteration, the bot updates the counter of one BasicCounter object by one.

The writer does not sleep between successive loops. The reader bot also runs in a loop. In
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each iteration, the bot pulls (not pull_await) from the server. The reader also does not sleep

between iterations. After running continuously for 1 minute, the application is shut down.

The server performs no computation of its own. The dataframe at the node, however, serves

as the authoritative copy for both the reader and the writers. It performs the additional task

of merging the counter values provided by different writers.

At the end of each change in the version graph at the server and the clients, we recorded the

number of versions in the version graph. If these number of versions is growing over time,

then the version graph will eventually be too big to fit into memory causing failure. The

number of versions has to remain stable and constant over time for the system to be feasible.

Hardware and Network Conditions

One machine to conduct the experiments and host the server, reader, and writer nodes. The

machine was a workstation running Ubuntu 20.04 with kernel 5.4.0-29-generic with 32GB of

3000MHz DDR3 RAM, and an Intel Haswell-E i7-5820K CPU @ 3.30GHz processor with 6

cores (12 threads with hyperthreading). Python v3.8.2 was used to run all the Spacetime

nodes.

10.2.2 Experiment 3A: Version count vs. the number of objects

In this experiment, we fixed the number of nodes communicating with the server to 20. The

number of readers and writers were equal at ten each. We varied the number of objects that

the readers and writers are synchronizing on [1, 10, 100, 1000]. The number of versions at

the server was recorded after every put and read operation. The experiment was run for one

minute for each scenario.
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Figure 10.4: Version count at Server with varying number of objects.

Results

Figure 10.4 shows the number of versions in the version graph at the server node over the

number of read/write operations on the server version graph, for each setup with varying

number of objects. As we can see, the number of versions in the server increases up to a

certain point. Beyond this point, the version count remains more or less steady. Fluctuations

can be seen in the number of versions when there are low number of objects. The application

code at each writer node iterates over all BasicCounter objects in the dataframe and updates

count. With more number of objects, the application code is spending more time updating

the objects. This means that the rate at which the version graph at the server receives push

requests and therefore new versions is higher with lower number of objects. When a reader

makes a fetch request, the reference map at the server is updated for that reader to a the

HEAD version, but the old reference is not deleted until the reader acknowledges the update.
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With a high volume in writes, multiple updates can occur in the version graph before the

acknowledgement is received from the readers. This means that there is a temporary increase

in the number of references held in the reference map at the server. Every node can have up

to two references in the reference map. This, however, still bounds the number of versions to

the order of the number of nodes in the system.

The number of objects being synchronized does not change the number of versions maintained

in the version graph. This is because the entire state is versioned, and not the objects. Each

version can have varying number of objects.

10.2.3 Experiment 3B: Version count vs. the number of nodes

In this experiment, we fixed the number of objects being updated with the server to 100 and

vary the number of nodes synchronizing with the server [2, 20, 50, 100]. Half the number of

nodes are assigned to be readers with the rest being writers. The number of versions at the

server was recorded after every put and read operation.

Results

Figure 10.5 shows the number of versions in the version graph at the server node over the

number of read/write operations on the server version graph, for each setup with varying

number of nodes. As we can see, the number of versions in the server increases up to a

certain point. Beyond this point, the version count remains steady. The number of versions

the version graph at the server stabilizes at is different with different number of nodes. We

can see that the number of versions being maintained is roughly equal to the number of

nodes synchronizing with the server. However, there is no unbound growth in the number of

versions in the graph.
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Figure 10.5: Version count at Server with varying number of nodes.

10.3 Experiment 4: Garbage Collection in Peer to Peer

In the previous section, we see that the garbage collector in Spacetime keeps the number of

versions in the version graph to a bounded value. In those experiments, the conflict resolution

strategy used was big-step merge and the network topology was server-client. Peer to Peer

networks, however, require a different conflict resolution strategy, called small-step merge

and with that a new garbage collection method. While the garbage collector for small-step is

still in preliminary development, it works remarkably well in simple peer to peer cases. In

this experiment, we observe the effect of small-step merge on garbage collection.
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10.3.1 Setup

Workload

In this experiment, we use two nodes Peer 1 and Peer 2 that have identical application code.

They synchronize with each other over objects of type BasicObject having just dimension:

primary key ‘oid’. Both the peers runs in a loop. In each iteration, the peer creates a random

object of type BasicObject. It then commits the object, and pushes the update to the other

peer node. Since the nodes push updates asynchronously to each other, the setup is not

server-client. Each peer node is using small-step merge as the conflict resolution strategy,

and the corresponding garbage collection prototype discussed. Each of these peers run the

loop described for a minute.

Hardware and Network Conditions

One machine to conduct the experiments and host both Peer 1 and Peer 2 nodes. The

machine was a workstation running Ubuntu 20.04 with kernel 5.4.0-29-generic with 32GB of

3000MHz DDR3 RAM, and an Intel Haswell-E i7-5820K CPU @ 3.30GHz processor with 6

cores (12 threads with hyperthreading). Python v3.8.2 was used to run all the Spacetime

nodes.

Experiment and Results

The two peers executed the same workload described above for one minute. At the end of

each loop, the number of versions in the version graph was recorded. We ran the experiment

both with and without the garbage collection.

Figure 10.6 shows the number of versions in the version graph at Peer 1 with both garbage
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Figure 10.6: Version count in peer to peer with two peers and no garbage collection.
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Figure 10.7: Version count in peer to peer with two peers and garbage collection.
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collection turned on and off. The number of versions of Peer 2 were identical to that of

Peer 1. On the x-axis we have the total number of operations performed in one minute. On

the y-axis we have the total number of versions in the version graph, recorded after each

operation. As we can see, when there is no garbage collection, the number of versions in

the version graph increase rapidly and is unsustainable. The rise in the number of versions

is same for both peer nodes. With garbage collection turned on, however, the number of

versions flattens out and stays at around four versions. The four versions are the the ROOT,

Peer 1’s latest update, concurrent to Peer 2’s latest update, merged to a common merge

version. This can be seen in Figure 10.7.

Both workloads – with garbage collection, and without it – were run for a minute and the

x-axis shows the number of operations that were executed in that minute. We can see that

without garbage collection, the number of operations are much much lower. Each operation

takes more time as the number of versions increases as each update has to be combined

in small-step fashion with an ever-growing set of updates, making the system progressively

slower.

10.4 Conclusion

In this section, we look at the Spacetime from the view point of its efficiency in the propagation

of updates (update latency), and its feasibility for long-lasting applications with highly mutable

data (garbage collection).

We see from experiment 1A that Spacetime achieves as low update latency as competing

message-passing programming models. The advantages, however, are causal consistency, an

observable replicated data store for the state of the system, and nearly stateless communication

that supports isolation. We saw that shared-state programming models fared worse as delta
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updates are hard to calculate (MySQL) and eventually consistent data stores optimize for

read latency at the cost of update latency.

We also saw from experiment 1B that the number of client nodes, at least up until 100 nodes

did not have much affect on update latency in Spacetime. The server node, even running on a

single-threaded machine, was able to keep up with the requests from a 100 nodes. Competing

systems such as Redis and push-based programming models are notoriously CPU intensive,

and perform poorly with lower resources. This is primarily because the server is responsible

for pushing the updates to its clients. The more number of clients, the more work the server

has to do for each update. In a pull-based model, the clients take updates at the rate they can

handle, and multiple updates are often merged together within a single response. Therefore,

from experiment 1A and 1B, we can say that Spacetime achieves its goal of low update

latency.

Experiment 2 allowed us to look at the processes involved in the path of update latency

and the costs associated with each of them. Network costs are typically the highest, and

out of the control of Spacetime, with the rest of the processes often taking a median time

of less than a millisecond. Garbage collection and conflict resolution constitute significant

percentages of the time spent.

Experiment 3 shows us the effectiveness of the garbage collector. We have already seen from

experiment 2, that the cost for garbage collection is less than a millisecond when there are

twenty clients reading and writing to a version graph. In experiments 3A and 3B, we see

that the number of versions in a version graph stabilizes over time and does not increase

indefinitely. The maximum number of versions is to the order of the number of nodes reading

and writing from the version graph. The number of objects in the state, however, does not

affect the number of versions. In experiment 4, garbage collection in the peer to peer mode of

Spacetime, using the small-step merge, was observed in a limited setup containing two peers

continually and concurrently pushing updates to each other. With garbage collection on, the
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version graph stayed at a constant number of versions in both peers. When garbage collection

is turned off, the number of versions rockets to unsustainable levels very quickly. This

explosive growth further deteriorated the system’s performance by increasing the time taken

for each operation to complete, increasing update latency. With garbage collection, however,

many more operations were performed as operations are much faster and therefore, update

latency is lower. Overall, experiment 3 shows us that Spacetime is feasible for long-lasting

shared-space applications.
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Chapter 11

Conclusion and Future Work

11.1 Summary

Shared-space applications, like multiplayer games, distributed simulations, and geo-replicated

databases, are hard distributed systems to engineer. They are often characterized by highly-

mutable, long-lived, shared environments that are simultaneously and independently changed

by many nodes in the system. While the CAP theorem and the updated PACELC theorem

have made it clear that consistency – getting the latest write, and latency – getting a fast

response to a remote request are competing goals that engineers have to choose one or the

other to optimize, shared-space applications need both. Since the state of the system changes

constantly, and decisions need to be made on these updated state, consistency is important.

However, these updates need to reach the nodes as quickly as possible as well. Therefore,

latency is also important. To address this specific concern, I defined the term update latency.

Update latency is the time taken for an update generated at one node, to reach the remote

node where it is going to be used. It is not consistency, as there is a notion of time, and it is

not latency as there is a notion of what update is obtained.
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Chapter 2, takes a good look at the constituents of update latency and identifies that the

determining factor in update latency is the cost of communication. Since network latency

is unavoidable, it is in the application’s best interest to communicate only that which is

necessary. There are necessarily three rules that must be followed to achieve this.

First, nodes must take or receive only the information that they need. This is typically called

interest management and is quite a common tactic used in the database world. For example,

the SQL querying language allows database clients to use relational algebra when reading

the tables to select the exact dynamically generated slice of information relevant to them.

The second rule is that nodes must take or receive only information that they do not have.

This rule is called delta updates, and it includes both state deltas and operation based

messages. Many systems, such as databases, do not respond to queries in the form of delta

updates. It is quite tricky, without creating complex constructs, such as temporal tables, for

a node to get only information that is new since the client’s last time executing a query on

the tables. However, message-passing programming models specialize in sending messages or

operations in the form of delta updates.

The third rule is that nodes must take or receive information only when they need it. This

rule is called isolation. If a node processes information at a rate slower than the rate at which

updates are made, then all updates do not need to be received as they are created. The

node should be able to choose the rate at which it synchronizes. Isolation can allow for the

numerous delta updates intended for a node to be merged, removing intermediate steps that

are of no use. Isolation is also useful for those applications that need to or choose to deal

with partitions. If a node suffers a network partition, messages cannot be sent or received.

When the node comes back into the network, it should not be inundated by all the messages

it did not receive. Further, it should not need to re-synchronize from the very beginning. By

supporting isolation nodes that rejoin the network after a partition can synchronize their

state from their state, allowing for partitions to be gracefully handled.
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I showed in Chapter 2 that the engineering efforts to build a system that caters to all of

these requirements are rudimentary forms of version control. It is with this observation that

I present the Global Object Tracker (GoT), a programming model that models distributed

computing for spared space applications as a distributed version control system.

In Chapter 4, I showed the basics of GoT. A GoT application consists of many independent

nodes called GoT nodes. Each GoT node, like Git, owns a repository of objects called the

dataframe. The dataframe represents the replicated shared space at each GoT node. The

application code at each node can read objects from the dataframe, and make changes to

the state. The changes made are staged in the dataframe and written into a version control

graph on a commit. This version graph is a directed acyclic graph containing the history

of changes written to it. It is contained within the dataframe and is local to the GoT node.

Got nodes communicate changes to the version graph with remote GoT nodes via both push

and fetch methods. Both forms of communication pick up delta changes from one version

graph and apply it to another. Concurrent updates are detected as conflicts, and resolved

via a programmer-defined three-way merge (similar to Git) and added to the version graph

in a process called delta transformation.

GoT, like typical version control systems, preserves a notion of time by enforcing causal

ordering to the updates within the version graph. It enforces causal consistency, which is

widely considered to be the weakest consistency that still retains a notion of time.

GoT is a hybrid programming model that shares traits with both message-passing pro-

gramming models and shared-state programming models. Like shared-state models, there

is a notion of a repository of objects in GoT. However, this repository is replicated and

independently updated at each node, much like message-passing programming models.

GoT is implemented practically in a framework called Spacetime that is written in python and

available for use freely. Spacetime makes many optimizations on top of the GoT programming
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model to make it both feasible and optimal for update latency. In Chapter 5, I explore the

optimizations that are made in Spacetime for update latency.

Version control systems, whether file-based or in-memory and object-based, are excellent

ways to track the evolution of state over time. They explicitly track the causal relations

between states and allow for deterministic reasoning over concurrency. Concurrent updates

are reconciled, when needed, by merge functions. The most popular style used is the three-way

merge, which allows for rich semantic reasoning over the right composition of concurrent

updates. There are, however, some scenarios in which version graphs are unmergable using

three-way merges. These scenarios, which mainly occur in peer-to-peer, are rare for file-based

version control systems but can be quite common in distributed computing.

In Chapter 6, I showed that the root cause for the failure of traditional 3-way merges (what

I called big-step 3-way merges) was in the loss of information when multiple updates are

combined during a merge. This composition of updates makes it difficult for version control

systems using it to, in specific scenarios, find a single least common ancestor for merge.

The critical insight there was that intermediate versions that capture intermediate states is

needed. I proposed an alternate approach in peer to peer, called small-step 3-way merge,

where I merge updates one step at a time, allowing us to preserve causal orderings while

not composing updates together prematurely. Using a small formal model, I showed that by

enforcing these constraints, the resulting version graph is valid. i.e., the versions that are

stored are the correct application of the updates that came before it, and that the version

graph converges to a single HEAD version.

The pure form of GoT, however, is impractical for real systems. Unchecked version growth

can quickly put a strain on resources. Sharing every intermediate version of the version

graph on synchronization is wasteful and inefficient. In Chapter 7, I show how Spacetime

eliminates this problem by aggressively tackling unchecked version growth using a reference

counting garbage collector that merges multiple deltas that have already been seen into a
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single large delta. The side effect of having this garbage collector is that nodes have to keep

a small amount of the state of the other nodes that interact with it. Intermediate versions of

the graph are eliminated before synchronization to make efficient use of network resources.

Additionally, I propose initial steps towards building a garbage collection for peer to peer

networks using small-step merge. This garbage collection for small-step has not been fully

verified and is planned for the immediate future.

GoT and Spacetime provide full support for both isolation (in the form of fetch commu-

nication), and delta updates (as diffs between versions). Simple interest management is

implemented, by design, in Spacetime, as nodes can choose the types of objects that they

can synchronize on. However, that does not support dynamic interest management. In

Chapter 8, I introduced the concept of Predicate Collection Classes, PCCs for short. PCCs

are a declarative mechanism of selecting objects from collections, reclassifying them along

the way. PCCs are both classes and specifications of collections of objects of those classes.

Composition of collections can be expressed very easily using concepts from relational algebra

such as subsetting, projection, cross product, union, and intersection. PCCs are useful

for filtering and manipulating collections, including when the elements of those collections

may behave differently depending on which collection they are placed. The type system in

Spacetime can be augmented to use PCCs as the declarative specification of types. This

allows nodes to synchronize over dynamic collections of objects, further reducing the transfer

of redundant information.

Another advantage of modeling distributed computing as a version control system is the

increased observability of the system. To demonstrate this observability, and explain this

use, I discuss the creation of an Interactive debugger on Spacetime, called GoTcha in

Chapter 9. Interactive debuggers for distributed systems is an understudied area of research.

In the chapter, I discuss the major goals that interactive debuggers for distributed systems

should meet. In addition to exposing state changes at a node through local processes
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like traditional interactive debuggers, interactive debuggers for distributed systems should

expose the communication between nodes, and the integration of this information that is

communicated, at each site. The debuggers should be able to expose these information

exchanges while giving the user complete control over the execution of the system. In order

for interactive debuggers to meet these requirements, support is needed from the underlying

programming model. I discuss the specific features in the GoT programming model that

facilitate interactive debuggers and put our theory to test by describing the implementation

of GoTcha. I discuss the design of GoT, GoTcha, and describe a simple debugging process

using the example of a distributed word frequency counter.

Finally, in Chapter 10, I present several experiments that show the efficiency of the opti-

mizations in GoT for update latency when compared to competing programming models,

the feasibility of Spacetime, and the effectiveness of the version garbage collector. Spacetime

performs as well as or better than both message-passing programming models and shared-state

programming models (both sequentially consistent and eventually consistent) with respect to

update latency. The garbage collection strategy used in Spacetime is a low overhead approach

that bounds the number of versions in the version graph at any node to the order of the

number of remote nodes synchronizing with it.

The underlying design choices and the feasibility brought by effective garbage collection, make

GoT and its implementation, Spacetime highly suitable for engineering causally consistent,

long-running, highly mutable shared-space applications.

11.2 Discussion and Future Work

In this dissertation, I do not touch upon the human aspects of using a programming model.

While I believe that GoT is an intuitive model for developers to use, user studies have not
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been conducted to validate this hypothesis. In my opinion, as the object replication, in GoT,

closely follows the rules of systems that they already use – distributed version control –, the

model should be intuitive to follow and implement upon. The primitives supported by the

dataframe allow for developer-controlled communication over the network, the semantics

of which, including conflict resolution, are clearly defined. The underlying complexity of

maintaining consistent replication, garbage collection, and delta updates are hidden from the

programmer, and only the manipulation of shared data and the control flow of communication

is left in the hands of the programmer.

Further, there are programming models with similar end-user interfaces. For example,

frameworks such as JavaScript Parse platform 1 and Google Firebase 2 offer save and load

mechanisms for the live synchronization of objects between nodes in the system. While they

use push-based publish-subscribe and not version control, the interface for communicating

changes between nodes is similar to that in GoT. These frameworks are quite successful

and used by many developers in mobile and web applications. Extensive user studies could,

however, validate this hypothesis in the future.

Version control as a programming model is useful when there is a shared-space that is mutated

by one or more nodes to the benefit of all other nodes. It does not fit the applications that

employ distributed programming as a means to divide and conquer a large task. Let us

take, for example, a word counting map-reduce. Ideally, the large initial state with multiple

lines of code has to be divided and distributed to workers that compute over the lines they

receive. Each worker should only receive the line that they need to process. I define this

as interest management in this dissertation and can be achieved using PCCs (Chapter 8).

However, using PCCs, all we can do is to pre-partition a list of lines for each worker node. In

typical map-reduce, a line is picked up by a free worker and processed. The workers that get

shorter lines or work faster pick up more work throughout execution. Such a control-flow
1https://docs.parseplatform.org/js/guide/
2https://firebase.google.com/
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mechanism cannot be easily applied to GoT, even with PCCs, as that would require some

form of transactions. When a node reads a state and picks up a line, that line must no longer

be available for other nodes to read or use. In a shared-space that becomes hard to achieve

as reading the state (reading a line) also modifies the state (setting the state such that no

other node will process that line). I call this operation ‘take’. The use of triggers (similar to

database triggers) that allow programmers to write atomic functions that are executed with

a read or a write can be explored in the future as a way to introduce ‘take’ semantics to state

replication. While version control can theoretically help improve the update latency of these

applications that require ‘take’ semantics, the use of version control in these applications is

mostly unexplored.

Finally, Spacetime is currently written in python. In the future, I hope to see implementations

of the core framework in multiple languages, including, and not limited to, C++, Java, C#,

and Javascript. The transfer protocol of Spacetime is language-agnostic, which means that

heterogenous systems with nodes written in multiple languages can communicate over a

shared data model, using the GoT programming model. I am particularly interested in an

implementation in javascript for the browser, which would allow the GoT programming model

to be a viable alternative to asynchronous javascript. I envision GoT supporting long-lasting,

highly-mutable, shared-space applications like browser-based multiplayer games, collaborative

document editors, and more, on the browser.
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