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This paper reports experiments designed to measure strategic sophistication, the extent to which

players' behavior reflects attempts to predict others' decisions, taking their incentives into account.

Subjects played normal-form games with various patterns of iterated dominance and unique pure-

strategy equilibria without dominance, using a computer interface that allowed them to look up hidden

payoffs as often as desired, one at a time, while automatically recording their look-ups. Monitoring

information search allows tests of game theory's implications for cognition as well as decisions, and

subjects' deviations from search patterns suggested by equilibrium analysis help to predict their

deviations from equilibrium decisions.

Keywords: noncooperative games, experimental economics, strategic sophistication, cognition
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1. Introduction

                                               
1Thanks are due Colin Camerer, Aaron Cicourel, John Conlisk, Daniel Friedman, David Grether, Eric Johnson, Mark
Machina, Amnon Rapoport, Stanley Reynolds, Alvin Roth, Larry Samuelson, Jason Shachat, Joel Sobel, and Dale Stahl
for helpful advice; to Mary Francis Luce for software; to Bill Janss and Dirk Tischer for research assistance; and to the
National Science Foundation (Costa-Gomes, Crawford, and Broseta), the Russell Sage Foundation and the University of
California, San Diego (Costa-Gomes and Crawford), the Alfred P. Sloan Foundation, the Banco de Portugal, the Luso-
American Development Foundation, and the Fundacao da Ciencia e Tecnologia (Costa-Gomes), the John Simon
Guggenheim Memorial Foundation (Crawford), and the University of Arizona (Broseta) for research support. We are
grateful for the assistance of the University of Arizona's Economic Science Laboratory, where we ran the experiments.
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Recent years have seen great progress in the analysis of strategic interaction, much of it fueled

by a dialog between game theory and economics. To date this dialog has consisted mainly of

conversations among theorists, with introspection and casual empiricism the main sources of

information about behavior. Although this approach has plainly been productive, it has also revealed the

limits of what can be learned by theory alone. Purely theoretical analyses of strategic behavior—

traditional or adaptive— yield specific predictions only under strong assumptions. Those assumptions

are reasonable for some applications but potentially misleading for others, and most applications raise

questions about the principles that govern strategic behavior that are not adequately resolved by theory.

Further progress is likely to require systematic empirical work.

Many unresolved questions about strategic behavior concern the extent to which it reflects

players' analysis of their environment as a game, taking the structure and other players' incentives and

likely responses into account. This notion, which we shall call strategic sophistication, is a

multidimensional concept, which takes different forms in different settings. In games in which other

players are likely to play according to a given equilibrium, sophistication requires only that a player

identify and play his part of that equilibrium, but in other games a sophisticated player may need to

anticipate other players' deviations from equilibrium. Thus, in general, sophistication may require at

least an implicit understanding of equilibrium analysis and its predictive success in games with different

strategic structures.2 Sophistication is the main difference between the behavioral assumptions of the

leading alternative theories of strategic behavior: Traditional noncooperative and cooperative game

theory take it to be unlimited, while evolutionary game theory and adaptive learning models take it to be

nonexistent or severely limited. These diametrically opposed assumptions about sophistication highlight

the need for empirical work on this issue.3

In this paper we study sophistication in experiments designed to test the predictions of

noncooperative game theory in normal-form games with various patterns of dominance, iterated

dominance, and unique pure-strategy equilibria without dominance. Experiments have two advantages

for this purpose. They allow the control needed to test game-theoretic predictions, which are

                                               
2In dominance-solvable games, for instance, sophistication requires an understanding of the extent to which other
players' beliefs and decisions reflect iterated dominance. In other games it may require an understanding of the
principles that influence others' beliefs and their effectiveness in coordinating behavior as required for equilibrium.
3The importance of sophistication is sometimes downplayed on the grounds that learning can lead even unsophisticated
players to converge to an equilibrium. However, sophistication is still likely to have important influences on convergence
and limiting outcomes through its effects on players' initial beliefs and the structures of their learning rules.
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notoriously sensitive to details of the environment.4 And— although sophistication is an aspect of

cognition, which it is often assumed can only be studied indirectly, by inference from the model that best

describes players' decisions— experimental techniques developed by Camerer et al. (1993) and Johnson

et al. (1998) ("C&J" below) make it possible to study sophistication more directly.

C&J's designs are based on two-person alternating-offers bargaining games in which the size of

the "pie" to be divided varies across periods to simulate discounting at a common rate. With complete

information these games have unique subgame-perfect equilibria, easily computed by backward

induction. Yet previous experiments have yielded large, systematic deviations from the subgame-perfect

equilibrium offer and acceptance decisions. These deviations have usually been attributed to subjects'

lack of sophistication, to a failure to maximize monetary payoffs, or both.

C&J studied the cognitive underpinnings of these results by presenting three-period alternating-

offers bargaining games in a way that allowed them to observe subjects' searches for hidden payoff

information. Subjects played a series of such games, with different partners and pie sizes each period.

Each game was presented to subjects in extensive form, as a sequence of pie sizes and decisions, using a

computer interface called Mouselab, which normally concealed the pie sizes but allowed subjects to

look them up as often as desired, one at a time, automatically recording their look-up sequences along

with their decisions.5 The rest of the structure was publicly announced, so that with their unrestricted

access to the pie sizes subjects could evaluate their own and their partners' payoffs for any decision

combination. This made the structure public knowledge, coming as close as possible to common

knowledge in the laboratory. Varying the games and pairings allowed C&J to elicit subjects' initial

responses to well defined games, each played as if in isolation; to focus sharply on subjects' strategic

thinking by making it hard for them to learn about their partners' likely responses from previous plays;

and to maintain control over subjects' information searches by making it impossible for them to

remember current pie sizes from earlier plays.

                                               
4There is a growing experimental literature that studies the principles that govern strategic behavior, surveyed in Kagel
and Roth (1995) and Crawford (1997). See, among others, Beard and Beil (1994), Brandts and Holt (1993), Cachon and
Camerer (1996), Camerer and Ho (1998), Cooper, DeJong, Forsythe, and Ross (1990, 1994), Friedman (1996), Ho and
Weigelt (1996), Ho, Camerer, and Weigelt (1998), McKelvey and Palfrey (1992), Nagel (1995), Palfrey and Rosenthal
(1994), Roth (1987), Roth, Prasnikar, Okuno-Fujiwara, and Zamir (1991), Schotter, Weigelt, and Wilson (1994), Selten
(1998), Stahl (1996), Stahl and Wilson (1995), Straub (1995), and Van Huyck, Battalio, and Beil (1990, 1991, 1993).
5Subjects were not allowed to record the pie sizes, and the frequencies with which they looked up payoffs repeatedly made
clear that they did not memorize them. Mouselab can be viewed as an automated way of doing "eye-movement" studies
like those used to study cognition via information search in experimental psychology.
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C&J argued that in their design backward induction has a characteristic information search

pattern, in which subjects first look up the last-period pie size, then the second-last (possibly re-

checking the last), and so on, with most transitions from later to earlier periods. They supported this

plausible claim empirically by showing that a control group, trained in backward induction but not in

information search, and rewarded only for correctly identifying their subgame-perfect equilibrium

decisions, came to exhibit just such a search pattern while succeeding in their task. By contrast, C&J's

baseline subjects, who were untrained and were rewarded according to their payoffs playing the games

with each other, deviated systematically from both the backward-induction search pattern and their

subgame-perfect equilibrium decisions, with subjects whose search patterns were closer to backward

induction tending to make and/or accept offers closer to the subgame-perfect equilibrium. These results

add a valuable cognitive dimension to the evidence from alternating-offers bargaining games, which is

helpful in discriminating among alternative explanations of subjects' decisions.

Our experiments adapt C&J's methods to study cognition via information search in two-person

normal-form games, using Mouselab to present games as payoff tables in which subjects can look up

their own and their partners' payoffs for each decision combination, as often as desired, but only one at

a time.6 Each subject faces a series of games with different partners, payoffs, and strategic structures, so

that subjects' decisions and information searches can reveal their strategic thinking in initial responses to

well defined games. Our goals are to use game theory's cognitive implications to conduct more powerful

tests of the theory, to give a more precise classification of subjects by the rules that govern their

decisions in games with a variety of strategic structures, and to learn whether subjects' deviations from

the information search implications of equilibrium analysis help to predict the occurrence and nature of

their deviations from equilibrium decisions.

Studying cognition via information search in normal-form games is a powerful complement to

C&J's extensive-form analysis. There are close connections between game-theoretic analyses of

decisions in extensive- and normal-form games, but their cognitive foundations are very different. While

C&J's subjects searched for three pie sizes arrayed along one dimension, in our simplest (2x2) games

subjects search for eight payoffs in patterns that can vary in several dimensions. We argue below that

the leading theories of strategic behavior have different implications for subjects' information search

                                               
6The only precedent of which we are aware is Algaze [Croson] (1990), who briefly discussed the results of two trials using
a normal-form Mouselab design apparently quite close to the one we independently developed.
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patterns in our design, so that those patterns can reveal a great deal about their strategic thinking. This

allows us to study several aspects of sophistication that do not come into play in alternating-offers

bargaining games.

Our results can be summarized as follows. We find considerable heterogeneity in subjects'

decision rules, as in Stahl and Wilson (1995), with still more heterogeneity in their information searches.

As in previous experiments (Crawford (1997, Section 4), compliance with equilibrium is high in games

that can be solved by one or two rounds of iterated dominance; but compliance is much lower in our

more complex games in which it depends on three rounds of iterated dominance or the circular logic of

pure-strategy equilibrium without dominance. Most of our subjects reveal some strategic sophistication

by their decisions, and many even seem to have anticipated the pattern of noncompliance in more

complex games; but sophistication is neither extensive nor widespread enough to justify full reliance on

equilibrium analysis. Our analysis of subjects' information search patterns generally confirms the

interpretation of their behavior suggested by their decisions, but there are systematic relationships

between subjects' deviations from the search patterns suggested by equilibrium analysis and their

deviations from equilibrium decisions, which allow better estimates of their decision rules and

predictions of their decisions than an analysis based on decisions alone.

The rest of the paper is organized as follows. Section 2 reviews the traditional theory of

noncooperative games and the leading alternative theories we compare it with. Section 3 introduces our

design, discusses the use of Mouselab to present games in normal form, and describes the games we

study. Section 4 conducts a preliminary econometric analysis of subjects' decisions alone, using a

maximum likelihood error-rate model in the style of El-Gamal and Grether (1995) and Harless and

Camerer (1994, 1995) to classify each subject by the theory of strategic behavior, or decision rule, that

best describes his decisions over the series of games he played. Section 5 introduces the model of

cognition and information search we use to derive the implications of alternative decision rules for

subjects' look-up patterns. Section 6 generalizes Section 4's analysis by conditioning the error rates on

the degree of compliance with the information search implications of alternative decision rules,

reevaluates Section 4's estimates of subjects' decision rules, and assesses the extent to which observing

information search helps to predict decisions. Section 7 is the conclusion.

2. Noncooperative Game Theory and Leading Alternative Theories
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This section reviews the relevant parts of noncooperative game theory and the leading

alternative theories of strategic behavior with which it will be compared, focusing on two-person

normal-form games of complete information like those studied in our experiments.

 The starting point of a noncooperative analysis is the structure of the game, which consists of its

players, their sets of feasible strategies or decisions, and their payoffs for each combination of

decisions.7 We assume that the structure is common knowledge in that all players know it, all know that

all know it, and so on ad infinitum. The players are assumed to be rational in the standard decision-

theoretic sense that their expectations about uncertain events, including other players' decisions, can be

represented by probability distributions called beliefs; and their preferences over uncertain outcomes can

be described by assigning payoffs to each possible outcome so that each player's decision maximizes his

expected payoff, given his beliefs. Rationality is assumed to be mutual knowledge in the sense that all

players know it, and this is sometimes strengthened to higher levels of knowledge, knowledge about

knowledge, etc., up to common knowledge.

A player's decision dominates (respectively, is dominated by) another of his decisions if it yields

a strictly higher (respectively, lower) payoff for any of the other player's decisions. A decision is

iteratively undominated if it survives iterated elimination of dominated decisions. A game is dominance-

solvable if it has a unique iteratively undominated decision combination. A rational player plainly never

chooses a dominated decision, but beyond this, rationality— even if common knowledge— yields only

weak restrictions on behavior. Assuming common knowledge of the structure, common knowledge of

rationality implies that each player must choose an iteratively undominated decision.8 This yields unique

predictions in dominance-solvable games, but not other games; and in many games common knowledge

of rationality yields no behavioral restrictions at all.

To derive restrictions on behavior in non-dominance-solvable games, rationality is often

supplemented by the assumption that players' decisions are in Nash equilibrium, in that each player's

decision maximizes his expected payoff, given the others' decisions. The iteratively undominated

                                               
7Brandenburger (1992) and Aumann and Brandenburger (1995) discuss the theory outlined here in more detail. We use
"decision" and "strategy" interchangeably because we avoid games with mixed-strategy equilibria, and the distinction is
otherwise irrelevant for normal-form games. In some theories of strategic behavior (and in many real environments)
players' decisions are also influenced by contextual factors that are not part of the structure as game theorists define it,
such as how the game is presented or the social setting (Crawford (1997, Section 2)). Here we follow traditional game
theory in focusing on structural factors, using a design that suppresses contextual effects as much as possible.
8Here, common knowledge of rationality can be weakened to approximate common knowledge, or to mutual knowledge up
to the number of rounds of iterated elimination of dominated decisions the game allows; but it is otherwise necessary.
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decisions in a dominance-solvable game are necessarily in equilibrium, but in non-dominance-solvable

games equilibrium depends on more than rationality, or even common knowledge of rationality. The

weakest general sufficient conditions for pure-strategy equilibrium require both rationality and mutual

knowledge of players' decisions (Brandenburger (1992, Proposition 2), Aumann and Brandenburger

(1995, Section 4, Preliminary Observation)).

The mutual knowledge of players' decisions required by this rationale for equilibrium can be

justified either deductively or inductively. From the deductive point of view, common knowledge of

rationality is all that is needed if the game is dominance-solvable, but in non-dominance-solvable games

the deductive rationale for equilibrium may require common knowledge of a complete theory of

strategic behavior that always yields unique predictions, such as Harsanyi and Selten's (1988) general

theory of equilibrium selection.9 In general this involves an extreme form of sophistication, in which

players have complete models of the structure and of other players' decision processes, with the latter

models taking into account other players' models of their own decision processes.

From the inductive point of view, mutual knowledge of players' decisions can emerge as the

limiting outcome of a learning process, in which players suppose that other players' decisions in

previous plays of analogous games are representative of their decisions in the current game. Inductive

rationales for equilibrium can be cognitively less demanding than deductive rationales because players

may avoid the need to model other players' decision processes by basing their beliefs on direct

observations of others' decisions.10 Learning models vary greatly in their assumptions about

sophistication, ranging from reinforcement learning (Roth and Erev (1995)), in which players need not

even know that they are playing a game, to models in which players have complete models of the

structure but simplified models of others' decisions (Fudenberg and Kreps (1993), Crawford (1995),

Crawford and Broseta (1998), Ho, Camerer, and Weigelt (1998), Camerer and Ho (1998)) and models

whose cognitive requirements approach those of the deductive rationale for equilibrium (Kalai and

Lehrer (1993), Stahl (1996)). Even the least sophisticated among these learning models have a strong

tendency to converge to equilibrium in many environments.

                                               
9The theory must be common knowledge to make players' decisions mutual knowledge because otherwise a player might
doubt whether the others know that he knows the theory, or know that he knows that they know it, etc. This is also why
common knowledge of rationality is needed to support the analogous deduction in dominance-solvable games.
10Inductive players do need to decide which games are analogous, and how to translate their experience to the current
game; except in theoretical models, which tend to trivialize these issues, this may require considerable sophistication.
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The fact that unsophisticated learning can mimic sophisticated deduction in this way has

important implications for our design. In general sophistication influences both subjects' initial responses

to games and the form of their learning rules. The level of sophistication can sometimes be inferred from

learning rules (e.g. Shachat and Walker (1997)), but it appears in its purest form in initial responses.

Our experiments seek to measure sophistication by eliciting subjects' initial responses to a series of

games with different partners and strategic structures, suppressing learning and repeated-game effects as

much as possible. The deductive rationale for equilibrium is therefore the relevant one for our purposes.

Studying sophistication this way is of considerable interest in its own right, and should yield results that

complement analyses of sophistication via learning rules.

One of our main goals is to search for useful relationships between subjects' deviations from the

information searches suggested by equilibrium analysis and their deviations from equilibrium decisions.

We structure our search for such relationships by comparing the cognitive requirements of equilibrium

analysis with those of alternative theories of strategic behavior, limiting attention to a total of six

decision rules, or strategic types. We chose these types, before our first pilots were run, for the

important roles they have played in the theoretical literature and the clarity and separation of their

cognitive implications. They allow us below to describe our subjects' information searches and decisions

in a comprehensible way, without overfitting or artificially restricting the data analysis.

Our Equilibrium type always makes its equilibrium decision (which was unique in all of our

games, although subjects were not told this). Our Naive type makes decisions that are best responses to

beliefs that assign equal probabilities to the other player's decisions. Our Optimistic type makes

"maximax" decisions that maximize its maximum payoff over the other player's decisions. Our

Pessimistic type makes "maximin" or "secure" decisions that maximize its minimum payoff. Our

Altruistic type makes decisions that maximize the sum of its own and the other player's payoffs over all

possible combinations of decisions. Finally, to capture the idea of a rational player who can accurately

predict how other players will respond to the environment, our Sophisticated type makes decisions that

are best responses to the probability distributions of his partners' decisions.11

                                               
11In environments that yield high frequencies of Equilibrium play, Sophisticated and Equilibrium players make the same
decisions, but they differ in other settings. We operationalize our definition of Sophistication by estimating probability
distributions of subjects' decisions in each game from the observed population frequencies in our experiment (Section
4.C). Our approach resembles the notions used to test for sophisticated behavior in experiments by Roth and Murnighan
(1982) and Roth et al. (1991). Stahl and Wilson (1995) give a good discussion of the issues that arise in formalizing the
idea of sophistication in support of more subtle notions (their "worldly" and "rational expectations" types).
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3. Experimental Design

This section discusses our experimental design. First we describe the overall structure, then the

use of Mouselab to present games in normal form, and finally the games to be studied.

A. Overall structure

Our experiment consisted of two sessions of a Baseline treatment, B1 on 22 April 1997 and B2

on 21 July 1997, and one session each of two control treatments, OB (for "Open Boxes") on 24 July 97

and TS (for "Trained Subjects") on 22 July 97. These were preceded by one session each of three pilot

treatments, P1 on 24 February 1997, P2 on 25 February 1997, and P3 on 27 February 1997. All seven

sessions were run in the Economic Science Laboratory at the University of Arizona, using its local area

network of Pentium PCs. We now describe those treatments, beginning with the Baseline and then

explaining how the others differed. Appendix A, which reproduces the Baseline and TS instructions, is

available from the authors on request, as are the OB and P1-P3 instructions.

The main features of our design are dictated by our goal of studying sophistication. To test

game-theoretic predictions, the design must clearly identify the games to which subjects are responding.

Most experiments accomplish this by having subjects repeatedly play the same stage game, suppressing

repeated-game effects by randomly matching then from a "large" population each period. The results are

then used to test theories of behavior in the stage game. Although the learning that such designs allow

often greatly reduces the noisiness of subjects' responses over time, our purposes are better served by a

design in which subjects play a series of games with different strategic structures.12 Varying the games

this way helps to prevent subjects from developing preconceptions about their structures, avoids

confounding sophisticated deduction with learning (Section 2), and more precisely identifies subjects'

strategic decision rules. It also enhances our control of subjects' information by making it impossible for

them to remember their current payoffs from previous plays, which is important in a study that examines

cognition via information search.

Subjects were recruited from undergraduate and graduate students at the University of Arizona,

with a separate subject population for each session. In order to avoid noisiness due to unfamiliarity with

computers or abstract decision problems, we sought subjects whose course enrollments suggested that

they had strong quantitative backgrounds. However, we disqualified all subjects who revealed that they

had ever studied game theory or participated in game experiments.

                                               
12Such designs have been used successfully before by Beard and Beil (1994), Roth (1987), and Stahl and Wilson (1995).
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In our Baseline treatment, after an instruction and screening process described below, the

subject population was randomly divided into subpopulations of Row and Column players, as nearly

equal in size as possible. Subjects were then anonymously and randomly paired, with generally different

partners each period, to play a common series of 18 two-person normal-form games in roles determined

by their subpopulations.13 The games were 2x2, 2x3, 3x2, 2x4, and 4x2 matrix games with various

patterns of dominance, iterated dominance, and unique pure-strategy equilibria without dominance,

described in Section 3.C.14 The order of the games was the same for all subjects, randomized to avoid

bias except that the single 2x4 and 4x2 games in the series were placed at the end.15 Subjects were given

no feedback about their own or their partners' payoffs or decisions while they played these games.16

They could proceed independently, at their own paces, but they were not allowed to reconsider their

decisions once they were made and confirmed.

At the end of the session subjects were asked to fill out a brief exit questionnaire, in which they

were asked to give their year and major and to describe how they thought about their decisions and

information searches in the games, and given an opportunity to comment on the experiment.

To ensure that subjects were well motivated and to maintain control over their preferences, they

were paid according to their game payoffs as follows. After the session each subject returned to the lab

individually, at which time he was shown the number of points he earned in each round, given his

partners' decisions. He then drew a number from a bag containing the numbers 1-18 and was paid in

proportion to his payoff in the game whose number he drew, at the rate of $0.40 per point.17 With

payoffs ranging from 12-98 points, this made the average payment about $21; adding $5 for showing up

and passing the test made subjects' average earnings approximately $15 per hour over the 1½ to 2 hours

                                               
13The pairings were repeated, usually once a session, in a period unknown to the subjects. The 18 games took subjects
an average of 1-2 minutes each. Adding an hour or more for signing up, seating, instructions, and screening yielded
sessions of 1½ - 2 hours, which we judged to be near the limit of subjects' attention spans for their difficult tasks.
14We omitted games with mixed-strategy or multiple equilibria, because they seemed unnecessary to prevent
preconceptions about the structure, and they each raise issues interesting enough for a separate investigation.
15We put the 2x4 and 4x2 games at the end to preserve comparability with the pilots, which omitted them, and because
we feared (incorrectly) that they would confuse subjects, contaminating the data for any subsequent games. Row
and Column subjects faced different orders of strategic structures because most of the games had asymmetric structures.
16We had no choice about feedback because Mouselab cannot be "networked" and manual feedback would have taken
too long, but on balance we believe that not giving feedback during the main part of the session furthered our goals.
17Iterated dominance and pure-strategy equilibrium predictions can be tested without controlling for risk preferences, but
they might affect the results when subjects face significant strategic uncertainty. It is theoretically possible to control for
risk preferences using the binary lottery procedure (Roth and Malouf 1979), in which a subject's probability of winning
a given monetary prize is proportional to his or her payoff (as in Cooper et al. (1990) and Stahl and Wilson (1995)). We
avoid this complexity because subjects often appear approximately risk-neutral in money for payoffs like ours, and
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of the session.18 Subjects never interacted directly, and their identities were kept confidential by

requiring them to sign up via identifying numbers and paying them in private.19 These procedures

appeared to motivate most subjects to try to maximize their expected payoffs.

 The structure of the environment, except the game payoffs, was made public knowledge at the

start by presenting the instructions via handouts and subjects' computer screens and announcing that all

subjects received the same instructions. The instructions avoided suggesting decisions or strategic

principles. Subjects were given unlimited access to the payoffs during the session via Mouselab, and

received training in the mechanics of looking up their payoffs (Section 3.B).

After reading the instructions, subjects were given ample opportunity to ask questions and

required to pass an Understanding Test before they were allowed to continue. Subjects were paid an

additional $5 for showing up on time, following instructions, and passing the test; and subjects who

failed the test were dismissed.20 To enhance subjects' understanding of how their payoffs would be

determined, subjects who passed the test were required to participate in four unpaid practice rounds

before the main part of the session, in which Row and Column subjects each faced a balanced mix of

games of different sizes and strategic structures, with various patterns of dominance, iterated

dominance, and unique pure-strategy equilibria. To further reinforce their understanding, they also

received feedback from the first and third of these rounds (also roughly balanced in strategic structures)

in the form of summaries of Row and Column subjects' decisions in their session.21

                                                                                                                                                                
results using the binary lottery procedure are usually close to those using direct payment (Cooper et al. 1990, fn. 5).
18To avoid effects of differences in preferences for gains and losses, all games had all positive payoffs. The analogous
earnings figures were $23 and $16 for OB subjects and $27 and $21 for TS subjects, who were paid an extra $4 for
correctly answering the questions in a quiz they were required to take, as described in Appendix A.
19After all subjects had checked in, each picked an identification number from 1 to 32 from a basket. They were then told
to seat themselves at the terminal in the lab with that number. To receive their payment, they only needed to show this
identification number. This made it clear (and they were told) that we would never know their identities.
20The dismissal rates were 25%, 16%, and 53% for the Baseline, OB, and TS treatments respectively. Following
standard practice at the Economic Science Laboratory, subjects who were dismissed were also paid $5.
21Round 1 was a dominance-solvable 2x2 game in which Column but not Row had a dominant decision, which could be
solved by two rounds of iterated dominance. In Round 1, 75%, 45%, and 67% of Column subjects chose their dominant
decision and 25%, 40%, and 25% of Row subjects chose their iteratively undominated decision in B1, B2, and OB
respectively. Round 3 was a dominance-solvable 3x2 game with a dominated decision for Row but no dominance for
Column, which could be solved by three rounds of iterated dominance. In round 3, 50%, 27%, and 75% of Column
subjects chose their iteratively undominated decision; 33%, 30%, and 25% of Row subjects chose their iteratively
undominated decision; and 17%, 0%, and 0% of Row subjects chose their dominated decision in B1, B2, and OB
respectively. Viewing these results in the light of Section 4's analysis suggests that the noisiness and variation across runs
and treatments in the results from practice rounds had little effect on subjects' decisions in the actual games.
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In the data analysis below, we maintain the following assumptions about the effects of our

design. The fact that the structure was publicly announced except for the game payoffs, to which

subjects were given unlimited access, made the structure public knowledge, so that the results can be

used to test theories of strategic behavior in games of complete information. The sizes of our subject

populations and the lack of identifiable repeated interaction or feedback made the effects of current

decisions on future payoffs small and unpredictable. Previous experiments suggest that this made

repeated-game effects negligible, so that subjects viewed each of the 18 games they played as

strategically independent. Finally, our practice rounds, the fact that subjects never played the same game

twice, the varying strategic structures, and the lack of feedback minimize learning effects, suggesting

that subjects' behavior can be analyzed without modeling the dynamics of their responses. We take these

features to justify separate, static analyses of each subject's behavior in each of our games, using the

results to test theories of behavior at the individual level.

The OB treatment was identical to the Baseline treatment (including the practice rounds and

feedback, to preserve comparability) except that the games were presented via Mouselab with all

payoffs continuously visible, in "open boxes." Comparing the OB and Baseline results allows us to test

the hypothesis that subjects' responses are unaffected by looking up their payoffs via Mouselab. If so,

our Baseline results should be representative of results obtained by standard methods.

The goal of the TS treatment was to learn what subjects' information searches would have been

like in the Baseline under the leading hypothesis that they were Equilibrium players, allowing us to

check the model of information search we use to draw inferences about cognition. The TS treatment

was identical to the Baseline treatment (including the presentation of payoff information via Mouselab,

in "closed boxes") except that subjects were trained and rewarded differently. First, via instructions on

their computer screens (Appendix A), TS subjects were taught the relevant parts of noncooperative

game theory, including dominance, iterated dominance, dominance-solvability, and pure-strategy

equilibrium. Although TS subjects, like Baseline subjects, received training in the mechanics of looking

up their payoffs, they were not trained in information search patterns to identify the predictions of any

theory. TS subjects were then rewarded only for correctly identifying their equilibrium decisions (or,

equivalently, their iteratively undominated decisions in dominance-solvable games) in the 18 games,
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without regard to other subjects' responses.22 To the extent that TS subjects correctly identified their

equilibrium decisions, we can be confident that any failures of game-theoretic predictions in the Baseline

treatment are not due to subjects' cognitive limitations.

We close this section by describing pilots P1-P3 and how they influenced our designs for the

main treatments. All three pilots had 16 games, with structures like the first 16 games in the main

treatments, but with weaker incentives and payoff separation of equilibrium and alternative theories.23

Pilot P1 paid subjects for their total payoffs over all games, at a lower rate but with the same expected

total payment, while P2 and P3 paid them for their payoffs in one randomly selected game as in the

Baseline and OB treatments. Pilots P1 and P2 gave subjects no feedback from practice rounds, while P3

gave feedback as in the Baseline and OB treatments. Pilots P1 and P2 framed the payoff matrix as in the

main treatments (Section 3.B), while P3 interchanged the locations of subjects' own and their partners'

payoffs, still with all subjects framed as Row players.

The results for the pilots, which are available on request, were similar to the results for the

Baseline but noisier, with P1's and P2's much noisier than P3's. The noisiness seemed due mainly to

subjects' lack of comprehension and weak incentives. Pilot P1's alternative payment scheme made little

difference, so from then on we followed the common practice of paying each subject a larger amount

for his payoff in one randomly selected game. Pilot P3's alternative framing also made little difference,

so we returned to P1's and P2's framing for the main treatments. Pilot P3's feedback did reduce the

noise significantly, but in our judgment not enough. To reduce the noise further, we combined this

feedback with the strengthened incentives of our Baseline design.

B. Using Mouselab to study cognition in normal-form games

We now describe how Mouselab was used to present games to subjects. Each subject was

framed as Row player and called "You" in all games, without regard to his player role as described here.

                                               
22For TS subjects the practice rounds were replaced by a supplementary test of their understanding of dominance, iterated
dominance, and equilibrium, with no feedback because other subjects' responses were not relevant to their tasks. All TS
subjects were Row players because only 15 of 32 recruits passed the Understanding Test, and splitting them would have
yielded too small a sample. This difference is inessential because TS subjects were paid for correct answers, not game
payoffs, and the mix of strategic structures is similar for Row and Column players. To encourage TS subjects to search for
equilibria without preconceptions, so their searches would resemble those of "real" Equilibrium players, they were not told
that all games had unique equilibria. Instead they were told that a game might have more than one equilibrium, and that
to receive credit for a game they had to identify their decision in the equilibrium that gave them the highest payoff of any
equilibrium. This made it necessary to identify all equilibria to be sure of receiving payment.
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We believe that framing subjects as Row players eases comprehension. It also makes it impossible for

subjects to condition their behavior on observable differences in their roles, which increases the effective

size of our samples by creating strategic equivalences between some games in the series that differ

essentially only by interchanging player roles (Section 3.C).

A typical game appeared on a subject's screen as in Figure 1. There, each player has two

decisions (# and * for Row and & and @ for Column). Row's ("Your") payoffs are in the two columns

on the left, here identified as r#&, r#@, etc., and Column's ("Her/His") are in the two columns on the

right, here identified as c#&, c#@, etc.24 The actual display had two-digit numbers of "points" instead of

these abstract payoff symbols. The visual separation of Row and Column players' payoffs, emphasized

by the legends at the bottom of the matrix, helps subjects to distinguish them. Different labels were

always used for Row and Column players' decisions. The order and labeling of decisions was the same

for all subjects in a given player role, but was jointly randomized across games. These features and our

framing of all subjects as Row players suppress contextual effects, allowing us to focus on the structural

principles studied in noncooperative game theory.

S/He: & S/He: @ S/He: & S/He: @
You: # r#& r#@ c#& c#@

You: * r*& r*@ c*& c*@

Your Points Her/His Points

You: # You: *

Figure 1: Screen Display

In the Baseline, TS, and P1-P3 treatments all payoffs were normally hidden, in "closed boxes."

A subject could look up the payoffs as often as desired, one at a time, by using his mouse to move the

cursor into its box and left-clicking. Before he could open another box, or record his decision, he had to

close the box by right-clicking, which could be done even after the cursor had been moved out of the

                                                                                                                                                                
23The weak incentives and separation were unintended by-products of our attempt to use variations in out-of-equilibrium
payoffs, as in Beard and Beil's (1994) extensive-form game experiments, to detect subtle aspects of sophistication. In a
design like ours this severely constrains the strength of incentives and separation of alternative theories.
24In pilot P3 "Your points" appeared in the right side of the display and "Her/His" points in the left side. P3 subjects
started looking in the left side 65% of the time, and their subsequent look-ups and decisions resembled those in P1 and
P2, where the locations were as in Figure 1. Comparing the 65% starting in the left side in P3 with the 73% observed in
the Baseline suggests that for initial look-ups, many more subjects favored the left side than favored their own payoffs.
Some such framing bias seems inevitable in any normal-form design with a two-dimensional display.
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box. Thus both opening and closing a box required conscious choices. At any time, a subject could

record and confirm his decision in the current game by using the mouse to move the cursor into one of

the boxes at the bottom of the display and left-clicking.25 Mouselab automatically records subjects'

decisions and look-up sequences, including look-up durations.26 The OB treatment used Mouselab in

exactly the same way, but with all payoffs continuously visible, so that subjects used the mouse only to

record and confirm their decisions.

Our display makes subjects' information processing somewhat simpler than in CJ's alternating-

offers bargaining games, by revealing their payoffs directly rather than requiring them to deduce them

from pie sizes; but it also makes their information searches much more complex, with 8-16 independent

payoffs that can be searched multidimensionally rather than three pie sizes along one dimension. This

complexity could be reduced by limiting the number of independent payoffs subjects need to look up,

either by leaving some payoffs continuously visible or by creating simple relationships between payoffs

and making them public knowledge (e.g. by announcing that the game is a pure coordination game or a

zero-sum game, and simplifying the display accordingly). But this simplification would come at the cost

of losing some of the information in subjects' look-ups, significantly reducing the power of our method

to discriminate among alternative theories.

Most of the cognitive processes required by noncooperative game theory and the leading

alternatives involve sequences of binary payoff comparisons. As explained in Section 5, there is good

reason to expect subjects to make such comparisons via adjacent look-ups, but even so their look-up

sequences will necessarily include many adjacent look-ups that are not comparisons. One can easily

imagine Mouselab-like software that requires subjects to observe payoffs in pairs, which could then be

interpreted as binary comparisons, but we are not aware of any software that allows this.27 Instead we

develop a theory of cognition and information search that addresses this issue by deriving restrictions

                                               
25A subject could move on to the next game only by confirming his decision. The cursor always started at the top-center.
26See Payne, Bettman, and Johnson (1993, Appendix) for more on Mouselab. In the commercially available version C&J
used, a box remains open as long as the cursor is in it, and closes when the cursor leaves it. In preliminary trials with this
version, subjects often compared payoffs in nonadjoining cells by rolling the mouse across the intervening cells in our
two-dimensional display, which takes longer than 0.017 seconds, the minimal look-up duration Mouselab records. The
resulting "accidental" look-ups add a great deal of noise to the look-up data. The ease of opening boxes with this version
also yields very large numbers of look-ups (100 or more in a 2x2 game), decreasing the discriminatory power of subjects'
look-up patterns. Following C&J, the noise could be reduced by screening out look-ups shorter than subjects' minimum
perception time of approximately 0.18 seconds (Card, Moran, and Newell (1983)). However, the "click" version of
Mouselab we use, supplied to us by Mary Francis Luce, gives a good solution to both problems at once.
27Even if this were possible, it might not be desirable. In a 2x2 game there are 28 (= 7x8/2) possible payoff pairs, and
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that do not depend on precise identification of comparisons (Sections 5-6).

C. The Games

Table I summarizes the strategic structures of the 18 games subjects played in our main

treatments and our types' predicted decisions in them; the payoff matrices are given in Appendix B. For

clarity in the table, we use mnemonic names for players' roles (Row and Column) and decisions (Top,

Middle, and Bottom or Left, Middle, and Right) and present the games in an order that highlights the

relationships among them.28 As Table I shows, the games are chosen to explore the limits of strategic

sophistication in a various strategic structures, including games with dominance, dominance-solvable

games, and games with unique pure-strategy equilibria without dominance. These games separate our

Sophisticated and Equilibrium types' predicted decisions from those of our other types as sharply as

possible, while providing strong incentives for a subject of a given type to make his type's predicted

decisions. In conjunction with our avoidance of salient payoffs and the artificial clarity of overly simple

payoff structures, this separation allows us to "stress-test" noncooperative game theory, minimizing the

chance that subjects will choose equilibrium decisions for reasons other than those contemplated by the

theory. Because the cognitive requirements of our Sophisticated and Equilibrium types are sharply

separated from those of our other types (Section 5), this separation facilitates our search for

relationships between decisions and information search.

Games 2A and 2B are 2x2 games with a dominant decision for Row but not for Column,

solvable via two rounds of iterated dominance.29 The dominance for Row occurs with overlapping

payoff ranges, so that he can reliably identify his dominant decision only by looking up all of his payoffs

(Appendix B). In our design dominance always occurs this way, so that subjects who only sample their

payoffs will violate it with nonnegligible probabilities. Games 3A and 3B are 2x2 games, which are

isomorphic to games 2A and 2B, obtained from them by transposing players' roles and reducing all

payoffs by 4 and 2 points respectively. Games 3A and 3B have dominant decisions for Column but no

dominance for Row, and are solvable via two rounds of iterated dominance.

                                                                                                                                                                
deciding which ones to look at is a nontrivial task, which might distract subjects from thinking about the game.
28In the experiment the games were presented to each subject as Row player, with abstract decision labels, random
orderings of all games but 9A and 9B (3A, 6B, 2A, 8B, 8A, 5A, 4A, 7A, 4C, 7B, 4B, 3B, 2B, 6A, 5B, 4D, 9A,
9B) and decisions, and with relationships between games disguised by the random orderings and small payoff
variations. In Table I, dominance-solvability for games 7A, 7B, 8A, and 8B is defined excluding mixed strategies.
29Here and below, the number of rounds of iterated dominance is defined as the number of dominance relationships it
takes for the player in question to identify his own equilibrium decision. Thus playing a dominant decision is one round,
best responding to another's dominant decision is two rounds, etc.
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Game 4A is a 2x3 game and game 4B is a 3x2 game, each with a dominant decision for Column

but no dominance for Row, and solvable by two rounds of iterated dominance. Game 4C is a 3x2 game

and game 4D is a 2x3 game, which are isomorphic to games 4A and 4B, obtained from them by

transposing roles and reducing all payoffs by 1 or 4 respectively; each has a dominant decision for Row

but no dominance for Column, and is solvable by two rounds of iterated dominance. Games 5A and 5B

are 3x2 games with a dominated decision for Row but no dominance for Column, and solvable by three

rounds of iterated dominance. Games 6A and 6B are 2x3 games isomorphic to 5A and 5B, obtained

from them by transposing roles and increasing all payoffs by 2 or decreasing them by 6 respectively;

each has a dominated decision for Column but no dominance for Row, and is solvable by three rounds

of iterated dominance.

 Games 7A and 7B are 2x3 games, each with a unique, pure-strategy equilibrium but no

decisions dominated by pure decisions.30 Games 8A and 8B are isomorphic 3x2 games, obtained from

7A and 7B by transposing roles and decreasing all payoffs by 4 or 7 respectively; each has a unique,

pure-strategy equilibrium but no decisions dominated by pure decisions.

Games 9A and 9B are a 4x2 and a 2x4 game, each with a dominant decision for one player but

no dominance for the other, and each solvable by two rounds of iterated dominance.

4. Analysis of Subjects' Decisions

This section conducts an analysis of subjects' decisions without consid ering their information

searches, in preparation for the analysis of decisions and information search in Sections 5-6. In Section

4.A we test for differences in subjects' decisions in the aggregate across runs in the Baseline treatment,

treatments, and player roles in isomorphic games. In Section 4.B we study their aggregate compliance

with dominance, iterated dominance, and equilibrium in games without dominance. In Section 4.C we

conduct a maximum likelihood error-rate analysis in the style of Harless and Camerer (1994, 1995)

("H&C") and El-Gamal and Grether (1995) ("EG&G") at the individual level, estimating the strategic

type that best describes each subject's decisions over the games he played, and the error rates for

subjects estimated to be of each type.

                                               
30Column's decision Middle is dominated by a mixture of Left and Right, so the games are actually dominance-solvable,
a necessary feature with unique pure-strategy equilibria when at least one player has only two pure strategies. Mixed-
strategy dominance has the same effect as pure-strategy dominance in the deductive justification for equilibrium, but we
expect subjects to find it far less salient and it seemed a small price to pay for the simplicity of these 2x3 and 3x2 games.
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A. Preliminary statistical tests

In this section we test for aggregate differences in subjects' decisions across Baseline runs,

treatments, and player roles in isomorphic games; subjects' decision data are in Appendix C. These tests

check the consistency of subjects' responses across related games, confirm simplifying restrictions

suggested by theory, and answer questions that are helpful in evaluating our methods. Because the tests

compare categorical data from independent samples with no presumption about how they differ, we use

Fisher's exact probability test, which requires no distributional assumptions. We conduct the tests

separately for each game, pooling the data for all subjects in each player role, and in some cases pooling

the data for subjects with isomorphic player roles in different games. 31

Table II reports p-values for tests of the hypotheses that Column and Row subjects' decisions

were drawn from the same distributions in: (i) the two runs of the Baseline treatment, B1 and B2; (ii)

the Baseline (with B1 and B2 pooled, as B1+B2) and OB treatments; and (iii) the TS (which had only

Row subjects) and Baseline treatments. For (iii) we report p-values for the full TS sample and "TS

(ex.)," which excludes the 3 out of 15 TS subjects (TSR17, TSR18, and TSR21 in Appendix C) who

revealed by their comments or exit questionnaires that they did not try to identify equilibria.

Table II's tests reveal no differences in subjects' decisions in B1 and B2 that are significant at the

5% level except in game 4C for Column subjects, a result within the limits of chance for 36 comparisons

under the null hypothesis. Given these results, we pool the data from B1 and B2 from now on. These

tests also reveal no differences between B1+B2 and OB that are significant at the 5% level, except in

game 6A for Column subjects, again within the limits of chance. Accordingly, we pool the data from

B1+B2 and OB when necessary to obtain adequate sample sizes, even though there is some indication in

the table, discussed below, that presentation via Mouselab has a small but systematic effect on subjects'

decisions. The number of the subject's or his partner's decisions appears to make little difference to the

results of these tests. Finally, as expected, there are large differences between the Baseline and TS

treatments in most games. These differences are noticeable in 16 of our 18 games, significant at the 5%

                                               
31Conducting tests separately for each game is fully justified only if subjects' decisions are statistically independent
across games, which is unlikely because some games are related. However, the correct test without independence
(comparing the distributions of the 2 11364 ˜ 6 million possible histories of decisions in 18 games) is impractical, and
testing game by game gives us a metric in which to gauge t he differences across games and treatments. Fisher's exact
test is usually discussed only for 2x2 contingency tables (e.g. Davis and Holt (1993)), but it is straightforward to extend
it to 2x3 and 2x4 contingency tables. Computer codes to compute p-values for 2x2, 2x3, and 2x4 contingency tables are
available from the authors on request.
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level in 6 games for TS and 9 for TS (ex.), and significant at any reasonable level in 4 of the 6 games

where the subject had three decisions.

Our design includes several pairs of isomorphic games, identical for Row and Column players

except for uniform shifts in payoffs that never exceed 7 (out of a maximum of 98) points (Section 3.C,

Appendix B). Game 2A for Row subjects, for instance, is the same as game 3A for Column subjects

except for a payoff shift of 4 points. There are good theoretical reasons to expect behavior not to vary

systematically across isomorphic games, because any theory that ignores presentation effects predicts

the same decisions in them, and our design controls for presentation effects except for the order and

labeling of decisions across Row and Column players and the payoff shifts, which we made small and

nonsalient in the hope that they would not alter subjects' decisions.

Table III reports p-values for tests of the hypotheses that Row and Column subjects' decisions in

isomorphic games were drawn from the same distributions. These tests are conducted separately for

B1+B2 and OB. Each pair of isomorphic games appears twice in the table, once for each player role. 32

These tests reveal no differences between subjects' decisions in isomorphic games that are significant at

the 5% level except in 4B, 4D for B1+B2 and 9B, 9A for OB, about what would be expected by chance

in 18 comparisons. Accordingly, we pool the data for Row and Column subjects across isomorphic

games when necessary to obtain adequate sample sizes.

Because these tests include several pairs of isomorphic games that were widely separated in the

sequence but revealed no significant differences (5B, 6B, by 12 games; 5A, 6A, by 7 games; and 7B,

8B, by 5 games), they give some evidence that our design successfully suppressed learning. 33

The far right-hand column in Table III reports p-values for tests for differences between B1+B2

and OB like those in Table II, but with the data pooled across isomorphic games. These more powerful

tests reveal differences that are significant at the 5% level only for 4D, 4B and 5A, 6A, slightly more

than would be expected by chance in 18 comparisons.

We close this section by using the observed frequencies of subjects' decisions in the B1+B2 and

OB treatments to estimate the strength of subjects' ex ante incentives. Table IV reports the payoffs our

Row and Column subjects would have received over all 18 games by following the decision rules of

                                               
32For example, "2A, 3A" compares Row subjects' decisions in game 2A with Column subjects' decisions in game 3A,
while "3A, 2A" compares Row subjects' decisions in game 3A with Column subjects' decisions in game 2A.
33Because we did not control for the effects of decision order and labeling across isomorphic games, the test results
also suggest that the labeling and order of decisions had little effect on subjects' decisions.
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each of our types exactly, as point totals and as percentages of a Sophisticated subject's payoffs, with

the latter normalized to 100% because it is necessarily the largest. The expected monetary value of a

point was $0.022 (= $0.40/18), so a Sophisticated subject's points are worth about $25 on average. The

payoffs for Row and Column subjects are remarkably similar. An Equilibrium subject gives up 2.2-3.2%

of this total, or about $1. Naïve/Optimistic, Pessimistic, and Altruistic subjects, respectively, give up

about 14.1-14.4%, 15.7-16.3%, or 31.3-31.4%, or about $3.50, $4.75, or $7.75. Thus the incentives to

behave as a Sophisticated rather than an Equilibrium player were weak, but the incentives relative to our

other types were substantial.

B. Aggregate compliance with dominance, iterated dominance, and equilibrium

We now examine subjects' decisions in the aggregate, first for significant deviations from

randomness, with no presumption about their nature, and then for compliance with dominance, iterated

dominance, and equilibrium in the different kinds of games we study. This reveals the overall patterns in

subjects' aggregate responses to games with different strategic structures.

In testing the hypothesis that subjects' decisions were generated by uniform randomization over

the possible decisions, we use exact ?2 tests (Pierce (1970, chapter 11)), which are appropriate for

comparing categorical sample data with the theoretical distribution under the null hypothesis . Table V

reports p-values for these tests, first for Row and Column subjects separately, pooling the Baseline and

OB data; then for Row and Column subjects in isomorphic games, again pooling the Baseline and OB

data; and finally using the TS data (which includes only Row subjects). For the TS treatment two p-

values are reported: one for the full sample ("TS") and one ("TS (ex.)") excluding the three TS subjects

who did not try to identify equilibria. Large p-values indicate randomness.

For the Baseline and OB treatments there are significant deviations from randomness whenever

the subject had three or four decisions, and in most cases when he had two decisions. The most

powerful test, with data pooled across isomorphic games, rejects randomness in all but 7A, 8A and 7B,

8B, the games with unique pure-strategy equilibria but no dominance in which the subject had two

decisions. For the TS treatment, there are significant deviations from randomness across the board, with

the sole exceptions again in 7A, 8A and 7B, 8B for the pooled data.

Table VI reports the percentages of subjects' decisions that comply with equilibrium in the B,

OB, B+OB, TS, and TS (ex.) treatments, pooling the data from Row and Column subjects in

isomorphic games whenever possible. In each case the compliance percentages are reported by type of
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game, with the population fractions in parentheses. The games are grouped by the complexity of the

strategic reasoning needed to identify the subject in question's equilibrium decision, from games in

which he has a dominant decision to games solvable by two or three rounds of iterated dominance and

games with unique pure-strategy equilibria but no (pure-strategy) dominance.

 In the Baseline and OB treatments, subjects played dominant decisions with frequencies

averaging close to 90%, and best responses to partners' dominant decisions with frequencies averaging

close to 70%.34 In other games solvable by two rounds of iterated dominance, they played equilibrium

decisions with frequencies averaging about 65%. However, in games solvable by three rounds of

iterated dominance they played equilibrium decisions with frequencies averaging only about 15%, and in

games with unique pure-strategy equilibria but no dominance they played equilibrium decisions with

frequencies averaging about 35%. In most cases equilibrium compliance was slightly higher in OB than

in the Baseline. Although this is unlikely to be due entirely to chance, the difference is too small to be

significant in our samples (Section 4.A, Table II).

Overall, equilibrium compliance is quite high, bearing in mind that it reflects subjects' initia l

responses to games. It is remarkably consistent across games with similar levels of strategic complexity,

and the number of the subject's or his partner's decisions has little effect, holding complexity constant.

Compliance stays well above random for most games, and most of the rejections of randomness in Table

V reflect systematic deviations in the direction of equilibrium. However, compliance falls steadily as

complexity increases, eventually dropping below random in 3x2 games that are dominance-solvable in

three rounds (11.1%-22.2% in 5A, 5B for Rows and 6A, 6B for Columns, versus 33.3% for random

decisions) and in 3x2 games with unique equilibria but no dominance (17.8%-27.8% in 8A, 8B for

Rows and 7A, 7B for Columns, again versus 33.3%).

These results are generally consistent with the results of other experiments that study subjects'

initial responses to games, except that the below-random compliance in our most complex games differs

from Stahl and Wilson's (1995) findings for closely related games. 35 They found compliance rates of

                                               
34Interestingly, subjects played dominated decisions with comparably low frequencies in 8A,8B for Rows and 7A,7B for
Columns, the 3x2 games with unique pure-strategy equilibria and dominance only via mixed strategies. In those games
decisions dominated by mixed strategies were played with frequency 10% in the Baseline and 3.7% in the OB treatment.
35Our findings for games that can be solved by three rounds of iterated dominance are consistent with previous evidence
on dominance-solvable games (Crawford 1997, Section 4.1). Our findings for games with unique equilibria but no
dominance are broadly consistent with the evidence from other settings summarized by Selten (1998, Section 5), which
tends to favor principles whose implications can be identified by step-by-step reasoning (such as iterated dominance in
our setting) rather than what Selten calls "circular concepts" (such as equilibrium in non-dominance-solvable games).



21

68% and 57%, respectively, for symmetric 3x3 games solvable by three rounds of iterated dominance

and for similar games with unique pure-strategy equilibria but no dominance. This difference may stem

from our avoidance of salient payoffs and simple payoff structures, including symmetry, and our attempt

to separate equilibrium decisions from those suggested by other decision rationales, so that any

alternative rationale tends to yield non-equilibrium decisions.

In the TS and TS (ex.) treatments, subjects played dominant strategies with frequencies well

above 90%. In striking contrast to the Baseline and OB results, TS subjects' equilibrium compliance

rates fell off only slightly in more complex games, averaging well over 80% (90% in TS (ex.)) even in

those games in which compliance fell below random in the Baseline and OB treatments. This suggests

that Baseline and OB subjects' noncompliance in those games was due mainly to factors other than the

difficulty of looking up payoffs via Mouselab or cognitive limitations.

C. Maximum likelihood error-rate analysis of individual subjects' decision rules

In this section we use a simple maximum likelihood error-rate model to estimate the decision

rule that best describes each subject's decisions over the 18 games he played.

To describe the possibilities for subjects' decisions (and ultimately, their information searches) in

a tractable way, avoiding overfitting or excessively constraining  the data analysis, we restrict attention

to six decision rules or strategic types:  Equilibrium, Sophisticated,  Naïve, Optimistic, Pessimistic, and

Altruistic. We assume that each subject is one of our six types, constant over all games, with probability

one; but we allow for random decision errors as explained below. 36

Recall that our Sophisticated type is defined as a player who always makes decisions that are

best responses to the probability distributions of others' decisions. Because those distributions are

unobservable, we need a way to operationalize our definition  in the Baseline and OB treatments. 37 If

there were an empirically reliable theory of players' responses to our games, we could make our

Sophisticated type a purely theoretical construct, like our Equilibrium type. But games like ours evoke

significant frequencies of non-equilibrium decisions, which depend on the strategic structure of the

game in ways that at present cannot be well predicted by theory (Section 4.B, Table VI). We therefore

                                               
36Section 2 gives the definitions of our types and discusses the rationale for this approach. One could construct a n "ad
hoc" type for each subject to mimic his decision history exactly, but this would have little explanatory power. And since
there are multiple rationales for any given decision history, it would leave us unable to derive the cognitive implications
of such types, which is an essential part of our analysis of information search. Similar problems are encountered in "data
mining" approaches to determining types, such as El-Gamal and Grether (1995).
37In the TS treatment the Sophisticated type is  excluded a priori  as meaningless, because TS subjects were rewarded
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define Sophistication empirically, first estimating the probability distributions of subjects' decisions,

game by game, from the population frequencies in our experiment, and then computing subjects' best

responses to those estimated distributions. 38 Although one can imagine attractive alternatives using

more complex designs and larger datasets, this seems a natural way to operationalize the notion of

Sophistication within our design.

Each of our types implies a unique predicted decision for each player role in each game (Table

I). We chose not to separate the predicted decisions of our Naïve and Optimistic types, due to a conflict

with the need to provide strong incentives; we therefore lump those types together in this section's

analysis. With this exception, any two of our types have different predicted decisions in at least 3 of our

18 games for each player role.39 This separation allows us to identify individual subjects' types by

comparing their decision histories with the predicted decisions for each type.

Combining evidence from different kinds of devi ations from predicted decisions requires an error

structure. In specifying the error structure we impose as few restrictions as possible, adapting the

maximum likelihood error-rate analyses of El-Gamal and Grether (1995) ("EG&G") and Harless and

Camerer (1994, 1995) ("H&C"), who give good discussions of the philosophy of this approach. Our

analysis is also related to that of Stahl and Wilson (1995), who to our knowledge were the first to

estimate heterogeneous strategic decision rules for experimental subjects.

Let i = 1, . . . , N index the subjects in a given treatment , and let k = 1,… ,K index our types. Let

c = 2, 3, or 4 be the number of decisions a given subject has in a given game. We assume that a subject

normally makes his type 's predicted decision, but that in each game,  for each type k, there is a given

probability ek ? [0, 1], type k's error rate, that the subject makes an error, in which case he makes each

of his c decisions with probability 1/c. The probability that a subject of type k makes type k's predicted

decision is then (1 - ek) + ek /c = 1 - (c - 1) ek /c, and the probability that he makes any single

unpredicted decision is ek/c. Note that since ek may equal 1, the model implicitly allows a random type,

which makes each of the c decisions with probability 1/c.40 We assume that errors are independently and

identically distributed  ("i.i.d.") across games and subjects, so that the ek are constant. The resulting

                                                                                                                                                                
only for identifying equilibria, and never played the games with other subjects .
38To reduce sampling error, we base our definition on the pooled Baseline and OB frequencies, which differ only
slightly (Table II). The resulting definition differs from one using only the Baseline data in only 1 of 18 games for each
player role, and has the additional advantage of making the definition uniform across the Baseline and OB treatments.
39With 2-4 decisions per game and six types, some overlap in predicted decisions is inevitable. Overlaps are even more
frequent because our types all favor higher own payoffs, and all but the Altruistic type always play dominant strategies.
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model extends EG&G's and H&C's (1994) analyses to allow type-dependent error rates, which is

important, given our types' different informational and cognitive requirements,  and to allow c = 2 to

vary in the sample.  We follow EG&G in estimating a separate decision rule from each subject's decision

history because we wish to study cognition at the individual level, and in d iscounting predicted decisions

for the probability they were made in error .41

Let Tc denote the number of games in a given treatment for which subject i has c decisions; in

our designs T2 = 11, T3 = 6, and T4 = 1 for all i. Let i
ckx  denote the number of subject i's decisions that

equal type k's predicted decisions in the Tc games in which he has c decisions. Because our error

structure distinguishes neither different unpredicted decisions nor different predicted decisions for a

given i, c, and k, the i
ckx  are sufficient statistics. Let ≡i
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Taking logarithms and summing over i yields the log-likelihood function for the entire sample:
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(4.3) implies that  the maximum likelihood estimate of i
kd  identifies the type k for subject i that

maximizes a weighted sum of the i
ckx  for c = 2, 3, and 4. In this section's model, if c were constant in

                                                                                                                                                                
40Our specification constrains the probability of the predicted decision to be at least 1/c, but this is never binding .
41H&C estimate population frequencies or probabilities of subjects' types from aggregate data, ignoring individual
histories. Assuming c = 2, H&C write the probability of a predicted decision as 1 - e while EG&G write it as 1 - e/2.
When c is constant (even if c > 2) this difference is only one of notation; but when c varies it affects the relative log-
likelihood weights of predicted decisions for different values of c. We briefly considered a model that nests these
specifications, in which the probability of each decision conditional on an error is d/ c for some d ? [0, 1]. In our dataset
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the sample subject i's estimated type would always be the k that maximizes i
ckx , independent of the

weights and therefore of the error rates. But when c varies the weights matter, and the maximum

likelihood estimates of types and error rates are simultaneously determined. 42 The weight of i
ckx  is [ln(1-

(c-1)ek
 /c) - ln (ek

 /c)], the difference between the log-probabilities of a predicted decision and of any

single unpredicted decision , given the estimated ek. This weight is positive for ek ? [0, 1) and decreasing

in ek, approaching 0 as ek →  1.43 Thus, a predicted decision is evidence in favor of any  type that predicts

it, but only to the extent that the type's estimated error rate indicates that it wa s more likely than an

unpredicted decision.

Our model has N + 5 parameters: one type for each of N subjects, and one error rate for each of

the 5 distinguished types. We computed maximum likelihood estimates of these parameters separately

for the Baseline, OB, B+OB, TS, and TS (ex.) treatments, u sing standard grid search  algorithms. 44 The

results are summarized in Table VII, which gives the frequencies and numbers of subjects estimated to

be of each type in each treatment, the estimated error rates, and the implied probabilities of the

estimated types' predicted decisions in games with c = 2, 3, or 4.

In Section 4.A we could not reject the hypothesis that subjects' decisions were drawn from the

same distribution in the Baseline and OB treatments. Moreover, a likelihood ratio test cannot reject the

hypothesis that their type-dependent error rates are the same (p-value 0.476), and pooling the Baseline

and OB data and reestimating leaves every subject 's type estimate unchanged. We therefore discuss the

Baseline and OB results together in the rest of this section.

In the pooled Baseline and OB treatments, the most frequ ent estimated type is Sophisticated

with 51% (37) of the 72 (= 45+27) subjects, followed by Naïve/Optimistic with 25% (18), Equilibrium

with 14% (10), Altruistic with 8% (6), and Pessimistic with 1% (1). The estimated error rate for

Altruistic subjects is 0.66, implying that they made Altruistic predicted decisions with probabilities that

range from 0.50-0.67 for c = 2, 3, 4. This error rate is well below the value of 1.0 that implies complete

                                                                                                                                                                
d is weakly identified, and we can reject neither d = 0 nor d = 1 in any treatment. We set d = 1 for simplicity.
42The maximum likelihood estimate of ek is a kind of weighted average of the sample error frequencies when c = 2, 3, 4
for subjects estimated to be of type k, with the frequency for each c adjusted for the associated probability that a
predicted decision was made by chance. If c = 2 for all games the model gives the probability of a predicted decision as
1 - ek/2, and the estimated  ek is just twice the observed error frequency. When c varies in the sample the estimates make
similar corrections for each c, but nonlinearities preclude a closed-form solution for the estimate of ek.
43The weight of i

ckx  also increases in c for any ek ? [0, 1], so a predicted decision is stronger evidence in favor of types
that predict it when a subject has more decisions, because the decision is then less likely to have been made in error.
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randomness, but it indicates that the model explains only about a third of the variation in Altruistic

subjects' decisions. The other types' error rates range from 0.20-0.29, similar to those EG&G and H&C

found in other settings. These error rates are quite low, given that they reflect subjects' initial responses

to unfamiliar, abstractly framed tasks , and that they are discounted for the probability that a predicted

decision was made by chance (fn. 42); they imply that subjects made their types ' predicted decisions

with probabilities from 0.78-0.90 for c = 2,3,4. Overall, for all subjects but those estimated to be

Altruistic  the model explains a large fraction of the variation in decisions, and the model seems to do a

good job of describing our subjects' highly heterogeneous decisions. T he Naïve/Optimistic  and

Sophisticated types alone capture most of the variation in subjects ' decisions, and the low estimated

frequencies for our other three types give reason for confidence that no non-ad hoc alternative type

would enter significantly if added to our list.

As expected, subjects' decisions in the TS treatment were very different. The most frequent

estimated type (recalling that the Sophisticated type is excluded a priori) is Equilibrium with 80% (12)

of the 15 subjects, followed by Naïve/Optimistic with 13% (2), Altruistic with 7% (1), and Pessimistic

with 0% (0). The estimated error rate for Equilibrium subjects is 0.07, implying that they made

Equilibrium decisions with probabilities that range from 0.95-0.96 for c = 2, 3, 4. The estimated error

rates for Naive/Optimistic and Altruistic subjects were very high, 0.79 and 0.57 respectively, implying

that they made their types ' predicted decisions with probabilities that range from 0.41-0.71. The three

TS subjects not estimated to be Equilibrium were the same three who revealed by their comments or in

our exit survey that they did not try to identify equilibria (Section 4.A). Excluding them, in TS (ex.),

yields 100% (12) Equilibrium types, still with error rate 0.07 because the error rates are type-dependent

and they are the same subjects as in TS.  These subjects were remarkably proficient at identifying

equilibria , better after 40 minutes of programmed learning on the screen  than most of our undergraduate

students who have completed a course in game theory.

We also tested our assumption that error rates are type-dependent within each treatment, but not

idiosyncratic (i.e. subject-specific). Likelihood ratio tests reject the hypothesis of type-independent in

favor of type-dependent error rates in the Baseline (p-value 0.0033) and TS treatments (p-value

1.732E-09), but not in OB (p-value 0.481) or in TS (ex.) (trivially, because all 12 TS (ex.) subjects

were Equilibrium). They also reject the hypothesis of type-dependent in favor of idiosyncratic error

                                                                                                                                                                
44The Gauss computer code and intermediate computations are available from the authors on request.
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rates, with p-values of 0.033 or less in every treatment.  We focus on the model with type-dependent

error rates despite these last rejections because in Section 6's analysis we cannot reject type-dependence

in favor of idiosyncrasy, and as a simplifying restriction it reduces the large number of parameters in that

model and brings it closer to the spirit of error-rate analysis. 45

To sum up, Baseline and OB subjects' decision rules are highly heterogeneous, and no theory

that assumes homogeneity is likely to describe their behavior adequately. Their compliance with

equilibrium is uniformly high in simple games, but falls off as complexity increases, eventually falling

below random in games in which it depends on equilibrium logic or three rounds of iterated dominance

(Table VI). But despite low compliance in our most complex games, Baseline and OB subjects reveal

considerable strategic sophistication, with 14% estimated to be Equilibrium and 51% estimated to be

Sophisticated (Table VII).

Perhaps the most surprising aspects of our find ings so far are that Sophisticated subjects

outnumber Equilibrium subjects by nearly four to one, and that noncompliance with equilibrium in

complex games far exceeds our estimates of the numbers of unsophisticated subjects: 35% of our

Baseline and OB subjects are estimated to be types other than Equilibrium or Sophisticated, while

noncompliance in our most complex games  (those solvable by three rounds of iterated dominance or

with unique equilibria but no dominance) ranges from 48-89% (= 11-52% compliance in Table VI).

It is instructive to examine these results more closely. Our Equilibrium and Sophisticated types '

predicted decisions are separated only in games 5A, 5B, 8A, and 8B for Row players and in games 6B,

7A, and 7B for Column players (Table I). These games are essentially all of our most complex games in

which the player in question has three decisions, and essentially all of the games for which equilibrium

compliance was worse than random, which is what yields the separation. 46 Speaking approximately, our

Equilibrium subjects were those who chose equilibrium decisions in those games despite the low

compliance rates, while our Sophisticated subjects were those who chose best responses to their

partners' prevailing non-equilibrium decisions. Thus, the predominance of Sophisticated over

Equilibrium subjects suggests that many of our su bjects anticipated the pattern of compliance and

                                               
45Reestimating with t ype-independent error rates changes three Baseline subjects' estimated types (one from Altruistic to
Naïve/Optimistic and two from Altruistic to Sophisticated), no OB subjects', and one TS subject's (from
Naïve/Optimistic to Equilibrium).  Reestimating with idiosyncratic error rates yields exactly the same type estimates as
with type-independent error rates. These relatively minor changes suggest that our type estimates are quite robust.
46"Essentially" in each case because game 6A for Columns is excluded. The observed B+OB decision frequencies were
such that for this game, a Sophisticated Column subject only slightly preferred his Equilibrium decision.



27

noncompliance in our games— an anticipation that required a better understanding of their partners '

decisions than equilibrium  analysis alone can supply. 47

Why don't the high frequencies of Equilibrium or Sophisticated subjects in the Baseline and OB

treatments yield high frequencies of equilibrium — and therefore self-justifying — decisions in our most

complex games? Given Baseline and OB subjects' uniformly high compliance with dominance, this is

unlikely to be due to failures of decision-theoretic rationality, and given TS subjects' success identifying

equilibrium decisions in our most complex games, it is unlikely to be due to cognitive limitations or

difficulties looking up payoffs via Mouselab. We believe our results are best explained by a failure of the

common knowledge of rationality and/or mutual knowledge of strategies assumptions that underlie the

deductive justification for equilibrium (Section 2).

In this view, many of our subjects are sophisticated, in the sense that they can predict others '

decisions in games with a variety of strategic structures, and they choose best responses to their

predictions. However, those subjects do not base their predictions on the assumption that all other

subjects are sophisticated, and will therefore analyze the games the way they themselves do. 48 Instead

they expect a certain proportion of unsophisticated subjects in the population, who deviate from

equilibrium in certain kinds of games in predictable ways, and they also expect a certain proportion of

sophisticated subjects, who anticipate those deviations.49 These responses by sophisticated subjects raise

the rate of equilibrium noncompliance above what one might expect, given the estimated frequencies of

Equilibrium and Sophisticated subjects.

More generally, even a high frequency of sophisticated players may not justify the use of

equilibrium analysis t o describe behavior in all games: To do well a player must both respect the

limitations of equilibrium analysis in describing unsophisticated players ' decisions and take into account

the likely heterogeneity of his partners ' levels of sophistication.50

                                               
47The alternative explanation that the subjects estimated to be Sophisticated were following another decision rule that
happened to produce Sophisticated decisions in those games is less plausible because our model allows for, and rejects,
the leading alternative hypotheses that those subjects were Naïve, Optimistic, Pessimistic, or Altruistic.
48If it were common knowledge (and therefore correct) that all subjects are Sophisticated, their strategies would be
mutual knowledge, and therefore, given their rationality, necessarily in equilibrium.
49In this respect our Sophisticated type resembles Stahl and Wilson 's (1995) "worldly" and, especially, their "rational
expectations" types. They estimate a high frequency (about 40%) of worldly subjects and a moderate frequency (about
20%) of "Naïve Nash" (like our Equilibrium) subjects, but, in contrast to our results, no "rational expectations" subjects.
50This reconfirms a point that has been made by many other experimental studies, including Roth, Prasnikar, Okuno-
Fujiwara, and Zamir (1991), McKelvey and Palfrey (1992), Beard and Beil (1994), Nagel (1995), Stahl and Wilson
(1995), Stahl (1996), Ho and Weigelt (1996), and Ho, Weigelt, and Camerer (1998).
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5. Modeling Cognition and Information Search

Our analysis has so far been confined to subjects' decisions, but our main goal was to gain a

deeper understanding of strategic behavior by studying subjects' underlying cognitive processes.

Although we cannot observe cognition directly, the look-up data recorded via Mouselab in our Baseline

and TS treatments allow us to study cognition indirectly, via subjects' information searches. However,

any inferences we draw about cognition depend on its relationship to information search. Modeling this

relationship raises difficult issues that to our knowledge have been considered only by C&J and Algaze

[Croson] (1990).51 In this section we discuss those issues and introduce the model of cognition and

information search used in Section 6's analysis.

Recall that we view a subject's decisions in the 18 games he faces as determined by a single

decision rule or type as defined in Section 2, subject to errors as modeled in Section 4.C. We imagine

that a subject implements his type's predicted decision in each game via a cognitive process, during

which he searches for the needed payoff information. More precisely, we suppose that his type first

determines his information search, possibly with error, and then his type and information search,

including any errors, jointly determine his decision, again possibly with error.

In modeling this process, we face two main problems. First, the relationships between a subject's

type, cognition, information search, and decisions are not yet well understood; many of the factors that

influence them are unobservable; and little theory exists to guide their specification. Second, the space

of possible look-up sequences in our design is enormous, and the observed sequences are noisy and

highly heterogeneous. Almost any aspect of subjects' information searches might be related to their

decisions— Section 6.A's analysis and Table IX below suggest several possibilities— but an analysis that

took their full richness into account would be intractable.

These circumstances make it difficult to specify a complete parametric model of subjects'

information searches and decisions with any confidence, and suggest that any such specification is more

than usually likely to introduce distortions. We therefore take a more conservative approach, which

promises to be robust to the things we cannot specify with confidence.

                                               
51Related issues have been discussed in the computational complexity literature, particularly for iterated dominance, by
Knuth, Papadimitriou, and Tsitsiklis (1988) and Gilboa, Kalai, and Zemel (1993), among others; but their analyses focus
on identifying ways to "solve" a game in a number of operations that is polynomial in its size, which yields algorithms
that seem to us too sophisticated to be descriptive of real players' cognitive processes.
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We first introduce several hypotheses about how cognition influences information search,

suggested by the results of C&J's control treatment and our TS treatment. We then derive the

implications of our most basic hypotheses for our types' look-up patterns, showing that they are

strongly separated across types. In Section 6.B we generalize Section 4.C's model of decisions by

conditioning each type's error rate on the level of compliance with the implications for that type's look-

up patterns. The resulting model allows us to use the information in individual subjects' look-up

patterns, as well as their decisions, to estimate their types, while imposing only minimal restrictions on

the process that determines subjects' look-up patterns. Finally, we define 13 additional measures on

look-up sequences and use our hypotheses to derive our types' implications for those measures, showing

that they too are separated across types. In Section 6.A we use those measures to conduct an aggregate

analysis, showing how subjects' information searches vary, on average, across their types as estimated

from decisions alone in Section 4.C. This approach complements Section 6.B's econometric analysis

while imposing less structure, conveying more of the information in the look-up data, and indicating the

possibilities for further analyses.

We begin our discussion with some background and terminology. Identifying one of our types'

predicted decision in one of our games requires a set of comparisons, or sometimes one of several

alternative sets whose elements may not be interchangeable. For instance, depending on the structure of

the game, our Equilibrium type's predicted decision can be identified by checking for dominance among

its own and/or the other player's decisions, checking for iterated dominance, checking directly for pure-

strategy equilibria, or some combination of those methods. 52 Referring to Figure 1, those operations

involve the following kinds of comparisons:

1. Checking for dominance among one's own decisions requires a set of up-down comparisons

of the payoffs labeled "Your points" in each of the left-hand columns.

2. Checking for dominance among the other player's decisions requires a set of left-right

comparisons of the payoffs labeled "Her/His points" in the right-hand portions of each row.

3. Checking for iterated dominance requires alternating searches as in 1 and 2, in either order,

possibly omitting the rows and/or columns of decisions previously identified as dominated.

                                               
52Because subjects had no reason to believe equilibrium was unique, our Equilibrium and Sophisticated types may need
to be sure they have identified all equilibria (Section 3.A). Our  discussion is simplified using the facts that our designs
avoid ties in comparisons, multiple equilibria, and games for which plausible predictions involve mixed strategies.
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4. Checking directly for pure-strategy equilibria requires one of two alternative sets of

comparisons. One can either check each possible decision combination separately or use what we shall

call best-response dynamics, which rules out some combinations using the fact that only decisions that

are best responses can be part of an equilibrium. Checking a particular combination, say (#, &), requires

an up-down comparison of the payoffs r#& and r*& and a left-right comparison of the payoffs c#& and

c#@. Checking via best-response dynamics requires only a subset of the look-ups and comparisons

required to check each combination separately, described below.

The comparisons in 1-4 are all pairwise ordinal payoff comparisons. As explained  below,

identifying our Sophisticated, Naïve, Optimistic, Pessimistic, and Altruistic types' predicted decisions

also requires only pairwise ordinal payoff comparisons, with minor exceptions. 53 We identify each type's

cognitive process with the sets of look-ups and comparisons it requires in our games. Our inferences

about cognition depend on how the required look-ups and comparisons are realized in look-up

sequences. We presume that a subject's look-up sequence is determined by his type's required look-ups

and comparisons, his costs of memorization and search, his memory limitations, and how efficiently he

searches. Instead of modeling this relationship, we structure our inferences about cognition via five

hypotheses about how cognition influences information search.

Each of our hypotheses has separate implications for each of our types, which differ across

games with different strategic structures. Our two most basic hypotheses, A and B, reflect our types'

minimal look-up and comparison requirements, to avoid arbitrarily imputing inconsistency to subjects

whose cognitive processes we cannot observe. Our presumption that a subject's type first determines his

information search, possibly with error, and then his type and information search jointly determine his

decision, again with error, suggests that a subject's error rate should decrease as his compliance with his

type's hypotheses A and B increases, other things equal. Accordingly, hypotheses A and B play leading

roles in Section 6.B's individual-level econometric analysis, where we test this implication of our theory.

Our three subsidiary hypotheses, A', A", and B', are stochastic counterparts of hypotheses A and B,

used only to derive benchmark predictions about how our look-up measures vary across types, in

                                               
53This is true of most notions in normal-form noncooperative game theory, but not all (e.g. risk-dominance). The
exceptions are that a Sophisticated or Naive subject may compute his decisions' expected payoffs via left-right look-ups in
own payoffs, which requires ternary or quaternary payoff comparisons when his partner has three or four decisions, and
an Altruistic subject needs to add his and his partner's payoffs and compare the totals across decision combinations.
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preparation for Section 6.A's aggregate analysis. 54 Hypotheses A, A', and A" restrict the look-ups that

appear in the look-up sequence of a subject of a given type in a given game, while hypotheses B and B'

restrict the adjacent look-up pairs that appear in the sequence, in each case otherwise without regard to

the order of look-ups.

Hypothesis A: For a given type, in a given game, each look-up needed to identify the type's

predicted decision must appear at least once in the look-up sequence for that game.

We call the look-ups in the set (or in any of the alternative sets, if there are more than one)

required by hypothesis A for a type in a game the type's relevant look-ups for that game.

Hypothesis A should be uncontroversial, because a subject who does not make all of the look-

ups it requires for a type cannot identify the type's predicted decision with certainty— although a clever

subject might be able to identify it with high probability, using our publicly announced bounds on

possible payoffs. Hypothesis A's discriminatory power is limited, however, because it is likely to be

satisfied by chance even for moderately long look-up sequences. For instance, our TS subjects satisfied

hypothesis A for the Equilibrium type in 98% of the game-subject pairs: 97% of those in which they

made the equilibrium decision and 100% of the few pairs in which they did not.

Hypothesis B: For a given type, in a given game, hypothesis A must be satisfied, and each

comparison needed to identify the type's predicted decision must be represented by an adjacent look-up

pair at least once in the look-up sequence for that game.

We call the comparisons required by hypothesis B for a type in a game the type's relevant

comparisons for that game.

Hypothesis B would be a poor approximation if subjects simply scanned and memorized all of a

game's payoffs before analyzing it, because the order of their look-ups would then be unrelated to their

relevant comparisons. But hypothesis B is a good approximation if repeated look-ups are less costly

than memory, so that subjects usually perform comparisons one at a time, acquiring the information for

each comparison by adjacent look-ups, storing the results in the simplest form that suffices for the rest

                                               
54Our original proposal for these experiments discussed a hypothesis C, which combined hypothesis B with the
requirement that the look-up policy is efficient, in that it minimizes the expected total number of look-ups (and, in
particular, avoids unnecessary look-ups). This hypothesis was also suggested by C&J's control subjects, whose look-ups
were usually in the last-period-first order that minimized the total number needed to identify their subgame-perfect
equilibrium offers. Hypothesis C implies potentially useful restrictions on the order of subjects' comparisons, but we omit
it because its implications for our types are subtle, and seem unlikely to be satisfied often enough to be useful.
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of their analysis, and otherwise relying on repeated look-ups rather than memory. 55 The results of C&J's

control treatment and our TS treatment suggest that hypothesis B is a good approximation for our

Baseline subjects.56 Our TS subjects, whose environment was less conducive to memorization than

C&J's (with 8-16 payoffs versus three pie sizes), looked up most of the payoffs in each game repeatedly,

and 50% of the adjacent pairs in their look-up sequences corresponded to comparisons relevant for the

Equilibrium type, close to the maximum possible number given that each look-up (except the first and

last) belongs to two adjacent pairs.

Hypothesis B is more controversial than hypothesis A, because memory might allow a subject to

identify his type's predicted decision with certainty even if his relevant comparisons are not all

represented by adjacent look-ups. Accordingly, we treat it more conservatively in Section 6.B's

econometric analysis. Hypothesis B is important because it is less likely than hypothesis A to be satisfied

by chance, and therefore has greater discriminatory power. Our TS subjects, for instance, satisfied

Equilibrium hypothesis B in 89% of the game-subject pairs: 94% of those in which they made the

equilibrium decision and 47% of those in which they did not.

We supplement hypotheses A and B with three subsidiary hypotheses.

Hypothesis A': For a given type, in a given game, the type's relevant look-ups appear more

frequently in the look-up sequence, on average, than other look-ups, hence more frequently than in a

random sequence with the same total number of look-ups.

Hypothesis A": For a given type, in a given game, the type's relevant look-ups have longer

average look-up durations, or  gaze times, than other look-ups.

                                               
55Hypothesis B reflects our inability to use Mouselab to distinguish look-up pairs that are adjacent by coincidence from
adjacent pairs associated with comparisons (Section 3.B). We interpret simplicity as follows: The ordinal ranking(s) of a
pair (group) of payoffs is (are) simpler than the numerical payoffs, and a dominance relationship between two decisions
or the fact that a decision combination is an equilibrium are simpler than the corresponding sets of payoff comparisons.
56Recall that C&J's subjects played three-period alternating-offers bargaining games whose subgame-perfect equilibria can
be computed by backward induction, and that their control subjects were trained in backward induction and paid for
correctly identifying their subgame-perfect equilibrium offers, at which they enjoyed great success. This task requires only
pairwise ordinal payoff comparisons involving simple functions of the pie sizes, and is therefore similar to our
Equilibrium type's task. (It is somewhat more complex because it involves calculating payoffs from the pie sizes and one's
partners' offers, and then "folding back" the results.) C&J's control subjects usually looked up the third-period pie size
first, then the second-period pie size, sometimes returning to the third period, and only then the first-period pie size, with
most transitions from later to earlier periods. C&J's baseline subjects' look-up patterns are also consistent with this view,
under a plausible interpretation of their behavior as influenced by fairness (Crawford (1997, Section 4.1)).
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Hypothesis B': For a given type, in a given game, adjacent look-up pairs associated with the

type's relevant comparisons appear more frequently, on average, than other adjacent pairs, hence more

frequently than in a random sequence with the same total number of look-ups.

Hypotheses A' and B' are stochastic counterparts of hypotheses A and B. Although they are not

logically weaker— a subject might, for example, make all of the look-ups required by hypothesis A while

making many more irrelevant look-ups, thus violating the relative frequency requirement of hypothesis

A'— they seem more likely to be satisfied in noisy data. Hypothesis A" extends the intuition of

hypothesis A' from look-up frequencies to gaze times, on the theory that relevant payoffs may evoke

longer look-up durations as well as more frequent look-ups. 57

We now discuss the implications of our hypotheses. We begin by describing the implications of

hypotheses A and B, characterizing the minimal sufficient set or sets of look-ups or adjacent pairs

consistent with those hypotheses for each of our types and each kind of strategic structure in our design.

Some additional details and illustrations are given in Appendix D.

Equilibrium type: As noted above, depending on the strategic structure, the Equilibrium type

can identify its predicted decision by checking for dominance or iterated dominance; checking directly

for pure-strategy equilibrium, either decision combination by decision combination or via best-response

dynamics; or some combination of those methods. For our games, the minimal set or sets of sufficient

look-ups or adjacent pairs have a simple characterization that depends only on whether or not the game

is dominance-solvable.

In our dominance-solvable games there is only one way to perform iterated dominance, and the

sets of look-ups or comparisons it requires are always contained in the sets that checking directly for

equilibrium (by either method) requires. We can therefore identify the implications of Equilibrium

hypotheses A and B with the sets of look-ups and comparisons required for iterated dominance.

Equilibrium hypothesis A then requires that the look-up sequence include all look-ups associated with

the dominance and iterated dominance relationships by which the game can be solved, namely all

payoffs for the own or other player's decisions being compared except those that can be eliminated

using dominance relationships identified elsewhere in the iteration. Equilibrium hypothesis B then

                                               
57Standard decision-theoretic notions have no implications for gaze time because they focus on the information look-ups
reveal, which is independent of gaze time provided that (as here) it suffices for comprehension. However, subjects might
make irrelevant look-ups out of curiosity, and these may have shorter gaze times than relevant look-ups. Irrelevant look-
ups could also have longer gaze times, if subjects make relevant comparisons via brief, frequently repeated look-ups.
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requires that each of the associated comparisons is represented by an adjacent look-up pair in the

sequence, namely all up-down pairs of own payoffs or left-right pairs of other's payoffs for the decisions

being compared except pairs that can be eliminated using dominance relationships identified elsewhere

in the iteration.

In our non-dominance-solvable games, there is never any pure-strategy dominance, and the sets

of look-ups or comparisons required to check for equilibrium via best-response dynamics are always

contained in the sets required to check decision combination by decision combination. We can therefore

identify the implications of Equilibrium hypotheses A and B with the sets of look-ups and comparisons

required for best-response dynamics. Equilibrium hypothesis A then requires that the look-up sequence

include all of the look-ups associated with up-down comparisons of own payoffs or left-right

comparisons of other's payoffs starting from each possible decision combination, except those that can

be eliminated as never best responses. Equilibrium hypothesis B then requires that each of the associated

comparisons is represented by an adjacent look-up pair in the sequence, namely all up-down pairs of

own payoffs or left-right pairs of other's payoffs for each possible decision combination, except those

that can be eliminated as never best responses.

Sophisticated type: For the Sophisticated type, the characterization depends only on whether or

not the player has a dominant decision.

If the player has a dominant decision, and he happens to choose look-ups (for hypothesis A) or

comparisons (for hypothesis B) that identify it, they identify his predicted decision. Sophisticated

hypothesis A then requires only that his look-up sequence include all look-ups needed to identify his

dominant decision, and Sophisticated hypothesis B requires only that each of the associated

comparisons is represented by an adjacent look-up pair in the sequence, namely all up-down pairs of

own payoffs for the decision comparisons needed to identify his dominant decision.

If the player does not have a dominant decision (whether or not the game is do minance-

solvable), the player needs to form his beliefs and compare the expected payoffs of (at least) his

undominated decisions. Although we estimate those beliefs from the observed decision frequencies in

our experiment (Section 4.C), a Sophisticated player must deduce them from his knowledge of the

structure of the game and other players' typical responses to games with that structure. We take the

position that such deductions require him to identify all of the game's dominance and iterated dominance

relationships and its set of equilibria, because results in the literature (and our own results) make it clear
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that subjects' responses generally depend on them (Crawford (1997, Sections 4-5); Table VI). The

player can then make the expected-payoff comparisons required to identify his best response via running

totals, either by up-down comparisons column by column or left-right comparisons row by row; we

allow either method, but rule out hybrids. Sophisticated hypothesis A then requires that the look-up

sequence include all of the player's own and the other player's payoffs, because they are all relevant to

forming his beliefs and/or comparing the expected payoffs of his decisions. Sophisticated hypothesis B

then requires that his look-up sequence include the same adjacent pairs as Equilibrium hypothesis B,

plus any additional adjacent pairs needed to identify the dominance relationships among his own

decisions.58 His look-up sequence must also include a complete set of the adjacent pairs associated

either with all up-down comparisons of his own payoffs for his undominated decisions, or with all such

left-right comparisons.

Naïve, Optimistic, and Pessimistic types: To identify his predicted decision, a Naïve player

needs only to compare the expected payoffs of his decisions, given a uniform prior over the other

player's decisions. This can be done via running expected-payoff totals, either by up-down comparisons

column by column or left-right comparisons row by row; we allow either method, but rule out hybrids. 59

An Optimistic or Pessimistic player needs only to identify his maximax or maximin decision,

respectively. The maximax decision can be identified by scanning all own payoffs in any desired order,

with no restrictions on comparisons, keeping a record of the highest payoff found so far. The maximin

decision, however, must be identified by left-right comparisons, as there is no reliable way to identify it

by up-down comparisons.

For all three of these types, hypothesis A requires that the look-up sequence incl ude all the

player's own payoffs and only those payoffs, with two exceptions: if an Optimistic player's look-ups

include all of his payoffs for all but one of his own decisions and an own payoff for the remaining

decision that is higher than his maximum payoff for the former decisions, then his look-up sequence

need not include any more payoffs for the latter decision; and if a Pessimistic player's look-ups include

all of his own payoffs for one of his decisions and an own payoff for another decision that is lower than

                                               
58Note that, for non-dominance-solvable games, the Equilibrium type might not need these additional pairs.
59A Naïve player may be able to avoid some of these expected-payoff comparisons by identifying dominance among his
own decisions; this must be done by up-down comparisons, which have the same look-up requirements as comparing
expected payoffs of own decisions by up-down comparisons. He may also be able to avoid some look-ups or
comparisons by eliminating decisions that can be seen, using look-ups (for hypothesis A) or comparisons (for hypothesis
B) that are in the sequence, to have lower expected payoffs than some other decision.
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his minimum payoff for the former decision, then his look-up sequence need not include any more

payoffs for the latter decision. The Naïve Hypothesis B requires that a complete set either of up-down

comparisons or of left-right comparisons sufficient to compare the expected payoffs of the player's

undominated decisions and/or to identify his dominated decisions is represented by adjacent pairs in the

sequence. The Optimistic hypothesis B implies no restrictions beyond the Optimistic hypothesis A. The

Pessimistic hypothesis B requires that a set of left-right comparisons sufficient to identify the maximin

decision be represented by adjacent look-up pairs in the sequence.

Altruistic type: An Altruistic player needs only to compare the totals of his own and the other's

payoffs for each of the possible decision combinations. The Altruistic hypothesis A therefore requires

that his look-up sequence include all own and other's payoffs, and the Altruistic hypothesis B requires

that each of the above totals be represented by an adjacent look-up pair in the sequence.

We now define 13 additional measures on subjects' look-up sequences and derive our types'

implications for them under hypotheses A and B and our subsidiary hypotheses A', A", and B'. The

implications are derived game by game, then averaged over games because they are approximately the

same for all games. The measures are: the average total numbers of look-ups per game in own and

other's payoffs; the average numbers of consecutive look-ups, or string lengths, in own and other's

payoffs; the average look-up durations, or gaze times, in own and other's payoffs, in seconds; the

frequencies with which own payoffs are inspected first, and last; the frequencies of look-up transitions

from own to own payoffs, and from other's to other's payoffs; the frequencies of up-down transitions in

own payoffs and left-right transitions in other's payoffs, conditional on remaining in own or other's

payoffs, respectively; and the frequency of altruistic transitions— those from a given decision

combination in own payoffs to the same combination in other's payoffs, or vice versa.

 Table VIII lists the 13 measures and our types' theoretical implications for them, with the

relevant hypothesis indicated at the top of each column and the implications of random look-ups as a

benchmark.60 Table VIII shows that the measures can be expected to differ systematically across types,

separating them into three main groups, with differences across groups large enough to have a chance

of showing up even in aggregate data. The first group includes our two "game-theoretic" types,

                                               
60Random look-ups are defined as independently and uniformly distributed given their total number, which is set equal
to the observed total for each game-subject pair and then treated as exogenous.
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Equilibrium and Sophisticated. The second includes our solipsistic types, Naïve, Optimistic, and

Pessimistic. The third consists of our other-regarding but non-strategic Altruistic type.

We close this section by sketching the arguments for the implications in Table VIII. Readers

uninterested in the details can skip ahead to Section 6 without loss of continuity.

The implications about the minimal numbers of look-ups in own and other's payoffs follow from

hypothesis A. The Sophisticated type has a higher minimal number for own payoffs than the Equilibrium

type because a Sophisticated player, in forming his beliefs, may need to check for dominance

relationships among his own strategies that may influence his partner's response but are irrelevant to an

Equilibrium player. The differences in the Sophisticated and Equilibrium types' minimal numbers of

look-ups across own and other's payoffs stem from the different implications of dominant strategies for

eliminating required look-ups. 61 The minimal numbers of own look-ups for the Naïve and Optimistic

types are the same as for the Sophisticated type because all three types must look up all own payoffs

unless they happen to discover that they have a dominant decision, with a minor exception for the

Optimistic type concerning bounds based on payoff information available in the look-up sequence, noted

above. The minimal number of own look-ups for the Pessimistic type is lower because that type can

avoid the need for some look-ups more often, using bounds like those just noted. There are no

implications for other's look-ups for the Naïve, Optimistic, and Pessimistic types because other's look-

ups are irrelevant for those types.

Table VIII's implications for minimal average string lengths follow from hypothesis B'. Average

string length would approach two for long sequences of random look-ups if transitions to the same

payoff were as likely as to other payoffs, because there are as many own as other's payoffs. Our

subjects, however, almost never returned immediately to the same payoff. 62 If we elevate this empirical

regularity to an assumption, average string length approaches a limit less than two, which depends on

the numbers of decisions, as the total number of look-ups increases. An easy calculation assuming equal

numbers of look-ups in each game and averaging over games yields a limiting average string length of

1.82 for random look-ups. Our subjects' look-up sequences were long enough to make this an

appropriate benchmark. Hypothesis B' implies average string lengths at least as long as random for the

Equilibrium, Sophisticated, Naïve, Optimistic, and Pessimistic types, for which no relevant comparisons

                                               
61Random look-ups have no implications for the minimal numbers of look-ups, because they take the total numbers as
given. As explained in Appendix D, hypothesis B implies no further restrictions on minimal numbers of look-ups.
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cross the boundary between own and other's payoffs; and at most as long as random for the Altruistic

type, for which all relevant comparisons do so.

Table VIII's implications for gaze times follow immediately from hypothesis A". The

implications about the frequencies of inspecting own payoffs first and last follow from hypothesis A', on

the assumption that first and last look-ups are, like other look-ups, more likely than not to be relevant.

Random first and last look-ups are of course equally likely to be of own and other's payoffs. For the

Equilibrium, Sophisticated, and Altruistic types, hypothesis A' implies no presumption about first look-

ups, because both own and other's payoffs are usually relevant for those types. However, for the

Equilibrium and particularly the Sophisticated type, last look-ups are more likely than not to be of own

payoffs: For the Equilibrium type, the last piece of information relevant to identifying his predicted

decision via iterated dominance is an own payoff, while other methods are neutral on this point; and for

the Sophisticated type, the last  piece of relevant information is always from an expected-payoff or

dominance comparison of own decisions. For the Naïve, Optimistic, and Pessimistic types, hypothesis A'

implies that first and last look-ups are more likely than not to be of own payoffs, because only own

payoffs are relevant to those types. For the Altruistic type, hypothesis A' implies no presumption about

first or last look-ups.

Table VIII's implications for the frequencies of transitions from own to own and other's to

other's payoffs, of up-down transitions in own payoffs and left-right transitions in other's payoffs, and of

altruistic own-to-other's transitions, all follow from hypothesis B'. For random look-ups the expected

frequencies of those transitions, averaged across games, can be shown to be 45.0%, 45.0%, 30.6%,

30.6%, and 10.0%, respectively, again assuming that subjects never return immediately to the same

payoff. Just as for string lengths, hypothesis B' implies that relevant comparisons are represented by

adjacent pairs with frequencies at least as great as random.

It follows that the frequencies of own to own and other's to other's payoff transitions for the

Equilibrium and Sophisticated types; of up-down in own and left-right in other's payoff transitions for

the Equilibrium and Sophisticated types; of own to own transitions for the Naïve, Optimistic, and

Pessimistic types; and of Altruistic own to other's transitions for the Altruistic type should all be at least

random, because the associated comparisons are all more likely than not to be relevant. The frequencies

of up-down in own transitions for the Pessimistic type should be at most random, because left-right in

                                                                                                                                                                
62We can distinguish "returning" from "staying" because clicking was required to open and close boxes (Section 3.B).
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own transitions are more likely than not to be relevant comparisons for that type. The frequencies of

Altruistic own to other's transitions should be at most random for all types other than Altruistic, because

the associated comparisons are irrelevant for those types. The frequencies of up-down in own

transitions for the Naïve type should be approximately random because Naïve predicted decisions can be

identified equally well by left-right or up-down comparisons in own payoffs. Finally, there is no

presumption about the frequencies of up-down in own transitions for the Optimistic type; left-right in

other's transitions for the Naïve, Optimistic, or Pessimistic types; or up-down in own and left-right in

other's transitions for the Altruistic type, because there are no relevant comparisons of those kinds for

those types.

6. Analysis of Subjects' Decisions and Information Search

The look-up data recorded via Mouselab in our Baseline and TS treatments allow us to evaluate

subjects' compliance with the information search implications of each type's hypotheses A and B, and to

compute the other measures defined in Section 5. 63 In this section we analyze the relationship between

subjects' decisions and information searches in the light of the theory of cognition and information

search outlined in Section 5. In Section 6.A we examine aggregate patterns in subjects' information

searches, and in Section 6.B we generalize Section 4.C's econometric model of decisions to study the

relationship between decisions and information search at the individual level. The generalized model

allows more stringent tests of theories of strategic behavior, yields improved estimates of subjects'

types, and allows us to assess the extent to which conditioning on their information searches allows

better predictions of their decisions.

A. Aggregate information search patterns

Table IX summarizes Section 5's information search measures for the Baseline and TS

treatments; definitions of the measures are given in Section 5's discussion of Table VIII, whose column

headings are the same as Table IX's. (Aggregate compliance with our types' hypotheses A and B is

reported in Table X, discussed below.) The measures are aggregated across all 18 games, first with all

subjects in each treatment pooled and then with Baseline subjects disaggregated by their types as

estimated from their decisions alone (Section 4.C, Table VII). 64

                                               
63The look-up data from the Baseline and TS treatments are available from the authors on request.
64The measures were computed by first computing an (unweighted) average for each subject over all 18 games and then
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Several interesting patterns are apparent even at this level of aggregation. In the top part of

Table IX, we note that TS subjects have more own and other's look-ups, longer string lengths, and

shorter gaze times than Baseline subjects, all of which suggest that TS subjects perform more systematic

analyses. TS subjects also have many more own up-down and other's left-right transitions, both

characteristic (under hypothesis B) of most algorithms for identifying equilibrium or sophisticated

decisions, and more generally of strategic thinking in the normal form (Section 5, Appendix D). These

differences suggest that the methods theorists use to analyze normal-form games may not emerge

spontaneously without training in game theory. We also note the predominance of other's left-right over

own up-down transitions for both TS and Baseline subjects, which suggests that our display generates

some bias in favor of left-right look-ups (Section 3.B).

In the bottom part of Table IX, we note that the information search measures for Baseline

subjects disaggregated by estimated type are often several times higher than Table VIII's theoretical

bounds (Section 5), but that the two vary across types roughly in proportion. Altruistic and

Sophisticated subjects have systematically more own and other's look-ups than Equilibrium,

Naïve/Optimistic, and Pessimistic subjects, with a particularly striking difference between Sophisticated

and Equilibrium subjects. Altruistic and Equilibrium subjects have shorter string lengths and fewer own-

to-own and other's-to-other's transitions than other subjects. Not surprisingly, Altruistic subjects excel

in Altruistic own-to-other's transitions. For every type, there are more own than other's look-ups and

(except for Altruistic) longer own than other's gaze times, with the largest look-up differences for

Naïve/Optimistic and Pessimistic and the largest gaze time differences for Equilibrium and

Naïve/Optimistic. Own payoff first exceeds 60% for every type, and own payoff last exceeds 70% for

all types but Pessimistic and Altruistic. Curiously, Equilibrium and Sophisticated subjects have similar

frequencies of own up-down transitions, both higher than the frequencies of Naïve/Optimistic,

Pessimistic, and Altruistic subjects; but they have very different frequencies of other's left-right

transitions, with Equilibrium subjects more closely resembling TS (and Pessimistic and Altruistic)

subjects than Sophisticated subjects in this measure.

In describing subjects' compliance with hypotheses A and B, both here and in Section 6.B's

econometric analysis, we use discrete categories for tractability. For each subject, type, and game, we

first compute the percentages of the type's look-ups required by hypothesis A, and of the type's adjacent

                                                                                                                                                                
computing an (unweighted) average over subjects.



41

look-up pairs required by hypothesis B, that appear at least once in the subject's look-up sequence for

the game.65 We then sort those percentages into mutually exclusive and collectively exhaustive

categories as follows. For the Optimistic type, whose hypothesis B is vacuous, we use two categories:

A and ~A, meaning 100% and anything less than 100% compliance with Optimistic hypothesis A for the

game and subject in question. For the other types we use five categories: B 1, 100% compliance with the

type's hypotheses A and B; BH, 100% compliance with hypothesis A and 67-99% compliance with

hypothesis B; BM, 100% compliance with hypothesis A and 34-66% compliance with hypothesis B; B L,

100% compliance with hypothesis A and 0-33% compliance with hypothesis B; and ~A, anything less

than 100% compliance with hypothesis A. 66

Our categorization uses a coarser grid for hypothesis A than for hypothesis B, in effect assuming

that compliance with a type's hypothesis B is meaningless without 100% compliance with its hypothesis

A. This is a reasonable simplification because a subject who does not make all of the look-ups a type's

hypothesis A requires cannot identify that type's predicted decision with certainty, while memory may

allow a subject to identify a type's predicted decision with certainty by comparisons that are not all

represented by the adjacent pairs hypothesis B requires (Section 5).

Table X summarizes TS and Baseline subjects' aggregate rates of compliance with our types'

hypotheses A and B. Compliance rates are first calculated and categorized for each subject, type, and

game as just described, and then aggregated across games and subjects as indicated in the table. The top

part of the table gives overall compliance in the TS, TS (ex.), and Baseline treatments; and the bottom

part gives compliance in the Baseline with subjects disaggregated by types as estimated from decisions

alone in Section 4.C (Table VII). In reading the table, it may help to focus on the first and  fifth numbers

in each entry, the compliance rates for B 1 and ~A, subtracting the ~A entry from 100% to get the rate

for hypothesis A (without regard to the level of compliance with B).

The overall results in the top part of Table X show that TS and Baseline subjects differ very

sharply in compliance with Equilibrium hypotheses A and B (and to some extent with Sophisticated

hypothesis B), but they differ hardly at all in compliance with other types' hypotheses A and B.

                                               
65We verify compliance game by game because this is more robust to noise in the look-up data. Few subjects satisfied
any type's hypothesis B perfectly in all 18 games, although many satisfied hypothesis A for most types in all games.
66100% compliance with a type's hypothesis B implies 100% compliance with its hypothesis A, but less than 100%
compliance with hypothesis B implies no simple restrictions on compliance with hypothesis A. Although we describe
compliance as a continuous percentage, it too is discrete. Hypothesis B, for instance, requires between 0-8 comparisons
for different games and types. This discreteness makes the precise locations of the boundaries between our categories
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The Baseline results with subjects disaggregated by estimated type in the bottom part of the

table suggest that hypothesis A by itself doesn't discriminate very well, mainly because most subjects

comply with it for most types in most games. By contrast, category B 1 (100% compliance with both

hypotheses A and B) discriminates well even at this aggregate level. The 23 Baseline subjects estimated

to be Sophisticated, for instance, satisfy Sophisticated hypotheses B1 and A in 26% and 81% (= 100% -

19%) of game-subject pairs, respectively. These compliance rates are higher than compliance with

Sophisticated hypotheses B1 and A for any other estimated type but Altruistic (six subjects), with 26%

and 82%, and (for A) Pessimistic (one subject), with 6% and 100%. Similar comparisons show that

subjects whose estimated types are Naïve/Optimistic, Pessimistic, and Altruistic each have higher

compliance with their type's hypotheses A and B 1 than subjects of any other estimated type, with

isolated exceptions involving the one Pessimistic subject. The discriminatory power of category B 1 is

weakest for subjects estimated to be Equilibrium, who satisfy Equilibrium hypotheses B 1 and A in 32%

and 84% of game-subject pairs, respectively, slightly less than Sophisticated subjects, with 35% and

86%; Altruistic subjects, with 35% and 85%; and (for A) the one Pessimistic subject, with 11% and

100%.67

B. Generalized error-rate analysis of decision rules and information search

In this section we generalize Section 4.C's maximum likelihood error-rate analysis  to study the

relationship between decisions and information search at the individual level. The generalized model

differs from Section 4.C's by conditioning each type's error rate on the level of compliance with that

type's implications for look-up patterns under our hypotheses A and B. Compliance is evaluated for

each subject, type, and game and categorized discretely as explained in Section 6.A. The model is

otherwise identical to Section 4.C's, and ignores all other aspects of subjects' look-up sequences. It

allows us to use the information in subjects' look-up patterns along with their decisions to estimate their

types, while imposing minimal structure on subjects' information searches. Like Section 4.C's model, it

provides a coherent framework in which to combine information from observations that are consistent

with predicted behavior for more than one type.

                                                                                                                                                                
unimportant. It also happens to make the Pessimistic type's category B H vacuous, as indicated in Tables X and XI.
67The contrast between these results and the fact that Equilibrium category B 1 sharply separates TS from Baseline
subjects in the top part of Table X suggests that there are some important differences between TS subjects and "naturally
occurring" (Baseline) Equilibrium subjects, which are worth investigating further.
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As before, let i = 1, . . . , N index the subjects in a given treatment;  let c = 2, 3, or 4 be the

number of decisions a subject has in a given game; and let k = 1,… ,K index our types. We assume that

each subject is one of the types used in Section 4.C's analysis, defined in Section 2, but we now separate

our Naïve and Optimistic  types, which have different implications for information searches (though not

for decisions). K, the number of distinct types, is therefore now six instead of five .

We index a subject's level of compliance with a given type 's hypotheses A and B in a given game

by j, where j = 1, H, M, L, or 0 as his look-up sequence is in category B1, BH, BM, BL, or ~A. All

summations over j are taken over the values 1, H, M, L, and 0. A subject whose compliance with type

k's hypotheses A and B in a given game  is in category j will be said to have type-k compliance j in that

game. For the Optimistic type, whose hypothesis B is vacuous, we identify hypothesis A (logically the

union of B1, BH, BM, and BL) with BL, so compliance with Optimistic hypothesis A is coded as j = L.

This choice is arbitrary, but it has substantive implications only when we test the restriction that error

rates are type-independent, and those implications are minor even then.

We again assume that a subject normally makes his type 's predicted decision, but we now

assume that in each game, there is a given probability, kjε ? [0, 1], that a subject of type k with type-k

compliance j makes an error, in which case he makes each of his c decisions with probability 1/c. The

probability that such a subject makes type k's predicted decision is then (1 - kjε ) + kjε /c = 1 - (c -

1) kjε /c, and the probability that he makes any single unpredicted decision is kjε /c. We assume that errors

are i.i.d. across games and subjects, so that each kjε  is constant. As in Section 4.C's model we allow

type-dependent error rates, which is important given our types' very different cognitive and

informational requirements. The only innovation in the present model is that type k's error rate is now

also allowed to depend on the level of type-k compliance, j. This reflects the implication of our theory

of cognition and information search that a subject's error rate should decrease as his compliance with his

type's hypotheses A and B increases, other things equal (Section 5). T he model nests Section 4.C's

model, for which k

k

kj εε ≡ . Most of our types have five error rates, corresponding to the categories j = 1,

H, M, L, or 0. But because the Optimistic type's hypothesis B is vacuous it has only two error rates, kLε

for A = BL and 0kε  for ~A; and because the Pessimistic type's category BH is vacuous (fn. 66) it has

only four error rates, 1kε , kMε , kLε , and 0kε  for B1, BM, BL, and ~A.
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Let ij
ckT  denote the total number of games in a given treatment for which subject i has c decisions

and type-k compliance j, and let ij
ckx  denote the total number of such games in which subject i makes

type k's predicted decision. Because our error structure distinguishes neither different unpredicted nor

different predicted decisions for a given c, i, j, and k, the ij
ckT  and ij

ckx  are sufficient statistics.
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(6.3) implies that the maximum likelihood estimate of i
kd  identifies the type k for subject i that

maximizes a weighted sum of the ij
ckx , with the weights for different c, j combinations determined by the

estimated error rates kjε .68 The weights of the ij
ckx are again nonnegative and increasing in c. As in

Section 4.C, they reflect the extent to which  a predicted decision is estimated to have been more likely

                                               
68The estimate of kjε  is again a kind of weighted average of the sample error frequencies when c = 2,3, 4 for subjects

estimated to be of type k who have type-k compliance j, with weights reflecting the probabilities that a predicted
decision was made by chance, given c.
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than an unpredicted decision, approaching 0 as kjε  approaches one, the value for which the probability

of a predicted decision equals that of a single unpredicted decision.

In Section 4.C's analysis, the estimated error rates affected the type estimates only by

determining the relative weights of predicted decisions for different values of c. Here the estimated kjε

play a much more important role, determining the relative weights of predicted decisions that occur with

different levels of compliance with their types' information search implications. Other things equal, a

type receives more credit for a correctly predicted decision when the estimated error rate given the

observed level of compliance for that type is low. This feature of the model allows us simultaneously to

estimate which aspects of subjects' look-up patterns are relevant in predicting their decisions, and to use

this information in estimating subjects' types, in effect discounting correctly predicted decisions for a

given type when they occur with the "wrong" kind of look-up pattern for that type. We stress that our

specification allows but does not assume this, in that the "right" and "wrong" look-up patterns are

determined endogenously by the estimated error rates. Except for sampling error the estimated error

rates will be independent of aspects of compliance that do not affect subjects' decisions, so that our type

estimates will effectively ignore such aspects. This is an important advantage of our approach, given

how little is known about information search.

In general, our types' implications for decisions and information search work together to

distinguish them, with decisions doing most of the work when types' predicted decisions are separated

and information search taking up the slack when they are not. Even when predicted decisions are

separated, information search plays an important role by determining the relative weights on predicted

decisions that occur with different levels of compliance.

To see how this works more concretely, consider our Naïve and Optimistic types, whose

decisions are not separated in our games, so that no analysis of decisions alone can distinguish them.

The present analysis can distinguish them because their information search implications are separated,

with a vacuous Optimistic hypothesis B but a restrictive Naïve hypothesis B. It may appear that the

Naïve type must always be at a disadvantage in the estimation, relative to the Optimistic type, because

the restrictive Naïve hypothesis B is harder to satisfy. However, that restrictiveness also makes it

possible for compliance with Naïve hypothesis B to be statistically related to the frequency of a subject's

Naïve/Optimistic predicted decisions. To the extent that this allows a subject's frequency to be higher

for compliance levels that have lower estimated error rates, it is advantageous for the Naïve type,
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essentially because compliance with its hypothesis B is more useful than compliance with the vacuous

Optimistic hypothesis B in predicting his decisions. 69

Suppose, for simplicity, that both the Naïve and Optimistic types' hypotheses A are always

satisfied in the sample, and therefore useless in distinguishing them. 70 A subject will then be estimated to

be Naïve if, roughly speaking, his Naïve/Optimistic predicted decisions occur with lower Naïve than

Optimistic error rates, on average. In our empirical analysis, this possibility is realized for one of the 10

Baseline subjects classified as Naïve/Optimistic in Section 4.C, who is reclassified as Naïve. However,

three subjects not previously classified as Naïve/Optimistic are also reclassified as Naïve. Those subjects

happened to make fewer Naïve/Optimistic predicted decisions than those of the 10 previously

Naïve/Optimistic subjects for whom compliance with Naïve hypothesis B is weakly related to the

frequency of Naïve/Optimistic decisions. As a result, the estimated error rates are higher, on average,

for the Naïve type than for the Optimistic type. This yields lower weights on most Naïve/Optimistic

decisions for the Naïve type, so that eight of the 10 previously Naïve/Optimistic subjects are reclassified

as Optimistic (and one as Pessimistic).

The model has N + 26 parameters: one type for each of the N subjects plus five error rates (one

for each compliance level j) for each of our six types except Optimistic and Pessimistic, which have two

and four, respectively, as explained above. We computed maximum likelihood estimates of these

parameters separately for the Baseline, TS, and TS (ex.) treatments, u sing standard algorithms . The

results are summarized in Table XI, whose entries give the frequencies and numbers of subjects

estimated to be of each type, the estimated error rates for each type and level of compliance, and, as a

rough measure of the reliability of the error rate estimates, the percentages of the total number of

observations (45 subjects x 18 games = 810) on which they are based.

In the Baseline treatment, the most frequent estimated type is again Sophisticated with 47% (21)

of 45 subjects, and the next most frequent is now Optimistic with 18% (8), followed by Equilibrium,

Naïve, Pessimistic, and Altruistic with 9% (4) each. Individual subjects ' estimated types are the same as

                                               
69It can be shown that maximum likelihood type and error-rate estimates are such that predicted decisions for a subject's
estimated type tend to occur with levels of compliance for which that type's estimated error rate is low. This is only a
tendency because in our model with type-dependent (but not idiosyncratic) error rates, the error rate estimates are
determined by the error frequencies for all subjects of a given estimated type. A subject who is sufficiently unlike other
subjects of his estimated type may have more frequent predicted decisions when his type's estimated error rate is high.
70This is not quite true in our analysis, where overall Baseline compliance with hypothesis A was 96% for both
types. Although there are some differences between their hypothesis A implications that might be used to distinguish
them, we ignore this possibility in favor of the much sharper difference in hypothesis B implications for clarity.
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Section 4.C's, with the following exceptions: One of the five subjects estimated in Section 4.C to be

Equilibrium, one of the 10 then estimated to be Naïve/Optimistic, and one of the six then estimated to

be Altruistic are now estimated to be Pessimistic. Two of the 23 then estimated to be Sophisticated and

one of the six then estimated to be Altruistic are now estimated to be Naïve. Finally, eight of the 10 then

estimated to be Naïve/Optimistic are now estimated to be Optimistic, and one of those 10 is now

estimated to be Naïve. Overall, six of our 45 subjects are reclassified by taking information search into

account, and another nine are uniquely identified, resolving ambiguities in Section 4.C 's analysis of

decisions alone.

The Baseline error rate estimates  are generally consistent with the implications of Section 5's

theory of information search, which suggests that higher compliance with a type's information search

implications is associated with a lower error rate. There is one  major anomaly, in that the error rate of

0.10 for Sophisticated subjects with the lowest level of compliance is much lower than the error rates of

0.24-0.29 for Sophisticated subjects with higher compliance, and is based on 9% of the sample, a

nonnegligible fraction. There are also four minor anomalies, one each for the Equilibrium, Naïve,

Pessimistic, and Altruistic types, based on 1%, 0%, 0%, and 1% of the sample. Otherwise, each type 's

estimated error rates decrease with higher compliance as expected.

Comparing Tables VII and XI, this section's estimated error rate conditional on the highest level

of compliance (B1, or A for the Optimistic type) is higher than Section 4.C 's unconditional estimated

error rate for two types, representing 8 out of 45 Baseline subjects: Naïve, at 0.61 versus 0.28 for

Naïve/Optimistic; and Pessimistic, at 0.38 versus 0.20. The  error rate conditional  on high compliance is

lower for the other four types, representing 37 Baseline subjects: Equilibrium , at 0.12 versus 0.35,

Altruistic , at 0.14 versus 0.66, Optimistic,  at 0.22 versus 0.28 for Naïve/Optimistic , and Sophisticated,

at 0.24 versus 0.26.71 The error rates for our Equilibrium , Altruistic , Optimistic,  and Sophisticated

subjects are very low, given that they reflect initial responses  to games and are discounted for the

probability that a predicted decision was made by chance (fn. 42); they imply that those subjects made

their types' predicted decisions with probabilities from 0.82-0.94 for c = 2,3,4.

In the TS treatment the most frequent estimated type is again Equilibrium with 80% (12) of the

15 subjects, followed by Naïve with 13% (2) and Altruistic with 7% (1). In TS (ex.) 100% of the 12

                                               
71Except for changes in subjects' estimated types, these error rate estimates are based on the same frequencies of
predicted decisions as Section 4.C's unconditional estimates , hence must approximately equal them, on average. Thus,
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subjects are again estimated to be Equilibrium.  Subjects' type estimates are the same as Section 4.C's,

except that two Naïve/Optimistic TS subjects are now identified as uniquely Naïve.  Each type's

estimated error rates decrease with higher compliance, with minor exceptions involving 0%, 2%, 1%,

and 1% of the sample in TS, and 1% and 3% of the sample in TS (ex.)). T he error rate for the highest

level of compliance is lower than Section 4.C's unconditional error rate for each type: 0.05 versus 0.07

for Equilibrium, 0.75 versus 0.79 for Naive, and 0.47 versus 0.57 for Altruistic.

As in Section 4.C, likelihood ratio tests strongly reject the hypothesis of type-independent versus

type-dependent error rates in the Baseline (p-value < 0.001) and TS (p-value < 0.001) treatments. 72 But

likelihood ratio tests can no longer reject the hypothesis of type-dependent error rates versus error rates

that are idiosyncratic across subjects in the Baseline (p-value 0.066), TS (p-value 0.196), or TS (ex.) (p-

value 0.429) treatments. 73

The level of compliance with  our types' information search implications is statistically highly

significant  in both the Baseline and TS treatments . Allowing error rates to be type-dependent, likelihood

ratio tests strongly reject the hypothesis that for each type they do not vary with the level of compliance

in the Baseline (p-value 0.002), TS (p-value 0.017), and TS (ex.) (p-value 0.006) treatments. Together

with the fact that our estimated error rates generally decrease with higher compliance, this shows that

incorporating the cognitive implications of our types into an error rate analysis allows a coherent unified

account of subjects' decisions and information searches.

Overall, this section 's analysis confirms the view of subjects' decisions suggested by Section

4.C's analysis, with some adjustments. Conditioning on information search changes six of 45 Baseline

subjects' type estimates, and allows us to identify another nine subjects previously estimated to be

Naïve/Optimistic as uniquely Naïve (one) or Optimistic (eight). For other subjects conditioning on

compliance yields unchanged type estimates but higher error rates when compliance is low, moving

them toward the "random" type that our model implicitly allows. The error rate estimates also generally

                                                                                                                                                                
part of the difference is an automatic consequence of the fact that the error rates are generally decreasing in compliance.
72In the TS (ex.) treatment this restriction is vacuously satisfied because all subjects were estimated to be Equilibrium. In
the Baseline treatment, reestimating with type-independent error rates changes three  subjects' estimated types, one from
Altruistic to Sophisticated, one from Optimistic to Sophisticated, and one from Altruistic to Optimistic. In the TS
Treatment, reestimating changes one subject's estimated type, from Naïve to Equilibrium.
73In the Baseline treatment, reestimating with idiosyncratic rather than type-dependent error rates changes 13  subjects'
estimated types: six from Optimistic to Naïve, two from Naive to Sophisticated, one from Naïve to Altruistic, one from
Altruistic to Sophisticated, two from Pessimistic to Naive, and one from Pessimistic to Equilibrium.
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satisfy the restrictions suggested by our theory of information search, confirming the cognitive

implications of our interpretation of subjects' decisions.

7. Conclusion

This paper reports the results of experiments in which subjects play a series o f 18 two-person

normal-form games with varying strategic structures, using a computer interface that records their

searches for hidden payoff information along with their decisions. The experimental design is structured

to allow tests of deductive theories of behavior in games, including equilibrium analysis. We conclude

by summarizing the lessons we think can be drawn from our analysis.

With regard to subjects' decisions, we find high rates of compliance with equilibrium in games

that can be solved by one or two rounds of iterated dominance, as in previous experiments, but low

compliance in more complex games in which it depends on equilibrium logic or three rounds of iterated

dominance. The decision rules that best describe subjects' decisions over the games they played are

highly heterogeneous. A substantial majority of subjects exhibited some strategic sophistication, in that

their decisions appeared to reflect an analysis of their partners' incentives; and many subjects even seem

to have anticipated the pattern of noncompliance with equilibrium in our more complex games.

However, sophistication was neither extensive nor widespread enough to justify full reliance on

equilibrium analysis. Our results suggest that this was due mainly to the sophisticated subjects' failure to

assume that all other subjects are sophisticated.

Subjects' information searches were even more heterogeneous than their  decision rules,

providing an additional lens through which to examine the cognitive process that underlies their

strategic thinking. We find systematic relationships between subjects' deviations from the search

patterns suggested by equilibrium analysis and their deviations from equilibrium decisions. To structure

our analysis of those relationships, we develop a unified theory of decisions and information search,

based on six alternative decision rules with different implications for subjects' information searches and

decisions. This theory provides the foundation for an econometric analysis of our results, which allows

tests of game theory's cognitive implications along with its implications for decisions,  and uses the same

principles to explain subjects ' decisions and information searches. The results lend credence to the view

of strategic behavior that underlies our approach.
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More generally, our analysis suggests that behavior in other kinds of games and decision

problems might be better understood by searching for simple rules that describe subjects ' decisions in a

variety of settings, developing their cognitive implications, and using them to construct a unified

explanation of subjects' information searches along with their decisions. We hope that the theory and the

tools for measurement and data analysis discussed here will be useful in such efforts.   



51

Table I

Games Classified by Strategic Structure

Game Size Dominant
Decision for

Row/Column

Dominance-
Solvable

Equilibrium Sophisticated Naive/
Optimistic

Pessimistic Altruistic

2A 2x2 Yes/No Yes Top-Left Top-Left Top-Right Top-Right Bottom-Right

2B 2x2 Yes/No Yes Top-Left Top-Left Top-Right Top-Right Bottom-Right

3A 2x2 No/Yes Yes Top-Left Top-Left Bottom-Left Bottom-Left Bottom-Right

3B 2x2 No/Yes Yes Top-Left Top-Left Bottom-Left Bottom-Left Bottom-Right

4A 2x3 No/Yes Yes Top-Left Top-Left Bottom-Left Bottom-Left Bottom-Right

4B 3x2 No/Yes Yes Top-Left Top-Left Bottom-Left Middle-Left Bottom-Right

4C 3x2 Yes/No Yes Top-Left Top-Left Top-Right Top-Right Bottom-Right

4D 2x3 Yes/No Yes Top-Left Top-Left Top-Right Top-Middle Bottom-Right

5A 3x2 No/No Yes Top-Left Bottom-Left Bottom-Right Bottom- Right Middle-Right

5B 3x2 No/No Yes Top-Left Bottom-Left Bottom-Right Bottom-Right Middle-Right

6A 2x3 No/No Yes Top-Left Top-Left Bottom-Right Bottom-Right Bottom-Middle

6B 2x3 No/No Yes Top-Left Top-Right Bottom-Right Bottom-Right Bottom-Middle

7A 2x3 No/No No Top-Left Top-Right Bottom-Right Bottom-Middle Bottom-Middle

7B 2x3 No/No No Top-Left Top-Right Bottom-Right Bottom-Middle Bottom-Middle

8A 3x2 No/No No Top-Left Bottom-Left Bottom-Right Middle- Right Middle-Right

8B 3x2 No/No No Top-Left Bottom-Left Bottom-Right Middle-Right Middle-Right

9A 4x2 Yes/No Yes Top-Left Top-Left Top-Right Top-Right Bottom-Right

9B 2x4 No/Yes Yes Top-Left Top-Left Bottom-Left Bottom-Left Bottom-Right
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Table II

p-Values, Fisher's Exact Tests for Treatment Effects

(* p-value less than 0.05)

Game Size B1 vs. B2

Columns

(B1+B2) vs. OB

Columns

B1 vs. B2

Rows

(B1+B2) vs. OB

Rows

(B1+B2) vs. TS

Rows

(B1+B2) vs. TS (ex.)

Rows
2A 2x2 1.000 0.096 1.000 1.000 0.204 0.069
2B 2x2 1.000 0.270 1.000 0.267 0.257 0.294
3A 2x2 0.217 1.000 1.000 0.142 0.028* 0.061
3B 2x2 0.478 0.525 1.000 0.706 0.028* 0.070
4A 2x3 0.217 1.000 0.675 0.467 0.056 0.030*
4B 3x2 0.093 0.274 1.000 0.867 0.086 0.020*
4C 3x2 0.036* 0.493 0.221 0.060 0.633 0.537
4D 2x3 0.317 0.487 0.096 0.141 1.000 0.272
5A 3x2 1.000 0.159 1.000 0.795 0.0001* 0.0001*
5B 3x2 0.640 0.153 0.594 0.863 0.00002* 0.00000*
6A 2x3 1.000 0.024* 1.000 0.467 0.153 0.030*
6B 2x3 1.000 1.000 1.000 1.000 0.141 0.013*
7A 2x3 1.000 0.217 0.391 0.322 0.176 0.011*
7B 2x3 0.784 0.847 0.231 1.000 0.314 0.053
8A 3x2 0.680 0.730 0.841 0.435 0.0002* 0.0003*
8B 3x2 0.680 0.177 1.000 0.855 0.0002* 0.0001*
9A 4x2 0.379 0.150 0.221 0.267 1.000 0.537
9B 2x4 0.590 0.070 1.000 0.370 1.000 0.137
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Table III

p-Values, Fisher's Exact Tests, Rows versus Columns in Isomorphic Games

(* p-value less than 0.05)

Games
Row, Column

Decisions B1+B2 OB (B1+B2) vs. OB,
Rows+Columns

2A, 3A 2 0.134 0.596 1.000
2B, 3B 2 0.665 1.000 0.150
3A, 2A 2 0.766 0.385 0.077
3B, 2B 2 1.000 1.000 0.277
4A, 4C 2 1.000 0.120 1.000
4D, 4B 2 1.000 1.000 0.046*
6A, 5A 2 0.373 1.000 0.077
6B, 5B 2 0.208 0.704 0.450
7A, 8A 2 1.000 0.704 0.330
7B, 8B 2 1.000 0.252 0.466
9B, 9A 2 1.000 0.013* 0.783
4B, 4D 3 0.003* 0.320 0.693
4C, 4A 3 1.000 0.222 0.701
5A, 6A 3 0.596 0.420 0.040*
5B, 6B 3 0.887 1.000 1.000
8A, 7A 3 0.739 1.000 0.100
8B, 7B 3 0.881 1.000 0.710
9A, 9B 4 1.000 0.481 0.244

Table IV

Payoff Incentives for Strategic Types, B+OB

Player role Sophisticated Equilibrium Naïve/Optimistic Pessimistic Altruistic
Row 1127.8

(100.0%)

1092.0

(96.8%)

965.5

(85.6%)

943.2

(83.6%)

773.5

(68.6%)
Column 1115.5

(100.0%)

1091.4

(97.8%)

958.4

(85.9%)

940.5

(84.3%)

766.5

(68.7%)
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Table V

p-Values, Exact ?2 Tests for Random Decisions

(+ p-value greater than 0.05)

Games Decisions B+OB
Rows

B+OB
Columns

B+OB
Rows+Cols.

TS
Rows

TS (ex.)
Rows

2A, 3A 2 0.004 2.3e-07 8.1e-09 0.0010 0.0005

2B, 3B 2 2.3e-07 1.9e-08 8.1e-09 6.1e-06 0.0005

3A, 2A 2 0.029 0.405+ 0.024 0.0010 0.0006

3B, 2B 2 0.011 0.011 0.0002 6.1e-06 0.0005

4A, 4C 2 0.029 0.618+ 0.044 0.0010 0.0005

4D, 4B 2 1.9e-06 1.9e-06 5.8e-12 0.0074 0.0005

6A, 5A 2 0.029 0.405+ 0.024 0.0074 0.0005

6B, 5B 2 0.243+ 0.029 0.013 0.0074 0.0005

7A, 8A 2 0.868+ 0.868+ 1.000+ 0.118+ 0.0006

7B, 8B 2 0.618+ 0.868+ 0.906+ 0.118+ 0.0006

9B, 9A 2 7.0e-05 0.132+ 7.6e-06 0.0352 0.0005

4B, 4D 3 0.0007 3.5e-08 1.2e-07 0.0003 0.0009

4C, 4A 3 3.4e-13 3.5e-11 0.04437 6.5e-06 5.6e-06

5A, 6A 3 5.4e-09 6.9e-08 9.2e-16 0.0003 0.0009

5B, 6B 3 1.2e-06 5.1e-06 1.0e-11 0.0009 0.0001

8A, 7A 3 4.8e-05 3.0e-06 3.2e-10 8.0e-05 0.0001

8B, 7B 3 1.3e-05 3.5e-07 1.2e-11 0.0009 0.0001

9A, 9B 4 2.3e-17 5.2e-15 1.2e-07 0.035 0.0005
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Table VI

Percentages of Decisions that Comply with Equilibrium by Type of Game

Type of Game (rounds of dominance) B1+B2 OB B+OB TS TS (ex.)

2x2 with dominant decision (1)

(2A, 2B for Rows; 3A, 3B for Cols.)

85.6%

(77/90)

92.6%

(50/54)

88.2%

(127/144)

96.7%

(29/30)

100.0%

(24/24)

2x3 with dominant decision (1)

(4D for Rows; 4B for Cols.)

82.2%

(37/45)

100.0%

(27/27)

88.9%

(64/72)

86.7%

(13/15)

100.0%

(12/12)

3x2 with dominant decision (1)

(4C for Rows; 4A for Cols.)

86.7%

(39/45)

92.6%

(25/27)

88.9%

(64/72)

93.3%

(14/15)

100.0%

(12/12)

4x2 with dominant decision (1)

(9A for Rows; 9B for Cols.)

88.9%

(40/45)

96.3%

(26/27)

91.7%

(66/72)

86.7%

(13/15)

100.0%

(12/12)

2x2, partner has dominant decision (2)

(3A, 3B for Rows; 2A, 2B for Cols.)

61.1%

(55/90)

79.6%

(43/54)

68.1%

(98/144)

96.7%

(29/30)

95.8%

(23/24)

2x3, partner has dominant decision (2)

(4A for Rows; 4C for Cols.)

62.2%

(28/45)

63.0%

(17/27)

62.5%

(45/72)

93.3%

(14/15)

100.0%

(12/12)

3x2, partner has dominant decision (2)

(4B for Rows; 4D for Cols.)

60.0%

(27/45)

55.6%

(15/27)

58.3%

(42/72)

80.0%

(12/15)

83.3%

(10/12)

2x4, partner has dominant decision (2)

(9B for Rows; 9A for Cols.)

73.3%

(33/45)

70.4%

(19/27)

72.2%

(52/72)

80.0%

(12/15)

100.0%

(12/12)

2x3 with 2 rounds of dominance (2)

(6A, 6B for Rows; 5A, 5B for Cols.)

62.2%

(56/90)

68.5%

(37/54)

64.6%

(93/144)

86.7%

(26/30)

100.0%

(24/24)

3x2 with 3 rounds of dominance (3)

(5A, 5B for Rows; 6A, 6B for Cols.)

11.1%

(10/90)

22.2%

(12/54)

15.3%

(22/144)

80.0%

(24/30)

87.5%

(21/24)

2x3, unique equilibrium, no dominance

(7A, 7B for Rows; 8A, 8B for Cols.)

50.0%

(45/90)

51.9%

(28/54)

50.7%

(73/144)

73.3%

(22/30)

91.7%

(22/24)

3x2, unique equilibrium, no dominance

(8A, 8B for Rows; 7A, 7B for Cols.)

17.8%

(16/90)

27.8%

(15/54)

21.5%

(31/144)

83.3%

(25/30)

91.7%

(22/24)
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Table VII

Type Distributions and Error Rates Estimated from Subjects' Decisions

(—  vacuous category; percentages may not sum to 100% due to rounding error)

Treatment (# subs.)
Log-likelihood

Type

B (45)
-423.72

OB (27)
-237.64

B+OB (72)
-662.61

TS (15)
-84.22

TS(ex.) (12)
-40.99

Sophisticated (# subs.)
Error rate

Pr{pred. dec.}|c=2,3,4

51% (23)
0.26

0.87,0.83,0.80

52% (14)
0.29

0.86,0.81,0.79

51% (37)
0.27

0.86,0.82,0.80

—
—
—

—
—
—

Equilibrium (# subs.)
Error rate

Pr{pred. dec.}|c=2,3,4

11% (5)
0.35

0.83,0.77,0.74

19% (5)
0.21

0.89,0.86,0.84

14% (10)
0.28

0.86,0.81,0.79

80% (12)
0.07

0.96,0.95,0.95

100% (12)
0.07

0.96,0.95,0.95

Naïve/Opt. (# subs.)
Error rate

Pr{pred. dec.}|c=2,3,4

22% (10)
0.28

0.86,0.81,0.79

30% (8)
0.31

0.84,0.79,0.76

25% (18)
0.29

0.85,0.80,0.78

13% (2)
0.79

0.61,0.48,0.41

0% (0)
—
—

Pessimistic (# subs.)
Error rate

Pr{pred. dec.}|c=2,3,4

2% (1)
0.20

0.90,0.87,0.85

0% (0)
—
—

1% (1)
0.20

0.90, 0.87,0.85

0% (0)
—
—

0% (0)
—
—

Altruistic (# subs.)
Error rate

Pr{pred. dec.}|c=2,3,4

13% (6)
0.66

0.67,0.56,0.50

0% (0)
—
—

8% (6)
0.66

0.67,0.56,0.50

7% (1)
0.57

0.71,0.62,0.57

0% (0)
—
—
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Table VIII

Implications of Types for Look-up Measures (—  vacuous)

Type Own
Look-
Ups
(A)

Other
Look-
Ups
(A)

Own
String
Length

(B')

Other
String
Length

(B')

Own
Gaze
Time
(A")

Other
Gaze
Time
(A")

Own
Payoff
First
(A')

Own
Payoff
Last
(A')

Own-
Own

Trans.
(B')

Other-
Other
Trans.

(B')

Own
Up-Dn.
Trans.

(B')

Other
L.-Rt.
Trans.

(B')

Altr.
Own-Oth.

Trans.
(B')

Equilibrium =4.1 =3.6 =1.82 =1.82 Long Long — =50% =45% =45% =31% =31% =10%
Sophisticated =5.8 =4.2 =1.82 =1.82 Long Long — =50% =45% =45% =31% =31% =10%
Naïve =5.8 — =1.82 — Long Short =50% =50% =45% — ˜31% — =10%
Optimistic =5.8 — =1.82 — Long Short =50% =50% =45% — — — =10%
Pessimistic =3.9 — =1.82 — Long Short =50% =50% =45% — =31% — =10%
Altruistic =5.8 =5.8 =1.82 =1.82 Long Long — — =45% =45% — — =10%
Random — — 1.82 1.82 — — 50.0% 50.0% 45.0% 45.0% 30.6% 30.6% 10.0%

Table IX

Aggregate Look-up Measures for TS and Baseline Subjects, and for Baseline Subjects by Type Estimated from Decisions Alone

Treatment
or Type

Own
Look-
Ups

Other
Look-
Ups

Own
String
Length

Other
String
Length

Own
Gaze
Time

Other
Gaze
Time

Own
Payoff
First

Own
Payoff
Last

Own-
Own

Trans.

Other-
Other
Trans.

Own
Up-Dn.
Trans.

Other
L.-Rt.
Trans.

Altr.
Own-Oth.

Trans.
All TS 20.5 17.6 6.27 6.57 0.60 0.47 68.3% 79.4% 80.2% 77.8% 57.1% 66.1% 7.9%
TS (ex.) 19.0 15.7 6.88 7.33 0.60 0.45 68.3% 83.9% 84.2% 81.6% 63.3% 69.3% 5.1%
All Baseline 16.8 14.6 5.46 5.95 0.67 0.60 72.8% 78.5% 79.7% 77.5% 31.6% 42.9% 8.5%
Equilibrium 12.9 12.5 3.43 4.26 0.81 0.57 71.1% 71.1% 67.6% 67.0% 31.4% 69.6% 12.3%
Sophisticated 18.6 17.3 5.81 7.00 0.58 0.52 61.7% 87.2% 84.4% 82.5% 37.6% 30.0% 6.4%
Naïve/Opt. 14.1 8.4 6.86 6.09 0.81 0.66 95.6% 81.1% 85.0% 79.8% 21.0% 46.1% 5.1%
Pessimistic 9.8 7.6 5.68 5.50 0.97 0.93 100.0% 38.9% 84.0% 87.0% 22.0% 68.0% 2.7%
Altruistic 18.2 17.5 3.53 3.29 0.66 0.73 72.2% 43.5% 61.8% 61.7% 28.2% 61.2% 19.8%
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Table X

Aggregate Rates of Compliance with Each Type's Hypotheses B1, BH, BM, BL, and A (~A) for TS and Baseline Subjects,

and for Baseline Subjects by Type Estimated from Decisions Alone

(—  vacuous category; percentages may not sum to 100% due to rounding error)

Treatment
(# subjects)

Equilibrium
B1,BH,BM,BL,~A

Sophisticated
B1,BH,BM,BL,~A

Naïve
B1,BH,BM,BL,~A

Optimistic
A,~A (B — )

Pessimistic
B1,BH,BM,BL,~A

Altruistic
B1,BH,BM,BL,~A

All TS (15) 89%,3%,3%,3%,2% 61%,12%,5%,2%,20% 83%,1%,2%,2%,13% 88%,12% 50%,— ,8%,30%,12% 8%,3%,12%,44%,33%

TS (ex.) (12) 95%,1%,1%,1%,3% 66%,9%,1%,1%,24% 82%,1%,2%,0%,15% 86%,14% 44%,— ,7%,36%,13% 1%,2%,10%,50%,27%

All Baseline(45) 30%,12%,23%,19%,16% 22%,17%,21%,20%,21% 78%,1%,4%,4%,14% 86%,14% 74%,— ,2%,11%,14% 9%,5%,11%,59%,24%

Baseline subjects by type estimated from decisions (# subjects)

Equilibrium (5) 32%,9%,23%,20%,16% 23%,11%,17%,20%,22% 62%,0%,10%,6%,22% 78%,22% 61%,— ,3%,13%,22% 7%,6%,12%,52%,23%

Sophist. (23) 35%,14%,24%,13%,14% 26%,20%,23%,13%,19% 79%,1%,3%,0%,17% 83%,17% 74%,— ,2%,8%,16% 4%,5%,14%,56%,21%

Naïve/Opt. (10) 17%,7%,22%,29%,25% 10%,12%,21%,28%,29% 88%,1%,5%,3%,4% 96%,4% 84%,— ,1%,10%,6% 8%,2%,5%,48%,37%

Pessimistic (1) 11%,33%,39%,17%,0% 6%,33%,44%,17%,0% 94%,0%,0%,6%,0% 100%,0% 94%,— ,6%,0%,0% 0%,0%,6%,94%,0%

Altruistic (6) 35%,11%,13%,26%,15% 26%,18%,12%,27%,18% 68%,0%,3%,17%,13% 87%,13% 63%,— ,5%,20%,12% 30%,8%,16%,26%,20%
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Table XI

Type Distributions and Error Rates Estimated from Decisions and Information Searches

(— vacuous category; percentages may not sum to 100% due to rounding error)

Treatment (# subs.)
Log-likelihood

Type

B (45)
-401.14

TS (15)
-74.16

TS(ex.) (12)
-33.74

Sophisticated (#subs.)
Error rate|B1,BH,BM,BL,~A

(sample frequency of
Sophisticated subject with

Soph. B1,BH,BM,BL,~A)

47% (21)
0.24, 0.25, 0.28, 0.29, 0.10
(12%, 9%, 10%, 6%, 9%)

—
—
—

—
—
—

Equilibrium (#subs.)
Error rate|B1,BH,BM,BL,~A

(sample frequency of
Equilibrium subject

with Eq. B1,BH,BM,BL,~A)

9% (4)
0.12, 0.25, 0.50, 0.00, 0.93
(4%, 1%, 2%, 1%, 1%)

80% (12)
0.05, 1.0, 1.0, 0.0, 0.0

(76%, 0%, 2%, 0%, 2%)

100% (12)
0.05, 1.0, 1.0, 0.0, 0.0

(94%, 1%, 2%, 1%, 3%)

Naïve (#subs.)
Error rate|B1,BH,BM,BL,~A
(sample frequency of Naïve

subject with Naïve
B1,BH,BM,BL,~A)

9% (4)
0.61, 0.00, 1.00, 1.00, 1.00
(7%, 0%, 0%, 0%, 1%)

13% (2)
0.75, — , 0.0, — , 1.0

(11%, 0%, 1%, 0%, 0%)

0%
—
—

Optimistic (#subs.)
Error rate|A,~A

(sample frequency of
Optimistic subject

with Optimistic A,~A)

18% (8)
0.22, 0.69

(17%, 1%)

0%
—
—

0%
—
—

Pessimistic (#subs.)
Error rate|B1,BH,BM,BL,~A

(sample frequency of
Pessimistic subject with

Pessimistic B1,BH,BM,BL,~A)

9% (4)
0.38, — , 0.0, 0.93, 1.00
(6%, — , 0%, 1%, 2%)

0%
—
—

0%
—
—

Altruistic (#subs.)
Error rate|B1,BH,BM,BL,~A

(sample frequency of
Altruistic subject with

Altruistic B1,BH,BM,BL,~A)

9% (4)
0.14, 1.00, 0.66, 0.85, 0.87
(3%, 1%, 2%, 2%, 1%)

7% (1)
0.47, 0.0, 1.0, 1.0,—

(6%, 1%, 0%, 0%, 0%)

0%
—
—
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APPENDIX A: BASELINE AND TS INSTRUCTIONS 1

BASELINE INSTRUCTIONS
[1ST SCREEN] {Introduction}

WELCOME!
PLEASE WAIT UNTIL THE EXPERIMENTER TELLS YOU TO START

You are about to participate in an experiment in interdependent decision making. Universities and
research foundations have provided the funds for this experiment. If you follow the instructions and pass
the Understanding Test, you will be allowed to continue in the experiment. If you make good decisions,
you may then earn a considerable additional amount of money, between $4 and $40. This additional
amount will be determined both by your decisions and by those of other participants in the experiment.
Before making your decisions, you will have the opportunity to gather information about how your
earnings and the other participants’ earnings depend on your and their decisions. All that you earn is
yours to keep, and will be paid to you in private, in cash, after today's session.
(Click on the bar at the bottom of this screen to move on to the next screen)
[2ND SCREEN] {Silence}

It is important to remain silent and not to look at other people's work. If you have any questions
or need assistance of any kind, please raise your hand, and an experimenter will come to you. Otherwise,
if you talk, laugh, exclaim out loud, etc., YOU WILL BE ASKED TO LEAVE. Thank you.
(Click on the bar at the bottom of this screen to move on to the next screen)
[3RD SCREEN] {Games}

The experiment consists of 18 rounds. In each round, you will be anonymously matched with one
of the other participants, a different one in each round. We will refer to the other participant as "s/he". In
each round, you and s/he will be presented with a decision problem. Each of you, separately and
independently, will make a DECISION. Together, the two decisions will determine the numbers of
POINTS each of you earn that round, which may be different. Earning more points increases your
payment at the end of the experiment, as explained below.

Once a round is over, you will not be able to change your decis ion in that round. Neither you nor
the other participants will learn anyone else's decisions in any round until the entire session is over.

The next screen displays an illustrative decision problem and its table of points. IT IS ONLY AN
ILLUSTRATION; the decision problems you will face in the 18 rounds will be different from this one,
and will change each round. AS YOU LOOK AT THIS PROBLEM, READ THE FIRST PAGE OF
THE PRINTED HANDOUT.
(Click on the bar at the bottom of this screen to move on to the next screen)
[4TH SCREEN] {2x2 table display}
[The following Table for Row subjects (or a variant for Column subjects, as explained below) will be
shown to the subject on the computer screen with the boxes open. ]

                                                       
1The OB instructions, which differ from the Baseline instructions only in the parts that pertain to opening boxes to look up
payoffs, are available from the authors on request. Everything between [ ] or { } is not shown to subjects.
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S/He: & S/He: @ S/He: & S/He: @

You: # 53 21 84 22

You: * 87 49 38 65

YOUR POINTS HER/HIS POINTS

I am done

[The following is the first page of the handout. ]
DO NOT START READING THIS PAGE UNTIL INSTRUCTED ON THE SCREEN TO DO SO

In the actual decision problems, you will be shown a table  like this (but with different numbers of
points) on your screen, and asked to choose one of your decisions, here labeled # and *. The other
participant with whom you are matched will be asked, independently, to choose one of her/his decisions,
here labeled & and @.

The combination of your decision and her/his decision is called an OUTCOME. The number of
points you and s/he receive for an outcome will be whole numbers from 0 to 99. Your points appear in
the boxes on the left side of the table, labeled "YOUR POINTS" underneath. Her/His points appear in
the boxes on the right side of the table, labeled "HER/HIS POINTS" underneath. To interpret the table,
consider the results of the possible outcomes (that is, combinations of decisions):

- If you choose # and s/he chooses @, s/he earns 22 points.
- If you choose * and s/he chooses @, you earn 49 points.
- If you choose # and s/he chooses &, you earn 53 points.
- If you choose * and s/he chooses &, s/he earns 38 points.
- If you choose # and s/he chooses &, s/he earns 84 points.
- If you choose # and s/he chooses @, you earn 21 points.
- If you choose * and s/he chooses &, you earn 87 points.
- If you choose * and s/he chooses @, s/he earns 65 points.

In each round of the actual decision problems, you will see a new table and you will be matched
with a different participant. As in this problem, the points that you and s/he earn will depend on both
your decisions.

Please be sure you understand the table. Raise your hand if you would like further ex planation.
Otherwise, move to the next screen by clicking on the box "I am done".

DO NOT TURN TO THE NEXT PAGE BEFORE INSTRUCTED ON THE SCREEN TO DO SO.
[This completes the first page of the handout. ]
[5TH SCREEN] {Covered-boxes explanation}

In the actual experiment, the points in a table, like the one on the previous screen, will not be
openly displayed. Instead they will be "hidden" in the boxes, as if the boxes were covered. However you
will be able to open any box, just by POINTING AT it with the mouse (that is, moving the cursor into
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the box by sliding the mouse) and CLICKING the LEFT button of the mouse. You may open as many
or as few boxes as you wish, as often and as long as you wish, and in any order. However, you will be
able to have only one box open at a time. If you want to open a new box, you will have to close the
previous box first by CLICKING the RIGHT button of the mouse. YOU ARE NOT ALLOWED TO
WRITE DOWN THE NUMBERS IN THE BOXES. If you would like to know the number of points in
a box that you do not remember, just open that box again.

The points will also be hidden on her/his screen, and s/he will be able to open the boxes in the
same way, subject to the same restrictions.

The next screen displays the same illustrative table as before, b ut with the boxes covered. Use the
mouse to practice opening boxes until you feel comfortable with the procedure. Then move on to the
following screen by CLICKING the box "Next Screen". For further explanation, raise your hand.
(Click on the bar at the bottom of this screen to move on to the next screen)
[6TH SCREEN] {2x2 table display}
[The table displayed below will be shown on the computer screen with the boxes covered. ]

S/He: & S/He: @ S/He: & S/He: @

You: # 53 21 84 22

You: * 87 49 38 65

YOUR POINTS HER/HIS POINTS

Next Screen

[7TH SCREEN] {Different table formats}
In some rounds of the experiment, you will be asked to choose one of THREE possible decisions,

labeled #, *, and ^; while the other participant with whom you are matched will be asked to choose from
TWO decisions, as before. Thus, the table of points will have an extra row of boxes. In some other
rounds, s/he will be asked to choose one of THREE possible decisions, labeled &, @, and %; while you
will be asked to choose from TWO decisions. Thus, the table of points will have two extra columns of
boxes (one for your points, one for her/his points). The following screen illustrates the case when you
have three possible decisions and s/he has two. Please raise your hand if you have any questions.
Otherwise move on to the next screen.
(Click on the bar at the bottom of this screen to move on to the next screen)
[8TH SCREEN] {Example of a 3x2 table}
[The Table below will be shown to the subject with the boxes closed. ]
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S/He: @ S/He: & S/He: @ S/He: &

You: * 54 67 64 42

You: ^ 89 21 35 13

You: # 35 82 91 68

YOUR POINTS HER/HIS POINTS

Next Screen

[9TH SCREEN] {Making decisions}
To complete a given round, you must make a decision. (Remember that the number of points you

obtain in any given round will depend on both your AND her/his decisions). Your possible decisions will
be displayed in decision boxes below the table of points. To make a decision, use the mouse to point at
the chosen decision, then click any button on the mouse. The screen will then ask you to confirm your
decision. At that time, you can change your mind by pointing to and clicking on a different decision box,
after which you will again be asked to confirm your decision. Once you confirm a decision, you cannot
change it.

The next screen displays the same illustrative table as before, but with decision boxes. Notice the
boxes in which the possible decisions are displayed, under the table of points. For practice, point at one
of them and click on the mouse. Then either confirm the decision or, if you wish, change the decision
and then confirm. Raise your hand if you have questions.
(Click on the bar at the bottom of this screen to move on to the next screen)
[10TH SCREEN] {Practicing decisions in a 3x2 table}
[The Table below will be shown to the subject with the boxes closed. ]

S/He: @ S/He: & S/He: @ S/He: &

You: * 54 67 64 42

You: ^ 89 21 35 13

You: # 35 82 91 68

YOUR POINTS HER/HIS POINTS

You: * You: ^ You: #

[11TH SCREEN] {Different table formats}
In some rounds of the experiment, you will be asked to choose one of FOUR possible decisions,

labeled #, *, ^, and <>; while the other participant with whom you are matched will be asked to choose
from TWO decisions, as before. Thus, the table of points will have four rows of boxes. In some other
rounds, s/he will be asked to choose one of FOUR possible decisions, labeled &, @, %, and /\; while you
will be asked to choose from TWO decisions. Thus, the table of points will have eight columns of boxes
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(four for your points, four for her/his points). Please raise your hand if you have any questions.
Otherwise move on to the next screen.
(Click on the bar at the bottom of this screen to move on to the next screen)
[12TH SCREEN] {Understanding Test}

UNDERSTANDING TEST
You will now take a short UNDERSTANDING TEST. After you finish the TEST it will be

graded and you will only be allowed to continue in the experiment if you have answered ALL the
QUESTIONS CORRECTLY.

Turn to the SECOND page of the handout, which contains th e test questions, and move on to the
next screen.
(Click on the bar at the bottom of this screen to move on to the next screen)
[13TH SCREEN] {Test using a 2x3 table}
[The Table below will be shown to the subject with the boxes closed. ]

S/He: % S/He: @ S/He: & S/He: % S/He: @ S/He: &

You: * 25 64 63 35 29 53

You: # 97 41 32 19 68 12

YOUR POINTS HER/HIS POINTS

You: * You: #

[The following questions will be written on the 2nd page of the handout. ]
Please write your identification number just above. Then, by reference to the table of points on the
screen, answer the following questions. Note that the screen allows two choices for you and three for
her/him.
Questions:
1. If you choose * and s/he chooses @, how many points will you earn? _______.
2. If you choose # and s/he chooses &, how many points will you earn? ________.
3. If you choose # and s/he chooses @, how many points will s/he earn? ______.
4. If you choose # and s/he chooses %, how many points will s/he earn? _______.
After you have answered the questions, please point at one of the decision boxes, click on it, and
confirm it. In the actual experiment you will click on the box corresponding to the decision you want to
choose.

YOU HAVE JUST COMPLETED THE TEST.
Please raise your hand until the experimenter sees you. He will come to collect your test.

DO NOT TURN TO THE NEXT PAGE BEFORE INSTRUCTED ON THE SCREEN TO DO SO.
[This sentence completes the second page of the handout. ]
[14TH SCREEN] {Matching protocol}
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In each round of the experiment, you will be anonymously matched with a different participant and
both of you will face the same interdependent decision problem. Your decisions in a round will not
influence the matching of participants or assignment of decision problems in later rounds. Your identity
and the identities of the other participants will never be revealed. Each participant you are matched with
will receive the same instructions as you and will face the same kind of screen display.

At the conclusion of each round, you will see a  screen asking you to proceed to the next round. If
you wish, you may rest before proceeding. However, we ask you not to rest during a round. This screen
will also tell you how many possible decisions you and the participant assigned to you in the next round
will have to choose from.

After each round the computer will record the number of points you earned, but will not report the
number to you. Your point earnings for each individual round will be reported to you (and only to you)
at the end of the experiment. Your point earnings will then be used to determine your payment, as
described next.
(Click on the bar at the bottom of this screen to move on to the next screen)
[15TH SCREEN] {Payment}

PAYMENT
After you have made your decisions for all 18 rounds, your payment will be determined according

to the number of points you earned, as follows:
One of the 18 rounds will be selected at random, and you will be paid $.40 (forty cents) per point

for your points on that round. The selection of the round will take place as follows. Tokens numbered 1
to 18 will be placed in a container and shaken. You will draw a token at random, and the number you
draw will be the round for which your points determine your earnings.

You will be paid your earnings in cash, in priva te, after the experiment.
To illustrate the payment we will now work through two examples so that you fully understand

how the payment is determined.
Suppose that in the round randomly chosen one of the two following outcomes happened:

- You chose # and s/he chose &, and you earned 20 points and s/he earned 50 points. At $0.40 per point
you will receive $8 and s/he will receive $20.
- You chose * and s/he chose @, and you earned 70 points and s/he earned 30 points. At $0.40 per point
you will receive $28 and s/he will receive $12.
(Click on the bar at the bottom of this screen to move on to the next screen)
[16TH SCREEN] {Practice rounds}

PRACTICE ROUNDS
Before you start playing the actual decision problems for money, you will have the opportunity to

practice for 4 rounds. During the practice games we will use different labels for the decisions ( T, V, and
W for you, and X, Y, and Z for her/him) from the ones that will be used throughout the experiment and
that you have already seen (#, *, ^, and <> for you, and &, @, %, and ~ for her/him).

Turn to the THIRD page of the handout, where YOU will WRITE DOWN YOUR DECISION
for each of the practice rounds and move on to the next screen.
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(Click on the bar at the bottom of this screen to move on to the next screen)
[17TH SCREEN] {Practice round 1 - Introductory screen}
In this first practice round (Round 1):

You will have TWO decisions to choose from.
S/he will have TWO decisions to choose from.

PROCEED TO THE TABLE OF POINTS ONLY WHEN YOU FEEL READY
(Click on the bar at the bottom of this screen to move on to the next screen)
[18TH SCREEN] {Practice round 1}
[The table displayed below will be shown on the computer screen with the boxes closed. ]

S/He: X S/He: Y S/He: X S/He: Y

You: T 78 32 54 81

You: V 21 56 23 49

YOUR POINTS HER/HIS POINTS

You: T You: V

[19TH SCREEN] {Practice round 2 - Introductory screen}
In this practice round (Round 2):

You will have TWO decisions to choose from.
S/he will have THREE decisions to choose from.

PROCEED TO THE TABLE OF POINTS ONLY WHEN YOU FEEL READY.
(Click on the bar at the bottom of this screen to move on to the next screen)
[20TH SCREEN] {Practice round 2}
[The table displayed below will be shown on the computer screen with the boxes closed. ]

S/He: Z S/He: Y S/He: X S/He: Z S/He: Y S/He: X

You: V 54 21 98 85 43 21

You: T 79 45 67 45 76 52

YOUR POINTS HER/HIS POINTS

You: V You: T

[21ST SCREEN] {Practice round 3 - Introductory screen}
In this practice round (Round 3):

You will have THREE decisions to choose from.
S/he will have TWO decisions to choose from.

PROCEED TO THE TABLE OF POINTS ONLY WHEN YOU FEEL READY.
(Click on the bar at the bottom of this screen to move on to the next screen)
[22ND SCREEN] {Practice round 3}
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[The table displayed below will be shown on the computer screen with the boxes closed. ]
S/He: X S/He: Y S/He: X S/He: Y

You: W 87 43 53 82

You: V 39 76 21 44

You: T 17 54 95 12

YOUR POINTS HER/HIS POINTS

You: W You: V You: T

[23RD SCREEN] {Practice round 4 - Introductory screen}
In this practice round (Round 4):

You will have TWO decisions to choose from.
S/he will have THREE decisions to choose from.

PROCEED TO THE TABLE OF POINTS ONLY WHEN YOU FEEL READY.
(Click on the bar at the bottom of this screen to move on to the next screen)
[24TH SCREEN] {Practice round 4}
[The table displayed below will be shown on the computer screen with the boxes closed. ]

S/He: X S/He: Y S/He: Z S/He: X S/He: Y S/He: Z

You: T 81 35 42 67 25 92

You: V 23 74 68 39 61 32

YOUR POINTS HER/HIS POINTS

You: T You: V

(The screens 16th to 24th for the Column subjects are displayed in APPENDIX COLUMN )
[25TH SCREEN] {Last Screen of the Instructions input file}

You have now completed all practice rounds. Please raise your hand unti l the experimenter sees
you, and please remain in your seat. An experimenter will come to collect your handout with your
decisions for the practice rounds. You will then take a short break before starting the actual decision
problems. Please remain in your seat.

THE END
(Click on the bar at the bottom of this screen to exit the program)

[VARIATION FOR COLUMN SUBJECTS]
[16TH SCREEN] {Practice rounds}

PRACTICE ROUNDS
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Before you start playing the actual decision problems for money, you will have the opport unity to
practice for 4 rounds. During the practice games we will use different labels for the decisions ( X, Y, and
Z for you, and T, V, and W for her/him) than the ones that will be used throughout the experiment and
that you have already seen (#, *, ^, and <> for you, and &, @, %, and ~ for her/him).
Turn to the THIRD page of the handout, where YOU will WRITE DOWN YOUR DECISION for each
of the practice rounds and move on to the next screen.
(Click on the bar at the bottom of this screen to move on to the next screen)
[17TH SCREEN] {Practice round 1 - Introductory screen}
In this practice round (Round 1):

You will have TWO decisions to choose from.
S/he will have TWO decisions to choose from.

PROCEED TO THE TABLE OF POINTS ONLY WHEN YOU FEEL READY.
(Click on the bar at the bottom of this screen to move on to the next screen)
[18TH SCREEN] {Practice round 1}
[The table displayed below will be shown on the computer screen with the boxes closed. ]

S/He: T S/He: V S/He: T S/He: V

You: X 54 23 78 21

You: Y 81 49 32 56

YOUR POINTS HER/HIS POINTS

You: X You: Y

[19TH SCREEN] {Practice round 2 - Introductory screen}
In this practice round (Round 2):

You will have THREE decisions to choose from.
S/he will have TWO decisions to choose from.

PROCEED TO THE TABLE OF POINTS ONLY WHEN YOU FEEL READY.
(Click on the bar at the bottom of this screen to move on to the next screen)
[20TH SCREEN] {Practice round 2}
[The table displayed below will be shown on the computer screen with the boxes closed. ]
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S/He: V S/He: T S/He: V S/He: T

You: Z 85 45 54 79

You: Y 43 76 21 45

You: X 21 52 98 67

YOUR POINTS HER/HIS POINTS

You: Z You: Y You: X

[21ST SCREEN] {Practice round 3 - Introductory screen}
In this practice round (Round 3):

You will have TWO decisions to choose from.
S/he will have THREE decisions to choose from.

PROCEED TO THE TABLE OF POINTS ONLY WHEN YOU FEEL READY.
(Click on the bar at the bottom of this screen to move on to the next screen)
[22ND SCREEN] {Practice round 3}
[The table displayed below will be shown on the computer screen with the boxes closed. ]

S/He: W S/He: V S/He: T S/He: W S/He: V S/He: T

You: Y 53 21 95 87 39 17

You: X 82 44 12 43 76 54

YOUR POINTS HER/HIS POINTS

You: Y You: X

[23RD SCREEN] {Practice round 4 - Introductory screen}
In this practice round (Round 4):

You will have THREE decisions to choose from.
S/he will have TWO decisions to choose from.

PROCEED TO THE TABLE OF POINTS ONLY WHEN YOU FEEL READY.
(Click on the bar at the bottom of this screen to move on to the next screen)
[24TH SCREEN] {Practice round 4}
[The table displayed below will be shown on the computer screen with the boxes closed. ]
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S/He T: S/He: V S/He T: S/He: V

You: X 67 39 81 23

You: Y 25 61 35 74

You: Z 92 32 42 68

YOUR POINTS HER/HIS POINTS

You: X You: Y You: Z
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TS INSTRUCTIONS
[1ST SCREEN] {Introduction}

WELCOME!
PLEASE WAIT UNTIL THE EXPERIMENTER TELLS YOU TO START

You are about to participate in an experiment in interdependent decision making. Univers ities and
research foundations have provided the funds for this experiment. If you follow the instructions and pass
the Understanding Test, you will be allowed to continue in the experiment, and you may earn a
considerable additional amount of money, up to $35.50. All that you earn is yours to keep, and will be
paid to you in private, in cash, after today's session.
(Click on the bar at the bottom of this screen to move on to the next screen)
[2ND SCREEN] {Silence}

It is important to remain silent and not to look at other people's work. If you have any questions
or need assistance of any kind, please raise your hand, and an experimenter will come to you. Otherwise,
if you talk, laugh, exclaim out loud, etc., YOU WILL BE ASKED TO LEAVE. Thank you.
(Click on the bar at the bottom of this screen to move on to the next screen)
[3RD SCREEN] {Games}

The experiment consists of 18 rounds. Each round concerns an INTERDEPENDENT DECISION
PROBLEM. In an interdependent decision problem two people ("You", and someone else, henceforth
"S/He"), separately and independently make DECISIONS. Together, the two decisions determine the
numbers of POINTS you and s/he earn that round, which may be different. Each person is assumed to
want to maximize her/his own number of points, given her/his expectations about the other's decision.

In each round, you will be asked to select a decision, using a criterion explained below. Once a
round is over, you will not be able to change your selection in that round. You will be paid only for the
number of rounds in which you correctly select the decision that satisfies the criterion, as explained
below.

The next screen displays a sample decision problem and its table of points. THIS PROBLEM IS
ONLY AN ILLUSTRATION; the problems you will face in the 18 rounds will be different from this
one, and will change each round. AS YOU LOOK AT THIS PROBLEM, READ THE FIRST PAGE
OF THE PRINTED HANDOUT.
(Click on the bar at the bottom of this screen to move on to the next screen)
[4TH SCREEN] {2x2 table display}
[The table below will be shown (screen) to the subject with the boxes open.]
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S/He: & S/He: @ S/He: & S/He: @

You: # 53 21 84 22

You: * 87 49 38 65

YOUR POINTS HER/HIS POINTS

I am done

[The following explanation will be given to subjects on the first page of a two-page handout. ]
DO NOT START READING THIS PAGE UNTIL INSTRUCTED ON THE SCREEN TO DO SO

In the actual decision problems, you will have a table like this (but with different numbers of
points) on your screen, and you will be asked to select a decision from decisions like # and *. S/He will
be asked, independently, to choose one of her/his decisions from decisions like & and @.

The combination of your decision and her/his decision is called an OUTCOME. The number of
points you and s/he receive for an outcome will be whole numbers from 0 to 99. Your points appear in
the boxes on the left side of the table, labeled "YOUR POINTS" underneath. Her/His points appear in
the boxes on the right side of the table, labeled "HER/HIS POINTS" underneath. To interpret the table,
consider the results of the possible outcomes (combinations of decisions):

- If you choose # and s/he chooses @, s/he earns 22 points.
- If you choose * and s/he chooses @, you earn 49 points.
- If you choose # and s/he chooses &, you earn 53 points.
- If you choose * and s/he chooses &, s/he earns 38 points.
- If you choose # and s/he chooses &, s/he earns 84 points.
- If you choose # and s/he chooses @, you earn 21 points.
- If you choose * and s/he chooses &, you earn 87 points.
- If you choose * and s/he chooses @, s/he earns 65 points.

In each round of the actual decision problems, you will have a new table. As in this problem, the points
that you and s/he earn will depend on both your decisions.

Please be sure you understand the table. Raise your hand if you would like further explanation.
Otherwise, move to the next screen by clicking on the box "I am done".

DO NOT TURN TO THE NEXT PAGE BEFORE INSTRUCTED ON THE SCREEN TO DO SO.
[This sentence completes the first page of the handout. ]
[5TH SCREEN] {Different table formats}

In some rounds of the experiment, you will be asked to choose one of THREE or FOUR possible
decisions, labeled #, *, ^, and (if there are four) <>; while s/he will have TWO possible decisions, as
before. Thus, the table of points will have one or two extra rows of boxes. In some other rounds, s/he
will have THREE or FOUR possible decisions, labeled &, @, %, and (if there are four) ~; while you will
be asked to choose from TWO decisions. Thus, the table of points will have two or four extra columns
of boxes, one or two for your points, and one or two for her/his points. The following screen illustrates
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the case when you have three possible decisions and s/he has two. Please raise your hand if you have any
questions. Otherwise move on to the next screen.
(Click on the bar at the bottom of this screen to move on to the next screen)
[6TH SCREEN] {Example of a 3x2 table}
[The Table below will be shown to the subject with the boxes open.]

S/He: @ S/He: & S/He: @ S/He: &

You: * 54 67 64 42

You: ^ 89 21 35 13

You: # 35 82 91 68

YOUR POINTS HER/HIS POINTS

Next Screen

[7TH SCREEN] {Making decisions}
To complete a given round, you must select a decision. Your possible decisions will be displ ayed

in decision boxes below the table of points. To select a decision, use the mouse to point at the chosen
decision, then click any button on the mouse. The screen will then ask you to confirm your decision. At
that time, you can change your mind by pointing to and clicking on a different decision box, after which
you will again be asked to confirm your decision. Once you confirm a decision, you cannot change it.

The next screen displays the same table as before, but with boxes in which the possible deci sions
are displayed under the table of points. For practice, point at one of them and click on the mouse. Then
either confirm the decision or, if you wish, change the decision and then confirm. Raise your hand if you
have questions.
(Click on the bar at the bottom of this screen to move on to the next screen)
[8TH SCREEN] {Practicing decisions in a 3x2 table}
[The table below will be shown to the subject with the boxes open.]

S/He: @ S/He: & S/He: @ S/He: &

You: * 54 67 64 42

You: ^ 89 21 35 13

You: # 35 82 91 68

YOUR POINTS HER/HIS POINTS

You: * You: ^ You: #

[9TH SCREEN] {Understanding Test - 1st part}
UNDERSTANDING TEST - (PART 1)
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You will now take the 1st part of an UNDERSTANDING TEST. After you finish this part of the
test, it will be graded. YOU WILL ONLY BE ALLOWED TO CONTINUE IN THE EXPERIMENT
IF YOU HAVE ANSWERED ALL THE QUESTIONS CORRECTLY.

Turn to the SECOND page of the handout, which contains the questions, and move on to the next
screen.
(Click on the bar at the bottom of this screen to move on to the next screen)
[10TH SCREEN] {Test using a 2x3 table}
[The Table below will be shown to the subjects with the boxes open.]

S/He: % S/He: @ S/He: & S/He: % S/He: @ S/He: &

You: * 25 64 63 35 29 53

You: # 97 41 32 19 68 12

YOUR POINTS HER/HIS POINTS

You: * You: #

[The following questions will be written on the 2nd page of the handout. ]
UNDERSTANDING  TEST  Identification number : _____.

Please write your identification number in the upper right hand corner of this page. Then, by using the
table of points on the screen, answer the following questions. Note that the screen allows two choices
for you and three for her/him.
Questions:
1. If you choose * and s/he chooses @, how many points will you earn?  __________.
2. If you choose # and s/he chooses &, how many points will you earn?  __________.
3. If you choose # and s/he chooses @, how many points will s/he earn? __________.
4. If you choose # and s/he chooses %, how many points will s/he earn? __________.

After you have answered the questions, please point at one of the decision boxes, click on it, and
confirm it. In the actual experiment you will click on the box corresponding to the decision you want to
select.

YOU HAVE JUST COMPLETED THE TEST.
Please raise your hand until the e xperimenter sees you. Do not proceed until he has collected your

test.
DO NOT TURN TO THE NEXT PAGE BEFORE INSTRUCTED ON THE SCREEN TO DO SO.

[This sentence completes the 2nd page of the handout.]
[11TH SCREEN] {Explanation of an equilibrium}

We now describe the criterion you are asked to use to select your decisions in the decision
problems you will face. This description is repeated on your handout, which you will be allowed to keep
for reference (but not to write on) during the experiment. The criterion is based on the idea that each
person wants to get as many points as possible, taking into account the other person's decision as well as
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her/his own. A combination of decisions, one for each person, such that each person's decision gives
her/him the largest number of points possible, given the other's decision, is called an EQUILIBRIUM.
Your decision in an equilibrium is called your EQUILIBRIUM DECISION, and her/his decision in an
equilibrium is called her/his EQUILIBRIUM DECISION. You are asked to select your EQUILIBRIUM
DECISION in each round.

Turn to the next (THIRD) page of the handout, and read ONLY the FIRST paragraph, while you
look at the next screen.
(Click on the bar at the bottom of this screen to move on to the next screen)
[The following will be written on the 3rd page of the handout.]

For example, in the decision problem displayed on the screen the combination of your decision *
and her/his decision @ is an EQUILIBRIUM. This is because, if s/he chooses @, you would earn more
points by choosing * (49) than by choosing # (21). And if you choose *, s/he would earn more points by
choosing @ (65) than by choosing & (38).
[12TH SCREEN] {2x2 table display - Same as 2nd screen}
[The table below will be shown to the subjects with the boxes open.]

S/He: &  S/He: @ S/He: &  S/He: @

You: # 53 21 84 22

You: * 87 49 38 65

YOUR POINTS HER/HIS POINTS

You: # You: *

[13TH SCREEN]
{Explanation of an equilibrium - continuation}

Some decision problems may have more than one equilibrium, so you may have mo re than one
equilibrium decision. In such problems you are asked to select your decision in the equilibrium that gives
you the most points of any equilibrium. Suppose, for example, that a decision problem (not shown on
your screen) has two equilibria, (*,@) with 66 points for you and 34 points for her/him, and (#,&) with
41 points for you and 76 points for her/him. Then you must select *, your decision in the first
equilibrium, because it gives you 66 points and the other equilibrium gives you only 41 points. Note that
to be sure you have applied the criterion correctly, you may need to find all of the equilibria in the
decision problem.

You will be paid only for the number of rounds in which you correctly select the decision that
satisfies this criterion, NOT for the number of points your selected decision would earn you in the
decision problem. Remember that once a round is over, you will not be able to change your selection in
that round.
(Click on the bar at the bottom of this screen to move on to the next screen)
[14TH SCREEN] {Mentioning the existence of different methods to find equilibrium}
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To correctly identify the decisions that satisfy the criterion, you will need to know how find the
equilibria of the decision problems. There are several methods you may find helpful, which we will now
explain. In each round, you should feel free to use whichever method or combination of methods is best
for you. Your payment will not depend on which method you use, but only on the number of rounds in
which you correctly select the decision that satisfies the criterion.

Please read the rest of the (THIRD) page of the handout now. DO NOT move on to the next
screen until instructed on the handout to do so.
(Click on the bar at the bottom of this screen to move on to the next screen)
[The following will be also written on the 3rd page of the handout.]

We now restate the criterion you will be asked to use to select your decisions, and describe some
methods you may find helpful in applying it.

You will be allowed to keep this handout for reference during the experiment. HOWEVER, IT IS
IMPORTANT TO READ IT CAREFULLY AND UNDERSTAND IT NOW, BECAUSE YOUR
UNDERSTANDING WILL BE TESTED NEXT, AND YOU WILL ONLY BE ALLOWED TO
PARTICIPATE IN THE EXPERIMENT IF YOU PASS THE TEST.

Recall that a combination of decisions, one for each person, such that each person's decision gives
her/him the largest number of points possible, given the other's decision, is called an EQUILIBRIUM.
Your decision in an equilibrium is called your EQUILIBRIUM DECISION, and her/his decision in an
equilibrium is called her/his EQUILIBRIUM DECISION. You are asked to select your EQUILIBRIUM
DECISION in each round.

Some decision problems may have more than one equilibrium, so that you have more than one
equilibrium decision. In such problems you are asked to select your decision in the equilibrium that gives
you the most points of any equilibrium. Suppose, for example, that a decision problem (not shown on
your screen) has two equilibria, (*,@) with 66 points for You and 34 points for Her/Him, and (#,&) with
41 points for You and 76 points for Her/Him. Then, you must select *, your decision in the first
equilibrium, because it gives you 66 points and the other equilibrium gives you only 41 points. Note that
to be sure you have applied the criterion correctly, you may need to find all of the equilibria in the
decision problem.

To correctly identify the decisions that satisfy the criterion, you will need to know how to find the
equilibria of the decision problems. There are several methods you may find helpful, which we will now
explain. In each round, you should feel free to use whichever method or combination of methods is best
for you. Your payment will not depend on which method you use, but only on the number of rounds in
which you correctly select the decision the criterion yields.

TURN TO THE NEXT PAGE AND READ IT.
PLEASE DO NOT MOVE ON TO THE NEXT SCREEN

[This sentence completes the 3rd page of the handout.]
[The following will be written on the 4th page of the handout.]

The methods are called: Dominance for Yourself, Dominance for Her/Him, Dominance Solvability
(a combination of the previous two methods), and Equilibrium Checking.
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DOMINANCE FOR YOURSELF: We say that one of your decisions is DOMINATED by another of
your decisions if the other decision gives you more points no matter which decision s/he chooses. For
example, in the decision problem displayed on the next screen (PLEASE MOVE ON TO THE NEXT
SCREEN) your decision # is dominated by your decision *, because 87 is greater than 53 and 49 is
greater than 21.

If eliminating decisions that are dominated for yourself reduces the decision problem to one in
which you have only one decision left, then that decision (for example, * in the decision problem on your
screen) is your only equilibrium decision.
(Make sure you understand the explanation of Dominance for Yourself before proceeding. Then read the
next method, but DO NOT move to the next screen until instructed to do so.)
[15TH SCREEN] {2x2 table display - Same as 2nd screen}
[The table below will be shown to the subjects with the boxes open.]

S/He: &  S/He: @ S/He: &  S/He: @

You: # 53 21 84 22

You: * 87 49 38 65

YOUR POINTS HER/HIS POINTS

You: # You: *

DOMINANCE FOR HER/HIM: We say that one of her/his decisions is DOMINATED by another of
her/his decisions if the other decision gives her/him more points no matter which decision you choose.

For example, in the decision problem displayed on the next screen (PLEASE MOVE ON TO THE
NEXT SCREEN) her/his decision & is dominated by her/his decision @, because 43 is greater than 21,
and 76 is greater than 52.
(Make sure you understand the of Dominance for Her/Him above before proceeding. Then read the next
method, but DO NOT move to the next screen until instructed to do so.)
[16TH SCREEN] {2x3 table display}
[The Table below will be shown to the subject with the boxes open.]

S/He: % S/He: @ S/He: & S/He: % S/He: @ S/He: &

You: * 54 21 98 85 43 21

You: # 79 45 67 45 76 52

YOUR POINTS HER/HIS POINTS

You: * You: #

DOMINANCE SOLVABILITY: We say that a decision problem is DOMINANCE SOLVABLE if it
can be reduced to a problem with only one decision for each decision-maker by eliminating decisions
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that are dominated for yourself and/or her/him, decisions that become dominated once dominated
decisions are eliminated, and so on.

For example, in the decision problem displayed on this screen (PLEASE DO NOT MOVE FROM
THIS SCREEN) her/his decision & is dominated by her/his decision @, because 43 is greater than 21,
and 76 is greater than 52.

TURN TO THE NEXT PAGE AND READ IT.
[This sentence completes the 4th page of the handout.]
[The following will be written on the 5th page of the handout.]
Once her/his decision & is eliminated, your decision * is dominated by #, because 79 is bigger than 54
and 45 is bigger than 21. Once your decision * is eliminated, her/his decision % is dominated by @,
because 76 is bigger than 45. So, eliminating her/his decision &, then eliminating your decision *, and
then eliminating her/his decision % reduces this decision problem to one in which her/his only decision is
@ and your only decision is #. This means that the decision problem is dominance-solvable. As in the
previous example, the only decision you have left, in this case #, is your only equilibrium decision.
(Make sure you understand the explanation of Dominance Solvability before proceeding. Then read the
next method, but do not move to the next screen until instructed to do so.)

If eliminating dominated decisions, decision s that become dominated once dominated decisions are
eliminated, and so on, does not reduce the decision problem to one with only one decision for each
person, then you can find the equilibria by Equilibrium Checking.
EQUILIBRIUM CHECKING: As explained earlier, a combination of decisions, one for you and one
for her/him, is an EQUILIBRIUM if your decision gives you the largest number of points possible, given
her/his decision, AND her/his decision gives her/him the largest number of points possible, given your
decision.

For example, in the decision problem displayed on the next screen (PLEASE MOVE ON TO THE
NEXT SCREEN) there are no dominated decisions for yourself or for her/him, but the combination of
your decision # and her/his decision & is an EQUILIBRIUM. This is because, if s/he chooses &, you
would earn more points by choosing # (61) than by choosing ^ (39) or * (32). And if you choose #, s/he
would earn more points by choosing & (74) than by choosing @ (35).

The combination of your decision * and he r/his decision @ is NOT an EQUILIBRIUM, because if
you choose *, s/he would earn more points by choosing & (68) than by choosing @ (42), and so s/he
would choose & instead of @. By making similar comparisons, you can check that there are no other
equilibria in this decision problem, so that (#,&) is the only equilibrium and # is your only equilibrium
decision.
[17TH SCREEN] {3x2 table display}
[The Table below will be shown to the subjects with the boxes open.]
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S/He: @ S/He: & S/He: @ S/He: &

You: ^ 67 39 81 23

You: # 25 61 35 74

You: * 92 32 42 68

YOUR POINTS HER/HIS POINTS

You: ^ You: # You: *

(Make sure you understand the explanation of Equilibrium Checking before proceeding. Then move on
to the next screen.)

DO NOT TURN TO THE NEXT PAGE BEFORE INSTRUCTED ON THE SCREEN TO DO SO.
[This sentence completes the 5th page of the handout.]
[18TH SCREEN] {Covered-boxes explanation}

In the actual experiment, the points in a table, like the one on the previous screen, will not be
openly displayed. Instead they will be "hidden" in the boxes, as if the boxes were covered. However you
will be able to open any box, just by POINTING AT it with the mouse (that is, moving the cursor into
the box by sliding the mouse) and CLICKING the LEFT button of the mouse. You may open as many
or as few boxes as you wish, as often and as long as you wish, and in any order. However, you will be
able to have only one box open at a time. If you want to open a new box, you will have to close the
previous box first by CLICKING the RIGHT button of the mouse. YOU ARE NOT ALLOWED TO
WRITE DOWN THE NUMBERS IN THE BOXES. If you would like to know the number of points in
a box that you do not remember, just open that box again.

The next screen displays the same table as before, but with the boxes covered. Use the mouse to
practice opening boxes until you feel comfortable with the procedure. Then move on to the following
screen by CLICKING on one of the decision boxes. For further explanation, raise your hand.
(Click on the bar at the bottom of this screen to move on to the next screen)
[19TH SCREEN] {3x2 table display - Same as 16th screen}
[The Table below will be shown to the subjects with the boxes closed.]

S/He: @ S/He: & S/He: @ S/He: &

You: ^ 67 39 81 23

You: # 25 61 35 74

You: * 92 32 42 68

YOUR POINTS HER/HIS POINTS

You: ^ You: # You: *
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[20TH SCREEN] {Explanation of intermediate screen}
At the conclusion of each round, you will see a screen asking you to proceed to the next round. If

you wish, you may rest before proceeding. However, we ask you not to rest DURING a round. This
screen will also tell you how many possible decisions you and s/he will have to choose from.
(Click on the bar at the bottom of this screen to move on to the next screen)
[21ST SCREEN] {Payment}

PAYMENT
You will be asked to select your equilibrium decision, using the criterion described above, in each

of 18 interdependent decision problems. After you have selected your decisions for all 18 rounds, you
will be paid $1.75 for each round in which you correctly selected the decision that satisfies the criterion.

You will be paid your earnings in cash, in private, after today's session.
[22ND SCREEN] {Understanding Test - 2nd part}

UNDERSTANDING TEST - PART 2
Before you start selecting your actual decisions for money, you must take the 2nd part of the
understanding test (where you will demonstrate your understanding of the methods explained above).
After you finish this part of the test it will be graded. YOU WILL ONLY BE ALLOWED TO
CONTINUE IN THE EXPERIMENT IF YOU HAVE ANSWERED ALL THE QUESTIONS
CORRECTLY, IN WHICH CASE YOU WILL EARN AN ADDITIONAL $4 JUST FOR PASSING
THE TEST.

Turn to the SIXTH page of the handout, which contains the test questions, and move on to the
next screen.
(Click on the bar at the bottom of this screen to move on to the next screen)
[23RD SCREEN] {Test Round 1 (3x2) - Introductory screen}
In this decision problem (Number 1):

You will have THREE decisions to choose from.
S/he will have TWO decisions to choose from.

PROCEED TO THE NEXT SCREEN ONLY WHEN YOU FEEL READY.
(Click on the bar at the bottom of this screen to move on to the next screen)
[24TH SCREEN] {Test Round 1 - 3x2}
[The Table below will be shown to the subjects with the boxes closed.]

S/He: & S/He: @ S/He: & S/He: @

You: * 87 43 53 82

You: ^ 39 76 21 44

You: # 17 54 95 12

YOUR POINTS HER/HIS POINTS

You: * You: ^ You: #



A-22

In the decision problem shown on the screen:
A) Identify a DOMINATED decision for yourself, if there is one; otherwise write "None". _______.
B) Identify a DOMINATED decision for her/him, if there is one; otherwise write "None". _______.
C) Is the decision problem DOMINANCE SOLVABLE? Answer "Yes" or "No". ____________.
D) If so, reduce the decision problem to one decision for each decision-maker by eliminating
DOMINATED decisions and so on, and write down the remaining decision for each decision-maker.

Your Decision ________ Her/His Decision _________
E) Do the decisions * and @ form an EQUILIBRIUM? If not, explain. _______________.
(Please move on to the next screen where you will find the next decision problem)
[25TH SCREEN] {Test Round 2 (2x3) - Introductory screen}
In this decision problem (Number 2):

You will have TWO decisions to choose from.
S/he will have THREE decisions to choose from.

PROCEED TO THE NEXT SCREEN ONLY WHEN YOU FEEL READY.
(Click on the bar at the bottom of this screen to move on to the next screen)
[26TH SCREEN] {Test Round 2 (2x3)}
[The Table below will be shown to the subjects with the boxes closed.]

S/He: % S/He: @ S/He: & S/He: % S/He: @ S/He: &

You: # 81 35 42 67 25 92

You: * 23 74 68 39 61 32

YOUR POINTS HER/HIS POINTS

You: # You: *

In the decision problem shown on the screen:
A) Identify an EQUILIBRIUM combination of decisions.
Your Decision _________________. Her/His Decision _________________.
B) Identify a DOMINATED decision for yourself, if there is one; otherwise write "None".
___________________________.
C) Identify a DOMINATED decision for her/him, if there is one; otherwise write "None".
___________________________.
D) Is the decision problem DOMINANCE SOLVABLE? Answer "Yes" or "No". _____________.
[27TH SCREEN] {Last Screen of the Instructions input file}

You have now completed the second part of the test. Please raise your hand until the experimenter
sees you, and please remain in your seat. An experimenter will come to collect your handout with your
answers for the test. You will then take a short break before starting the actual decision problems. Please
remain in your seat. THE END
(Click on the bar at the bottom of this screen to exit the program)
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APPENDIX B: GAMES
Here we display the games ordered as in Table 1, but with decisions ordered as they appeared to

Row and Column subjects; the equilibrium is identified by underlining its payoffs.

To Row subject To Column subject
Game

2A 72 31 | 93 46 93 52 | 72 84
84 55 | 52 79 46 79 | 31 55

2B 94 38 | 23 57 23 89 | 94 45
45 14 | 89 18 57 18 | 38 14

3A 75 42 | 51 27 51 80 | 75 48
48 89 | 80 68 27 68 | 42 89

3B 21 87 | 92 43 92 36 | 21 55
55 16 | 36 12 43 12 | 87 16

4A 59 46 85 | 58 83 61 58 29 | 59 38
38 70 37 | 29 52 23 83 52 | 46 70

61 23 | 85 37

4B 31 68 | 32 46 32 43 65 | 31 72 91
72 47 | 43 61 46 61 84 | 68 47 43
91 43 | 65 84

4C 28 57 | 37 58 37 36 69 | 28 22 51
22 60 | 36 84 58 84 45 | 57 60 82
51 82 | 69 45

4D 42 57 80 | 64 43 39 64 27 | 42 28
28 39 61 | 27 68 87 43 68 | 57 39

39 87 | 80 61

5A 53 24 | 86 19 86 57 23 | 53 79 28
79 42 | 57 73 19 73 50 | 24 42 71
28 71 | 23 50

5B 76 25 | 93 12 93 40 16 | 76 43 94
43 74 | 40 62 12 62 37 | 25 74 59
94 59 | 16 37

6A 21 52 75 | 26 73 44 26 55 | 21 88
88 25 59 | 55 30 81 73 30 | 52 25

44 81 | 75 59
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To Row subject To Column subject
Game

6B 42 95 18 | 45 78 96 45 76 | 42 64
64 14 39 | 76 27 61 78 27 | 95 14

96 61 | 18 39

7A 87 18 63 | 32 37 76 32 89 | 87 65
65 96 24 | 89 63 30 37 63 | 18 96

76 30 | 63 24

7B 67 95 31 | 91 64 35 91 49 | 67 89
89 23 56 | 49 53 78 64 53 | 95 23

35 78 | 31 56

8A 72 26 | 59 20 59 14 83 | 72 33 28
33 59 | 14 92 20 92 61 | 26 59 85
28 85 | 83 61

8B 46 57 | 16 88 16 49 82 | 46 71 42
71 28 | 49 24 88 24 60 | 57 28 84
42 84 | 82 60

9A 22 57 | 14 55 14 42 60 66 | 22 30 15 45
30 28 | 42 37 55 37 88 31 | 57 28 61 82
15 61 | 60 88
45 82 | 66 31

9B 56 38 89 32 | 58 29 62 86 58 23 | 56 15
15 43 61 67 | 23 31 16 46 29 31 | 38 43

62 16 | 89 61
86 46 | 32 67
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APPENDIX C: SUBJECTS' DECISIONS IN B, OB, AND TS TREATMENTS

The first two characters in the subject code identify the treatment and run, the third identifies the

subject's role (Row or Column), and the fourth and fifth are the subject's identification number (gaps in

the number sequence correspond to subjects who were dismissed for failing the Understanding Test).

GAMES
SUBJECTS 2A 2B 3A 3B 4A 4B 4C 4D 5A 5B 6A 6B 7A 7B 8A 8B 9A 9B

B1R01 T T T T T T T T B B T B B T B B T T
B1R02 T T T T B T T T B B T T B T B B T T
B1R03 T T B B T T B B T M B T B B T T B B
B1R04 B B B B T B T B B M B B B B M B B B
B1R05 T T B T B B T T B B B B B B B B T T
B1R06 B T T B B B B T B B T T T B B B T T
B1R09 T T T T T M T T B T T T B T B B T T
B1R10 T T T T T T T B B B T T T T B B T T
B1R21 B B B B B B B B M T B B B B M M B B
B1R22 T T T T T B T T B B T T T B B B T T
B1R23 T T T T T B T T T B T B B B T T T T
B1R24 T T B T B B T T B B T T T T B B T T
B1C11 R R L L L L R L R L R R M R R R L L
B1C12 R L L L R R L L L L R M M R R L L R
B1C13 L L L L L L L L L L R R R R L L L L
B1C14 L L L L L L L L R L R R R R R L L L
B1C15 R L L R R R L L R L R L L L L R L L
B1C16 L L L L L L L L L L R R R R R R L L
B1C18 R L L L L L L L L L R R R R L L L L
B1C20 L L L L R R L L R R R R R R L L L R
B1C25 L L L L L L L L L L L R L L L L L L
B1C27 R R L R L R L L L L M M R R R R L R
B1C28 R R L L L L R R R R R R R R R R R L
B1C30 L R L L L L L L R L R L R R L R L L

B2R01 T T B T B B T T B B T T B T B B T T
B2R03 T T T T T T T T B M T T T T B B T T
B2R05 B T B T T B T T B B T B B B B B T B
B2R06 T T T B T B T T B B B B B B T T T T
B2R07 T B B B B B T T B B B B B B M M T B
B2R08 T T T B T T T T B B T B T T B B T T
B2R09 T T T T T T T T T B B T T T T T T T
B2R10 B T B T T B T T B B T T T T T B T T
B2R21 T T T T T T T T B B T T T T B B T T
B2R22 B T T T B B T T B B B T T T B B T T
B2C11 L L L L L L L L L L R R R R R L L L
B2C12 L L L L L L L L L L R R R R L L L R
B2C14 R L L L L L R R R L R L R R R R R L
B2C16 L L L L L L L L L L R R R R L L L L
B2C17 R R R L L L R R R R R L R M R L R L
B2C18 L L L L L L L L L R R R R L L L L L
B2C19 R R L L L L R L R L R R R R R R L L
B2C26 L L L L L L R L L L R R L L L L L L
B2C27 L R R L L L R L R L M M M R R R R L
B2C29 R R L L L L R R R R R R R R R L R L
B2C30 R L L L L L R L R L R R R R R R R L
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GAMES
SUBJECTS 2A 2B 3A 3B 4A 4B 4C 4D 5A 5B 6A 6B 7A 7B 8A 8B 9A 9B

OBR01 T T T T T B T T B B B B B B B B T T
OBR02 T T T T B T T T B B T T B B B B T T
OBR03 B T T T T B T T B B T T T B B T T T
OBR04 T T T T T T T T T T T T T T T B T T
OBR05 T T T T T M T T T B T B B B T T T T
OBR06 T T T T T T T T T T T T T T T T T T
OBR07 T T T T T T T T B B T T T T B B T T
OBR09 B T T T T B T T B B T T T T B B T T
OBR21 T T B B B B T T B B B B B B B B T B
OBR22 B T B B B B T T B M B B B T B M T T
OBR23 T T T T T T T T B B T T T T B B T T
OBR24 T T T T T T T T B B T T T T T T T T
OBR25 T T T T T B T T B B T T T T B B T T
OBR26 T T T B T B T T B M T B T B B B T T
OBC11 L L L L L L L L L L R R R R R R L L
OBC12 L L L L R L R L L L R R R M L R L L
OBC14 L L R L R L L R L R R R R R L L R R
OBC15 L L L L L L L L R L L M L L R L L L
OBC16 L L L L L L L M L R R R R R L L R L
OBC17 L L L L L L L L L L R R R L L R L L
OBC20 R L L L L L R L R R L R L R R R R L
OBC27 L L L L L L R L L R R R R R R R R L
OBC28 R R L L L L R R L R L R R R L R R L
OBC29 L L L L L L R L L L L L L L L R L L
OBC30 R R L L L L R R R R R L R R R L R L
OBC31 R L L L L L R L L L R R R R R R R L
OBC32 L L L L L L L L L L L R L R L R L L

TSR02 T T T T T T T T T T T T T T T T T T
TSR03 T T T T T T T T T T T T T T B B T T
TSR05 T T T T T T T T T T T T T T T T T T
TSR07 T T T T T T T T T T T T B B T T T T
TSR12 T T T T T T T T T T T T T T T T T T
TSR14 T T T T T T T T T T T T T T T T T T
TSR16 T T B T T B T T B T T T T T T T T T
TSR17 B T T T B B B B T M T B B B T M B B
TSR18 T T T T T T T T T M B B B B M B T B
TSR19 T T T T T T T T T T T T T T T T T T
TSR20 T T T T T T T T T T T T T T T T T T
TSR21 T T T T T T T B B B B T B B T T B B
TSR23 T T T T T B T T B T T T T T T T T T
TSR29 T T T T T T T T T T T T T T T T T T
TSR31 T T T T T T T T T T T T T T T T T T

T = Top
M = Middle
B = Bottom

L = Left
M = Middle
R = Right
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APPENDIX D: CHARACTERIZATION OF TYPES' INFORMATION SEARCH

IMPLICATIONS UNDER HYPOTHESES A AND B

We now describe the implications of hypotheses A and B  for each of our types, with reference to

example games from our design, reproduced in Appendix B. All games are discussed from the point of

view of the Row player.

Equilibrium type: An equilibrium subject can use equilibrium-checking to identify his equilibrium

decision in any of our games, and that is the only method he can use in games that are not dominance-

solvable. Equilibrium-checking can be done either decision combination by decision combination or by

"best-response dynamics," which rules out some combinations using the fact that only decisions that are

best responses can be part of an equilibrium. But in games that are dominance-solvable he can

alternatively use iterated dominance or a combination of iterated dominance and equilibrium-checking.

For our games, the minimal set or sets of sufficient look-ups or adjacent pairs have a simple

characterization that depends only on whether or not the game is dominance-solvable. We now illustrate

how this works in each case, using games from our design.

In our dominance-solvable games, there is only one way to perform iterated dominance, and this

always yields a minimal set of look-ups or comparisons over all possible methods. Given this,

Equilibrium hypothesis A requires that the look-up sequence include all look-ups associated with the

dominance and iterated dominance relationships by which the game can be solved, namely all payoffs for

the own or other player's decisions being compared except those that can be eliminated using dominance

relationships identified elsewhere in the iteration. In Game 3A for the Row player, for instance, the

Equilibrium type needs to identify that his partner has a dominant decision, Left, which he can do only

by looking up all of his partner’s payoffs, 51, 27, 80, and 68. To identify his best response to Column’s

dominant decision, he needs to look up only two of his own payoffs, 75 and 48. Thus, Equilibrium

Hypothesis A implies that the payoffs 51, 27, 80, 68, 75, and 48 appear at least once somewhere in the

look-up sequence. Equilibrium hypothesis B requires that each of the comparisons required to identify

that his partner has a dominant decision and to identify his best response to it is represented by an

adjacent look-up pair somewhere in the sequence. In Game 3A, Equilibrium hypothesis B implies that

the payoff pairs (51, 27), (80, 68), and (75, 48) each appear (in either order) as an adjacent pair at least

once somewhere in the sequence.

In our non-dominance-solvable games, there is never any pure-strategy dominance, and checking

for equilibrium via best-response dynamics always yields a minimal set of look-ups or comparisons over

all possible methods. Equilibrium hypothesis A then requires that the look-up sequence include all of the

look-ups associated with up-down comparisons of own payoffs or left-right comparisons of other's
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payoffs starting from each possible decision combination, except those that can be eliminated because

they are never best responses. Equilibrium hypothesis B then requires that each of the associated

comparisons is represented by an adjacent look-up pair in the sequence, namely all up-down pairs of

own payoffs or left-right pairs of other's payoffs for each possible decision combination, except those

that can be eliminated as never best responses. In Game 7A, for example, the Row player can start by

identifying that if he played Bottom, his partner’s best response would be Left. This requires him to look

up three of his partner’s payoffs, 30, 63, and 89, and to perform the payoff comparisons (89, 63) and

(89, 30). Thus, Equilibrium hypothesis B requires that (89, 63) and (89, 30) appear as adjacent pairs in

the sequence. Row's best response to Left is Top. This is identified by looking up the payoffs 87 and 65

and comparing them. Thus, Equilibrium hypothesis A requires that the payoffs 87 and 65 appear in the

sequence, and Equilibrium hypothesis B requires that they appear at least once as an adjacent pair.

Column’s best response to Top is Right, which can be identified by looking up three of Column’s

payoffs, 32, 37, and 76 and performing the payoff comparisons (76, 37) and (76, 32). Thus, hypothesis

A requires that the payoffs 32, 37 and 76 appear somewhere in the sequence, and hypothesis B requires

that (76, 37) and (76, 32) appear at least once as adjacent pairs. Row’s best response to Right is Top,

which he can identify by looking-up the payoffs 63 and 24 and comparing them. Thus, Equilibrium

hypothesis A requires that the payoffs 63 and 24 appear somewhere in the sequence, and Equilibrium

hypothesis B requires that they appear at least once as an adjacent pair. At this point Row has identified

that the decision combination Top, Right is an equilibrium, and that it is the only equilibrium in the

game. To summarize, in game 7A for the Row player, Equilibrium hypothesis A requires that the look-

up sequence include the payoffs 87, 65, 63, 24, 32, 37, 76, 89, 63, and 30, and Equilibrium hypothesis B

requires that the look-up sequence include (89, 63), (89, 30), (63, 24), (87, 65), (76, 37), and (37, 32) as

adjacent pairs.

Sophisticated type: For the Sophisticated type, the characterization of the minimal set or sets of

sufficient look-ups or adjacent pairs for our games depends only on whether or not the player has a

dominant decision. If so, he can identify his predicted decision simply by identifying his dominant

decision. If not, he needs to form his beliefs, deducing them from his knowledge of the game's

dominance and iterated dominance relationships and its set of equilibria, and of other players' typical

responses to games with that structure, and then to compare the expected payoffs of (at least) his

undominated decisions. He can make these expected-payoff comparisons via running totals, either by up-

down comparisons column by column or left-right comparisons row by row; we allow either kind, but

rule out mixtures of the two, so his look-up sequence must include a complete set of one or the other

kind of comparison.
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When the player has a dominant decision, Sophisticated hypothesis A requires only that his look-

up sequence include all look-ups needed for the payoff comparisons needed to identify his dominant

decision. In Game 2A, for instance, Sophisticated hypothesis A implies that the payoffs 72, 31, 84, and

55 appear at least once somewhere in the look-up sequence. Sophisticated hypothesis B then requires

only that each of the associated comparisons is represented by an adjacent look-up pair somewhere in

the sequence, namely all up-down pairs of own payoffs needed to identify his dominant decision. In

Game 2A, Sophisticated hypothesis B requires that the payoff pairs (72, 84) and (31, 55) appear as

adjacent pairs (in either order) somewhere in the sequence.

When the player does not have a dominant decision, forming his beliefs and comparing the

expected payoffs of his undominated decisions involves at least the same look-ups and comparisons as

the Equilibrium type, and in our games some additional look-ups and comparisons. Sophisticated

hypothesis A then requires that the look-up sequence include all of his own and the other player's

payoffs, because they are all relevant to forming his beliefs and/or comparing the expected payoffs of his

decisions. In Game 3A, for instance, Sophisticated hypothesis A implies that the payoffs 51, 27, 80, 68,

75, 48, 42, and 89 appear at least once somewhere in the sequence. Sophisticated hypothesis B requires

that the look-up sequence include the same adjacent pairs as Equilibrium hypothesis B, plus any

additional adjacent pairs needed to identify the dominance relationships among his own and his partner’s

decisions. In addition, the look-up sequence must include a complete set either of the adjacent pairs

associated with all up-down comparisons of his own payoffs for his undominated decisions, or of the

adjacent pairs associated with all such left-right comparisons. In Game 3A, Sophisticated hypothesis B

implies that the comparisons (51, 27), (80, 68), (75, 48), and (42, 89) appear at least once as adjacent

pairs somewhere in the sequence. In Game 7A, Sophisticated hypothesis A implies that the payoffs

required by Equilibrium hypothesis A plus the payoffs 18 and 96 appear at least once somewhere in the

sequence. Sophisticated hypothesis B requires that the sequence include the same adjacent pairs as

Equilibrium hypothesis B, plus the adjacent pairs (30, 63), (32, 37), and (18, 96), so as to identify all

possible dominance relationships among the player's own and his partner’s decisions.

Naïve type: A Naïve player needs only to compare the expected payoffs of his decisions, given a

uniform prior over his partner's decisions. He can do this for any two possible decisions via running

expected-payoff totals, either by up-down comparisons column by column, or by left-right comparisons

row by row. As before, we allow either kind, but rule out mixtures of the two, so his look-up sequence

must include a complete set of one or the other kind of comparison. With regard to hypothesis B, he can

avoid some comparisons by eliminating decisions that can be seen to have lower expected payoffs than

some other decision, using adjacent payoff pairs that appear in the sequence. Naïve hypothesis A then

requires that the look-up sequence include all the player's own payoffs  and only those payoffs. In Game
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3A, for example, Naïve hypothesis A requires that the payoffs 75, 48, 42, and 89 appear at least once

somewhere in the sequence. Naïve hypothesis B requires that a complete set either of up-down

comparisons or of left-right comparisons sufficient to compare the expected payoffs of his undominated

decisions and/or identify his dominated decisions is represented by adjacent pairs in the sequence. In

Game 3A, Naïve hypothesis B requires that either the two comparisons (75, 42) and (48, 89) or the two

comparisons (75, 48) and (42, 89) appear at least once (in either order) somewhere in the sequence. In

Game 5A, Naïve hypothesis A requires that the payoffs 53, 24, 79, 42, 28, and 71 appear at least once

somewhere in the sequence. In Game 5A, if the player compares the expected payoffs of his

undominated decisions via left-right comparisons, Naïve hypothesis B requires that (53, 24), (79, 42),

and (28, 71) appear at least once somewhere in the sequence. If instead the player uses up-down

comparisons two decisions at a time (remembering the best decision so far, and comparing it with each

remaining decision), then either the set of comparisons (53, 79), (24, 42), (79, 28), and (42, 71), or the

set of comparisons (53, 28), (24, 71), (79, 28), and (42, 71) must be represented by adjacent pairs

somewhere in the sequence.

Optimistic type: An Optimistic player needs only to compare the maximal payoffs of his own

decisions, which can be done by scanning all own payoffs in any desired order, hence with no restrictions

on comparisons, keeping a record of the highest payoff found so far. He can eliminate some of these

look-ups if he finds a payoff for a new decision higher than the maximum for all previously checked

decisions. Thus, Optimistic hypothesis A requires that the look-up sequence include all the player's own

payoffs and only those payoffs, except that if his look-ups include all of his payoffs for all but one of his

own decisions and an own payoff for the remaining decision that is higher than his maximum payoff for

the former decisions, then his look-up sequence need not include any more payoffs for the latter

decision. In Game 3A, for example, Optimistic hypothesis A requires that the payoffs 75, 42, and 89

appear at least once somewhere in the sequence. Optimistic hypothesis B implies no restrictions beyond

those implied by Optimistic hypothesis A in any of our games.

Pessimistic type: A Pessimistic player needs only to compare the minimal payoffs of his own

decisions. This requires a set of left-right comparisons of his own payoffs, as there is no reliable way to

identify it with up-down comparisons. He can eliminate some look-ups if he finds a payoff for a new

decision lower than the previously identified minimum for another decision. Thus, Pessimistic hypothesis

A requires that the look-up sequence include all the player's own payoffs and only those payoffs, except

that if his look-ups include all of his own payoffs for one of his decisions and an own payoff for another

decision that is lower than his minimum payoff for the former decision, then his look-up sequence need

not include any more payoffs for the latter decision. In Game 3A, for example, Pessimistic hypothesis A

requires that the payoffs 48, 89, and 42 appear somewhere in the sequence. Pessimistic hypothesis B



A-31

requires that a set of left-right comparisons sufficient to identify the maximin decision be represented by

adjacent look-up pairs in the sequence. In Game 3A, Pessimistic hypothesis B requires that the

comparison (48, 89) appear (in either order) somewhere in the sequence.

Altruistic type: An Altruistic player needs only to compare the totals of his own and the other's

payoffs for each feasible decision combinations. Altruistic hypothesis A therefore requires that his look-

up sequence include all of his own and the other player's payoffs, and Altruistic hypothesis B requires

that each of the above totals be represented by an adjacent look-up pair in the sequence. In Game 3A,

for example, Altruistic hypothesis A requires that the payoffs 75, 51, 42, 27, 48, 80, 89, and 68 appear

somewhere in the sequence, and Altruistic hypothesis B requires that the comparisons (75, 51), (42, 27),

(48, 80), and (89, 68) appear (in either order) somewhere in the sequence.




