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VORTEX OPERATORS IN GAUGE FIELD THEORIES

Joseph Polchinski+
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

ABSTRACT

Wz study several related aspects of the “t Hooft vortex opera
tor. The first chapter reviews the current picture of the vacuum o1
gquantum chromodynamics, the idea of dual field theories, and the idez

of the vortex operator.

The second chapter deals with the Abelian vortex operator writ-
ten in terms of elementary fields and with the calculation of its
Green’s functions. The Dirac veto problem appears in a new guise.

We present a two dimensional "solvable model™ of a Dirac string.

This leads us to a new solution of the veto problem; we discuss its
extension to four dimensions. We then show how the Green’s functions
can be expresied rore neatly in terus of Wu and Yang’s geometrical
idea of "sections". The renormalization of the Green’s functions of
two kinds of Abelian looplike operators, the Wilson loop and the vor-
tex operator, is studied. In each case the possible divergeaces are
easily determined with the aid of the operator product expansion, and
for both operators only an overall multiplicative renormalization is
needed. In the case of the vortex this involves e surprising cancel-

lation.

In the third chapter we discuss the dependence of the Green’s
functions of the Wilson and “t Hooft operators on the nature of the
vacuum. We emphasize the cluster properties of the Green’s functions

rather than the vacuum esxpectation values. We explain "t Hooft’s
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result relating the expectation valuves of the Wilson and "t Hooft
operators. We then show that the vortex operator in a massive
Abelian theory always has surface=-like clustering, and we see how
this appears in a graphical expansion. We ewphasize that the form of
Green’s functions in terms of Feynman graphs is the same in lliggs and
symuwetric phases, and that the difference appears in the sum over all
tadpole trees.

1n the fourth chapter we consider systems which have fields in
the fundamental representation, so that there are no vortex opera-
gors. When these fields enter only weakly into the dynamics, as is
th§ case in QCD and in real superconductors, we would expect to be
able to define a vortex-like operator. We show that any such opera-
tor can no longer be “local looplike", but must have commutators at
long range. We can still find an operator with useful properties;
its cluster property, though more complicated than that of the usual
vortex operator, still appears to distinguish Higgs, confining and
perturbative phases. to test this, we considev a U(l) lattice gauge
theory with two matter fields, one singly charged (fundamehtal) and
one doubly charged {(adjoint). When the fundamental fileld is weakly
coupled, we find the expected phase transitions. When ir is strongly
coupled, our operator still appears to be a good order parameter; a
discontinuous change in its behavior leads us to find a new phase
transition. We give some discussion of how operators can be good or

bad order parameters.
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CHAPTER 1

INTRODUCTION

A- The Vacuum of Quantum Chromodynawmice

In the years since the discovery of asymptotic freedom, confi-
dence that Quantum Chromodynamice might be the complete theory of the
strong interactions has grown steadily. At high energy, although
quantitative results have been limited by the size of the effective
coupling constant and the need to factor out incalculable long-
distance effects, the qualitative features of (CD appear to be
correctl- A recent important success was the observation of three
jet events, attributed to gluon bremstrahlung, at PETRA. At low
energy, various theoretical approaches have shed light on the nature
of the QCD vacuumz, and there is evidence to support the long-

standing hope that quarks are confined in QCD.

There 15 now a standard picture of the QCD vacuum. It appears
that fluctuations involving the creation of quark-antiquark pairs can
be neglected as a first approximation, so that hadrons can be treated
as first-quantized quarks in interaction with a second quantized
quarkless SU(3) gauge theory. The justification for this is empiri-
cal3: the success of the 0ZI rule and the fact, supported by hadron
spectroscopy and by measurement of parton distributions, that baryons
are predominantly qqq (not qqqd; or qqqqdaa) and that pions are
predomipantly d; (not qdas, etc.). The theoretical basis for this 1s
uncertain. It is a feature of SU(N) QCD in the large N limit, but
the belief that SU(3) QCD resembles SU(N) QCD is in fact based on
comparison with phenomenology, not on a caleculation of the Ll/N

corrections.

—



The a;pearance of the pure SU(3) vacuum depends on the inverse
distance scale k at which 1t is probeda- A process such as e+é' |

ennihilation to hadrons at c.m. energy E probes the vacuum structure

at scale k=E, while measurement of thermodynamic quantities in a
gauge theory at temperature T probes the vacuum at scale k=T. At
short distance, k>aAQCD, O\QCD is the scale parameter of QCD, approx-
imately 400 Mev), perturbation theory is accurate and the vacuum is
dowinated by configurations near the configuration of least classical
action (AP-O in most gauges). On a somewhat longer scale, other
classical configurations (instantors) give non-negligible effectss’6.
but the functional integral is still dominated by a small class of
configurations which are near classical solutions. On a still longer

scale, kqAQCD’ both the perturbative and instanton calculations have

uncontrollied divergences.

A different approach, the lattice approximation, gives a picture
of the gauge theory vacuum at extremely long distance. At this
scale, the vacuum looks like a coherent superposition of every possi-
ble configuration. In the Hamiltonian lattice formulntion7 this 1s
signalled by the fact that the vacuum is an eigenstate of 3?. the
operator conjugate to the vector potential. In the Euclidean formu-
1ation8 it is signalled by the fact that —%3 the coefficient of the

8
action in the functional integral, goes to zero, so that configura-
tions contribute purely according to entropy (volume in function
space), without regard to action. In both formulations, the Wilson
loop satisies the area law, Implying a linear potential between

quarks. The important recent advance in this picture has been the

e T
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improved calculation of the lattice beta functiom, by both analyticg

and Monte Carlolo methods, indicating that the only UV fixed point is
at zero coupling. This implies that as the lattice spacing is taken
to zero, the lattice approximation turns smoothly into the continuum
theory studied in perturbation theory. Qualitative features such as
quark confinement would then persist in the continuum theory, and the
ratio of the string tensioun to AOCD has also been calculated and

found to be of the correct order of magnitude.

The infrared divergences of the perturbative and iastaanton cal-
culations can then be understood as a counsequence of expanding around
a qualitatively wrong vacuum, analogous to the infrared divergences
which appzar when one expands a two dimensional sigma model around
the asymmetric vacuumll, which 1s known by Coleman’s theorem12 to be
incorrect. It would be desireable to have an approximation which
starts with the correct sort of vacuum, that is, one dominated by
eatropy rather than by a few classical configurations in the
infrared. The lattice approximation has this property, and is very
useful, but the information it can give is limited by its crvdepess.
A different approach is suggested by the idea of duality. A wide
class of lattice theories, namely Abelian (U(1l) or Zn) gauge and gen-
eralized gauge theories; in any number of dimensions, can be rewric-

13- The coupling constant of the

ten in terms of a dual gauge theory
dual theory is roughly the inverse of the original couplirg constant.
Thus, if one theory is entropy dominated (large coupling) and there~

fore difficult to treat, the other will have a small coupling and can

be expanded around the configurations of least action. This suggests

a search for a dual description of continuum non~Abelian gauge



theories.

The idea of duality can also be reached from a different point
of vieula- Magnetic flux cannot penetrate a U(l) Higgs vacuum (such
as a superconductor), but is squeezed into tubes, within which the
vacuum is normal (unbroken) and flux can exist. If a monopole and
antimonopole were placed in a8 superconductor, the flux between them
would form a tube, with an energy proportional to its length, so that
a linear potential would bind the monopole and antimonmopole. This is
exactly the behavior expected for the QCD vacuum, except that (color)
electric rather than magnetic sources are to be confined. The CD
vacuum might then be expected to look like a colored superconductor,
but with electric and magnetic quantities interchanged, s0 that it
would be a coherent state cf color-magnetic monopoles where the
superconductox is a coherent state of electric charges (Cooper
pairs). Duality in a gauge theory involves just this interchange of
electric and magnetic quantities. Further, in non-Abelian gauge
theories, monapnle515 or monopole-like configuratiou516 ocecur
automatically; they need not be put in by hand as in the Abelian

Dirac theory17.

t Hooft:IB and Mandelstamla have suggested a kind of operator,
the vortex operator, in terms of which this duality might be
described. This thesis is concerned with various properties of these
operators in contipuum field theories. In the remazinder of this
chapter, we introduce the vortex operator and discuss some of its
general properties. In Chapter 2 the Abelian vortex opsrator is
written in terms of elementary fields. We ewphasize a simpiz form in

which it is the expounential of a surface integral, and we explore in
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detail the requirement that the operator be independent of the par-~
ticular surface chosen. The Dirac veto problem, known from magnetic
monopole theory, is encountered, and we suggest a new solution to
this problem. Ve then discuss the renormalization of Green’s func~
tions of vortex operators, and a nice cancellation of divergences is
found. For comparison, the renormalization of amother looplike
operator, the Abelian Wilson loop, is also studied. Chapter 3 deals
with the Green’s functions of vortex operators at long distance,
their cluster properties. We describe the various possible phases of
a gauge theory in terms of the cluster properties of vortex and Wil-
son operators, and explain a result of “t Hooft:8 which restricts the
possible phases. We then show that in any Abelian theory without
magnetic monopoles and with no physical massless particle, the vortex
operator must have a surface-like cluster property and so satisfy an
area law. Pinally, we show how this cluster property emerges from

the graphical expansion in an Abelian Higgs theory.

For one to be able to define & vortex operator, the fields in
the theory must satisfy a quantization condition ([I1 for the gauge
group m:st be non-trivial); QCD without quarks satisfies this condi-
tion but the introduction of quarks violates it. 1In Chapter & we
examine the case where the quantization condition is not satisfied.
We show that any vortex-like operator will no longer have the impoxr—
tant property of heing "local looplike". Nevertheless, in an Abelian
theory we are able to find an operator with some reasomable proper-
ties: the energy that it creates is infrared finite, und its cluster
property distinguishes a perturbative Higgs phase from a QED~like

phase. We speculate on the properties of this operator in non=
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Abelian and confiuning theories, and on the resolution of an apparent
paradox involving a result of ‘t Hooft. We then examine a lattice
model where the quantization condition is not satisfied. We find
that our extension of the vortex operator is a good order parameter
and correctly indicates that a Higgs/confining phase transition is
taking place, when the field which violates the quantization condi-
tion is weakly coupled. Some preliminary results indicate that our
operator is also a good order parameter when this field is strongly
coupled, in the sense that discontinuous behavior of the operator
implies a discontinuity in the phase diagram; it leads us to find a
phase transition that mjight not have been expected. Chapter 5 sum-

marizes our findings.

In summary, Chapter 2 deals with technical details related to
the Green’s functions of vortex operators. Chapter 3 discusses known
relations between the behavior of the vortex operator and the nature
nf the vacuum, but with the emphasis on cluster property rather than
vacuum expectation value. Chaptev 4 then uses some of these elements
to investigate systems where vortex operators were not konown to hea

useful, and some light is shed on the phase structure of these Bys=-

tems.

B. Vortex QOperators

The vortex operator, like the Wilsor loop, is assoclated with a
closed curve in spacetime. Let us consider a general "local loop~-
like" operator L associated with & closed curve C lying in the R3
plane t-to, and let us consider its commutation relations with other

operators at time tye By definition, L commutes with observable
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-
(that is, gauge invariant) local operators associated with a point x

pot on C. Tbils implies that for a gauge dependent field !G?)
-> >
13(x) = 8(x &L (1.1)

>.g -> ->
vhere $(x)® is & after a gauge transformation g(x) and g(x) is a
gauge transformation associated with the operator L. For imstance,
in che usual gauges (sxial, covariant, Coulomb), the gauge transfor-

mation associated with the Wilson loop is simply 1 everyvhere.

It is important tnat gGi) is not defined in all of spare, R3.
but only in R3 - C. R3 ~ C is multiply connected: curves are dis-
tinguished by their winding number around L. As a result there can
be a non trivial effect, a topology, associated with g(;?). As ;?
describes a path sround C, gG?) describes a path through the gauge
group. If the gauge group is simply counected, there is nothing
interesting about this, but 1f it is multiply connected the path may
lie in a non-trivial element of IH(G)ZO. For different paths of the
same wianding number, continuity requires that this clement be the
same. Since paths of winding number other than one can be generated
as a product of paths of winding number one (traversed backwards for
negative winding number) the homotopy class assoclated with winding
number one determives that for any other path. The class associated
with L is gauge invariant: since Any'gauge transformation can be
continuously deformed into ome which is unity {n an arbitrarily large
volume (including the whole of L) so the gauge trsnsformed gG?) can
be continuously deformed into its original wvalue; homotopic invari-~
ants are thevefore unchanged. Thus, there is a gauge invariant quan-

tum number, & homotopy class, assoclated with any looplike operator.



Operators for which this class is not the trivial npe are called
vortex operators. The name comes frow the Nielsen-Olesenm vortex 1. a
classical solution in a Higgs theory associated with twisted boundary
conditions for the Higgs field. In a& completely broken Higgs theory
the set of classical vacua is identical to G, so that there will be
solitons with quantum number in IH(G)ZO. These are the Nielsen-
Glesen vortices, and when a vortex operator acts on the vacuum of the

Higgs theory it produces a state containing such a solitou.

In an Abelian gauge theory, a vortex operator créates a loor of
magnetic flux just as the Wilson-operator creates a loop of electric
flux. In the dual (Abelian) gauge theories mentioned earlier, the
Wilson loops of one theory are mapped into vortex operators of the
other. In the long distance, large coupling, limit of non-Abelian
(as well as Abelian) gauge theories, the vacuum approaches an elzen-
state of a simple vortex operator. Thus, they are attractive opera-
tors to consider If one tries instead to consider duality in terms
of pointlike, monopole creation, operators, one finds that there is
no associated topological quantum number: IIZ(G) is trivial for any
Lie gauge group G+ In this, there is an interesting analogy between
electric and magnetic quantities: the pointlike operators in non~-
Abelian theosies (gavge fields or monopoles) have no gauge or topo-~
logical invariance, while the looplike cperators (Wilsom loops or
vortices) do.

The quantum number associated with a vortex cam be characterized
in a different way. Consider the path described by g(;:;) as -; winds

once around C. This path in G defines in a natural way

(S-ISE-E-ka) a path in the simply connected covering group G. By a




well-known counnection between III(G) and the center of EZD. when ;?
returns to its starting position E(:) need not return to its origi-
nal value but is wnitiplied by an element ZL of the center of G.
Because 36:) 33 single valued, zL in € 1s mapped into 1 in G by the
usual nomomorphism. Vortex operators can thus be considered to have
quantum numbe~s in Z(ﬁ)/z(c), the quotient of the centers of the two
groups, which is isomorphic to IH(G)-

QOue can show from equation 1.1 that

w(C,C")

L)W _(C7) = US(C')L(C)(zsL) (1.2)

where Z, in representation s is z, times the identity, w(C,C") {is

L
the winding number of G through C, and Ws(c') is the Wilson loop in

representation s associated with curve C’° (assumed here to lie in the

t-to hyperplane):
W_(C) = Tr P exp{igf,.dx A% (x)Y0) (1.3
5 [ e § s

with Yz the generator a in representation &, Tr representing the
trace, and P representing the usual path ordering. Thus, although
L(C) commutes with every local gauge 1nvafiant not on C, 1if it 1is a
vortex operator it will not commute with certain Wilson loops linking
C. Equation 1.2 characterizes completely the topological character
of the vortex operator; it is oanly ZL (or zsL for all s), not gé:)
that can be defined in a gauge invariant way. Note that equation 1.2
is entirely dual between L(C) and W(C"); one cannot say that one is a
topological operator and the other is not. The asymmetry arises only
when one introduces gauge dependent quantities. The one genuine

asymmetry is that the Hamiltonian is relatively simple in terms of
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the Wilson loops (or the related vector potentials), but does not
appear to have & simple form in terms of vortex operators; this asym-

metry may or may not be permanent. !

For a field ¥ in representation LI equation 1.1 becomes
LIOHR) = g GHEILE) (1-4)

- -
where g+(x) is g(x) in representation 50 In order that equation

1.4 be well-defined, it 1s necessary that LY be 1. This is indeed
ey

the case, as ZL in € maps into 1 in G and 54 is single valued in G
(by definition, the gauge group G is the smallest group with the Lie
algebra of G such that every field in the theory lies in a single
valded representation). If we add new fields to the theory which are
in representations 8 not single valued in G (and thus, by defini~
tion, enlarge the gauge group to G°) those vortices for which L is
not 1 no longer make sense. In other words, I]l(G') is amaller than

nl(c). z, L-l for all fields ¥ 1s the quantization conditiom
»2

referred to above. Note that it is equivalent to saying that vortex

operators must commute with “s for all fields ¥ {n the theotry.

We can illustrate these ideas fox the group SU(u)/Zn. an SU(n)
gauge theory with all fields in the adjoint representation. IH for
this group is Zn, so that the vortices carry an n-fold quantum
number, p(L). The representious also carry an u-fold quantum number
q(s), the “quark number” of the representation: if s lies in the pro-
duct of m fundamental representations, m-q(s)m_’dulu n Equation 1.2 i

becomes i
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L(C)W, (C7) = W_(C)L(C)exp{2mip(L)q(s)w(C,C")/n} (1.5)

We see that the SU(n) gauge theory without quarks (whose gauge group
is really su(n)/zn) has vortex operatore, while if quarks are added

the gauge group becomes SU(n), which 1s simply connected, and voriex
operators can no longer be defined. More will be said about this in

Chapters 3 and 4.

The short distance properties of the vortex operator, near C,
are still unspecified; the vortex operators are & class, not & single
operator. Certain results, such as ‘t Hooft’s concerning possible
phases, are independent of the short distance properties. Others, in
particular those related to dynamics and renormalization, depend on
the details near C. 1In this thesis, Chapters 3 and 4 are primarily
concerned with long distance properties, independent of the detailed

form of the vortex operator. Chapter 2 deals with some of each.



CHAPTER 2

THE ABELIAN VORTEX OPERATOR

A. The Vortex Operator in Terms of Elementary Fields

We first revievw the ideas from Chapter 1 for a U(1l) theory. The
covering group of U(l) is Rl; a general element of R1 1ls a real
number y. In the representation of charge =, y becomes exp(iye). A
general looplike operator L(C) is then associated, through equation
1.1, with a function y(;;)), the R1 version of E(?)- Like E(-:), y(-:)
need not be single-valued, but exp{iyér)e) must be if fields of
charge e are present. It follows that when ;: winds once around C,

>
y(x ) must change by an/emin, where €nin is the unit of charge and p

i

is any integer. Vortex operators are thus characterized by an

integer p. Equation 1.2 is now
L(C)Hq(c ) = dq(c )L(C)exp{ipqw(C,C )/enin) (2.1)
where Hq 15 the Wilson loop
wq(c ) = exp(iqfc,dxiAi(x)) (2.2)

For those fields actually present, q is a multiple of €in and the
phase factor in equation 2.1 is 1.

Differentiating equation 2.1 with respect to q and setting q=0,
and then using Stokes’s theorem to relate the line integral of ]; to

>
the surface integral of the magnetic field B,

- - 2n1i g3~ =,
L(C)B, (%) = (B (x) +?:ii§cdxi 87 (x -x “)IL(C) (2.3)

Although equation 2.3 refers to a commutator directly om C, it fol-

12
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lows from equation 2.1 and is therefore true for any vortex operator
independent of its short distance details. This is the source of the
statement that vortex operators create a loop of magnetic flux; the
dual equation, replacing L by We. ? by -Ea and 2vr|7/emin by e is also
true. There is no corresponding local version of equation 1.2 for a
non-Abelian theory. Equation 1.2 might then be taken as a definition

of non-Abelian megnetic fluxls.

An operator satisfying equation 2.1 is
- expi-22 g3 8P 2>
VP(C) exp(eminju x P E(x)+0jo(x)) (2.4

where G.P. and 2 are cylindrical ncordinates, @ is a unit vector in
the @ direction, and JO is the charge density. From the canonical
commutators (we take the A%=0 gauge for convenience, but V(C) is
gauge invariant and so will be its commutators with gauge invariants

such as equation 2.1)

-> A > s 63 > >
[Eg(x), J(y)] =1 i3 (x-y) (2.5a)
@)1 = e 83T ) (2.5b)
one finds
-ip@e
v (C>+(?) - exp[T—fw(';)v {C) (2.6a)
P win P

- g
V(04 (x) = (A, (x) + 1exp(-iPO/e_in)biexp(iPO/emin))VP(C) (2.6b)

> -
V?(C)Ei(x) - Ei(x)Vp(C) (2.6c)

This is the Abelian form of equation l.1. The curve C is here the
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> 3
c-axis; g(x) 1is expl-1p@]. A vortex operator for any C and any g(x)

can be constructed in the same way.

The coordinate @ must have a discontinuity of 2w on a semi-
infinite surface S bounded by the z-axis (such as the half-plane
9u=2nt). The exponent in the definition of VP(C) is therefore
discontinuous but the operator itself has no discontinuity on the
surface, as can be seen from its commutrators. These are completely
independent of where we choose to define the discontinuity of ©.
Using be-g + disc(e), VP(C) can be rewritten

v (©) = exp(e—:i[fd:’x (3,(F)-dE ())6 + 2fdnE 1} (2.7)
jo(-;)-biEi(-x)) does unt vanish as an operator in the A%=0 gauge, but
by Gauss’s law it vanishes in gauge invariant Green’s functions. The

gauge invariant Green’s functions are therefore the same for Vp(C) as

for
V'(C)-ex(unl dn E )} 3
P Pe 4 §T1d (2.8)

If one evaluates the commutstor of V *(C) with 8= D) (0]
is the covariant derivative bi_ie,bAi(?))’ it does not appear to van-
ish on §; it must, however, because [VP(C).B(?)]-O on S and 8 is
gauge invarieat. The problem is that V° is teo singular for canoni-
cal commutators to be correct; if one evaluates the Green’s functions
of VP'(C)B(x) uging the methods of the next section, one finds that
they have no equal time discontinuity on S. VP' is a more convenient

form of the operator whes one is discussing Green’s functions.

One might wonder whether the commutators 2.6 are really correct

in field theory, even for V, or whether some anomaly will develop due

~
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to the discontinuity of €. V and V° are poorly defined because the
discontinuity of © is sharp; if we define them by smearing the
discontinuity and taking the smearing to zz2ro, does the limiting
coerator satisfy 2.67 A simple example shows this to be a valid
worry. Consider a theory with fermions, ¥, in two spacetime dimen-

sions (they wmay even be free fernioms), and consider the operator
O(x) = up{f:ldx'l MF(x" ) Ygh(x"))} (2+9)
where x is the spacetime point (xo.xl) and the integral runs along
the equal time path from (xo,xl) to (xoﬂn)- From the commutator
B Y Hy) M2 18 (x -y ) = E2(y=2)(3) (2.10)

we find, by the same cancnical manipulzcions that lead from 2.5b to

2.5a, that [Q(x),¥(z)]}=0 at equal times, so that Q(x) would be a c~

number. On the other hand, from boson equivalencezz,

2(x) = exp(f dx*; ~2\n1d g(x"))
1

= exp{2\rwig(x)}

- const-;(x)(1+Y5)+(x) (2.11)

If the fermions are massive, the leading piece of ¢(l+75)+ is in fact
a c-number, but if they are massless, 7k1+y5)+ has no c-number piece
and  {Q,¥] 1s not identically zero.

One may also see this in a different way by evaluating
6(x,7,2) = < D(x) ¥(y) ¥(2) > (2.12)

for free fermions. G(x,y,z) is poorly defined because the support in
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the exponent in equation 2.9 is too singular. 1If one smears the sup-
port (necessarily into the time direction) over a small distance )
(call the resulting operator QA and the Green’s functicn GA)’ we can
calculate GA(x,y.z) directly. As )\ goes to zera, for free messive
fermions G4\ (x,¥,2z) approaches < ¥(y) ¥(z) > times a constant, while

for massless fermions it approaches
< Fx) (Y Fx) () Hz) >

times a constant.

This is not a serious problem. By regulating Q in a slightly

more complicated way, ome may obtain the desired limit. Consider the

operator

FE) (Y F)Z, (x)
where

S, () = explifu’z £, (2)F(xs2)é(x42)) (2-13)
and fA(ZO'zl) is a family of functions with support in }zj < A. If
f4\ is defined so that as A=0,
2 2
Ja%z £ (2)/1z]” 5> @ (2.14a)
Jé%z £, (2)/12] = 0 (2.14b)

then as A—0, ;(1"'75)"3‘\ approaches a c-number even for massless
fermions. If one then defines a regulated Q(x) as nA(x)EA(x), its
1limit will be a c-number. Equatfons 2.14 are correct for free fer-
mious or with a super-renormalizeable inreraction; as one might

expect, with a Thirring interaction there would have to be different
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powers of £ in the integrands.

It is interesting to repeat some of the above analysis for the

Schvinger model, without using bosonisation. Using Gauss’s law, we

get
qa(x) = exp{- zg%rdzz §f(z)E(x+z)) (Z.15)

where 6:(:) is the delta function, smeared over a distance A in
spacetime, and E, the electric field, is a (pseudo-)scalar in two

dimensions. The analogy between this and equation 2.8 is clear.

We would like to compare
B(es) = S o< 35,0 00) B &7 > (2.16)

with the ssme quantity with 1 in place of qk. Bere JS'F is the axial
current ;YSY ¥ and ¢ is a spacetime curve circling the spacetime
point y at some distance large compared to A but small compared to
1/22 (which has dimensions of leusth). Because of the latter stipu-
lation, we can neglect all but tie leading term from perturbation

theory.

Using the anamolous divergence equation,

e
ijS'P(x) = - TE(x) (2.17)
we can rewrite equation 2.16 as
Gle,y) =€ Jd’x < B ) > (2.18)

From <E(x)E(y)>=82(x~y)+0(e?), it follows that

<E@ 901 > = - 2 g2xy) + 0(e) (2.19)

G(c,y) is then simply -2, independent of ), whereas when Q is
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replaced by 1 in the matrix element, 2.18 is zero: the limit of

Lh as )\ goes to zero is not a c-pumber. £ has much {u common with a

Dirac string; equaticn 2.]7 shows that there is a lump of flux wiiich

does not gn a#way when ) gces to zero. Our result here irf ihat a mas-

nive fermion does not feel this flux in the limit, whercas a massless

fermicr does, but that a massiess fermion can be "shielded” from the
flux by the additional regulator 2.9. Massive and massless bosons
appear to behave like massive fermions: The Green’s function analo-
gous to 2.12 goes to the free propagator in the limit.

Our results for the four dimensional case are not so complete.
We discuss them, and more of the analogy with the Dirac string, in

the next section.

In this section we will discuss the calculatiou of Green's func-
tions of the V’(C) form of the vortex operator in Euclidean space~
time. For simplicity we shall assume only one charged field, scalars
¢(x) with charge e, mass m, and four point interaction A; the gen-
eralization to more fields and to fermions is straightforward. We
can now consider a vortex operator associated with a general closed

curve in spacetime. By amalogy to equation 2.8 we defime
. D, y
Up (CS) = exp T30 gFys (V) <o pys?

-exp(!enj‘sdcz; PEQP(Y) ) (2.20)

where S is any 2-surface whose boundary is C and 61234-1- There 1is
no factor of 1 in the exponent because Fj“-iEJ in Euclidean space-

time. To show that 2.20 is correct, we would like to check that it
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satisfies equation 2.1, and that its gauge invariant Green’s func-
tions are independent of the aurface S.

Consider now a general Green’s function of V*:

< Vp'(C,S) e A (2.21)

<V (CS) exp(fd“xap(xnp(x)w(xw(x)+1.(x)¢‘(x)} >

where J , K, and L are general external sources. The expansion of Vv’
involves terms with arbitrarily large powers of l/e, but owing to the

exponential form of V’, these sum up in a convendent way:

- 1
<V (CS) > mexp I T (2.22
p JKL ki Kintminl )

-~ 1 4 h 4 4
< ['_’ezfsdazPFo:P(y)]‘!Id x JPAF] [fa’x kg1 (ax 1g*)" >

where < >c indicates the connected Green’s function. The connected
Green’s function is of order at least ek+h (e being the charge),
except for k+h=2, m=n=0, for which it starts at order eo. The sum in
2.22 therefore starts at order e-z- Further, the graphs contributing
at each order in e are readily classified: a graph with B, internal
photon lines (internal means both ends connected to charged lines)

and ne external lines (one end attached to a charged line and ome

2n,4n
attached to J ) is of order e 1 e‘ independent of the number of

vortex photon lines (defined as lines which run from 5, the vortex
operator, to a charged line). The connected graph with no charged

lines (one photon line with both ends attached to S) 1s of order 2,

For example, the hwm=n=0 term, which is independent of JF. K,

and L, and is the only term which contributes to < VP'(C,S) >, is
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2 2 -
<V(C,S) >« expl 22 52(0)a(s) (2.25)
e

2 -2 VS n Y 2
- Bopdx Fody (x=y) 7= 1n detA" /") + 0(e®))
%€ e

vS vS s

where A(S) is the area of the surface S, gfs 18 {DP DP }-1. D; is

d -1&;5():) and Avs(x) is given by the graph of figure la. The first
two terms are from the one photon graph. The third is the sum of all
graphs with one charged line connected to S by any number of photon
lines. The first term is S dependent and quadratically divergent.

We shall postpone further discussion of 2.23 until the end of this

section. We will consider until then "reduced” Green‘s functions,

with the h=men=0 term divided out.

To investigate the dependence on § of gauge invariant reduced
Green’s functions, consider first the order eD term of

« F (x) V.(C,8) >/ < V_’(C,S) >, which is equal to
PP( ) P ’ P »S) >, q'

vS - vSs
b‘I“AF’ (x) }‘PP (x) (z-zz..)
v§

(Parentheses on subscripts indicate antisymmetrizatiom). AP was

defined above; 2.24 defines F;: as its curl.

VS, gvS~ = m,
T (O Ry (0 zefs-S'd’cyzp“qpys < Ty F(0 2,

- - y y Y 137 - ;
e J5-5" %l “'PYPaP + ‘P"F’zf’ 13y Ap(x-y) (2.25)

where < > indicates the free propagator and AE is the Euclidean

scalar propagator:
2 4
3 Dg (x=y)==5" (x-y) (2.26}

Using the fact that a completely antisymmetric 5-lensor vanishes in
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four dimensions, the quantity in square brackets can be rewritten as

¥ Y ¥
‘Pf““ Pby + "YPPQ'a 8 + e pYPpbcr

After surface integration the last two terms vanish, because 5-5° has

no boundary, while the remaining term gives, using 2.26,

kP

VS v _gVS ) = - DB y 4o
F Y (x) F!"f’ (%) ej‘s_s,dcqp(-a#f,{i (x=y)

i, ] Y 6% (e 2.27
T J‘S_S.NPPE (x~y) (2.27)

We see that the Green’s function is S-dependent, but only when x lies
directly on S or §”. However, when x lies on §, < FPP

is not well defined due to problems of operator ordering. If we

x) VP’(C,S) >

resolve this ordering problem by taking a limit as x approaches S,

FvS is § independent everywhere. Ir effect this is taking the T-

L2

product, whereas 2.24 defines the T*—product23:

VS 2 4
TIE, (x)] = T*(FP?(x)J + S T5380,8 xoy) (2.28)

vp P

is independent of S.

Now let us go one order further, and comsider

G(P,C,5) = (2.29)

< ¢*(x)exp<1efpdx'PAP(x'));(y) Vp’(C,S) >/ < vp'(c,s) >

where P is some path from y to x. To lowest (ec) order, this gauge
invariant Green’s function is given by all graphs of the form shown

in figure lb+. These graphs sum up to give

6B.C5) = ~ A"y mexpi1efdn A7) (2.30)
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Using the path integral repvesentation24 for the propagator[&vs(y.x),

we can write

G(P,C.5) = -exP(iej‘de'PA;s(x’)) (2.31)

2
= o _ le « s VS
J Dz ds exp{J':dt -3 PZF + iezFAF (z)}

with Dz indicating the integral over all paths z(t) such that z(0)=x
and z(s)=y, and z_ is sz/dt- As long as A;S is smooth (we must tem=-
porarily smear out the surface S) the path integral can be made
mathematically precisezs; at this level we simply have an external
field problem and there are no short distance difficulties. The

right hand side of 2.3l depends on A;S only through the phase f:~tors

expueyc,dx'FA":s(x'n - ap{i—;fn(c,)daqp'r*lr‘;spn (2.32)

where G’ is the closed curve formed by joining P with z(t) and R(C’)
is any 2-surface whose boundary is C°. To obtain equation 2.32 we
had to use equation 2.20, which defines the S-dependent T*[F;;]. We
cannot try to simply define this S~dependence away by replacing

* VS
T [F“P

choice of the arbitrary surface R.

j with T[It;P], as the result would in gemeral depend on the

From 2.27 and 2.32, it follows that changing the surface on
which Vp‘ is defined changes the phase associated with the path C° by

a factor

exp{inpf_.do PIR“Z! Ps"(x.yn (2.33)

In four dimensions, a closed curve, G’, links a closed 2-surface, S-

8°, a definite, integral, number of times, NI (leaving out for now
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those particle paths which actually intersect S or S”). Any surface
R bounded by C’ will then intersect $-5° at NI points (intersections
are defined in an oriented way, 80 that it is the net number of
intersections that is counted). Setting up local coordinate systems
on S-5° and on R near such an intersection, one finds that the double
integral in 2.33 is exactly 2NI- The phase then changes by
exp(ZuipNI) under the change of surface, which is 1 if p is an

integer as required by the earlier quantization condition.

The above argument is extremely familiar: it is just the argu-
ment that one can have magnetic momopoles in an Abelian gauge theory,
if the monopole charge is quantized so that the charged particles
don’t "see" the monopole’s Dirac atrin326. In fact, just as the Wil~
son loop can be regarded as the world-line of a classical charged
particle, the vortex operator can be regarded as the world-line of a
classical monopole, with the surface S as the world-sheet of the
Dirac string. There is one problem with the Dirac string, and that
problem is also present here: what of paths which actually pass
through the surface S? If we smear the integral defining Vp' (or
that for Vp) and let the smearing vanish as a limit, can we neglect
paths passing through S because they are of "measure zero", or do
they contribute in a.sufficiently singular way that their effect does
not go away?

This 18 exactly the question that was raised from a differemnt
point of view at the end of the last section. In our two dimensional
wodel it was found. in effect, that when the support of cur Dirac
string (there it was a "Dirac lump") goes to zero with the total flux

staying constant, under some conditions (massless fermions) the



24 i

effect of paths through the lump survives in the limit, while under
others (massive fermions and bosons) the effect vanishes. Even in
the massless fermion case it was possible to obtain the desired limit
by adding additional regulators to the operator, which can be thought

of as correcting the action for paths that pass through the lump.

The four dimensional case 1s not so easily analyzed. For § an
infinite 2-plane (so that C 18 infinitely far off in aome direction)
the charged field propagator is easily calculated Uith the flux
smeared, and one finds that it approaches the free propagator for
massive or massless fermions, or for bosons. In the presence of this
2-plane plus an additional smooth AP-field, however, an argument
similar co thac for the Schwinger model (based on the anomalous
divergence of the axial curvent} shows that the effect of the Dirac
string survives in the liait 1f the fermions are massless. An extra
regulator of the sawe form as = in 2.15 (essentially giviag the fer-
mions a mass very near the string) corrects this particular problem.
We have pot been able to show, however, that this is the only addi-
tional operator needed in general, or thgt no correction is ever
needed for wmassive fermions or bosons. It Beems quite likely, how=~
ever, that if we do need to correct the action for paths passing
through the string, this ccrreetion will always take the form of
local operators near the string. The whole point is, perhaps, woot,
as we shall see that the Green’s functions are uniquely determined
without knowipg the detailed form of the extra regulator (just as in
the two dimensional case, we do not really need to know the form of
Z; once we know that Q is a c-number, all of its Green’s functions

are fixed up to an overall constant!).
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Many other solutions for the Dirac veto problem have been given.
Brandt, Neri, and Zvanziger26 have rewritten a field theory of
charges and monopoles as an integral over all numbers and configura-
tions of particle paths. They then define the action associated with
configurations having charge paths intersecting monopole strings as
the limit of that for non~intersecting configurations. 1In a monopole
field theory, our solution would have the form of a smeared Dirac
string and an additional non=-local charge momopole interactiomn along
the string.

In the remainder of this thesis we assume that VP‘(C,S) can be
defined in such a way as to have the desired limit, so that G(?,C,5)
is independent of 5. It then follows that there is a gauge transfor-

mation g(5,5";x), defined except vhen x lies on S or 5°, such that

A7 (y,x) = 8(5,5753)A"55%(5,57 5%) (2.34a)
vs* vs 1 .. * ..
AF (x} = & “(x) + Zg(5,58 ,x)bpg (5,8%;x) (2.34b)
s

Any gauge independent quantity constructed from A; and AYS is there~

fore S-indepeudent as welle.

At least in the present case, where there is only a classical
monopole, we can evaluate quantities such as G(P,C,S) or[&vs(x,y)
without using either an explicit form for Vp’(C.S) or the path
integral prescription. Equations 2.34 by themselves give sufficient
{information toc determine the Greun’s functions we waunt, using a
geometrical approach (in the sense of differential geometry) due to
Wu and Yan327. Consider two non-intersecting surfaces, S1 and Sz,

each having C ss its boundary. Take spacetime with , a thin tube
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containing C, removed. This space can be covered by two overlapping

open regions, Q1 and QZ’ such that S1 lies entirely in Q,, and 52

vS1 sz
lies entirely in Ql' AP (x) is defined for x in Ql’ and AP (x) is

defined for x in QZ; in the overlap region these functions are
related by 2.34b. They are given, as before, by the simple one pho~
ton graph, and g(sl,sz;x) can be determined in terms of this graph.
Any other gauge and S-dependent quantity can similarly be represented
in as & pair of functions (or, for Ar as four functiouns, since it has
two arguments), each defined only in a certain region but related in
the overlap region by the gauge transformation g(Sl,Sz;x)- Gauge
dependent guantities are thus "sections": sets of functions each
defined only in an open region, but such that the regions cover all
of spacetime (minus € in this case) and such that the functiouns are

related in the overlap of two or more regioms.

Integrals of gauge (and therefore S-) independent products of
sections over R4 ~ € can then be defiped: in each region the
integrand is defined in terms of the function which exists in that
region; in overlap regions this is unambiguous because the integrand
is S-independent. With an inmner product bssed on this integral, D;D;
acting op sections can be pade self-adjoint. It follows that Af as a
section exists and is unique. vas can be obtained from it &s a func-
tion defined everywhere except on x. Power counting arguments, as

developed in the next section, iandicate that the limit as the cutoff

€ 1s removed exists, at least order by order in p.

We may now consider higher order corrections to Green’s fumc-

tions. All graphs with a given configuration of charged lines and
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internal and external photon lines are of the same order in e; sum~
ming over all numbers of vortex photon lines gives one graph of the
same configuration with no vortex photon limes but with “effective"
propagators and vertices. The photon propagator and ¢‘9A2 vertex are

unchanged, and the charged propagator becomes =~ Ars(x.y). The ¢*¢A

P
vertex picks up an extra term from graphs vhere a ¢*¢A2 vertex 1is
connected to one vortex photon line and one other photon line; it
becomes -iéﬁys(x). Equation 2.22 then becomes

< vp'(c.s) na ! < Vp'(C,S) > - exph:m' hialol (2.35)

4 R, nd T, n,d %, 0
< [jH x JPAP] {(Jd'x Kg] [JH x Lg"] >cvs
where the prime on the sum excludes the term h=k=1=0 and the sub-
script cvS indicates all connected graphs comstructed out of the

effective vertices and propagators. Examples of higher order correc~

tions to < A (x) VP'(C,S) >/ < vp’(c.S) > are shown in figure 2.

It is then evident that higher order corrections to gauge
invariant reduced Green’s functions are S-independent: Under a change
of S, the phase factors from two propagators meeting at a ¢*¢Az ver=-
tex or an external scurce cancel; the total change in the propagators
and vertex at a 9*¢AP vertex vanishes. Actually, this is not
strictly true if we have defined the vortex operator by smearing S
and addipg additional operators. The Feynman integrals in coordinate
apace include points lying im 8, for which 2.34 do not hold. 4s in
the case of the propagator, we would expect to be able to "repair”
the Feynman integrals with additional corrections to the definition

of vp'(C,S)- Again, we need never know the form of these
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corrections: regarding the propagators and vertex functions as sec-
tions, the Feynman integral for each graph can be written as the

invariant integral discussed above. and the result is unique.

We can now demonstrate equation 2.3:

fu . - -T* = P} )
bP T< Pp(x) vp (C,S) > bP (T-T")< FPP(x) vp (c,8) >

- Tk B v
ap (T-T")< FPP(x) VP (C,S) >°

8 xx)< ¥ 1(C,8) > (236)

- —z?j‘cdx’P
The first equation follows because T"(?PP) is defined as
‘PP“PBQT*(AP) and so its divergence venishes identically. The
second equality (the subscript indicates the lowest order graph, fig-
ure la) follows because any higher order graphs for the T* Green’s
function, such those of figure 2, are S-independent and therefore
continuous when x is at S: they do not contribute to (T-T*). The
final equality follows from equation 2.28. Since bPiFP(x)-o is true
as an operator equatioun, 2.36 represents a commutator and is in fact
the covariant version of 2.3. Equation 2.3 is an operator equation
and we have ouly considered one watrix element of it. The same argu~

ment can be readily applied to any gauge invariant matrix element.

Equation 2.1 is also true. If we comsider < Hq(C') VP’(C.S) >,
only the graph of figure 3a has & discontinuity whenever C’ crosses
S: the Green’s function jumps by a factor exp[zﬂézsl. This is the
covariant form of 2.1. Figures 3b, 3c, etc. are S-independent and
therefore continuous. Equation 2.3 thus exponentiates to give 2.1l.

Ordinarily this would not be true, because in general the commutators
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of'g do not determine those of the Wilson loop (although they do in
naive canonical manipulations) because graphs such as 3c which depend
on the compogite nature of wq(c') have discontinuities; this is not a
problem here. The location of the discontinuity of
< Hq(C’) Vp’(C.S) > does depend on S, unlike the Green’s functioms of
local gauge imvarisnts. It seems, however, that the phase of this
Green’s function is not observable, but only the net change when C’
is moved and then returned to its original position. The surface
swept out by C° is then closed, so that it links C and intersects S a
definite number of times. Tnis fact will be used in the next
chapter.

For later use we would like to examine the S-dependence of
gauge~dependent quantities. From 2.34 and the effective Feynman

rules, it follows that

< AP(X)---¢(y)---¢*(z)...Vp'(C,S') >/ < vp'(c.s') > (2.37)

< AP(x)+§g(S,S' ;x)bps*(s.s' k)« e08(5,57;y)g(y) -

g*(s,s';z)y*(z)...vp'(c,S) >/ < VP’(C,S) >

We shall also be interested in the singularities of gauge dependent

quantities near S. The singular behavior of A;S(x) is:

vS - 2
AP (x) "E‘txﬁp\oulq’nZPrP/r (2.38a)

where o, and n, are orthogonal unit vectors lying in S and r is the
vector from x to the nearest point on 5. From 2.34b and 2.38a we

derive
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8(S5,8’3x) I explip6(x)] (2.38b)

where S° is any surface distant from S and x. @(x) is defined by
taking a 2-plane normal to S and containing x: S will intersect this
plane in one point and @(x) is defined as the angle around this
point, from x to an arbitrary fixed direction in the plane. It fol-
lows from 2.34a that for x near S, Avs(x.y) is exp[~ip8(x)] times a
non-singular function, and for y pear § it 16 exp(ip6(y)] times a

non-singular function.

We have found that reduced gsuge invariant Green’s functions are
S independent; we return now to the factor that we divided out, equa-
tion 2.23. < vp'(c,S) > is given by the graph with one photon start-
ing and ending on S, plus the sum of all vacuum bubbles comstructed
out of the effective propagators and vertices. For example, the
determinant term in 2.23 is from the graph which is just one closed
loop of the effective propagator Ay- As discussed earlier, graphs
constructed from the effective propagators and vertices are all §
independent. The only S dependence is that which we have found
explicitly, the 52(0) term. We can take this term to be an artifact
of the way we have defined V%‘ when two of the fields in the expan~
sion of the exponential are at the same point, and divide it out of
the definition: all Green’s functions are then S-independent. It is
good that this term can be identified so unambiguously, so that
srtificial S dependence can be distinguished from a real, physical
dependence of the vacuum expectatiop value of the vortex operator on
the area of the minimal surface spanning C. Of the surviving terms

in 2.23, the first is exactly the same as the leading term in the
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expectation value of the Wilson loop, with the replacement of %F for
e. The next is of a form familiar from functional integrals. 1In
fact, < Vp‘(C,S) > can be interpreted either in the normal way as a
functional integral over continuous A and ¢ fields with Vp’(C.S)
inserted into the integrand, or as a functional integral with no
insertion in the integrand but with the AP and ¢ fields fixed to have
the discontinuities 2.37 on 5. Since we want to be careful about

divergence problems, we will stay with the first interpretatioc.

C. Renormalization of Looplike uperators

In the preceding section, we neglected renormalization. We did
not specify whether quantities were bare or renormalized, we did not
include graphs with counterterms, and we did not consider the conver-~
gence of the various graphs. These points are the subject of the
present section. We include first, as an illustration of some of the
ideas, a short section on the renormalization of the Wilson loop
operator.

1. Renormalization of Green’s Functions of the Wilson Loop

The Wilson loop is a composite operétor involving products of
arbitrarily many elementary fields. The associated divergences, how~
ever, turn out to be easily anmalyzed, at least in the Abelian case:
all matrix elements can be made finite by one overall multiplication
of the operatorza- Gervais and heveu29 and Polyakov30 have shown by

the use of elegant methods that the same is true of the non-Abelian

Wilson loop.

A general Green’s function of the Wilson operator, < we(C) > 1

defined by analogy to equation 2.21, is given by
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- *—1_—
<O 250 “thin kihizin] (2.39)

< uycayPeAPqn"w‘x JFAPJ"UH": k1% a1 >,

The quantity eAF(y) is invariant under renormalization, due to the
Ward identity: erAt - evo, where subscripts r and o represent renor~
malized and bare quantiiies, respectively. When it is necessary to
take a particular renormalization scheme, we will use BPHZ at zero
momentunm (this is acceptable when the charged fields are all massive,
which, for simplicity, we assume). If we then take the fields cou-
pled to J, K, and L to be the renormalized ones, the connected
Green’s functions in equation 2.39 are all renormalized: they are
finite when not evaluated at the ssme spacezime point, and they are
integrable over spacetime regions that include coincident points. If
we take JP(x), K(x), and L(x) to be smooth, the associated x
integrals all exist.

The only possible divergence comes when k is greater than 1, so
that there is a multiple integral over C. This may diverge when two
or more integrands approach each other along the loop. To emphasize
the region in the multiple loop integral where j of the arguments

approach each other along the loop, we represent 2.3% as

aels® o Set1089 5500y
p 3
(;2 ly;=y,l = %) < Aq(yl)---Ay(yj) AR

= aelf® ax 472 Fe09182p0 4y (2.40)
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3
§C 2 - 1)< A (YIA (T 459, Yool (y +xw.) oo >
1=2 ! LR i i M S RS W

c

vhere the final ellipsis in the Green’s functions indicates the
remaining operators, coupled to external sources or to distant points
on C. To get the leading x-»0 behavior of the Green’s function we
use the operator product expansional to write the product of J A"s in

the Green’s function as

80 . .y(xwz. cee ,xvj)ol

+ Blo+ o - YF(WZ' vaa ,wa)-AF(yI) + higher operators

This form places all of the x dependence in the coefficient functions
8¢ We implicitly use a covariant gauge so as to avoid directiom
dependendent singularities, as found, for instance, in the axial
gauge-

At fixed x, the J points cannot be coincident. We cannot
assume, however, that the w-integrations converge, as there will be
regious in integration space where some subset of the paints came
together. We will gssume a coordinate-space version of Weinberg‘s
theoremSz. which we have not proved b:t which seems quite plausible:
that it suffices to consider just the x~integrations for each subset
of points, and if naive power counting indicates that every one of
these is convergent then the whole integral will be. In fact this is
not necessary: at least when C i5 an infinite straight line the
Green’s functions cano be written in momentum space. Weinberg’s
theorem and BPHZ subtraction may then be applied rigorously to verify

the conclusions reached below. It is then very plausible that for a
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smooth curve C the leading divergences are the same as for the

straight line. The coordinate-space argument is shorter and perhaps
more interesting.

Because A 1s of dimension 1, at each order in perturbation
theory (we are renormalizing order by order) Boc + « - y(xw) is of order
-j+1

xJ times logarithms and Blog: - (xw) 1is of order x times loga-

3
rithms; the higher coefficient functions are all smaller as x—>0.
The x-integration associated with the operator 1 is then linearly
divergent. Performing the x integration with a distance cutoff Afl

and the w integration leaving out those subregions where subsets of

points become coincident, the c-pumber piece of 2.40 becomes
{ RAN Y o0, (v)) + finite terms } < =<+ 3>, (2.41)

where R 1is O(A), nu(yl) is a unit vector tangent to C at yl, and the
ellipsis in the matrix element is the same as in 2.40. I1f C were
straight, it would be clear why L wmust appear: there is mno other
available vector. For C a smooth curve, the leading divergence is
the same as for a straight line, since points close together don’t
see the curvature; therefore nu(yl) appears. To }at that another
way, curvature, the lowest dimensional measure of the actual shape of
C, is of dimension two; its coefficient must be two powers less
divergent than limear (that is, convergeut). This argument fails if
C has a kink, as the curvature there is infinite. In general there
will be a composite divergence assuciated with a kink that is one
power weaker than the leading divergence, from endpoint effects in
the integration. There would therefore be an adéitional logarithmic

divergence for each kink. This was also found by Gervais and

PR —
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Neveuzg- The integral in 2.41 is simply the perimeter P(C), and so

the divergence corresponding to the c~number in the operator product
expansion (which arises from graphs with no external limes) can be
removed by nultiplication of the Wilsom loop by an overall factor
exp [-R{AIP(C)).

The only other divergence is in the coefficient of AP(x). This
is logarithmic end is given by graphs which have external linmes but
are such that cutting a single photon line separates all of the
external lines from the Wilson loop. As one might expect, this
divergence i5 actually absent due to the Ward identity. In fact, in

our particular scheme (zero momentum BPHZ)31.

(xuz,-.-.xv Y =G

3 PR yp(*"z----.xv 30) (2.42)

Slq..-yl_l 3
where G is the j~photon Green’s function with one leg (the ome with
index P) truncated and set to zero momentum. G satisfies a Ward

identity

(xvz,...,ij;k)-o (2.43)

kPGq sV
From 2.43 and the fact that G is coutinuous at kP-O (for massive
charged particles) it follows that G vanishes at zero momentum and so
gy is identically zero and that there is no divergence coming from
connected graphs with externel lines. In fact, gl can be shown to
vanish by gauge invariance in any repormalization scheme. .

We find, then, that all matrix elements of the Abelian Wilson

loop can be made finite by one overall multiplication.

2. Renormalization of Green’s Functions of the Vortex Qperator
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The analysis of the vortex operator proceeds much like the
analysis of the Wilson loop, and the result is the same: an overall
multiplication makes all matrix elements finite. There 1s a poten-
tial logarithmic operator divergence, as for the Wilson loop, but its
coefficient again turns out to vanish. The vanishing is here more

intricate, involving cancellation of field renormalization diver-

gences against composite operator divergences. Our nicest result,
that T[F;P] is finite for an infinite straight vortex, csn be
obtained in a few lines (equations 2.48-2.50). The rest of this sec-
tion is simply power counting to establish that this implies the
cutoff independence of all matrix elements of vortex operators for

any curve.

F 3
We first must ask whether the combinations -gg and :E appearing

in 2.4 and 2.20 refer to the bare or the renormalized fields and
charges, since these combinations are not invariant under renormali-
zation. A canonical argument indicates that they must be bare.
Equations 2.5 hold only for the bare quantities; if the renormalized
quantities were to appear on thz left hand side of 2.5, an extra fac-

tor of Z-l would be needed on the right hand side. In order to have

3
a finite commutator with the Wilson loop, as in 2.1, or with charged
3

F
fields, as in 2.6, it is then clear that we must have —%:EP and -%*g-
o o
We can also reach this same conclusion from the Green’s func~
tions. The discussion of the last section did not include graphs
with countercerms. This is correct if all fields and couplings,

including those in the definition of vp'. are the bare ones (we must

have a cutoff at this point). Otherwise, graphs with counterterms
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enter and spoil the quantization condition. The expoment in the
definition of VP' must therefore be cutoff dependent. 1f we had
started by defining Vp' with F"'Pf’ and e, ve would have found that
p/z3. not p, was an Integer, so that the cutoff dependence would

merely be shifted into p. Either way, writing VP’ in terms of cutoff

independent p, e, and F__ gives
P
V ‘(C,8) = exp( ,J‘sdcrqrp m,P(Y)) (2.44)

with an explicitly cutoff dependent exponent. Note also that this
implies that the total coefficlent (all counterterms summed) of the
one photon graph for < e F 7(C,S) > or for < e F v _“(C,8) >

P grap °PFP( rrpp p
is wp, with no factors of Z3 This in turn implies that equaticn
2.36, which comes entirely from the one photon graph, is correct with

F _ and e either both bare or both renormalized; explicitly,

. . i B )
apr< P’PP(x)vP («,s) > ?’:Eycdx f’s (x=x")< V_7(C,5) >(2.36")

We now investigate the cutoff dependence of the Green’s func-
tions of the vortex operator. Starting with the expression 2.22, we
can analyze the divergences of the Green’s functions very much as we
did for the Wilson loop. There are two differences. (me is that V,
unlike W, contains a manifest cutoff dependence from field renormali-
zation, as discussed above. The second difference is in the analysis
of the composite divergences, where the vortex imvolves an integral
over & two- rather than onme-dimensional surface, and the field being
integrated is nf dimension two rather than one. This secornd differ-

ence is small: because the exponent is dimensionless for both opera-
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tors, in each case there is only a small number of divergences. The
analog of (2.40) when j points come together is

. .3 -3, Y1, ¥2 ¥y (a4
< Vp (C,S) > (e) J‘:ndx x J‘Sdcapdoys...dcpf ( )

3
§C3 tw | =1 F_ (y)F c(y,+0w)eesF (y dxw )eer>
jog 1 ap’l y§'71 "2 [ Yy c

The small x expansion for the operator product is now

Poacp¥5, - - o app XVt ee )0 (2.46)

+ hlqp.YS,. --.pp;ci(xw2""'x"j)'Fuﬁ(yl)

* . e n
+ hqu,yﬁ. e .PP(XWZ,-..,:(HJ).ﬂ (yl)v(yl) +

The expension includes only gavge invariant operators, because the
operator product is gauge Invariant. h_ is of order x-zj and h1 and

o}
n ~2j+2
2 Bre of order x » 80 that the x-iptegration for the coefficient
of 1 is quadratically divergent, and those for the coefficients of

F_and ¢*¢ are logarithmically divergent.

P

We have neglected the extra operators in V‘P(C,S) that we con~
cluded were needed to insure S-independence. In the two dimensional
case, equations 2.14 indicate that the effective dimension of
dzz fA(z) in units of mass is greater than ~2 bur less than ~1. The
total dimension of the exponent of = is then negative; it is a "soft"
operator. We expect that this property will hold in general. The
inclusion of these additicnal operators, them, will give additional
contributions to the coefficient functions in 2.41, but will not lead

to any stronger singularities.
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The divergence proportional to 1 implies a common infinite fac~
tor of the form exp{R“(A)A(S)) in every matrix element of Vp', with
A(S) the area of the surface S, and with R’ 00\2). Just such a
divergence was found from the one photon gragh in the last section,
where it was aleso shown that such a term, being explicitly S depen~
dent, could not arise from any higher order graph. It can therefore
be unambiguously divided out. The operator 1 in the expansion also
gives rise to & linearly divergent term proportional to the perimeter
P(C), from edge effects in the surface integrals. This was also
found from the one photon graph; for this divergence we would expect
that higher order graphs will also contribute. At any rate, it can
be divided out by a factor of the form exp[~R “(A)P(C)], with R"*
oN).

The logarithmic divergence from the hl and h2 can be removed by
the addition of three counterterms to the exponent of Vp‘(C,S) (as in
the case of the Wilson loop, this conclusion can be verified
rigorously by use of Weinberg’s theorem and BPHZ subtraction when C

is a straight line):

c - J‘SdUZ‘PT’aP(y) {2.47a)
e, = j‘sdc";PFap(y) (2-47)
cy = J‘stds’;Pu*(mm (2-47c)

Idcq | appears in €3 for the same reason that dqunq(yl) (which is

P

just {dy,|) sppears 4n 2.41: there is no other Euclidean invariant

form for the leading divergence.
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The countertern <, is forbidden by by CP invariance. do}rpi:!P
is CP even; as a result, so is any logarithmic composite divergence
(because a smooth surface is CP invariant to the exteut that its cur-
vature can be neglected), while c, is CP odd. LY is forbidden by the
S-independence of gauge invariant Green’s functions. The easiest way
to see this is to consider a surface S which doubles back on itself.
It is ioportant that because of S-independence, there is no new com-
posite divergence associated with this doubling back. The doubled
surface cancels out in the definition of Vp‘(c.S). because da-ctp is
oriented; it must therefore cancel out in any divergences. It does

1 2

conclude that all of the composite divergence can be removed by a

cancel in ¢. and ¢,, but not in c3. as IdchI is not oriented. We

term of the form fON)-cl-

There is still the second source of cutoff dependence in the
Green’s functions of Vp'(C,S), the factor of 23 in 2.44. We see that
this is of exactly the same form as the counterterm 2.47a; an
appropriate choice of £(A) can remove this divergence as well, leav-

ing every Green’s function of the vortex operator finite.

Since there is only one unknown function of the cutoff, we can
determine it by calculating one single Green’s function of ome par-

ticular vortex operator. A convenient choice is

T< Fr {x) Vp'(Z,Y) >/ = Vp‘(Z.Y) > (2.48)

Hp
vhere Z is the line y =y =y _=0 and Y is the half-plane y =y,=0, y >0.
07172 071 2

By Euclideen invariance, this must be given by

2 2
a(x) ‘anxm + b(x) x‘(PSP)z’ (2.49)
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vhere x, 15 the vector from Z to x which is perpendicular to Z.
Under parity, Vb'(Z,Y) goes into Vb'(Z,Y’), where Y° is the half-
plane yo-yl-o, y2<0 {note carefully that p doesn’t change sign). The
gauge invariant Green’s functions of these two operstors are equal.
Under x =»x_, x

0 0 i
parity: space-space components are invariant and space-time com—

-o-xi, the Green’s function 2.48 then has natural

ponents change sign. Only the first term is 2.49 has natural parity;
it must be that b(x:)-O. Equation 2.36° then requires that
2 p ,.2,=3/2
a(xg) = - zer(xu) (2.50)
Remarkably, the Green’s function 2.48 is completely determined, and
it is cutoff independent witlout counterterms: f(A) = 0. The factor
of 23 in 2.44 provides just the cutoff dependence to cancel that in

the composite divergence33.

In terms of graphs, the cancellation we have found 1s this: The
order e contribution to 2.48 1s figure 2a. Expanding the effective
vertex and propagator in terms of the usual ones gives all graphs
with one charged loop and no intermal photons, such as those of fig-
ure 4. The graphs of figure 4a have the usual divergence; ordinarily
this would be cancelled by a countertern from the order e-1 graph,
figure la. BHere, this counterterm is absent owing to the factor of
Z3 in 2.44. However, the graphs of figure 4b are also divergent when
the integration over the momenta of the photons attached to Vp' is
included. What we have found above is that the divergences of 4b
exactly cancel those of 4a. This cancellation has an interesting

feature: the different graphs are proportional to different powers of

p» depending on how many photon lines attach to VP'. When we let p
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vary, the full cancellation occurs only for int-~-al p, as only then
can we sgy that the Green’s function is independent of S and that

2.49 1s the only allowed form.

The fact that the matrix elements of the vortex operator turn
out to be automatically finite is rather important. If we had had to
add a counterterm 2.47a to the exponent of Vp', its commutation rela-
tions 2.1 and 2:3 would then have become cutoff dependent. We hope
to find that there are relations between the commutation relations of
V_‘ (that is, the fact that it is a vortex operator) and its Green’s
functions; this would seem unlikely if cutoff independent commutators
had been incompatible with cutoff independent Green’s functions.

This is remeniscent of the situation with Noether currents, genera-
tors of exact symmetries: there also we wish to ascribe physical sig-
nificance to commutators, and there also the commutators and the

Green’s functions are simultaneously finite.

There 18 one weakness in the above analysis. What we have
really shown with the operator product analysis is that the counter-
term c; suffices to remove all divergences from Green’s functions of
V_when they are expanded order by order in p (thus, in 2.44 we have
isolated all graphs of order pJ). It would be preferable 1f we could
first sum to all orders of p, getting effective propagators and ver-
tices as before, and then analyze the divergences directly from the
short distance properties of these effective propagators and ver~
tices. We do not expect that our conclusions would change; however,
we shall see in the next chapter that an expansion of the Green’s
functions in powers of p can sometimes lead to erroneous conclusions,

s0 it would be good to have an analysis of the divergences which did
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not rely on such an expansion. Note that the finiteness of 2.48 was
independent of the expansion in p. It would also be interesting to
see what effect hard P- or CP- violating interactions would have on

the analysis.



CHAPTER 3

CLUSTER PROPERTIES OF LOOPLIKE OPERATORS

A. Cluster Properties in a General Gauge Theory

In this chapter we discuss some of the long distance features of
the Green’s functions of operators associlated with closed curves.
The present section is quite general, and applies to an Abelian or
non-Abelian theory, though we shall be particularly concermed with
the non-Abelian case. 1In the next seccion we return to an Abelian
theory and extend the results of the previous chapter to the case

where the symmetry is spontaneously broken.

The spectrum of a given gauge field theory might have one of
mwany different forms. It might be "QED-like", where the physical
particles resemble closely those in the Lagrangian: massless vector
particles and unconfined charged (that is, non-singlet) particles.

It might be confining, with all physical particles gauge singlets.

It might be Higgs-like, with the gauge particle massive and the gauge
symmetry broken either by a fundamental or a dynamical Higgs field.
It might be intermediate between these possibilities, or it may have
some other form altogether. Which form, or phase, is realized will

depend on the details of the dynamics.

It is desireable to have some order parameter, some precise dis-
tinction between the phases. For ipstance, the QED-like phase is
distinguished by the presence of a massless vector particle. The

confining phase of a non-Abelian theory is not so readily defined.

As pointed out by HandelstamIA, there is no global non-Abelian

charge: the current 15 gauge covariant, so its integral over space
44
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has little meaning. It is therefore imprecise to say that a physical
particle is a gauge singlet. Nor is the identification of the non-
Abelian Biggs phase obvious. The expectation value of the Higgs
field 1s not gauge invariant, and there is no satisfactory gauge to
use. The Coulomb and covariant gauges do not exist in & non~-Abelian
theory34, and the axial gauge is too singular14- The confining and
Higgs phases can be defined precisely by the W:Llson8 and ‘t Hooft18
criteria, relating to the vacuum expectation values of large Wilson
and vortex loops. We shall return to these after we show how the

phases can be characterized by the cluster properties of the Wilson

and vortex operators.

Consider the Euclidean Green’s function

G(x,C) = < &(x) VS(C) >

= < 8(x) HS(C) >~ < 8(x) » < HB(C) > (3.1)

with @(x) some local gauge invariant operator Ssuch as F:FF;S. In

the phases we have mentioned sbove, this function will behave in one
of three ways when C is very large:

Short distance clustering: G(x,C) falls off exponmentially with
d(x,C), the distance between x and C.

Surface clustering: G(x,C) 1is nonvanishing near the minimal sur~
face, SH' spanning C, and falls off exponentially away from that sur-
face.

Long distance clustering: G(x,C) falls off as & power of d(x,C).

These alternatives may be better understood by considering a
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typical state of the system in a 3-surface cutting perpendicularly 5

through C. 1In this 3-surface, one sees a source/antisource pair, s

and ;, where C intersects the surface. I1f the clustering is short

range, there are only short range, Yukawa, fields around the sources,
and vacuum elsewhere. If the clustering is surface-like, there is a
tube of non=vacuum joining s and ;, vhose energy per unit length
gives rise to a linear potential between the external sources. If
the clustering is long range, & and & have Coulomb-like fields with a
power law fall-off. Long range clustering is only possible if there
are massless particles. The other two types of clustering each have
a characteristic scale (the range of the Yukawa field or the thick-
ness of the tube) which are determined by the mass my of the lightest
particle; for quarkless QCD this is presumably of the general order
of AQCD' As mLP(C) is taken to zero, either by shrinking C or by
letting m, go to zero, the first two cluster properties turn continu-
ously into the third.

Short distance clustering is analogous to that for pointlike
fields in a massive theory, where the general connected two=-point
Green’s function falls off expomentially with distance. Long dis-
tance clustering is analogous to that for pointlike fields in a mass~
less theory. Surface clustering is a new feature; it seems to arise
when there is a flux which can neither spread nor be shielded. Omné
might also image more general cluster properties, of course. These
three, however, aeem to cover all those which have arisen in various
gauge theories and models.

We can also consider the cluster properties of Green’s functions

of the vortex operator VP(C) (p designating the homotopy class); the
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same three possibilities seem to arise. The cluster property appears
to be largely independent of the operator @(x). For instance, if a
tube of non—vacuum runs between s and 8, we Would expect most local
operators to have within the tube an expectation value different from
that which they have in vacuum. It may, however, depend on the
representation s of the Wilson loop, or the homotopy class p of the
vortex operator.

A general phase, then, may be characterized by which of the
three cluster properties is realized for each representation and for
each homotopy class. A confining theory is one in which the Wilson
loop, at least in some representations, has surface clustering, as
this implies linear confinement of external charges in those
representations; this is the Wilson criteriona. The “t Hooft cri-
terion defines a (completely broken) Higgs theory as one in which
some of the vortex operators have surface clustering, as this implies

that magneric flux is forming into tubes.

This classification is closely related to the usual classifica-
tion of phases in terms of the vacuum expectation values of the Wil-
son and vortex operators. For & very large curve C, the vacuum
expectation value of a general looplike operator X(C) will be dom-

inated by exp[—Scll, where
4
S‘:1 JH x < L(x) X(C) >c / < X(C) > (3.2)

and L(x) is the Lagrangian density. The connected Green’s function
in 3.2 is a epecial case of 3.1. For short distance clustering the
integrand will be nonzero only for x near C, so that the whole

integral is proportional to P(C): < X(C) > follows a perimeter law.
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For surface clustering, the inteprand will be nonzero only for x near :
the minimal surface, so that the whole integral is proportional to ;
A(SK)- 1n phases without masaless particles, there 1s a one~to-one

correspondence between an area law and surface clustering, aud

between 8 perimeter law and short range clustering.

For long range clustering, the integrand is proportional to
d(x,C)k; the behavior of the integral depends on the particular value
of ke In QED k is -4; the integral therefore is dominated by small
values of d(x,C) ard is proportional to P. 1f k were ~3, the
integral over d(x,C) wovld diverge logarithmically until it was cut
off at roughly the linear scale R of the curve C; it is proportional
to R+In(R)+ We use R rather than P because P implies a certain shape
dependence, which aeed not hold here. If k were -2, the integral
would be proportional to RZ, as it is for surface clustering. In
this case there also be a linear potential between external sources,
but without the formation of a flux tube. There would be, however, a
strongly interacting massless particle, which 1s not observed.
Furthermore, it is not clear that it is possible to find a coasistent
phystcal picture in which k is -2.

Restricting attention for now to phases without massless parti-
cles, the Wilson loop operator for each representation and the vortex
operator for each homotopy class will have either short range or sﬁr-
face clustering. The cluster properties for the Wilson loop in dif-
ferent representa:iomns are related. 1f there are fields of represen-
tatlon s 1a the theory, it will always be energetically favorable for
& and s external sources, when they are far apart, to pull an 88 pair

out of the vacuuw and shield themselves rather than form a flux tube.
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"s will then always have short range clustering. Similarly, one can
see that 1f for any representation r, Hr has short range clustering,
this will also be true of any other representation r‘ which is con-
tained in the direct product of one r and any number of s representa-
tions. The cluster property is therefore a function only on the quo-
tient, {r}/{s), vhere {r) is the set of all representations of the
gauge group, and {s} is the set of those representations carried by
fields or prodﬁcts of fields. Incidentally, for any compact gauge
group, the above quotient is isomorphic to IH(G), so the set of dis-
tinct types of Wilson loops is isomorphic to the set of distinct vor-
tex operators (though there is no unique natural mapping between the
two sets). One further restriction on the clustering is that it must
be the same for a representation and its conjugate (or for a howotapy
element and its inverse), as the looplike opevators for these differ
only in the direction of their "flux", so that they can be turned

into one another by a spacetime rotation.

“t Hooft has shown that relations can be obtained between the
cluster properties of Wilson loops &nd vortex operators in phases
without massless particles. Ome resultla is that 1f a Wilson loop
and vortex operator do not commute, they cannot both have short range
clustering. To see this, let C and C’ be large loops, C lying in the
3-plane t=0 and C° lying in the 3-plane t=-R (we single out omne
Buclidesn dirvection and call it t), where R>>u '« Let them have the
spatial orientation of figure 5a, linked but separated by the large
distance R. Consider < VP(C) Hs(c') », where p and s are such that
the operators do not commute, when C° is translated as follows:

first, forward in time to t=R; then, in a spacelike direction to the
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spatial configuration of figure 5b (unlinked, and separated by R);
then, back to t=-R; finally, back to the position of figure 5a. The
Green’s function must now have returnmed to its original value. C and
C’ are always separated by at least R. If both operators have short
range clustering, there can be mo correlation between them. In other
vords, C’ is essentially being moved through vacuum, so that

< VP(C) HS(C') > 1s constant by translational invariance. This is
true except when C’ crosses S; —he Green’s function then jumps by a
phase. C’ sweeps out a closed surface, which links C a definite
number of times. It therefore crosses 5 this same number of times,
independent of the choice of S. Taking the special case where § is
the minimal surface spanning C, we see that C° crosses this oanly

once, on its first leg to t=R.

The only change in the Green’s function during this round trip
is one change of phase, when C° crosses S, corresponding to the non-
commutation of the two operators. This is inconsistent with the
Green’s function being single-valued- It is therefore impossible for
both operators to have short range clustering. If either one has
surface clustering, the Green’s function changes not only when C’
crosses S, but also when one loop moves through the flux tube of the
other. If there are massless particles and one or both loops have
long range clustering, the Green’s function can change even when the
two loops are well separated. In either of the latter two cases,
there is no contradiction with the single-valuedness of the Green’s
function. We have tried, above, to emphasize the distinction between
the arbitrariness of phase of the Green’s function associated with a

change of S, and the fact that it is well defined, and single valued,
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once S is fixed.

More recently, using & more powerful frlmenorkBs. ‘t Hooft has
been able to place even stronger restrictions on the cluster proper-
ties in phases without massless particles. We shall refer to some of
his results later.

We now illustrate the above ideas. In a free Abelian theory,
one readily finds that all Wilsom and vortex operators satisfy a per-
imeter law. For the vortex operator only the second term of 2.23
survives; an almost identical expression holds for the Wilson loop.
External charges and monopoles have Coulombic fields, and connected
Green’s functions all satisfy long range clustering, with various
powers of d(x,C). For the special case of @(x)=L(x), k=-4, as men-
tioned above. For QED with massive charged fields, the infrared pro-
perties are essentially those of the free theory, and the above con-
clusions still hold.

In a pure SU(3) gauge theory (QCD with quark loops suppreased),
there are three different kinds of representations, distinguished by
"triality", the SU(3) version of the quark number discussed before
equation 1.5. The representations of zero triality can all be formed
as a product of adjoint representations; since there are always
adjoint fields present (gluons) these can never have surface cluster-~
ing. Assuming on phenomenological grounds the absence of massless
glueballs, the Wilson loops for the representations of zero trialicy
will always have short range clustering. The representations of tri-
alities one and two will always have the same clustering, as they are

conjugate to each other. The Wilson criterion, defining a confining
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theory, is that this should be surface~like for quarkless QCD, so
that quarks are bound by a linear potential until the flux tube
breaks by creation of quark pairs. In this, the standard, picture, a
linear potential can never form between gluons. Physical gluons must
be assumed to be absent because they are shielded in some way: a high
energy gluon resulting from an interaction would pull more gluons out
of the vacuum and form a singlet glueball. As for the vortex opera-
tors, there are two homotopy classes, other than the trivial one,

.

corresponding to the elements exp[+2mi/3] of the center of SU(3). t

Hooft has shown that these will have short distance clustering35, if

the triality one and two Wilson loops have surface clustering.

When the contribution of quark loops is added, it becomes possi-
ble to shield any Wilson loop, so that all Wilson loops will satisfy
a perimeter law. At the sarc¢ time, the effective gauge group becnmes
SU(3) rather than SU(3)/23. This is simply counnected and does not
permit vortex operators to be defined in a simple way. Thus, insofar
as the Wilson and “t Hooft criteria are the only distinctions between
phases, it appears that aan SU(3) (or SU(n)) gauge theory with fields
in the fundamental representation cam exist only in a single phase,
regardless of the dynamics. 7This phase may resemble a confining or a
Higgs theory extremely closely, but it would be possible to change
the theory in a continuous way from one into the other. This possi-
bility has been much aiscussed, e.g. in references 36, 37 and 38. We

shall have more to say about it in the next chapter.
Lastly, we consider a perturbative Higgs theory, one in which

the coupling is quite small so that we may use a covariant gauge

without worrying about the Gribov ambiguitysa- This enables us to
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discuss gauge dependent quantities such as the vscuum expectation
value of the Higgs field. We shall take the gauge group G to be com-~
pletely broken. M, the set of classical vacua (minima of the Higgs
potencial), is then identical to G and there are no massless parti-

cles. Let us consider
$"5x) = < g(x) VO(E8) > £ < ¥ (C,s) > (3.3)

where ¢(x) is the Higgs field, C is a large curve and S is taken, for
convenience, to lie far away from the minimal surface of C. In a
three surface which 1s perpendicular to C and cuts it at two points
we have figure 6. Near the small loop 1, which is5 far from C and
from its minimal surface, gauge ilnvariant connected Green’s functions
will vanish and yvs(x) will be position dependent but its values will
lie in the set M.

If we have an Abelian theory, we know from 2.37 that ;vs(x) will
be asexp[ip®] as we traverse the infinitesimal loop 1 and 8 goes from
0 to 2n. Here a 15 the magnitude of the vacuum expectation value of
g. M is the set of complex numbers of modulus a. On the loop 1,
¢vs(x) is seen to describe an element of the homotopy group III(H)
identical to the element of III(G) assoclated with the vortex opera-
tor. This idea generalizes to a non-Abelian theory: there too there
will be a gauge transformation g(S,S’;x) governing the S-dependence
of gauge dependent quantities, which will give rise to a nontrivial
element of the homotopy group when x circles § or §°; this causes
ﬂvs(x) trace out the corresponding element of IH(H) when x travels on

loop 1.
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We may now imagine enlarging the loop, sliding it off S, taking
it to the position of loop 2 and shrinking it to a point, without
ever getting close to c or <. Because the fields are singular oanly
at S, ¢vs(x) must be essentially constant on loop 2: it maps out an
element of the trivial homotopy class. By definition there is no way
to continuously deform an element of one homotopy class into an ele-
ment of another while staying within M. It follows that, somewhere
between 1 and 2, 9vs(x) took values outside of M; this must be the
case at least within a tube between c snd c. This is precisely the
argument by which one shows that when the Higgs field at spatial
infinity in two space dimensions maps out a non-trivial element of
the homotopy group, there must be a “"lump", a Nielsen-Olesen vor-
texzo'ZI, somewhere in space. The tube between ¢ and Tcis a
Nielsen-Olesen vortex. Where 9vs(x) does not lie in M, gauge invari-
ant connected Green’s functions such as that for the Higgs potential
will be non-vanishing. It follows that the vortex operator in a com-
pletely broken small coupling Higgs phase has surface clustering.
This is the source of the “t Hooft criterion. One may also check,
order by order, that the Green’s functions of the Wilson loop are

short range, because all fields are massive.

B. Vortex Operators in an Abelian Higgs Phase

In the last section we saw that the vortex operator in a pertur-
bative Higgs phase has a surface-like cluster property. For an
Abelian theory we can obtain a stronger result: the vortex operator
can never have short range clustering, so that in any Abelian theory
without massless particles it will have a surface clustering and obey

an area law. From 2.36° and Gauss’s law,
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x = , an .
J‘BdePP T< rPP(x) v, (C,5) > -—e-E< V' (C,5) > (3.4)

where C 18 a large curve and B is a 2-sphere linking C (we might ima-
gine figure 5a as showing the 3~surface containing C, with C’ as the
equator of B; the rest of B extends into the t-direction). All
fields and charges in this section are taken to be renormalized. The
integral over B is independent of the radius of B. On the other
hand, since the Green’s function in 3.4 is gauge invariant, short
range clustering would require it to fall exponentially when the
radius of B is greater than m; this is inconsistent with equation
3.4.

What we have shown is really quite simple: magnetic flux can
never be shielded. If the absence of massless fields then makes it
impossible to have a Coulomb field, magnetic flux can only form into
tubes. One could see this directly from the operator equacion
szi?(x)-Pmc(x), where Pmc(x) is a purely external magnetic charge
density; this equation is one component of 2.36". Given that mag-
netic flux is confined, one can extend "t Hooft’s more recent
results35 to the Abelian case to show that all Wilson loops must obey
a perimeter law. It follows that an Abelian theory (without magnetic
wmonopole fields) never confines. This result was anticipated by Man-

delstamla on the basis of the existence of the Abelian Coulomb gauge.

One wight try to argue in a different way that the Green’s func-
tions of the vortex operator had to be ahort ranged in a phase
without massless particles. Take a large curve C, with the surface §

far awvay from the minimal surface, as it was in figure 6. Consider
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< 8(x) Vp‘(c.S) >c / < vp'(c,s) >

w8

1 ™ 5 i
gire #(x) [ej‘sdcripl?qp(y)] >, (3.5)

vhere again @(x) is any gauge invariant operator and where x is a
point near the minimal surface of C but far from C itself. Because
there are no massless particles, every Green’s function in 3.5 falls
exponentially for x distant from S. In particular they are vanish-
ingly small when x is on the minimal surface, so that surface clus-
tering is ifmpossible. Further, since < €(x} Vp'(C.S) >c is exponen-
tialy small for x far from S, and also independent of S, it is
exponentially small except for x near C. This is in direct disagree-~
ment with what was shown above. The problem must lie in the expan-
sion 3.5: while this expansion is formally correct, the long distance
behavior of the sum is not the sawe as that of the individual terms.
This is the source of our statement, at the end of the saction on
renormalization, that the expansion in powers of p is not to be
trusted.

In the remainder of this section, we shall extend to the case of
a spontaneously broken Abelian theory the rules for calculating
Green’s functions involving VP‘(C.S) in terms of effective propaga-
tors and vertices. We shall be particularly interested in seeing the
surface-like cluster property emerge. We shall also be interested in
the following question: In the presence of s vortex operator we
expect the Higgs field to have s certain "twist", or singularity; yet
wve generally, in & Higgs theory, expand around a constant, non-

singular Higgs field. How are these compatible? We shall see that
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the twisted Higgs field arises in a natural way.

First, we will sketch the derivation of the Feynman rules in a

Higgs phase. Consider the functional integral
1
2(J3) = fof exp{ - 3M11+1¢3 - P(F) + J{ﬁi } (3.6)

Here, for convenience, we have joined all the fields into a single
field *i' where the index i imcludes quantum numbers, spacetime
indices, and spacetime position. Hij is the quadratic part of the
action, P(¥) is the interaction Lagrangian, polynomial in +i' and Ji
is an external source, whose functional derivatives are the Green’s
functions of ¥, Writing *E-Pi+ai' where ay 15 the value of %1 about

which we wish to expand the functional integral, we may write 3.6 as
1 1
2(J) = Jop exp{ = M, ,p;py = My 8Py ~ M 48,8, - Pp)

1
- aiP.i(p) - Eaiajl’.ij(p) = e = Jp, = Ja0) (3.7

[ 5 [
= exp( Ja, - “1181 33; - P(Zj) - aiP.i(gj) - e )

1
)ijJijj} (3.8)

exp{ %(H-
Here, we have Taylor expanded the interaction P, with the subscripts
indicating derivatives with respect to Pi° The ellipses indicate the
rest of the Taylor expanmsion, which, of course, has a finite number
of terms. Overall constants in Z(J) are thrown out because we are
always interested in Green’s functions with the vacuum-to-vacuum

amplitude divided out.

From 3.8 we may read off the Feynman rules, and compare them

with cthe usual rules (obtained by taking 3.8 with ai-O). The
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propagatoer is the same, (M'l)ij- There are new vertices, from the
Taylor expaneicn of the interaction, which in graphs can be
represented as Interaction vertices with some number of external
lines replaced with a "tadpoles" representing multiplication by a;-
Some of these new vertices are quadratic, and could alsc be summed
into the propagator, ratker than being treated as interactions.

There 1is also a new one=point interaction Mijai'

To 1llustrate these rules we comsider

~1 &
u =< > =27 Fan (3.9)
. - ) o NS WP 51
ey~ (M) Mae + (0D, BEO al! rvijl- S B PR

This equation is represented in figure 7. The first term is from the
action of the functional derivative on the tern Jiai' In all other
terms the derivative acts on the quadratic in the last line of 3.8,
giving rise to a propagator and a connected graph. The second term
of 3.9 1s from the graph where this propagator ends on a one~point
verrex ‘Mijaj' In all other graphs this propagator ends on a verrex
vy from P (which may have one or more tadpoles attached). We ilden-
tify the one particle irreducible (1PI) part Y containing v; as v,
plus all vertices which cannot be separated froum vy by cutting a sin-
gle line (v1 may be the only vertex inm Y), plus all lines counecting
two vertices of ¥« Note that all vertices of Y are from P; none are

of the form M as these can be separated from the rest of the

a
i1
graph by cutting a single line. Y 1s then independent of ags since

-
by definition no tadpoles are included in it. F’u+l is defined as

the sum 0f agll such Y with n external lines besides the one which is
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connected to the original propagator. Consider now the external
lines of [™: these may be a tadpole or a propagator, and the propaga-
tor may end on a Hijaj vertex or a vertex from P (which then defines
a new 1PI part). These are the same three choices we originally had,
and sum up to give u, again; summing over all numbers of external
lines, and checking on the combinatorics, we get the last term of
3.9.

The first two terms of 3.9 sum to zero; only the last term,
which is independent of a, concributes. Iterating figure 7 graphi-
cally, we see that u, is given by the sum of all “tadpole trees"sg-
Throughout this section, “tree" refers to a term in the iteration of

an equation such as figure 7, not to a graph without loops. Equation

3.9 can be rewritten

[>e]

d 2 1 A k+l

T == 3 =y, L. . u tecu. =0 (3.10)

dvy Vit kep K I3yt ) Iy

where
2

rfj TR (3-11a)
o=t n¥2 (3.11b)

are the 1PI Green’s functions as usually defined (by the Legendre
transformation)ao and
- U 3
Mv) = - kfoﬁrjl"'kajx.“ka (3-12)
15 the quantum effective potential. Equation 3.10 indicates that uy
1s an extremum of the effective potential; in fact it must be an

absolute minimum or one will eventually run into pathologies in the
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Green’s functions indicative of an umstable vacuumal-

It is not surprising that uy is formally independent of ag; for-
mally, the expansion represents the whole integral, regardless of
what value of the field we expand around. The sum of tadpole trees
is, however, ambiguous when there is more than one winipum, as in the
case of broken symmetry. If we try to sum the trees iteratively by
gathering the last two terms of 3.9 into one term, which we treat as
being small, and taking the first term, ai, as a first appoximation
to U, the result now depends on the value of ai chosen. The value
of a; determines which extremum of the effective potential the sum
converges to; for some values of a; it diverges. The most efficient
way to sum the trees is to calculate the effective potential and
locate its absolute winima. Taylor39 has emphasized the role of the
effective potential in summing the tadpole trees. This is a rather
trivial example of the idea that the convergencz of a peivturbation
series depends on having the right sort of vacuum as a first approxi-
mation; one might hope, however that the effective potential would

also be a powerful tool in the less trivial case where a composite
operator is acquiring a vacuum expectation value‘ .

We can now write down a general form for a connected k-point
Green’s function (k>1) inm a Higgs phase:

=]

KW, cseey > = 3 R u
11 ik I 11...1k,j1...jn Jl

e ey

(3.13)

1
n!
n

3

where G is given by the sunm of all copnected Feynman graphs such that
there is no way to cut a single line and be left with two pieces, one

of which is connected to none of the external points 11,-...ik. T is
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1PI in the indices j, but not in the indices 1. To see 3.13, note
that G is essentially the general Feynman graph with all tadpoles and
trees amputated, and the vy in 3.13 then represent the sum of all

possible attachments of tadpoles and trees.

In the case at hand, an Abelian Higgs theory, *1 stands for the

i

nonzero value u (which can be chosen real) for ¢ and ¢*. That is, we

fields A (x) and ¢(x). u, is expected to be zero for AP and some

draw graphs where either end of a charged line may end on a tadpole,
whose value is u. The presence of G would complicate the graphical

analysis for the vortex operator, 50 instead of 3.13 we use the

equivalent

< #11- . -v"ik

> = 2 (all connected graphs, with trees) (3.14)
Tte meaning of 3.14 is made clearer by comparing it with 3.13. The
tadpoles u; have each been replaced by the tree sum to which they are
equivalent; there is therefore no longer a 1PI requirement on the
graphs. We may see that 3.14 is correct at k=1, as it is there sim~-
ply the sum of trees, which 1s uyg.

Equation 3.14 holds in a symmetric as well as in a Higgs phase;
the only difference is that in a symmetric phase the fields as nor-
mally defined have vanishing expectation value, so the trees sum to
zero and we can neglect them. To evaluate <Vp'(C,S)>, equation 2.22,
in a Higgs phase, fix the configuration of charged lines, and inter=-
nal and external photon lines, summing over all numbers of vortex
photons. As before, w2 get 3 graph of the same configuration, but
with no vortex photons and with all propagators and vertices replaced

by the effective ones. Summing over all configurations, we simply



62
recover equation 2.35 (which includes graphs with trees).

The Higgs phase is distinguished, not by the formal expression
for the Green’s functions, byt by the nature of the tree sum. We
emphasize this by rewriting the Green’s function in 2.35 in a form
analogous to 3.13, that 1is, with the trees summed. We find, again in

shorthand notation,

< *1 e '*1 >cvs ” (3.15)
1 k
[s ¢]
: T, g St
=0 B0 tpcoodigidyetcdg Jy Jn

where EVS is partially 1P1 as before, but is now constructed from the
effective vertices and propagators, and u;s is the sum of trees with
effective propagators and vertices. u}s satisfies the iterative

equation shown in figure 8. It therefore is the extremum of the

"effective potential in the presence of the vortex"

M) -é—u\’sv v.- 3 &Yy Ly (3.16)

Here vi represents Ap’ ¢, and ¢*, r”vs is the sum of 1PI graphs with
the effective propagators aad vertices, and the first term is expli~

citly

VS ST I vS *, VS p
Hijvivj Ja'x EEPAP(x)B(PAP)(x)+(DP #(x)) (DP #(x)) (3.17)

One may verify thnat under a change of surface

r“’s'up,g;,y*) - r“’5<AP,s(s.s')*¢.s<3.3')¢*) (3.18)

From 3.18, it follows that
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A () = A;s(x) (3-19a)
65 () = 85,5539 () (3.19b)

where the superscript tS indicates the extremum of the effective
potential, that is, the sum of tree graphs constiucted with the
effective propagators and vertices for the operator Vp’(C,S). The
expectation value of ¢ 1s just ,tS. For the expectation value of AP,
there are the graphs where the external photon ends on a vertex--
these sum up to A;S-- and there 1s the graph where it ends on S~-this

is simply A;s. It follows from 2.34b and 3.19a that the expectation

value of A , which is AtS+A;S, satisfies 2.37, as does the expecta~
tion value of ¢.

The Green’s functions are then given by graphs constructed from
the effective propagators and vertices, with tadpoles corresponding
to the tree sums for AP and ¢ in the presence of the vortex, rather
than their free values. The tree sum for ¢ has the expected singu-
larity on S, as we can see from 3.19b. This is equally true in the
Higgs and symmetric phase; the differemce, again, 15 in the nature of
the extremum of the effective potential. I1f we take a vortex opera-
tor with C and S bounded, distant from C and S the propagators and
vertices are essentially the same as in vacuum, and so will be the
effective potential. The tadpole uzs will therefore have its free
value. For the symmetric theory this is 0 for all fields; in the
Higgs theory it is a constant ueiq for ¢ and zero for AP- Arguing
as in the last section, io the Higgs phas- there must be at least a
surface (of some thickness) spanning C on which the modulus of the

expectation value of the Higgs field is not u (it must in fact go
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through zero). In the symmetric phase, however, pvs(x) may have its
vacuum value of zero everywhere (except very close to C), as 3.19 is
linear in ¢ and so is trivially satisfied by zero. The surface clus-
ter property is seen to emerge from the sum of all trees, even though

each term in the sum can be shown as before to have short range clus-

tering.



CHAPTER 4

UNQUANTIZED VORTEX OPERATORS

A. Contipyum Theories with Fields in the Fundamental Representation

In the foregoing chapters, a certain quantization condition has
played a central role. This is, that if there are fields present in
a representation s, the vortex operator must compute with the Wilson
loop for the rerresentation s. We consider here the case of a system
which does not have vortex operators, but which closely resembles a

different system which does.

At least two such systems are of interest. The first is an
ordipary superconductor. The Cooper pairs, which form the Higps
field, have charge 2e. This field will support flux tubes quantized
in units of %53 and tubes with a single unit of flux are in fact
observed experimen:zllyba. We would expect to be able to define an
operator which creates such a flux tube, and whose surface-like clus~
ter property would be a signature of the scability of the tube and
the existence of the Higgs phase. On the other hand, electrons and
holes, with charge +e, are also present, and as a result we seem to
be able to define the vortex operator only for even numbers of fiux
units. Since these "sea" electrons and holes do not &ppear to radi-

cally alter the properties of the sisgle-unit flux tubes, the quanti-

2atior. condition does not seem to reflect the physics of the system.

The second system is QCD, where, as discussed in section 3A, it
appears that the introduction of quarks has removed all distinction
between phases. In an SU(3) gauge theory without fields in the fun-

damental repregentation, we would expecc to be able to distinguish a
65
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confining from a Higgs phase by the stability of electric or magnetic
flux tubes. It 1s clear that the introduction of quarks makes it
impossible to observe an electric flux tube, since they can shield an
electric source. It is not at all clear, though, why they should
make it impossible to observe a magnetic flux tube, and we wight
still expect to be able to define an operator whose cluster property
would enable us to say definitely that QCD is or is not in a Higgs
phase.

In this chapter, we first show that without the quantization
condition, a vortex operator cannot be "local looplike”, in the sense
of commuting with every gauge invariant operator at a spacelike
separation from the given closed curve. By analogy with QCD, we call
representations which violate the quantization condition fundamental,
and those which respect it adjoint. (This designation depends on
which vortex we are considering, of course: electrons are fundamental
with respect to odd-tnit Abrikosov vortices but adjoint with respect
to even-unit vorrices.) We show that we can defire a vortex-like
operator which has a surface-like cluster property in a phase with
adjoint Higgs field and fundamental non-Higgs field. We argue that
in a confining phase with che particles in the fundamental represen—
tation weakly coupleé the operator would not have surface-like clus-
tering, 8o it does serve to characterize the Higgs pkase. This
implies that there can be z Higgs-confining phase transition when
particles in the fundamental representation are present, provided the
Higgs field is in the adjoint representation. We point out a possi-
ble paradox involving “t Hooft’s restriction on the possible cluster

properties, and suggest its resolution. We then discuss the
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extension of these ideas to a non-Abelian theory. In a second sec-
tion we give a short discussion of a lattice gauge theory with two
matter fields, one fundamental and one adjoint, which provides an
excellent model for our problem. We show that vhen the fundamental
field is weakly coupled, there are the expected phase transitions,
and that our modified vortex operator is a good order parameter.

When the fundamental field is strongly coupled, it is not clear
whether our operator should still be a good order parameter, as it is
quite nonlocal. We iovestigate this question and find some indica-
tion that it is a good order parameter; we then discuss why this

wight be so, and discuss areas for future investigation.

Consider first the operator given by 2.4 or 2.8 when p is not an
integer. The commutation relation 2.6a is then discontinuous on the
surface S where the angle © is discontinuous. It then follows that

the gauge invariant operator
> -~ . =, -
(x,y;P) = ¢ (x)exp(iej}dx iAi(x YIg(y) (4.1)

vill not commute with VP(C.S) or Vp'(C,S) if P crosses S. This is
true even if ;? and ;7 are very close together but on opposite sices
of S, so that 06:.3?;?) is essentially local. The local operator
?*(x)ﬁﬂx) can be obtained from @(x,y;P) as a limit when -;-b?, it
fails to commute with Vp or Vp' when x is on S. We also note that a
meson-like bound state of ¢ and ¢* at position z 1s created by a
superposition of operators 4.! with x and y near z. For z near S,
the V and V_“ will commute with some of these operators (those which
do not cross S) but not with athers, so that it multiplies only cer-

tain components of the meson wavefunction by a phase, leaving
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something which no longer looks like the same kind of weson. We con-
clude that when the gquantization conditlon 18 satisfled, the opera-
tors 2.4 or 2.8 are surface-like rather than loopiike; their Green’s
functions would be expected to cluster pnear the surface §, and they

would obey an area law, regardless of the nature of the vacuum.

We might wonder whether by being cleverer we could find a local
looplike operator which still satisfied equation 2.1, or, 1f not,
just how nonlocal the operator must be. We can make a general argu-
ment that if there are fields present in som2 representation s, and
if an operator L multiplies the Wilson loop for this representation
by a nontrivial phase 215 (the essential feature of a vortex opera—
tor), then the commutators of L with certain gauge invariants can

fall off no faster than I/P, where P is the distance from the vortex:
Note first that

> >y > >
&y » "s.k(“) (w,z;P )¢s'1(2))

2y '0‘Q~P)
("s.i(X) s,ij(x’y' ¢s. 8.kl

3

> = > , > 3> >
“am OW L GLZEROE () 8T(W-y) (4-2)

>, > >, > 3e
- 1ns,k(u)ds,kj(w,Y;P +P)¢s’j(y) §(x-z)

Here ?s is a field of representation s and n, is its canounical mowen-
tum; the operators in 4.2 are then a canonical momentum at omne point
joined by parallel transport along a path to a field at another
point. Equation 4.2 says that the commutator joins two such opera-
tors into one whose path is the sum of the first two. From this it
follows that a large Wilson loop of radius p can be written as the

multiple commutator of ZnP/d short segments of length d (to join the
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last two endpoints we actually need to take the difference of this
multiple commutator with the same multiple commutator with all the
orders of L and P reversed). We can use the Jacobi identity to
write the commutator of our vortex—like operator L with this large
Wilson loop as the sum of ZnF/d terms each of which involves the com-
mutator of L with a single short segment. Since the total commutator
is of order 1 (that 1is, a phase, independent of P) the commutator of
L with the sh&rt segment can be no smaller than O(d/F) as d becomes
small or 4 becomes large. The local operator "s,iﬁ§ijvs,j with T? the
covariant derivative can be obtained from the segment operators as a

limit; its commutator can fall off no faster than I/P.

The above argument relies heavily on canonical commutators,
which are always suspect, but we believe that the principle is
correct. Certainly it is correct for the lattice gauge theories we
will consider later. 1In the language of the lattice, when the quant-
jzation condition is not satisfied the operators 2.4 and 2.8 intro-~
duce a "frustration” on the surface 5; iLhis frustration can only be
spread out, never eliminatedAA. The resulting operator is then asso-
ciated with a 3-surface, not a curve or 2-surface (it is not possible
to spread it out still further, into the fourth direction). Here we
will generally teke this surface to be a fixed time-plane, but when
we discuss Green’s functions we may take any closed 3-surface con-
taining C.

We now consider an Abelian theory again, with a single charged
scalar field ¢ of charge e and mass m, and with the gauge symmetry
unbroken. We look for an operator VP(C) satisfying 2.1 (with emin-e)

but with p non~integral. The spin of the charged field makes no
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difference--a fermion works out the same way. We remain, for a
while, iu a single time slice. For convenience, we will now take C
to be the z-axis, though everytning we will do generalizes to any
curve. We would like to construct an operator which has its frustra~-
tion spread out, and see if it is useful as an order paramcter. We
will look for an operator which creates a minimum amount of energy;

that is, we will choose Vp to aininize
E w<v] B |v> =<0V BV [0> (4-3)
v P P

where B is the Hamiltonian, {0> is the vacuum, and )v>-VP]0). This
energy will be of interest both as a guide in constructing VP and in
its own right. If the l/F falloff in the commutators implies a l/p
or 1/92 falloff in the energy density <viH6r)|v>. the total energy
per unit length will be infrared divergent. This would imply infin-
ite energy for an isolated Abrikosov vortex, and a long range
interaction between pairs of vortices.

The minimum of Ev can be determined without actually construct-
ing Vp. We first smear out 2.] pnear the z-axis, to remove the infin-
ite energy assoclated with an infinitely thin flux tube. The condi-~

tion on Vp will be
. . i 2
VN(C) = W (CIV, exp(ZE3 dx x £ (p)) (4-4)
where p is @gain a cylindrical coordinate and

f(Fz) = —% P>a (4.5a)

i
£p"y =3 p<a (4.5b)
&
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The integral in 4.4 gives the winding number of C’ around the z-axis
when C° does not pass within distance a of that axis; this reproduces
2.1. Taking derivatives of 4.4 with respect to e, we find the commu-

tators of vp with products of magnetic field operators:

- -
vail(xl)' 4 .Bim(xm) (4.6)

- > R > >
= [Bi (x l)mi (x )]~~~ (B (xm)'ﬂ‘li (xm)J\r'p

1 1 n o
with

T =22 4% 00) (4.7)
eF dF P P

Note that 3: is nonzero only for P(a- 4.6 and 4.7 are correct with f
and e either both bare or both remorwmalized; we ehall take all quan-
tities to be renormalized until further notice. Equation 4.6 is
equivalent to 4.4; it implies the following coustraint on the state

fv>:

> B -
<yl Bil("l) R im(xm) fv> (4.8)

ol (B, (x ), (%) T e, () [0
= <0| [ 1_l(xl) 1(x1 L ee s [By (xm) im(xm) |o>

i
m

For w=1 and 2 respectively.

. Bi(}’) [v> = ui(?) (4.9a)

-» - - ->
<v| 51("1’5_1("2) lv> = M, (x 1)”1("2’ (4.9b)

- -»
+ <0| Bi(xl)BJ(xz) |0>
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If 4.9a were the only constraint on the state |v> (together with
<v|g(x) [v>=0, which follows because the symmetry is unbroken), the

mininum eiiergy would be given immediately by the effective poten=-

tmlao.u'

% m e
LR U(Al'!) (4.10)

-- 5 Lk (X )e ook, ()
TR A S U R

=1 — -
ril...in(xl""’xn)

- > > > >
where AM is any vector potential such that x!Au(x) = M(x) and

- = -
B g EpeeeenX) (4.11)
1 n

n > > ) =
f:ndtz.-.d:n ril"'in(x 105X getpieasiX ut)
Iu 4.11 the [* ® are the 1PI Green’s functions of the vector poten~

tial, and we have writtem out the time coordinate explicitly.

Satisfying 4.8 for all m requires a generalization of the effec~-

tive por.entiall‘z- Equation 4.10, however, ig correct to the first

-2

two orders in e, € = and eo- To see this, consider adding a term

-> >
J‘d3x Ji(x )Ai(x )
to the Hamiltonian, with J:I. an external source chosen so that
> - >
<B(x)>J = M(x) (4.12)

where the subscript J indicates an expectation value in the ground

state of the new Hamiltenian. This ground atate is the state of
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minimum energy subject to the constraint 4.12 (or 4.9a) and its

energy is given by 4.1041. Such expectation values can be evaluated

in terms of Feynman graphs; the graphs for the matrix element 4.12

are shown in figure 9. The graphs for the matrix element

g . |

<B (x)B(y)> are shown in figure 10. We see that 4.9b is satisfied
-2 0 2 -

to order e and to e , but fails at order e (note that AH and Ji

sre of order e_l). To produce a state satisfying 4.9b, we would have

to add to the Hamiltonian a term of the form

&A@ G

fd3x d3y K 4

1]
with the bilinear source Kij of order ez; this would only affect the

epmergy at order ez. The same 15 true for the higher constraints.

Since the charged field contributes first at order eo, we will

only study the energy to this order, end 4.10 is satisfactory.
E o303 B2y o S Lol b
. = zj‘dx (x)-nfz n!f Rpeerdix,

Bl 4 (-;1)""54 i (-;n>rin:f ioop(xl""’xn) + ote?)
U1 o 1°"""n

The order eo term is from graphs with one charged loop propagating in
the external field —XM' The cutoff dependence from the Z3 in the
zero loop term cancels the divergence from the 1 loop ferm with n=2;
the effective potential is well known to be ultraviolet finite. The
four~dimensional integrals in 4.13 can be taken either in Minkowski
or Euclidean space; this is just a contour rotation. It is con-

veaient to take them 1In Euclidean space; the lPI Green’s function

then falls off at least as exP(-m'xi'lemax)' We can write
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pmlloop, oy pn (X,50000x ) (4.14)
Beeop, 1 n bxq PRFe Py x, x (
where
rn . 3ty ) 3
PFlle"'Pn(xl xn (4.15)

2 - n,1 loop -
= r d x,=x), [ (Bx,H(1=B)XsX s eeesX )
199 B g POpge by pr +1-prxex, n

and X is the mean of xz,...,xn. Because p>1, the arguments of " on
the right-hand side are no closer than those of F on the left; r then
also falls at least as fast as exp(-mlxi-x.l ). Inserting 4.14 in

j max

4.13 and integrating by parts gives

o la3 2222 - R 4
Ev d"x MT(x) nfz 3o jﬂ xl"'d xn‘hjk (4416)

> - - a 2
5(‘1)”}1("1)‘\4,12(" 2)""'Ah,in(xn)rjk;iz...in(xl’“"xn) +0Ce)

(There is no surface problem with tae integration by parts, as can be
seen by considering the limit of a large but finite curve C).

Hh(:l) is nonzero only fo:';?l within a distance a of the curve C,
and [* falls off rapidiy at large distance. Therefore, the integrard
is gmall when any of the Xy is far from the origin: there is no
infrared divergence in 4.16. In fact, the energy density in the
state can be shown to fall off exponentially. Similarly it may be
checked that the interaction between distant vortices due to the

electron sea is exponentially swmall (to this order in e).

Equation 4.13 is a perturbation series in p, which we have
learned to distrust. This particular series, however, can be shown

to converge for any p. The reascn is essentially dimensional: each

;
L
X
3
1
b
H
{
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extra power of p in 4.13 comes with au extra propagator, O(m_l), and
an extra power of ::M, which turns out to be O(a-l), a being the
smearing radius. As long as we take a > Eﬁ;’ the series converges;
since we are only interested in the infrared divergence of the

energy, we may take a to be as large as we like.

We now try to find a simple operator which satisfies 4.4 and
which creates the minimum energy state. Our first try is

> > >
vl,p - exp{ijﬂ % AH(x)-E(x)} (4.17)

This is also the form of the vortex operator when there are o
charged fields at all. If we need to consider a specific fcrm for
7§M, we expect the rotationally symmetric form pﬁPf(Pz)/e ta have the
lowest energy. With this choice of.xg. the commutators of vl,p have
the minimal I/P falloff discussed earlier; with other ¢’ >ices they

fall off more slowly, at least in some directions. To calculate the

energy 4.3, we use

+ - D D D \
vl,p B 1 » =H - i[JH b3 AH(X)'E(x), H] (4.18)
- - D D
-2 A, E@, (Y B EG), B+ -

We will evaluate 4.18 using canoanical commutators, so We must take

all quantities to be bare. The second term on the right-hand side of

4.18 can be obtained directly from the equations of motiom; it is
15T HE@ -T@ E,6 (4-19)

-
with j the current. The third term of 4.18, with the double commu-

tator, can now be evaluated; it is
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Fa¥% 3 H2E) + 2RIE W @) (4.20)

It is important that because of gauge invariance, the Hamiltonian is
not fully normal ordered (though it 1s permitted to add a constant to
H so that the energy of the vacuum vanishes), and so the product g*g
in 4.20 is not normal ordered. The triple and higher commutators

vanish, so the energy E, of the state V

1 1,

tion value of H (zero by definition) plus the vacuum expectation

P]0> is the vacuum expecta=~

value of 4.19 (zero by rotational invariance) plus the vacuum expec-

tation value of 4-20, which is

E, = fix $RIE) + 1D 0lg* @@ f0> (4.21)
The vacuum expectation value of ¢'¢ is quadratically divergent,
s0 vl.p appears to be a poor guess (with charged fermious, the same
quadrati~ divergence arises from a Schwinger term). The problem is
that it creates a coherent state; coberent states in interacting
theories generally have divergent energieszo- In particular, vl,p

creates a photon field, but the vacuum fluctuations of the charged

field are not correla:ed with the photons. To correct this we try

v, =V, _exp(ifd’x &%y F®,3" GG (4:22)

2,p Lp

e P ) Y
+ G(x,y)g(x)m(y) + G (x,y)g (x)n"(y) + H(x,y)n" (x)a(y)}
=V
Lp A
where n(;?) is again the canonical womentum and F, G, and H are unk-

nown functions. The energy of the state V2 P|0> is found to be
»
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-7 - -
E, - 1’ G EAE) + Al @ @A) + 0e?)  (4.23)

where |A> = A[O0> and

B,(X) = GG + 3 &) Bp: (4.24a)
5,G) = 16, P @TIE) - pEITF*EN (4.24b)
+ ezfz(?) ‘*Gf);a(?)

Ho and Hl

. 2
.Interaction terms contribute at order e and have been aropped. Hy

are quadratic in the fields and are both of order eo.

is normal ordered, essentially because the energy of the vacuum Is

defined to be zero, but Hl is not normal ordered.

The functions F, G, and H can always be chosen so that [A> is
the ground state of H0+"" we require a’i[& =A a, where the a,
annihilate eigenstates of HO (plane wave states) and the a'i annzhi-
late eigenstates of H0+H1. The particular form of A depends on how
we pair the eigenstates of the two Hamiltonians (perturbation theory
in H1 glves a natural pairing). We will not determine an explicit
form for A, but will simply work out the ground state energy. We do
this using stationary state perturbation theory in Hl; the complete

45

expression for the energy is

1

1 -
EA = <0] Bl(l + H0[].—‘0><0“Hl) jo> (4.25)

E,~
A
where |0> is the free field vacuum. Equation %4.25 can be expended

perturbatively in H.. The first term is just the vacuum expectation

1
value of H,, which is the quadratic divergence found earlier. There

is a second quadratic divergence from second order perturbation
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theory in the first term of H These two quadratic divergences can-

1

cel exactly (we use Pauli-Villars regulators to tell us how to add

divergent terms) leaving a logarithmic divergence. This logarithmic
-

divergence cancels against the divergence from the Mz term, which is

present because the e which appears in the denominator of M is bare

in this calculation.

These cancellations may be verified by direct calculation. A
simpler way to see them, however, is to note that the first order
term is exactly the contribution of the graph lla for the effective

potential, while the divergent second order term can be cast in the

form
3 .3 222> L >
= Jd7x @7y <0] Ay (y)-] (y)n_o M( )i (x) 10> (4.26)
e d U - > =

= - ;% &Yy Bay <ol B, T @) exa(-yg) By )T lo>

- = dpa' oy 82 1001 T3 T BT 105,
where rhe subscript i indicates the interaction representation and'?
is the free field current. Equation 4.26 is just the contribution of
the graph of figure .ib to the effective potential. The cancellation
of the quadratic divergences of graphs lla and 11b is well known;
further, the 3;2 term in 4.21 is exactly the zero loot term of 4.13,
so the logarithmic divergences cancel as well. In fact, the whole
expansion of 4.25 can be cast in the form of the one loop effective
potential: Vz’P creates the state of minimum energy, to this order.

The idea of V can be extended to higher orders in e, but the form

2,p
of the operator becomes more complicated in each order.
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With additional charged fields present, the one loop contribu-
tion to the effective potential is just a sum of contributions from
each charged field. 1In particular, when there is a Higgs field (of
charge ne/p, n an integer, so that it respects the quantization) the
energy of a flux tube is just the emergy of a flux tube without the
field of charge e, plus the one loop term found above. The operator
which creates the minimuu energy state, to this order, is simply a
product of terms: the term Vl’p, times a term of the form of A for
each field not respecting the quantization, times a term of the form
exp(%ffﬂax Qjodr)) for each field respecting the quantization. As
before there is a surface § from the discontinuity of ©. (Does /\ go
over to this latter form as we vary the charge of a field from
unquantized to quantized? It depends oun how We choose to pair the
states when we define A, but they can be so chosen.) We should note
that when one of the fields which does not respect the quantization
acquires an expectation value, the minimum energy becomes infrared
divergent (the energy density goes as IIP) and Vz,p no longer has any
nice properties. This 1s in accord with expectations: we would uot

expect to have flux tubes then, even classically.

The commutator of V2 P with the Hamiltonian density can be
checked to fall off as IIP. whereas the energy density falls off much

faster:
A= -
<O(V2,p H(x) Vz,p|0> b exp(-mP) (4.27)

The point is that the operator V2 P has been carefully tailored (by
’
the minimum energy construction) so that the state VZ pIO> very
i

closely resembles the vizuum state when we move away from the curve
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C. We might then expect that when we go to four dimensions and look
at the connected Green’s functlons of VZ'P, there would be no anamo-
lous clustering near the 3-plane t=0 (on which Vz’p is defined) but
far from the curve C. This is in fact the case. For instance, we
have checked that in a QED-like phase, the connected Green’s function
< 9(x,y;P) Vz’p(C) > (see 4.1) falls off as [IPI/d(x,C)]2 in all
directions when the length of P, {P|, is small compared to d(x,C).
This is the same behavior as when the quantization condition is
satisfied, and holds even though the commutator of @ with Vz,p falls
off only as |P}/d(x,C). Similarly, in a Higgs phase, the same
Green’s function falls exponentially when x is not near the minimal
surface. It can slso bc seen that when there is a Higgs field which
respects the quantization and another field which does not, the vor-
tex operator still has a surface~like cluster property: The Higgs
fiecld still has the singularity 2.37, so the uiscussion following
equation 3.3 still holds, and there must be a surface spanning C on
which the expectation value of the Higgs field is zero and the expec~-
tation value of the Eiggs potential is greater than its vacuum expec-
tation value. Cluster properties and vacuum expectation values of

in perturbative phases are then the same as for the vortex

v
2|p
operator in theories with only adjoint fields.

In order to have the correct commutation relation, we must have

3 > > D> >
v o exp{iZ, Jd'x A:,H(x)'Er(x)) (4.28)

-
where At M is cutoff independent: its curl is 4.7 with the denomina~
»

tor containing e The Green’s functions of V1 P are then ultra-
’

violet divergent; to rencrmalize them requires adding counterterms to



81

the exponent in all of space, mot just on the curve C. The operator
A provides just these counterterms: improving the ultraviolet
behavior of thL2 energy has also improved the ultraviolet behavior of

the Green’s functions. To show this, we note that V can be writ-

zlp
ten
3 > > > - 2
Vz'p = exp{ifd~x Ar’H(x )-Ephya(x) + 0(p )} (4.29)
where
- - > - - >
Ephys(x) = 23Er(x) + Tux) (4.30)
and

TE) = iefgdu exp(iucu)£9*(?)f¢(f)-¢(?)f¢‘(f)]axp(-iuou) (4.31)

Performing the u integration, one sees the connection between equa-
tion 4.31 and the wavefunction correction in stationary state pertur-
bation cheorysa. The higher order corrections in the exponent of
4.29 can be neglected because they are less singular (XM has dimen-
sions of mass). ? is bilinear in the charged field (the u integral
smears out the two charged fields) and so has the correct form 4.22.
The matrix elements of A will have a composite divergence from the
graph of figure 12a if F(?,.)?), G(i,;), or H(';,?) is too singular
as ?—»}?, this divergence has the form of figure 12b, which is the

- .
same as the cutofi dependence in the first term nf E We have

phys®
calculated the ultraviolet behavior of the graph of figure l2a, and
find that its cutoff dependence exactly cancels that from the 23.
-
Ephys therefore has finite Green’s functions as well as the finite

commutator
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- - d 3>
lEphys,i(X).Br.J(y)l - i‘ijkak 67 (x-y) (4.32)
x
>
The "physical field" Ephys thus has certain desireable characteris-

tics of the bare field (finite commutators), and certain desireable
characteristics of the renormalized field (finite Green’s functions),
at the cost of being nonlocal. The Green’s functions of our particu-
larlgphys are divergent in the next order in e; it seems likely,
though, that a suitable operator can be constructed order by order in
e.

Equation 4.27, the exponential falloff of the energy demsity, is
not s0 much a property of the operator Vz’p as it is a combined pro-
perty of this operator and the state |0>; as we have noted, v2,p has
been tailored to leave the vacuum almost invariant at large distance.
As we change parameters in the theory (such as charged iield masses),
tne necessary VZ, will change. As an "order parameter” it might be

more appropriate to have one operator which we can apply to any

vacuum. This also is possible: we can simply take

R R J Y > .
V3'p exp{ifdx AH(x)-EPhys(x)} (4.33)

where i?phys is chosen to have finite Green’s functions and the right
commutator, and to be of fiailte range. ?(?) as given by 4.31 does
not have finite range, but if we simply cut it off beyond some dis-
tance, it will be of finite ramnge and still have finite commutators
and Green’s fimctions. In a QED-like phase, the connected Green’s
function < @(x,y;P) Vs'p(C) > falls off as [lPl/d(x,C)]z, except
within O(m-l) of the 3-plane t=0, where it only falls off as

|P|/d(x,C). 1Its Green’s functions differ from those of Vz » and
>



83

from those of the quantized vortex operator, by an additiomal piece
which is large only near the 3-plane on which the operator is defined
and which falls off only as fast as the commutator. This is what we
might expect for an operator not chosen to “fit onto" the vacuum
state just right. The sawme thing happens to \73’p in a Higgs phase:
the connected Green’s function is still exponentially small away from
the 3-surface of the operator and away from the minimal 2-surface of
C (which need not lie in the 3-surface) but it now has a piece
0(|P|/d(x,C)) near the 3-surface. Th: arguments requiring the Higgs
field to have a surface of zeroes and a large energy density on the
surface still hold. The connected Green’s function of the Lagrangian
or Hamiltonian density with v3'P is the same as in the case of the
quantized vortex operator, plus an additional piece near the 3-
surface which is of order d(x,C)-z; the extra piuce is not of order

- >
d(x,C) 1 because <E (x)L(y)> vanishes by C-invariance. The

phys
integral of this over d(x,C) diverges logarithmically and is cut off
at the size of C, roughly P; the integral around the perimeter then
gives a total of O{P-1n(P)), and the expectation value is the

exponential of this.

Sinc: we do nct have a perturbative wmodel of confinement we must
be more heuristic when discussing a confining phise. Imagine a con-
fining theory, such as an Abelian theory with a magnetic monopole
Higgs field, to which we add a charged field which violates the
quantization for some of the vortex operators. Suppose that the
additional field affects the <ynamics only weakly, as quarks are
telieved to in QCD, so that we may expand in the number of loops of

the new field. Assume also that there is no absolutely massless
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pion, B0 that we may take the loops to be localized in spacetime.
The new vortex operator, V3 p’ is the old one times
’

3 > > > X
exp(in x AH(x)-T(x)). Consider the vacuum expectation expectation
value of v3 p Loops near C can only contribute O(P). Loops far

1]
from the 3-surface (and therefore far from C} are unaffected by the
presence of the vortex operator (since the operator about which we
are expanding has short range clustering) and do not contribute to
the expectation value. Loops near the three surface but far from C
give contributions of the form
3 a3 ot TCT, x T, (x>
JaTx - e "n"‘u,il"‘l)""’u.in(xn) 11(‘1)“' 1n("n) c (4-34)

This vanishes by C-invariance when n=l. When n=2 it is logarithmi-
cally divergent at large P’ as XH is O(IIP)' and for larger n there
i3 no divergence. This is exactly as in the other phases, and leads
to the same P«ln(P) in the expoment. In the QED and confining pha§es
this piece dominates the usual perimeter term, but in a Hipgs phase
the area term still dominates. In the same way, one may see that the
cluster property is row short range plus a new piece near the t=0
plane, falling off siowly with pe

We appear to have a general rule for the cluster property when
fields in the fundamental representation are added: to the original
cluster property is added a piece which is non=-zero only near the 3-
plane of the operator and which falls off rather slowly, like the
commutators. The cluster properties for the three kinds of phase are
still distinct. Note again that we may choose, for ease in identify-
ing the cluster property, to spread out the "frustration" on a 3-

surface other than t=0, so that we may take one which does not
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contain the minimal surface. We are led to conjecture that in sys-

tems such as a superconductor or QCD, with the particles in the fun-
damental representation having only a small effect on the dynamjcs,

we can distinguish a Higgs phase from a confining phase based an the
expectation value or cluster property of our modified vortex opera-
tor.

There is a possible paradox here. As usually stated, the result
of ‘t Hooft is that either the vortex operator or the Wilson loop
must satisfy an area law. We have conjectured that in a QCD~like
theory, our modified vortex operator follows a P-1n(P) law, while the
Wilson loop in a confining theory with particles in the fundamental
representation satisfies a perimeter law because of screening.
Expresseu ipn terms of cluster properties, there is no paradox. “‘t
Hooft’s result was that both loops could not have short range clus-
tering. The vortex operator here does not have short range cluster-
ing; spacetime near the t=0 surface does not look like vacuum. When
the Wilson loop in “t Hooft”s argument moves through this region, it

can give back the phase that it gets from the canonical commutacor.

However, in QED-like and 'iggs phases we were able to find an
operator which did not have this extra clustering. If this were als)
possible in a confining phase, there might then be a confict with “t
Hooft’s result; the proof is too heuristic for us to be sure whether
there is. It wmay be that the vortex operators considered in this
chapter evade the proof automatically because of their aonlocal com-
wmutators. We are inclined to believe that this is not the case, how-
ever. The proof considered only the Green’s function <W(C’)V(C)>,

with C° lying entirely before or entirely after C. This Green’s
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function depends only on the states <0}V(C) and V(C)|0>, not on any
other properties of V(C). Short range clustering for V(C) then
implies that these states are locally vacuum away from C; this should

be enough for the proof to go through.

We cannot be sure, then, whether short range clustering is in
fact excluded for any vortex operator when there are fields in the
fundamental representation, but we conjecture that it is. (In our
earlier construction of a vortex operator with short range clustering
(Vz'p). we had to treat the dynamics perturbatively; it 1s not at all
clear tnat we could define such an operator for a confining vacuum.)
This leads to the related conjecture that it 1s not possible to
satisfy equation 4.8 (or its non~Abelian analogue) with a state of
finite energy in a confining theory. This would provide an addi-

tional means of distinguishing a confining theory.

e should mention that all of this chapter can be extended to a
non-Abelian theory. In that case, there are special problems with
defining a gauge invariant operator. In a weak coupling phase,
though, we can simply take all fields to be in the Coulomb gauge. We
can then define the vortex operator exactly as in the Abelien case,
except that we must add the "gluon color demsity" to the charge den-
sity in the exponment of V, and we must consider all of the fields and
currents in the exponent to lie in some arbitrary U(l) subgroup of
the gauge group. The perturbative analysis in this chapter then
changes only by the addition of a few color matrices, and the physi-

cal arguments and conclusions are all the same.



B. A Lattice Model

We have recently begun to consider an Abelian lattice model in
which the above ideas apply and in which they can be tested in a more
precise way. Although our study of this model is far from complete,
we present some of the results. They support many of the conclusions
reached above, while opening up interesting new questions about the

nature of order parameters and phase transitions‘6.

The model contains an Abelian gauge field Uab defined on links,
a singly chsrged matter field 913 defined on sites, and a doubly
charged matter field ¢2a defined on sites. The subscripts a, b, «..
refer to sites, so a link is labelled by two sites, its endpoints (in
a directed way), and a plaquette is labelled by its four corners.

The action is

s = ; sP + f (51.L + SZ,L) (4.35)

where the sums run over all plaquettes and all links respectively.

The gauge field action is

SP = —KRe(UP) (4+362)

Ly is the product of link variables around the plaquette,

uabubcucduda for the plaquette abecd. The matter field actions are

. A
S”'ab = “PiRe(? 1. 0ap?0p) (4+36b)

* 2
Sa,1,, " P2t Waa"an? 2y (4.36c)

The variables U, ?1a° and #o, are complex numbers of modulus 1.

* *
uba’ ¢1a' and ¢2a, respectively, are their complex conjupates, not
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independent fields. The action is gauge invariant; the gauge

transformation is

®
Usp = 85%a8p (4-37a)
1, 81,0 (4.37b)
2
72.3-’ 8a92,a (4:37¢c)

vhere 8, is an arbitrary field of modulus l.

With no matter fields (pl-pz-O) this is a pure Abelian gauge
theory. On the lattice, however, this theory is not free and in fact

47'48. When K is small (corresponding

it is known to have two phases
to large coupling in a continuum theory) it is confining; when K
increases beyond a certain critical value KC it changes to a Coulom-

bic theory, with a massless photon.

A vortex operator for a curve C can be defined as follows:
choose a surface S whose boundary is C, and identify all plaquettes
intersecting S but or:hogonal to it. For instance, consider C to be
an infinite line in the 3-directiosr. plus another infinite line run-
ning in the (=3)~dircction and displaced in the 2-direction from the
first; S can be takern to be the flat surface (in the 2,3 direction)
lying between the two limes. Part of this is drawn in figure 13a; we
have suppressed the 3-direction entirely, so that all the links and
plaquettes shown are perpendicular vo the 3-direction, and the full
spacetime is obtained by stacking the figure on top of itseli (in the
3-direction) an infinite number of times. The plaquettes we have

identified above are the 0,1 plaquettes drawn. The vortex operator
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is defined by replacing the action SP with

ioe
Sq,P = ~KRe(e UP) (4.38)

on the indicated plaquettesag- It appears that this is a surface-

like operator, but by changing variables

D - Ui (4+39)

on certain links, we cen change the apparent surface S (see figure

13b}. Only the curve C is invariant. The expectation value of the

vortex operator satisfies a perimeter law for both phases of this
49

pure gauge theory, for all o ~+ Note that because there are no

charges as yet, there is a continuum of vortex operators O<ar<2m.

The Abelian theory with either Pl or pz aon-zero, out not both,

37’38. Even though

was studied by Fradkin and Shenker36 and others
the matter fields are constrained to have unit magnitude, wnen P is
small they act like linear fields, of zero vacuum expectation value.
When B becomes large, though, the matter action is more and more
strongly constrained to stay near its minimum, and the fields become
Higpgs-like. Wnen there is a doubly charged matter field, the vortex
operator is only useful for o=nm. It is only for this value that
4.39 leaves the matter action javariant; for other values the vortex
operator is surface~like rather than looplike, and always has a
surface~-like cluster property. When the matter field is singly
charged, there is no nontrivial value of o for which 4.39 leaves the
patter action invariant, and we can define no vortex operator. We
wight then expect that in the doubly charged case we can make an

absolute distinction between Higgs and non-Higgs phases on the basis
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of the cluster property of the a=n vortex operator, while in the
singly charged case this distinction may be purely quantitative,
unless we find another order parameter. In fact, Fradkin and Shenker
shoved that the doubly charged system has three phases, separated by
phase transitions, while the singly charged case has only two, with
the vacuum energy proven to be analytic between the regimes that
resemble Higgs and confining phases. The phase diagrams for the dou-

bly and singly charged systems are shown in figure l4.

The above work, relating to theories with only a single matter
field does not bear directly on what we have done. Restricting
attention to the o=n vortex, the doubly charged field is what we
have identified as sdjoint, and the singly charged field is what we
have called fundamental. Our analysis of the previous section only
applies to theories where the fundamental field is weakly coupled, so
that pl must be small. When Pl is swall, we do mot expect to see a
Higgs phase if there are no other matter fields. When Pl is large,
we do not expect to see vortices even at the classical level, aad the
analysis of the previous section does not apply. To test our ideas,
we must consider the gauge theory with both matter fields, with Pl
small.

The phase diagram for this theory is a cube, the three direcf
tions representing the coupliogs K, Pl' and pz. The face of the
cube on which pl-o is the doubly cinarged theory (sece figure 14
again); this face has a confining, a Coulombic, and a Higgs phase.
The arguments of the last section suggest that if we consider a slice
of the cube at finite but small pl. we should still have three

phases: the transitions on the pl-o face shown in figure 14 should
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be walls that extend into the cube, not lines etched on the surface.
The small Pl region can be analyzed easily with the ideas of Fradkin
and Shenker, based on ideas of Hegnerso. If we expand the part of
the functional integral involving the singly charged field, we get a
sum over products of SI,L for various sets of links. Each product
will involve various powers of FI,a and ’1,& at each site. 1If the
powers of ¢*1 and ¢, are not equal at each site, the functional
integral over ¢1 givzs zero. If they are equal on each site, the
integral gives 1, leaving just the link variables from Sl,L' The
condition from the ¢1 integration forces the remainit, link variables
to be formed into closed curves. The lowest terwm is of order P?,
coming from the product sl,absl.bcsl,cdsl.da' The integral over gl
leaves just link product uabubcucauda: this term just changes the
effective coefficient of the plaquette action from K to &+%§?.
Higher orders in Pl give traces of link variables around lomger
curves. Very lomg curves are suppressed by large powers of PI'
Fradkin and Shenker argue that these interactions cannot destabilize:
the phase transitions ;hea Pl is small. These arguments are based
more on lore frhan on rigor, but phase diagrams derived from them have
been verified nicely by numevical work51- The conclus_on is that for
small Pl the effect is just a shift in the effective coupling; as we
take our slices in the cube (at small fixed Pl) we see the same
structure as on the face, shifted to the left by the change in the
coupling. The small Pl expansion on the lattice closely resembles
our continuum arguments about the expansion in number of loops of the

fundamental field, though on the lattice there is at leect the hope

of more rigor.
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What 1s our modified vortex operator om the lattice? The defin-
ition 4.38 will no longer do. 4.38 replaces K with ~K on the links
orthogonal to § (for a=n); we can change S by changing variables of
integration. The integration over the singly charged field adds-%pi
to the coefficient on every'plaquette (the matter action doesn’t know
about S). The coefficient is then R+%pi on most links but -K+%p?
on 8. These differ in magnitude and not just sign, so no change of
integration variables can now shift S. The vortex operator is sur-
facelike (as we also argued earlier). Nor can we remedy this simply
by changing the sign of the matter action om certain lioks: that just

moves the probler elsewhere.

We can only spread the problem out: pick out some 3-~surface X of
1inks, in which 5 lies. Such a surface is illustrated in figure 15.

On these links, change the charge ! action to

i8/2 »
ab il SLLC I PR ST (4.40)

LR

where @ is illustratec in figure 15, and the discontinuity of the
exponential 1s defined to lie on the surface S. When we now change
variables on some set of links, changing the apparent surface S in
the gauge field action, the apparent discontinuity in the matter
action moves as well. X may be any 3-surface containing C; S may be
any 2-surface bounded by C and lying in X. No change of vnriableé
will chaonge the surface X (it is distinguished by the fact that the
product of the arguments of the "Re" in the matter actions on the
four links of a plaguette does not equal the argument of the “Re" for
the gauge field action on the plaquette); the operator depends on X

but not on S.

e
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When we integrate over the charge 1 field, the effective gauge
action that we obtain is unchanged on plaquettes not lying in X. On

plaquettes such as A, shown in the figure, the effective action

becomes, to leading order in Pl’
1.4 8-6" B
~ Re[(R+gp exp{1=5—N U] 4.41)

1.4 1.4 9-9° 1.4 . 8-9°
- (K+8P;)Re(UP) - 8pl[l-cos-T-]Re(Ul,) + BPISinTIm(UP)

On plaquettes such as B which lie in S, the effective action is
exactly the negative of this: the K term has the opposite sign by
definition, while the induced terms have the opposite sign because o

the discontinuity of ei@/Z.

The expectation value of our modified vortex operator in the
full theory is then equal to the expectation value of the operater

exp{ 2 o)
P«X

times the usual vortex operator, in the effective gauge theory after
integration of the charge 1 field. ‘P stands for the second and
third terms on the right hand side of 4.41. At small Pl' the expec-
tation value of the exponential is the exponential of the expectaiion
value. The expectation value of In(UP) is zero by C invariance (com-
plex conjugation here); the expectation value of Re(UP) is some con-
stant. ©-8° is of order alp, so the integration over P is logarithm-
ically divergent as in the continuum case. The expectation value of
the modified vortex operator is then exp(-=P-1n(P)) times the expecta-

tion value of the normal vortex operator for the effective gauge

theory. The total expectation value therefore changes from
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exp(=P-1n(P)) behavior to exp(-A) behavior on just those curves where
the effective gauge theory (and the full theory as well) change from
confining to Higgs-like. The cluster properties are also the same as
expected from the continuum case. It appears that we have found a
good order parasmeter for the small Fl region. We have not yet stu-
died the conjecture about finite energy states which arose from the
paradox with “t Hooft’s result. This is probsbly studied most

readily in a Hamiltonian lgttice theory.

As ve travel into the cube which represents theory space, do the
phase walls we have found ever just end, so that the different phases
can be connected by a continuous path through the middle of the cube,
or are some of the phase regions completely walled off? Qur modified
vortex operator has different behavicr in the Higgs and confining
regions; on any path connecting them its behavior must change discon-
tinuously. If we have 8 "good" order parameter, this will also imply
a nonanalyticity in the vacuum energy and Green’s functions. What
makes a good order parmeter is not well understood; one can find many
examples of an operator whose behavior is discontinuous even though
the physics is not: the phase transition is “in the operator", not in
the vacuum. As & simple example, conoider a scalar theory whose
Lagrangian density is Ll(x)+m2¢2 and which has a phase transition at

-z-nz. As an "order parameter" take

exp(kjakx ¢2(x)}

The expectation value of this operator will not be discontinuous at
mz-mz. where the vacuum is discontinuous, but at mz-m:+k. This is a

rather trivial example, but there are much more subtle ones; these
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"bad"” order parameters disturb the vacuum rather than diagnosing it.
Bad order parameters tend tc be very ncanlocal, as was our simple
example. Since our modified vortex operator is more nonlocal than

the usual vortex operator, we must be suspicious of it.

We have started to look at the behavior of our operator at large
Pl' On the pZ-O face, shown in figure 14, the behavior of the
theory is vell known; there is a region of analyticity connecting
pl-o with plqi. When Pl becomes very large, the functional integral
for the expectation value of the vortex operator is dominsted by the
configurations which minimize the charge 1 action, 4.40. One such
configuration is given by pl-l everyvhere, U‘b-l for 1inks not on X,
and U‘b-e_ie,z for links on X (¢2 is decoupled). This gives 4.40 its
minimum value, -2, everywhere. The gauge field action, 4.38 on S and
4.36a elsevwhere, falls off as IIPZ on X for this configuration. The
action of this configuration is not large on any plaguette; the total
action is again O(P-1n(P)). Our modified vortex operator does not
have surface-like behavior anywhere near plqn. pz-D; its behavior
appears to be continuous in the region in which analyticity has be=n
Proven.

The acid test for our operator comes on the qun face. This
face is best understood in the 92-1 gauge, vhere the charge 2 action,
4.36c, constrains U to be 1 or ~1 on every link. We then have a z2
gauge theory coupled to & U(l) matter field (the charge 1 field),
whiczh is still & fundamental representation in our terminology.
Because the matter field is fundemental, we might expect thia face to
have a phase diagram like the pz-o face, with a phase in the small

Pl' large K corner having free z2 excitations (this would still be 2
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Higgs phase from the point of view of U(1l)) and one continuous phase
elsevhere. This is shown in figure 16. Near the left side of the
lovwer edge of the diagram, we can integrate out the charge 1 field
and we have gimply a Zz gauge theory at small K. This is a confining
theory‘g; the vortex operator satisfies a P-1n(P) law. Near the
plqn face, where we must minimize the charge 1 action, we can no
longer find a configuration which makes the matter action small
everyvhere; our carlier configuration required U to tske values other
than ~1 and 1. Any configuration will have at least a surface of
plaquettes (bounded by C) on which the action is large. Our operator
must therefore make a discontinuous change to surface~like clustering

somewhere between edge 1 and edge 2.
This leads us to a closer examination of the pznn face. When
the gauge field and the matter field are the "same size", U(l) and

U(l) or Z, and 22. the phase diagram of figure 16 is known to be

2
correct, but here the matter field has more structure than the gauge
field. We therefore look at the K=0 edge, where only the action SI,L
survives (the whole effect of the charge 2 field is the constraint
U=+l). Summing over U on each link, we find that the functional

integrand (leaving out the vortex operator now) is a product of a

factor of
exp(-1,,) = exp(-P Re(p] 4, )} + exp{pRe(g] §,,))  (4:42)

for each link. This factor is invariant under 91‘->-p1‘; there is a
surviving 22 gauge invariance. The action is therefore a function on
U(l)/Zz, which is just a different U(l); we write it in terms of a

new field 9‘ defined by
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2
exp{i6,} = ¢_ (4.43)
The action 15 now a sum of terms for each link

(4e44a)

I, =- 1n{2cosh(plcoa-—‘-i—"))

ab
We shall see that this is s close approximation to the action of the

xy-modelsz,

J

b = " nycOI(O.'Gb) (4.44b)

At small Pl’

e ~8
1.2 2"a b 4
1, = const --Z-Plcos (———2 ) + 0(p1)

ab
t’ 1 52 05(0 =0, ) + 0O( 4) (4.45)
= const” =~ 7 pjeos(6,"5, Py :

This is an xy model at ny.l% Pf.

At large Pl' the action grows quickly away from its minimum,
and (Ga-Db)z is constrained to be 0(p'1'l)- The argument of the
hyperbolic cosine is then very large, so it is essentially an

exponential. We then get
ea-ob
Ly == By leos—5—1
= const + 33 (0 -6.)2% + 0(3, (8. -8)% (4.46)
8 P1(%~% P1(8,~%,

Performing the same expansion for the xy model at large ny' we find

that Ja is the same as 4.46 when ny-PIM‘

b
At small Pl' the K=0, pz-m edge is an xy model at small ny’

which is known to be in a disordered phase; at large p‘. it is an xy

nmodel at large ny’ which is known to be in an ordered phasesz. We
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conclude that there is a phase transition on this edge. We have not
yet studied the stability of this transition at finite K; we have no
reason to belicve, however, that is does not join with the other
phase boundary, giving the phase diagram of figure 17. We note that
the phase we have labelled "total Higgs" is walled off on the K=m
face (seen in figure 17) and or the plqn face (shown in figure 18).
The K=0 face is still terrs incognita to us. There are known to be
phase transtions on exactly two of its edges, but we have not yet

analyzed the stability of these transitions away from the edge.

Our operator seems to be a good vortex operator for the whole
cube, or at least as much of it as we have been able to study. Is
there a physical basis for this? We believe that strong evidence for
it is provided by the nature of the discontinuity of the operator.
1f the phase transition were “in the operator" we might the action

density to change discontinuousiy within the support of the operator.

In our case, if we choose X to lie away from the minimal surface, we
see 8 discontinucus change from clustering (action density) near the
3-surface X to clustering near the minimal 2~-surface. This geems as

if it should reflect a true change in the nature of the vacuum.

Wnat we have found indicates that the “free" and "confining"
phases, with P«1n(P) behavior for our operator, should be totally
walled off from the “Higgs" (also known as “free Zz“) and "total
Riggs" phases, with area law behavior. It may be difficult to show
this analytically, as the center of the cube is amenable to few
approximations; numerical studies should provide the answer. What we
can do, at the least, is to examine the stability of our new transi-

tion against small nonzerc K and large non-infinite Pz.
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Everything we have done has been directed at four dimensions,
but it can all be extended to three or to more than four; it would be
interesting to study the phase structures of these theories as well.
We notz that our result implies that the corresponding operator in
QCD should also be able to diagnose phase changes; it should epable
us to say that QCD is not in a Higge phase, and that any path through
paranmeter apace which bring it to a Higgs phase must pass through a
phase transition. A careful atudy of this problem might reveal some-
thing of the nature of phase transitions and the meaning of order

paraneters.



CHAPTER 5

CONCLUSIONS

In this thesis, we dealt first with some technical aspects of
the vortex operator. Our resolution of the Dirac string problem, and
our two dimensional “Dirac lump", may be more novel than they are
useful, &t least for the present problem where the methods of Wu and
Yang can be used. For a field theory of electrons and monopoles, it
may be helpful to use ideas akin to ours, as the momopole is mno
longer classical and the method of writing a monopole field theory as
a sum over monopole paths is rather formal. We have also shown that
the divergencee of looplike operators can be analyzed in & straight-
forward way by the use of the operator product expansion. We believe
that any attempt tc treat QCD as a theory of looplike operators (Wil-
son loops or vortex operators) must 1nciude a careful treatment of
short-distance questions, along these lines.

In the next chapter we discussed the relation between the
Green’s functions of the vortex operator aund the structure of the
vacuum. We have placed emphasis on the cluster properties of these
Green’s functions as providing more detailed information than the
vacuum expectation value. We then showed two correct ways (diver-
gence equation and tree sum) to find the cluater property ino an
Abelian Higgs phase, and one wrong way (expansion in p). Our discus-
sion of the graphical expansion in a Higgs phase emphasized the fact
that the Higgs phase differs not in the form of the expansion but in
the nature of the tree sum; the sxtension of this should be borme in

wind when dezling with spontaneous breakdown through a composite

160
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operatoc.
In the fourth chapter we showed that the idea of the vortex
operator can sometimes be extended to gauge groups with fields in the
fundameatal represcutation, groups which are simply connected. Coa-
tinuum arguments indicated that this is true wheo the field in the
fundamental representation enters weakly into the dynamics. Study of
a lattice model confirmed this, and also suggested that our operator
is a good order parameter at all values of the couplings. More study
of the physics here is required, but it seems possible that the
analogous operator would distinguish the QCD vacuum from a Higgs
phase with quarks in a qualitative rather than merely quantitutive

way.
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FIGURE CAPTIONS

a. The graph for Avs(x)- The double line represents the
surface S.

b. A typical graph for G(P,C,S). The curved line is the path P
of the line integral; the straight segments are scalar propaga-

tors.

a. The order e graph for < A (x) Vp'(C,S) >/ < Vp'(C,S) >
The heavily circled v’s are effective vertices, the lightly cir-
cled v's indicate effective propagators.

b. An order e3 graph for the same matrix element.

a. The discontinuous graph for < vp'(c,S) Hq(c’) >« The single

heavy line represents C’.

b. Another graph for the same Green’s function.

c. Another graph, connected to C’ by three photons.
Graphs in the expansiﬁn of figure 2a.

a. The two graphs with field renormalization divergences.
b. Two of the graphs which have composite divergences.

a. The curves C and C°, linked and separated by a large
distance R.

b. C and C° unlinkad and separated by R.

The Green’s function 3.3, considered in a 3-surface. C and T
are the intersections of C with the 3=-surface; S is the inter-
section of § with the 3-surface. The function 3.3 maps loop 1
into a nontrivial path in M; it maps loop 2 into a trivial path.

The graphical equation for ugs represented by the u~tadpole; L
is the a-tadpole. The first two terms cancel.

The graphical expansion for u:s. represented by the v-tadpole.
-
Graphs for <B (x)>.

a. The order e-l graph.
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b. The order el series.

> >
Graphs for <B(xl)8(x2)>
a. The order e-z graph.
b. The order eo series.
c. An order e-2 graph not satisfying 4.9b.

-

Order p2 graphs for the effective potential U(AM)-
a. A graph for a matrix element of A with a potential composite
divergence.
b. The form of the divergence of figure 12a. The X represents
a cutoff dependent function.
a. The lattice vortex operator: the plaquette product is multi-
plied by a phase on the indicated plaquettes. The whole picture
lies in a 3-plane perpendicular to the 3-direction. C is an
infinite lipe in the 3-direction plus an infinite line in the
(=3)=direction; these lines intersect the pictured 3-plane only
at the points C and T. The surface S intersects the 3-plane in
a line, shown running through the middle of the plaquettes. The
pictured plaquettes lie in the 0,l-direction; C and T are
separated in the 2-direction.
b. Changing variables on the nine heavily drawn links, we
change the apparent surface S.
The phase cube for our lattice theory; the little dreibein shows
the directions :n which the various couplings increase. The
upper face, with PI-O, is the doubly charged theory; PZ
increases as we go upward on this face. The lower face, PZ-D,
is the singly charged theory; Pl increases as we go downward.
The phase diagrzas for these two theories are found in reference
36 or 51; the shaded region is where analyticity has been pro-
ven. The face K=n is seen obliquely.
Part of the plate of links X on which we spread out the frustra-
tion in the singly charged matter field. The plaquettes of §
are drawn in. The arcs indicate the angles @ and €°; their
difference is 0(1/p). The angles are defined to be



f
i
f
i
‘
;

16.

17.

18.

107

discontinuous on S; the action induced on B is therefore the

negative of that induced on A.

The cube of figure 14, tilted forward to show the pzqn face,
with one possible phase diagram. Our operator has P:1ln(P)
behavior near the left side of the lower edge, 1, and area law

behavior near the upper edge, 2.

.

The X indicates the phase transition we have found on the

K=0, pzqn edge; the dashed line is its expected continuation.
The cube tilted forward again, showing the plnn face. The K=0
face, not yet fully analyzed, is also exposed; a plausible phase

transition is shown.
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