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Abstract

A fourth-order adaptive mesh refinement solver for Maxwell’s Equations

by

Sven Chilton

Doctor of Philosophy in Engineering – Nuclear Engineering

University of California, Berkeley

Professor Phillip Colella, Co-chair

Professor Edward Morse, Co-chair

We present a fourth-order accurate, multilevel Maxwell solver, discretized in space with
a finite volume approach and advanced in time with the classical fourth-order Runge Kutta
method (RK4). Electric fields are decomposed into divergence-free and curl-free parts; we
solve for the divergence-free parts of Faraday’s Law and the Ampère-Maxwell Law while
imposing Gauss’ Laws as initial conditions. We employ a damping scheme inspired by the
Advanced Weather Research and Forecasting Model to eliminate non-physical waves reflected
off of coarse-fine grid boundaries, and Kreiss-Oliger artificial dissipation to remove standing
wave instabilities. Surprisingly, artificial dissipation appears to damp the spuriously reflected
waves at least as effectively as the atmospheric community’s damping scheme.
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Chapter 1

Introduction

1.1 Wave Reflection Problem

Multigrid and adaptive grid schemes are efficient techniques for solving systems of differential
equations numerically. The benefits of such schemes manifest themselves prominently in
systems with multiple, vastly different length scales, for example. Despite the complexity
often required to implement such algorithms, resolving only certain regions of the problem
domain finely saves significant computer time and processor power over covering the entire
problem domain with a fine grid [Berger and Colella, 1989].

However, complications arise with propagating wave solutions to systems lacking signifi-
cant dissipation, e.g. the simple wave equation, Maxwell’s Equations and extensions thereof.
In such systems, a wave traveling from a finely resolved region into a coarsely resolved re-
gion will not be transmitted correctly across the refinement boundary. Part of the wave is
reflected from the coarse-fine grid boundary and trapped inside the fine region. This is the
numerical analog of an impedance mismatch between two dielectrics.

The waves reflected from the coarse-fine grid boundaries are not physical. However, they
can interfere with physical effects. This interference limits the degree to which grid size can
be varied, which in turn limits the benefits of a multilevel scheme.

Analyzing and testing methods of overcoming these non-physical reflections and their
effects comprised a large portion of this dissertation’s background work. Ultimately, two
schemes are employed to mitigate the reflection problem: damping and artificial dissipation.
In damping schemes, one constructs a so-called sponge layer adjacent to the fine side of
a coarse-fine grid boundary, in which one adds a term which induces exponential decay of
the difference between a given variable at the current level of resolution and the next lower
resolution to the right hand side (RHS) of the PDE one is advancing in time. Artificial
dissipation schemes, in turn, entail adding appropriately-scaled, higher-derivative terms to
the RHS, not merely inside a sponge layer, but over the entire problem domain.

The damping scheme implemented in this dissertation draws inspiration from two sources:
a very similar damping scheme developed for atmospheric and climate modeling and (Asym-
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metric) Perfectly Matched Layers ((A)PMLs). Damping in climate modeling problems is
discussed in Sec. 1.2. While (A)PMLs also mitigate problems associated with non-physical
reflections, they are used in a rather different context from those outlined in Sec. 1.2 and in
this thesis, as Sec. 1.3 explains.

1.2 Damping in Climate Modeling

Designing appropriate radiation BCs for numerical simulations of wave equations is a long-
standing issue, which is further complicated in simulations with nested grids at differing
resolutions. Since wave equations occur frequently in climate modeling problems, the atmo-
spheric modeling community has developed the Weather Research and Forecasting (WRF)
Model and, more recently, the Advanced Weather Research and Forecasting Model (WRF-
ARW) to address these difficulties [Davies, 1976,Skamarock et al., 2005,Harris and Durran,
2010]. WRF-ARW provides a damping scheme to minimize reflections of outgoing waves
from finely resolved regions off of coarse-fine grid boundaries, and distortion of incoming
waves from coarsely resolved regions.

Inside a so-called sponge layer adjacent to a refinement boundary, on the coarse side,
damping terms are added to the RHS of each time evolution equation in the given wave
system. One damping term is linearly proportional to the difference between fine and coarse
quantities. The other, which is not implemented in this project, is linearly proportional to
a numerical approximation of the Laplacian of that difference.

1.3 (Asymmetric) Perfectly Matched Layers

The Perfectly Matched Layer (PML) [Berenger, 1994,Berenger, 1996] and Asymmetric Per-
fectly Matched Layer (APML) [Vay, 2000, Vay, 2001, Vay, 2002] are useful techniques for
solving Maxwell’s Equations over an infinite domain numerically. In both cases, the system
is closed via the insertion of an artificial layer outside the domain of interest wherein damp-
ing terms are added to the time derivatives. In APML implementations, damping terms
are added to the spatial derivatives as well. PML methods thus form a subset of APML
methods. The damping terms are chosen such that there are no non-physical reflections of
EM field components back into the domain of interest.

There are two crucial differences between (A)PML methods and the damping scheme
used in the present work. One, in (A)PMLs, the damping term associated with each field
component is proportional to the entire field component, not the difference in that component
between two successive levels of resolution. Two, (A)PMLs are placed outside the (truncated)
problem domain, rather than inside finely resolved grids.
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1.4 Artificial Dissipation

In testing our Maxwell solver on a problem with a divergence-free current source and all field
components initially equal to 0, we observed a non-physical, standing wave phenomenon in
the center of the problem domain (also the center of the current source) even with damping
terms added. Thus, we added the well-known Kreiss-Oliger artificial dissipation term [Kreiss
and Oliger, 1972, Kreiss and Oliger, 1973] to the Faraday-Ampère-Maxwell system, i.e. the
subset of Maxwell’s Equations being advanced in time. This term is added globally, not
just in the sponge layer, and on all levels. Kreiss and Oliger added their dissipation terms
to maintain stability in simulations of propagating waves with discontinuities, but the logic
behind adding them in this context is similar.

[Harris and Durran, 2010] describe a fourth-derivative artificial dissipation term, which
the authors obtained by analogy to the sixth-derivative scheme of [Knievel et al., 2007], who
in turn cite [Xue, 2000] for proposing the general scheme. In both [Knievel et al., 2007]
and [Xue, 2000], the dissipation terms are added as corrections to the flux, i.e. the first-
order spatial derivative terms of the equations being advanced in time. Curiously, we did
not observe the Gibbs overshoot mentioned in [Knievel et al., 2007].

For a more detailed discussion on artificial dissipation, in particular on choosing appro-
priate scaling coefficients, see Sec. 5.4.

1.5 Adaptive Mesh Refinement

Block-structured adaptive mesh refinement (AMR) is a powerful tool for computing numer-
ical solutions to partial differential equations involving multiple length scales and strongly
localized effects [Vay et al., 2002,Vay et al., 2004a,Vay et al., 2004b,Samtaney et al., 2004].
In the simplest form of AMR (to which we will limit ourselves in this document) a rect-
angular problem domain is first divided into evenly sized cells. Regions requiring greater
resolution (according to a user-specified criterion) are identified and covered in a disjoint
union of rectangles, which are then refined by an integer factor. The refinement procedure
is applied recursively until a maximum number of levels is reached or an accuracy criterion
is met. Fig. 1.1 depicts a typical hierarchy of AMR levels.
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Figure 1.1: A typical hierarchy of AMR levels. In this case, there is a refinement ratio of 2
between each coarse level and the next finer level.

For time-dependent problems, we refine the time spacing as well as the spatial grid to
use the same CFL number (wave propagation speed times time step divided by spatial
grid spacing) at all levels of resolution. In this case, we typically advance the equation
via subcycling in time (explained in Sec. 3.2) as opposed to advancing the equation on all
refinement levels simultaneously.

We discretize the spatial domain using a finite volume approach. Each quantity for which
we solve is approximated by its cell average, which in a given cell is the integral of the quantity
over the cell in question divided by the cell volume. These volume integrals are typically
converted to integrals over the cells’ boundary faces through the divergence theorem and
then approximated by quadratures [McCorquodale and Colella, 2011,McCorquodale, 2012].
We employ standard Cartesian finite difference approximations of spatial derivatives. We
will not consider more complicated problem domains involving embedded boundaries (which
cut across rectangular cells) or mapped grids (non-rectangular problem domains and cells
mapped to rectangular problem domains and cells) in this dissertation.

The work in progress described in this thesis represents the first 4th-order, finite volume,
AMR scheme for Maxwell’s Equations. Most Maxwell solvers employ Yee-type schemes with
staggered grids [Yee, 1966]. For example, if the magnetic fields in a Yee scheme are face-
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centered, the electric fields are node-centered. Staggering has the advantage of ensuring that
B and E are manifestly divergence-free in a vacuum. However, Yee schemes are in general
2nd-order accurate, and like many other types of spatial discretization, they lose an order of
accuracy at boundaries of non-uniform grids [Monk and Süli, 1994]. Moreover, the author
knows of no successful efforts to modify a Yee scheme to allow for 4th-order accuracy and
AMR capabilities.
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Chapter 2

Maxwell’s Equations

2.1 Description of equations

Maxwell’s Equations form the foundation of classical electromagnetism. They consist of a
coupled system describing the evolution of electric and magnetic fields subject to charge
densities, current densities, and boundary conditions. They can be expressed in differential
or integral form, in terms of total or free charge and current, in SI or cgs units. The
last distinction arises because charge is defined differently in cgs than SI units. Unless
explicitly stated otherwise, all equations related to Maxwell’s Equations in this document
are represented in SI units. Likewise, we will not consider the integral forms of Maxwell’s
Equations.

In terms of total charge and current, Maxwell’s Equations can be expressed as

∂B

∂t
= −∇× E,

∂E

∂t
= c2∇×B− J

ε0
,

∇ · E =
ρ

ε0
,

∇ ·B = 0.

(2.1)

When solving the first two of Eqs. (2.1) numerically on a refinement level l > 0, we replace
the time derivatives as indicated in the damping scheme below:

∂F l

∂t
→ ∂F l

∂t
+ σ

(
F l − I(F l−1)

)
. (2.2)

The damping coefficient σ has units of inverse time. Associated numerical stability concerns
and final choice of σ are discussed in Sec. 2.6 and Sec. 3.3, respectively. F stands for a
component of either the magnetic field B or the electric field E. In turn, ρ and J are the
total electric charge and current densities, respectively. ε0 is the permittivity of free space,
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and c = (µ0ε0)−1/2 is the speed of light in a vacuum. µ0, in turn, is the permeability of free
space. Numerical values of these free space quantities are given in Table 2.1.

Table 2.1: Values of free space quantities in Maxwell’s Equations.

Symbol Value Units

c 2.9979× 108 m s−1

ε0 8.8542× 10−12 F m−1 = C2 s2 kg−1 m−3

µ0 4π × 10−7 H m−1 = kg m C−2

The top line of Eqs. (2.1) is Faraday’s Law, which states that time-varying magnetic fields
yield electric fields. The second line, the Ampère-Maxwell Law, shows that magnetic fields
arise from electric currents and so-called displacement currents, i.e. time-varying electric
fields. The equations in Eqs. (2.1) involving divergences are Gauss’ Laws of Electricity and
Magnetism, respectively. The former states that electric charges yield electric fields, while
the latter implies that magnetic monopoles do not exist.

In terms of free charges and currents, Maxwell’s Equations can be expressed as

∂B

∂t
= −∇× E,

∂D

∂t
= ∇×H− Jf ,

∇ ·D = ρf ,

∇ ·B = 0.

(2.3)

The subscript f stands for free. D is the electric displacement field, given by D = εE, where
ε is the permittivity of the medium in which the equations are to be solved. Similarly, the
magnetizing field H is given by H = B/µ, where µ is the permeability of the medium. Note
that if the medium is a vacuum, ε = ε0, µ = µ0, and Eqs. (2.3) are equivalent to Eqs. (2.1).

2.2 Helmholtz Decomposition

Helmholtz’s Theorem guarantees that, as long as the necessary partial derivatives exist, any
vector field V can be decomposed as follows:

V = VP + VT ,

VP = ∇∆−1∇ ·V,
≡ Q(V)

VT =
(
I−∇∆−1∇) ·V,

≡ P(V),

∇×VP = 0,

∇ ·VT = 0.

(2.4)
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∆ is the Laplacian operator, given in a Cartesian space of dimension D by

∆ ≡
D−1∑

d=0

∂2

∂x2
d

. (2.5)

Formulas for the Laplacian in curvilinear coordinates are given in [Arfken et al., 2005]. ∆−1

is the inverse Laplacian, defined such that if ∆F = f , F = ∆−1f . The form of ∆−1f depends
on the number of spatial dimensions D in the problem [Evans, 2010]. For D = 2,

F (x) = ∆−1f(x) =
1

2π

∫
f(x′) ln |x− x′| d2x′, (2.6)

while for D = 3,

F (x) = ∆−1f(x) = − 1

4π

∫
f(x′)

|x− x′| d
3x′. (2.7)

Since B is divergence-free by Gauss’ Law of Magnetism, we see that the Helmholtz
decomposition of Maxwell’s Equations can be written as

∂B

∂t
= −∇× ET ,

∂ET

∂t
= c2∇×B− P(J)

ε0
,

∇ · EP =
ρ

ε0
,

∇ ·B = 0.

(2.8)

The transverse electric field and current density are expressed with different (though still
equivalent) notation because we assume that J is specified as a whole, while we are free to
solve for ET and EP separately.

This decomposition of the electric fields in Maxwell’s Equations allows us to recast the
Faraday and Ampère-Maxwell Laws as two second-order equations in B and ET , namely

∂2B

∂t2
= c2∆B +

1

ε0
∇× J (2.9)

and
∂2ET

∂t2
= c2∆ET −

1

ε0

∂P(J)

∂t
. (2.10)

In the limit of no current, both Eqs. (2.9) and (2.10) reduce to basic wave equations. Thus,
we expect that our damping algorithm can be applied successfully to Maxwell’s Equations.



9

2.3 Continuous Damped Maxwell Equations

Substituting Eq. (2.2) into Eqs. (2.8) yields the (continuous) damped Helmholtz- decomposed
Maxwell Equations on refinement level l > 0:

∂Bl

∂t
= −∇× El

T + σ
(
Bl − I(Bl−1)

)
,

∂El
T

∂t
= c2∇×Bl − P(Jl)

ε0
+ σ

(
El
T − I(El−1

T )
)
,

∇ · El
P =

ρl

ε0
,

∇ ·Bl = 0.

(2.11)

Recall that for l = 0, the damping terms are not present. The charge and current densities
are related by the continuity equation

∂ρl

∂t
+ ∇ · Jl = 0, (2.12)

and, by definition,
∇ · El

T = 0. (2.13)

For the remainder of this document, we will concern ourselves primarily with the Faraday-
Ampère-Maxwell (FAM) system, i.e. the top two equations in Eqs. (2.11). In solving this
system approximately (or exactly, when possible) we will assume that P(Jl) is known and
the divergence-free conditions on the magnetic and transverse electric fields are imposed as
initial conditions.

2.4 Faraday-Ampère-Maxwell System

We recast Faraday’s Law and the Ampère-Maxwell Law into a system of the form

∂U l

∂t
+∇ · F (U l) = Sl − σ

(
U l − I(U l−1)

)
. (2.14)

Here,

U l =

(
Bl

El
T

)
, (2.15)

F (U l) =




0 −El
T z El

Ty 0 c2Bl
z −c2Bl

y

El
T z 0 −El

Tx −c2Bl
z 0 c2Bl

x

−El
Ty El

Tx 0 c2Bl
y −c2Bl

x 0


 , (2.16)

and

Sl =




0

−P(Jl)

ε0


 (2.17)
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In Eqs. (2.14) – (2.17), the l superscript denotes data at the current level, while l−1 denotes
data at the next coarser level, if it exists. The same will apply in all future equations in this
document containing terms with such superscripts.

We define the divergence of a two-dimensional array F as

(∇ · F )i =
∂Fji
∂xj

, (2.18)

employing the Einstein summation convention. Eq (2.18) allows us to express the curl of an
arbitrary vector field V as the divergence of a two-dimensional array T , as shown below:

∇×V = εijk∂jVkei

= ∂j(εijkVk)ei

= ∂j(−εjikVk)ei
= ∂jTjiei

= ∇ · T,

(2.19)

with T defined as

T =




0 −Vz Vy
Vz 0 −Vx
−Vy Vx 0


 . (2.20)

Before discussing the FAM system further, we will develop the mathematical machinery
necessary to solve and analyze the system discretely.

2.5 Fourth-Order Discretization

2.5.1 Finite Volume Basics

Our discretization, advancement scheme, and interpolation algorithms are based heavily on
the work described in [McCorquodale and Colella, 2011]. However, since our flux array F is
a linear function of our field component array U (a consequence of the linearity of Maxwell’s
Equations) and the variables in our U are both conserved and primitive, we make many
simplifications, which are noted accordingly.

Each level in our problem domain is divided into rectangular control volumes. In physical
space, a control volume Vi is given by

Vi = [ih, (i + u)h] for i ∈ ZD, u = (1, ..., 1), (2.21)

where h = ∆x = ∆y = ∆z is the grid spacing. For the remainder of this document, h, ∆x,
etc. will be used interchangeably. i is the control volume’s cell index. The bracket notation
in Eq. (2.21) denotes the lower left and upper right corners of the control volume in physical
space, respectively. Elsewhere, this same notation is employed to denote the indices of the
cells at the lower left and upper right corners of grids and problem domains.
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We discretize U in space by taking its average over a control volume, i.e.

〈U〉i(t) =
1

hD

∫

Vi

U(x, t) dDx. (2.22)

One may specify the initial conditions of 〈U〉i either by an exact evaluation of Eq. (2.22) or
a quadrature, which must be at least fourth-order accurate for the code to achieve fourth-
order accuracy. Note that 〈U〉i(t) is also an approximation of U at the center of cell i (a.k.a.
control volume Vi), i.e.

〈U〉i(t) = U
(
(i + 1

2
u)h, t

)
+O(h2) (2.23)

We compute the evolution of the spatially discretized system by a method-of-lines ap-
proach:

d〈U〉i
dt

=
1

hD

∫

Vi

(S −∇ · F ) dDx (2.24)

= 〈S〉i −
1

h

∑

d

(
〈F d〉i+ 1

2
ed
− 〈F d〉i− 1

2
ed

)

〈F d〉i± 1
2
ed

=
1

hD−1

∫

A±
d

F ddD−1x, (2.25)

where A±d are the high and low faces bounding Vi, with normals pointing in the ed direction.
Note that 〈F d〉i± 1

2
ed

is also an approximation of F at the center of the high or low d-face of
Vi, i.e.

〈F d〉i± 1
2
ed

= F d
(
U((i + 1

2
u± 1

2
ed)h, t)

)
+O(h2) (2.26)

2.5.2 Spatial Discretization

[McCorquodale and Colella, 2011, Sec. 2.3] describes the spatial discretization of a general
finite volume scheme for advancing hyperbolic equations. However, since our fluxes are
linear and our system makes no distinction between conserved and primitive variables, our
procedure for computing approximate face averages and approximations to derivatives is
considerably simpler. Our fourth-order accurate approximation to face averages of U is
given by

〈U〉d
i+ 1

2
ed

=
7

12

(
〈U〉i+ed − 〈U〉i

)
− 1

12

(
〈U〉i+2ed − 〈U〉i−ed

)
. (2.27)

Since, in general,

h

〈
∂U

∂xd

〉

i

= 〈U〉d
i+ 1

2
ed
− 〈U〉d

i− 1
2
ed
, (2.28)

Eq. (2.27) is consistent with the fourth-order approximation

h

〈
∂U

∂xd

〉

i

=
8

12

(
〈U〉i+ed − 〈U〉i−ed

)
− 1

12

(
〈U〉i+2ed − 〈U〉i−2ed

)
(2.29)
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Because F is linear,

〈F d〉i+ 1
2
ed

= F d
(
〈U〉d

i+ 1
2
ed

)
(2.30)

Eq. (2.28), in turn, suggests the following formula for computing (fourth-order accurate
approximations to) divergences:

(∇ · F )i → (D · F )i =
1

h

∑

d

(
〈F d〉i+ 1

2
ed
− 〈F d〉i− 1

2
ed

)
(2.31)

2.5.3 Temporal Discretization

On a single level, we advance Eq. (2.24) via the standard RK4 scheme. We approximate it
as

d〈U〉i
dt

= 〈S〉i − (D · F )i

= 〈S〉i −
1

h

∑

d

(
〈F d〉i+ 1

2
ed
− 〈F d〉i− 1

2
ed

)
,

(2.32)

Given 〈U〉n ≈ 〈U〉(tn), we compute 〈U〉n+1 ≈ 〈U〉(tn + ∆t) as follows:

〈U〉(tn + ∆t) = 〈U〉(tn) + 1
6
(k1 + 2k2 + 2k3 + k4) +O(∆t)5, (2.33)

with

〈U〉(0) = 〈U〉(tn) k1 =
(
〈S〉(tn)−D · F (〈U〉(0))

)
∆t (2.34)

〈U〉(1) = 〈U〉(0) + 1
2
k1 k2 =

(
〈S〉(tn + 1

2
∆t)−D · F (〈U〉(1))

)
∆t (2.35)

〈U〉(2) = 〈U〉(0) + 1
2
k2 k3 =

(
〈S〉(tn + 1

2
∆t)−D · F (〈U〉(2))

)
∆t (2.36)

〈U〉(3) = 〈U〉(0) + k3 k4 =
(
〈S〉(tn + ∆t)−D · F (〈U〉(3))

)
∆t (2.37)

2.5.4 Interpolation in time

When filling in ghost cells outside a grid in level l > 0, or in computing the damping term
in Eq. (2.14) (which only applies inside the sponge layer described in Sec. 3.4) we must
interpolate 〈U〉l−1(tl−1) to 〈U〉l−1(tl), with tl ∈ [tl−1, tl−1 + ∆tl−1].

In [Fok and Rosales, 2008], the authors derive the following formula for interpolating
〈U〉l−1 to times between tl−1 and tl−1 + ∆tl−1:

〈U〉l−1(tl−1 + χ∆tl−1) = 〈U〉(0) + χk1 +
χ2

2
(−3k1 + 2k2 + 2k3 − k4)

+
2χ3

3
(k1 − k2 − k3 + k4) +O((∆tl−1)4)

(2.38)

with χ ∈ [0, 1], 〈U〉(0) = 〈U〉l−1(tl−1), and each ki defined as in Eqs. (2.34) – (2.37). Given
nl−1

ref ≡ ∆tl−1/∆tl, we must interpolate to each time tl = tl+1 + s∆tl, with s = 0, 1, ..., nl−1
ref −
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1 ≡ χnlref. At each of these times, we need to find fourth-order approximations to each 〈U〉(i),
as defined in Eqs. (2.34) – (2.37).

Through a complicated derivation [McCorquodale and Colella, 2011,McCorquodale, 2012]
we find

〈U〉(0) =U(tn + s∆tl)

=〈U〉(0) +

(
s

nl−1
ref

)
k1

+
1

2

(
s2

(nl−1
ref )2

)
(−3k1 + 2k2 + 2k3 − k4)

+
2

3

(
s3

(nl−1
ref )3

)
(k1 − k2 − k3 + k4) +O((∆tl)4). (2.39)

〈U〉(1) =〈U〉(0) +

(
s

nl−1
ref

+
1

2nl−1
ref

)
k1

+
1

2

(
s2

(nl−1
ref )2

+
s

(nl−1
ref )2

)
(−3k1 + 2k2 + 2k3 − k4)

+
2

3

(
s3

(nl−1
ref )3

+
3s2

2(nl−1
ref )3

)
(k1 − k2 − k3 + k4) +O((∆tl)4); (2.40)

〈U〉(2) =〈U〉(0) +

(
s

nl−1
ref

+
1

2nl−1
ref

)
k1

+
1

2

(
s2

(nl−1
ref )2

+
s

(nl−1
ref )2

+
1

2(nl−1
ref )2

)
(−3k1 + 2k2 + 2k3 − k4)

+
2

3

(
s3

(nl−1
ref )3

+
3s2

2(nl−1
ref )3

+
3s

2(nl−1
ref )3

+
3

8(nl−1
ref )3

)
(k1 − k2 − k3 + k4)

+
1

4(nl−1
ref )2

(k2 − k3) +O((∆tl)4); (2.41)

〈U〉(3) =〈U〉(0) +

(
s

nl−1
ref

+
1

nl−1
ref

)
k1

+
1

2

(
s2

(nl−1
ref )2

+
2s

(nl−1
ref )2

+
1

(nl−1
ref )2

)
(−3k1 + 2k2 + 2k3 − k4)

+
2

3

(
s3

(nl−1
ref )3

+
3s2

(nl−1
ref )3

+
3s

(nl−1
ref )3

+
3

4(nl−1
ref )3

)
(k1 − k2 − k3 + k4)

+
1

2(nl−1
ref )2

(k3 − k2) +O((∆tl)4). (2.42)
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2.5.5 Interpolation in space

Consider the ghost cell layer just outside and the sponge layer just inside each grid in level
l > 0. For each component u of our array of conserved variables U , we fill in ghost cells and
compute damping terms by interpolating 〈u〉l−1 (averages over coarse cells) to 〈u〉l (averages
over fine cells) with cubic Taylor polynomials. We assume that 〈u〉l−1 has already been
interpolated to the correct time, if necessary.

For each coarse cell indexed by i ∈ ZD, we use the following notations [McCorquodale
and Colella, 2011, Sec. 3.2]:

• F(i) is the set of fine cells contained within i.

• ai,p (for p ∈ ND such that ‖p‖1 =
∑

d |pd| ≤ 3) are the coefficients that will be used
for interpolation to 〈u〉lk for all k ∈ F(i). These will be the coefficients of the Taylor
polynomial of degree 3 for u around the center of cell i. The number of coefficients for
each coarse cell in 2D is 10, and in 3D is 20. The coefficients will be computed from
values of 〈u〉l−1.

• N (i) is the set of coarse cells used as a stencil from which to take 〈u〉l−1 in order to
find the coefficients ai,p. See [McCorquodale and Colella, 2011, Sec. 3.2.2] for a more
detailed description.

For z ∈ RD and p ∈ ND, we write 〈zp〉l−1
j or 〈zp〉lk to denote the average, respectively

over coarse cell j or fine cell k, of

zp =
∏

d

(zpdd −K(pd)), (2.43)

where

K(q) =





2−q

q + 1
if q > 0 and q is even;

0 otherwise.
(2.44)

This constant is included to simplify numerical calculations; the average of zp on the cube
[−1

2
, 1

2
]D is 1 if p = 0, and 0 otherwise.

To obtain the coefficients ai,p for coarse cell i, we solve a constrained linear least-squares
problem [Golub and Van Loan, 1996, pgs. 585–586] for the overdetermined system

∑

p∈ND

‖p‖1≤3

ai,p〈(x− xi)
p〉l−1

j = 〈u〉l−1
j for all j ∈ N (i)− {i}, (2.45)

where N (i) − {i} is the set of all coarse cells in the stencil except for i itself. Eq. (2.45) is
subject to the conservation constraint

∑

p∈ND

‖p‖1≤3

ai,p〈(x− xi)
p〉l−1

i = 〈u〉l−1
i (2.46)
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where xi is the center of cell i. We then use the coefficients ai,p to interpolate for each fine
cell k ∈ F(i):

〈u〉lk =
∑

p∈ND

‖p‖1≤3

ai,p〈(x− xi)
p〉lk. (2.47)

The conservation constraint Eq. (2.46) follows from the general definition of averaging
down:

1

(nl−1
ref )D

∑

k∈F(i)

〈u〉lk = 〈u〉l−1
i . (2.48)

This is true whether one computes the average as defined in Eq. (2.22) or Eq. (2.43). Sub-
stituting Eq. (2.47) into Eq. (2.48) yields

1

(nl−1
ref )D

∑

k∈F(i)

∑

p∈ND

‖p‖1≤3

ai,p〈(x− xi)
p〉lk = 〈u〉l−1

i . (2.49)

But it also follows from Eq. (2.48) that for each p,

1

(nl−1
ref )D

∑

k∈F(i)

〈(x− xi)
p〉lk = 〈(x− xi)

p〉l−1
i (2.50)

For D = 2, Eq. (2.45) contains 10 variables (i.e. the ai,p coefficients) and 11 or 12
equations. For D = 3, we have 20 variables and 30 to 32 equations. Converting these
constrained least-squares problems to unconstrained ones is described in [McCorquodale,
2012, pgs. 23–24], which, in turn, relies on formulas from [Golub and Van Loan, 1996].

2.6 Stability Analysis of the

Faraday-Ampère-Maxwell System

2.6.1 Source-Free Faraday-Ampère-Maxwell System

For simplicity, let us first consider the undamped, source-free Maxwell Equations. These can
be expressed as

∂B

∂t
= −∇× E,

∂E

∂t
= c2∇×B,

∇ · E = 0,

∇ ·B = 0.

(2.51)

In this case, E = ET and EP = 0, since ∇ ·ET = 0 by definition, while ∇ ·EP = 0 by virtue
of an absence of charge density.
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Equivalently, the undamped, source-free Faraday-Ampère-Maxwell (FAM) system may
be written as

∂U l

∂t
+∇ · F (U l) = 0, (2.52)

or
∂

∂t

(
B
E

)
+ Ax ·

∂

∂x

(
B
E

)
+ Ay ·

∂

∂y

(
B
E

)
+ Az ·

∂

∂z

(
B
E

)
= 0, (2.53)

where

Ax =




0 0 0

0 0 0 −1
0 1 0

0 0 0
0 0 c2 0
0 −c2 0



, (2.54)

Ay =




0 0 1

0 0 0 0
−1 0 0

0 0 −c2

0 0 0 0
c2 0 0



, (2.55)

and

Az =




0 −1 0

0 1 0 0
0 0 0

0 c2 0
−c2 0 0 0

0 0 0



. (2.56)

The eigenvalues of each Ai matrix are −c, 0 and c, each with a multiplicity of 2. Each
Ai has an associated matrix Ri with each column given by a right eigenvector of Ai. Con-
ventionally, the columns are arranged such that the leftmost column in Ri is associated with
the lowest eigenvalue in Ai, the second leftmost column is associated with the second lowest
eigenvalue, and so on. Thus,

Rx =




0 0 1 0 0 0
c−1 0 0 0 −c−1 0
0 −c−1 0 0 0 c−1

0 0 0 1 0 0
0 1 0 0 0 1
1 0 0 0 1 0



, (2.57)
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Ry =




0 −c−1 0 0 0 c−1

0 0 1 0 0 0
c−1 0 0 0 −c−1 0
1 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 1



, (2.58)

and

Rz =




c−1 0 0 0 −c−1 0
0 −c−1 0 0 0 c−1

0 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
0 0 0 1 0 0



. (2.59)

Likewise, each Ai has an associated matrix Li, defined as the inverse of Ri. Each row
in Li is a left eigenvector of Ai. Following the convention by which the Ri matrices are
constructed, the top row in Li is associated with the lowest eigenvalue of Ai, the second row
in is associated with the second lowest eigenvalue, and so on. Thus,

Lx =




0 c/2 0 0 0 1/2
0 0 −c/2 0 1/2 0
1 0 0 0 0 0
0 0 0 1 0 0
0 −c/2 0 0 0 1/2
0 0 c/2 0 1/2 0



, (2.60)

Ly =




0 0 c/2 1/2 0 0
−c/2 0 0 0 0 1/2

0 1 0 0 0 0
0 0 0 0 1 0
0 0 −c/2 1/2 0 0
c/2 0 0 0 0 1/2



, (2.61)

and

Lz =




c/2 0 0 0 1/2 0
0 −c/2 0 1/2 0 0
0 0 1 0 0 0
0 0 0 0 0 1
−c/2 0 0 0 1/2 0

0 c/2 0 1/2 0 0



. (2.62)

For any Ai, Ri, and Li (not just those defined for the Faraday-Ampère-Maxwell system),
Li · Ai · Ri = diag(λi,m), where λi,m ≤ λi,m+1 ∀ m ∈ [1, dimU − 1]. Thus, for the Faraday-
Ampère-Maxwell system,

Li · Ai ·Ri = diag(−c,−c, 0, 0, c, c). (2.63)
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2.6.2 Damped, Source-Free Faraday-Ampère-Maxwell System

Now we consider systems of the form

∂U l

∂t
+∇ · F (U l) = −σ

(
U l − I(U l−1)

)
. (2.64)

For Maxwell’s Equations, the terms in Eq. (2.64) are as defined at the beginning of Sec. 2.4.
To assist in the analysis of the damped, source-free Maxwell system, we define

U ≡ U l − I(U l−1) (2.65)

for each component of U . Since F as defined in Eq. (2.16) is a linear operator of U , we have

∂U
∂t

+∇ · F (U) = −σU , (2.66)

which can also be expressed as

∂

∂t




Bx
By
Bz
Ex
Ey
Ez




+∇ ·




0 −Ez Ey 0 c2Bz −c2By
Ez 0 −Ex −c2Bz 0 c2Bx
−Ey Ex 0 c2By −c2Bx 0


 = −σ




Bx
By
Bz
Ex
Ey
Ez



, (2.67)

or equivalently,

∂

∂t




Bx
By
Bz
Ex
Ey
Ez




=−




0 0 0

0 0 0 −1
0 1 0

0 0 0
0 0 c2 0
0 −c2 0



· ∂
∂x




Bx
By
Bz
Ex
Ey
Ez




−




0 0 1

0 0 0 0
−1 0 0

0 0 −c2

0 0 0 0
c2 0 0



· ∂
∂y




Bx
By
Bz
Ex
Ey
Ez




−




0 −1 0

0 1 0 0
0 0 0

0 c2 0
−c2 0 0 0

0 0 0



· ∂
∂z




Bx
By
Bz
Ex
Ey
Ez



− σ




Bx
By
Bz
Ex
Ey
Ez




(2.68)
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Now, we express U in terms of discrete Fourier transforms (DFTs) as

U(jx,jy ,jz) =
∑

kx,ky ,kz

Û(kx,ky ,kz)e
2πikxjx∆x/Lxe2πikyjy∆y/Lye2πikzjz∆z/Lz . (2.69)

Assuming periodic boundary conditions, and using the fourth-order stencils for first deriva-
tives described in Eq. (2.29), we have

∂U
∂x

∣∣∣∣
(jx,jy ,jz)

=
∑

kx,ky ,kz

Û(kx,ky ,kz)

∆x

[
8

12

(
e2πikx(jx+1)∆x/Lx − e2πikx(jx−1)∆x/Lx

)

− 1

12

(
e2πikx(jx+2)∆x/Lx − e2πikx(jx−2)∆x/Lx

)]

× e2πikyjy∆y/Lye2πikzjz∆z/Lz

=
∑

kx,ky ,kz

Û(kx,ky ,kz)e
2πikxjx∆x/Lxe2πikyjy∆y/Lye2πikzjz∆z/Lz

× 1

∆x

[
8

12

(
e2πikx∆x/Lx − e−2πikx∆x/Lx

)

− 1

12

(
e4πikx∆x/Lx − e−4πikx∆x/Lx

)]

=
∑

kx,ky ,kz

Û(kx,ky ,kz)e
2πikxjx∆x/Lxe2πikyjy∆y/Lye2πikzjz∆z/Lz

× i

6∆x

[
8 sin

(
2πkx∆x

Lx

)
− sin

(
4πkx∆x

Lx

)]

=
∑

kx,ky ,kz

iΩxÛ(kx,ky ,kz)e
2πikxjx∆x/Lxe2πikyjy∆y/Lye2πikzjz∆z/Lz ,

(2.70)

with

Ωx ≡
1

6∆x

[
8 sin

(
2πkx∆x

Lx

)
− sin

(
4πkx∆x

Lx

)]
. (2.71)

If we define Ωy and Ωz similarly, the DFTs of ∂U
∂y

and ∂U
∂z

are analogous to Eq. (2.70).

Substituting Eq. (2.70) into Eq. (2.68), we find that at each Fourier node (kx, ky, kz), we
must have

d

dt




B̂x
B̂y
B̂z
Êx
Êy
Êz




= −




0 −iΩz iΩy

σI iΩz 0 −iΩx

−iΩy iΩx 0
0 ic2Ωz −ic2Ωy

−ic2Ωz 0 ic2Ωx σIic2Ωy −ic2Ωx 0



·




B̂x
B̂y
B̂z
Êx
Êy
Êz



. (2.72)



20

With the help of a computer algebra system (or through exceedingly tedious algebra by
hand) we see that the matrix on the right side of Eq. (2.72) has the following eigenvalues,
each with multiplicity 2: −σ − ic

√
Ω2
x + Ω2

y + Ω2
z, −σ, −σ + ic

√
Ω2
x + Ω2

y + Ω2
z.

We see that Eq. (2.72) is of the form

dU

dt
= M · U, (2.73)

where U and M are generic 1- and 2-D (square) arrays, respectively. If the components of
M are constant in time, the exact solution to Eq. (2.73) is given by

U(t) = exp(Mt) · U(0), (2.74)

or, if M is diagonalizable (which ours is),

U(t) = V · exp(Λt) · V −1 · U(0), (2.75)

where V is a matrix of right eigenvectors of M and Λ is a diagonal matrix of eigenvalues of M .
Proving that Eq. (2.75) follows from Eq. (2.74) for diagonalizable matrices is a reader exercise
in [Iserles, 1996, pg. 304]. It follows readily from the definition of the matrix exponential

exp(M) ≡ I +
∞∑

n=1

Mn

n!
(2.76)

and the fact that for any diagonalizable matrix M = V ΛV −1 and integer n ≥ 1,

Mn = (V ΛV −1)(V ΛV −1) · · · (V ΛV −1)

= (V ΛV −1V ΛV −1) · · · (V ΛV −1)

= (V Λ2V −1) · · · (V ΛV −1)

= V ΛnV −1

(2.77)

If we advance Eq. (2.73) in time with a Runge-Kutta method, we find that U at the nth
time step is approximately given by

U(n∆t) ≈ Un = V ·R(Λ∆t)n · V −1 · U(0) (2.78)

[Iserles, 1996, pg. 60], where

R(Λ∆t) =




R(λ1∆t) 0
. . .

0 R(λn∆t)


 , (2.79)

and R(z) is the stability function [Hairer and Wanner, 1996, pg. 40] of the Runge-Kutta
method used to advance Eq. (2.73). It is given by

R(z) = 1 + zbT · (I − zA)−1 · e. (2.80)
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Here, z is the complex variable x + iy, the T superscript denotes a transposition, e =
(1, ..., 1)T , with dim e equal to the number of stages of the Runge-Kutta advance, and I is an
identity matrix. A and bT refer to the Butcher diagram of the advance [Butcher, 1964,Hairer
et al., 1993], given by

c A

bT

. (2.81)

In the case of the RK4 advance, we have

A =




0 0 0 0
1/2 0 0 0
0 1/2 0 0
0 0 1 0




bT = (1/6, 2/6, 2/6, 1/6)

c = (0, 1/2, 1/2, 1)T .

(2.82)

Straightforward algebra shows that for the RK4 advance,

R(z) = 1 + z +
z2

2
+
z3

6
+
z4

24
. (2.83)

For a general Runge-Kutta advance to be stable, we must have |R(λm∆t)| < 1 ∀ m ∈
[1, dimU ]. For our problem, −σ∆t± ic

√
Ω2
x + Ω2

y + Ω2
z∆t must lie in the region of absolute

stability (RAS), the region in the complex plane in which |R(z)| < 1. Each Runge-Kutta
scheme has an associated RAS. The RAS for RK4 is depicted in the figure below:
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Figure 2.1: Plot of the region of absolute stability for the RK4 advance. Here, the argument
of the stability function R is z = x+ iy = −σ∆t± ic

√
Ω2
x + Ω2

y + Ω2
z∆t.

Let ωx = 6∆xΩx. Define ωy and ωz similarly. Through straightforward application of
calculus, algebra and trigonometry (in particular the double-angle identities) we find the
maximum value of each ωj is

ωmax
j =

√
9 + 24

√
6 ≈ 8.233. (2.84)

The maximum height with respect to the x-axis of the region of absolute stability for RK4
is approximately 2.937, which implies that

max
(
c
√

Ω2
x + Ω2

y + Ω2
z∆t
)

= max

(
c∆t

6∆x

√
ω2
x + ω2

y + ω2
z

)
≈ 2.937, (2.85)

assuming that ∆x = ∆y = ∆z. Using Eq. (2.84), we find that advancing the source-free
Maxwell system in space via the fourth-order stencils [to be given earlier] and in time via
RK4 implies the approximate CFL condition

c∆t

∆x
/

(2.937)(6)

(8.233)
√

3
≈ 1.236. (2.86)
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In general, when advancing hyperbolic equations, ∆t
∆x
∼ const. is necessary for resolving

waves within the specified accuracy. This constant is typically the inverse of the maximum
wave speed of the given system, so Eq. (2.86) does not constitute an excessively restrictive
CFL condition for Maxwell’s Equations [LeVeque, 2002, pgs. 68–71].
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Chapter 3

Implementation

3.1 Chombo code library

Chombo is a set of C++ classes designed to support block-structured AMR applications. The
Applied Numerical Algorithms Group (ANAG) at Lawrence Berkeley National Laboratory
(LBNL) develops, maintains, and tests these classes [Colella et al., 2012]. While Chombo
uses C++ for structure and code steering, most array operations are carried out in Fortran
for performance reasons. Chombo provides an interface macro, ChomboFortran, that allows
the user to write dimension-independent Fortran code, which itself can be called from C++.
We will use the following libraries:

• BaseTools, for dimension-independent helper and data holder classes

• BoxTools, for rectangular array operations, Zn set operations, defining data on unions
of rectangles, and assigning such data to processors

• AMRTools, for operations common in AMR algorithms, such as interpolation, averag-
ing, and refluxing

• AMRTimeDependent, for advancing hyperbolic PDEs, such as gas dynamics and the
Faraday-Ampère-Maxwell system

The most general structure of an AMR code with Chombo classes is illustrated in Fig. 3.1
below:
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AMR

I/O

AMR::writeCheckpointFile
AMRLevel::writeCheckpointLevel

AMRLevel::writeCheckpointHeader

AMR::writePlotFile
AMRLevel::writePlotLevel

AMRLevel::writePlotHeader

AMR::timeStep

AMRLevel::postTimeStep

AMRLevel::advance

AMRLevel::computeDt

AMR::regrid

AMRLevel::postRegrid

AMRLevel::regrid

AMRLevel::preRegrid

AMRLevel::tagCells

Initialization

AMR::setupForRestart
AMRLevel::readCheckpointLevel

AMRLevel::readCheckpointHeader

AMR::setupForNewAMRRun

AMRLevel::computeInitialDt

AMR::initialGrid

AMRLevel::postInitialize

AMRLevel::tagCellsInit

AMRLevel::initialData

AMRLevel::initialGrid

AMR::define
AMRLevel::define

AMRLevelFactory::new_amrlevel

Figure 3.1: General structure of an AMR code. The user typically writes classes derived
from AMRLevel for specific problems. Reprinted from [Claridge, 2011] with permission from
the author.

The primary classes for solving the Faraday-Ampère-Maxwell system, and their basic
relationships, are illustrated in Fig. 3.2 below:
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AMRLevel

FourthOrderFineInterp

FourthOrderPatchInterp m_patchInterp

LevelData< BaseFab<IntVect> > m_stencilHere

LevelData<FArrayBox> m_coarseData

interpToFine()

interpOnPatch()

BaseFab<FourthOrderInterpStencil*> m_stencils

FourthOrderPatchInterp

setCoarseBox()

setStencil()

interpToFine()

FourthOrderInterpStencil

FArrayBox m_coarseToFineFab

Vector<int> m_coarseBaseIndices

fillFine()

FourthOrderFillPatch

FourthOrderFineInterp m_spaceInterpolator

TimeInterpolatorRK4 m_timeInterpolator

LevelData<FArrayBox> m_coarsenedFineData

LayoutData<IntVectSet> m_coarsenedGhosts

fillInterp()

LevelData<FluxBox> m_N

LevelData<FArrayBox> m_J

postInitialGrid()

regrid()

preRegrid()

postTimeStep()

initialGrid()

LevelGridMetrics

LevelData<FArrayBox> m_rhsCopy

LevelData<FArrayBox> m_taylorCoeffs

TimeInterpolatorRK4

setDt()

saveInitialSoln()

saveRHS()

interpolate()

advance()

postTimeStep()

tagCells()

regrid()

initialGrid()

initialData()

postInitialize()

computeDt()

computeInitialDt()

LevelData<FArrayBox> m_Uold, m_Unew

FourthOrderFineInterp m_fineInterp

LevelConsOperator m_levelConsOperator

LevelGridMetrics m_levelGridMetrics

AMRLevelMaxwell

computeDiv()

computePNDcomp()

GodunovPhysics* m_gdnvPhysics

setCurrentBox()

updateODE()

evalRHS()

setCurrentTime()

GodunovUtilities m_util

PatchMaxwellOperator

updateODE()

evalRHS()

PatchConsOperator m_patchConsOperator

FourthOrderFillPatch m_patcher

LevelMaxwellOperator

Figure 3.2: Software configuration for the Maxwell code. Modified from Fig. 6 in [Mc-
Corquodale, 2012] with permission from the author.

3.1.1 Important Chombo tools

A rectangular problem domain in Chombo is covered by disjoint unions of rectangles at
different resolutions. Each such union at a particular level of resolution l is termed Ωl, which
is given by

Ωl =
⋃

k

Ωl,k, (3.1)

where Ωl,k is a rectangle at the lth level of resolution. Each Ωl,k, in turn, is divided into
square control volumes, or cells. Each cell is identified with a D-dimensional array of integer
components (i0, ..., iD−1) = i ∈ ZD. The cell identified with i occupies the physical space
[x0 + ih,x0 + (i + u)h], where x0 ∈ RD represents some sort of coordinate origin or offset,
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u = (1, ..., 1) ∈ ZD, and h is the mesh spacing. The bracket notation lists the coordinates of
the lower left and upper right corners of (in this case) the cell, i.e. [lower left corner, upper
right corner].

The integer array i is represented by the class IntVect in the BoxTools library.
Each rectangular grid at a given resolution level l is termed a grid or a box, and is

expressed as Γ, B, or Ωl,k, depending on context. A box B is typically expressed in the
abbreviated bracket notation given above as [ilower left, iupper right], where each i is an IntVect.
B is represented by the class Box in the BoxTools library.

Ωl, in turn, is represented by the class DisjointBoxLayout, which also handles the
assignment of the Boxes in Ωl to different processors.

At each time step, we calculate an m-component array U at each cell in each box on each
level. In the context of this project, m = 6: 3 components each for B and E. Our array can
thus be described as U : RD → Rm, or more accurately as a mapping from a subset of RD to
Rm. Though it is expressed in terms of IntVect cell indices rather than physical coordinates,
each Box B is a subset of RD. U over such subsets, i.e. U : B → Rm or U : Ωl,k → Rm,
is represented by the class FArrayBox. In turn, U : Ωl → Rm is represented by the class
LevelData<FArrayBox>, essentially a union of FArrayBoxes [Colella et al., 2012].

3.2 Subcycling in time

Subcycling consists of first advancing the coarsest level (l = 0) from time t to t+ ∆t0 (i.e. t
plus the coarsest time step), then the next coarsest level (l = 1) from t to t+ ∆t1, and so on
until we reach the final refinement level lmax. Then we keep advancing level lmax from t to
t + nlmax−1

ref ∆tlmax = t + ∆tlmax−1, since nlmax−1
ref ≡ ∆tlmax−1/∆tlmax . We then amend the level

lmax− 1 solution at time t+ ∆tlmax−1 with data from level lmax using so-called flux registers.
We then repeat the process of advancing level lmax and amending level lmax−1 until we reach
time t+ ∆tlmax−2, at which point we amend the data on level lmax− 2 as well. We then work
our way down the levels recursively until all are advanced to t + ∆t0 and corrected with
the appropriate flux registers. This process is illustrated in all the advancement algorithms
described in Chapter 2, for example in Alg. 3, and in Fig. 3.3 below.
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level 0

1

2

3

sync 1

sync 2sync 3

4

5

6

7

8

9

10

11

level 2level 1

t + ∆t0

t

Figure 3.3: Illustration of subcycling in time with a refinement ratio of 2 between levels
0 and 1 and a refinement ratio of 4 between levels 1 and 2. The vertical arrows indicate
advancement in time by ∆tl. The horizontal, dotted arrows indicate updates of coarse data
via averaging and flux registers. The numbers indicate the order in which the advancements
and updates take place.

3.2.1 Averaging down fine solutions to coarse solutions

Now we need to clarify what is meant by amending a coarse solution and flux registers. First,
we define a coarsening operator

Cr(i) =

(⌊
i0
r

⌋
, ...,

⌊
iD−1

r

⌋)
, (3.2)

where bxc is the largest integer less than or equal to x. We can also apply Cr to IntVectSets,
Boxes, and DisjointBoxLayouts. In particular, Cnl−1

ref
(Ωl) ⊂ Ωl−1, i.e. Cnl−1

ref
(Ωl) is the portion

of Ωl−1 that Ωl covers. Similarly, we have an inverse coarsening operator, defined such that

C−1

nl−1
ref

(
Cnl−1

ref
(Ωl)

)
= Ωl.

After computing 〈U〉lmax−1(t + ∆tlmax−1) and 〈U〉lmax(t + nlmax−1
ref ∆tlmax) = 〈U〉lmax(t +

∆tlmax−1), we first replace 〈U〉lmax−1(t+∆tlmax−1) with an averaged-down version of 〈U〉lmax(t+
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∆tlmax−1) in accordance with Eq. (2.48), i.e.

〈U〉lmax−1
i (t+ ∆tlmax−1) =

1

(nlmax−1
ref )D

∑

k∈F(i)

〈U〉lmax
k (t+ ∆tlmax−1) ∀ i ∈ Cnlmax−1

ref
(Ωlmax). (3.3)

3.2.2 Flux Registers

Now, because D ·F is computed with face averages, when we replace 〈U〉lmax−1(t+ ∆tlmax−1)
with its averaged-down equivalent on Cnlmax−1

ref
(Ωlmax), we also need to replace 〈F d〉lmax−1 on

the d-faces of the cells bounding Cnlmax−1
ref

(Ωlmax) with values averaged down from 〈F d〉lmax on

those boundary faces. We define the sets of d-faces in Ωlmax−1 adjoining Ωlmax as

ζ lmax
d,± = {i± 1

2
ed : i± ed /∈ Cnlmax−1

ref
(Ωlmax), i ∈ Cnlmax−1

ref
(Ωlmax)}. (3.4)

ζ lmax
d,± are, respectively, the sets of high and low d-faces of Ωlmax expressed in indices of Ωlmax−1.

For each i± 1
2
ed ∈ ζ lmax

d,+ ∪ ζ lmax
d,− , and each integer s ∈ [1, ..., nlmax−1

ref ], we compute

〈F d〉lmax

i± 1
2
ed

(t+ s∆tlmax) =
1

(nlmax−1
ref )D−1

∑

k+ 1
2
ed∈Fd

〈F d〉lmax

k+ 1
2
ed

(t+ s∆tlmax). (3.5)

The sum is over the set of all boundary d-faces of Ωlmax which coincide with the d-face i± 1
2
ed

in Ωlmax−1, i.e. Fd = [inlmax−1
ref + 1

2
ed, (i + u− ed)n

lmax−1
ref + 1

2
ed]

On ζ lmax
d,+ ∪ ζ lmax

d,− , we define the flux register δF lmax
d as

δF lmax
d (t+ ∆tlmax−1) ≡ 1

nlmax−1
ref

nlmax−1
ref∑

s=1

〈F d〉lmax
(t+ s∆tlmax)

− 〈F d〉lmax−1(t+ ∆tlmax−1)

(3.6)

and the reflux divergence operator DR as

DR(δF lmax)i =
1

hlmax−1

D−1∑

d=0

∑

±=+,−:

i± 1
2
ed∈ζlmax

d,∓

±δF f

d,i± 1
2
ed

(3.7)

The flux register and the reflux divergence are defined to be zero everywhere else.
After updating 〈U〉lmax−1(t+ ∆tlmax−1) on Cnlmax−1

ref
(Ωlmax) as in Eq. (3.3), we increment it

with −∆tlmax−1DR(δF lmax).
Averaging down and refluxing are carried out recursively down through the refinement

levels, whenever 〈U〉l(t + nl−1
ref ∆tl) = 〈U〉l(t + ∆tl−1) has been computed and amended ap-

propriately. We simply replace all references to level lmax in the equations and definitions in
Sec. 3.2.1 and Sec. 3.2.2 with level l.



30

The notation in this section differs from that of [Colella et al., 2012, Sec. 3.1.2.3]. This
is an attempt to maintain consistency with Sec. 2.5 and the earlier sections of this chapter,
not to mention to avoid using 〈·〉 to denote two different types of averages.

Tagging cells for further refinement, storing and advancing data on multiple levels, and
subcycling in time require more complex algorithms and data structures than traditional
single-level schemes. Moreover, these algorithms are much more difficult (if not impossible)
to implement with procedural rather than object-oriented programming. However, despite
the complexity of tagging cells for refinement and of subcycling in time, employing AMR to
obtain fine grids only where they are necessary and using coarser grids everywhere else offers
tremendous savings in time and computational cost (storage, memory, etc.).

3.3 Damping Coefficient

In choosing the optimum damping coefficient σ, we would ideally specify the various Fourier
nodes kj, space steps ∆xj and domain lengths Lj, from which we would compute the Ωj

values, which we would then use to determine the σ that minimizes |R(z)|, with z = −σ∆t±
c∆t

√
Ω2
x + Ω2

y + Ω2
z. However, because our code does not employ spatial Fourier transforms

in advancing PDEs, implementing such a function, we choose as our damping coefficient the
value of σ corresponding to the tallest part of the RAS. For an RK4 advance of the source-
free Maxwell system (for that matter, of any non-dispersive, non-dissipative wave equation)
this yields σ ≈ 0.329/∆t. This choice allows the greatest possible range of Fourier nodes
while remaining inside the RAS.

3.4 Construction of the Sponge Layer

In implementing the damping scheme, we will solve Eq. (2.52) on most of the problem
domain. We will only solve Eq. (2.64) in the complement to the proper nesting domain in
each refined box B. The proper nesting domain Bpnd of each box B is defined as the set
of all points contained within B that lie no fewer than p units away from any edge of the
disjoint union of refined rectangles Ωl, not including edges of B or any rectangle contained
in Ωl abutting the problem domain boundary. The complement to the proper nesting domain
of each box B, therefore, is the set of all points contained within B that lie no more than
p units away from any edge of the disjoint union of refined rectangles Ωl, not including the
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problem domain boundary. In set theoretic notation,

Bpnd =
⋂

v∈[−pu,pu]

(
(Ωl

mod + v) ∩Bmod

)

=
⋂

v∈[−pu,pu]

(
(∪kΩl,k

mod + v) ∩Bmod

)

=
⋂

v∈[−pu,pu]

∪k
(

(Ωl,k
mod + v) ∩Bmod

)
,

(3.8)

where l is the refinement level of the disjoint union of boxes of which B is a part, Ωl,k denotes
an arbitrary box within Ωl, v is an offset vector, u is a vector with components all equal to
±1, and v ∈ [−pu, pu] is an abbreviated notation meaning v ∈ p(±1,±1, ...,±1). Bmod is
defined by the following algorithm

Algorithm 1 Bmod(B,Ω): Growing a box B so that Bpnd abuts the problem domain Ω if
B abuts Ω
Bmod := B
ilo = cell index of lower left corner of Bmod

ihi = cell index of upper right corner of Bmod

jlo = cell index of lower left corner of problem domain
jhi = cell index of upper right corner of problem domain
for d ∈ [0,D− 1] do

if ilo · ed = jlo · ed then
ilo := ilo − ed

end if
if ihi · ed = jhi · ed then
ihi := ihi + ed

end if
end for

with each box Ωl,k
mod within Ωl

mod defined similarly.
The complement to Bpnd, Bc

pnd, is given by

Bc
pnd = (Bmod −Bpnd) ∩B. (3.9)

Fig. 3.4 illustrates the relationships between B, Bmod, Bpnd, Bc
pnd, Ωl, and Ωl

mod for an

arbitrary B and Ωl.



32

Ωl
(mod) = ⋃

k Ω
l,k
(mod)

Ωl,2

Ωl,3

Ωl,1

Bcpnd
Bcpnd

B = Ωl,0

Ω0

Bmod = Ωl,0mod
BpndBpnd

Ωl,3mod

Figure 3.4: An arbitrary box B = Ωl,0 abutting the boundary of the problem domain Ω0,
the disjoint box layout Ωl to which the box belongs, the box’s proper nesting domain Bpnd,
and the complement to the proper nesting domain Bc

pnd, a.k.a. the sponge layer.

The sponge layer is constructed in the levelSetup() function of the class AMRLevelMaxwell.
As sponge layers and grids are intrinsically related, the two are created simultaneously. We
have added the following two functions to the AMRLevelMaxwell class to assist in the con-
struction of the sponge layer:

• IntVectSet shiftVectSet(const int& a_sf)

Construct a complete set of IntVects with all components equal to ±a_sf. Corre-
sponds to the set of vectors v by which we shift the box Ωl,k in Eq. (3.8).

– a_sf: The absolute value of each component of each vector in the set of shifting
vectors. Corresponds to p in Eq. (3.8).

• IntVectSet computePNDcomp(const Box& a_box,

const int& a_shift,

const DisjointBoxLayout& a_dbl)

Compute the PND complement of a_box as in Alg. 1, Eq. (3.8), and Eq. (3.9).
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– a_box: Box whose PND complement we are computing. Corresponds to B in
Eq. (3.8).

– a_shift: Integer specifying the magnitude of each component of the shifting
vectors. Corresponds to p in Eq. (3.8).

– a_dbl: Set of all boxes at the level l where this function is called. Corresponds
to Ωl in Eq. (3.8).

Numerical experiments with the scalar wave equation (and [Harris and Durran, 2010])
seem to suggest that ramping up σ from the inside of the sponge layer (the layer of cells
directly adjacent to the proper nesting domain of the fine region) to the outside (the layer
of cells adjacent to the coarse-fine grid boundary) yields better damping than would be
obtained from a single σ in the entire sponge layer. We have tested several formulas for
ramping up σ in a sponge layer N cells thick. To simplify our damping coefficient formulas,
let us define n as an integer ∈ [1, N ], ξ ≡ n/N , and σ0 ≡ 0.329/∆t. In this case, n = 1
corresponds to the layer of coarse cells adjacent to the proper nesting domain and n = N is
the layer of coarse cells just on the fine side of the coarse-fine grid boundary.

Harris and Durran ramp up σ linearly [Harris and Durran, 2010]:

σ(ξ) = σ0ξ. (3.10)

As such, this was the first damping coefficient ramp-up scheme we implemented.
However, we then began to experiment with ramp-up schemes smoother at n = 1 and

n = N . To that end, we tested ramp-up formulas of the form

σ(ξ) = σ0 sinp
(
πξ

2

)
, (3.11)

where p is a positive integer.
We determined through more numerical experimentation that the sinusoidal ramp-up

schemes resulted in greater errors and erroneous growth in Ey in the case of a plane wave
propagating along the x-axis from a finely resolved to a coarsely resolved region, with the
wave marginally resolved on the fine grid and clearly underresolved on the coarse grid. We
also implemented several ramp-up schemes of the form

σ(ξ) = σ0C

∫
(ξ(1− ξ))pdξ, (3.12)

with no integration constant and C chosen such that C
∫ 1

0
(ξ(1− ξ))pdξ = 1. In theory, this

results in as much cumulative damping as the linear scheme in Eq. (3.10), since

∫ 1

0

ξdξ =
1

2
=

∫ 1

0

C

∫ ξ

0

(ξ′(1− ξ′))pdξ′, (3.13)
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assuming C is chosen as described above. Furthermore, since (ξ(1− ξ))p is symmetric about
ξ = 1/2, σ chosen according to Eq. (3.12) will equal 1/2 at ξ = 1/2, i.e. halfway into Bc

pnd.
We construct the sponge layer with varying σ via the following pseudocode:

Algorithm 2 Construction of the sponge layer at level l

for n ∈ [1, N ] do
p = (N − n+ 1)∆xl−1/∆xl

for each Box B in DisjointBoxLayout Ωl do

Bpnd =
⋂
v∈[−pu,pu] ∪k

(
(Ωl,k

mod + v) ∩Bmod

)

Bc
pnd = (Bmod −Bpnd) ∩B

σ = σ(ξ) in Bc
pnd

end for
end for

3.5 Interpolation

The basic algorithm for constructing the right hand side of Eq. (2.64) in Chombo is:

• Set up coarsened versions of the fine grids, with the appropriate number of coarse
ghost cells. The first part of this is carried out with the coarsen modification function
defined in the DisjointBoxLayout class. The coarse level ghost vectors and coarsened
version of the fine grids are then used in defining a LevelData<FArrayBox> named
coarsenedFineU.

• Interpolate coarse data on coarsened versions of fine grids, defined at tl−1 (i.e., the
time on the next coarser level from which we’re advancing) to coarse data on coars-
ened versions of fine grids, defined at tl + ∆tl (i.e., the time on the current level to
which we’re advancing). This is carried out when the interpolate function of the
TimeInterpolatorRK4 class.

• Interpolate coarsened fine data at tl + ∆tl to fine data at tl + ∆tl. This is carried out
FArrayBox by FArrayBox, as follows:

• for each FArrayBox in U l

– Get the associated coarsened fine Box

– Grow that Box by the number of coarse ghost cells corresponding to the fine ghost
cells that need to be filled

– Convert the ghosted, coarsened fine Box to an IntVectSet.

– Interpolate coarsened data on the ghosted, coarsened fine Box
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• endfor

• for each FArrayBox in U l

– Negate interpolated coarse data (I(U l−1)) with the *= operator.

– Add fine data (U l) with += operator.

– Multiply by 1/∆t with *= operator.

– Multiply by σ∆t, which is non-zero in the sponge layer and zero everywhere else.

• endfor

3.6 Advancing the basic, source-free hyperbolic

system

We will advance Eq. (2.52) as described in [McCorquodale and Colella, 2011] and [Colella
et al., 2012, Ch. 5]. As indicated in [Colella et al., 2012], the advancement algorithm for this
system is given by Alg. 3:

Algorithm 3 advance(l): Advancing a simple hyperbolic conservation system

U l(tl + ∆tl) := RK4
(
U l(tl), tl,∆tl

)
, with ∂U l

∂t
= −∇ · F (U l)

if l < lmax then
δF l

d = −F l
d on ζ l+1

+,d ∪ ζ l+1
−,d , ∀ d ∈ [0,D− 1]

end if
if l > 0 then
δF l

d := 1

nl−1
ref

F d
l

on ζ l+,d ∪ ζ l−,d, ∀ d ∈ [0,D− 1]

end if
for q ∈ [0, nlref − 1] do

advance(l + 1)
end for
U l(tl + ∆tl) = average(U l+1(tl + ∆tl), nlref) on Cnl

ref
(Ωl+1)

U l(tl + ∆tl) := U l(tl + ∆tl)−∆tlDR(δF l+1)
tl := tl + ∆tl

nlstep := nlstep + 1

if (nlstep = 0 mod nregrid) and (nl−1
step 6= 0 mod nregrid) then

regrid(l)
end if
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3.7 Advancing the damped, source-free system

Advancing Eq. (2.64) is similar to advancing Eq. (2.52). We merely add the steps outlined
in Sec. 3.5 to Alg. 3, as indicated below:

Algorithm 4 advance(l): Advancing a damped hyperbolic conservation system

U l(tl + ∆tl) := RK4
(
U l(tl), tl,∆tl

)
, with ∂U l

∂t
= −∇ · F (U l)

if l > 0 then
copy U l−1(tl−1) on Ωl−1 to Ū l−1(tl−1) on Cnl−1

ref
(Ωl)

Ū l−1(tl + ∆tl) := timeInterp
(
Ū l−1(tl−1), tl + ∆tl

)

I(U l−1)(tl + ∆tl) := spaceInterp
(
Ū l−1(tl + ∆tl)

)

U l(tl + ∆tl) := U l(tl + ∆tl)− σ∆tl
[
U l(tl + ∆tl)− I(U l−1)(tl + ∆tl)

]

end if
if l < lmax then
δF l

d = −F l
d on ζ l+1

+,d ∪ ζ l+1
−,d , ∀ d ∈ [0,D− 1]

end if
if l > 0 then
δF l

d := 1

nl−1
ref

F d
l

on ζ l+,d ∪ ζ l−,d, ∀ d ∈ [0,D− 1]

end if
for q ∈ [0, nlref − 1] do

advance(l + 1)
end for
U l(tl + ∆tl) = average(U l+1(tl + ∆tl), nlref) on Cnl

ref
(Ωl+1)

U l(tl + ∆tl) := U l(tl + ∆tl)−∆tlDR(δF l+1)
tl := tl + ∆tl

nlstep := nlstep + 1

if (nlstep = 0 mod nregrid) and (nl−1
step 6= 0 mod nregrid) then

regrid(l)
end if

3.8 Advancing the damped system with sources

Assuming that the current density J is specified and that we can compute its divergence-free
projection P(J) we need only make slight modifications to Alg. 4, as indicated below:
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Algorithm 5 advance(l): Advancing a damped hyperbolic system with sources

U l(tl + ∆tl) := RK4
(
U l(tl), tl,∆tl

)
, with ∂U l

∂t
= Sl −∇ · F (U l)

if l > 0 then
copy U l−1(tl−1) on Ωl−1 to Ū l−1(tl−1) on Cnl−1

ref
(Ωl)

Ū l−1(tl + ∆tl) := timeInterp
(
Ū l−1(tl−1), tl + ∆tl

)

I(U l−1)(tl + ∆tl) := spaceInterp
(
Ū l−1(tl + ∆tl)

)

U l(tl + ∆tl) := U l(tl + ∆tl)− σ∆tl
[
U l(tl + ∆tl)− I(U l−1)(tl + ∆tl)

]

end if
if l < lmax then
δF l

d = −F l
d on ζ l+1

+,d ∪ ζ l+1
−,d , ∀ d ∈ [0,D− 1]

end if
if l > 0 then
δF l

d := 1

nl−1
ref

F d
l

on ζ l+,d ∪ ζ l−,d, ∀ d ∈ [0,D− 1]

end if
for q ∈ [0, nlref − 1] do

advance(l + 1)
end for
U l(tl + ∆tl) = average(U l+1(tl + ∆tl), nlref) on Cnl

ref
(Ωl+1)

U l(tl + ∆tl) := U l(tl + ∆tl)−∆tlDR(δF l+1)
tl := tl + ∆tl

nlstep := nlstep + 1

if (nlstep = 0 mod nregrid) and (nl−1
step 6= 0 mod nregrid) then

regrid(l)
end if
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Chapter 4

Source-Free Maxwell’s Equations:
Test Problems and Results

4.1 2D test problems

For the remainder of this section, we will assume that no quantity depends on z. We can
think of this as a two-dimensional system, where Bz and Ez are scalar-valued. In that case,
Eq. (2.52) decouples into

∂

∂t




Bx

By

Ez


+∇ ·

(
0 −Ez −c2By

Ez 0 c2Bx

)
= 0 (4.1)

and

∂

∂t




Ex
Ey
Bz


+∇ ·

(
0 c2Bz Ey

−c2Bz 0 −Ex

)
= 0. (4.2)

Let us now restrict ourselves to systems in which Bx, By and Ez are initially equal to 0
and thus, according to Eq. (4.1), equal to 0 for all time. The simplest possible such solutions
to Eq. (4.2) and Gauss’ Laws are systems of the form

Ex(x, t) = 0,

Ey(x, t) = Ef(kx(x− ct)),

Bz(x, t) =
E
c
f(kx(x− ct)),

(4.3)

where f(kx(x− ct)) is an arbitrary, dimensionless function and E is a constant with units of
electric field (kg m C−1 s−2 in SI units). Note that Ey and Bz are solutions to wave equations:
Ey(x, 0) ∝ Bz(x, 0) ∝ f(kxx) and Ey and Bz maintain their forms while propagating along
the x-axis at speed c.
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A more general system of waves propagating in any direction in the xy plane can be
expressed as

Ex(x, y, t) = Exf(kxx+ kyy − ωt),
Ey(x, y, t) = Eyf(kxx+ kyy − ωt),
Bz(x, y, t) = Bzf(kxx+ kyy − ωt).

(4.4)

Gauss’ Law of Magnetism is automatically satisfied.
From Gauss’ Law of Electricity, we have

kxEx + kyEy = 0. (4.5)

If Ex 6= 0, then

Ey = −kxEx
ky

, (4.6)

while if Ex = 0, ky = 0.
Faraday’s Law yields

Bz =
kxEy − kyEx

ω
, (4.7)

or, if Ex 6= 0,

Bz =
−(k2

x + k2
y)Ex

ωky
. (4.8)

The Ampère-Maxwell Law yields

−ωEx − c2kyBz = 0 (4.9)

and
−ωEy + c2kxBz = 0. (4.10)

Substituting Eq. (4.9) and Eq. (4.10) into Eq. (4.7) yields

Bz =
c2(k2

x + k2
y)

ω2
Bz, (4.11)

which in turn implies that
ω2 = c2(k2

x + k2
y). (4.12)

Eqs. (4.3) are a special case of Eqs. (4.4), with Ex = 0, Ey = E , ky = 0, with all other
equivalences following from these.

Test problems we programmed and ran include:

f(kx(x− ct)) = cos(2πKx(x− ct)), (4.13)

with Kx, the number of periods per unit length, equal to 1 rad−1 m−1 (kx = 2πKx is the
wave number);

f(kx(x− ct)) = exp

(
−4 ln 2

(x− ct)2

w2

)
, (4.14)
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where w (equal to 1 m in our simulations) is the full width at half maximum of the Gaussian
pulse, related to the standard deviation σ by w = 2σ

√
2 ln 2 (note that the standard deviation

of a Gaussian σ is completely unrelated to the damping coefficient σ);

f(kxx+ kyy − ωt) = cos
(

2π
[
Kxx+Kyy −

√
K2
x +K2

y ct
])
, (4.15)

with (Kx, Ky) = (1, 1), (1, 2), and (2, 1) rad−1 m−1;

f(kxx+ kyy − ωt) = cos (2πK[(cosα)x+ (sinα)y − ct]) , (4.16)

with K = 1 rad−1 m−1 and α = π/6, π/4, and π/3 rad; and

f(kxx+ kyy − ωt) = exp

(
−4 ln 2

[(cosα)x+ (sinα)y − ct]2
w2

)
, (4.17)

with w = 1 m and α = π/6, π/4, and π/3 rad.
The plane wave problems were advanced on a 32 m X 4 m coarse grid, with an l = 1

refined patch of 4 m X 4 m on the left side of the problem domain. To check convergence, the
angled plane wave problems, i.e. those with solutions corresponding to Eqs. (4.15) and (4.16),
were also advanced on this grid, albeit without the refined patch. When possible, periodic
boundary conditions were employed. This was not possible with the refined patch on the
left side of the problem domain, as the left and right x-boundaries were resolved differently.
Likewise, the periodicity of Eq. (4.16) did not match that of the problem domain. In those
cases, the actual solutions were imposed as boundary conditions.

The Gaussian pulse problems were advanced on a 32 m X 8 m coarse grid, with an l = 1
refined patch of 4 m X 4 m in the center of the problem domain. To test convergence,
Eq. (4.17) was also advanced on this grid, without the refined patch. For both Eqs. (4.14)
and (4.17), the actual solution was imposed on the x-boundaries. We also had to impose
the actual solution on the y-boundaries for Eq. (4.17), but were able to employ periodic
boundary conditions in y for Eq. (4.14).

4.2 3D test problems

Let us now consider the source-free Maxwell Equations in 3 dimensions. Since Eqs. (2.51) can
be expressed as wave equations in B and E, traveling wave solutions are worth investigating.

A fairly general solution to the scalar wave equation (not the most general, but general
enough for our purposes) can be written as f(kxx+ kyy+ kzz−ωt+α) = f(k ·x−ωt+α),
provided that ω2 = c2k2 = c2(k2

x + k2
y + k2

z). Thus, it seems reasonable to consider electric
fields of the form

E(x, t) = Ef(k · x− ωt+ α)ea, (4.18)

where ea is an arbitrary unit vector [Jackson, 1998]. Clearly,

∇ · E = Ef ′ (k · x− ωt+ α)k · ea. (4.19)
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If k ⊥ ea, i.e. k ·ea = 0, ∇·E = 0 and the source-free version of Gauss’ Law of Electricity
is satisfied. However, for any k in 3-dimensional space, there exists an entire plane of vectors
perpendicular to k. Thus, we may choose unit vectors e1 and e2 that are perpendicular to
each other and to k. If we define n ≡ k/|k| (borrowing Jackson’s notation), we may further
specify e1 and e2 by requiring

e1 × e2 = n,

e2 × n = e1,

n× e1 = e2.

(4.20)

Since Maxwell’s Equations and the wave equation are linear, a more general traveling
electric field can be written as

E(x, t) = E1f1(k · x− ωt+ α1)e1 + E2f2(k · x− ωt+ α2)e2, (4.21)

where f1 and f2 both solve the scalar wave equation, but may otherwise be completely
unrelated to each other. Moreover, the phase angles α1 and α2 need not be equal, and E1

need not equal E2.
Now suppose that

B(x, t) = −E2

c
f2(k · x− ωt+ α2)e1 +

E1

c
f1(k · x− ωt+ α1)e2. (4.22)

We will see shortly that E and B defined thus satisfy the source-free Maxwell Equations.
Gauss’ Laws are automatically satisfied, as we know from Eq. (4.19) and our requirements
that k · e1 = 0 = k · e2.

Faraday’s Law becomes
ω

c
Eif ′i(k · x− ωt+ αi) = kEif ′i(k · x− ωt+ αi), (4.23)

where the i subscript stands for either 1 or 2. Assuming that our waves travel only along k
and not −k, ω = ck and Eq. (4.23) is an identity.

Similarly, the Ampère-Maxwell Law becomes

ωEif ′i(k · x− ωt+ αi) = ckEif ′i(k · x− ωt+ αi), (4.24)

which is also an identity.
Thus, E and B as defined by Eq. (4.21) and Eq. (4.22) form a broad class of traveling

wave solutions to the source-free Maxwell Equations. Indeed, Eqs. (4.4) are a special case
of Eqs. (4.21) and (4.22), with

k = kxex + kyey,

e1 =
−kyex + kxey

k
,

e2 = ez,

E1 =
kxEy − kyEx

k
,

E2 = 0.

(4.25)

We also need Eq. (4.5) for Eqs. (4.25) to hold.
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4.3 Results

For plane waves and Gaussian pulses propagating solely along the x-axis, i.e. solutions pro-
portional to Eqs. (4.13) and (4.14), we observed 4th-order convergence (assuming sufficient
resolution), as illustrated below:
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Figure 4.1: Log-log plots of error in Ey vs. Level 1 step size and damping scheme for a plane
wave propagating along the x-axis, i.e. Eq. (4.13). The red curves represent linear ramp-up
in σ, while the green curves represent sinusoidal ramp-up.
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Figure 4.2: Log-log plots of error in Ey vs. Level 1 step size for a Gaussian wave propagating
along the x-axis, i.e. Eq. (4.14). In this case, we have a sponge layer 2 coarse cells thick and
linear ramp-up in σ.

In advancing Eq. (4.15) with Kx = Ky = 1 rad−1 m−1 on an unrefined grid, and with
periodic boundary conditions, we observed (nearly) 4th-order accuracy, given proper resolu-
tion:
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Ex error at t = 4.1695× 10−8 s vs. step size: propagation angle 45◦

Figure 4.3: Log-log plot of error in Ex vs. step size on an unrefined grid and with periodic
BCs for Eq. (4.15) with Kx = Ky = 1 rad−1 m−1.
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However, we observed decidedly slower convergence for both plane waves and Gaussian
pulses when refined grids and sponge layers were involved, and when we needed to impose
exact solutions as boundary conditions, as Fig. 4.4 illustrates. At present, the cause of this
loss of accuracy remains uncertain. Perhaps there is an error in imposing the exact solutions
as boundary conditions.
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Figure 4.4: Log-log plot of error in Ex vs. step size and propagation angle, with several
sponge layer thicknesses, for Eq. (4.17). Propagation angles α = π/6, π/4, and π/3 rad are
represented respectively by the red, green, and blue curves.
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Figure 4.5: Log-log plot of error in Ex vs. step size and propagation angle, with several
sponge layer thicknesses, for Eq. (4.15). Wave number pairs (Kx, Ky) = (1, 1), (1, 2), and
(2, 1) rad−1 m−1 are represented respectively by the red, green, and blue curves.
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Chapter 5

A divergence-free, cylindrical current
source with a non-zero magnetic
dipole moment

5.1 Definitions

We consider a cylinder with radius a and height d centered at (x, y, z) = (x1, y1, 0) with a
current density J running through it. We wish to design a J such that ∇ ·J = 0 everywhere.
Since J = 0 outside the cylinder, it must also equal 0 and be smooth on the cylinder
boundaries.

Let us ignore time dependence for the moment, and define

ψα(x, y, z) =
Jαa

3π
cos6

(
π
√

(x− x1)2 + (y − y1)2

2a

)
cos6

(πz
d

)
. (5.1)

α is an integer index, which will become convenient when we consider sums of currents. Jα
is a constant with units of current density. The factor of a/(3π) is arbitrary, but it ensures
that Jα has the proper units and results in nice cancellations.

Note that cos6(0) = 1, cos6(±π/2) = 0, and cos6 is very smooth at its extrema. Thus,
given our cylinder, defined by (x− x1)2 + (y − y1)2 ≤ a2 and z ∈ [−d/2, d/2], ψ = 0 and is
smooth on the cylinder boundaries.

For our current density Jα resulting from ψα, let us take

Jα(x, y, z) = ∇× ψα(x, y, z)ez

=
∂ψα
∂y

ex −
∂ψα
∂x

ey

≡ Jαx(x, y, z)ex + Jαy(x, y, z)ey

(5.2)

inside our cylinder and 0 outside the cylinder. Thus, Jα is manifestly divergence- free
everywhere except perhaps the cylinder boundaries. If, however, Jα = 0 and is smooth
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enough on the cylinder boundaries, ∇ · Jα = 0 everywhere. Since ψα = 0 and is smooth on
the cylinder boundaries, we expect the same of Jα, but we should verify it.

Through straightforward (though perhaps tedious) application of the chain rule, we see
that

Jαx(x, y, z) = −Jα
(y − y1)

r
sin
(πr

2a

)
cos5

(πr
2a

)
cos6

(πz
d

)
(5.3)

and

Jαy(x, y, z) = Jα
(x− x1)

r
sin
(πr

2a

)
cos5

(πr
2a

)
cos6

(πz
d

)
, (5.4)

with
r ≡

√
(x− x1)2 + (y − y1)2. (5.5)

For notational convenience, and ease in computing the magnetic dipole moment later, let
us make the substitutions

x = x1 + r cosφ

y = y1 + r sinφ,
(5.6)

with r still defined by Eq. (5.5). Then

Jαx(r, φ, z) = −Jα sinφ sin
(πr

2a

)
cos5

(πr
2a

)
cos6

(πz
d

)
(5.7)

and
Jαy(r, φ, z) = Jα cosφ sin

(πr
2a

)
cos5

(πr
2a

)
cos6

(πz
d

)
. (5.8)

In these coordinates, the cylinder boundaries are r = a, z = ±d/2. We see immediately that

Jαx(r, φ, z = ±d/2) = 0

Jαy(r, φ, z = ±d/2) = 0

Jαx(r = a, φ, z) = 0

Jαy(r = a, φ, z) = 0

(5.9)

and can verify easily enough that all spatial derivatives are 0 at the cylinder boundaries as
well. Thus, ∇ · Jα = 0 everywhere.

We also see that Jαx(r = 0, φ, z, t) = Jαy(r = 0, φ, z, t) = 0. In Cartesian coordinates,
the equivalent limit (with (x, y)→ (x1, y1)) is not nearly so straightforward.

If we express Jα in terms of cylindrical unit vectors er, eφ, and ez, we find that

Jαr(r, φ, z) = Jαx(r, φ, z) cosφ+ Jαy(r, φ, z) sinφ = 0 (5.10)

and
Jαφ(r, φ, z) = −Jαx(r, φ, z) sinφ+ Jαy(r, φ, z) cosφ

= Jα sin
(πr

2a

)
cos5

(πr
2a

)
cos6

(πz
d

)
.

(5.11)

This will be useful in analyzing simulation results later.
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5.2 Computing the magnetic dipole moment

For this section, let us drop the index α for convenience. Since our (time-independent) J is
divergence-free, it does not yield an electric dipole moment. We thus expect the strongest
radiation term from this current density to be a magnetic dipole term, assuming it exists. We
will show that the J defined in the previous section does, in fact, have a non-zero magnetic
dipole moment.

The magnetic dipole moment is given by

m =
1

2

∫

V

(x× J(x)) d3x. (5.12)

Note that this is a definite integral over the entire problem volume V . m is a single vector,
not a vector field. Since our J only takes on non-zero values inside the cylinder, we may use
the cylinder as our volume of integration in computing m.

We see immediately that the x− and y−components of m, namely mx and my, both
equal 0. This is because

mx, my ∝
∫ d/2

−d/2
z cos6

(πz
d

)
dz. (5.13)

The integrand is odd in z, while the range of integration is symmetric in z. Thus, mx =
my = 0.

By definition,

mz =
1

2

∫

V

(xJy − yJx) d3x. (5.14)

From Eqs. (5.6) – (5.8), we see that

mz =
J1

2

∫ 2π

0

∫ a

0

(r + x1 cosφ+ y1 sinφ) sin
(πr

2a

)
cos5

(πr
2a

)
r drdφ

×
∫ d/2

−d/2
cos6

(πz
d

)
dz.

(5.15)

The terms in Eq. (5.15) proportional to cosφ and sinφ do not contribute to mz, since∫ 2π

0
cosφ dφ =

∫ 2π

0
sinφ dφ = 0. Thus,

mz =
J1

2
cos(2πνt)

∫ 2π

0

dφ

∫ a

0

r2 sin
(πr

2a

)
cos5

(πr
2a

)
dr

∫ d/2

−d/2
cos6

(πz
d

)
dz

=
J1

2
2π

(45π2 − 272)a3

432π3

5d

16

=
5(45π2 − 272)

6912π2
J1a

3d

≈ 0.0126 J1a
3d,

(5.16)
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according to Mathematica.
Note that the magnetic dipole moment is independent of the coordinates of the center of

the cylinder.

5.3 Current density in two dimensions

To reduce computational time and aid in visualization, we also consider a 2D analogue of
the current density described in the previous sections. Instead of a cylinder, our current runs
through a circle of radius r centered at (x, y) = (x1, y1). If we define

ψα(x, y) =
Jαa

3π
cos6

(
π
√

(x− x1)2 + (y − y1)2

2a

)
(5.17)

and insert Eq. (5.17) into Eq. (5.2) (treating ez as a scalar) we obtain

Jαx(x, y) = −Jα
(y − y1)

r
sin
(πr

2a

)
cos5

(πr
2a

)
(5.18)

and

Jαy(x, y) = Jα
(x− x1)

r
sin
(πr

2a

)
cos5

(πr
2a

)
, (5.19)

with r given by Eq. (5.5). Equivalently, we have

Jαx(r, φ) = −Jα sinφ sin
(πr

2a

)
cos5

(πr
2a

)
(5.20)

and
Jαy(r, φ) = Jα cosφ sin

(πr
2a

)
cos5

(πr
2a

)
(5.21)

for r ∈ [0, a]. Eqs. (5.20) and (5.21) can in turn be compressed into

Jαφ(r, φ) = Jα sin
(πr

2a

)
cos5

(πr
2a

)
. (5.22)

5.4 Artificial dissipation

Consider J(x, y, t) = J1(x, y) cos(2πνt) for t > 0. In advancing Maxwell’s Equations with
this J, given that ν = 0 and all EM field components equal 0 at t = 0, we observe a non-
physical standing wave phenomenon at the center of the source. The maximum standing
wave amplitude appears to grow linearly in time and is roughly proportional to the fourth
power of the grid spacing. We attempt to mitigate this problem by adding an artificial
dissipation term to Maxwell’s Equations.
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Recall that we are treating the Faraday-Ampère-Maxwell system as a damped hyperbolic
conservation system with a source term, i.e.

∂U l

∂t
+∇ · F (U l) = Sl − σ

(
U l − I(U l−1)

)
. (5.23)

Here,

U l =

(
Bl

El
T

)
, (5.24)

F (U l) =




0 −El
T z El

Ty 0 c2Bl
z −c2Bl

y

El
T z 0 −El

Tx −c2Bl
z 0 c2Bl

x

−El
Ty El

Tx 0 c2Bl
y −c2Bl

x 0


 , (5.25)

and

Sl =




0

−P(Jl)

ε0


 (5.26)

We will concern ourselves with dissipation terms of the form

a3ch
3
∑

d

∂4U

∂x4
d

(5.27)

and

a5ch
5
∑

d

∂6U

∂x6
d

. (5.28)

In theory, adding either Eq. (5.27) or Eq. (5.28) to Eq. (5.23) should damp our non-physical
standing waves. Here, a3 and a5 are dimensionless constants, and the factors of c are inserted
for dimensionality reasons. These will become clearer shortly.

5.4.1 Adding artificial dissipation terms to flux

Recall from Sec. 2.5.2 that we approximate ∇ · F as

(D · F )i =
1

h

∑

d

(
〈F d〉i+ 1

2
ed
− 〈F d〉i− 1

2
ed

)
(5.29)

Thus, the replacements

〈F d〉i+ 1
2
ed
→ 〈F d〉i+ 1

2
ed

+ a3ch
3

〈
∂3U

∂x3
d

〉

i+ 1
2
ed

(5.30)

and

〈F d〉i+ 1
2
ed
→ 〈F d〉i+ 1

2
ed

+ a5ch
5

〈
∂5U

∂x5
d

〉

i+ 1
2
ed

(5.31)



52

are equivalent to adding either Eq. (5.27) or Eq. (5.28) to Eq. (5.23), respectively.
To calculate the artificial dissipation terms, we recall that face-averaged quantities can

be defined from cell-averaged quantities as follows:

hn+1

〈
∂n+1U

∂xn+1
d

〉

i

= hn
〈
∂nU

∂xnd

〉

i+ 1
2
ed

− hn
〈
∂nU

∂xnd

〉

i− 1
2
ed

, (5.32)

and that

Af(x+ ah) = A
∞∑

n=0

f (n)(x)

n!
hnan. (5.33)

Employing the properties of even symmetry, we see that

d4f(x)

dx4
h4 = Af(x) +B (f(x+ h) + f(x− h)) +C (f(x+ 2h) + f(x− 2h)) +O(h6). (5.34)

From Eq. (5.33), we must have



1 2 2
0 1 4
0 1 16






A
B
C


 =




0
0
12


 (5.35)

in order for Eq. (5.35) to hold. This is solved easily for A = 6, B = −4, C = 1. Thus, to
the desired accuracy,

h4

〈
∂4U

∂x4
d

〉

i

= 〈U〉i+2ed − 4〈U〉i+ed + 6〈U〉i − 4〈U〉i−ed + 〈U〉i−2ed . (5.36)

Eqs. (5.36) and (5.32) imply that

h3

〈
∂3U

∂x3
d

〉

i+ 1
2
ed

= 〈U〉i+2ed − 3〈U〉i+ed + 3〈U〉i − 〈U〉i−ed . (5.37)

Using an evenly symmetric 7-point stencil to approximate d6f(x)
dx6

h6, we see that



1 2 2 2
0 1 4 9
0 1 16 81
0 1 64 729







A
B
C
D


 =




0
0
0

360


 . (5.38)

Here, A, B, and C are defined as in Eq. (5.34) (though they will not take on the same values)
and D is the coefficient of (f(x+ 3h) + f(x− 3h)). Eq. (5.38) is solved easily for A = −20,
B = 15, C = −6, D = 1. Thus,

h6

〈
∂6U

∂x6
d

〉

i

= 〈U〉i+3ed − 6〈U〉i+2ed + 15〈U〉i+ed − 20〈U〉i

+ 〈U〉i−3ed − 6〈U〉i−2ed + 15〈U〉i−ed
(5.39)
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and

h5

〈
∂5U

∂x5
d

〉

i+ 1
2
ed

= 〈U〉i+3ed − 5〈U〉i+2ed + 10〈U〉i+ed

− 〈U〉i−2ed + 5〈U〉i−ed − 10〈U〉i.
(5.40)

5.4.2 Characteristic and stability analysis of artificial dissipation
terms

If we again define U as in Eq. (2.65), i.e.

U ≡ U l − I(U l−1) (5.41)

then the source-free FAM system with damping and fourth-derivative artificial dissipation
can be expressed as

∂U
∂t

+∇ · F (U) + σU + a3ch
3
∑

d

∂4U
∂x4

d

= 0, (5.42)

while the equivalent system with sixth-derivative artificial dissipation can be expressed as

∂U
∂t

+∇ · F (U) + σU + a5ch
5
∑

d

∂6U
∂x6

d

= 0. (5.43)

Using Eq. (2.69) and Eq. (5.36), and assuming periodic boundary conditions, we have

∂4U
∂x4

∣∣∣∣
(jx,jy ,jz)

=
∑

kx,ky ,kz

Û(kx,ky ,kz)

∆x4
e2πikyjy∆y/Ly e2πikzjz∆z/Lz

×
[
6e2πikxjx∆x/Lx

−4
(
e2πikx(jx+1)∆x/Lx + e2πikx(jx−1)∆x/Lx

)

+
(
e2πikx(jx+2)∆x/Lx + e2πikx(jx−2)∆x/Lx

)]

=
∑

kx,ky ,kz

Û(kx,ky ,kz)e
2πikxjx∆x/Lxe2πikyjy∆y/Lye2πikzjz∆z/Lz

× 1

∆x4

[
6− 8 cos

(
2πkx∆x

Lx

)
+ 2 cos

(
4πkx∆x

Lx

)]

=
∑

kx,ky ,kz

Ω(4)
x Û(kx,ky ,kz)e

2πikxjx∆x/Lxe2πikyjy∆y/Lye2πikzjz∆z/Lz ,

(5.44)

with

Ω(4)
x ≡

1

∆x4

[
6− 8 cos

(
2πkx∆x

Lx

)
+ 2 cos

(
4πkx∆x

Lx

)]
. (5.45)

If we define Ω
(4)
y and Ω

(4)
z similarly, the DFTs of ∂4U

∂y4
and ∂4U

∂z4
are analogous to Eq. (5.44).
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Combining Eq. (2.69) and Eq. (5.39) with the analysis in Eq. (5.44) shows that

∂6U
∂x6

∣∣∣∣
(jx,jy ,jz)

=
∑

kx,ky ,kz

Ω(6)
x Û(kx,ky ,kz)e

2πikxjx∆x/Lxe2πikyjy∆y/Lye2πikzjz∆z/Lz , (5.46)

with

Ω(6)
x ≡

1

∆x4

[
−20 + 30 cos

(
2πkx∆x

Lx

)
− 12 cos

(
4πkx∆x

Lx

)
+ 2 cos

(
6πkx∆x

Lx

)]
. (5.47)

If we define Ω
(6)
y and Ω

(6)
z similarly, the DFTs of ∂6U

∂y6
and ∂6U

∂z6
are analogous to Eq. (5.46).

Using the 4th-order discretizations established in this section and earlier, the DFT of the
source-free Faraday-Ampère-Maxwell system with damping and dissipation can be expressed
as

d

dt




B̂x
B̂y
B̂z
Êx
Êy
Êz




= −




0 −iΩz iΩy

σ
(4,6)
∗ I iΩz 0 −iΩx

−iΩy iΩx 0
0 ic2Ωz −ic2Ωy

−ic2Ωz 0 ic2Ωx σ
(4,6)
∗ Iic2Ωy −ic2Ωx 0



·




B̂x
B̂y
B̂z
Êx
Êy
Êz



. (5.48)

Here, σ
(4,6)
∗ is an abbreviated notation meaning either σ

(4)
∗ or σ

(6)
∗ , depending on the type of

artificial dissipation employed. In turn,

σ(4)
∗ ≡ σ + a3ch

3
(
Ω(4)
x + Ω(4)

y + Ω(4)
z

)
(5.49)

and
σ(6)
∗ ≡ σ + a5ch

5
(
Ω(6)
x + Ω(6)

y + Ω(6)
z

)
, (5.50)

assuming that h = ∆x = ∆y = ∆z, as is standard in Chombo simulations.
Following the logic of Sec. 2.6.2, we see that the matrix on the right side of Eq. (5.48) has

the following eigenvalues, each with multiplicity 2: −σ(4,6)
∗ −ic

√
Ω2
x + Ω2

y + Ω2
z, −σ(4,6)

∗ , −σ(4,6)
∗ +

ic
√

Ω2
x + Ω2

y + Ω2
z.

5.4.3 Choosing artificial dissipation coefficients

Ideally, we would choose a3 and/or a5 so as to minimize the modulus of the RK4 stability
function R, subject to grid spacings, time step, problem domain dimensions, and Fourier
nodes. However, since Chombo does not provide an easy means of spectral decomposition,
we are forced to use more ad hoc means. Ignoring the imaginary axis in the stability plot

of RK4, and assuming no damping, we semi-arbitrarily chose σ
(4,6)
∗ ∆t

∣∣∣
max

= 2. Then, using

the facts that, for n ∈ Z, cos(2nπ) = 1, while cos((2n+ 1)π) = −1, we obtained

σ(4)
∗ ∆t

∣∣
max

= a3ch
3D

16

h4
∆t = 16(CFL)Da3, (5.51)



55

where D is the number of spatial dimensions and the CFL number is given by c∆t/h.
Similarly,

σ(6)
∗ ∆t

∣∣
max

= −a5ch
5D

64

h6
∆t = −64(CFL)Da5. (5.52)

Since we have chosen σ
(4,6)
∗ ∆t

∣∣∣
max

= 2, Eqs. (5.51) and (5.52) yield

a3 =
2

16(CFL)D
(5.53)

and

a5 = − 2

64(CFL)D
. (5.54)

These are the artificial dissipation coefficients used in the test problems described in the
subsequent sections.

5.5 Low-frequency simulation results in 2D

For this battery of simulations, we consider

J(x, y, t) = J1(x, y) sin(2πν1t) (5.55)

for t ≥ 0 and all field components equal to 0 at t = 0.
The relevant parameters are summarized below:

J1 = 1 Cm−2s−1 (V/m)

a =
1

2
m

x1 = 0 m

y1 = 0 m

ν1 = 149896229 s−1 (Hz)

h0 =
1

4
,

1

8
,

1

16
,

1

32
,

1

64
,

1

128
m

h1 =
1

16
,

1

32
,

1

64
,

1

128
,

1

256
,

1

512
m

CFL =
1

2
Ω0 = [−10, 10] m

Ω1 = [−2, 2] m

nesting depth = 0, 2 coarse cells

ramping depth = 0, 2 coarse cells

(5.56)
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These simulations are run both with and without 6th-derivative artificial dissipation.
ν1 was specifically chosen as νmax/16 for h0 = 1/4 m, where

νmax ≡
c

(CFL)h0
, (5.57)

and, as usual, CFL = c∆tl

∆xl
. As such, we expect the oscillations in J to be quite well resolved

at all levels of refinement considered in Eq. (5.56), and, since CFL = 1/2, that the spatial
period of the oscillations in J will equal 8h0 for h0 = 1/4 m, i.e. the period will equal 2 m.

5.5.1 Two-level, 4th-order simulations: field components

For low resolutions (h0 = 1/16 m and higher) the simulations converge much more slowly
than the expected, desired 4th order. At these resolutions, the differences between simulation
results at a coarse h0 and the next finer h0 are due to high-frequency modes, whose ampli-
tudes decrease as h0 decreases. Both damping and artificial dissipation do a decent job at
damping the high-frequency modes on the fine patch Ω1, with artificial dissipation perform-
ing somewhat better in this regard. However, for h0 = 1/32 m and lower, the high-frequency
modes have all but disappeared, and the code begins to converge as desired.

The convergence properties for Bz and Ex resulting from two-level simulations are sum-
marized in the tables below. The differences (given in columns with labels of the form “1/2n

to 1/2n+1”) are between data with h0 = 1/2n m and data with h0 = 1/2n+1 m which has
been averaged down to h0 = 1/2n m. In other words, we have Richardson estimates of the
errors in Bz and Ex at all but the finest resolution, since we don’t know the exact solutions.

Table 5.1: Lower-resolution convergence properties of Bz after two periods of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 2.7333× 10−8 1.3956 1.0389× 10−8 2.8447 1.4462× 10−9

L2 4.4103× 10−9 1.2933 1.7995× 10−9 2.4054 3.3966× 10−10

L∞ 2.1404× 10−9 1.5311 7.4059× 10−10 1.9639 1.8984× 10−10

Table 5.2: Higher-resolution convergence properties of Bz after two periods of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/16 to 1/32 Rate 1/32 to /64 Rate 1/64 to 1/128
L1 1.4462× 10−9 3.9939 9.0771× 10−11 3.9668 5.8052× 10−12

L2 3.3966× 10−10 3.7785 2.4752× 10−11 3.9595 1.5910× 10−12

L∞ 1.8984× 10−10 3.5385 1.6338× 10−11 3.9691 1.0432× 10−12
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Table 5.3: Lower-resolution convergence properties of Ex after two periods of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 5.0749× 100 1.3321 2.0157× 100 2.9311 2.6428× 10−1

L2 8.9164× 10−1 1.2059 3.8653× 10−1 2.4245 7.2001× 10−2

L∞ 5.3050× 10−1 1.2651 2.2073× 10−1 1.9624 5.6639× 10−2

Table 5.4: Higher-resolution convergence properties of Ex after two periods of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/16 to 1/32 Rate 1/32 to /64 Rate 1/64 to 1/128
L1 2.6428× 10−1 3.9914 1.6616× 10−2 3.9679 1.0619× 10−3

L2 7.2001× 10−2 3.7784 5.2473× 10−3 3.9596 3.3727× 10−4

L∞ 5.6639× 10−2 3.5317 4.8975× 10−3 3.9701 3.1251× 10−4

Table 5.5: Lower-resolution convergence properties of Bz after two periods of J in two-level
simulations without damping and with artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 1.6720× 10−8 1.3486 6.5655× 10−9 2.3670 1.2727× 10−9

L2 2.7653× 10−9 1.0544 1.3315× 10−9 2.0717 3.1674× 10−10

L∞ 8.9701× 10−10 0.65842 5.6832× 10−10 1.6878 1.7641× 10−10

Table 5.6: Higher-resolution convergence properties of Bz after two periods of J in two-level
simulations without damping and with artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/16 to 1/32 Rate 1/32 to /64 Rate 1/64 to 1/128
L1 1.2727× 10−9 3.7589 9.4015× 10−11 4.0366 5.7286× 10−12

L2 3.1674× 10−10 3.5851 2.6393× 10−11 4.0242 1.6221× 10−12

L∞ 1.7641× 10−10 3.3429 1.7387× 10−11 4.0256 1.0676× 10−12
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Table 5.7: Lower-resolution convergence properties of Ex after two periods of J in two-level
simulations without damping and with artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 3.1450× 100 1.3670 1.2193× 100 2.3882 2.3291× 10−1

L2 5.8691× 10−1 1.0561 2.8227× 10−1 2.0717 6.7146× 10−2

L∞ 2.6906× 10−1 0.65968 1.7032× 10−1 1.6860 5.2935× 10−2

Table 5.8: Higher-resolution convergence properties of Ex after two periods of J in two-level
simulations without damping and with artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/16 to 1/32 Rate 1/32 to /64 Rate 1/64 to 1/128
L1 2.3291× 10−1 3.7686 1.7089× 10−2 4.0366 1.0413× 10−3

L2 6.7146× 10−2 3.5850 5.5952× 10−3 4.0242 3.4388× 10−4

L∞ 5.2935× 10−2 3.3439 5.2135× 10−3 4.0268 3.1984× 10−4

Table 5.9: Lower-resolution convergence properties of Bz after two periods of J in two-level
simulations with damping and without artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 2.1488× 10−8 1.2019 9.3412× 10−9 2.7325 1.4055× 10−9

L2 3.7453× 10−9 1.0880 1.7618× 10−9 2.3655 3.4188× 10−10

L∞ 1.3404× 10−9 0.84343 7.4703× 10−10 1.9659 1.9122× 10−10

Table 5.10: Higher-resolution convergence properties of Bz after two periods of J in two-level
simulations with damping and without artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/16 to 1/32 Rate 1/32 to /64 Rate 1/64 to 1/128
L1 1.4055× 10−9 3.9879 8.8583× 10−11 3.9679 5.6610× 10−12

L2 3.4188× 10−10 3.7835 2.4828× 10−11 3.9621 1.5930× 10−12

L∞ 1.9122× 10−10 3.5435 1.6400× 10−11 3.9721 1.0450× 10−12
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Table 5.11: Lower-resolution convergence properties of Ex after two periods of J in two-level
simulations with damping and without artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 3.9822× 100 1.2034 1.7293× 100 2.7593 2.5541× 10−1

L2 7.9387× 10−1 1.0882 3.7340× 10−1 2.3651 7.2476× 10−2

L∞ 3.9927× 10−1 0.84362 2.2249× 10−1 1.9636 5.7045× 10−2

Table 5.12: Higher-resolution convergence properties of Ex after two periods of J in two-level
simulations with damping and without artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/16 to 1/32 Rate 1/32 to /64 Rate 1/64 to 1/128
L1 2.5541× 10−1 3.9846 1.6134× 10−2 3.9684 1.0307× 10−3

L2 7.2476× 10−2 3.7834 5.2634× 10−3 3.9621 3.3771× 10−4

L∞ 5.7045× 10−2 3.5367 4.9156× 10−3 3.9730 3.1303× 10−4

Table 5.13: Lower-resolution convergence properties of Bz after two periods of J in two-level
simulations with damping and with artificial dissipation. Numbers in the top line are h0 in
units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 1.8072× 10−8 1.4081 6.8096× 10−9 2.3896 1.2995× 10−9

L2 2.9638× 10−9 1.1109 1.3723× 10−9 2.0920 3.2189× 10−10

L∞ 9.3103× 10−10 0.68679 5.7839× 10−10 1.6956 1.7856× 10−10

Table 5.14: Higher-resolution convergence properties of Bz after two periods of J in two-level
simulations with damping and with artificial dissipation. Numbers in the top line are h0 in
units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/16 to 1/32 Rate 1/32 to /64 Rate 1/64 to 1/128
L1 1.2995× 10−9 3.7775 9.4762× 10−11 4.0433 5.7474× 10−12

L2 3.2189× 10−10 3.5990 2.6565× 10−11 4.0300 1.6262× 10−12

L∞ 1.7856× 10−10 3.3518 1.7490× 10−11 4.0308 1.0700× 10−12
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Table 5.15: Lower-resolution convergence properties of Ex after two periods of J in two-level
simulations with damping and with artificial dissipation. Numbers in the top line are h0 in
units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 3.3921× 100 1.4224 1.2656× 100 2.4110 2.3796× 10−1

L2 6.2896× 10−1 1.1123 2.9092× 10−1 2.0920 6.8239× 10−2

L∞ 2.7943× 10−1 0.68897 1.7333× 10−1 1.6937 5.3582× 10−2

Table 5.16: Higher-resolution convergence properties of Ex after two periods of J in two-level
simulations with damping and with artificial dissipation. Numbers in the top line are h0 in
units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/16 to 1/32 Rate 1/32 to /64 Rate 1/64 to 1/128
L1 2.3796× 10−1 3.7879 1.7228× 10−2 4.0435 1.0448× 10−3

L2 6.8239× 10−2 3.5990 5.6316× 10−3 4.0300 3.4474× 10−4

L∞ 5.3582× 10−2 3.3529 5.2445× 10−3 4.0321 3.2056× 10−4

The convergence properties of Bz and Ex are further illustrated in Fig. 5.1 below. Red
curves represent data from simulations with neither damping nor (6th-derivative) artificial
dissipation; green curves, no damping but with artificial dissipation; blue curves, damping
without dissipation; magenta, both damping and dissipation. The cyan lines depict ideal,
4th-order convergence.
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Figure 5.1: Illustration of convergence properties of Bz and Ex for a 4th-order simulation
of the Faraday-Ampère-Maxwell system, with J given by Eq. (5.55) and parameters listed
in Eq. (5.56). Red curves represent data from simulations with neither damping nor (6th-
derivative) artificial dissipation; green curves, no damping but with artificial dissipation;
blue curves, damping without dissipation; magenta, both damping and dissipation. The
cyan lines depict ideal, 4th-order convergence.

Given a high enough resolution, we see that our simulations converge with 4th-order



62

accuracy. Damping and 6th-derivative artificial dissipation both eliminate trapped waves
(albeit not perfectly) with artificial dissipation damping the physical, outgoing waves a bit
more than the sponge layer terms. Moreover, damping and dissipation decrease the solution
error, but also decrease the convergence rate at lower resolutions.

5.5.2 Two-level, 4th-order simulations: ∇ · E
The convergence properties for ∇ ·E errors resulting from two-level simulations are summa-
rized in the tables below. Since our J is divergence-free, ∇ ·E should equal 0. Thus, we do
not need Richardson extrapolation to estimate the convergence of ∇ · E errors.

Table 5.17: Lower-resolution convergence properties of ∇ · E after two periods of J in two-
level simulations with no damping and no artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/4 Rate 1/8 Rate 1/16 Rate
L1 3.2080× 10−1 1.6817 9.9996× 10−2 5.1031 2.9094× 10−3 3.3330
L2 2.0428× 10−1 1.2950 8.3254× 10−2 3.9847 5.2588× 10−3 2.5452
L∞ 4.7109× 10−1 0.38404 3.6099× 10−1 3.9210 2.3832× 10−2 2.1509

Table 5.18: Higher-resolution convergence properties of ∇ ·E after two periods of J in two-
level simulations with no damping and no artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/32 Rate 1/64 Rate 1/128
L1 2.8872× 10−4 3.0673 3.4444× 10−5 3.0263 4.2277× 10−6

L2 9.0094× 10−4 2.5096 1.5821× 10−4 2.5050 2.7872× 10−5

L∞ 5.3664× 10−3 2.0039 1.3380× 10−3 2.0026 3.3389× 10−4

Table 5.19: Lower-resolution convergence properties of ∇ · E after two periods of J in two-
level simulations with no damping and with artificial dissipation. Numbers in the top line
are h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/4 Rate 1/8 Rate 1/16 Rate
L1 6.6017× 10−1 5.0922 1.9353× 10−2 4.9035 6.4661× 10−4 4.0156
L2 6.2952× 10−1 5.7523 1.1679× 10−2 4.8808 3.9640× 10−4 3.6328
L∞ 1.5869× 100 6.0129 2.4574× 10−2 4.2879 1.2580× 10−3 3.0814
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Table 5.20: Higher-resolution convergence properties of ∇ ·E after two periods of J in two-
level simulations with no damping and with artificial dissipation. Numbers in the top line
are h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/32 Rate 1/64 Rate 1/128
L1 3.9978× 10−5 3.8727 2.7292× 10−6 3.7431 2.0382× 10−7

L2 3.1956× 10−5 3.4730 2.8779× 10−6 3.4046 2.7176× 10−7

L∞ 1.4862× 10−4 3.0146 1.8391× 10−5 3.0451 2.2281× 10−6

Table 5.21: Lower-resolution convergence properties of ∇ · E after two periods of J in two-
level simulations with damping and without artificial dissipation. Numbers in the top line
are h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/4 Rate 1/8 Rate 1/16 Rate
L1 5.3879× 10−1 2.3371 1.0663× 10−1 5.9166 1.7653× 10−3 4.0986
L2 2.9351× 10−1 1.6797 9.1618× 10−2 5.9146 1.5188× 10−3 3.5786
L∞ 7.4954× 10−1 0.99389 3.7636× 10−1 6.2746 4.8613× 10−3 3.0866

Table 5.22: Higher-resolution convergence properties of ∇ ·E after two periods of J in two-
level simulations with damping and without artificial dissipation. Numbers in the top line
are h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/32 Rate 1/64 Rate 1/128
L1 1.0304× 10−4 4.0249 6.3299× 10−6 3.9213 4.1779× 10−7

L2 1.2713× 10−4 3.5456 1.0887× 10−5 3.4627 9.8751× 10−7

L∞ 5.7228× 10−4 3.0115 7.0969× 10−5 2.4491 1.2996× 10−5

Table 5.23: Lower-resolution convergence properties of ∇ · E after two periods of J in two-
level simulations with damping and with artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/4 Rate 1/8 Rate 1/16 Rate
L1 7.1129× 10−1 5.0637 2.1267× 10−2 4.5844 8.8650× 10−4 4.1000
L2 6.3055× 10−1 5.7919 1.1381× 10−2 4.3202 5.6975× 10−4 3.5713
L∞ 1.5869× 100 6.1259 2.2723× 10−2 3.7806 1.6534× 10−3 2.9632
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Table 5.24: Higher-resolution convergence properties of ∇ ·E after two periods of J in two-
level simulations with damping and with artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/32 Rate 1/64 Rate 1/128
L1 5.1696× 10−5 3.9040 3.4534× 10−6 3.6906 2.6747× 10−7

L2 4.7930× 10−5 3.4810 4.2927× 10−6 3.4168 4.0194× 10−7

L∞ 2.1202× 10−4 2.9397 2.7633× 10−5 2.9372 3.6078× 10−6

The convergence properties of ∇ ·E are further illustrated in Fig. 5.2 and Fig. 5.3 below.
Except for the pink line in the bottom graph of Fig. 5.3 (which shows hypothetical 3rd-order
convergence), the colors have the same meanings in Fig. 5.3 as in Fig. 5.1. However, in
Fig. 5.2, the red curve depicts the L1 norm of the error data; the green curve, the L2 norm;
and the blue curve, the L∞ norm. Plotting Fig. 5.2 in this manner demonstrates that errors
in ∇·E do not converge to 0 with 4th-order accuracy in the asymptotic regime in simulations
that employ neither damping nor dissipation.
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Figure 5.2: Illustration of convergence properties of ∇ · E errors for a 4th-order simulation
of the Faraday-Ampère-Maxwell system, with J given by Eq. (5.55) and parameters listed
in Eq. (5.56). The data plotted here results from simulations with no damping and no
artificial dissipation. The red curve depicts the L1 norm of the error data; the green curve,
the L2 norm; and the blue curve, the L∞ norm. The magenta line represents ideal 4th-
order convergence. Note that the errors in the asymptotic regime do not converge to 0 with
4th-order accuracy.
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Figure 5.3: Illustration of convergence properties of ∇ · E errors for a 4th-order simulation
of the Faraday-Ampère-Maxwell system, with J given by Eq. (5.55) and parameters listed in
Eq. (5.56). Green curves represent data from simulations with no damping but with artificial
dissipation; blue curves, with damping but without dissipation; magenta, with both damping
and dissipation. The cyan lines depict ideal, 4th-order convergence. The pink line in the
bottom graph depicts 3rd-order convergence.
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The error in ∇ ·E does converge to 0, but not quite as well as the solution errors in the
field components (see Sec. 5.5.1). For simulations with no damping or dissipation, we do not
observe 4th-order convergence in L1, L2, or L∞ norms. For the other types of simulations,
we observe roughly 4th-order convergence in L1 and L2 norms, but 3rd-order convergence in
L∞.

5.5.3 Two-level, 2nd-order simulations: field components

To gauge the effects of damping and artificial dissipation more precisely, we ran a battery
of simulations in which we replaced 4th-order cell averages with their 2nd-order equivalents,
effectively downgrading the algorithm from 4th-order to 2nd-order. When adding artificial
dissipation, we used 4th-derivative rather than 6th-derivative terms.

The convergence properties for Bz and Ex resulting from two-level simulations are sum-
marized in the tables below. The labels in these tables have the same meanings as in Tabs. 5.1
– 5.16.

Table 5.25: Lower-resolution convergence properties of Bz after two periods of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 5.1964× 10−8 0.96652 2.6592× 10−8 1.37481 1.0254× 10−8

L2 8.3336× 10−9 0.85480 4.6080× 10−9 1.13912 2.0922× 10−9

L∞ 3.8382× 10−9 1.06261 1.8376× 10−9 0.79498 1.0591× 10−9

Table 5.26: Higher-resolution convergence properties of Bz after two periods of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/16 to 1/32 Rate 1/32 to 1/64 Rate 1/64 to 1/128
L1 1.0254× 10−8 2.03659 2.4993× 10−9 2.03907 6.0813× 10−10

L2 2.0922× 10−9 1.74222 6.2538× 10−10 1.99103 1.5732× 10−10

L∞ 1.0591× 10−9 1.61075 3.4678× 10−10 1.86710 9.5061× 10−11

Table 5.27: Lower-resolution convergence properties of Ex after two periods of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 9.9670× 100 0.97233 5.0800× 100 1.40922 1.9127× 100

L2 1.7681× 100 0.85446 9.7789× 10−1 1.14129 4.4333× 10−1

L∞ 8.1588× 10−1 0.56796 5.5037× 10−1 0.79751 3.1665× 10−1



67

Table 5.28: Higher-resolution convergence properties of Ex after two periods of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/16 to 1/32 Rate 1/32 to 1/64 Rate 1/64 to 1/128
L1 1.9127× 100 2.05240 4.6112× 10−1 2.03599 1.1244× 10−1

L2 4.4333× 10−1 1.74239 1.3250× 10−1 1.99075 3.3338× 10−2

L∞ 3.1665× 10−1 1.61661 1.0326× 10−1 1.85214 2.8601× 10−2

Table 5.29: Lower-resolution convergence properties of Bz after two periods of J in two-level
simulations without damping and with artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 2.6667× 10−8 0.81279 1.5181× 10−8 1.15100 6.8362× 10−9

L2 4.2055× 10−9 0.56725 2.8383× 10−9 0.87714 1.5453× 10−9

L∞ 1.5554× 10−9 0.48076 1.1146× 10−9 0.65813 7.0632× 10−10

Table 5.30: Higher-resolution convergence properties of Bz after two periods of J in two-level
simulations without damping and with artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/16 to 1/32 Rate 1/32 to 1/64 Rate 1/64 to 1/128
L1 6.8362× 10−9 1.60071 2.2540× 10−9 1.95496 5.8137× 10−10

L2 1.5453× 10−9 1.42824 5.7421× 10−10 1.88513 1.5545× 10−10

L∞ 7.0632× 10−10 1.23377 3.0033× 10−10 1.68850 9.3177× 10−11

Table 5.31: Lower-resolution convergence properties of Ex after two periods of J in two-level
simulations without damping and with artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 5.0892× 100 0.83952 2.8440× 100 1.16162 1.2713× 100

L2 9.0414× 10−1 0.58556 6.0251× 10−1 0.87879 3.2766× 10−1

L∞ 4.0424× 10−1 0.27965 3.3301× 10−1 0.66518 2.1000× 10−1
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Table 5.32: Higher-resolution convergence properties of Ex after two periods of J in two-level
simulations without damping and with artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/16 to 1/32 Rate 1/32 to 1/64 Rate 1/64 to 1/128
L1 1.2713× 100 1.60905 4.1675× 10−1 1.95511 1.0748× 10−1

L2 3.2766× 10−1 1.42840 1.2174× 10−1 1.88515 3.2957× 10−2

L∞ 2.1000× 10−1 1.21432 9.0505× 10−2 1.69031 2.8044× 10−2

Table 5.33: Lower-resolution convergence properties of Bz after two periods of J in two-level
simulations with damping and without artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 4.3668× 10−8 0.87568 2.3799× 10−8 1.27275 9.8497× 10−9

L2 7.8739× 10−9 0.80018 4.5218× 10−9 1.10438 2.1031× 10−9

L∞ 2.5055× 10−9 0.41759 1.8758× 10−9 0.81719 1.0646× 10−9

Table 5.34: Higher-resolution convergence properties of Bz after two periods of J in two-level
simulations with damping and without artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/16 to 1/32 Rate 1/32 to 1/64 Rate 1/64 to 1/128
L1 9.8497× 10−9 2.03069 2.4106× 10−9 2.03929 5.8646× 10−10

L2 2.1031× 10−9 1.74817 6.2605× 10−10 1.99258 1.5732× 10−10

L∞ 1.0646× 10−9 1.61809 3.4681× 10−10 1.86131 9.5451× 10−11

Table 5.35: Lower-resolution convergence properties of Ex after two periods of J in two-level
simulations with damping and without artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 8.2549× 100 0.88769 4.4616× 100 1.29061 1.8238× 100

L2 1.6795× 100 0.80637 9.6037× 10−1 1.10684 4.4591× 10−1

L∞ 7.2648× 10−1 0.36922 5.6244× 10−1 0.82249 3.1804× 10−1
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Table 5.36: Higher-resolution convergence properties of Ex after two periods of J in two-level
simulations with damping and without artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/16 to 1/32 Rate 1/32 to 1/64 Rate 1/64 to 1/128
L1 1.8238× 100 2.03397 4.4534× 10−1 2.03681 1.0853× 10−1

L2 4.4591× 10−1 1.74826 1.3273× 10−1 1.99256 3.3354× 10−2

L∞ 3.1804× 10−1 1.62349 1.0322× 10−1 1.84645 2.8703× 10−2

Table 5.37: Lower-resolution convergence properties of Bz after two periods of J in two-level
simulations with damping and with artificial dissipation. Numbers in the top line are h0 in
units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 3.0882× 10−8 0.94078 1.6088× 10−8 1.19355 7.0341× 10−9

L2 4.9408× 10−9 0.72272 2.9939× 10−9 0.91946 1.5829× 10−9

L∞ 1.5702× 10−9 0.42950 1.1659× 10−9 0.69271 7.2133× 10−10

Table 5.38: Higher-resolution convergence properties of Bz after two periods of J in two-level
simulations with damping and with artificial dissipation. Numbers in the top line are h0 in
units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/16 to 1/32 Rate 1/32 to 1/64 Rate 1/64 to 1/128
L1 7.0341× 10−9 1.62211 2.2851× 10−9 1.96538 5.8515× 10−10

L2 1.5829× 10−9 1.44591 5.8102× 10−10 1.89409 1.5632× 10−10

L∞ 7.2133× 10−10 1.25296 3.0266× 10−10 1.69363 9.3567× 10−11

Table 5.39: Lower-resolution convergence properties of Ex after two periods of J in two-level
simulations with damping and with artificial dissipation. Numbers in the top line are h0 in
units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 5.9007× 100 0.96978 3.0128× 100 1.20209 1.3095× 100

L2 1.0575× 100 0.73476 6.3547× 10−1 0.92095 3.3563× 10−1

L∞ 4.4275× 10−1 0.34620 3.4829× 10−1 0.70234 2.1405× 10−1
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Table 5.40: Higher-resolution convergence properties of Ex after two periods of J in two-level
simulations with damping and with artificial dissipation. Numbers in the top line are h0 in
units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/16 to 1/32 Rate 1/32 to 1/64 Rate 1/64 to 1/128
L1 1.3095× 100 1.63158 4.2262× 10−1 1.96579 1.0819× 10−1

L2 3.3563× 10−1 1.44610 1.2318× 10−1 1.89408 3.3141× 10−2

L∞ 2.1405× 10−1 1.23068 9.1210× 10−2 1.69544 2.8162× 10−2

The convergence properties of Bz and Ex are further illustrated in Fig. 5.4 below. The
cyan lines depict 2nd-order convergence. The other curves have the same meanings as in
Fig. 5.1
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Figure 5.4: Illustration of convergence properties of Bz and Ex for a 2nd-order simulation
of the Faraday-Ampère-Maxwell system, with J given by Eq. (5.55) and parameters listed
in Eq. (5.56). Red curves represent data from simulations with neither damping nor (6th-
derivative) artificial dissipation; green curves, no damping but with artificial dissipation;
blue curves, damping without dissipation; magenta, both damping and dissipation. The
cyan lines depict ideal, 2nd-order convergence.
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Given a high enough resolution, we see that our simulations converge with 2nd-order
accuracy. Damping and 4th-derivative artificial dissipation both eliminate trapped waves
(albeit not perfectly) with artificial dissipation damping the physical, outgoing waves a bit
more than the sponge layer terms. Moreover, damping and dissipation decrease the solution
error, but also decrease the convergence rate at lower resolutions.

5.5.4 Two-level, 2nd-order simulations: ∇ · E
The convergence properties for ∇ · E errors resulting from 2nd-order, two-level simulations
are summarized in the tables below.

Table 5.41: Lower-resolution convergence properties of ∇ · E after two periods of J in two-
level simulations without damping and without artificial dissipation. Numbers in the top
line are h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/4 Rate 1/8 Rate 1/16 Rate
L1 6.4867× 100 0.80342 3.7168× 100 1.7383 1.1140× 100 2.7322
L2 1.7109× 100 0.95314 8.8369× 10−1 2.0958 2.0673× 10−1 2.4940
L∞ 1.8998× 100 0.20216 1.6514× 100 1.8952 4.4395× 10−1 2.2126

Table 5.42: Higher-resolution convergence properties of ∇ ·E after two periods of J in two-
level simulations without damping and without artificial dissipation. Numbers in the top
line are h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/32 Rate 1/64 Rate 1/128
L1 1.6765× 10−1 2.0843 3.9535× 10−2 2.0063 9.8410× 10−3

L2 3.6698× 10−2 1.9475 9.5144× 10−3 1.7213 2.8854× 10−3

L∞ 9.5780× 10−2 -0.057116 9.9648× 10−2 -0.029123 1.0168× 10−1

Table 5.43: Lower-resolution convergence properties of ∇ · E after two periods of J in two-
level simulations without damping and with artificial dissipation. Numbers in the top line
are h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/4 Rate 1/8 Rate 1/16 Rate
L1 3.8994× 100 1.8373 1.0912× 100 1.6751 3.4171× 10−1 1.6049
L2 2.7020× 100 2.4409 4.9761× 10−1 2.7668 7.3113× 10−2 1.4814
L∞ 6.2609× 100 2.2251 1.3391× 100 3.8936 9.0100× 10−2 2.1535



73

Table 5.44: Higher-resolution convergence properties of ∇ ·E after two periods of J in two-
level simulations without damping and with artificial dissipation. Numbers in the top line
are h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/32 Rate 1/64 Rate 1/128
L1 1.1234× 10−1 1.9129 2.9832× 10−2 1.9895 7.5123× 10−3

L2 2.6185× 10−2 1.8127 7.4536× 10−3 1.9457 1.9349× 10−3

L∞ 2.0252× 10−2 1.1921 8.8634× 10−3 1.0838 4.1817× 10−3

Table 5.45: Lower-resolution convergence properties of ∇ · E after two periods of J in two-
level simulations with damping and without artificial dissipation. Numbers in the top line
are h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/4 Rate 1/8 Rate 1/16 Rate
L1 4.1158× 100 1.0240 2.0240× 100 1.4828 7.2419× 10−1 2.4313
L2 1.4607× 100 1.1824 6.4361× 10−1 2.1575 1.4426× 10−1 2.0702
L∞ 4.2073× 100 0.27364 3.4804× 100 3.7836 2.5273× 10−1 0.61644

Table 5.46: Higher-resolution convergence properties of ∇ ·E after two periods of J in two-
level simulations with damping and without artificial dissipation. Numbers in the top line
are h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/32 Rate 1/64 Rate 1/128
L1 1.3426× 10−1 2.0552 3.2305× 10−2 2.0063 8.0412× 10−3

L2 3.4352× 10−2 1.7929 9.9140× 10−3 1.5901 3.2930× 10−3

L∞ 1.6485× 10−1 0.15878 1.4767× 10−1 0.13306 1.3466× 10−1

Table 5.47: Lower-resolution convergence properties of ∇ · E after two periods of J in two-
level simulations with damping and with artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/4 Rate 1/8 Rate 1/16 Rate
L1 3.8845× 100 1.8004 1.1152× 100 1.6779 3.4853× 10−1 1.6141
L2 2.6982× 100 2.4429 4.9622× 10−1 2.7630 7.3102× 10−2 1.4790
L∞ 6.2609× 100 2.2251 1.3391× 100 3.8936 9.0099× 10−2 2.4836
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Table 5.48: Higher-resolution convergence properties of ∇ ·E after two periods of J in two-
level simulations with damping and with artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in V m−2 = kg s−2 C−1.

Norm 1/32 Rate 1/64 Rate 1/128
L1 1.1385× 10−1 1.9184 3.0119× 10−2 1.9948 7.5572× 10−3

L2 2.6225× 10−2 1.8158 7.4493× 10−3 1.9528 1.9243× 10−3

L∞ 1.6110× 10−2 1.2521 6.7636× 10−3 0.98557 3.4158× 10−3

The convergence properties of ∇ · E are further illustrated in Fig. 5.5 below. The cyan
and pink lines represent 2nd- and 1st-order convergence, respectively. Otherwise, the curves
have the same meanings as in Fig. 5.3.
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Figure 5.5: Illustration of convergence properties of ∇ · E errors for a 2nd-order simulation
of the Faraday-Ampère-Maxwell system, with J given by Eq. (5.55) and parameters listed
in Eq. (5.56). Red curves represent data from simulations with neither damping nor (6th-
derivative) artificial dissipation; green curves, no damping but with artificial dissipation;
blue curves, damping without dissipation; magenta, both damping and dissipation. The
cyan lines depict ideal, 2nd-order convergence. The pink line in the bottom graph depicts
1st-order convergence.
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For L1 and L2 norms, we see that the errors in ∇·E converge to 0 with 2nd-order accuracy,
and that damping and dissipation make little difference. However, for the L∞ norm, we do
not observe 2nd-order convergence, though simulations with dissipation converge better than
those without it.

5.6 High-frequency simulation results in 2D

5.6.1 Variable frequency

For this battery of simulations, we considered ν1 = νmax/2, and J1 = 1/10 V/m, with
otherwise the same parameters and conditions as in Sec. 5.5 and Eq. (5.56).

J1 =
1

10
Cm−2s−1 (V/m)

a =
1

2
m

x1 = 0 m

y1 = 0 m
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,
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1

2
Ω0 = [−10, 10] m

Ω1 = [−2, 2] m

nesting depth = 0, 2 coarse cells

ramping depth = 0, 2 coarse cells

(5.58)

As such, we expect the oscillations in J to be marginally resolved at best.
The figures below show some expected and some unexpected properties. Outside of the

refined patch Ω1, the dominant oscillations in Bz have a period of 6h0 for each h0. Moreover,
as we increase the resolution (i.e. decrease h), and with it ν1, the trapped waves in Ω1 are
eliminated, despite the fact that ν1 is specifically chosen not to be properly resolved on Ω0.
As in Sec. 5.5, artificial dissipation appears to eliminate trapped waves inside Ω1 better than
damping. However, it also eliminates many of the 6h0 waves as they propagate out of Ω1

to Ω0. Then again, those waves are not physical, which suggests that artificial dissipation is
a superior mechanism to damping in maintaining stability, particularly in lower-resolution
simulations.
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Figure 5.6: Computed Bz with ∆x0 = 1/4 m at t = 40∆t0 = 1.66782 × 10−8 s for the
high-frequency J. This simulation does not employ damping or artificial dissipation. Note
abundant trapped waves inside the refined patch and leading oscillations with wavelength ≈
1.5 m = 6∆x0 outside the refined region.
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Figure 5.7: Computed Bz with ∆x0 = 1/8 m at t = 80∆t0 = 1.66782 × 10−8 s for the
high-frequency J. This simulation does not employ damping or artificial dissipation. Note
trapped waves (albeit not as abundant as in Fig. 5.6) inside the refined region and leading
oscillations with wavelength ≈ 0.75 m = 6∆x0 outside the refined region.



79

Figure 5.8: Computed Bz with ∆x0 = 1/16 m at t = 160∆t0 = 1.66782 × 10−8 s for the
high-frequency J. This simulation does not employ damping or artificial dissipation. Note
the leading oscillations with wavelength ≈ 0.375 m = 6∆x0 outside the refined region and
the relative lack of trapped waves inside the refined region.
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Figure 5.9: Computed Bz with ∆x0 = 1/32 m at t = 320∆t0 = 1.66782×10−8 s for the high-
frequency J. This simulation does not employ damping or artificial dissipation. Note the
leading oscillations with wavelength ≈ 0.1875 m = 6∆x0 outside the refined region. There
are virtually no trapped waves inside the refined region.
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Figure 5.10: Computed Bz with ∆x0 = 1/4 m at t = 40∆t0 = 1.66782 × 10−8 s for the
high-frequency J. This simulation employs damping but not artificial dissipation. Note the
leading oscillations with wavelength ≈ 1.5 m = 6∆x0 outside the refined region. The trapped
waves inside the refined region are much smaller than those in Fig. 5.6. In fact, they are
comparable in amplitude to the trapped waves in Fig. 5.7
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Figure 5.11: Computed Bz with ∆x0 = 1/8 m at t = 80∆t0 = 1.66782 × 10−8 s for the
high-frequency J. This simulation employs damping but not artificial dissipation. Note
the leading oscillations with wavelength ≈ 0.75 m = 6∆x0 outside the refined region. The
trapped waves inside the refined region are barely visible at this scale.
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Figure 5.12: Computed Bz with ∆x0 = 1/16 m at t = 160∆t0 = 1.66782 × 10−8 s for the
high-frequency J. This simulation employs damping but not artificial dissipation. Note the
leading oscillations with wavelength ≈ 0.375 m = 6∆x0 outside the refined region. There
are virtually no trapped waves inside the refined region.
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Figure 5.13: Computed Bz with ∆x0 = 1/32 m at t = 320∆t0 = 1.66782 × 10−8 s for the
high-frequency J. This simulation employs damping but not artificial dissipation. Note the
leading oscillations with wavelength ≈ 0.1875 m = 6∆x0 outside the refined region. There
are virtually no trapped waves inside the refined region.
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Figure 5.14: Computed Bz with ∆x0 = 1/4 m at t = 40∆t0 = 1.66782× 10−8 s for the high-
frequency J. This simulation does not employ damping but does employ artificial dissipation.
Note the leading oscillations with wavelength ≈ 1.5 m = 6∆x0 outside the refined region.
The trapped waves inside the refined region less numerous and smaller in amplitude than
those in Fig. 5.10, expect very close to the center.



86

Figure 5.15: Computed Bz with ∆x0 = 1/8 m at t = 80∆t0 = 1.66782× 10−8 s for the high-
frequency J. This simulation does not employ damping but does employ artificial dissipation.
Note the leading oscillations with wavelength ≈ 0.75 m = 6∆x0 outside the refined region.
The trapped waves inside the refined region are even less visible than in Fig. 5.11
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Figure 5.16: Computed Bz with ∆x0 = 1/16 m at t = 160∆t0 = 1.66782 × 10−8 s for
the high-frequency J. This simulation does not employ damping but does employ artificial
dissipation. Note the leading oscillations with wavelength ≈ 0.375 m = 6∆x0 outside the
refined region. There are virtually no trapped waves inside the refined region.
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Figure 5.17: Computed Bz with ∆x0 = 1/32 m at t = 320∆t0 = 1.66782 × 10−8 s for
the high-frequency J. This simulation does not employ damping but does employ artificial
dissipation. Note the leading oscillations with wavelength ≈ 0.1875 m = 6∆x0 outside the
refined region. There are virtually no trapped waves inside the refined region.
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5.6.2 Fixed frequency

For this battery of simulations, we considered the following parameters and conditions:
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(5.59)

ν1 was specifically chosen as νmax/2 for h0 = 1/4 m. As such, we do not expect the oscillations
in J to be well resolved until h0 = 1/32 m and lower.

The figures below show some expected and some unexpected properties. Outside of the
refined patch Ω1, the dominant oscillations in Bz have a period of 6h0 for each h0 ¿ 1/32
m. Once we reach that level of resolution, however, the oscillations in Bz have a spatial
period of 1/4 m, as they should. As in Sec. 5.5, artificial dissipation appears to eliminate
trapped waves inside Ω1 better than damping. However, it also eliminates many of the
6h0 waves as they propagate out of Ω1 to Ω0. Then again, those waves are not physical,
which suggests that artificial dissipation is a superior mechanism to damping in maintaining
stability, particularly in lower-resolution simulations.
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Figure 5.18: Computed Bz with ∆x0 = 1/4 m at t = 40∆t0 = 1.66782×10−8 s for the (fixed)
high-frequency J. This simulation does not employ damping or artificial dissipation. Note
abundant trapped waves inside the refined patch and leading oscillations with wavelength ≈
1.5 m = 6∆x0 outside the refined region.
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Figure 5.19: Computed Bz with ∆x0 = 1/8 m at t = 80∆t0 = 1.66782 × 10−8 s for the
(fixed) high-frequency J. This simulation does not employ damping or artificial dissipation.
Note trapped waves (albeit not as abundant as in Fig. 5.18) inside the refined region and
leading oscillations with wavelength ≈ 0.75 m = 6∆x0 outside the refined region.
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Figure 5.20: Computed Bz with ∆x0 = 1/16 m at t = 160∆t0 = 1.66782 × 10−8 s for the
(fixed) high-frequency J. This simulation does not employ damping or artificial dissipation.
Note the leading oscillations with wavelength ≈ 0.375 m = 6∆x0 outside the refined region
and the relative lack of trapped waves inside the refined region.
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Figure 5.21: Computed Bz with ∆x0 = 1/32 m at t = 320∆t0 = 1.66782 × 10−8 s for the
(fixed) high-frequency J. This simulation does not employ damping or artificial dissipation.
We are now properly resolved; the oscillations have a wavelength of 0.25 m = 8∆x0, as they
should. There are virtually no trapped waves inside the refined region.
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Figure 5.22: Computed Bz with ∆x0 = 1/4 m at t = 40∆t0 = 1.66782×10−8 s for the (fixed)
high-frequency J. This simulation employs damping, but not artificial dissipation. Note the
leading oscillations with wavelength ≈ 1.5 m = 6∆x0 outside the refined region. Trapped
waves inside the refined region are damped significantly compared to Fig. 5.18.
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Figure 5.23: Computed Bz with ∆x0 = 1/8 m at t = 80∆t0 = 1.66782 × 10−8 s for the
(fixed) high-frequency J. This simulation employs damping, but not artificial dissipation.
Note the leading oscillations with wavelength ≈ 0.75 m = 6∆x0 outside the refined region.
Trapped waves inside the refined region are barely visible at this scale.
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Figure 5.24: Computed Bz with ∆x0 = 1/16 m at t = 160∆t0 = 1.66782 × 10−8 s for the
(fixed) high-frequency J. This simulation employs damping, but not artificial dissipation.
Note the leading oscillations with wavelength ≈ 0.375 m = 6∆x0 outside the refined region.
There are virtually no trapped waves inside the refined region.
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Figure 5.25: Computed Bz with ∆x0 = 1/32 m at t = 320∆t0 = 1.66782 × 10−8 s for the
(fixed) high-frequency J. This simulation employs damping, but not artificial dissipation.
We are now properly resolved; the oscillations have a wavelength of 0.25 m = 8∆x0, as they
should. There are virtually no trapped waves inside the refined region.
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Figure 5.26: Computed Bz with ∆x0 = 1/4 m at t = 40∆t0 = 1.66782 × 10−8 s for the
(fixed) high-frequency J. This simulation employs artificial dissipation, but not damping.
Note the leading oscillations with wavelength ≈ 1.5 m = 6∆x0 outside the refined region.
Trapped waves inside the refined region are damped significantly compared to Fig. 5.18 and
even Fig. 5.22, but several oscillations outside the refined region are also eliminated.
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Figure 5.27: Computed Bz with ∆x0 = 1/8 m at t = 80∆t0 = 1.66782 × 10−8 s for the
(fixed) high-frequency J. This simulation employs artificial dissipation, but not damping.
Note the leading oscillations with wavelength ≈ 0.75 m = 6∆x0 outside the refined region.
The refined region appears to be quite well resolved; there are virtually no trapped waves,
and the oscillations inside the refined region match those in Figs. 5.28 and 5.29. Once again,
however, several oscillations outside the refined region are eliminated.
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Figure 5.28: Computed Bz with ∆x0 = 1/16 m at t = 160∆t0 = 1.66782 × 10−8 s for the
(fixed) high-frequency J. This simulation employs artificial dissipation, but not damping.
Note the leading oscillations with wavelength ≈ 0.375 m = 6∆x0 outside the refined region.
The refined region appears to be quite well resolved; there are virtually no trapped waves,
and the oscillations inside the refined region match those in Fig. 5.29. Once again, however,
several oscillations outside the refined region are eliminated.
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Figure 5.29: Computed Bz with ∆x0 = 1/32 m at t = 320∆t0 = 1.66782 × 10−8 s for the
(fixed) high-frequency J. This simulation employs artificial dissipation, but not damping.
We are now properly resolved; the oscillations have a wavelength of 0.25 m = 8∆x0, as they
should. There are virtually no trapped waves inside the refined region.

5.7 Modulated J simulation results in 2D

For this battery of simulations, we considered

J(x, y, t) = J1(x, y) sin(2πν1t) sin(2πν2t), (5.60)
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with the following parameters:
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(5.61)

Since

sin a sin b =
cos(a− b)− cos(a+ b)

2
, (5.62)

we expect that ν1 + ν2 is the frequency we must resolve before we observe convergence. At
h0 = 1/4 m, ν1 + ν2 = 9νmax/16, meaning the temporal period of this wave is 16∆t0/9 and
the spatial period is 8h0/9 = 2/9 m. To have any hope of resolving the wave properly, we
need a spatial period greater than 6h0. Thus, we expect h0 = 1/27 m to be the greatest
possible coarse spatial step that resolves the problem.

As the figures below show, we see dominating 6h0 waves in Ω0 for h0 = 1/4, 1/8, and 1/16
m. Once again, artificial dissipation proves the superior mechanism for eliminating standing
waves (as it is supposed to) and trapped waves inside Ω1, and non-physical 6h0 waves that
have propagated from Ω1 to Ω0.



103

Figure 5.30: Computed Bz with ∆x0 = 1/4 m at t = 40∆t0 = 1.66782 × 10−8 s for the J
given by Eq. (5.60). This simulation does not employ damping or artificial dissipation. The
leading oscillations outside the refined region (which are practically invisible at this scale)
have wavelength ≈ 1.5 m = 6∆x0. Note abundant trapped and standing waves inside the
refined region.
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Figure 5.31: Computed Bz with ∆x0 = 1/8 m at t = 80∆t0 = 1.66782 × 10−8 s for the J
given by Eq. (5.60). This simulation does not employ damping or artificial dissipation. The
leading oscillations outside the refined region (which are barely visible at this scale) have
wavelength ≈ 0.75 m = 6∆x0. Note abundant trapped waves inside the refined region.
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Figure 5.32: Computed Bz with ∆x0 = 1/16 m at t = 160∆t0 = 1.66782 × 10−8 s for the
J given by Eq. (5.60). This simulation does not employ damping or artificial dissipation.
Note the leading oscillations with wavelength ≈ 0.375 - 0.5 m = 6−8∆x0 outside the refined
region. Trapped waves and standing waves are barely visible.
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Figure 5.33: Computed Bz with ∆x0 = 1/32 m at t = 320∆t0 = 1.66782× 10−8 s for the J
given by Eq. (5.60). This simulation does not employ damping or artificial dissipation. Note
the leading oscillations with wavelength ≈ 2/9 m outside the refined region. Trapped waves
and standing waves are virtually nonexistent.
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Figure 5.34: Computed Bz with ∆x0 = 1/4 m at t = 40∆t0 = 1.66782 × 10−8 s for the J
given by Eq. (5.60). This simulation employs damping but not artificial dissipation. The
leading oscillations outside the refined region (which are practically invisible at this scale)
have wavelength ≈ 1.5 m = 6∆x0. Trapped waves are all but eliminated. However, there
remain standing waves along the y = ±x diagonals inside the refined region.
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Figure 5.35: Computed Bz with ∆x0 = 1/8 m at t = 80∆t0 = 1.66782 × 10−8 s for the J
given by Eq. (5.60). This simulation employs damping but not artificial dissipation. The
leading oscillations outside the refined region (which are barely visible at this scale) have
wavelength ≈ 0.75 m = 6∆x0. Trapped waves are all but eliminated; the refined region
appears to be reasonably well resolved.
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Figure 5.36: Computed Bz with ∆x0 = 1/16 m at t = 160∆t0 = 1.66782× 10−8 s for the J
given by Eq. (5.60). This simulation employs damping but not artificial dissipation. Note
the leading oscillations with wavelength ≈ 0.375 - 0.5 m = 6 − 8∆x0 outside the refined
region. Trapped waves are virtually non-existent.
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Figure 5.37: Computed Bz with ∆x0 = 1/32 m at t = 320∆t0 = 1.66782× 10−8 s for the J
given by Eq. (5.60). This simulation employs damping but not artificial dissipation. Note
the leading oscillations with wavelength ≈ 2/9 m outside the refined region. The simulation
appears to be resolved properly.



111

Figure 5.38: Computed Bz with ∆x0 = 1/4 m at t = 40∆t0 = 1.66782 × 10−8 s for the J
given by Eq. (5.60). This simulation does not employ damping but does employ artificial
dissipation. The leading oscillations outside the refined region (which are practically invisible
at this scale) have wavelength ≈ 1.5 m = 6∆x0. Trapped waves and standing waves are both
all but eliminated.
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Figure 5.39: Computed Bz with ∆x0 = 1/8 m at t = 80∆t0 = 1.66782 × 10−8 s for the J
given by Eq. (5.60). This simulation does not employ damping but does employ artificial
dissipation. The leading oscillations outside the refined region (which are barely visible at
this scale) have wavelength ≈ 0.75 m = 6∆x0. Trapped waves are all but eliminated; the
refined region appears to be reasonably well resolved. Compared to Fig. 5.35, we do not see
as many 6∆x0 oscillations.
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Figure 5.40: Computed Bz with ∆x0 = 1/16 m at t = 160∆t0 = 1.66782 × 10−8 s for the
J given by Eq. (5.60). This simulation does not employ damping but does employ artificial
dissipation. Note the leading oscillations with wavelength ≈ 0.375 - 0.5 m = 6−8∆x0 outside
the refined region. Trapped waves are virtually non-existent; the refined region appears to
be well resolved. Compared to Fig. 5.36, we do not see as many 6∆x0 oscillations.
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Figure 5.41: Computed Bz with ∆x0 = 1/32 m at t = 320∆t0 = 1.66782 × 10−8 s for the
J given by Eq. (5.60). This simulation does not employ damping but does employ artificial
dissipation. Note the leading oscillations with wavelength ≈ 2/9 m outside the refined region.
The simulation appears to be resolved properly.

5.8 Low-frequency simulation results in 3D

For this battery of simulations, we considered

J(x, y, z, t) = J1(x, y, z) sin(2πν1t) (5.63)

for t ≥ 0 and all field components equal to 0 at t = 0.
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The relevant parameters are summarized below:

J1 = 1 Cm−2s−1 (V/m)

a =
1

2
m

x1 = 0 m

y1 = 0 m

ν1 = 149896229 s−1 (Hz)

h0 =
1

4
,

1

8
,

1

16
,

1

32
, m

h1 =
1

16
,

1

32
,

1

64
,

1

128
, m

CFL =
1

2
Ω0 = [−5, 5] m

Ω1 = [−1, 1] m

nesting depth = 0 coarse cells

ramping depth = 0 coarse cells

(5.64)

These simulations were run both with and without 6th-derivative artificial dissipation.
ν1 was specifically chosen as νmax/16 for h0 = 1/4 m. As such, we expect the oscillations

in J to be quite well resolved at all levels of refinement considered in Eq. (5.64), and, since
CFL = 1/2, that the spatial period of the oscillations in J will equal 8h0 for h0 = 1/4 m,
i.e. the period will equal 2 m.

The convergence properties of two-level, low-resolution simulations with the parameters
above are summarized in the tables below. We attempted to run higher-resolution simu-
lations as well, but the runs with h0 = 1/64 m crashed on ravioli.lbl.gov (I believe due to
excessive memory requirements), and we had already exceeded our processor-hour alloca-
tion on hopper.nersc.gov. As the tables show, these low resolutions do not quite reach the
asymptotic regime where convergence rates stabilize at around 4.

Table 5.49: Lower-resolution convergence properties of Bx after one period of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 1.7753× 10−9 1.3904 6.7720× 10−10 3.0996 7.9005× 10−11

L2 3.4625× 10−10 1.4205 1.2935× 10−10 2.9196 1.7095× 10−11

L∞ 4.5236× 10−10 2.1607 1.0117× 10−10 3.0708 1.2041× 10−11
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Table 5.50: Lower-resolution convergence properties of Bz after one period of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 5.9887× 10−9 1.2496 2.5187× 10−9 2.9992 3.1502× 10−10

L2 1.0762× 10−9 1.2170 4.6297× 10−10 2.7120 7.0658× 10−11

L∞ 9.3019× 10−10 1.5284 3.2245× 10−10 2.6699 5.0668× 10−11

Table 5.51: Lower-resolution convergence properties of Ex after one period of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 1.3409× 100 1.3213 5.3661× 10−1 3.0135 6.6450× 10−2

L2 2.5426× 10−1 1.3039 1.0298× 10−1 2.7015 1.5831× 10−2

L∞ 2.2495× 10−1 1.8891 6.0733× 10−2 1.9959 1.5226× 10−2

Table 5.52: Lower-resolution convergence properties of Ez after one period of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 5.3812× 10−2 2.4374 9.9349× 10−3 3.6501 7.9134× 10−4

L2 1.5685× 10−2 2.3048 3.1745× 10−3 3.9109 2.1105× 10−4

L∞ 3.3095× 10−2 1.2087 1.4319× 10−2 4.2547 7.5008× 10−4

Table 5.53: Lower-resolution convergence properties of Bx after one period of J in two-level
simulations without damping and with artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 1.1893× 10−9 1.3135 4.7851× 10−10 2.7229 7.2478× 10−11

L2 1.9318× 10−10 1.0566 9.2874× 10−11 2.5065 1.6344× 10−11

L∞ 9.9391× 10−11 0.95686 5.1204× 10−11 2.1622 1.1440× 10−11
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Table 5.54: Lower-resolution convergence properties of Bz after one period of J in two-level
simulations without damping and with artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in Tesla (T) = kg s−1 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 4.0252× 10−9 1.2185 1.7298× 10−9 2.5919 2.8691× 10−10

L2 6.0280× 10−10 0.87851 3.2788× 10−10 2.3043 6.6381× 10−11

L∞ 2.0872× 10−10 0.39554 1.5867× 10−10 1.7528 4.7081× 10−11

Table 5.55: Lower-resolution convergence properties of Ex after one period of J in two-level
simulations without damping and with artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 8.7443× 10−1 1.2366 3.7108× 10−1 2.6216 6.0294× 10−2

L2 1.4000× 10−1 0.90341 7.4847× 10−2 2.3286 1.4900× 10−2

L∞ 6.2317× 10−2 0.41858 4.6623× 10−2 1.7223 1.4130× 10−2

Table 5.56: Lower-resolution convergence properties of Ez after one period of J in two-level
simulations without damping and with artificial dissipation. Numbers in the top line are h0

in units of m. Differences are in V m−1 = kg m s−2 C−1.

Norm 1/4 to 1/8 Rate 1/8 to 1/16 Rate 1/16 to 1/32
L1 4.2999× 10−2 2.2298 9.1668× 10−3 4.0276 5.6208× 10−4

L2 1.3341× 10−2 2.2434 2.8174× 10−3 4.3751 1.3577× 10−4

L∞ 2.6684× 10−2 2.4042 5.0411× 10−3 5.2250 1.3479× 10−4

The convergence properties of ∇ ·B and ∇ · E are summarized in the tables below:

Table 5.57: Lower-resolution convergence properties of ∇ · B after one period of J in two-
level simulations without damping and without artificial dissipation. Numbers in the top
line are h0 in units of m. Norm values are in T m−1 = kg m−1 s−1 C−1.

Norm 1/4 Rate 1/8 Rate 1/16
L1 1.1420× 10−9 2.2695 2.3685× 10−10 5.3548 5.7879× 10−12

L2 5.4048× 10−10 1.5396 1.8592× 10−10 4.6640 7.3339× 10−12

L∞ 1.9726× 10−9 0.90505 1.0534× 10−9 3.3793 1.0123× 10−10

Norm 1/16 Rate 1/32
L1 5.7879× 10−12 3.5857 4.8208× 10−13

L2 7.3339× 10−12 2.6857 1.1399× 10−12

L∞ 1.0123× 10−10 1.3216 4.0502× 10−11
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Table 5.58: Lower-resolution convergence properties of ∇·E after one period of J in two-level
simulations without damping and without artificial dissipation. Numbers in the top line are
h0 in units of m. Norm values are in V m−2 = kg s−2 C−1.

Norm 1/4 Rate 1/8 Rate 1/16
L1 3.2359× 10−1 2.4423 5.9537× 10−2 5.3726 1.4371× 10−3

L2 1.5859× 10−1 1.5589 5.3828× 10−2 4.8857 1.8208× 10−3

L∞ 5.7916× 10−1 0.85062 3.2117× 10−1 3.7074 2.4586× 10−2

Norm 1/16 Rate 1/32
L1 1.4371× 10−3 3.6037 1.1821× 10−4

L2 1.8208× 10−3 2.6610 2.8789× 10−4

L∞ 2.4586× 10−2 1.1714 1.0916× 10−2

Table 5.59: Lower-resolution convergence properties of ∇ · B after one period of J in two-
level simulations without damping and with artificial dissipation. Numbers in the top line
are h0 in units of m. Norm values are in T m−1 = kg m−1 s−1 C−1.

Norm 1/4 Rate 1/8 Rate 1/16
L1 8.0451× 10−10 2.8730 1.0982× 10−10 5.9334 1.7970× 10−12

L2 3.1520× 10−10 2.0244 7.7476× 10−11 5.1357 2.2038× 10−12

L∞ 9.2947× 10−10 0.093620 8.7107× 10−10 3.2629 9.0743× 10−11

Norm 1/16 Rate 1/32
L1 1.7970× 10−12 4.1855 9.8761× 10−14

L2 2.2038× 10−12 3.6307 1.7792× 10−13

L∞ 9.0743× 10−11 3.0025 1.1323× 10−11

Table 5.60: Lower-resolution convergence properties of ∇ · E after one period of J in two-
level simulations without damping and with artificial dissipation. Numbers in the top line
are h0 in units of m. Norm values are in V m−2 = kg s−2 C−1.

Norm 1/4 Rate 1/8 Rate 1/16
L1 3.2195× 10−1 3.4184 3.0112× 10−2 6.0102 4.6720× 10−4

L2 2.2526× 10−1 3.2564 2.3572× 10−2 5.1393 6.6883× 10−4

L∞ 1.1014× 100 2.2212 2.3621× 10−1 3.2599 2.4658× 10−2

Norm 1/16 Rate 1/32
L1 4.6720× 10−4 4.2547 2.4475× 10−5

L2 6.6883× 10−4 3.6741 5.2395× 10−5

L∞ 2.4658× 10−2 3.0093 3.0625× 10−3

As the tables show, Ex, Bz, and ∇ ·E converge much as in the low-resolution simulations
of Sec. 5.5.1 and Sec. 5.5.2. The convergence rates for Bx and ∇ ·B are comparable, while
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Ez converges noticeably better. Had our NERSC time allotment not run out, we suspect
that the similarities to the 2D simulations would have continued.
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Chapter 6

Conclusion

6.1 Discussion

We have achieved at least a significant portion of our objective. The results of the previous
two chapters show that given sufficient resolution, our FAM solver is fourth-order accurate.
Since Maxwell’s Equations form a system of wave equations with sources, we expected that
applying sponge layers to the inside of coarse-fine grid boundaries would damp non-physical
waves reflected from those boundaries. Our expectations proved correct. When in some of
our test problems we observed standing wave instabilities, adding Kreiss- and Oliger-esque
artificial dissipation seemed an obvious choice for maintaining stability in our simulated
system. Somewhat surprisingly, though, in some test problems, artificial dissipation alone
proved a better means to damp non-physical reflected waves than our damping scheme.

6.2 Future work

While we have successfully implemented a fourth-order accurate, adaptive, finite-volume
solver for the Faraday-Ampère-Maxwell system, there remains much room for expansion of
the work presented in this dissertation.

6.2.1 More complicated geometries and boundary conditions

At present, our Maxwell solver has only been implemented in Cartesian coordinates for
problems in rectangular domains with periodic boundary conditions. In some of the test
problems in Ch. 4, for which we knew the exact solutions, we imposed Dirichlet boundary
conditions on the field components. However, for those problems, we did not observe the
desired 4th-order convergence.

Adding the ability to account for non-periodic boundary conditions represents an obvious
first step in expanding our Maxwell solver’s capabilities. Similarly, one could conceivably
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modify the code to allow for problems with more complicated boundaries, which could be
solved with embedded boundaries, mapped grids, or curvilinear coordinates.

6.2.2 The Vlasov Equation

The Vlasov Equation describes the time evolution of so-called distribution functions in phase
space for a system of charged particles. For a given charge species a (defined by its charge qa
and mass ma), the (non-relativistic) Vlasov Equation for the distribution function fa(x,v, t)
can be expressed as

{
∂

∂t
+ v ·∇ +

qa
ma

(E + v ×B) ·∇v

}
fa(x,v, t) = 0, (6.1)

where ∇v =
(

∂
∂vx
, ∂
∂vy
, ∂
∂vz

)
. The RHS of Eq. (6.1) is 0 because we ignore the effects of

particle collisions. Each distribution function can be integrated over velocity space to obtain
group-average properties of charge species a. For example, the number density na of particles
of charge species a is given by

na(x, t) =

∫
fa(x,v, t)d

3v. (6.2)

As is clear from Eq. (6.1), the Vlasov Equation is coupled to Maxwell’s Equations
through the acceleration term. Furthermore, charge and current densities can be expressed
as velocity-space moments of the various distribution functions. Specifically,

ρ(x, t) =
∑

a

qa

∫
fa(x,v, t) d

3v (6.3)

and

J(x, t) =
∑

a

qa

∫
fa(x,v, t)v d

3v. (6.4)

Modeling plasmas with the Maxwell-Vlasov system was the primary motivation for this
thesis project. To apply our algorithm to that system, we must consider the representation of
distribution functions in phase space. Traditionally, particle-in-cell (PIC) methods have been
used for this purpose [Birdsall, 2005]. Another possibility (which would fit into the framework
presented here) is to discretize phase space with adaptive grids. This would require a suitable
truncation of velocity space. We must also consider the representation of electric fields,
charges, and currents, which Sec. 2.2 hints at. In particular, electric fields and currents
are separated into divergence-free and curl-free components via Helmholtz decomposition.
The curl-free component of the electric field is solved via Poisson’s Equation, while the
divergence-free component is solved as described in the previous chapters.
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