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ABSTRACT

Many close stellar binaries are accompanied by a faraway star. The “eccentric Kozai-Lidov” (EKL) mechanism
can cause dramatic inclination and eccentricity fluctuations, resulting in tidal tightening of inner binaries of
triple stars. We run a large set of Monte Carlo simulations, including the secular evolution of the orbits, general
relativistic precession, and tides, and we determine the semimajor axis, eccentricity, inclination, and spin-orbit
angle distributions of the final configurations. We find that the efficiency of forming tight binaries (!16 days) when
taking the EKL mechanism into account is ∼21%, and about 4% of all simulated systems ended up in a merger
event. These merger events can lead to the formation of blue stragglers. Furthermore, we find that the spin-orbit
angle distribution of the inner binaries carries a signature of the initial setup of the system; thus, observations can be
used to disentangle close binaries’ birth configuration. The resulting inner and outer final orbits’ period distributions
and their estimated fraction suggest that secular dynamics may be a significant channel for the formation of close
binaries in triples and even blue stragglers.
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1. INTRODUCTION

Most massive stars reside in a binary configuration ("70%
of all OBA spectral type stars; see Raghavan et al. 2010). Fur-
thermore, stellar binaries are responsible for diverse astrophys-
ical phenomena, from X-ray binaries to Type Ia supernovae.
However, probably many of these binaries are in fact triples.
Tokovinin (1997) showed that 40% of short-period binary stars
(<10 days) in which the primary is a dwarf (0.5–1.5 M⊙) have
at least one additional companion. This number contrasts with
his estimate of the fraction of companions to binaries with a
slightly larger period (10–100 days), which is ∼10%. Moreover,
Pribulla & Rucinski (2006) have surveyed a sample of contact
binaries and noted that among 151 contact binaries (brighter
than 10 mag), 42% ± 5% are at least triple. Therefore, triple-
star systems are probably very common (e.g., Tokovinin 1997;
Tokovinin et al. 2006; Eggleton et al. 2007; Griffin 2012).

Recently, Rappaport et al. (2013) estimated that the fraction of
tertiaries within several AU of the close Kepler eclipsing binaries
is about 20% (see also Conroy et al. 2014). This is in agreement
with previous estimates of the triples fraction. Rappaport et al.
(2013) also reported the distribution of mutual inclination angle
of their 39 triple-star candidates, which showed a significant
peak around 40◦, the nominal Kozai angle (see below).

From dynamical stability arguments these triple stars must
be in hierarchical configurations, in which the inner binary is
orbited by a third body on a much wider orbit. Many short-
period compact binaries (such as black holes, neutron stars,
and white dwarfs; Thompson 2011) are likely produced through
triple evolution. Secular effects (i.e., coherent interactions on
timescales long compared to the orbital period), and specifically
Kozai-Lidov cycling (Kozai 1962; Lidov 1962, see below), have
been proposed as a dynamical driver in the evolution of triple
stars (e.g., Harrington 1969; Mazeh & Shaham 1979; Kiseleva
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et al. 1998; Fabrycky & Tremaine 2007; Perets & Fabrycky
2009; Thompson 2011; Naoz et al. 2013a; Shappee & Thompson
2013; Pejcha et al. 2013; Perets 2014; Michaely & Perets 2014).
In addition, Kozai-Lidov cycling speeds the growth of black
holes at the centers of dense star clusters and the formation of
short-period binary black holes (Wen 2003; Miller & Hamilton
2002; Blaes et al. 2002). In addition, Ivanova et al. (2010)
estimated that the most efficient formation channel for black
hole X-ray binaries in globular clusters may be triple-induced
mass transfer in a black hole–white dwarf binary.

In early studies of high-inclination secular perturbations
(Kozai 1962; Lidov 1962), it was assumed that the outer
orbit is circular and that one of the inner binary members
is a test (massless) particle. In this situation, the component
of the inner orbit’s angular momentum along the z-axis is
conserved (where the z-axis is parallel to the total angular
momentum), and the lowest order of the approximation, the
quadrupole approximation, is valid. Following Lithwick &
Naoz (2011), we label this approximation as the “TPQ” (Test
Particle Quadrupole) approximation.4 Recently, Naoz et al.
(2011, 2013a) showed that relaxing these assumptions leads to
qualitatively different behavior. Considering systems beyond the
test particle approximation, or an eccentric orbit with a moderate
semimajor axis ratio, requires the next level of approximation,
called the octupole level of approximation (e.g., Harrington
1968, 1969; Ford et al. 2000; Blaes et al. 2002).

In the octupole level of approximation, the inner orbital
eccentricity can reach very high values (Ford et al. 2000;
Naoz et al. 2013a; Li et al. 2013; Teyssandier et al. 2014).
In addition, the inner orbit inclination with respect to the total
angular momentum can flip from prograde to retrograde—not
even the sign of the orbital angular momentum’s z-component is

4 Note that here we focus on the general problem with no restrictions on the
masses; for the test particle approximation see Lithwick & Naoz (2011), Katz
et al. (2011), and Li et al. (2014).
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conserved (Naoz et al. 2011, 2013a). We refer to this process as
the eccentric Kozai–Lidov (EKL) mechanism. It was shown in
Naoz et al. (2013a) that the secular approximation can be used
as a great tool to understand different astrophysical settings,
from massive or stellar compact objects to planetary systems
(for example, this has large consequences on retrograde hot
Jupiters; e.g., Naoz et al. 2011).

We study the secular dynamical evolution of triple stars using
the octupole level of approximation, including tidal effects
(following Hut 1980; Eggleton et al. 1998) and general relativity
(GR) effects for both the inner and outer orbit (Naoz et al.
2013b).5 The secular evolution of the triple stellar system was
considered previously in the literature (e.g., Harrington 1968,
1969; Mazeh & Shaham 1979; Kiseleva et al. 1998; Eggleton
et al. 1998; Eggleton & Kiseleva-Eggleton 2001; Eggleton
& Kisseleva-Eggleton 2006; Fabrycky & Tremaine 2007).
Specifically, we point out that Fabrycky & Tremaine (2007) ran
large Monte Carlo simulations for the evolution of triple stars
including GR and tidal effects using the TPQ approximation.
Here we show that the octupole level of approximation can
result in additional behavior, where we focus on the following
items: the formation of short-period binaries, the obliquity of
inner binaries, merged systems, and the outcome of the outer
orbit. We provide comparisons with observed catalog and known
systems when possible. The octupole level of approximation can
lead to very high eccentricities that can drive the two members
of the inner orbit to collision (or grazing interactions). This
was noted first by Ford et al. (2000) and later suggested to be
important to white dwarf binaries by Thompson (2011), and
here we quantify this including tidal interactions.

The merger between the two inner members due to the large
eccentricities induced by the octupole level has been suggested
recently as a possible mechanism to explain double-degenerate
Type Ia supernovae (e.g., Thompson 2011; Hamers et al. 2013;
Prodan et al. 2013). In this scenario a third body in the system
induces large eccentricity that drives the inner binary to a near
radial trajectory. Moving beyond the secular approximation,
triple-body dynamics seems to still play a dominate role in
causing the collision of two white dwarfs and result in Type
Ia supernovae (e.g., Katz & Dong 2012; Kushnir et al. 2013;
Dong et al. 2014). There are at least two points that can affect
this outcome. First, the triple population should have undergone
EKL evolution before the white dwarf stage. Second, stellar
evolution, and especially mass loss, can play an important
role in the evolution of these systems (e.g., Perets & Kratter
2012; Shappee & Thompson 2013), as it will tend to expand
the orbits, or even produce unbound objects (Veras & Tout
2012). Here we present results relating to the first part, where
we follow the secular evolution of triple stars. We find the
parts of the parameter space that have already undergone EKL
evolution and resulted in either a close system or systems that
crossed their Roche limit. These systems have decoupled from
the third object and thus will probably not be a part of the
parameter space that is available for the double-degenerate
scenario.

The formation of blue stragglers has also been discussed in
connection to dynamics in triples. (Perets & Fabrycky 2009)
suggested that the close binaries created by Kozai cycles with
tidal friction would then merge by losing their orbital angular
momentum to magnetized winds. Geller et al. (2011); Leigh &

5 Note that the 1PN interaction term, between the inner and outer orbit,
mentioned in Naoz et al. (2013b) has negligible effect here.

Geller (2013), on the other hand, studied encounters of multiple-
body systems in star clusters and found direct collisions to be
a possible source of blue stragglers. Our work emphasizes the
efficiency of collisions when the octupole-level interaction is
taken into account, such that blue stragglers can result from
prompt collisions, even for isolated triples.

Another aspect of the octupole level is that it results in a
qualitatively different time evolution of the obliquity, the angle
between the star spin axis and the binary orbit (Naoz et al. 2011,
2012). As more binary stars obliquities are being observed, for
example, by the BANANA survey (Albrecht et al. 2012) and by
other individual endeavors, we give specific predictions for the
obliquities of inner binaries in triples. Below we compare our
results with the current available observations and find them to
be consistent with our secular model.

The paper is organized as follows: we begin by describ-
ing the numerical setup (Section 2). We present our results
(Section 3) and focus on the effects of tidal dissipation and bi-
nary merger (Section 3.2), the mutual inclination and obliquity
(Section 3.3), and specific analysis of the outer orbit configu-
ration (Section 3.4). We discuss our results and predictions in
Section 4.

2. NUMERICAL SETUP

We follow the numerical setup presented in Fabrycky &
Tremaine (2007). We set m1 = 1 M⊙; m2 was chosen by
selecting the qin = m2/m1 from a Gaussian distribution with
mean of 0.23 and standard deviation of 0.42 (Duquennoy
& Mayor 1991). Similarly, m3 was set by choosing qout =
m3/(m1 + m2) from the same Gaussian distribution. This way
enables calibration to different choices of initial mass function.
As we will show, the final results only weakly depend on the
mass ratio, and thus we expect that choosing different mass ratio
distribution will have little effect. We denote the inclination
angle of the inner (outer) orbit with respect to the total angular
momentum by i1 (i2), so that the mutual inclination between the
two orbits is itot = i1 + i2. We draw the inner (outer) periods,
Pin (Pout), from the lognormal distribution of Duquennoy &
Mayor (1991). Note that this period distribution represents the
final periods of binaries population, rather than the initial one.
Furthermore, there is not clear evidence that this distribution
is the correct initial distribution for triples. We choose this
distribution for self-consistency reasons, and as we will show,
even in light of these caveats, comparing our results with
observations and catalogs suggests that the EKL mechanism
plays an important role in triples. The distribution of the inner
and outer eccentricities (e1 and e2, respectively) was chosen to
be uniform, following Raghavan et al. (2010). This distribution
is more conservative than a thermal distribution, i.e., uniform
distribution yields less eccentric outer binaries, and since the
EKL mechanism is more efficient for larger eccentricity, we are
considering a more conservative case.

We then require that these initial conditions satisfy dynamical
stability, such that we can separate the effect of long-term secular
effects. The first condition is that the inner orbit is initially
outside the Roche limit, lest the inner stars suffer a merger
before the tertiary can act. The second condition is long-term
stability of the triple, in which we follow the Mardling & Aarseth
(2001) criterion:
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m1 + m2

)2/5 (1 + e2)2/5
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A final criterion is

ϵ = a1

a2

e2

1 − e2
2

< 0.1, (2)

where ϵ measures the relative amplitudes of the octupole and
quadrupole terms in the triple’s Hamiltonian. This is numerically
similar to the stability criterion, Equation (1) (as shown in
Naoz et al. 2013b). At the extreme of inequality (2), effects
beyond the octupole may dominate the dynamics—Katz & Dong
(2012), Antognini et al. (2014), Antonini et al. (2014), and Bode
& Wegg (2014) have shown that the secular approximation
fails for a strong perturber; however, the equations we adopt
do not describe these situations. Our justification for ignoring
these effects is that inequalities (1) and (2) are very similar
numerically, meaning that there are few systems that are stable
yet are poorly described by the octupole approximation.

We solve the octupole-level secular equations numerically
following Naoz et al. (2013a). We also include GR precession
for the inner and outer orbit following Naoz et al. (2013b). We
are able to follow the spin vectors of both the primary and the
secondary of the inner orbit stellar components (spins of both
stars are set initially to 25 days). Specifically, we are interested
in the angle between the angular momentum of the inner orbit
and the spin of the stars (the spin-orbit angle, ψ), which was
set initially on a uniform distribution for the primary while the
secondary was set initially with ψ = 0◦ (but we also investigated
other configurations; see Section 3.3).

We also include tidal interactions for the inner binary evo-
lution. The differential equations that govern the inner binary’s
tidal evolution were presented in Eggleton & Kiseleva-Eggleton
(2001). These equations take into account stellar distortion due
to tides and rotation, with tidal dissipation based on the the-
ory of Eggleton et al. (1998). The viscous timescale, tV (set to
be five yr in all of our runs), is related to the quality factor Q
(Goldreich & Soter 1966; Hansen 2010) by

Qj = 4
3

kL,j

(1 + 2kL,j )2

Gm

R3
j

Pin

2π
tV,j , (3)

where j ∈ {1, 2} for m1 and m2, respectively, and kL is the
classical apsidal motion constant. We use the typical value
kL = 0.014, valid for n = 3 polytropes, when representing stars
(Eggleton & Kiseleva-Eggleton 2001; Fabrycky & Tremaine
2007). Note that this approach simplifies the effects of tides,
since one would expect that the viscous timescale would vary
with the stellar mass and radius; however, the exact dependence
is unknown.

The strength of the equilibrium tide recipe used here is that
it is self-consistent with the secular approach used throughout
this study. Furthermore, assuming polytropic stars, this recipe
has only one dissipation parameter for each star. Using this
description, we are able to follow the precession of the spin of
the stars due to oblateness and tidal torques. Therefore, using
this approximation enables a qualitative understanding of the
physical effects in the system. When the stars are in a very
close pericenter passage (eccentricity approaches unity), the
equilibrium tide model breaks as higher orders modes in the
stars may play larger roles, which can affect the dynamical
evolution; however, this is beyond the scope of this paper.

The upper limit for each system’s integration time in all
our simulations was 10 Gyr. When the two inner stars are
tidally captured, the integration becomes extremely expensive.
Therefore, we adopt a stopping condition that satisfies both
e1 # 5 × 10−5 and Pin # 7 days.

Table 1
Summary of the Simulations

Name No. of ψ1,IC ψ2,IC Close Roche
Systems Binaries Limit

EKL 3050 Uniform ψ2,IC = 0◦ 21% 4%
EKLψ90 1141 ψ1,IC = 90◦ ψ2,IC = 90 21% 4%
EKLψ0 1139 ψ1,IC = 0◦ ψ2,IC = 0 21% 4%
TPQ 2103 Uniform ψ2,IC = 0◦ 16% 2%

The EKL mechanism can cause very large eccentricity
excitations for the inner orbit, implying a high probability that
the stars will cross each others Roche limit. Following Eggleton
(1983), we define the dimensionless number

LRoche,ij = 0.49
(mi/mj )2/3

0.6(mi/mj )2/3 + ln(1 + (mi/mj )1/3)
, (4)

where i, j ∈ {1, 2}. Note that this criterion is for circular
orbits and does not necessarily describe the full dynamics of
the system. Furthermore, this condition is only slightly (up to a
factor of unity) less conservative than the simplified relation of
∼0.3(mi/mj )1/3. However, we use this as a qualitative criterion
for our purposes.

In many of our simulations, the inner orbit reaches extremely
high eccentricities. During excursions to high eccentricity, there
is a competition between the increased efficiency of tides
leading to the Kozai capture process (Naoz et al. 2011) and the
possibility of destroying the system by crossing the Roche limit
(see below for further discussion). To address the possibility
of crossing the Roche limit, we set an additional stopping
condition, which satisfies that if a1(1 − e1)LRoche,ij < Ri , we
stop the run and assume that the inner binary merged.

We also compare our results with Fabrycky & Tremaine
(2007) by running an additional set of Monte Carlo simulations
while considering only the TPQ approximation. The only major
difference in our setting of the TPQ runs compared to Fabrycky
& Tremaine (2007) is that the initial eccentricity distribution
is uniform (Raghavan et al. 2010). Furthermore, in our initial
period distribution we only allow systems that are above the
Roche limit separation. The total number of systems we have
run is specified in Table 1.

3. RESULTS

3.1. The Inner Binary Period Distribution

Similarly to Fabrycky & Tremaine (2007), we find that the
final inner orbital period’s distribution is consistent with a
bimodal distribution with a peak around ∼3 days, as shown
in Figure 1. We define “close binaries” as systems with final
period shorter than 16 days; this period roughly separates the
two major peaks. We also show in the bottom panel of this
figure the observed period distribution of inner binaries in triples
adopted from the Tokovinin (2008) public catalog (where we
have scaled the theoretical distribution to the catalog’s to guide
the eye). The inset in the bottom panel shows the cumulative
distribution of the simulated runs, as well as the observed
data. The observed systems in the catalog have a typical inner
binary eccentricity of about 0.5, (Tokovinin 2008). Taking this
at face value, which may point to some selection effect in the
catalog, we have compared the observed cumulative distribution
with our calculated distribution, limiting our final inner orbital
eccentricity, e1,F < 0.5 (green solid line). This yields better
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Figure 1. Initial (top) and final (bottom) distribution of the inner orbit period. In the top panel we consider the initial distribution of all of the runs (gray line), the
binaries that ended up in close configuration (blue line), and those systems that crossed the Roche limit during their evolution (red line); see text for more details.
We also consider the initial distribution for the TPQ case of the binaries that ended up in close configuration (purple dot-dashed line, slightly offset for visualization
purposes) and crossed the Roche limit (pink dot-dashed line). The distributions are scaled such that the integral of the initial distribution is unity. In the bottom panel we
show the final distribution of all of the runs for the EKL mechanism (gray line) and the TPQ case (cyan dot–dashed line). We also show the observational distribution
of inner orbit systems in triples taken from Tokovinin (2008), for systems closer than 50 pc (black dashed line). The theoretical distributions are scaled to the observed
distribution. In the inset we show the cumulative distribution of the observations taken from Tokovinin (2008) (black dashed line), compared to the final distribution
(gray solid line). Furthermore, since the observations have a typical inner orbital eccentricity of 0.5, we show the final distribution of systems with e1,F < 0.5 (green
solid line).
(A color version of this figure is available in the online journal.)

agreement between the simulated period distribution and the
one taken from the catalog. We note that near the completion of
this paper Tokovinin (2014a, 2014b) reported a new database of
triple stars; here we use his old database, which mainly differs
in sample size.

Interestingly, the observed bimodal distribution is repro-
duced with our secular evolution model. We find that the
Kolmogorov–Smirnov test does not reject the null hypothesis
that the observed inner orbit’s distribution and the simulated one
are from the same continuous distribution (where we consider
the full EKL distribution, and not the eccentricity-limited one),
with a p value of 0.3828. This behavior suggests that secular
evolution in triples plays an important role in shaping the dis-
tribution of these systems. However, we point out two major
differences between the theoretical predictions and the observa-
tional data.

The first is the period that separates the two major peaks in
the distribution. The observed period distribution (adopted from
the Tokovinin (2008) public catalog) has a wide valley in the
distribution, with periods ranging between 25 and 100 days,
while the theoretical predictions give a narrow valley in the
period distribution ranging between 16 and 40 days. The ex-
planation may lay either on the initial conditions, where we
assumed that hierarchical triple period distribution follows bi-
nary population, or in our model. Here we restricted ourselves to
the hierarchal three-body approximation, which means that sys-
tems that could have formed through short-timescale, scattering
types of interactions are not modeled. Wide inner orbits in triple
configurations have been found in scattering-like interactions
between stars in an open stellar cluster in the recent work by

Geller et al. (2013), where we deduce, from their Figure 9, a
minimum in the period distribution that extended to ∼100 days
(note that their second, long-period peak in the distribution is
not as dominant as in our case for the triple population). An
additional process that can produce wide inner binaries is mass
loss (Perets & Kratter 2012; Geller et al. 2013). With our model
we do not capture these possible processes that can account
for wider inner binaries; therefore, even in the absence of these
processes, the agreement between the observed and modeled
distributions suggests that secular evolution plays a dominant
role for triple systems.

The above difference in the period distribution valley be-
tween the observation and the TPQ calculation in Fabrycky &
Tremaine (2007) was noted by Tokovinin (2008). Our new cal-
culation including the octupole evolution improves on that and
extends the inner period distribution peak to ∼16 days, where we
addressed possible causes for the differences above. However,
we are encouraged that the theoretical inner orbital period dis-
tribution appears rather flat, as found in Tokovinin & Smekhov
(2002) radial velocity observations.

The second discrepancy between the observations and the
theoretical predictions is in the ratio between the two peaks; in
other words, at face value, there are more close inner binaries
than wide ones in the catalog of the observed systems compared
to the simulated triples. This can be explained as a combination
of both theoretical and observational shortcomings. Here again,
stellar evolution may play a role in determining the final
separation of triple configurations, and may even ionize/unbind
the outer orbit, as shown in Perets & Kratter (2012) and Geller
et al. (2013). As shown in the top panel of Figure 1, there is a
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large tail of wide inner binaries that can result in close binaries.
Owing to the hierarchical criterion, their tertiary has an even
wider orbit. The capture into a close binary due to the EKL
mechanism can happen on a short timescale (as can be seen
in Figure 8, top left panel), which leaves enough time for fly-
by perturbation or mass loss to unbind the outer orbit. This is
also supported by Tokovinin et al. (2006) observations of tight
binaries without a tertiary. This may imply that, in our model,
we overestimate the number of wide binaries (since they are
more likely to unbind).

On the other hand, wide inner binaries are harder to observe,
and thus the catalog of the observed systems is incomplete
and may suffer from some selection effects (A. Tokovinin
2014, private communication). The latter may be supported by
the comparison with the e1,F < 0.5 final distribution (inset
of Figure 1). These systems better agree with the observed
distribution, which has typical inner eccentricity of 0.5 as noted
in Tokovinin (2008) and Tokovinin & Smekhov (2002). This
suggests either that we are missing a piece of the physics or
that observations are biased against high eccentric systems.
Although this conclusion does not provide a definite answer,
it points toward a possible explanation.

The similarity of the period’s distribution with Fabrycky &
Tremaine (2007) is not surprising since the bulk behavior did
not change by solving the equation of motions up to the octupole
level of approximation. This means that both the TPQ and the
EKL mechanisms produce a double-peak final period distribu-
tion; see Figure 1. However, in the presence of the octupole
level, larger parts of the phase space are accessible for large
inclination and eccentricity oscillations. Most importantly, the
inner orbit’s eccentricity may reach much larger values than the
values reached with the quadrupole approximation. Therefore,
wider inner binaries (compared to the TPQ approximation) and
even lower inclination systems can end up forming close bina-
ries or even drive the members of the inner orbit to merge (see
Figure 1 for specific comparisons), which affects the fraction of
final close and merged systems (see Table 1).

Another difference between the EKL and the TPQ approxima-
tions is the location of the minimum in the period distribution.
For the TPQ this is located between ∼3 and 31 days, while
the EKL mechanism yields wider periods with a range between
∼8 and 31 days. This is because in the EKL mechanism, the
maximum eccentricity value can vary rapidly and can reach ex-
tremely large values. A system that reached a large eccentricity
value can result in shrinking a1 to some other, lower value, in a
steplike way (see, e.g., Figure 2 in Naoz et al. 2011). This new
value, associated with a lower ϵ value, may be less favorable for
another eccentricity spike, resulting in a stable configuration on
a wide inner orbit. On the other hand, the TPQ mechanism pro-
duces always the same eccentricity value, which, if high enough,
can cause a1 to shrink in a smooth way (see, e.g., Figure 1 in
Fabrycky & Tremaine 2007).

3.2. Binary Merger and Tidal Dissipation

During the system evolution, the octupole level of approx-
imation can cause large eccentricity excitations for the inner
orbit. Thus, on one hand the nearly radial motion of the binary
drives the inner binary to merge, while on the other hand the
tidal forces tend to shrink the separation and circularize the or-
bit. If during the evolution the tidal precession timescale (or the
GR timescale) is similar to that of the Kozai timescale, further
eccentricity excitations are suppressed (this was already noted
in Holman et al. 1997; Fabrycky & Tremaine 2007, for the

Figure 2. We show two examples chosen from the Monte Carlo runs. The left
column shows a system that resulted in merger, while the right column is of
an inner binary that shrinked its separation to a stable tight configuration. In
the top panel we show the inclination of the inner binary with respect to the
total angular momentum i1 (red lines) and the spin-orbit angle of the primary
(green angle). The middle panel shows the eccentricity as 1 − e for the inner
binary (red lines) and the outer binary (cyan lines). The bottom panel shows the
inner binary separation (red lines) and the pericenter distance (blue lines). We
also show the Roche limit value (black lines), which is simply LRoche,12 × R1.
The right column was set initially with m2 = 0.337 M⊙, m3 = 0.094 M⊙,
a1 = 6.16 AU, a2 = 106.155 AU, e1 = 0.539, e2 = 0.368, ω1 = 223.◦54,
ω2 = 212.◦863, and i = 103.◦02, which means that i1 = 68.◦52; and the system
in the left column was set initially with m2 = 0.31 M⊙, m3 = 0.733 M⊙,
a1 = 2001.67 AU, a2 = 31571.32 AU, e1 = 0.356, e2 = 0.51, ω1 = 145.◦99,
ω2 = 65.◦82, and i = 88.◦41, which means that i1 = 82.◦14.
(A color version of this figure is available in the online journal.)

quadrupole approximation).6 In that case tides can shrink the
binary separation and form a tight binary decoupled from
the tertiary companion. The final binary remained in a stable
orbit (note that tides always tend to shrink the binary separa-
tion, but this happens on a much longer timescale). However,
if the eccentricity is excited on a much shorter timescale than
the typical extra precession timescale (such as tides, rotational
bulge, and the GR precession timescales, but of course still long
enough so that the secular approximation is valid), the orbit
becomes almost radial, and the stars can cross the Roche limit.
In that case, the extra precession does not have enough time to
affect the evolution. This is the process that causes, for example,
tidal migrations of planets in stellar binaries until they tidally
disrupt or merge (Naoz et al. 2012). In our Monte Carlo runs
about 4% of the systems crossed their Roche limit and about
21% are on a tight (<16 day) orbit. Hereafter we label all sys-
tems with inner orbit configuration with final period binary <16
days as “close binaries.”

In Figure 2 we show two representative examples of
the evolution of two systems that have undergone dramatic
changes during their evolution due to close pericenter passages.
In general, if the eccentricity excitation is evolving gradually

6 Note that when GR timescales are similar to the quadrupole level of
approximation timescale, a resonant-like behavior can occur (e.g., Naoz
et al. 2013b).
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Figure 3. Close binary configuration (we consider only the close-in binaries,
P < 16 days). Top panel: final inner binary periods as a function of the initial
one. The different colors mark the final eccentricity of the system. Bottom
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systems have final spin-orbit lower than 10◦ (see Figure 6 for complementary
presentation of this parameter space). Note that we show here only the primary’s
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(Albrecht et al. 2009, 2011, 2013; Triaud et al. 2013; Harding et al. 2013; Zhou
& Huang 2013). Note that the horizontal axis in the bottom panel is in linear
scale and for the top panel is in log scale.
(A color version of this figure is available in the online journal.)

(though still to larger values than achieved with the quadrupole-
level approximation), the pericenter distance shrinks slowly
and allows tides to work (as shown in the example in the
right column). However, during the evolution shown in the left
column of Figure 2, the pericenter distance due to the EKL
evolution changes by many orders of magnitude from one
quadrupole timescale to the next. Thus, the angular momentum
of the inner orbit is decreasing by more than an order of magni-
tude. The separation shrinks dramatically on a short timescale,
though still larger than the inner orbit period (more than a factor
of 10), and the eccentricity is decreasing on that timescale too.
This happens when the inner orbit reaches large eccentricity
while still on a wide separation, in which case the tidal forces
(and the GR precession) do not have the time to stabilize the
system and the binary components crossed each others Roche
limit.

In the top panel of Figure 1 we show the initial inner
orbit period distribution of the systems that merged during the
evolution, as well as those that ended up in close configurations
(<16 days). As shown in this figure, the different outcomes
(i.e., close binaries or merger) originate from two distinct
populations. On average, merged binaries (marked in red) are
more likely to originate from initially wider inner binaries
(we discuss the outer orbit configurations for these systems
in Section 3.4).

In Figure 3, top panel, we consider the relation between
initial and final period of the inner close binaries’ population
(<16 days). As shown in this figure (and also in Figure 1), the
main contribution of the close binaries’ population (associated
with the peak in the period distribution of ∼3 days) comes
from systems with inner binaries with periods of ∼4–16 days.

Figure 4. Fraction of systems that ended up in an inner period bin PF,bin relative
to the initial fraction of systems in that bin. We compare between the EKL (red
crosses) and TPQ (blue triangles).
(A color version of this figure is available in the online journal.)

However, ∼41% of the close binaries originated from initial
inner binary separation larger than 16 days. Considering the
entire triple population, we find that about 8.6% of all triples
with initially Pin > 16 days have become close binaries (i.e.,
with Pin,F < 16 days). Comparing this number with the TPQ’s
of ∼3.6%, we find that the EKL efficiency is larger by about
2.4 compared to the TPQ. To illustrate further the difference
between the EKL and TPQ, we consider in Figure 4 the fraction
of systems in a final inner period bin relative to the initial systems
in that bin (for equal logarithmic close binaries bins). The period
valley in the distribution is indicative of the different efficiency
of the EKL and TPQ approximations.

The population of close binaries with a wider final separation
has a nonnegligible eccentricity and is in the process of tidal
shrinking and circularization, as shown in the bottom panel
of Figure 3. Interestingly, this bottom panel is qualitatively
similar to Figure 2 in Tokovinin & Smekhov (2002). The
tidal shrinking process is still on its way even after 10 Gyr
of integration time, and those systems lay under the constant
angular momentum curve (see also Figure 8, top left panel,
which shows the integration time). In Section 3.4 we discuss the
outer orbit configuration for those close systems.

3.3. Inclination and Spin-orbit Angle

The statistical distribution of mutual orbital inclinations and
the spin-orbit angle can help disentangle between different
formation scenarios. If the formation involves a chaotic process,
one may expect an isotropic distribution of mutual inclinations
of hierarchal triples. This assumption means that the third-body
formation is essentially uncorrelated with the inner orbit. Our
numerical experiments assumed an isotropic distribution for the
initial inclination angle (i.e., uniform in cos i).

We find, similarly to Fabrycky & Tremaine (2007), that
the initial inclination distribution is not conserved during the
secular evolution. We illustrate this in Figure 5, left panel,
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where we show the final mutual inclination distribution as a
function of the initial inclination. However, unlike the TPQ
results presented in Fabrycky & Tremaine (2007), their Figure 7,
the final inclinations are not confined to the initial prograde or
retrograde configurations, but instead are scattered in the phase
space (Figure 5, left panel). This is because the EKL mechanism
allows the orbits to flip from i < 90◦ to i > 90◦ and vice versa
(Naoz et al. 2011, 2013a).

The final inclination distribution is shown in the right panel
of Figure 5 for the close binaries and for all of the runs (for both
the EKL and TPQ cases). Teyssandier et al. (2014) showed that
in the absence of dissipation and for initial circular inner orbit,
the final distribution of hierarchical triple mutual inclination has
in fact three peaks, at 40◦, 90◦, and 140◦. The significance of
these peaks depends on the initial conditions, and low eccentric
outer orbits give rise to another peak at 90◦, where the 90◦ is
more dominant; see their Figure 14, top panels. The systems
that reached 90◦ are typically associated with large eccentricity
excursions and thus are more likely to have undergone tidal
evolution. Thus, this peak is absent in the present of dissipation.
In other words, the distribution near polar configurations is
slightly more diluted, which can have large implications for the
evolution of compact objects after stellar evolution that requires
nearly perpendicular orbits.

The distribution show in Figure 5 yields less prominent peaks
at 40◦ and 140◦, as predicted before. This is a result of two main
reasons: (1) relaxing the test particle approximation and (2)
using the EKL approximation. However, we note that, as shown
in Naoz et al. (2012), a test particle (such as a hot Jupiter)
set initially on a circular orbit the final inclination distribution
similar to the one predicted by Fabrycky & Tremaine (2007).
Thus, the distribution of the two main peaks at 40◦ and 140◦

is recovered by the test particle case for the octupole level of
approximation (although with slightly less significance).

Another interesting observable (and perhaps more promising
than mutual inclination observations) is the spin-orbit angle
(obliquity), which is the angle between the spin axis of the star
and the angular momentum of the inner orbit. During the tidal
evolution, the obliquity of the closest binary will most likely

decay to zero. The obliquity decays faster than the eccentricity.
This process produces inner binaries that are still in the process
of shrinking and circularizing with typically low obliquities,
as depicted in the bottom panel of Figure 3, where most of
the simulated binaries below the constant angular momentum
run have small obliquities (ψ < 50◦ for the primary and
ψ < 100◦ for the secondary; see below for more details). This
behavior is also apparent in the top panel of Figure 6, where we
show the final obliquity distribution. The inner binaries with an
intermediate period (∼100 days) have large eccentricities and
low obliquities.

We draw attention to the top two panels of Figure 6, where
there are nine close (Pin < 10 days) circular systems with
nonnegligible obliquity (>10◦). All but one of these systems
have the primary spin period matching the orbital period, but
only three of the nine have secondaries that are similarly
synchronized. The others are spinning considerably slower.
About half of these have experienced chaotic EKL evolution,
such that the outcome is a sensitive function of the initial
conditions. We show the spin period of these systems for both
the primary and secondary in Figure 7. We also calculate the
expected spin period from Fabrycky et al. (2007) :

Ω = 2
2π/Pin

cos ψ + sec ψ
, (5)

which yields that tilted systems will have smaller spin periods
(see also Levrard et al. 2007). We show in Figure 7 that the
expected spin period from this calculation agrees well with
the results from the Monte Carlo run for the primary and the
secondary.

Very recently, Albrecht et al. (2014) have reported a system,
CV Velorum, with large obliquity (52◦ ± 6◦ for the primary and
3◦ ± 7◦ for the secondary). In the top panels of Figure 6, this
system is located near the other simulated systems that have
very short periods and large obliquities. This may suggest that
CV Velorum is a result of three-body evolution. Furthermore,
the rotation period of the two stars in this system is similar
to the orbital period of about seven days. This implies that,
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(A color version of this figure is available in the online journal.)
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using Equation (5), one can use the rotation period to constrain
the obliquity (or vice versa). For example, the 3◦ value for
the secondary obliquity agrees well with having a secondary
spin period equal to the orbital period (the 1 : 1 line in

Figure 7). However, for the primary we find that a lower
obliquity than the mean value (closer to the lower limit, i.e., 46◦)
yields an agreement between the calculated spin period and the
observed one.
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An important parameter is the initial value of the obliquity.
One may expect that tight binaries may be well aligned since
they originate from the same portion of a molecular cloud.
On the other hand, since the formation scenario of even tight
binaries involves many chaotic processes, the knowledge of
birth obliquity may be unknown. Therefore, we have chosen the
following experiments: in the first numerical runs we set initially
the primary obliquity from a uniform distribution (uniform in
ψ), while the secondary was chosen to be aligned with the
inner orbital angular momentum (i.e., ψ = 0◦). This way we
can examine two different initial conditions in the same run. In
the second Monte Carlo test we have set initially the two inner
orbit members on a perpendicular configuration (i.e., ψ = 90◦).
As a consistency test, we have also had a third Monte Carlo run
setting initially both the primary and the secondary on an aligned
configuration and confirmed that the final obliquity distributions
are identical to the secondary final distribution from the first
test. Note that all the rest of the results shown in this paper are
independent of the initial choice of the obliquity. For consistency
reasons the other orbital parameters discussed and analyzed in
the paper belong to the result from the first Monte Carlo test.

Different initial obliquity distributions are distinctive since
the final distribution carries a signature for the initial setup
distribution. However, another subtle difference arises in the
location of the “edge” of the aligned systems, i.e., the smallest
period for which most of the systems are aligned. For example,
the outcome of the initial perpendicular obliquity case is that
large obliquity systems can extend to very small periods with
an approximate limit at ∼10 days, while for the initial zero
obliquity case, final aligned systems can be found for !40 days.

We found that the final obliquity distribution carries a clear
signature of the initial distribution. The final distribution consists
of an aligned population for the tighter binaries, and a distribu-
tion that contains information of the initial setting between 0
and 40 days. This is most apparent for the second Monte Carlo
test (where the m1 and m2 obliquities were initially set to be
90◦). The final distribution has an aligned component, a broad
component of obliquity up to 180◦, but it also retained a peak at
90◦; see the bottom right panel of Figure 6. Setting the obliquity
initially on an aligned configuration (for either the primary or
the secondary) results in a final distribution of an aligned peak
with a broad tail of obliquities (see bottom right panel).

There is a slight difference in setting initially m1 and m2 on
an aligned (perpendicular) configuration compared to setting m1
on a uniform distribution and keeping m2 aligned (the second
run). Apart from having different final obliquity distributions
for the two cases (as depicted in the bottom panels of Figure 6),
the “edge” of systems on a short period with low obliquities
is slightly pushed inward for the case of m1 initially aligned,
compared to the uniform m1. This can be seen by comparing m1
and m2 obliquities for the population with intermediate periods
(∼10–100 days) and nonnegligible eccentricity; see the two top
panels of Figure 6. In other words, those systems (at periods
of ∼10–100 days with moderate to high eccentricity and low
obliquities) may end up with larger obliquities when initially
set on an aligned configuration (the “blue stripe” of systems in
the top left panel, which is absent in the top right panel). This is
easily understood if we consider the influence of the inclination
oscillations due to the Kozai mechanism. During this evolution,
the inner and outer argument of periapsis sweeps across ∼180◦,
which causes large-amplitude oscillations on the obliquity as
well (see Li et al. 2013). Starting with zero obliquity thus
can cause larger-amplitude oscillations and slightly suppress its

damping (because of the larger torque). It is interesting to note
that DI Herculis (Albrecht et al. 2009) resides in this “edge”
of intermediate periods (see top left panel of Figure 6). This
suggests that DI Herculis misalignment may actually be typical.

3.4. The Outer Orbit

The outer orbit gravitational perturbations can cause large
eccentricity oscillations for the inner orbit, as discussed above.
Strong perturbations can result in shrinking of the inner orbit
separation or even lead to merger of the inner members (see
Section 3.2 for details regarding the inner orbit’s properties). The
outer orbit configuration sets the different outcomes of the inner
orbit, and thus a promising observable is the outer orbit’s period
distribution. In the bottom right panel of Figure 8 we show the
initial outer orbit period taken from the lognormal distribution
of Duquennoy & Mayor (1991). We also show the period
distribution of the population of outer orbits that produced
close inner binaries (blue line). Interestingly, this distribution
is completely different from the injected initial distribution. We
also show in this figure the observed outer orbit’s distribution
(adopted from Tokovinin 2008, public catalog), which we
scaled to guide the eye. Note that the observed distribution
is not limited to the close binaries. However, probably due to
observational limitations in compiling the catalog, we suspect
that it will be biased toward companions that are around the
close binary population. Thus, it is not surprising that the
Kolmogorov–Smirnov test does not reject the null hypothesis at
5% significance level that the observed outer orbit’s distribution
and the simulated one are from the same continuous distribution,
with p value of 0.1564. Therefore, although we have a long tail
of wide outer orbits, close binaries (with periods !16 days) have
preferentially wide outer orbits, with a peak distribution at ∼106

day (as shown in Figure 8 bottom right panel), in agreement with
Tokovinin (2008) Figure 3.

The close inner binary’s final separation represents the final
stage of the secular evolution in the presence of tides and GR,
where the outer orbit’s separation does not change. When the
EKL precession timescale is comparable to tidal (and GR) pre-
cession, further eccentricity excitations from the EKL evolution
are suppressed. The inner orbit then settles on the separation that
equalized these timescales, or shorter separations. The timescale
associated with the Newtonian quadrupole term, due to the outer
body, can be estimated from the canonical equations (e.g., Naoz
et al. 2013a)

tquad ∼
2πa3

2

(
1 − e2

2

)3/2√
m1 + m2

a
3/2
1 m3

√
G

, (6)

where G is the gravitational constant. The tidal precession
timescale (ignoring the spin term) is estimated as (e.g., Eggleton
et al. 1998)

tTF ∼
a

13/2
1

(
1 − e2

1

)5
m1m2

15
√

G
√

m1 + m2feΛ
, (7)

where fe = 1 + 3/2e2
1 + 1/8e4

1 and

Λ = m2
2kL,1R

5
1 + m2

1kL,2R
5
2, (8)

where Rj and kL,j are the radius and the apsidal motion constant,
respectively, of the j ∈ 1, 2 object in the inner binary. Equating
these two timescales, and solving for a1, we further simplify this
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(A color version of this figure is available in the online journal.)

by taking m1 ∼ m2, which gives the following relation between
the two semimajor axes:

a3
2 ∼ a8

1
m3

m1

(
1 − e2

1

)5

60R5
1kL,1fe(1 − e2)3/2

. (9)

This relation can be used to constrain the other parameters in
the problem, for a given inner and outer separation.

We further approximate Equation (9) by taking m3 ∼ m1,
e1 → 0.5 (which is the mean initial distribution), and e2 → 0.5,
since most of the systems that produced close binaries had
e2 ∼ 0.5 (see Figure 8, top right panel). We get the limit of
the relation between the final inner and outer orbit separations
(solid line in the top panel of Figure 8). Considering the entire
population, a2 seems uncorrelated with the final inner orbit
separation, a1,F (in agreement with Tokovinin 2008). However,
this limiting line suggests that different masses and eccentricities

will result in different relations. In Figure 8, about 50% of
the systems with a2 ! 100 AU (the relevant systems for this
theoretical line) have started to the right side of this line (i.e.,
with a1 initially larger than the final configuration).

In the top left panel of Figure 8 we show the final inner
orbital eccentricity, e1,F , versus the outer orbit period, Pout, for
the close binary population. As depicted here, systems with
outer orbit period below ∼30 yr have a circular inner orbit. The
inner binaries that are still undergoing tidal circularization even
after 10 Gyr of the integration time (i.e., have nonnegligible
final eccentricity) are naturally more likely to have wider outer
orbits, although wide outer orbits can also cause the inner orbit
to shrink and circularize.

Another interesting observable is the outer orbit distribution
of the inner systems that merged, shown in the bottom left panel
of Figure 8 (red line). These systems are now binaries, and thus
Pout is the “new” binary period. Again, as for Pout of the inner
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close binaries, the outer orbit population of those inner binaries
that merged is a distinct subset of the initial period distribution.
Not surprisingly, typically close outer orbits will result in a
merger of the inner binaries, but as shown in this figure, a long
tail of very wide outer orbit periods (up to 109 days) can still
cause the inner binaries to merge.

These merger products are thus blue stragglers. Perets &
Fabrycky (2009) suggested a similar mechanism for the for-
mation of blue stragglers; however, they mainly envisioned a
two-step process, in which three-body dynamics plus tidal dis-
sipation created a close binary, and that binary subsequently
merged by magnetic winds or had unstable or efficient mass
transfer. Their mechanism explained the contemporaneous ob-
servation of a high fraction of companion stars to blue stragglers
(Mathieu & Geller 2009). However, more recently Geller &
Mathieu (2011) found secondary masses consistent with the
typical mass of a white dwarf (∼0.5 M⊙), whereas in the Perets
& Fabrycky (2009) scenario and ours, the companion masses
simply echo the initial conditions of triples—see Figure 9. Also,
Gosnell et al. (2014) found the UV light of a white dwarf in sev-
eral systems, suggesting the remnant of a mass donor, rather
than the distant companion of the triple dynamics scenario.

However, we see several reasons why the case is not yet closed
in favor of stable mass transfer. First, the recent simulations of
Geller et al. (2013) suggest that not enough blue stragglers are
made by the standard prescriptions for mass transfer in the best-
studied cluster (NGC 188). Second, five blue stragglers have no
companions detected out to 3000 day orbital periods (Mathieu
& Geller 2009); even if there is a more distant companion, this
would be too wide for mass transfer to make a blue straggler.
Third, the secondary stars typically have nonzero eccentricities,
which a priori would not be expected after the red-giant
phase of one of the stars (Verbunt & Phinney 1995; although
given the uncertain mass-transfer physics, it may be possible;
Sepinsky et al. 2009). Our mechanism can address these three
aspects.

The general principle of collisions in triples was in Geller
et al. (2013)’s N-body model (they specifically saw Leigh &
Sills (2011)’s mechanism of collision during unstable resonant
encounters), and they also followed stellar evolution models to
account for the mass-transfer systems. They computed fewer
blue stragglers than are actually seen in the cluster, however.
We reiterate two caveats Geller et al. (2013) noted: the model
lacked primordial triples, and for the dynamically formed triples
it used a formalism that accounted only for the quadrupole
interaction (the prescription of Mardling & Aarseth (2001)
within NBODY6). Having primordial triples may increase the
yield of blue stragglers, as the outer binary may be perturbed to
higher inclination or eccentricity by passing stars, which then
triggers a collision by EKL evolution. And we have shown that
the octupole interaction is much more efficient at generating
collisions than the quadrupole alone. So we suggest that these
extra components may explain the shortfall in modeled blue
stragglers.

On this second point, we note that our mechanism could
explain many of the detected binaries, but it also naturally
produces a range of companion periods that could be longer
than 3000 days. The cluster environment should unbind the
longest-period blue straggler binaries. These points were also
made by Geller et al. (2013).

Finally, we note that our mechanism naturally predicts an
eccentric companion to blue stragglers. Actually, it appears to
produce higher eccentricities than are seen in Mathieu & Geller’s
(2009) observations. In the bottom panel of Figure 10 we show
the final distribution of e2 of the outer orbit companions for
the merged inner systems (red line). During the EKL evolu-
tion, the outer orbital eccentricity undergoes small-amplitude
oscillations (Naoz et al. 2013a); however, as pointed out by
Teyssandier et al. (2014) in the case of comparable-mass per-
turbers, large inner orbital eccentricities are reached when the
outer orbital eccentricity almost does not vary. We also find that
the final outer orbital eccentricity almost does not change for
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Figure 10. Distribution of the final outer orbit’s eccentricity (e2,F ). Note that the final outer orbital eccentricity almost does not change for those systems that ended up
either as close binaries or as merged systems. In the top panel we consider the distribution of all of the runs (blue gray line) and the closed binaries (blue line). In the
bottom panel we consider the distribution of the orbits that crossed their Roche limit (red line), which are our designated merged systems. We also plot the observed
distribution of the blue stragglers for NGC 188 adopted from Geller & Mathieu (2012) (dot–dashed green line). To compare with observations, we also consider a
subset of systems with pout < 3000 days (purple dashed line). Note that the observation distribution was rescaled to guide the eye.
(A color version of this figure is available in the online journal.)

those systems that ended up either as close binaries or as merged
systems. Moreover, the merged systems have a distinct e2,F pop-
ulation compared to all of the runs (top panel) that preferentially
favor large eccentricities. We also overplot the observed eccen-
tricity distribution of the blue stragglers in NGC 188, (Geller
& Mathieu 2012). This distribution is limited to blue straggler
binaries with period smaller than 3000 days. Therefore, to com-
pare with observations, we also consider a subset of systems
with Pout < 3000 days.

4. DISCUSSION

We have studied the secular evolution of triple stellar systems
while considering the octupole level of approximation of the
hierarchical three-body problem. During the system evolution,
the octupole level of approximation can cause large eccentricity
excitations for the inner orbit. During the large eccentricity
excursions, tidal interactions play an important role. On close
pericenter passages, when tides are important, the orbital energy
is dissipated, the separation shrinks, and the orbit circularizes
(see right panels of Figure 2). The final orbit stabilized on a
separation that balances eccentricity excitations from the EKL
mechanism and tidal (and/or GR) precession. On the other
hand, if the eccentricity excursion happens on a relative short
timescale (but still long so the secular approximation is valid,
e.g., Naoz et al. 2013a), and tidal (or GR) force cannot influence
the dynamics, the binary members may cross each other’s Roche
limits (see left panels of Figure 2). We considered the systems
that crossed their Roche limits as merged systems.

1. Comparison with observations.
We found that ∼21% of all our runs ended up with pin !

16 days, and 4% of all the systems crossed the Roche limit
(the merged systems). We find that the final inner orbit’s
period distribution agrees with the observed distribution
adopted from the Tokovinin (2008) public catalog (see
Figure 1). Furthermore, the inner member configurations

that resulted in close binaries (merged systems) represent
a distinct subset population from the initial injected binary
distribution, which constrains the birth properties of close
binaries (merged systems). This also suggests that these
subsets may have only weak dependency on the properties
of the initial injected distribution of all triples. As shown in
Figure 1, the close systems had an initial inner period peak
of ∼10 days, while the merged systems had an initial period
peak of ∼1000 days. Both subsets have a long tail of wide
systems that can undergo separation shrinking, ending up
as either a close binary or a merged system, where wider
inner binaries are slightly more likely to end up in a merged
configuration than a close binary.

An interesting consequence of our results, and specifi-
cally the bimodal distribution in Figure 1, is that only rela-
tively wide inner binaries ("16–40 days) are available for
the EKL evolution at the white dwarf stage (where mass loss
will tend to widen the configuration even further). Further-
more, many of these will not be in a near-polar configuration
(see Figure 5). Many of those close binaries have already de-
coupled from the third star (see Figure 3) and are unlikely to
undergo large eccentricity excitations at a later stage. Thus,
this distribution should be taken into account for the prob-
ability estimations of the Type Ia double-degenerate sce-
nario through triple-body evolution (e.g., Thompson 2011;
Prodan et al. 2013; Katz & Dong 2012; Dong et al. 2014).

Tokovinin (2008) showed that Pout/Pin have large values
and concluded that the Kozai (TPQ) eccentricity excitations
are suppressed due to GR precessions and that therefore this
mechanism cannot produce tight binaries with a wide outer
perturber. Here we claim the exact opposite and support
it by qualitative comparison with observations. The EKL
mechanism in the presence of tides naturally produces
very tight binaries with a companion on a large range of
periods (see Figures 3 and 8). When the inner orbit is longer
initially, GR does not quench eccentricity excitations, and
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thus tidal dissipation can still take place. Furthermore, the
EKL mechanism, compared to the TPQ case, extends the
valley in the period distribution to larger values with a
rather flat period distribution for the close binaries as seen
in observations (see Figure 1 and discussion in Section 3).
We also find that the outer orbital period distribution is
consistent with observations, both for close inner binary
systems (see Figure 8, bottom right panel, where we
compared to the Tokovinin (2008) catalog of observed
triples) and for the companion of the merged population
adopted from Geller & Mathieu (2012) (see Figure 8,
bottom left panel). The strong agreement with observations
for both of those populations emphasizes the notion that
three-body secular interactions may be the main channel
for close inner binaries and merged systems like blue
stragglers. Future observations can further help test this
idea.7

2. The implications of the mechanism on blue straggler
formation.

The two main mechanisms that have been proposed in
the literature to explain the formation of blue stragglers are
coalescence and mass transfer between two stars (McCrea
1964), or collision between the stellar members in a
binary either in the field (Hills & Day 1976) or induced
by gravitational perturbations of a third object (Perets
& Fabrycky 2009). The latter mechanism is especially
promising in explaining blue straggler binaries. Here we
found that about 4% of our runs have crossed each others
Roche limit. Both mechanisms may contribute; however,
here we focus on the secular interactions, and specifically
the EKL mechanism.

The merger between the inner orbit’s members typically
happens after 5–100 quadrupole timescales (Equation (6)).
In the example shown in the left panel of Figure 2,
the merger happened after ∼15 quadrupole timescales;
however, for nearly coplanar systems, the large eccentricity
peak can happen after just a few quadrupole timescales (Li
et al. 2013). Regardless of the exact number of quadrupole
timescales before a merger, the merger is not immediate.
This implies that the stars typically will be already on the
main-sequence phase; furthermore, the members will cross
the Roche limit during a large eccentricity phase. Therefore,
during the evolution we expect an electromagnetic signature
that will result from the large velocities (due to the large
eccentricities) of the two main-sequence stars.

Given these typical numbers, most of the systems that
crossed their Roche limit did so in less than few tens of
Myr. Therefore, without cluster dynamics included, this
mechanism would not make blue stragglers in an open
cluster with the age of a few Gyr. However, primordial
triples may be torqued to higher mutual inclination and
eccentricity at some point during the life of the cluster,
which would then lead to EKL oscillations and a merger,
and thus an observable blue straggler. Measuring the
triple fraction for open clusters may support this claim
that the EKL takes place for newly formed or newly
perturbed triples. However, the estimations of triples from
observations suffer from incompleteness and place a lower

7 Note that if this mechanism of the formation of close binaries is the
dominating channel, it means that during the inner orbital shrinking test
particles (such as planets) may be ejected from the system. Thus, we would
expect a deficit of circumbinary planets, in agreement with observations (e.g.,
Armstrong et al. 2014).

limit that ranges from 0.5% to 2.3% for different clusters
and observations (e.g., Mermilliod et al. 1992; Mermilliod
& Mayor 1999; Geller et al. 2010). N-body calculations
showed that triples can be dynamically generated in the
course of 7 Gyr to about 3.8% and maximum of 4.5%
(Geller et al. 2013). Furthermore, comparing the type
and configurations of the N-body simulated triples to the
observations led Geller et al. (2013) to conclude that
open clusters may form with a significant population
of primordial triples, and they are continuing to form
dynamically. Thus, for our purposes, new triples are being
formed throughout the lifetime for the cluster, allowing for
the EKL mechanism to take place again for each new triple,
which can produce blue stragglers. Thus, the blue stragglers
we observe now are recently formed.

A caveat for these calculations lies in our tidal model.
The exact fraction of merged systems depends on the tidal
model and the timescales assumed. Naoz et al. (2012)
showed that the final fraction of hot Jupiters that merged
into their stars depends on the viscous time assumed in
the model. Specifically, having shorter viscous timescales
by two orders of magnitude compared to the nominal
one resulted in zero merged systems, where two orders
of magnitude longer timescales resulted in half as many
merged systems. It is reasonable to assume that similar
variations will occur here.

Recently Gosnell et al. (2014) reported the detection of
three young white dwarf companions to blue stragglers in
the NGC 188 star cluster. Interestingly, one of the binaries
has a large period (∼3030 days) and could not be explained
as a simple mass transfer or wind accretion binary. We
suggest that this binary may be a result of the dynamical
interaction discussed here. The relatively short age of the
white dwarf may suggest that this system formed not too
long ago. Gosnell et al. (2014) suggested that the other two
binaries were formed through mass transfer and common
envelope episodes and needed an almost unity mass ratio
between the two members. This is rather surprising, since
if these two binaries are selected randomly, their mass
ratio should not be one. One possibility is that indeed
blue stragglers have a unique mass function that is close to
twins. The second possibility is that even the short-period
detections are evidence of a dynamical origin.

3. Implications on the obliquity distribution.
Considering the systems that ended up in close systems

(∼16 days), we predict a specific distribution for the mutual
inclination of the orbit; see Figure 5. This distribution is
a specific signature for secular three-body evolution of
the system. Another promising observable is the obliquity
of the inner binaries. We found that the final obliquity
distribution has a signature of the initial properties (see
Figure 6), which can be used as a tool to study the formation
conditions of close binaries in triples. Thus, the obliquity
distribution has an aligned peak. Furthermore, we suggested
that observed misaligned binaries such as CV Velorum
(Albrecht et al. 2014) and DI Herculis (Albrecht et al.
2009) may have a perturber on a wide orbit, as their current
period and obliquity values are consistent with the predicted
obliquity distribution of our simulated triple systems.

We have run three Monte Carlo runs, which differ by the
initial obliquities of the inner binary. We found that most of
the closest binaries have aligned configurations, while the
wider ones have a broad obliquity distribution that results
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from the initial condition. This is most apparent for the
Monte Carlo test that was set initially with a perpendicular
configuration. This final distribution, for intermediate to
long periods, is consistent with a broad distribution with a
clear peak at 90◦; see the bottom right panel of Figure 6.
Thus, obtaining a large sample of observed obliquity
distributions can help shed light on the formation properties
of those systems.
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